repo_name
stringlengths 6
112
| path
stringlengths 4
204
| copies
stringlengths 1
3
| size
stringlengths 4
6
| content
stringlengths 714
810k
| license
stringclasses 15
values |
---|---|---|---|---|---|
kvh/ramp | ramp/tests/test_modeling.py | 1 | 6228 | import os
import sys
sys.path.append('../..')
import unittest
import numpy as np
import pandas as pd
from pandas import DataFrame, Series, Index
from pandas.util.testing import assert_almost_equal
from ramp.estimators.base import Probabilities
from ramp.features.base import F, Map
from ramp.features.trained import Predictions
from ramp.model_definition import ModelDefinition
from ramp import modeling
from ramp.modeling import (fit_model,
cross_validate,
build_and_package_model,
generate_train,
generate_test)
from ramp.tests.test_features import make_data
class DummyEstimator(object):
def __init__(self):
pass
def fit(self, x, y):
self.fitx = x
self.fity = y
def predict(self, x):
self.predictx = x
p = np.zeros(len(x))
return p
class DummyCVEstimator(object):
def __init__(self):
self.fitx = []
self.fity = []
self.predictx = []
def fit(self, x, y):
self.fitx.append(x)
self.fity.append(y)
def predict(self, x):
self.predictx.append(x)
p = np.zeros(len(x))
return p
class DummyProbEstimator(object):
def __init__(self, n_clses):
self.n_clses = n_clses
def fit(self, x, y):
pass
def predict_proba(self, x):
return np.zeros((len(x), self.n_clses))
class TestBasicModeling(unittest.TestCase):
def setUp(self):
self.data = make_data(10)
def make_model_def_basic(self):
features = [F(10), F('a')]
target = F('b')
estimator = DummyEstimator()
model_def = ModelDefinition(features=features,
estimator=estimator,
target=target)
return model_def
def test_generate_train(self):
model_def = self.make_model_def_basic()
train_index = self.data.index[:5]
x_train, y_train, ff, x = generate_train(model_def, self.data,
train_index=train_index)
assert_almost_equal(x_train.index, train_index)
def test_generate_test(self):
model_def = self.make_model_def_basic()
x, y, fitted_model = fit_model(model_def, self.data)
test_index = self.data.index[:5]
x_test, y_test = generate_test(model_def, self.data.loc[test_index],
fitted_model)
assert_almost_equal(x_test.index, test_index)
def test_fit_model(self):
model_def = self.make_model_def_basic()
x, y, fitted_model = fit_model(model_def, self.data)
fe = fitted_model.fitted_estimator
self.assertEqual(fe.fitx.shape, x.shape)
self.assertEqual(fe.fity.shape, y.shape)
def test_predict(self):
model_def = self.make_model_def_basic()
x, y, fitted_model = fit_model(model_def, self.data)
x, y_true = modeling.generate_test(model_def, self.data[:3], fitted_model)
y_preds = fitted_model.fitted_estimator.predict(x)
self.assertEqual(len(x), 3)
self.assertEqual(len(y_true), 3)
self.assertEqual(len(y_preds), 3)
y_preds2 = modeling.predict_with_model(fitted_model, self.data[:3])
assert_almost_equal(y_preds, y_preds2.values)
def test_cross_validate(self):
model_def = self.make_model_def_basic()
results = cross_validate(model_def, self.data, folds=3)
self.assertEqual(len(results), 3)
def test_build_and_package_model(self):
model_def = self.make_model_def_basic()
desc = "State-of-the-Art Model"
pkg = build_and_package_model(model_def, self.data, desc,
train_index=self.data.index[:3])
self.assertEqual(pkg.data_description, desc)
self.assertTrue(pkg.fitted_model)
# and evaluate
pkg = build_and_package_model(model_def, self.data, desc, evaluate=True,
train_index=self.data.index[:3])
self.assertEqual(pkg.data_description, desc)
self.assertTrue(pkg.fitted_model)
def test_cross_validate_with_alternative_predictions(self):
features = [F(10), F('a')]
target = Map('b', np.log)
estimator = DummyEstimator()
model_def = ModelDefinition(features=features,
estimator=estimator,
target=target,
evaluation_transformation=Map('__predictions', np.exp),
evaluation_target=F('b'))
results = cross_validate(model_def, self.data, folds=3)
self.assertEqual(len(results), 3)
# assert we've transformed predictions correctly
yt = results[0].y_test
assert_almost_equal(yt.values, self.data['b'].reindex(yt.index).values)
assert_almost_equal(estimator.fity,
np.log(self.data['b'].reindex(results[-1].y_train.index)).values)
class TestNestedModeling(unittest.TestCase):
def setUp(self):
self.data = make_data(10)
def test_predictions_nest(self):
inner_estimator = DummyEstimator()
inner_model = ModelDefinition(features=[F('a')],
estimator=inner_estimator,
target=F('b'))
features = [F('c'), Predictions(inner_model)]
target = F('b')
estimator = DummyEstimator()
model_def = ModelDefinition(features=features,
estimator=estimator,
target=target)
train_index = self.data.index[:5]
x, y, fitted_model = fit_model(model_def, self.data, train_index=train_index)
self.assertEqual(fitted_model.fitted_features[1].trained_data.fitted_estimator.fitx.shape, (5, 1))
self.assertEqual(x.shape, (len(train_index), 2))
x, y_true = modeling.generate_test(model_def, self.data[:3], fitted_model)
assert_almost_equal(x[x.columns[1]].values, np.zeros(3))
if __name__ == '__main__':
unittest.main()
| mit |
dunovank/jupyter-themes | setup.py | 1 | 2939 | import os
from glob import glob
from setuptools import setup
from itertools import chain
pkgname = 'jupyterthemes'
major = 0
minor = 20
patch = 2
version = '.'.join([str(v) for v in [major, minor, patch]])
url = 'https://github.com/dunovank/jupyter-themes'
download_url = '/'.join([url, 'tarball', 'v' + version])
# get readme content after screenshots for pypi site
README = os.path.join(os.path.dirname(__file__), 'README.md')
with open(README) as read_me:
longdescr = ''
startReading = False
for line in read_me:
if "Travis" in line.strip():
startReading = True
if "Monospace Fonts" in line.strip():
break
if startReading:
longdescr += line
# add layout, .less styles, and compiled .css files to pkg data
layout = os.path.join(pkgname, 'layout')
styles = os.path.join(pkgname, 'styles')
stylesCompiled = os.path.join(styles, 'compiled')
datafiles = {pkgname: []}
for subdir in ['defaults', 'layout', 'styles', 'styles/compiled']:
filetypes = '*.*ss'
if subdir=='defaults':
filetypes = '*.*s'
files = glob(os.path.join(pkgname, subdir, filetypes))
filesLocalPath = [os.sep.join(f.split(os.sep)[1:]) for f in files]
datafiles[pkgname].extend(filesLocalPath)
# recursively point to all included font directories
fontfams = ['monospace', 'sans-serif', 'serif']
fsubdirs = [os.path.join(pkgname, 'fonts', subdir) for subdir in fontfams]
fontsdata = chain.from_iterable([[os.sep.join(f.split(os.sep)[1:])
for f in glob(os.path.join(fsub, '*', '*'))]
for fsub in fsubdirs])
datafiles[pkgname].extend(list(fontsdata))
install_requires = ['jupyter_core', 'notebook>=5.6.0', 'ipython>=5.4.1', 'matplotlib>=1.4.3', 'lesscpy>=0.11.2']
setup(
name='jupyterthemes',
version=version,
packages=['jupyterthemes'],
include_package_data=True,
package_data=datafiles,
description='Select and install a Jupyter notebook theme',
long_description=longdescr,
license='MIT',
url=url,
download_url=download_url,
author='dunovank',
author_email='[email protected]',
classifiers=[
'Environment :: Web Environment',
'Intended Audience :: Developers',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Topic :: Internet :: WWW/HTTP',
'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
],
install_requires=install_requires,
keywords=['jupyter', 'python', 'ipython', 'notebook', 'theme', 'less', 'css'],
entry_points={
'console_scripts': [
'jupyter-theme = jupyterthemes:main',
'jt = jupyterthemes:main',
],
})
| mit |
mjudsp/Tsallis | sklearn/ensemble/forest.py | 1 | 64666 | """Forest of trees-based ensemble methods
Those methods include random forests and extremely randomized trees.
The module structure is the following:
- The ``BaseForest`` base class implements a common ``fit`` method for all
the estimators in the module. The ``fit`` method of the base ``Forest``
class calls the ``fit`` method of each sub-estimator on random samples
(with replacement, a.k.a. bootstrap) of the training set.
The init of the sub-estimator is further delegated to the
``BaseEnsemble`` constructor.
- The ``ForestClassifier`` and ``ForestRegressor`` base classes further
implement the prediction logic by computing an average of the predicted
outcomes of the sub-estimators.
- The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived
classes provide the user with concrete implementations of
the forest ensemble method using classical, deterministic
``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as
sub-estimator implementations.
- The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived
classes provide the user with concrete implementations of the
forest ensemble method using the extremely randomized trees
``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as
sub-estimator implementations.
Single and multi-output problems are both handled.
"""
# Authors: Gilles Louppe <[email protected]>
# Brian Holt <[email protected]>
# Joly Arnaud <[email protected]>
# Fares Hedayati <[email protected]>
#
# License: BSD 3 clause
from __future__ import division
import warnings
from warnings import warn
from abc import ABCMeta, abstractmethod
import numpy as np
from scipy.sparse import issparse
from scipy.sparse import hstack as sparse_hstack
from ..base import ClassifierMixin, RegressorMixin
from ..externals.joblib import Parallel, delayed
from ..externals import six
from ..feature_selection.from_model import _LearntSelectorMixin
from ..metrics import r2_score
from ..preprocessing import OneHotEncoder
from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor,
ExtraTreeClassifier, ExtraTreeRegressor)
from ..tree._tree import DTYPE, DOUBLE
from ..utils import check_random_state, check_array, compute_sample_weight
from ..exceptions import DataConversionWarning, NotFittedError
from .base import BaseEnsemble, _partition_estimators
from ..utils.fixes import bincount, parallel_helper
from ..utils.multiclass import check_classification_targets
__all__ = ["RandomForestClassifier",
"RandomForestRegressor",
"ExtraTreesClassifier",
"ExtraTreesRegressor",
"RandomTreesEmbedding"]
MAX_INT = np.iinfo(np.int32).max
def _generate_sample_indices(random_state, n_samples):
"""Private function used to _parallel_build_trees function."""
random_instance = check_random_state(random_state)
sample_indices = random_instance.randint(0, n_samples, n_samples)
return sample_indices
def _generate_unsampled_indices(random_state, n_samples):
"""Private function used to forest._set_oob_score function."""
sample_indices = _generate_sample_indices(random_state, n_samples)
sample_counts = bincount(sample_indices, minlength=n_samples)
unsampled_mask = sample_counts == 0
indices_range = np.arange(n_samples)
unsampled_indices = indices_range[unsampled_mask]
return unsampled_indices
def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees,
verbose=0, class_weight=None):
"""Private function used to fit a single tree in parallel."""
if verbose > 1:
print("building tree %d of %d" % (tree_idx + 1, n_trees))
if forest.bootstrap:
n_samples = X.shape[0]
if sample_weight is None:
curr_sample_weight = np.ones((n_samples,), dtype=np.float64)
else:
curr_sample_weight = sample_weight.copy()
indices = _generate_sample_indices(tree.random_state, n_samples)
sample_counts = bincount(indices, minlength=n_samples)
curr_sample_weight *= sample_counts
if class_weight == 'subsample':
with warnings.catch_warnings():
warnings.simplefilter('ignore', DeprecationWarning)
curr_sample_weight *= compute_sample_weight('auto', y, indices)
elif class_weight == 'balanced_subsample':
curr_sample_weight *= compute_sample_weight('balanced', y, indices)
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
else:
tree.fit(X, y, sample_weight=sample_weight, check_input=False)
return tree
class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble,
_LearntSelectorMixin)):
"""Base class for forests of trees.
Warning: This class should not be used directly. Use derived classes
instead.
"""
@abstractmethod
def __init__(self,
base_estimator,
n_estimators=10,
estimator_params=tuple(),
bootstrap=False,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None):
super(BaseForest, self).__init__(
base_estimator=base_estimator,
n_estimators=n_estimators,
estimator_params=estimator_params)
self.bootstrap = bootstrap
self.oob_score = oob_score
self.n_jobs = n_jobs
self.random_state = random_state
self.verbose = verbose
self.warm_start = warm_start
self.class_weight = class_weight
def apply(self, X):
"""Apply trees in the forest to X, return leaf indices.
Parameters
----------
X : array-like or sparse matrix, shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
X_leaves : array_like, shape = [n_samples, n_estimators]
For each datapoint x in X and for each tree in the forest,
return the index of the leaf x ends up in.
"""
X = self._validate_X_predict(X)
results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
backend="threading")(
delayed(parallel_helper)(tree, 'apply', X, check_input=False)
for tree in self.estimators_)
return np.array(results).T
def decision_path(self, X):
"""Return the decision path in the forest
Parameters
----------
X : array-like or sparse matrix, shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
indicator : sparse csr array, shape = [n_samples, n_nodes]
Return a node indicator matrix where non zero elements
indicates that the samples goes through the nodes.
n_nodes_ptr : array of size (n_estimators + 1, )
The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
gives the indicator value for the i-th estimator.
"""
X = self._validate_X_predict(X)
indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
backend="threading")(
delayed(parallel_helper)(tree, 'decision_path', X,
check_input=False)
for tree in self.estimators_)
n_nodes = [0]
n_nodes.extend([i.shape[1] for i in indicators])
n_nodes_ptr = np.array(n_nodes).cumsum()
return sparse_hstack(indicators).tocsr(), n_nodes_ptr
def fit(self, X, y, sample_weight=None):
"""Build a forest of trees from the training set (X, y).
Parameters
----------
X : array-like or sparse matrix of shape = [n_samples, n_features]
The training input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csc_matrix``.
y : array-like, shape = [n_samples] or [n_samples, n_outputs]
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like, shape = [n_samples] or None
Sample weights. If None, then samples are equally weighted. Splits
that would create child nodes with net zero or negative weight are
ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any
single class carrying a negative weight in either child node.
Returns
-------
self : object
Returns self.
"""
# Validate or convert input data
X = check_array(X, accept_sparse="csc", dtype=DTYPE)
y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None)
if issparse(X):
# Pre-sort indices to avoid that each individual tree of the
# ensemble sorts the indices.
X.sort_indices()
# Remap output
n_samples, self.n_features_ = X.shape
y = np.atleast_1d(y)
if y.ndim == 2 and y.shape[1] == 1:
warn("A column-vector y was passed when a 1d array was"
" expected. Please change the shape of y to "
"(n_samples,), for example using ravel().",
DataConversionWarning, stacklevel=2)
if y.ndim == 1:
# reshape is necessary to preserve the data contiguity against vs
# [:, np.newaxis] that does not.
y = np.reshape(y, (-1, 1))
self.n_outputs_ = y.shape[1]
y, expanded_class_weight = self._validate_y_class_weight(y)
if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
y = np.ascontiguousarray(y, dtype=DOUBLE)
if expanded_class_weight is not None:
if sample_weight is not None:
sample_weight = sample_weight * expanded_class_weight
else:
sample_weight = expanded_class_weight
# Check parameters
self._validate_estimator()
if not self.bootstrap and self.oob_score:
raise ValueError("Out of bag estimation only available"
" if bootstrap=True")
random_state = check_random_state(self.random_state)
if not self.warm_start:
# Free allocated memory, if any
self.estimators_ = []
n_more_estimators = self.n_estimators - len(self.estimators_)
if n_more_estimators < 0:
raise ValueError('n_estimators=%d must be larger or equal to '
'len(estimators_)=%d when warm_start==True'
% (self.n_estimators, len(self.estimators_)))
elif n_more_estimators == 0:
warn("Warm-start fitting without increasing n_estimators does not "
"fit new trees.")
else:
if self.warm_start and len(self.estimators_) > 0:
# We draw from the random state to get the random state we
# would have got if we hadn't used a warm_start.
random_state.randint(MAX_INT, size=len(self.estimators_))
trees = []
for i in range(n_more_estimators):
tree = self._make_estimator(append=False)
tree.set_params(random_state=random_state.randint(MAX_INT))
trees.append(tree)
# Parallel loop: we use the threading backend as the Cython code
# for fitting the trees is internally releasing the Python GIL
# making threading always more efficient than multiprocessing in
# that case.
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
backend="threading")(
delayed(_parallel_build_trees)(
t, self, X, y, sample_weight, i, len(trees),
verbose=self.verbose, class_weight=self.class_weight)
for i, t in enumerate(trees))
# Collect newly grown trees
self.estimators_.extend(trees)
if self.oob_score:
self._set_oob_score(X, y)
# Decapsulate classes_ attributes
if hasattr(self, "classes_") and self.n_outputs_ == 1:
self.n_classes_ = self.n_classes_[0]
self.classes_ = self.classes_[0]
return self
@abstractmethod
def _set_oob_score(self, X, y):
"""Calculate out of bag predictions and score."""
def _validate_y_class_weight(self, y):
# Default implementation
return y, None
def _validate_X_predict(self, X):
"""Validate X whenever one tries to predict, apply, predict_proba"""
if self.estimators_ is None or len(self.estimators_) == 0:
raise NotFittedError("Estimator not fitted, "
"call `fit` before exploiting the model.")
return self.estimators_[0]._validate_X_predict(X, check_input=True)
@property
def feature_importances_(self):
"""Return the feature importances (the higher, the more important the
feature).
Returns
-------
feature_importances_ : array, shape = [n_features]
"""
if self.estimators_ is None or len(self.estimators_) == 0:
raise NotFittedError("Estimator not fitted, "
"call `fit` before `feature_importances_`.")
all_importances = Parallel(n_jobs=self.n_jobs,
backend="threading")(
delayed(getattr)(tree, 'feature_importances_')
for tree in self.estimators_)
return sum(all_importances) / len(self.estimators_)
class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest,
ClassifierMixin)):
"""Base class for forest of trees-based classifiers.
Warning: This class should not be used directly. Use derived classes
instead.
"""
@abstractmethod
def __init__(self,
base_estimator,
n_estimators=10,
estimator_params=tuple(),
bootstrap=False,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None):
super(ForestClassifier, self).__init__(
base_estimator,
n_estimators=n_estimators,
estimator_params=estimator_params,
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start,
class_weight=class_weight)
def _set_oob_score(self, X, y):
"""Compute out-of-bag score"""
X = check_array(X, dtype=DTYPE, accept_sparse='csr')
n_classes_ = self.n_classes_
n_samples = y.shape[0]
oob_decision_function = []
oob_score = 0.0
predictions = []
for k in range(self.n_outputs_):
predictions.append(np.zeros((n_samples, n_classes_[k])))
for estimator in self.estimators_:
unsampled_indices = _generate_unsampled_indices(
estimator.random_state, n_samples)
p_estimator = estimator.predict_proba(X[unsampled_indices, :],
check_input=False)
if self.n_outputs_ == 1:
p_estimator = [p_estimator]
for k in range(self.n_outputs_):
predictions[k][unsampled_indices, :] += p_estimator[k]
for k in range(self.n_outputs_):
if (predictions[k].sum(axis=1) == 0).any():
warn("Some inputs do not have OOB scores. "
"This probably means too few trees were used "
"to compute any reliable oob estimates.")
decision = (predictions[k] /
predictions[k].sum(axis=1)[:, np.newaxis])
oob_decision_function.append(decision)
oob_score += np.mean(y[:, k] ==
np.argmax(predictions[k], axis=1), axis=0)
if self.n_outputs_ == 1:
self.oob_decision_function_ = oob_decision_function[0]
else:
self.oob_decision_function_ = oob_decision_function
self.oob_score_ = oob_score / self.n_outputs_
def _validate_y_class_weight(self, y):
check_classification_targets(y)
y = np.copy(y)
expanded_class_weight = None
if self.class_weight is not None:
y_original = np.copy(y)
self.classes_ = []
self.n_classes_ = []
y_store_unique_indices = np.zeros(y.shape, dtype=np.int)
for k in range(self.n_outputs_):
classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True)
self.classes_.append(classes_k)
self.n_classes_.append(classes_k.shape[0])
y = y_store_unique_indices
if self.class_weight is not None:
valid_presets = ('auto', 'balanced', 'subsample', 'balanced_subsample')
if isinstance(self.class_weight, six.string_types):
if self.class_weight not in valid_presets:
raise ValueError('Valid presets for class_weight include '
'"balanced" and "balanced_subsample". Given "%s".'
% self.class_weight)
if self.class_weight == "subsample":
warn("class_weight='subsample' is deprecated in 0.17 and"
"will be removed in 0.19. It was replaced by "
"class_weight='balanced_subsample' using the balanced"
"strategy.", DeprecationWarning)
if self.warm_start:
warn('class_weight presets "balanced" or "balanced_subsample" are '
'not recommended for warm_start if the fitted data '
'differs from the full dataset. In order to use '
'"balanced" weights, use compute_class_weight("balanced", '
'classes, y). In place of y you can use a large '
'enough sample of the full training set target to '
'properly estimate the class frequency '
'distributions. Pass the resulting weights as the '
'class_weight parameter.')
if (self.class_weight not in ['subsample', 'balanced_subsample'] or
not self.bootstrap):
if self.class_weight == 'subsample':
class_weight = 'auto'
elif self.class_weight == "balanced_subsample":
class_weight = "balanced"
else:
class_weight = self.class_weight
with warnings.catch_warnings():
if class_weight == "auto":
warnings.simplefilter('ignore', DeprecationWarning)
expanded_class_weight = compute_sample_weight(class_weight,
y_original)
return y, expanded_class_weight
def predict(self, X):
"""Predict class for X.
The predicted class of an input sample is a vote by the trees in
the forest, weighted by their probability estimates. That is,
the predicted class is the one with highest mean probability
estimate across the trees.
Parameters
----------
X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
y : array of shape = [n_samples] or [n_samples, n_outputs]
The predicted classes.
"""
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
return self.classes_.take(np.argmax(proba, axis=1), axis=0)
else:
n_samples = proba[0].shape[0]
predictions = np.zeros((n_samples, self.n_outputs_))
for k in range(self.n_outputs_):
predictions[:, k] = self.classes_[k].take(np.argmax(proba[k],
axis=1),
axis=0)
return predictions
def predict_proba(self, X):
"""Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the mean predicted class probabilities of the trees in the forest. The
class probability of a single tree is the fraction of samples of the same
class in a leaf.
Parameters
----------
X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
p : array of shape = [n_samples, n_classes], or a list of n_outputs
such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute `classes_`.
"""
# Check data
X = self._validate_X_predict(X)
# Assign chunk of trees to jobs
n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)
# Parallel loop
all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose,
backend="threading")(
delayed(parallel_helper)(e, 'predict_proba', X,
check_input=False)
for e in self.estimators_)
# Reduce
proba = all_proba[0]
if self.n_outputs_ == 1:
for j in range(1, len(all_proba)):
proba += all_proba[j]
proba /= len(self.estimators_)
else:
for j in range(1, len(all_proba)):
for k in range(self.n_outputs_):
proba[k] += all_proba[j][k]
for k in range(self.n_outputs_):
proba[k] /= self.n_estimators
return proba
def predict_log_proba(self, X):
"""Predict class log-probabilities for X.
The predicted class log-probabilities of an input sample is computed as
the log of the mean predicted class probabilities of the trees in the
forest.
Parameters
----------
X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
p : array of shape = [n_samples, n_classes], or a list of n_outputs
such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute `classes_`.
"""
proba = self.predict_proba(X)
if self.n_outputs_ == 1:
return np.log(proba)
else:
for k in range(self.n_outputs_):
proba[k] = np.log(proba[k])
return proba
class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)):
"""Base class for forest of trees-based regressors.
Warning: This class should not be used directly. Use derived classes
instead.
"""
@abstractmethod
def __init__(self,
base_estimator,
n_estimators=10,
estimator_params=tuple(),
bootstrap=False,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False):
super(ForestRegressor, self).__init__(
base_estimator,
n_estimators=n_estimators,
estimator_params=estimator_params,
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start)
def predict(self, X):
"""Predict regression target for X.
The predicted regression target of an input sample is computed as the
mean predicted regression targets of the trees in the forest.
Parameters
----------
X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
y : array of shape = [n_samples] or [n_samples, n_outputs]
The predicted values.
"""
# Check data
X = self._validate_X_predict(X)
# Assign chunk of trees to jobs
n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)
# Parallel loop
all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose,
backend="threading")(
delayed(parallel_helper)(e, 'predict', X, check_input=False)
for e in self.estimators_)
# Reduce
y_hat = sum(all_y_hat) / len(self.estimators_)
return y_hat
def _set_oob_score(self, X, y):
"""Compute out-of-bag scores"""
X = check_array(X, dtype=DTYPE, accept_sparse='csr')
n_samples = y.shape[0]
predictions = np.zeros((n_samples, self.n_outputs_))
n_predictions = np.zeros((n_samples, self.n_outputs_))
for estimator in self.estimators_:
unsampled_indices = _generate_unsampled_indices(
estimator.random_state, n_samples)
p_estimator = estimator.predict(
X[unsampled_indices, :], check_input=False)
if self.n_outputs_ == 1:
p_estimator = p_estimator[:, np.newaxis]
predictions[unsampled_indices, :] += p_estimator
n_predictions[unsampled_indices, :] += 1
if (n_predictions == 0).any():
warn("Some inputs do not have OOB scores. "
"This probably means too few trees were used "
"to compute any reliable oob estimates.")
n_predictions[n_predictions == 0] = 1
predictions /= n_predictions
self.oob_prediction_ = predictions
if self.n_outputs_ == 1:
self.oob_prediction_ = \
self.oob_prediction_.reshape((n_samples, ))
self.oob_score_ = 0.0
for k in range(self.n_outputs_):
self.oob_score_ += r2_score(y[:, k],
predictions[:, k])
self.oob_score_ /= self.n_outputs_
class RandomForestClassifier(ForestClassifier):
"""A random forest classifier.
A random forest is a meta estimator that fits a number of decision tree
classifiers on various sub-samples of the dataset and use averaging to
improve the predictive accuracy and control over-fitting.
The sub-sample size is always the same as the original
input sample size but the samples are drawn with replacement if
`bootstrap=True` (default).
Read more in the :ref:`User Guide <forest>`.
Parameters
----------
n_estimators : integer, optional (default=10)
The number of trees in the forest.
criterion : string, optional (default="gini")
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "entropy" for the information gain.
Note: this parameter is tree-specific.
max_features : int, float, string or None, optional (default="auto")
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a percentage and
`int(max_features * n_features)` features are considered at each
split.
- If "auto", then `max_features=sqrt(n_features)`.
- If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
max_depth : integer or None, optional (default=None)
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
Ignored if ``max_leaf_nodes`` is not None.
min_samples_split : int, float, optional (default=2)
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a percentage and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
min_samples_leaf : int, float, optional (default=1)
The minimum number of samples required to be at a leaf node:
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a percentage and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
min_weight_fraction_leaf : float, optional (default=0.)
The minimum weighted fraction of the input samples required to be at a
leaf node.
max_leaf_nodes : int or None, optional (default=None)
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
If not None then ``max_depth`` will be ignored.
bootstrap : boolean, optional (default=True)
Whether bootstrap samples are used when building trees.
oob_score : bool
Whether to use out-of-bag samples to estimate
the generalization accuracy.
n_jobs : integer, optional (default=1)
The number of jobs to run in parallel for both `fit` and `predict`.
If -1, then the number of jobs is set to the number of cores.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : int, optional (default=0)
Controls the verbosity of the tree building process.
warm_start : bool, optional (default=False)
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest.
class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
The "balanced_subsample" mode is the same as "balanced" except that
weights are computed based on the bootstrap sample for every tree
grown.
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed
through the fit method) if sample_weight is specified.
Attributes
----------
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.
classes_ : array of shape = [n_classes] or a list of such arrays
The classes labels (single output problem), or a list of arrays of
class labels (multi-output problem).
n_classes_ : int or list
The number of classes (single output problem), or a list containing the
number of classes for each output (multi-output problem).
n_features_ : int
The number of features when ``fit`` is performed.
n_outputs_ : int
The number of outputs when ``fit`` is performed.
feature_importances_ : array of shape = [n_features]
The feature importances (the higher, the more important the feature).
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_decision_function_ : array of shape = [n_samples, n_classes]
Decision function computed with out-of-bag estimate on the training
set. If n_estimators is small it might be possible that a data point
was never left out during the bootstrap. In this case,
`oob_decision_function_` might contain NaN.
References
----------
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
See also
--------
DecisionTreeClassifier, ExtraTreesClassifier
"""
def __init__(self,
n_estimators=10,
criterion="gini",
pval = [0.0,0.5],
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features="auto",
max_leaf_nodes=None,
bootstrap=True,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None):
super(RandomForestClassifier, self).__init__(
base_estimator=DecisionTreeClassifier(),
n_estimators=n_estimators,
estimator_params=("criterion", "max_depth", "min_samples_split",
"min_samples_leaf", "min_weight_fraction_leaf",
"max_features", "max_leaf_nodes",
"random_state"),
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start,
class_weight=class_weight)
self.criterion = criterion
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.max_leaf_nodes = max_leaf_nodes
class RandomForestRegressor(ForestRegressor):
"""A random forest regressor.
A random forest is a meta estimator that fits a number of classifying
decision trees on various sub-samples of the dataset and use averaging
to improve the predictive accuracy and control over-fitting.
The sub-sample size is always the same as the original
input sample size but the samples are drawn with replacement if
`bootstrap=True` (default).
Read more in the :ref:`User Guide <forest>`.
Parameters
----------
n_estimators : integer, optional (default=10)
The number of trees in the forest.
criterion : string, optional (default="mse")
The function to measure the quality of a split. The only supported
criterion is "mse" for the mean squared error.
max_features : int, float, string or None, optional (default="auto")
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a percentage and
`int(max_features * n_features)` features are considered at each
split.
- If "auto", then `max_features=n_features`.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
max_depth : integer or None, optional (default=None)
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
Ignored if ``max_leaf_nodes`` is not None.
min_samples_split : int, float, optional (default=2)
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a percentage and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
min_samples_leaf : int, float, optional (default=1)
The minimum number of samples required to be at a leaf node:
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a percentage and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
min_weight_fraction_leaf : float, optional (default=0.)
The minimum weighted fraction of the input samples required to be at a
leaf node.
max_leaf_nodes : int or None, optional (default=None)
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
If not None then ``max_depth`` will be ignored.
bootstrap : boolean, optional (default=True)
Whether bootstrap samples are used when building trees.
oob_score : bool, optional (default=False)
whether to use out-of-bag samples to estimate
the R^2 on unseen data.
n_jobs : integer, optional (default=1)
The number of jobs to run in parallel for both `fit` and `predict`.
If -1, then the number of jobs is set to the number of cores.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : int, optional (default=0)
Controls the verbosity of the tree building process.
warm_start : bool, optional (default=False)
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest.
Attributes
----------
estimators_ : list of DecisionTreeRegressor
The collection of fitted sub-estimators.
feature_importances_ : array of shape = [n_features]
The feature importances (the higher, the more important the feature).
n_features_ : int
The number of features when ``fit`` is performed.
n_outputs_ : int
The number of outputs when ``fit`` is performed.
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_prediction_ : array of shape = [n_samples]
Prediction computed with out-of-bag estimate on the training set.
References
----------
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
See also
--------
DecisionTreeRegressor, ExtraTreesRegressor
"""
def __init__(self,
n_estimators=10,
criterion="mse",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features="auto",
max_leaf_nodes=None,
bootstrap=True,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False):
super(RandomForestRegressor, self).__init__(
base_estimator=DecisionTreeRegressor(),
n_estimators=n_estimators,
estimator_params=("criterion", "max_depth", "min_samples_split",
"min_samples_leaf", "min_weight_fraction_leaf",
"max_features", "max_leaf_nodes",
"random_state"),
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start)
self.criterion = criterion
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.max_leaf_nodes = max_leaf_nodes
class ExtraTreesClassifier(ForestClassifier):
"""An extra-trees classifier.
This class implements a meta estimator that fits a number of
randomized decision trees (a.k.a. extra-trees) on various sub-samples
of the dataset and use averaging to improve the predictive accuracy
and control over-fitting.
Read more in the :ref:`User Guide <forest>`.
Parameters
----------
n_estimators : integer, optional (default=10)
The number of trees in the forest.
criterion : string, optional (default="gini")
The function to measure the quality of a split. Supported criteria are
"gini" for the Gini impurity and "entropy" for the information gain.
max_features : int, float, string or None, optional (default="auto")
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a percentage and
`int(max_features * n_features)` features are considered at each
split.
- If "auto", then `max_features=sqrt(n_features)`.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
max_depth : integer or None, optional (default=None)
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
Ignored if ``max_leaf_nodes`` is not None.
min_samples_split : int, float, optional (default=2)
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a percentage and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
min_samples_leaf : int, float, optional (default=1)
The minimum number of samples required to be at a leaf node:
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a percentage and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
min_weight_fraction_leaf : float, optional (default=0.)
The minimum weighted fraction of the input samples required to be at a
leaf node.
max_leaf_nodes : int or None, optional (default=None)
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
If not None then ``max_depth`` will be ignored.
bootstrap : boolean, optional (default=False)
Whether bootstrap samples are used when building trees.
oob_score : bool, optional (default=False)
Whether to use out-of-bag samples to estimate
the generalization accuracy.
n_jobs : integer, optional (default=1)
The number of jobs to run in parallel for both `fit` and `predict`.
If -1, then the number of jobs is set to the number of cores.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : int, optional (default=0)
Controls the verbosity of the tree building process.
warm_start : bool, optional (default=False)
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest.
class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
The "balanced_subsample" mode is the same as "balanced" except that weights are
computed based on the bootstrap sample for every tree grown.
For multi-output, the weights of each column of y will be multiplied.
Note that these weights will be multiplied with sample_weight (passed
through the fit method) if sample_weight is specified.
Attributes
----------
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.
classes_ : array of shape = [n_classes] or a list of such arrays
The classes labels (single output problem), or a list of arrays of
class labels (multi-output problem).
n_classes_ : int or list
The number of classes (single output problem), or a list containing the
number of classes for each output (multi-output problem).
feature_importances_ : array of shape = [n_features]
The feature importances (the higher, the more important the feature).
n_features_ : int
The number of features when ``fit`` is performed.
n_outputs_ : int
The number of outputs when ``fit`` is performed.
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_decision_function_ : array of shape = [n_samples, n_classes]
Decision function computed with out-of-bag estimate on the training
set. If n_estimators is small it might be possible that a data point
was never left out during the bootstrap. In this case,
`oob_decision_function_` might contain NaN.
References
----------
.. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
Machine Learning, 63(1), 3-42, 2006.
See also
--------
sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble.
RandomForestClassifier : Ensemble Classifier based on trees with optimal
splits.
"""
def __init__(self,
n_estimators=10,
criterion="gini",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features="auto",
max_leaf_nodes=None,
bootstrap=False,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False,
class_weight=None):
super(ExtraTreesClassifier, self).__init__(
base_estimator=ExtraTreeClassifier(),
n_estimators=n_estimators,
estimator_params=("criterion", "max_depth", "min_samples_split",
"min_samples_leaf", "min_weight_fraction_leaf",
"max_features", "max_leaf_nodes",
"random_state"),
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start,
class_weight=class_weight)
self.criterion = criterion
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.max_leaf_nodes = max_leaf_nodes
class ExtraTreesRegressor(ForestRegressor):
"""An extra-trees regressor.
This class implements a meta estimator that fits a number of
randomized decision trees (a.k.a. extra-trees) on various sub-samples
of the dataset and use averaging to improve the predictive accuracy
and control over-fitting.
Read more in the :ref:`User Guide <forest>`.
Parameters
----------
n_estimators : integer, optional (default=10)
The number of trees in the forest.
criterion : string, optional (default="mse")
The function to measure the quality of a split. The only supported
criterion is "mse" for the mean squared error.
max_features : int, float, string or None, optional (default="auto")
The number of features to consider when looking for the best split:
- If int, then consider `max_features` features at each split.
- If float, then `max_features` is a percentage and
`int(max_features * n_features)` features are considered at each
split.
- If "auto", then `max_features=n_features`.
- If "sqrt", then `max_features=sqrt(n_features)`.
- If "log2", then `max_features=log2(n_features)`.
- If None, then `max_features=n_features`.
Note: the search for a split does not stop until at least one
valid partition of the node samples is found, even if it requires to
effectively inspect more than ``max_features`` features.
max_depth : integer or None, optional (default=None)
The maximum depth of the tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
Ignored if ``max_leaf_nodes`` is not None.
min_samples_split : int, float, optional (default=2)
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a percentage and
`ceil(min_samples_split * n_samples)` are the minimum
number of samples for each split.
min_samples_leaf : int, float, optional (default=1)
The minimum number of samples required to be at a leaf node:
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a percentage and
`ceil(min_samples_leaf * n_samples)` are the minimum
number of samples for each node.
min_weight_fraction_leaf : float, optional (default=0.)
The minimum weighted fraction of the input samples required to be at a
leaf node.
max_leaf_nodes : int or None, optional (default=None)
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
If not None then ``max_depth`` will be ignored.
bootstrap : boolean, optional (default=False)
Whether bootstrap samples are used when building trees.
oob_score : bool, optional (default=False)
Whether to use out-of-bag samples to estimate the R^2 on unseen data.
n_jobs : integer, optional (default=1)
The number of jobs to run in parallel for both `fit` and `predict`.
If -1, then the number of jobs is set to the number of cores.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : int, optional (default=0)
Controls the verbosity of the tree building process.
warm_start : bool, optional (default=False)
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest.
Attributes
----------
estimators_ : list of DecisionTreeRegressor
The collection of fitted sub-estimators.
feature_importances_ : array of shape = [n_features]
The feature importances (the higher, the more important the feature).
n_features_ : int
The number of features.
n_outputs_ : int
The number of outputs.
oob_score_ : float
Score of the training dataset obtained using an out-of-bag estimate.
oob_prediction_ : array of shape = [n_samples]
Prediction computed with out-of-bag estimate on the training set.
References
----------
.. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
Machine Learning, 63(1), 3-42, 2006.
See also
--------
sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble.
RandomForestRegressor: Ensemble regressor using trees with optimal splits.
"""
def __init__(self,
n_estimators=10,
criterion="mse",
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_features="auto",
max_leaf_nodes=None,
bootstrap=False,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False):
super(ExtraTreesRegressor, self).__init__(
base_estimator=ExtraTreeRegressor(),
n_estimators=n_estimators,
estimator_params=("criterion", "max_depth", "min_samples_split",
"min_samples_leaf", "min_weight_fraction_leaf",
"max_features", "max_leaf_nodes",
"random_state"),
bootstrap=bootstrap,
oob_score=oob_score,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start)
self.criterion = criterion
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.max_leaf_nodes = max_leaf_nodes
class RandomTreesEmbedding(BaseForest):
"""An ensemble of totally random trees.
An unsupervised transformation of a dataset to a high-dimensional
sparse representation. A datapoint is coded according to which leaf of
each tree it is sorted into. Using a one-hot encoding of the leaves,
this leads to a binary coding with as many ones as there are trees in
the forest.
The dimensionality of the resulting representation is
``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``,
the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``.
Read more in the :ref:`User Guide <random_trees_embedding>`.
Parameters
----------
n_estimators : int
Number of trees in the forest.
max_depth : int
The maximum depth of each tree. If None, then nodes are expanded until
all leaves are pure or until all leaves contain less than
min_samples_split samples.
Ignored if ``max_leaf_nodes`` is not None.
min_samples_split : int, float, optional (default=2)
The minimum number of samples required to split an internal node:
- If int, then consider `min_samples_split` as the minimum number.
- If float, then `min_samples_split` is a percentage and
`ceil(min_samples_split * n_samples)` is the minimum
number of samples for each split.
min_samples_leaf : int, float, optional (default=1)
The minimum number of samples required to be at a leaf node:
- If int, then consider `min_samples_leaf` as the minimum number.
- If float, then `min_samples_leaf` is a percentage and
`ceil(min_samples_leaf * n_samples)` is the minimum
number of samples for each node.
min_weight_fraction_leaf : float, optional (default=0.)
The minimum weighted fraction of the input samples required to be at a
leaf node.
max_leaf_nodes : int or None, optional (default=None)
Grow trees with ``max_leaf_nodes`` in best-first fashion.
Best nodes are defined as relative reduction in impurity.
If None then unlimited number of leaf nodes.
If not None then ``max_depth`` will be ignored.
sparse_output : bool, optional (default=True)
Whether or not to return a sparse CSR matrix, as default behavior,
or to return a dense array compatible with dense pipeline operators.
n_jobs : integer, optional (default=1)
The number of jobs to run in parallel for both `fit` and `predict`.
If -1, then the number of jobs is set to the number of cores.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
verbose : int, optional (default=0)
Controls the verbosity of the tree building process.
warm_start : bool, optional (default=False)
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest.
Attributes
----------
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.
References
----------
.. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
Machine Learning, 63(1), 3-42, 2006.
.. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative
visual codebooks using randomized clustering forests"
NIPS 2007
"""
def __init__(self,
n_estimators=10,
max_depth=5,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.,
max_leaf_nodes=None,
sparse_output=True,
n_jobs=1,
random_state=None,
verbose=0,
warm_start=False):
super(RandomTreesEmbedding, self).__init__(
base_estimator=ExtraTreeRegressor(),
n_estimators=n_estimators,
estimator_params=("criterion", "max_depth", "min_samples_split",
"min_samples_leaf", "min_weight_fraction_leaf",
"max_features", "max_leaf_nodes",
"random_state"),
bootstrap=False,
oob_score=False,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose,
warm_start=warm_start)
self.criterion = 'mse'
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = 1
self.max_leaf_nodes = max_leaf_nodes
self.sparse_output = sparse_output
def _set_oob_score(self, X, y):
raise NotImplementedError("OOB score not supported by tree embedding")
def fit(self, X, y=None, sample_weight=None):
"""Fit estimator.
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
The input samples. Use ``dtype=np.float32`` for maximum
efficiency. Sparse matrices are also supported, use sparse
``csc_matrix`` for maximum efficiency.
Returns
-------
self : object
Returns self.
"""
self.fit_transform(X, y, sample_weight=sample_weight)
return self
def fit_transform(self, X, y=None, sample_weight=None):
"""Fit estimator and transform dataset.
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
Input data used to build forests. Use ``dtype=np.float32`` for
maximum efficiency.
Returns
-------
X_transformed : sparse matrix, shape=(n_samples, n_out)
Transformed dataset.
"""
# ensure_2d=False because there are actually unit test checking we fail
# for 1d.
X = check_array(X, accept_sparse=['csc'], ensure_2d=False)
if issparse(X):
# Pre-sort indices to avoid that each individual tree of the
# ensemble sorts the indices.
X.sort_indices()
rnd = check_random_state(self.random_state)
y = rnd.uniform(size=X.shape[0])
super(RandomTreesEmbedding, self).fit(X, y,
sample_weight=sample_weight)
self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output)
return self.one_hot_encoder_.fit_transform(self.apply(X))
def transform(self, X):
"""Transform dataset.
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
Input data to be transformed. Use ``dtype=np.float32`` for maximum
efficiency. Sparse matrices are also supported, use sparse
``csr_matrix`` for maximum efficiency.
Returns
-------
X_transformed : sparse matrix, shape=(n_samples, n_out)
Transformed dataset.
"""
return self.one_hot_encoder_.transform(self.apply(X))
| bsd-3-clause |
lancezlin/ml_template_py | lib/python2.7/site-packages/mpl_toolkits/tests/test_mplot3d.py | 4 | 11088 | import sys
import nose
from nose.tools import assert_raises
from mpl_toolkits.mplot3d import Axes3D, axes3d
from matplotlib import cm
from matplotlib.testing.decorators import image_comparison, cleanup
import matplotlib.pyplot as plt
import numpy as np
@image_comparison(baseline_images=['bar3d'], remove_text=True)
def test_bar3d():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
xs = np.arange(20)
ys = np.arange(20)
cs = [c] * len(xs)
cs[0] = 'c'
ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
@image_comparison(baseline_images=['contour3d'], remove_text=True)
def test_contour3d():
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlim(-40, 40)
ax.set_ylim(-40, 40)
ax.set_zlim(-100, 100)
@image_comparison(baseline_images=['contourf3d'], remove_text=True)
def test_contourf3d():
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlim(-40, 40)
ax.set_ylim(-40, 40)
ax.set_zlim(-100, 100)
@image_comparison(baseline_images=['contourf3d_fill'], remove_text=True)
def test_contourf3d_fill():
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(np.arange(-2, 2, 0.25), np.arange(-2, 2, 0.25))
Z = X.clip(0, 0)
# This produces holes in the z=0 surface that causes rendering errors if
# the Poly3DCollection is not aware of path code information (issue #4784)
Z[::5, ::5] = 0.1
cset = ax.contourf(X, Y, Z, offset=0, levels=[-0.1, 0], cmap=cm.coolwarm)
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(-1, 1)
@image_comparison(baseline_images=['lines3d'], remove_text=True)
def test_lines3d():
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z ** 2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z)
@image_comparison(baseline_images=['mixedsubplot'], remove_text=True)
def test_mixedsubplots():
def f(t):
s1 = np.cos(2*np.pi*t)
e1 = np.exp(-t)
return np.multiply(s1, e1)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
fig = plt.figure(figsize=plt.figaspect(2.))
ax = fig.add_subplot(2, 1, 1)
l = ax.plot(t1, f(t1), 'bo',
t2, f(t2), 'k--', markerfacecolor='green')
ax.grid(True)
ax = fig.add_subplot(2, 1, 2, projection='3d')
X, Y = np.meshgrid(np.arange(-5, 5, 0.25), np.arange(-5, 5, 0.25))
R = np.sqrt(X ** 2 + Y ** 2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
linewidth=0, antialiased=False)
ax.set_zlim3d(-1, 1)
@image_comparison(baseline_images=['scatter3d'], remove_text=True)
def test_scatter3d():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(np.arange(10), np.arange(10), np.arange(10),
c='r', marker='o')
ax.scatter(np.arange(10, 20), np.arange(10, 20), np.arange(10, 20),
c='b', marker='^')
@image_comparison(baseline_images=['scatter3d_color'], remove_text=True,
extensions=['png'])
def test_scatter3d_color():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(np.arange(10), np.arange(10), np.arange(10),
color='r', marker='o')
ax.scatter(np.arange(10, 20), np.arange(10, 20), np.arange(10, 20),
color='b', marker='s')
@image_comparison(baseline_images=['surface3d'], remove_text=True)
def test_surface3d():
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X ** 2 + Y ** 2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm,
lw=0, antialiased=False)
ax.set_zlim(-1.01, 1.01)
fig.colorbar(surf, shrink=0.5, aspect=5)
@image_comparison(baseline_images=['text3d'])
def test_text3d():
fig = plt.figure()
ax = fig.gca(projection='3d')
zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
xs = (2, 6, 4, 9, 7, 2)
ys = (6, 4, 8, 7, 2, 2)
zs = (4, 2, 5, 6, 1, 7)
for zdir, x, y, z in zip(zdirs, xs, ys, zs):
label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
ax.text(x, y, z, label, zdir)
ax.text(1, 1, 1, "red", color='red')
ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
ax.set_xlim3d(0, 10)
ax.set_ylim3d(0, 10)
ax.set_zlim3d(0, 10)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
@image_comparison(baseline_images=['trisurf3d'], remove_text=True)
def test_trisurf3d():
n_angles = 36
n_radii = 8
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi/n_angles
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
z = np.sin(-x*y)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2)
@image_comparison(baseline_images=['wireframe3d'], remove_text=True)
def test_wireframe3d():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
@image_comparison(baseline_images=['wireframe3dzerocstride'], remove_text=True,
extensions=['png'])
def test_wireframe3dzerocstride():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=0)
@image_comparison(baseline_images=['wireframe3dzerorstride'], remove_text=True,
extensions=['png'])
def test_wireframe3dzerorstride():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_wireframe(X, Y, Z, rstride=0, cstride=10)
@cleanup
def test_wireframe3dzerostrideraises():
if sys.version_info[:2] < (2, 7):
raise nose.SkipTest("assert_raises as context manager "
"not supported with Python < 2.7")
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
with assert_raises(ValueError):
ax.plot_wireframe(X, Y, Z, rstride=0, cstride=0)
@image_comparison(baseline_images=['quiver3d'], remove_text=True)
def test_quiver3d():
fig = plt.figure()
ax = fig.gca(projection='3d')
x, y, z = np.ogrid[-1:0.8:10j, -1:0.8:10j, -1:0.6:3j]
u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) *
np.sin(np.pi * z))
ax.quiver(x, y, z, u, v, w, length=0.1)
@image_comparison(baseline_images=['quiver3d_empty'], remove_text=True)
def test_quiver3d_empty():
fig = plt.figure()
ax = fig.gca(projection='3d')
x, y, z = np.ogrid[-1:0.8:0j, -1:0.8:0j, -1:0.6:0j]
u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) *
np.sin(np.pi * z))
ax.quiver(x, y, z, u, v, w, length=0.1)
@image_comparison(baseline_images=['quiver3d_masked'], remove_text=True)
def test_quiver3d_masked():
fig = plt.figure()
ax = fig.gca(projection='3d')
# Using mgrid here instead of ogrid because masked_where doesn't
# seem to like broadcasting very much...
x, y, z = np.mgrid[-1:0.8:10j, -1:0.8:10j, -1:0.6:3j]
u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) *
np.sin(np.pi * z))
u = np.ma.masked_where((-0.4 < x) & (x < 0.1), u, copy=False)
v = np.ma.masked_where((0.1 < y) & (y < 0.7), v, copy=False)
ax.quiver(x, y, z, u, v, w, length=0.1)
@image_comparison(baseline_images=['quiver3d_pivot_middle'], remove_text=True,
extensions=['png'])
def test_quiver3d_pivot_middle():
fig = plt.figure()
ax = fig.gca(projection='3d')
x, y, z = np.ogrid[-1:0.8:10j, -1:0.8:10j, -1:0.6:3j]
u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) *
np.sin(np.pi * z))
ax.quiver(x, y, z, u, v, w, length=0.1, pivot='middle')
@image_comparison(baseline_images=['quiver3d_pivot_tail'], remove_text=True,
extensions=['png'])
def test_quiver3d_pivot_tail():
fig = plt.figure()
ax = fig.gca(projection='3d')
x, y, z = np.ogrid[-1:0.8:10j, -1:0.8:10j, -1:0.6:3j]
u = np.sin(np.pi * x) * np.cos(np.pi * y) * np.cos(np.pi * z)
v = -np.cos(np.pi * x) * np.sin(np.pi * y) * np.cos(np.pi * z)
w = (np.sqrt(2.0 / 3.0) * np.cos(np.pi * x) * np.cos(np.pi * y) *
np.sin(np.pi * z))
ax.quiver(x, y, z, u, v, w, length=0.1, pivot='tail')
@image_comparison(baseline_images=['axes3d_labelpad'], extensions=['png'])
def test_axes3d_labelpad():
from nose.tools import assert_equal
from matplotlib import rcParams
fig = plt.figure()
ax = Axes3D(fig)
# labelpad respects rcParams
assert_equal(ax.xaxis.labelpad, rcParams['axes.labelpad'])
# labelpad can be set in set_label
ax.set_xlabel('X LABEL', labelpad=10)
assert_equal(ax.xaxis.labelpad, 10)
ax.set_ylabel('Y LABEL')
ax.set_zlabel('Z LABEL')
# or manually
ax.yaxis.labelpad = 20
ax.zaxis.labelpad = -40
# Tick labels also respect tick.pad (also from rcParams)
for i, tick in enumerate(ax.yaxis.get_major_ticks()):
tick.set_pad(tick.get_pad() - i * 5)
@image_comparison(baseline_images=['axes3d_cla'], extensions=['png'])
def test_axes3d_cla():
# fixed in pull request 4553
fig = plt.figure()
ax = fig.add_subplot(1,1,1, projection='3d')
ax.set_axis_off()
ax.cla() # make sure the axis displayed is 3D (not 2D)
if __name__ == '__main__':
import nose
nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
| mit |
Petr-Kovalev/nupic-win32 | examples/opf/tools/sp_plotter.py | 1 | 15766 | #! /usr/bin/env python
# ----------------------------------------------------------------------
# Numenta Platform for Intelligent Computing (NuPIC)
# Copyright (C) 2013, Numenta, Inc. Unless you have purchased from
# Numenta, Inc. a separate commercial license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
import sys
import os
import time
import copy
import csv
import numpy as np
from nupic.research import FDRCSpatial2
from nupic.bindings.math import GetNTAReal
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
realDType = GetNTAReal()
############################################################################
def generatePlot(outputs, origData):
""" Generates a table where each cell represent a frequency of pairs
as described below.
x coordinate is the % difference between input records (origData list),
y coordinate is the % difference between corresponding output records.
"""
PLOT_PRECISION = 100
distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
outputSize = len(outputs)
for i in range(0,outputSize):
for j in range(i+1,outputSize):
in1 = outputs[i]
in2 = outputs[j]
dist = (abs(in1-in2) > 0.1)
intDist = int(dist.sum()/2+0.1)
orig1 = origData[i]
orig2 = origData[j]
origDist = (abs(orig1-orig2) > 0.1)
intOrigDist = int(origDist.sum()/2+0.1)
if intDist < 2 and intOrigDist > 10:
print 'Elements %d,%d has very small SP distance: %d' % (i, j, intDist)
print 'Input elements distance is %d' % intOrigDist
x = int(PLOT_PRECISION*intDist/40.0)
y = int(PLOT_PRECISION*intOrigDist/42.0)
if distribMatrix[x, y] < 0.1:
distribMatrix[x, y] = 3
else:
if distribMatrix[x, y] < 10:
distribMatrix[x, y] += 1
# Add some elements for the scale drawing
distribMatrix[4, 50] = 3
distribMatrix[4, 52] = 4
distribMatrix[4, 54] = 5
distribMatrix[4, 56] = 6
distribMatrix[4, 58] = 7
distribMatrix[4, 60] = 8
distribMatrix[4, 62] = 9
distribMatrix[4, 64] = 10
return distribMatrix
############################################################################
def generateRandomInput(numRecords, elemSize = 400, numSet = 42):
""" Generates a set of input record
Params:
numRecords - how many records to generate
elemSize - the size of each record (num 0s or 1s)
numSet - how many 1s in each record
Returns: a list of inputs
"""
inputs = []
for _ in xrange(numRecords):
input = np.zeros(elemSize, dtype=realDType)
for _ in range(0,numSet):
ind = np.random.random_integers(0, elemSize-1, 1)[0]
input[ind] = 1
while abs(input.sum() - numSet) > 0.1:
ind = np.random.random_integers(0, elemSize-1, 1)[0]
input[ind] = 1
inputs.append(input)
return inputs
############################################################################
def appendInputWithSimilarValues(inputs):
""" Creates an 'one-off' record for each record in the inputs. Appends new
records to the same inputs list.
"""
numInputs = len(inputs)
for i in xrange(numInputs):
input = inputs[i]
for j in xrange(len(input)-1):
if input[j] == 1 and input[j+1] == 0:
newInput = copy.deepcopy(input)
newInput[j] = 0
newInput[j+1] = 1
inputs.append(newInput)
break
############################################################################
def appendInputWithNSimilarValues(inputs, numNear = 10):
""" Creates a neighboring record for each record in the inputs and adds
new records at the end of the inputs list
"""
numInputs = len(inputs)
skipOne = False
for i in xrange(numInputs):
input = inputs[i]
numChanged = 0
newInput = copy.deepcopy(input)
for j in xrange(len(input)-1):
if skipOne:
skipOne = False
continue
if input[j] == 1 and input[j+1] == 0:
newInput[j] = 0
newInput[j+1] = 1
inputs.append(newInput)
newInput = copy.deepcopy(newInput)
#print input
#print newInput
numChanged += 1
skipOne = True
if numChanged == numNear:
break
############################################################################
def modifyBits(inputVal, maxChanges):
""" Modifies up to maxChanges number of bits in the inputVal
"""
changes = np.random.random_integers(0, maxChanges, 1)[0]
if changes == 0:
return inputVal
inputWidth = len(inputVal)
whatToChange = np.random.random_integers(0, 41, changes)
runningIndex = -1
numModsDone = 0
for i in xrange(inputWidth):
if numModsDone >= changes:
break
if inputVal[i] == 1:
runningIndex += 1
if runningIndex in whatToChange:
if i != 0 and inputVal[i-1] == 0:
inputVal[i-1] = 1
inputVal[i] = 0
return inputVal
############################################################################
def getRandomWithMods(inputSpace, maxChanges):
""" Returns a random selection from the inputSpace with randomly modified
up to maxChanges number of bits.
"""
size = len(inputSpace)
ind = np.random.random_integers(0, size-1, 1)[0]
value = copy.deepcopy(inputSpace[ind])
if maxChanges == 0:
return value
return modifyBits(value, maxChanges)
############################################################################
def testSP():
""" Run a SP test
"""
elemSize = 400
numSet = 42
addNear = True
numRecords = 2
wantPlot = True
poolPct = 0.5
itr = 1
doLearn = True
while numRecords < 3:
# Setup a SP
sp = FDRCSpatial2.FDRCSpatial2(
coincidencesShape=(2048, 1),
inputShape = (1, elemSize),
inputBorder = elemSize/2-1,
coincInputRadius = elemSize/2,
numActivePerInhArea = 40,
spVerbosity = 0,
stimulusThreshold = 0,
seed = 1,
coincInputPoolPct = poolPct,
globalInhibition = True
)
# Generate inputs using rand()
inputs = generateRandomInput(numRecords, elemSize, numSet)
if addNear:
# Append similar entries (distance of 1)
appendInputWithNSimilarValues(inputs, 42)
inputSize = len(inputs)
print 'Num random records = %d, inputs to process %d' % (numRecords, inputSize)
# Run a number of iterations, with learning on or off,
# retrieve results from the last iteration only
outputs = np.zeros((inputSize,2048))
numIter = 1
if doLearn:
numIter = itr
for iter in xrange(numIter):
for i in xrange(inputSize):
time.sleep(0.001)
if iter == numIter - 1:
outputs[i] = sp.compute(inputs[i], learn=doLearn, infer=False)
#print outputs[i].sum(), outputs[i]
else:
sp.compute(inputs[i], learn=doLearn, infer=False)
# Build a plot from the generated input and output and display it
distribMatrix = generatePlot(outputs, inputs)
# If we don't want a plot, just continue
if wantPlot:
plt.imshow(distribMatrix, origin='lower', interpolation = "nearest")
plt.ylabel('SP (2048/40) distance in %')
plt.xlabel('Input (400/42) distance in %')
title = 'SP distribution'
if doLearn:
title += ', leaning ON'
else:
title += ', learning OFF'
title += ', inputs = %d' % len(inputs)
title += ', iterations = %d' % numIter
title += ', poolPct =%f' % poolPct
plt.suptitle(title, fontsize=12)
plt.show()
#plt.savefig(os.path.join('~/Desktop/ExperimentResults/videos5', '%s' % numRecords))
#plt.clf()
numRecords += 1
return
############################################################################
def testSPNew():
""" New version of the test"""
elemSize = 400
numSet = 42
addNear = True
numRecords = 1000
wantPlot = False
poolPct = 0.5
itr = 5
pattern = [60, 1000]
doLearn = True
start = 1
learnIter = 0
noLearnIter = 0
numLearns = 0
numTests = 0
numIter = 1
numGroups = 1000
PLOT_PRECISION = 100.0
distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
inputs = generateRandomInput(numGroups, elemSize, numSet)
# Setup a SP
sp = FDRCSpatial2.FDRCSpatial2(
coincidencesShape=(2048, 1),
inputShape = (1, elemSize),
inputBorder = elemSize/2-1,
coincInputRadius = elemSize/2,
numActivePerInhArea = 40,
spVerbosity = 0,
stimulusThreshold = 0,
synPermConnected = 0.12,
seed = 1,
coincInputPoolPct = poolPct,
globalInhibition = True
)
cleanPlot = False
for i in xrange(numRecords):
input1 = getRandomWithMods(inputs, 4)
if i % 2 == 0:
input2 = getRandomWithMods(inputs, 4)
else:
input2 = input1.copy()
input2 = modifyBits(input2, 21)
inDist = (abs(input1-input2) > 0.1)
intInDist = int(inDist.sum()/2+0.1)
#print intInDist
if start == 0:
doLearn = True
learnIter += 1
if learnIter == pattern[start]:
numLearns += 1
start = 1
noLearnIter = 0
elif start == 1:
doLearn = False
noLearnIter += 1
if noLearnIter == pattern[start]:
numTests += 1
start = 0
learnIter = 0
cleanPlot = True
output1 = sp.compute(input1, learn=doLearn, infer=False).copy()
output2 = sp.compute(input2, learn=doLearn, infer=False).copy()
time.sleep(0.001)
outDist = (abs(output1-output2) > 0.1)
intOutDist = int(outDist.sum()/2+0.1)
if not doLearn and intOutDist < 2 and intInDist > 10:
"""
sp.spVerbosity = 10
sp.compute(input1, learn=doLearn, infer=False)
sp.compute(input2, learn=doLearn, infer=False)
sp.spVerbosity = 0
print 'Elements has very small SP distance: %d' % intOutDist
print output1.nonzero()
print output2.nonzero()
print sp._firingBoostFactors[output1.nonzero()[0]]
print sp._synPermBoostFactors[output1.nonzero()[0]]
print 'Input elements distance is %d' % intInDist
print input1.nonzero()
print input2.nonzero()
sys.stdin.readline()
"""
if not doLearn:
x = int(PLOT_PRECISION*intOutDist/40.0)
y = int(PLOT_PRECISION*intInDist/42.0)
if distribMatrix[x, y] < 0.1:
distribMatrix[x, y] = 3
else:
if distribMatrix[x, y] < 10:
distribMatrix[x, y] += 1
#print i
# If we don't want a plot, just continue
if wantPlot and cleanPlot:
plt.imshow(distribMatrix, origin='lower', interpolation = "nearest")
plt.ylabel('SP (2048/40) distance in %')
plt.xlabel('Input (400/42) distance in %')
title = 'SP distribution'
#if doLearn:
# title += ', leaning ON'
#else:
# title += ', learning OFF'
title += ', learn sets = %d' % numLearns
title += ', test sets = %d' % numTests
title += ', iter = %d' % numIter
title += ', groups = %d' % numGroups
title += ', Pct =%f' % poolPct
plt.suptitle(title, fontsize=12)
#plt.show()
plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosNew', '%s' % i))
plt.clf()
distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
cleanPlot = False
############################################################################
def testSPFile():
""" Run test on the data file - the file has records previously encoded.
"""
spSize = 2048
spSet = 40
poolPct = 0.5
pattern = [50, 1000]
doLearn = True
PLOT_PRECISION = 100.0
distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
inputs = []
#file = open('~/Desktop/ExperimentResults/sampleArtificial.csv', 'rb')
#elemSize = 400
#numSet = 42
#file = open('~/Desktop/ExperimentResults/sampleDataBasilOneField.csv', 'rb')
#elemSize = 499
#numSet = 7
outdir = '~/Desktop/ExperimentResults/Basil100x21'
inputFile = outdir+'.csv'
file = open(inputFile, 'rb')
elemSize = 100
numSet = 21
reader = csv.reader(file)
for row in reader:
input = np.array(map(float, row), dtype=realDType)
if len(input.nonzero()[0]) != numSet:
continue
inputs.append(input.copy())
file.close()
# Setup a SP
sp = FDRCSpatial2.FDRCSpatial2(
coincidencesShape=(spSize, 1),
inputShape = (1, elemSize),
inputBorder = (elemSize-1)/2,
coincInputRadius = elemSize/2,
numActivePerInhArea = spSet,
spVerbosity = 0,
stimulusThreshold = 0,
synPermConnected = 0.10,
seed = 1,
coincInputPoolPct = poolPct,
globalInhibition = True
)
cleanPlot = False
doLearn = False
print 'Finished reading file, inputs/outputs to process =', len(inputs)
size = len(inputs)
for iter in xrange(100):
print 'Iteration', iter
# Learn
if iter != 0:
for learnRecs in xrange(pattern[0]):
ind = np.random.random_integers(0, size-1, 1)[0]
sp.compute(inputs[ind], learn=True, infer=False)
# Test
for _ in xrange(pattern[1]):
rand1 = np.random.random_integers(0, size-1, 1)[0]
rand2 = np.random.random_integers(0, size-1, 1)[0]
output1 = sp.compute(inputs[rand1], learn=False, infer=True).copy()
output2 = sp.compute(inputs[rand2], learn=False, infer=True).copy()
outDist = (abs(output1-output2) > 0.1)
intOutDist = int(outDist.sum()/2+0.1)
inDist = (abs(inputs[rand1]-inputs[rand2]) > 0.1)
intInDist = int(inDist.sum()/2+0.1)
if intInDist != numSet or intOutDist != spSet:
print rand1, rand2, '-', intInDist, intOutDist
x = int(PLOT_PRECISION*intOutDist/spSet)
y = int(PLOT_PRECISION*intInDist/numSet)
if distribMatrix[x, y] < 0.1:
distribMatrix[x, y] = 3
else:
if distribMatrix[x, y] < 10:
distribMatrix[x, y] += 1
if True:
plt.imshow(distribMatrix, origin='lower', interpolation = "nearest")
plt.ylabel('SP (%d/%d) distance in pct' % (spSize, spSet))
plt.xlabel('Input (%d/%d) distance in pct' % (elemSize, numSet))
title = 'SP distribution'
title += ', iter = %d' % iter
title += ', Pct =%f' % poolPct
plt.suptitle(title, fontsize=12)
#plt.savefig(os.path.join('~/Desktop/ExperimentResults/videosArtData', '%s' % iter))
plt.savefig(os.path.join(outdir, '%s' % iter))
plt.clf()
distribMatrix = np.zeros((PLOT_PRECISION+1,PLOT_PRECISION+1))
############################################################################
if __name__ == '__main__':
np.random.seed(83)
#testSP()
#testSPNew()
testSPFile()
| gpl-3.0 |
cowlicks/odo | odo/backends/tests/test_hdfstore.py | 4 | 4599 | from __future__ import absolute_import, division, print_function
import os
from odo.backends.hdfstore import discover
from contextlib import contextmanager
from odo.utils import tmpfile
from odo.chunks import chunks
from odo import into, append, convert, resource, discover, odo
import datashape
import pandas as pd
from datetime import datetime
import numpy as np
try:
f = pd.HDFStore('foo')
except (RuntimeError, ImportError) as e:
import pytest
pytest.skip('skipping test_hdfstore.py %s' % e)
else:
f.close()
os.remove('foo')
df = pd.DataFrame([['a', 1, 10., datetime(2000, 1, 1)],
['ab', 2, 20., datetime(2000, 2, 2)],
['abc', 3, 30., datetime(2000, 3, 3)],
['abcd', 4, 40., datetime(2000, 4, 4)]],
columns=['name', 'a', 'b', 'time'])
@contextmanager
def file(df):
with tmpfile('.hdf5') as fn:
f = pd.HDFStore(fn)
f.put('/data', df, format='table', append=True)
try:
yield fn, f, f.get_storer('/data')
finally:
f.close()
def test_discover():
with file(df) as (fn, f, dset):
assert str(discover(dset)) == str(discover(df))
assert str(discover(f)) == str(discover({'data': df}))
def test_discover():
with tmpfile('hdf5') as fn:
df.to_hdf(fn, '/a/b/data')
df.to_hdf(fn, '/a/b/data2')
df.to_hdf(fn, '/a/data')
hdf = pd.HDFStore(fn)
try:
assert discover(hdf) == discover({'a': {'b': {'data': df, 'data2': df},
'data': df}})
finally:
hdf.close()
def eq(a, b):
if isinstance(a, pd.DataFrame):
a = into(np.ndarray, a)
if isinstance(b, pd.DataFrame):
b = into(np.ndarray, b)
c = a == b
if isinstance(c, np.ndarray):
c = c.all()
return c
def test_chunks():
with file(df) as (fn, f, dset):
c = convert(chunks(pd.DataFrame), dset)
assert eq(convert(np.ndarray, c), df)
def test_resource_no_info():
with tmpfile('.hdf5') as fn:
r = resource('hdfstore://' + fn)
assert isinstance(r, pd.HDFStore)
r.close()
def test_resource_of_dataset():
with tmpfile('.hdf5') as fn:
ds = datashape.dshape('{x: int32, y: 3 * int32}')
r = resource('hdfstore://'+fn+'::/x', dshape=ds)
assert r
r.parent.close()
def test_append():
with file(df) as (fn, f, dset):
append(dset, df)
append(dset, df)
assert discover(dset).shape == (len(df) * 3,)
def test_into_resource():
with tmpfile('.hdf5') as fn:
d = into('hdfstore://' + fn + '::/x', df)
assert discover(d) == discover(df)
assert eq(into(pd.DataFrame, d), df)
d.parent.close()
def test_convert_pandas():
with file(df) as (fn, f, dset):
assert eq(convert(pd.DataFrame, dset), df)
def test_convert_chunks():
with file(df) as (fn, f, dset):
c = convert(chunks(pd.DataFrame), dset, chunksize=len(df) / 2)
assert len(list(c)) == 2
assert eq(convert(pd.DataFrame, c), df)
def test_append_chunks():
with file(df) as (fn, f, dset):
append(dset, chunks(pd.DataFrame)([df, df]))
assert discover(dset).shape[0] == len(df) * 3
def test_append_other():
with tmpfile('.hdf5') as fn:
x = into(np.ndarray, df)
dset = into('hdfstore://'+fn+'::/data', x)
assert discover(dset) == discover(df)
dset.parent.close()
def test_fixed_shape():
with tmpfile('.hdf5') as fn:
df.to_hdf(fn, 'foo')
r = resource('hdfstore://'+fn+'::/foo')
assert isinstance(r.shape, list)
assert discover(r).shape == (len(df),)
r.parent.close()
def test_fixed_convert():
with tmpfile('.hdf5') as fn:
df.to_hdf(fn, 'foo')
r = resource('hdfstore://'+fn+'::/foo')
assert eq(convert(pd.DataFrame, r), df)
r.parent.close()
def test_append_vs_write():
import pandas.util.testing as tm
with tmpfile('.hdf5') as fn:
df.to_hdf(fn, 'foo', append=True)
store = odo(df, 'hdfstore://%s::foo' % fn)
try:
newdf = odo(store, pd.DataFrame)
finally:
store.parent.close()
tm.assert_frame_equal(newdf, pd.concat([df, df]))
with tmpfile('.hdf5') as fn:
store = odo(df, 'hdfstore://%s::foo' % fn, mode='w')
try:
newdf = odo(store, pd.DataFrame)
finally:
store.parent.close()
tm.assert_frame_equal(newdf, df)
| bsd-3-clause |
leggitta/mne-python | examples/plot_compute_mne_inverse.py | 21 | 1885 | """
================================================
Compute MNE-dSPM inverse solution on evoked data
================================================
Compute dSPM inverse solution on MNE evoked dataset
and stores the solution in stc files for visualisation.
"""
# Author: Alexandre Gramfort <[email protected]>
#
# License: BSD (3-clause)
import matplotlib.pyplot as plt
from mne.datasets import sample
from mne import read_evokeds
from mne.minimum_norm import apply_inverse, read_inverse_operator
print(__doc__)
data_path = sample.data_path()
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif'
subjects_dir = data_path + '/subjects'
snr = 3.0
lambda2 = 1.0 / snr ** 2
method = "dSPM" # use dSPM method (could also be MNE or sLORETA)
# Load data
evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0))
inverse_operator = read_inverse_operator(fname_inv)
# Compute inverse solution
stc = apply_inverse(evoked, inverse_operator, lambda2, method,
pick_ori=None)
# Save result in stc files
stc.save('mne_%s_inverse' % method)
###############################################################################
# View activation time-series
plt.plot(1e3 * stc.times, stc.data[::100, :].T)
plt.xlabel('time (ms)')
plt.ylabel('%s value' % method)
plt.show()
# Plot brain in 3D with PySurfer if available
brain = stc.plot(hemi='rh', subjects_dir=subjects_dir)
brain.show_view('lateral')
# use peak getter to move vizualization to the time point of the peak
vertno_max, time_idx = stc.get_peak(hemi='rh', time_as_index=True)
brain.set_data_time_index(time_idx)
# draw marker at maximum peaking vertex
brain.add_foci(vertno_max, coords_as_verts=True, hemi='rh', color='blue',
scale_factor=0.6)
brain.save_image('dSPM_map.png')
| bsd-3-clause |
pv/scikit-learn | sklearn/cluster/tests/test_dbscan.py | 114 | 11393 | """
Tests for DBSCAN clustering algorithm
"""
import pickle
import numpy as np
from scipy.spatial import distance
from scipy import sparse
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import assert_not_in
from sklearn.cluster.dbscan_ import DBSCAN
from sklearn.cluster.dbscan_ import dbscan
from sklearn.cluster.tests.common import generate_clustered_data
from sklearn.metrics.pairwise import pairwise_distances
n_clusters = 3
X = generate_clustered_data(n_clusters=n_clusters)
def test_dbscan_similarity():
# Tests the DBSCAN algorithm with a similarity array.
# Parameters chosen specifically for this task.
eps = 0.15
min_samples = 10
# Compute similarities
D = distance.squareform(distance.pdist(X))
D /= np.max(D)
# Compute DBSCAN
core_samples, labels = dbscan(D, metric="precomputed", eps=eps,
min_samples=min_samples)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0)
assert_equal(n_clusters_1, n_clusters)
db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples)
labels = db.fit(D).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_2, n_clusters)
def test_dbscan_feature():
# Tests the DBSCAN algorithm with a feature vector array.
# Parameters chosen specifically for this task.
# Different eps to other test, because distance is not normalised.
eps = 0.8
min_samples = 10
metric = 'euclidean'
# Compute DBSCAN
# parameters chosen for task
core_samples, labels = dbscan(X, metric=metric, eps=eps,
min_samples=min_samples)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_1, n_clusters)
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples)
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_2, n_clusters)
def test_dbscan_sparse():
core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8,
min_samples=10)
core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10)
assert_array_equal(core_dense, core_sparse)
assert_array_equal(labels_dense, labels_sparse)
def test_dbscan_no_core_samples():
rng = np.random.RandomState(0)
X = rng.rand(40, 10)
X[X < .8] = 0
for X_ in [X, sparse.csr_matrix(X)]:
db = DBSCAN(min_samples=6).fit(X_)
assert_array_equal(db.components_, np.empty((0, X_.shape[1])))
assert_array_equal(db.labels_, -1)
assert_equal(db.core_sample_indices_.shape, (0,))
def test_dbscan_callable():
# Tests the DBSCAN algorithm with a callable metric.
# Parameters chosen specifically for this task.
# Different eps to other test, because distance is not normalised.
eps = 0.8
min_samples = 10
# metric is the function reference, not the string key.
metric = distance.euclidean
# Compute DBSCAN
# parameters chosen for task
core_samples, labels = dbscan(X, metric=metric, eps=eps,
min_samples=min_samples,
algorithm='ball_tree')
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_1, n_clusters)
db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples,
algorithm='ball_tree')
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_2, n_clusters)
def test_dbscan_balltree():
# Tests the DBSCAN algorithm with balltree for neighbor calculation.
eps = 0.8
min_samples = 10
D = pairwise_distances(X)
core_samples, labels = dbscan(D, metric="precomputed", eps=eps,
min_samples=min_samples)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_1, n_clusters)
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree')
labels = db.fit(X).labels_
n_clusters_2 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_2, n_clusters)
db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree')
labels = db.fit(X).labels_
n_clusters_3 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_3, n_clusters)
db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree')
labels = db.fit(X).labels_
n_clusters_4 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_4, n_clusters)
db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples,
algorithm='ball_tree')
labels = db.fit(X).labels_
n_clusters_5 = len(set(labels)) - int(-1 in labels)
assert_equal(n_clusters_5, n_clusters)
def test_input_validation():
# DBSCAN.fit should accept a list of lists.
X = [[1., 2.], [3., 4.]]
DBSCAN().fit(X) # must not raise exception
def test_dbscan_badargs():
# Test bad argument values: these should all raise ValueErrors
assert_raises(ValueError,
dbscan,
X, eps=-1.0)
assert_raises(ValueError,
dbscan,
X, algorithm='blah')
assert_raises(ValueError,
dbscan,
X, metric='blah')
assert_raises(ValueError,
dbscan,
X, leaf_size=-1)
assert_raises(ValueError,
dbscan,
X, p=-1)
def test_pickle():
obj = DBSCAN()
s = pickle.dumps(obj)
assert_equal(type(pickle.loads(s)), obj.__class__)
def test_boundaries():
# ensure min_samples is inclusive of core point
core, _ = dbscan([[0], [1]], eps=2, min_samples=2)
assert_in(0, core)
# ensure eps is inclusive of circumference
core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2)
assert_in(0, core)
core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2)
assert_not_in(0, core)
def test_weighted_dbscan():
# ensure sample_weight is validated
assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2])
assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4])
# ensure sample_weight has an effect
assert_array_equal([], dbscan([[0], [1]], sample_weight=None,
min_samples=6)[0])
assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5],
min_samples=6)[0])
assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5],
min_samples=6)[0])
assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6],
min_samples=6)[0])
# points within eps of each other:
assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5,
sample_weight=[5, 1], min_samples=6)[0])
# and effect of non-positive and non-integer sample_weight:
assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0],
eps=1.5, min_samples=6)[0])
assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1],
eps=1.5, min_samples=6)[0])
assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0],
eps=1.5, min_samples=6)[0])
assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1],
eps=1.5, min_samples=6)[0])
# for non-negative sample_weight, cores should be identical to repetition
rng = np.random.RandomState(42)
sample_weight = rng.randint(0, 5, X.shape[0])
core1, label1 = dbscan(X, sample_weight=sample_weight)
assert_equal(len(label1), len(X))
X_repeated = np.repeat(X, sample_weight, axis=0)
core_repeated, label_repeated = dbscan(X_repeated)
core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool)
core_repeated_mask[core_repeated] = True
core_mask = np.zeros(X.shape[0], dtype=bool)
core_mask[core1] = True
assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask)
# sample_weight should work with precomputed distance matrix
D = pairwise_distances(X)
core3, label3 = dbscan(D, sample_weight=sample_weight,
metric='precomputed')
assert_array_equal(core1, core3)
assert_array_equal(label1, label3)
# sample_weight should work with estimator
est = DBSCAN().fit(X, sample_weight=sample_weight)
core4 = est.core_sample_indices_
label4 = est.labels_
assert_array_equal(core1, core4)
assert_array_equal(label1, label4)
est = DBSCAN()
label5 = est.fit_predict(X, sample_weight=sample_weight)
core5 = est.core_sample_indices_
assert_array_equal(core1, core5)
assert_array_equal(label1, label5)
assert_array_equal(label1, est.labels_)
def test_dbscan_core_samples_toy():
X = [[0], [2], [3], [4], [6], [8], [10]]
n_samples = len(X)
for algorithm in ['brute', 'kd_tree', 'ball_tree']:
# Degenerate case: every sample is a core sample, either with its own
# cluster or including other close core samples.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
min_samples=1)
assert_array_equal(core_samples, np.arange(n_samples))
assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4])
# With eps=1 and min_samples=2 only the 3 samples from the denser area
# are core samples. All other points are isolated and considered noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
min_samples=2)
assert_array_equal(core_samples, [1, 2, 3])
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
# Only the sample in the middle of the dense area is core. Its two
# neighbors are edge samples. Remaining samples are noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
min_samples=3)
assert_array_equal(core_samples, [2])
assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1])
# It's no longer possible to extract core samples with eps=1:
# everything is noise.
core_samples, labels = dbscan(X, algorithm=algorithm, eps=1,
min_samples=4)
assert_array_equal(core_samples, [])
assert_array_equal(labels, -np.ones(n_samples))
def test_dbscan_precomputed_metric_with_degenerate_input_arrays():
# see https://github.com/scikit-learn/scikit-learn/issues/4641 for
# more details
X = np.ones((10, 2))
labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_
assert_equal(len(set(labels)), 1)
X = np.zeros((10, 2))
labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_
assert_equal(len(set(labels)), 1)
| bsd-3-clause |
statsmodels/statsmodels.github.io | v0.12.2/plots/graphics_gofplots_qqplot.py | 10 | 1927 | # -*- coding: utf-8 -*-
"""
Created on Sun May 06 05:32:15 2012
Author: Josef Perktold
editted by: Paul Hobson (2012-08-19)
"""
# example with the new ProbPlot class
from matplotlib import pyplot as plt
import numpy as np
from scipy import stats
import statsmodels.api as sm
#example from docstring
data = sm.datasets.longley.load(as_pandas=False)
data.exog = sm.add_constant(data.exog, prepend=True)
mod_fit = sm.OLS(data.endog, data.exog).fit()
res = mod_fit.resid
left = -1.8 #x coordinate for text insert
fig = plt.figure()
ax = fig.add_subplot(2, 2, 1)
sm.graphics.qqplot(res, ax=ax)
top = ax.get_ylim()[1] * 0.75
txt = ax.text(left, top, 'no keywords', verticalalignment='top')
txt.set_bbox(dict(facecolor='k', alpha=0.1))
ax = fig.add_subplot(2, 2, 2)
sm.graphics.qqplot(res, line='s', ax=ax)
top = ax.get_ylim()[1] * 0.75
txt = ax.text(left, top, "line='s'", verticalalignment='top')
txt.set_bbox(dict(facecolor='k', alpha=0.1))
ax = fig.add_subplot(2, 2, 3)
sm.graphics.qqplot(res, line='45', fit=True, ax=ax)
ax.set_xlim(-2, 2)
top = ax.get_ylim()[1] * 0.75
txt = ax.text(left, top, "line='45', \nfit=True", verticalalignment='top')
txt.set_bbox(dict(facecolor='k', alpha=0.1))
ax = fig.add_subplot(2, 2, 4)
sm.graphics.qqplot(res, dist=stats.t, line='45', fit=True, ax=ax)
ax.set_xlim(-2, 2)
top = ax.get_ylim()[1] * 0.75
txt = ax.text(left, top, "dist=stats.t, \nline='45', \nfit=True",
verticalalignment='top')
txt.set_bbox(dict(facecolor='k', alpha=0.1))
fig.tight_layout()
plt.gcf()
x = np.random.normal(loc=8.25, scale=3.5, size=37)
y = np.random.normal(loc=8.00, scale=3.25, size=37)
pp_x = sm.ProbPlot(x, fit=True)
pp_y = sm.ProbPlot(y, fit=True)
# probability of exceedance
fig2 = pp_x.probplot(exceed=True)
# compare x quantiles to y quantiles
fig3 = pp_x.qqplot(other=pp_y, line='45')
# same as above with probabilities/percentiles
fig4 = pp_x.ppplot(other=pp_y, line='45')
| bsd-3-clause |
McDermott-Group/LabRAD | LabRAD/TestScripts/fpgaTest/pyle/build/lib/pyle/dataking/automateDaily.py | 2 | 41937 | from datetime import datetime
import itertools
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from scipy.optimize import leastsq, fsolve
import time
import random
import labrad
from labrad.units import Unit
ns, us, GHz, MHz = [Unit(s) for s in ('ns', 'us', 'GHz', 'MHz')]
from scripts import GHz_DAC_bringup
from pyle.dataking import measurement
from pyle.dataking import multiqubit as mq
from pyle.dataking import util as util
from pyle.util import sweeptools as st
from pyle.dataking import noon
from pyle.dataking import hadamard as hadi
from pyle.plotting import dstools as ds
from pyle import tomo
# TODO: Big dream here. Create a "report" or a dictionary of all the calibrations for each qubit
# then print that to the screen/save it to registry/ save fits to dataset
# TODO add fits to e.g. T1 and T2
# TODO separate datataking from analysis (so can rerun analysis on datasets directly from data vault)
# TODO save all fitting params with datasets
# TODO retune measure pulse amplitude for maximum visibility
def smsNotify(cxn, msg, username):
return cxn.telecomm_server.send_sms('automate daily', msg, username)
def getBoardGroup(cxn, sample):
""" Get the board group used by the experiment associated to sample"""
fpgas = cxn.ghz_fpgas
boardGroups = fpgas.list_board_groups()
def getAnyBoard():
for dev in sample.values():
try:
#Look in channels to see if we can find any FPGA board
return dict(dev['channels'])['uwave'][1][0]
except (KeyError,TypeError):
#Don't do anything, just try the next one
pass
board = getAnyBoard()
if board is None:
return board
for bg in boardGroups:
if board in [name[1] for name in fpgas.list_devices(bg)]:
return bg
return None
def getReadoutType(sample, device):
pass
def daily_bringup(s, pause=False):
cxn = s._cxn
username = s._dir[1]
sample, qubits = util.loadQubits(s)
boardGroup = getBoardGroup(cxn, sample)
#Bring up FPGA boards. If it fails, send SMS to the user and end daily bringup
if not bringupBoards(cxn, boardGroup):
smsNotify(cxn, 'board bringup failed', username)
return False
#Set up DC bias (SQUID steps, resonator readout, etc.)
bringup_dcBias(s, pause=pause)
return
bringup_stepedge(s, pause=pause) #run stepedge and find stepedge for each qubit
bringup_scurve(s, pause=pause) #measure scurve over reasonable range. find_mpa_func
bringup_sample(s, pause=pause) #spectroscopy, tune pi freq/amp, visibility
#fluxFunc/zpaFunc on reasonable frequency ranges
#todo the pulshape tune-up
single_qubit_scans(s) #Coherence factors
qubit_coupling_resonator_scans(s) #For each qubit: swapTuner,fockTuner. Then inter-qubit timing.
#qubit_memory_resonator_scans(s)
gate_bringup(s)
create_bell_state_iswap(s,zSweep=False)
def bringupBoards(cxn, boardGroup):
ok = True
resultWords = {True:'ok',False:'failed'}
fpgas = cxn.ghz_fpgas
try:
successDict = GHz_DAC_bringup.bringupBoardGroup(fpgas, boardGroup)
for board, successes in successDict.items():
for item,success in successes.items():
if not success:
print 'board %s %s failed'%(board,item)
ok = False
except Exception:
ok = False
return ok
def bringup_dcBias(s, pause=True):
pass
def bringup_squidsteps(s, pause=True):
N = len(s['config'])
for i in range(N):
print 'measuring squidsteps for qubit %d...' % i,
mq.squidsteps(s, measure=i, noisy=False, update=pause)
print 'done.'
def bringup_stepedge(s, pause=True):
N = len(s['config'])
for i in range(N):
print 'measuring step edge, qubit %d...' % i,
mq.stepedge(s, measure=i, noisy=False, update=pause)
print 'done.'
for i in range(N):
print 'binary searching to find step edge %d...' % i
mq.find_step_edge(s, measure=i, noisy=False)
print 'done.'
def bringup_scurve(s, pause=True):
N = len(s['config'])
for i in range(N):
print 'measuring scurve, qubit %d...' % i
mpa05 = mq.find_mpa(s, measure=i, target=0.05, noisy=False, update=False)
print '5% tunneling at mpa =', mpa05
mpa95 = mq.find_mpa(s, measure=i, target=0.95, noisy=False, update=False)
print '95% tunneling at mpa =', mpa95
low = st.nearest(mpa05 - (mpa95 - mpa05) * 1.0, 0.002)
high = st.nearest(mpa95 + (mpa95 - mpa05) * 1.0, 0.002)
step = 0.002 * np.sign(high - low)
mpa_range = st.r[low:high:step]
mq.scurve(s, mpa_range, measure=i, stats=1200, noisy=False, update=pause)
print 'done.'
for i in range(N):
print 'binary searching to find mpa %d...' % i
mq.find_mpa(s, measure=i, noisy=False, update=True)
mq.find_mpa_func(s, measure=i, noisy=False, update=True)
print 'done.'
def bringup_spectroscopy(s, freq_range=(6.0*GHz, 6.8*GHz)):
qubits = s['config']
N = len(qubits)
for i in range(N):
mq.spectroscopy(s, st.r[freq_range[0]:freq_range[1]:0.005*GHz], measure=i, update=True)
def bringup_sample(s, pause=False, fine_tune=True):
N = len(s['config'])
bringup_pi_pulses(s, pause=pause)
if fine_tune:
for i in range(N):
# choose frequency range to cover all qubits
fmin = min(s[qubit]['f10'] for qubit in s['config']) - 0.1*GHz
fmax = max(s[qubit]['f10'] for qubit in s['config']) + 0.1*GHz
print 'measuring flux func, qubit %d...' % i,
mq.find_flux_func(s, (fmin, fmax), measure=i, noisy=False)
print 'done.'
print 'measuring zpa func, qubit %d...' % i,
mq.find_zpa_func(s, (fmin, fmax), measure=i, noisy=False)
print 'done.'
# update the calibrated ratio of DAC amplitudes to detuning and rabi freqs
update_cal_ratios(s)
def update_cal_ratios(s):
s, _qubits, Qubits = util.loadQubits(s, write_access=True)
# single-qubit bringup
for Q in Qubits:
# convert microwave amplitude to rabi frequency
fwhm = Q['piFWHM'][ns]
A = float(Q['piAmp'])
Q['calRabiOverUwa'] = 2*np.sqrt(np.log(2)/np.pi)/(A*fwhm)*GHz # total area is 1 cycle
# convert z amplitude to detuning frequency
a = float(Q['calZpaFunc'][0])
f = Q['f10'][GHz]
Q['calDfOverZpa'] = 1/(4*a*f**3)*GHz
def bringup_pi_pulses(s, pause=False):
N = len(s['config'])
for i in range(N):
print 'measuring spectroscopy, qubit %d...' % i,
mq.spectroscopy(s, measure=i, noisy=False, update=pause) # zoom in on resonance peak
mq.spectroscopy_two_state(s, measure=i, noisy=False, update=pause)
print 'done.'
for i in range(N):
print 'calibrating pi pulse, qubit %d...' % i,
mq.pitunerHD(s, measure=i, noisy=False)
print 'done.'
print 'fine-tuning frequency, qubit %d...' % i,
mq.freqtuner(s, iterations=1, measure=i, save=True)
print 'done.'
print 'redoing pi pulse calibration, qubit %d...' % i,
mq.pitunerHD(s, measure=i, noisy=False)
print 'done.'
print 'checking visibility, qubit %d...' % i
mpa1_05 = mq.find_mpa(s, measure=i, pi_pulse=True, target=0.05, noisy=False, update=False)
print '5% tunneling of 1 at mpa =', mpa1_05
mpa0_95 = mq.find_mpa(s, measure=i, pi_pulse=False, target=0.95, noisy=False, update=False)
print '95% tunneling of 0 at mpa =', mpa0_95
low = max(st.nearest(mpa1_05 - (mpa0_95 - mpa1_05) * 0.5, 0.002), 0)
high = min(st.nearest(mpa0_95 + (mpa0_95 - mpa1_05) * 0.5, 0.002), 2)
step = 0.002 * np.sign(high - low)
mpa_range = st.r[low:high:step]
mq.visibility(s, mpa_range, stats=1200, measure=i, noisy=False)
print 'done.'
# TODO adjust measurePulse_amplitude for maximum visibility
# measure e0, e1 and visibility very carefully at the correct measure-pulse amplitude
print 'measuring visibility at calibrated mpa %d...' % i,
Q = s[s['config'][i]]
data = mq.visibility(s, [Q['measureAmp']]*100, stats=600, measure=i, noisy=False, name='Measurement Fidelity', collect=True)
e0, f1 = np.mean(data[:,1]), np.mean(data[:,2])
print 'done.'
print ' e0: %g, f0: %g' % (e0, 1-e0)
print ' e1: %g, f1: %g' % (1-f1, f1)
Q['measureE0'] = e0
Q['measureF0'] = 1-e0
Q['measureE1'] = 1-f1
Q['measureF1'] = f1
def bringup_timing(s):
N = len(s['config'])
for i in range(N):
print 'measuring timing delay on qubit %d...' % i
mq.testdelay(s, measure=i, update=True, plot=True, noisy=False)
print 'done.'
for i in range(1,N):
print 'measuring timing delay between qubit 0 and %d...' % i
mq.testdelay_x(s, measure=0, z_pulse=i, update=True, plot=True, noisy=False)
print 'done.'
def bringup_xtalk(s):
"""Measure the z-pulse crosstalk between each pair of qubits.
We then create the crosstalk matrix and store it in the registry.
In addition, we invert the crosstalk matrix, since this is needed
to correct the z-pulse signals if desired.
Assumes you have already run spectroscopy2DZauto, so that the
cal_zpa_func has already been set, as xtalk is relative to this.
"""
s, qubits, Qubits = util.loadQubits(s, write_access=True)
A = np.eye(len(qubits))
for i, qi in enumerate(qubits):
for j, _qj in enumerate(qubits):
if i == j:
continue
print 'measuring crosstalk on %s from z-pulse on %s' % (i, j)
xtfunc = mq.spectroscopy2DZxtalk(s, measure=i, z_pulse=j, noisy=False)
aii = float(qi['calZpaFunc'][0])
aij = float(xtfunc[0])
print 'crosstalk =', aii/aij
A[i,j] = aii/aij
Ainv = np.linalg.inv(A)
print
print 'xtalk matrix:\n', A
print
print 'inverse xtalk matrix:\n', Ainv
for i, Qi in enumerate(Qubits):
Qi['calZpaXtalk'] = A[i]
Qi['calZpaXtalkInv'] = Ainv[i]
def test_xtalk(s):
s, qubits = util.loadQubits(s, write_access=False)
readouts = [(0,1,2,3), (0,1,3,2), (3,2,1,0), (1,2,0,3), (2,0,1,3), (2,1,3,0)]
for readout_order in readouts:
for q, order in zip(qubits, readout_order):
q['squidReadoutDelay'] = (order+1) * 10*us
for i in range(len(qubits)):
mq.meas_xtalk(s, name='meas-xtalk simult readout order %s' % (readout_order,), drive=i, simult=True, stats=1200, noisy=False)
for readout_order in readouts:
for q, order in zip(qubits, readout_order):
q['squidReadoutDelay'] = (order+1) * 10*us
for i in range(len(qubits)):
mq.meas_xtalk(s, name='meas-xtalk readout order %s' % (readout_order,), drive=i, simult=False, stats=1200, noisy=False)
#def test_measurements(s):
# """Test the various ways of measuring qubits."""
# s, qubits = util.loadQubits(s)
# q0, _q1, q2 = qubits
#
# zpa0 = q0['wZpulseAmp']
# zpa2 = q2['wZpulseAmp']
#
# # couple all three qubits together
# kw = dict(pi_pulse_on=1, t_couple=32*ns, name='w-state meas_test', delay=st.r[30:36:1,ns], zpas=[zpa0, 0, zpa2], stats=3000)
#
# werner.w_state(s, measure=0, **kw)
# werner.w_state(s, measure=[1], **kw)
# werner.w_state(s, measure=[0,1,2], **kw)
# werner.w_state(s, measure=measurement.Null(3, [0,1]), **kw)
# werner.w_state(s, measure=measurement.Null(3, [0,1,2]), **kw)
# werner.w_state(s, measure=measurement.Tomo(3, [0]), **kw)
# werner.w_state(s, measure=measurement.Tomo(3, [0,1]), **kw)
# werner.w_state(s, measure=measurement.Tomo(3, [0,1,2]), **kw)
# werner.w_state(s, measure=measurement.TomoNull(3, [0]), pipesize=2, **kw)
# werner.w_state(s, measure=measurement.TomoNull(3, [0,1]), pipesize=2, **kw)
# werner.w_state(s, measure=measurement.TomoNull(3, [0,1,2]), pipesize=2, **kw)
# werner.w_state(s, measure=measurement.Octomo(3, [0]), pipesize=2, **kw)
# werner.w_state(s, measure=measurement.Octomo(3, [0,1]), pipesize=2, **kw)
# werner.w_state(s, measure=measurement.Octomo(3, [0,1,2]), pipesize=2, **kw)
# werner.w_state(s, measure=measurement.OctomoNull(3, [0,1,2]), pipesize=2, **kw)
def single_qubit_scans(s):
N = len(s['config'])
for i in range(N):
print 'measuring T1, qubit %d' % i,
mq.t1(s, stats=1800, measure=i, noisy=False)
#TODO add T1 fits
print 'done.'
print 'measuring ramsey fringe, qubit %d' % i,
#TODO bring T1 fit from above and turn on T2 fit
mq.ramsey(s, stats=1800, measure=i, noisy=False)
print 'done.'
print 'measuring spin_echo, qubit %d' % i,
mq.spinEcho(s, stats=1800, measure=i, noisy=False)
print 'done.'
def qubit_coupling_resonator_scans(s):
start = datetime.now()
N = len(s['config'])
for i in range(N):
print 'measuring SWAP10 Spectroscopy, qubit %d' % i,
swap10Len, swap10Amp = mq.swap10tuner(s, measure=i, stats=1800, noisy=False, whichRes='Coupler')
print 'measuring 2D-SWAP Spec around Coupling resonator, for qubit %d' % i,
swapAmpBND = 0.2
swapAmpSteps = 0.001
coarseSet = np.arange(0,swap10Amp*(1-swapAmpBND),swapAmpSteps*5)
fineSet = np.arange(swap10Amp*(1-swapAmpBND),swap10Amp*(1+swapAmpBND), swapAmpSteps)
swap10Amp = np.hstack((coarseSet,fineSet))
mq.swapSpectroscopy(s, state=1, swapLen=st.arangePQ(0,75,2,ns), swapAmp=swap10Amp, measure=i, save=True, noisy=False)
#run focktuner level =1
print 'fock tuner for fine calibratin of cZControlLen'
mq.fockTuner(s, n=1, iteration=3, tuneOS=False, stats=1800, measure=i, save=True, noisy=False)
print 'done. Calibrated Control qubits'
print 'Tuning up pi-pulse for |2> of qubit %d' % i,
noon.pituner21(s, stats = 1800, measure=i, noisy=False, findMPA=True)
print 'done'
print 'measuring SWAP21 Spectroscopy'
swap21Len, swap21Amp = mq.swap21tuner(s, measure=i, stats=1800, noisy=False)
print 'measuring 2D-SWAP Spec around resonator, for qubit %d' % i,
mq.swapSpectroscopy(s, state=2, swapLen=st.arangePQ(0,60,2,ns), swapAmp=st.r[swap21Amp*(1-0.2):swap21Amp*(1+0.2):0.001], measure=i, save=True, noisy=False)
mq.fockTuners21(s, n=1, iteration=3, tuneOS=False, stats=1800, measure=i, save=True, noisy=False)
print 'done. Calibrated Target qubits'
print 'now starting qubit-qubit timing calibrations...'
print 'measuring qubit-qubit delay via the resonator'
for j,k in [(0,1),(1,0), (0,2),(2,0), (1,2),(2,1), (0,3),(3,0), (1,3),(3,1), (2,3),(3,2)]: #( add back in when all 4 qubits work!
mq.testQubResDelayCmp(s,measureC=j, measureT=k)
print 'now measuring resonator T1 using q0 for photon exchange'
noon.resonatorT1(s, stats=1800, measure=0, whichRes='Coupler')
end = datetime.now()
print 'start:', start
print 'end:', end
print 'elapsed time for qubit-resonator scans:', (end-start)
def qubit_memory_resonator_scans(s, stats=1800):
start = datetime.now()
N = len(s['config'])
for i in range(N):
print 'measuring SWAP10 Spectroscopy, qubit %d' % i,
swap10Len, swap10Amp = mq.swap10tuner(s, measure=i, stats=stats, noisy=False, whichRes='Memory')
print 'measuring 2D-SWAP Spec around Memory resonator, for qubit %d' % i,
swapAmpBND = 0.2
swapAmpSteps = 0.001
coarseSet = np.arange(0,swap10Amp*(1-swapAmpBND),swapAmpSteps*5)
fineSet = np.arange(swap10Amp*(1-swapAmpBND),swap10Amp*(1+swapAmpBND), swapAmpSteps)
swap10Amp = np.hstack((coarseSet,fineSet))
mq.swapSpectroscopy(s, swapLen=st.arangePQ(0,300,5,ns), swapAmp=swap10Amp, measure=i,
save=True, noisy=False, stats=stats, whichRes='Memory')
#run focktuner level =1
print 'fock tuner for fine calibratin of memoryReadWriteLen'
mq.fockTuner(s, n=1, iteration=3, tuneOS=False, stats=stats, measure=i, save=True, noisy=False, whichRes='Memory')
print 'done. Memory resonator tuned up'
print 'now measuring memory resonator T1 for resonator %d' %i,
noon.resonatorT1(s, stats=stats, measure=i, whichRes='Memory')
end = datetime.now()
print 'start:', start
print 'end:', end
print 'elapsed time for qubit-mem-resonator scans:', (end-start)
def gate_bringup(s):
start = datetime.now()
N = len(s['config'])
for i in range(N):
print 'Begin Calibrating Single Qubit Hadamard Gates'
print 'Z-pi pulse tuner'
mq.pitunerZ(s, measure=i, save=True, stats = 1800, update=True, noisy=False)
print 'done tuning Z-pi amplitude for qubit %d' %i,
hadi.hadamardTrajectory(s, measure=i, stats=1500, useHD=True, useTomo=True, tBuf=5*ns, save=True, noisy=False)
print 'plotting hadamard trajectory on Bloch Sphere'
print 'correcting for visibilities...generating pretty plots'
hadi.plotTrajectory(path=s._dir, dataset=None, state=None) #grabs the most recent dataset in the current session
hadi.plotDensityArrowPlot(path=s._dir, dataset = None) #grabs most recent dataset in the current session
end = datetime.now()
print 'start:', start
print 'end:', end
print 'elapsed time for single qubit gate bringups:', (end-start)
def create_bell_state_iswap(s,zSweep=False):
start = datetime.now()
for j,k in [(0,1),(0,2),(1,2)]: #(0,3),(1,3),(2,3) add back in when all 4 qubits work!
Qj = s[s['config'][j]]
print 'measuring SWAPs between q%d and q%d via Rc' %(j,k)
shor.iSwap(s, measure=[j,k], stats=1500, noisy=False)
if zSweep:
bellPhase = Qj['piAmpZ']
bellPhases = np.arange(-1.0,1.0,0.1)*bellPhase
for phase in bellPhases:
print 'Preparing Bell-States via SQRT(iSWAP) between q%d and q%d via Rc' %(j,k)
shor.bellStateiSwap(s, reps=5, measure=[j,k], stats=1800, corrAmp=phase)
else:
print 'Preparing Bell-States via SQRT(iSWAP) between q%d and q%d via Rc' %(j,k)
shor.bellStateiSwap(s, reps=5, measure=[j,k], stats=1800, corrAmp=0.0)
end = datetime.now()
print 'start:', start
print 'end:', end
print 'elapsed time for single qubit gate bringups:', (end-start)
def cPhase_bringup(s):
start = datetime.now()
N = len(s['config'])
for i in range(N):
print 'done with COWS'
end = datetime.now()
print 'start:', start
print 'end:', end
print 'elapsed time for c-phase bringups:', (end-start)
def full_run(s):
bringup_multiqubits(s)
measure_w(s) # do tomography
def bringup_multiqubits(s):
start = datetime.now()
test_coupling(s, guess_zpa=True, use_overshoots=False)
tune_swaps(s)
#test_coupling(s, guess_zpa=False, use_overshoots=True) # try the swap again with correct overshoot
tune_phases(s) # tune microwave phases between channels
check_phase_vs_time(s) # tune microwave phase between channels as a function of time
tune_swap_dphases(s) # tune phase change due to a swap z-pulse
tune_dphases(s) # tune phase change due to z-pulses of any length
end = datetime.now()
print 'start:', start
print 'end:', end
print 'elapsed:', (end-start)
# TODO save hyperbolic fit to coupling strength, so we can adjust for unequal coupling strengths
def test_coupling(s, guess_zpa=True, use_overshoots=False):
"""Determine the z-pulse amplitude needed to bring qubits into resonance.
Also, measure coupling strength between qubits.
sets: w_zpulse_amp, w_swap_amp
"""
s, qubits, Qubits = util.loadQubits(s, write_access=True)
q0, q1, q2 = qubits
Q0, _Q1, Q2 = Qubits
zpafunc0 = mq.get_zpa_func(q0)
zpafunc1 = mq.get_zpa_func(q1)
zpafunc2 = mq.get_zpa_func(q2)
S = 0.015 * GHz # expected coupling strength
if guess_zpa:
# guess the required zpa
zpa0 = q0['wZpulseAmp'] = zpafunc0(q1['f10'])
zpa2 = q2['wZpulseAmp'] = zpafunc2(q1['f10'])
# calculate zpa limits to give a reasonable range based on the expected coupling strength
zpalims0 = sorted([zpafunc0(q1['f10'] - S*2), zpafunc0(q1['f10'] + S*2)])
zpalims2 = sorted([zpafunc2(q1['f10'] - S*2), zpafunc2(q1['f10'] + S*2)])
else:
# use calibrated zpa
zpa0 = q0['wZpulseAmp']
zpa2 = q2['wZpulseAmp']
# calculate zpa limits based on calibrated coupling change with zpa
dzpa0 = abs(S[GHz]*2 / q0['coupling1DsByDzpa'][GHz])
zpalims0 = [zpa0 - dzpa0, zpa0 + dzpa0]
dzpa2 = abs(S[GHz]*2 / q2['coupling1DsByDzpa'][GHz])
zpalims2 = [zpa2 - dzpa2, zpa2 + dzpa2]
if not use_overshoots:
q0['wZpulseOvershoot'] = 0.0
q2['wZpulseOvershoot'] = 0.0
from pyle.fitting import fourierplot
opts = {
'collect': True,
'noisy': False,
}
null012 = measurement.Null(3, [0,1,2])
if 1:
# couple q0 with q1
rng0 = st.r[zpalims0[0]:zpalims0[1]:(zpalims0[1] - zpalims0[0]) / 25]
data0 = werner.w_state(s, name='coupling 0 and 1 2D', pi_pulse_on=1, measure=[0],
t_couple=1000*ns, delay=st.r[0:200:4,ns], zpas=[rng0, 0, 0], **opts)
S0, zpa0, ds_by_dzpa0 = fourierplot.fitswap(data0, return_fit=True) # find swap frequency and optimal z-pulse
print S0, zpa0, ds_by_dzpa0
Q0['swapAmp'] = Q0['wZpulseAmp'] = zpa0
Q0['coupling1'] = S0*MHz
Q0['coupling1DsByDzpa'] = ds_by_dzpa0*MHz
# do a 1D scan with the optimal pulse amplitude
data0 = werner.w_state(s, name='coupling 0 and 1', pi_pulse_on=1, measure=null012,
t_couple=1000*ns, delay=st.r[0:100:2,ns], zpas=[zpa0, 0, 0], stats=3000, **opts)
if 1:
# couple q2 with q1
rng2 = st.r[zpalims2[0]:zpalims2[1]:(zpalims2[1] - zpalims2[0]) / 25]
data2 = werner.w_state(s, name='coupling 1 and 2 2D', pi_pulse_on=1, measure=[2],
t_couple=1000*ns, delay=st.r[0:200:4,ns], zpas=[0, 0, rng2], **opts)
S2, zpa2, ds_by_dzpa2 = fourierplot.fitswap(data2, return_fit=True) # find swap frequency and optimal z-pulse
print S2, zpa2, ds_by_dzpa2
Q2['swapAmp'] = Q2['wZpulseAmp'] = zpa2
Q2['coupling1'] = S2*MHz
Q2['coupling1DsByDzpa'] = ds_by_dzpa2*MHz
# do a 1D scan with the optimal pulse amplitude
data2 = werner.w_state(s, name='coupling 1 and 2', pi_pulse_on=1, measure=null012,
t_couple=1000*ns, delay=st.r[0:100:2,ns], zpas=[0, 0, zpa2], stats=3000, **opts)
if 1:
# couple q0 with q2, moving q1 to negative detuning
zpa1 = zpafunc1(q2['f10']) # move q1 out of the way
rng2 = st.r[zpalims2[0]:zpalims2[1]:(zpalims2[1] - zpalims2[0]) / 25]
data2 = werner.w_state(s, name='coupling 0 and 2 2D', pi_pulse_on=0, measure=[2],
t_couple=1000*ns, delay=st.r[0:200:4,ns], zpas=[zpa0, zpa1, rng2], **opts)
S2, zpa2, ds_by_dzpa2 = fourierplot.fitswap(data2, return_fit=True) # find swap frequency and optimal z-pulse
print S2, zpa2, ds_by_dzpa2
#Q2['swapAmp'] = Q2['wZpulseAmp'] = zpa2
Q2['coupling0'] = S2*MHz # save this coupling value, but not in the standard place
Q2['coupling0DsByDzpa'] = ds_by_dzpa2*MHz # save fit, but not in the standard place
# do a 1D scan with the optimal pulse amplitude
data2 = werner.w_state(s, name='coupling 0 and 2', pi_pulse_on=0, measure=null012,
t_couple=1000*ns, delay=st.r[0:100:2,ns], zpas=[zpa0, zpa1, zpa2], stats=3000, **opts)
def tune_swaps(s):
"""Adjust overshoot and pulse length to get the best swap."""
# overshoots don't seem to help
s.q0['swapOvershoot'] = 0.0
s.q2['swapOvershoot'] = 0.0
werner.swaptuner(s, measure=0, pi_pulse_on=1, noisy=False, update=True, save=False, stats=3000, tune_overshoot=False)
werner.swaptuner(s, measure=2, pi_pulse_on=1, noisy=False, update=True, save=False, stats=3000, tune_overshoot=False)
# set overshoots for w-state to be equal to calibrated swap overshoots
s.q0['wZpulseOvershoot'] = s.q0['swapOvershoot']
s.q2['wZpulseOvershoot'] = s.q2['swapOvershoot']
def tune_phases(s, t0=None, calibrated_amp=True, stats=3000L, res=50, plot=True):
s, qubits, Qubits = util.loadQubits(s, write_access=True)
q0, q1, q2 = qubits
if calibrated_amp:
zpa0 = q0['swapAmp']
zpa2 = q2['swapAmp']
else:
zpafunc0 = mq.get_zpa_func(q0)
zpafunc2 = mq.get_zpa_func(q2)
zpa0 = zpafunc0(q1['f10'])
zpa2 = zpafunc2(q1['f10'])
f_couple = 0.015*GHz
t_couple = (1/f_couple/4)[ns]*ns
phase = st.r[-np.pi:np.pi:np.pi/res]
data0 = werner.uwave_phase_adjust(s, phase=phase, t0=t0, t_couple=t_couple, adjust=0, ref=1, zpas=[zpa0, 0.0, 0.0], collect=True, noisy=False, stats=stats)
data2 = werner.uwave_phase_adjust(s, phase=phase, t0=t0, t_couple=t_couple, adjust=2, ref=1, zpas=[0.0, 0.0, zpa2], collect=True, noisy=False, stats=stats)
def fitfunc(x, c):
return -np.sin(x - c[0]) * c[1] + c[2]
ph, _p00, p01, p10, _p11 = data0.T
fit0, _ = leastsq(lambda c: fitfunc(ph, c) - p10, [q0['uwavePhase'], (max(p10)-min(p10))/2.0, (max(p10)+min(p10))/2.0])
if fit0[1] < 0:
fit0[0] = (fit0[0] + 2*np.pi) % (2*np.pi) - np.pi
fit0[1] *= -1
fit0[0] = (fit0[0] + np.pi) % (2*np.pi) - np.pi
if plot:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ph, p10, 'b.', label='|10>')
ax.plot(ph, p01, 'g.', label='|01>')
ax.plot(ph, fitfunc(ph, fit0), 'r-')
ax.axvline(fit0[0], linestyle='--', color='gray')
ax.set_title('microwave phase adjustment, qubit 0, ref 1: phase = %0.5g' % fit0[0])
ax.legend()
print 'old phase:', q0['uwavePhase']
print 'new phase:', fit0[0]
Qubits[0]['uwavePhase'] = fit0[0]
ph, _p00, p01, p10, _p11 = data2.T
fit2, _ = leastsq(lambda c: fitfunc(ph, c) - p01, [q2['uwavePhase'], (max(p01)-min(p01))/2.0, (max(p01)+min(p01))/2.0])
if fit2[1] < 0:
fit2[0] = (fit2[0] + 2*np.pi) % (2*np.pi) - np.pi
fit2[1] *= -1
fit2[0] = (fit2[0] + np.pi) % (2*np.pi) - np.pi
if plot:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ph, p10, 'b.', label='|10>')
ax.plot(ph, p01, 'g.', label='|01>')
ax.plot(ph, fitfunc(ph, fit2), 'r-')
ax.axvline(fit2[0], linestyle='--', color='gray')
ax.set_title('microwave phase adjustment, qubit 2, ref 1: phase = %0.5g' % fit2[0])
ax.legend()
print 'old phase:', q2['uwavePhase']
print 'new phase:', fit2[0]
Qubits[2]['uwavePhase'] = fit2[0]
return fit0[0], fit2[0]
def check_phase_vs_time(s, plot=True):
s, qubits, Qubits = util.loadQubits(s, write_access=True)
phases0 = []
phases2 = []
t0s = st.r[0:12:1,ns]
for t0 in t0s:
ph0, ph2 = tune_phases(s, t0, stats=1200, res=20, plot=False)
phases0.append(ph0)
phases2.append(ph2)
phases0 = np.unwrap(phases0)
phases2 = np.unwrap(phases2)
fit0 = np.polyfit(t0s, phases0, 1)
fit2 = np.polyfit(t0s, phases2, 1)
df0 = (s.q1['f10'] - s.q0['f10'])[GHz]
df2 = (s.q1['f10'] - s.q2['f10'])[GHz]
if plot:
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t0s, phases0, 'b.', label='measured phase')
ax.plot(t0s, np.polyval(fit0, t0s), 'r-', label='phase fit')
ax.plot(t0s, np.polyval([-2*np.pi*df0, 0], t0s), 'c-', label='detuning')
ax.legend()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(t0s, phases2, 'b.', label='measured phase')
ax.plot(t0s, np.polyval(fit2, t0s), 'r-', label='phase fit')
ax.plot(t0s, np.polyval([-2*np.pi*df2, 0], t0s), 'c-', label='detuning')
ax.legend()
print 'qubit 0:'
print ' detuning:', df0
print ' phase fit:', fit0[0]/(2*np.pi)
print ' phase offset:', fit0[1]/(2*np.pi)
print
Qubits[0]['uwavePhaseSlope'] = fit0[0]/(2*np.pi) * GHz
Qubits[0]['uwavePhaseOfs'] = fit0[1]
Qubits[0]['uwavePhaseFit'] = fit0
print 'qubit 2:'
print ' detuning q2:', df2
print ' phase fit:', fit2[0]/(2*np.pi)
print ' phase offset:', fit2[1]/(2*np.pi)
print
Qubits[2]['uwavePhaseSlope'] = fit2[0]/(2*np.pi) * GHz
Qubits[2]['uwavePhaseOfs'] = fit2[1]
Qubits[2]['uwavePhaseFit'] = fit2
def tune_swap_dphases(s, calibrated_amp=True):
s, qubits, Qubits = util.loadQubits(s, write_access=True)
q0, q1, q2 = qubits
Q0, _Q1, Q2 = Qubits
if not calibrated_amp:
zpafunc0 = mq.get_zpa_func(q0)
zpafunc2 = mq.get_zpa_func(q2)
q0['swapAmp'] = zpafunc0(q1['f10'])
q2['swapAmp'] = zpafunc2(q1['f10'])
def fitfunc(x, c):
return np.cos(x - c[0]) * c[1] + c[2]
def fit_dphase(i, q):
print 'measuring qubit', i
phase = st.r[-np.pi:np.pi:np.pi/20]
data = werner.swap_dphase_adjust(s, phase, adjust=i, ref=1, stats=600, noisy=False, collect=True, save=False)
ph, p1 = data.T
fit, _ = leastsq(lambda c: fitfunc(ph, c) - p1, [ph[np.argmax(p1)], (max(p1)-min(p1))/2.0, (max(p1)+min(p1))/2.0])
if fit[1] < 0:
fit[0] = (fit[0] + 2*np.pi) % (2*np.pi) - np.pi
fit[1] *= -1
print ' dphase =', fit[0]
dphase = fit[0]
return dphase
dphase0 = fit_dphase(0, q0)
dphase2 = fit_dphase(2, q2)
print 'qubit 0:'
print ' swapDphase:', dphase0
print
Q0['swapDphase'] = dphase0
print 'qubit 2:'
print ' swapDphase:', dphase2
print
Q2['swapDphase'] = dphase2
def tune_dphases(s, calibrated_amp=True):
s, qubits, Qubits = util.loadQubits(s, write_access=True)
q0, q1, q2 = qubits
Q0, _Q1, Q2 = Qubits
if not calibrated_amp:
zpafunc0 = mq.get_zpa_func(q0)
zpafunc2 = mq.get_zpa_func(q2)
q0['wZpulseAmp'] = zpafunc0(q1['f10'])
q2['wZpulseAmp'] = zpafunc2(q1['f10'])
def fitfunc(x, c):
return np.cos(x - c[0]) * c[1] + c[2]
zp_rng = st.r[0:25:1,ns]
ts = np.array([zp_len[ns] for zp_len in zp_rng])
def fit_phases(i, q):
print 'measuring qubit', i
dphases = []
for zp_len in zp_rng:
q['wZpulseLen'] = zp_len
phase = st.r[-np.pi:np.pi:np.pi/20]
data = werner.w_dphase_adjust(s, phase, adjust=i, ref=1, stats=600,
noisy=False, collect=True, save=True)
ph, p1 = data.T
fit, _ = leastsq(lambda c: fitfunc(ph, c) - p1, [ph[np.argmax(p1)], (max(p1)-min(p1))/2.0, (max(p1)+min(p1))/2.0])
if fit[1] < 0:
fit[0] = (fit[0] + 2*np.pi) % (2*np.pi) - np.pi
fit[1] *= -1
print ' t =', zp_len[ns], ' dphase =', fit[0]
dphases.append(fit[0])
print
return np.unwrap(dphases)
dphases0 = fit_phases(0, q0)
dphases2 = fit_phases(2, q2)
fit0 = np.polyfit(ts, dphases0, 1)
fit2 = np.polyfit(ts, dphases2, 1)
df0 = (q1['f10'] - q0['f10'])[GHz]
df2 = (q1['f10'] - q2['f10'])[GHz]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ts, dphases0, 'b.', label='measured phase')
ax.plot(ts, np.polyval(fit0, ts), 'r-', label='phase fit')
ax.plot(ts, np.polyval([-2*np.pi*df0, 0], ts), 'c-', label='detuning')
ax.legend()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ts, dphases2, 'b.')
ax.plot(ts, np.polyval(fit2, ts), 'r-')
ax.plot(ts, np.polyval([-2*np.pi*df2, 0], ts), 'c-', label='detuning')
ax.legend()
print 'qubit 0:'
print ' detuning:', df0
print ' phase fit:', fit0[0]/(2*np.pi)
print ' phase offset:', fit0[1]/(2*np.pi)
print
Q0['wDphaseSlope'] = fit0[0]/(2*np.pi) * GHz
Q0['wDphaseFit'] = fit0
print 'qubit 2:'
print ' detuning q2:', df2
print ' phase fit:', fit2[0]/(2*np.pi)
print ' phase offset:', fit2[1]/(2*np.pi)
print
Q2['wDphaseSlope'] = fit2[0]/(2*np.pi) * GHz
Q2['wDphaseFit'] = fit2
def measure_w(s, with_tomo=True):
s, qubits = util.loadQubits(s)
q0, _q1, q2 = qubits
t_swap = (q0['swapLen'] + q2['swapLen']) / 2
t_couple = t_swap * 4.0/9.0
for _i in itertools.count():
# couple all three qubits together
null012 = measurement.Null(3, [0,1,2])
werner.w_state(s, pi_pulse_on=1, t_couple=1000*ns, delay=st.r[0:50:1,ns], measure=null012, stats=1200)
werner.w_state(s, pi_pulse_on=1, t_couple=t_couple, delay=st.r[0:50:1,ns], measure=null012, stats=1200)
if with_tomo:
# do tomography
tomo012 = measurement.TomoNull(3, [0,1,2])
opts = {
'pi_pulse_on': 1,
'measure': tomo012,
'stats': 600,
'pipesize': 1,
}
werner.w_state(s, t_couple=1000*ns, delay=st.r[0:30:1,ns], **opts)
werner.w_state(s, t_couple=t_couple, delay=st.r[0:30:1,ns], **opts)
werner.w_state(s, t_couple=1000*ns, delay=st.r[15:20:0.25,ns], **opts)
werner.w_state(s, t_couple=t_couple, delay=st.r[15:20:0.25,ns], **opts)
def tweak_detunings(s):
s, qubits = util.loadQubits(s)
q0, _q1, q2 = qubits
zpa0 = q0['swapAmp']
zpa2 = q2['swapAmp']
def sfunc(q):
p0 = q['coupling1'][MHz]
p1 = q['coupling1DsByDzpa'][MHz]
zpa0 = q['swap_amp']
return lambda zpa: np.sqrt(p0**2 + p1**2*(zpa - zpa0))
sfunc0 = sfunc(q0)
sfunc2 = sfunc(q2)
smin0 = sfunc0(q0['swapAmp'])
smin2 = sfunc2(q2['swapAmp'])
print 'minimum splittings:'
print ' q0 <-> q1: %g MHz' % smin0
print ' q2 <-> q1: %g MHz' % smin2
print
if smin0 < smin2:
# adjust zpa 0
zpa0opt = fsolve(lambda zpa: sfunc0(zpa) - smin2, zpa0)
det0 = q0['coupling1DsByDzpa'] * (zpa0opt - q0['swapAmp'])
print 'qubit0 optimal zpa=%g, s=%g, det=%g' % (zpa0opt, sfunc0(zpa0opt), det0)
zpas = sorted([zpa0opt, 2*zpa0 - zpa0opt])
print 'trying', zpas
for zpa0 in zpas:
q0['swapAmp'] = zpa0
measure_w(s, with_tomo=False)
else:
# adjust zpa 0
zpa2opt = fsolve(lambda zpa: sfunc2(zpa) - smin0, zpa2)
det2 = q2['coupling1DsByDzpa'] * (zpa2opt - q2['swapAmp'])
print 'qubit2 optimal zpa=%g, s=%g, det=%g' % (zpa2opt, sfunc2(zpa2opt), det2)
zpas = sorted([zpa2opt, 2*zpa2 - zpa2opt])
print 'trying', zpas
for zpa2 in zpas:
q2['swapAmp'] = zpa2
measure_w(s, with_tomo=False)
def measure_ghz(s, with_tomo=True, with_ghz=True):
s, qubits = util.loadQubits(s)
q0, _q1, q2 = qubits
for _i in [0]: #itertools.count():
# couple all three qubits together
null012 = measurement.Null(3, [0,1,2])
#mq.w_state(s, pi_pulse_on=1, t_couple=1000*ns, delay=st.r[0:50:1,ns], measure=null012, stats=1200)
#mq.w_state(s, pi_pulse_on=1, t_couple=17.5*ns, delay=st.r[0:50:1,ns], measure=null012, stats=1200)
ghz.ghz_simult(s, stage=st.r[0:3:0.05], measure=measurement.Null(3), stats=1800)
ghz.ghz_iswap(s, stage=st.r[0:4:0.05], measure=measurement.Null(3), stats=1800)
if with_ghz:
ghz.ghz_simult(s, stage=st.r[0:3:0.1], measure=ghz.GHZ(), stats=1200)
ghz.ghz_iswap(s, stage=st.r[0:4:0.1], measure=ghz.GHZ(), stats=1200)
if with_tomo:
# do tomography
tomo012 = measurement.TomoNull(3, [0,1,2])
opts = {
'pi_pulse_on': 1,
'measure': tomo012,
'stats': 600,
'pipesize': 1,
}
#mq.w_state(s, t_couple=1000*ns, delay=st.r[0:30:1,ns], **opts)
#mq.w_state(s, t_couple=19*ns, delay=st.r[0:30:1,ns], **opts)
#mq.w_state(s, t_couple=1000*ns, delay=st.r[15:25:0.25,ns], **opts)
#mq.w_state(s, t_couple=19*ns, delay=st.r[15:25:0.25,ns], **opts)
ghz.ghz_simult(s, stage=st.r[0:3:0.1], measure=measurement.TomoNull(3), pipesize=1, stats=1200)
ghz.ghz_iswap(s, stage=st.r[0:4:0.1], measure=measurement.TomoNull(3), pipesize=1, stats=1200)
def measure_ghz_iswap(s, with_tomo=True, with_ghz=True):
s, qubits = util.loadQubits(s)
q0, _q1, q2 = qubits
while True:
#for sf, ef, es in [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
# (2, 0, 0), (2, 0, 1), (2, 1, 0), (2, 1, 1)]:
for sf, ef, es in [(0, 1, 0), (0, 1, 1),
(2, 0, 0), (2, 0, 1), (2, 1, 0), (2, 1, 1)]:
# couple all three qubits together
null012 = measurement.Null(3, [0,1,2])
#mq.w_state(s, pi_pulse_on=1, t_couple=1000*ns, delay=st.r[0:50:1,ns], measure=null012, stats=1200)
#mq.w_state(s, pi_pulse_on=1, t_couple=17.5*ns, delay=st.r[0:50:1,ns], measure=null012, stats=1200)
opts = {
'swap_first': sf,
'swap_second': 2-sf,
'echo_first': ef,
'echo_second': es,
}
opts2 = {
'swap_first': sf,
'swap_second': 2-sf,
}
#ghz.ghz_simult(s, stage=st.r[0:3:0.05], measure=measurement.Null(3), stats=1800)
#ghz.ghz_iswap(s, stage=st.r[0:4:0.05], measure=null012, stats=1200, **opts)
#if with_ghz:
# ghz.ghz_simult(s, stage=st.r[0:3:0.1], measure=ghz.GHZ(), stats=1200)
# ghz.ghz_iswap(s, stage=st.r[0:4:0.1], measure=ghz.GHZ(), stats=1200)
if with_tomo:
# do tomography
tomo012 = measurement.TomoNull(3, [0,1,2])
#opts = {
# 'pi_pulse_on': 1,
# 'measure': tomo012,
# 'stats': 600,
# 'pipesize': 1,
#}
#mq.w_state(s, t_couple=1000*ns, delay=st.r[0:30:1,ns], **opts)
#mq.w_state(s, t_couple=19*ns, delay=st.r[0:30:1,ns], **opts)
#mq.w_state(s, t_couple=1000*ns, delay=st.r[15:25:0.25,ns], **opts)
#mq.w_state(s, t_couple=19*ns, delay=st.r[15:25:0.25,ns], **opts)
#ghz.ghz_simult(s, stage=st.r[0:3:0.1], measure=measurement.TomoNull(3), pipesize=1, stats=600)
#ghz.ghz_iswap(s, stage=[4], measure=tomo012, pipesize=1, stats=6000, **opts)
ghz.ghz_iswap_tight(s, stage=[4], measure=tomo012, pipesize=1, stats=6000, **opts2)
#ghz.ghz_iswap(s, stage=st.r[0:4:0.2], measure=tomo012, pipesize=1, stats=600, **opts)
def measure_ghz_iswap_tight(s, with_tomo=True, with_ghz=True):
s, qubits = util.loadQubits(s)
q0, _q1, q2 = qubits
for _i in range(1):
for sf in [0, 2]:
opts = {
'swap_first': sf,
'swap_second': 2-sf,
}
#null012 = measurement.Null(3, [0,1,2])
#ghz.ghz_simult(s, stage=st.r[0:3:0.05], measure=null012, stats=1800)
#ghz.ghz_iswap(s, stage=st.r[0:4:0.05], measure=null012, stats=1200, **opts)
#if with_ghz:
# ghz.ghz_simult(s, stage=st.r[0:3:0.1], measure=ghz.GHZ(), stats=1200)
# ghz.ghz_iswap(s, stage=st.r[0:4:0.1], measure=ghz.GHZ(), stats=1200)
if with_tomo:
tomo012 = measurement.TomoNull(3, [0,1,2])
ghz.ghz_iswap_tight(s, stage=[0,1,2,3,4], measure=tomo012, pipesize=1, stats=6000, **opts)
def measure_ghz_simult(s, with_tomo=True, with_ghz=True):
s, qubits = util.loadQubits(s)
q0, _q1, q2 = qubits
for _i in range(1):
for sf in [0, 2]:
opts = {
'swap_first': sf,
'swap_second': 2-sf,
}
#null012 = measurement.Null(3, [0,1,2])
#ghz.ghz_simult(s, stage=st.r[0:3:0.05], measure=null012, stats=1800)
#ghz.ghz_iswap(s, stage=st.r[0:4:0.05], measure=null012, stats=1200, **opts)
#if with_ghz:
# ghz.ghz_simult(s, stage=st.r[0:3:0.1], measure=ghz.GHZ(), stats=1200)
# ghz.ghz_iswap(s, stage=st.r[0:4:0.1], measure=ghz.GHZ(), stats=1200)
if with_tomo:
tomo012 = measurement.TomoNull(3, [0,1,2])
ghz.ghz_iswap_tight(s, stage=[0,1,2,3,4], measure=tomo012, pipesize=1, stats=6000, **opts)
| gpl-2.0 |
mrshu/scikit-learn | examples/cluster/plot_affinity_propagation.py | 2 | 2276 | """
=================================================
Demo of affinity propagation clustering algorithm
=================================================
Reference:
Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
Between Data Points", Science Feb. 2007
"""
print __doc__
from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
##############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,
random_state=0)
##############################################################################
# Compute Affinity Propagation
af = AffinityPropagation(preference=-50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
n_clusters_ = len(cluster_centers_indices)
print 'Estimated number of clusters: %d' % n_clusters_
print "Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)
print "Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)
print "V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)
print "Adjusted Rand Index: %0.3f" % \
metrics.adjusted_rand_score(labels_true, labels)
print("Adjusted Mutual Information: %0.3f" %
metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f" %
metrics.silhouette_score(X, labels, metric='sqeuclidean'))
##############################################################################
# Plot result
import pylab as pl
from itertools import cycle
pl.close('all')
pl.figure(1)
pl.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
pl.plot(X[class_members, 0], X[class_members, 1], col + '.')
pl.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=14)
for x in X[class_members]:
pl.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
pl.title('Estimated number of clusters: %d' % n_clusters_)
pl.show()
| bsd-3-clause |
ahoyosid/scikit-learn | examples/applications/plot_prediction_latency.py | 234 | 11277 | """
==================
Prediction Latency
==================
This is an example showing the prediction latency of various scikit-learn
estimators.
The goal is to measure the latency one can expect when doing predictions
either in bulk or atomic (i.e. one by one) mode.
The plots represent the distribution of the prediction latency as a boxplot.
"""
# Authors: Eustache Diemert <[email protected]>
# License: BSD 3 clause
from __future__ import print_function
from collections import defaultdict
import time
import gc
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import scoreatpercentile
from sklearn.datasets.samples_generator import make_regression
from sklearn.ensemble.forest import RandomForestRegressor
from sklearn.linear_model.ridge import Ridge
from sklearn.linear_model.stochastic_gradient import SGDRegressor
from sklearn.svm.classes import SVR
def _not_in_sphinx():
# Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()
def atomic_benchmark_estimator(estimator, X_test, verbose=False):
"""Measure runtime prediction of each instance."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_instances, dtype=np.float)
for i in range(n_instances):
instance = X_test[i, :]
start = time.time()
estimator.predict(instance)
runtimes[i] = time.time() - start
if verbose:
print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile(
runtimes, 50), max(runtimes))
return runtimes
def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose):
"""Measure runtime prediction of the whole input."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_bulk_repeats, dtype=np.float)
for i in range(n_bulk_repeats):
start = time.time()
estimator.predict(X_test)
runtimes[i] = time.time() - start
runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes)))
if verbose:
print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile(
runtimes, 50), max(runtimes))
return runtimes
def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
"""
Measure runtimes of prediction in both atomic and bulk mode.
Parameters
----------
estimator : already trained estimator supporting `predict()`
X_test : test input
n_bulk_repeats : how many times to repeat when evaluating bulk mode
Returns
-------
atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the
runtimes in seconds.
"""
atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats,
verbose)
return atomic_runtimes, bulk_runtimes
def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False):
"""Generate a regression dataset with the given parameters."""
if verbose:
print("generating dataset...")
X, y, coef = make_regression(n_samples=n_train + n_test,
n_features=n_features, noise=noise, coef=True)
X_train = X[:n_train]
y_train = y[:n_train]
X_test = X[n_train:]
y_test = y[n_train:]
idx = np.arange(n_train)
np.random.seed(13)
np.random.shuffle(idx)
X_train = X_train[idx]
y_train = y_train[idx]
std = X_train.std(axis=0)
mean = X_train.mean(axis=0)
X_train = (X_train - mean) / std
X_test = (X_test - mean) / std
std = y_train.std(axis=0)
mean = y_train.mean(axis=0)
y_train = (y_train - mean) / std
y_test = (y_test - mean) / std
gc.collect()
if verbose:
print("ok")
return X_train, y_train, X_test, y_test
def boxplot_runtimes(runtimes, pred_type, configuration):
"""
Plot a new `Figure` with boxplots of prediction runtimes.
Parameters
----------
runtimes : list of `np.array` of latencies in micro-seconds
cls_names : list of estimator class names that generated the runtimes
pred_type : 'bulk' or 'atomic'
"""
fig, ax1 = plt.subplots(figsize=(10, 6))
bp = plt.boxplot(runtimes, )
cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],
estimator_conf['complexity_computer'](
estimator_conf['instance']),
estimator_conf['complexity_label']) for
estimator_conf in configuration['estimators']]
plt.setp(ax1, xticklabels=cls_infos)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], color='red', marker='+')
ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)
ax1.set_axisbelow(True)
ax1.set_title('Prediction Time per Instance - %s, %d feats.' % (
pred_type.capitalize(),
configuration['n_features']))
ax1.set_ylabel('Prediction Time (us)')
plt.show()
def benchmark(configuration):
"""Run the whole benchmark."""
X_train, y_train, X_test, y_test = generate_dataset(
configuration['n_train'], configuration['n_test'],
configuration['n_features'])
stats = {}
for estimator_conf in configuration['estimators']:
print("Benchmarking", estimator_conf['instance'])
estimator_conf['instance'].fit(X_train, y_train)
gc.collect()
a, b = benchmark_estimator(estimator_conf['instance'], X_test)
stats[estimator_conf['name']] = {'atomic': a, 'bulk': b}
cls_names = [estimator_conf['name'] for estimator_conf in configuration[
'estimators']]
runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'atomic', configuration)
runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'],
configuration)
def n_feature_influence(estimators, n_train, n_test, n_features, percentile):
"""
Estimate influence of the number of features on prediction time.
Parameters
----------
estimators : dict of (name (str), estimator) to benchmark
n_train : nber of training instances (int)
n_test : nber of testing instances (int)
n_features : list of feature-space dimensionality to test (int)
percentile : percentile at which to measure the speed (int [0-100])
Returns:
--------
percentiles : dict(estimator_name,
dict(n_features, percentile_perf_in_us))
"""
percentiles = defaultdict(defaultdict)
for n in n_features:
print("benchmarking with %d features" % n)
X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
for cls_name, estimator in estimators.items():
estimator.fit(X_train, y_train)
gc.collect()
runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes,
percentile)
return percentiles
def plot_n_features_influence(percentiles, percentile):
fig, ax1 = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
for i, cls_name in enumerate(percentiles.keys()):
x = np.array(sorted([n for n in percentiles[cls_name].keys()]))
y = np.array([percentiles[cls_name][n] for n in x])
plt.plot(x, y, color=colors[i], )
ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)
ax1.set_axisbelow(True)
ax1.set_title('Evolution of Prediction Time with #Features')
ax1.set_xlabel('#Features')
ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile)
plt.show()
def benchmark_throughputs(configuration, duration_secs=0.1):
"""benchmark throughput for different estimators."""
X_train, y_train, X_test, y_test = generate_dataset(
configuration['n_train'], configuration['n_test'],
configuration['n_features'])
throughputs = dict()
for estimator_config in configuration['estimators']:
estimator_config['instance'].fit(X_train, y_train)
start_time = time.time()
n_predictions = 0
while (time.time() - start_time) < duration_secs:
estimator_config['instance'].predict(X_test[0])
n_predictions += 1
throughputs[estimator_config['name']] = n_predictions / duration_secs
return throughputs
def plot_benchmark_throughput(throughputs, configuration):
fig, ax = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],
estimator_conf['complexity_computer'](
estimator_conf['instance']),
estimator_conf['complexity_label']) for
estimator_conf in configuration['estimators']]
cls_values = [throughputs[estimator_conf['name']] for estimator_conf in
configuration['estimators']]
plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors)
ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs)))
ax.set_xticklabels(cls_infos, fontsize=10)
ymax = max(cls_values) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('Throughput (predictions/sec)')
ax.set_title('Prediction Throughput for different estimators (%d '
'features)' % configuration['n_features'])
plt.show()
###############################################################################
# main code
start_time = time.time()
# benchmark bulk/atomic prediction speed for various regressors
configuration = {
'n_train': int(1e3),
'n_test': int(1e2),
'n_features': int(1e2),
'estimators': [
{'name': 'Linear Model',
'instance': SGDRegressor(penalty='elasticnet', alpha=0.01,
l1_ratio=0.25, fit_intercept=True),
'complexity_label': 'non-zero coefficients',
'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)},
{'name': 'RandomForest',
'instance': RandomForestRegressor(),
'complexity_label': 'estimators',
'complexity_computer': lambda clf: clf.n_estimators},
{'name': 'SVR',
'instance': SVR(kernel='rbf'),
'complexity_label': 'support vectors',
'complexity_computer': lambda clf: len(clf.support_vectors_)},
]
}
benchmark(configuration)
# benchmark n_features influence on prediction speed
percentile = 90
percentiles = n_feature_influence({'ridge': Ridge()},
configuration['n_train'],
configuration['n_test'],
[100, 250, 500], percentile)
plot_n_features_influence(percentiles, percentile)
# benchmark throughput
throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)
stop_time = time.time()
print("example run in %.2fs" % (stop_time - start_time))
| bsd-3-clause |
brian-team/brian2cuda | examples/compartmental/bipolar_cell_cuda.py | 1 | 2019 | '''
A pseudo MSO neuron, with two dendrites and one axon (fake geometry).
'''
import os
import matplotlib
matplotlib.use('Agg')
from brian2 import *
import brian2cuda # cuda_standalone device
name = os.path.basename(__file__).replace('.py', '')
codefolder = os.path.join('code', name)
print('runing example {}'.format(name))
print('compiling model in {}'.format(codefolder))
set_device('cuda_standalone', build_on_run=False) # multiple runs require this change (see below)
# Morphology
morpho = Soma(30*um)
morpho.axon = Cylinder(diameter=1*um, length=300*um, n=100)
morpho.L = Cylinder(diameter=1*um, length=100*um, n=50)
morpho.R = Cylinder(diameter=1*um, length=150*um, n=50)
# Passive channels
gL = 1e-4*siemens/cm**2
EL = -70*mV
eqs='''
Im = gL * (EL - v) : amp/meter**2
I : amp (point current)
'''
neuron = SpatialNeuron(morphology=morpho, model=eqs,
Cm=1*uF/cm**2, Ri=100*ohm*cm, method='exponential_euler')
neuron.v = EL
neuron.I = 0*amp
# Monitors
mon_soma = StateMonitor(neuron, 'v', record=[0])
mon_L = StateMonitor(neuron.L, 'v', record=True)
mon_R = StateMonitor(neuron, 'v', record=morpho.R[75*um])
run(1*ms)
neuron.I[morpho.L[50*um]] = 0.2*nA # injecting in the left dendrite
run(5*ms)
neuron.I = 0*amp
run(50*ms, report='text', profile=True)
print(profiling_summary())
# cf. https://brian2.readthedocs.io/en/stable/user/computation.html#multiple-run-calls
device.build( directory=codefolder, compile = True, run = True, debug=False)
subplot(211)
plot(mon_L.t/ms, mon_soma[0].v/mV, 'k')
plot(mon_L.t/ms, mon_L[morpho.L[50*um]].v/mV, 'r')
plot(mon_L.t/ms, mon_R[morpho.R[75*um]].v/mV, 'b')
ylabel('v (mV)')
subplot(212)
for x in linspace(0*um, 100*um, 10, endpoint=False):
plot(mon_L.t/ms, mon_L[morpho.L[x]].v/mV)
xlabel('Time (ms)')
ylabel('v (mV)')
#show()
plotpath = os.path.join('plots', '{}.png'.format(name))
savefig(plotpath)
print('plot saved in {}'.format(plotpath))
print('the generated model in {} needs to removed manually if wanted'.format(codefolder))
| gpl-2.0 |
tomlof/scikit-learn | examples/cross_decomposition/plot_compare_cross_decomposition.py | 19 | 4761 | """
===================================
Compare cross decomposition methods
===================================
Simple usage of various cross decomposition algorithms:
- PLSCanonical
- PLSRegression, with multivariate response, a.k.a. PLS2
- PLSRegression, with univariate response, a.k.a. PLS1
- CCA
Given 2 multivariate covarying two-dimensional datasets, X, and Y,
PLS extracts the 'directions of covariance', i.e. the components of each
datasets that explain the most shared variance between both datasets.
This is apparent on the **scatterplot matrix** display: components 1 in
dataset X and dataset Y are maximally correlated (points lie around the
first diagonal). This is also true for components 2 in both dataset,
however, the correlation across datasets for different components is
weak: the point cloud is very spherical.
"""
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA
###############################################################################
# Dataset based latent variables model
n = 500
# 2 latents vars:
l1 = np.random.normal(size=n)
l2 = np.random.normal(size=n)
latents = np.array([l1, l1, l2, l2]).T
X = latents + np.random.normal(size=4 * n).reshape((n, 4))
Y = latents + np.random.normal(size=4 * n).reshape((n, 4))
X_train = X[:n // 2]
Y_train = Y[:n // 2]
X_test = X[n // 2:]
Y_test = Y[n // 2:]
print("Corr(X)")
print(np.round(np.corrcoef(X.T), 2))
print("Corr(Y)")
print(np.round(np.corrcoef(Y.T), 2))
###############################################################################
# Canonical (symmetric) PLS
# Transform data
# ~~~~~~~~~~~~~~
plsca = PLSCanonical(n_components=2)
plsca.fit(X_train, Y_train)
X_train_r, Y_train_r = plsca.transform(X_train, Y_train)
X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
# Scatter plot of scores
# ~~~~~~~~~~~~~~~~~~~~~~
# 1) On diagonal plot X vs Y scores on each components
plt.figure(figsize=(12, 8))
plt.subplot(221)
plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train")
plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test")
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 1: X vs Y (test corr = %.2f)' %
np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")
plt.subplot(224)
plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train")
plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test")
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 2: X vs Y (test corr = %.2f)' %
np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")
# 2) Off diagonal plot components 1 vs 2 for X and Y
plt.subplot(222)
plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train")
plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test")
plt.xlabel("X comp. 1")
plt.ylabel("X comp. 2")
plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)'
% np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1])
plt.legend(loc="best")
plt.xticks(())
plt.yticks(())
plt.subplot(223)
plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train")
plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test")
plt.xlabel("Y comp. 1")
plt.ylabel("Y comp. 2")
plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)'
% np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1])
plt.legend(loc="best")
plt.xticks(())
plt.yticks(())
plt.show()
###############################################################################
# PLS regression, with multivariate response, a.k.a. PLS2
n = 1000
q = 3
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
B = np.array([[1, 2] + [0] * (p - 2)] * q).T
# each Yj = 1*X1 + 2*X2 + noize
Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5
pls2 = PLSRegression(n_components=3)
pls2.fit(X, Y)
print("True B (such that: Y = XB + Err)")
print(B)
# compare pls2.coef_ with B
print("Estimated B")
print(np.round(pls2.coef_, 1))
pls2.predict(X)
###############################################################################
# PLS regression, with univariate response, a.k.a. PLS1
n = 1000
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5
pls1 = PLSRegression(n_components=3)
pls1.fit(X, y)
# note that the number of components exceeds 1 (the dimension of y)
print("Estimated betas")
print(np.round(pls1.coef_, 1))
###############################################################################
# CCA (PLS mode B with symmetric deflation)
cca = CCA(n_components=2)
cca.fit(X_train, Y_train)
X_train_r, Y_train_r = cca.transform(X_train, Y_train)
X_test_r, Y_test_r = cca.transform(X_test, Y_test)
| bsd-3-clause |
suiyuan2009/tensorflow | tensorflow/contrib/learn/python/learn/learn_io/data_feeder_test.py | 71 | 12923 | # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for `DataFeeder`."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import six
from six.moves import xrange # pylint: disable=redefined-builtin
# pylint: disable=wildcard-import
from tensorflow.contrib.learn.python.learn.learn_io import *
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.platform import test
# pylint: enable=wildcard-import
class DataFeederTest(test.TestCase):
# pylint: disable=undefined-variable
"""Tests for `DataFeeder`."""
def _wrap_dict(self, data, prepend=''):
return {prepend + '1': data, prepend + '2': data}
def _assert_raises(self, input_data):
with self.assertRaisesRegexp(TypeError, 'annot convert'):
data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1)
def test_input_uint32(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint32)
self._assert_raises(data)
self._assert_raises(self._wrap_dict(data))
def test_input_uint64(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint64)
self._assert_raises(data)
self._assert_raises(self._wrap_dict(data))
def _assert_dtype(self, expected_np_dtype, expected_tf_dtype, input_data):
feeder = data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1)
if isinstance(input_data, dict):
for k, v in list(feeder.input_dtype.items()):
self.assertEqual(expected_np_dtype, v)
else:
self.assertEqual(expected_np_dtype, feeder.input_dtype)
with ops.Graph().as_default() as g, self.test_session(g):
inp, _ = feeder.input_builder()
if isinstance(inp, dict):
for k, v in list(inp.items()):
self.assertEqual(expected_tf_dtype, v.dtype)
else:
self.assertEqual(expected_tf_dtype, inp.dtype)
def test_input_int8(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int8)
self._assert_dtype(np.int8, dtypes.int8, data)
self._assert_dtype(np.int8, dtypes.int8, self._wrap_dict(data))
def test_input_int16(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int16)
self._assert_dtype(np.int16, dtypes.int16, data)
self._assert_dtype(np.int16, dtypes.int16, self._wrap_dict(data))
def test_input_int32(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int32)
self._assert_dtype(np.int32, dtypes.int32, data)
self._assert_dtype(np.int32, dtypes.int32, self._wrap_dict(data))
def test_input_int64(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.int64)
self._assert_dtype(np.int64, dtypes.int64, data)
self._assert_dtype(np.int64, dtypes.int64, self._wrap_dict(data))
def test_input_uint8(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint8)
self._assert_dtype(np.uint8, dtypes.uint8, data)
self._assert_dtype(np.uint8, dtypes.uint8, self._wrap_dict(data))
def test_input_uint16(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.uint16)
self._assert_dtype(np.uint16, dtypes.uint16, data)
self._assert_dtype(np.uint16, dtypes.uint16, self._wrap_dict(data))
def test_input_float16(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.float16)
self._assert_dtype(np.float16, dtypes.float16, data)
self._assert_dtype(np.float16, dtypes.float16, self._wrap_dict(data))
def test_input_float32(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.float32)
self._assert_dtype(np.float32, dtypes.float32, data)
self._assert_dtype(np.float32, dtypes.float32, self._wrap_dict(data))
def test_input_float64(self):
data = np.matrix([[1, 2], [3, 4]], dtype=np.float64)
self._assert_dtype(np.float64, dtypes.float64, data)
self._assert_dtype(np.float64, dtypes.float64, self._wrap_dict(data))
def test_input_bool(self):
data = np.array([[False for _ in xrange(2)] for _ in xrange(2)])
self._assert_dtype(np.bool, dtypes.bool, data)
self._assert_dtype(np.bool, dtypes.bool, self._wrap_dict(data))
def test_input_string(self):
input_data = np.array([['str%d' % i for i in xrange(2)] for _ in xrange(2)])
self._assert_dtype(input_data.dtype, dtypes.string, input_data)
self._assert_dtype(input_data.dtype, dtypes.string,
self._wrap_dict(input_data))
def _assertAllClose(self, src, dest, src_key_of=None, src_prop=None):
def func(x):
val = getattr(x, src_prop) if src_prop else x
return val if src_key_of is None else src_key_of[val]
if isinstance(src, dict):
for k in list(src.keys()):
self.assertAllClose(func(src[k]), dest)
else:
self.assertAllClose(func(src), dest)
def test_unsupervised(self):
def func(feeder):
with self.test_session():
inp, _ = feeder.input_builder()
feed_dict_fn = feeder.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[1, 2]], feed_dict, 'name')
data = np.matrix([[1, 2], [2, 3], [3, 4]])
func(data_feeder.DataFeeder(data, None, n_classes=0, batch_size=1))
func(
data_feeder.DataFeeder(
self._wrap_dict(data), None, n_classes=0, batch_size=1))
def test_data_feeder_regression(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self._assertAllClose(out, [2, 1], feed_dict, 'name')
x = np.matrix([[1, 2], [3, 4]])
y = np.array([1, 2])
func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=3))
def test_epoch(self):
def func(feeder):
with self.test_session():
feeder.input_builder()
epoch = feeder.make_epoch_variable()
feed_dict_fn = feeder.get_feed_dict_fn()
# First input
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [0])
# Second input
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [0])
# Third input
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [0])
# Back to the first input again, so new epoch.
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[epoch.name], [1])
data = np.matrix([[1, 2], [2, 3], [3, 4]])
labels = np.array([0, 0, 1])
func(data_feeder.DataFeeder(data, labels, n_classes=0, batch_size=1))
func(
data_feeder.DataFeeder(
self._wrap_dict(data, 'in'),
self._wrap_dict(labels, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=1))
def test_data_feeder_multioutput_regression(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self._assertAllClose(out, [[3, 4], [1, 2]], feed_dict, 'name')
x = np.matrix([[1, 2], [3, 4]])
y = np.array([[1, 2], [3, 4]])
func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=2))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=2))
def test_data_feeder_multioutput_classification(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self._assertAllClose(
out, [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]],
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]], feed_dict,
'name')
x = np.matrix([[1, 2], [3, 4]])
y = np.array([[0, 1, 2], [2, 3, 4]])
func(data_feeder.DataFeeder(x, y, n_classes=5, batch_size=2))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(5, 'out'),
batch_size=2))
def test_streaming_data_feeder(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[[1, 2]], [[3, 4]]], feed_dict, 'name')
self._assertAllClose(out, [[[1], [2]], [[2], [2]]], feed_dict, 'name')
def x_iter(wrap_dict=False):
yield np.array([[1, 2]]) if not wrap_dict else self._wrap_dict(
np.array([[1, 2]]), 'in')
yield np.array([[3, 4]]) if not wrap_dict else self._wrap_dict(
np.array([[3, 4]]), 'in')
def y_iter(wrap_dict=False):
yield np.array([[1], [2]]) if not wrap_dict else self._wrap_dict(
np.array([[1], [2]]), 'out')
yield np.array([[2], [2]]) if not wrap_dict else self._wrap_dict(
np.array([[2], [2]]), 'out')
func(
data_feeder.StreamingDataFeeder(
x_iter(), y_iter(), n_classes=0, batch_size=2))
func(
data_feeder.StreamingDataFeeder(
x_iter(True),
y_iter(True),
n_classes=self._wrap_dict(0, 'out'),
batch_size=2))
# Test non-full batches.
func(
data_feeder.StreamingDataFeeder(
x_iter(), y_iter(), n_classes=0, batch_size=10))
func(
data_feeder.StreamingDataFeeder(
x_iter(True),
y_iter(True),
n_classes=self._wrap_dict(0, 'out'),
batch_size=10))
def test_dask_data_feeder(self):
if HAS_PANDAS and HAS_DASK:
x = pd.DataFrame(
dict(
a=np.array([.1, .3, .4, .6, .2, .1, .6]),
b=np.array([.7, .8, .1, .2, .5, .3, .9])))
x = dd.from_pandas(x, npartitions=2)
y = pd.DataFrame(dict(labels=np.array([1, 0, 2, 1, 0, 1, 2])))
y = dd.from_pandas(y, npartitions=2)
# TODO(ipolosukhin): Remove or restore this.
# x = extract_dask_data(x)
# y = extract_dask_labels(y)
df = data_feeder.DaskDataFeeder(x, y, n_classes=2, batch_size=2)
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self.assertAllClose(feed_dict[inp.name], [[0.40000001, 0.1],
[0.60000002, 0.2]])
self.assertAllClose(feed_dict[out.name], [[0., 0., 1.], [0., 1., 0.]])
def test_hdf5_data_feeder(self):
def func(df):
inp, out = df.input_builder()
feed_dict_fn = df.get_feed_dict_fn()
feed_dict = feed_dict_fn()
self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name')
self.assertAllClose(out, [2, 1], feed_dict, 'name')
try:
import h5py # pylint: disable=g-import-not-at-top
x = np.matrix([[1, 2], [3, 4]])
y = np.array([1, 2])
h5f = h5py.File('test_hdf5.h5', 'w')
h5f.create_dataset('x', data=x)
h5f.create_dataset('y', data=y)
h5f.close()
h5f = h5py.File('test_hdf5.h5', 'r')
x = h5f['x']
y = h5f['y']
func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3))
func(
data_feeder.DataFeeder(
self._wrap_dict(x, 'in'),
self._wrap_dict(y, 'out'),
n_classes=self._wrap_dict(0, 'out'),
batch_size=3))
except ImportError:
print("Skipped test for hdf5 since it's not installed.")
class SetupPredictDataFeederTest(DataFeederTest):
"""Tests for `DataFeeder.setup_predict_data_feeder`."""
def test_iterable_data(self):
# pylint: disable=undefined-variable
def func(df):
self._assertAllClose(six.next(df), [[1, 2], [3, 4]])
self._assertAllClose(six.next(df), [[5, 6]])
data = [[1, 2], [3, 4], [5, 6]]
x = iter(data)
x_dict = iter([self._wrap_dict(v) for v in iter(data)])
func(data_feeder.setup_predict_data_feeder(x, batch_size=2))
func(data_feeder.setup_predict_data_feeder(x_dict, batch_size=2))
if __name__ == '__main__':
test.main()
| apache-2.0 |
arahuja/scikit-learn | examples/ensemble/plot_ensemble_oob.py | 259 | 3265 | """
=============================
OOB Errors for Random Forests
=============================
The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where
each new tree is fit from a bootstrap sample of the training observations
:math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for
each :math:`z_i` calculated using predictions from the trees that do not
contain :math:`z_i` in their respective bootstrap sample. This allows the
``RandomForestClassifier`` to be fit and validated whilst being trained [1].
The example below demonstrates how the OOB error can be measured at the
addition of each new tree during training. The resulting plot allows a
practitioner to approximate a suitable value of ``n_estimators`` at which the
error stabilizes.
.. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical
Learning Ed. 2", p592-593, Springer, 2009.
"""
import matplotlib.pyplot as plt
from collections import OrderedDict
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
# Author: Kian Ho <[email protected]>
# Gilles Louppe <[email protected]>
# Andreas Mueller <[email protected]>
#
# License: BSD 3 Clause
print(__doc__)
RANDOM_STATE = 123
# Generate a binary classification dataset.
X, y = make_classification(n_samples=500, n_features=25,
n_clusters_per_class=1, n_informative=15,
random_state=RANDOM_STATE)
# NOTE: Setting the `warm_start` construction parameter to `True` disables
# support for paralellised ensembles but is necessary for tracking the OOB
# error trajectory during training.
ensemble_clfs = [
("RandomForestClassifier, max_features='sqrt'",
RandomForestClassifier(warm_start=True, oob_score=True,
max_features="sqrt",
random_state=RANDOM_STATE)),
("RandomForestClassifier, max_features='log2'",
RandomForestClassifier(warm_start=True, max_features='log2',
oob_score=True,
random_state=RANDOM_STATE)),
("RandomForestClassifier, max_features=None",
RandomForestClassifier(warm_start=True, max_features=None,
oob_score=True,
random_state=RANDOM_STATE))
]
# Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs)
# Range of `n_estimators` values to explore.
min_estimators = 15
max_estimators = 175
for label, clf in ensemble_clfs:
for i in range(min_estimators, max_estimators + 1):
clf.set_params(n_estimators=i)
clf.fit(X, y)
# Record the OOB error for each `n_estimators=i` setting.
oob_error = 1 - clf.oob_score_
error_rate[label].append((i, oob_error))
# Generate the "OOB error rate" vs. "n_estimators" plot.
for label, clf_err in error_rate.items():
xs, ys = zip(*clf_err)
plt.plot(xs, ys, label=label)
plt.xlim(min_estimators, max_estimators)
plt.xlabel("n_estimators")
plt.ylabel("OOB error rate")
plt.legend(loc="upper right")
plt.show()
| bsd-3-clause |
Lawrence-Liu/scikit-learn | sklearn/qda.py | 140 | 7682 | """
Quadratic Discriminant Analysis
"""
# Author: Matthieu Perrot <[email protected]>
#
# License: BSD 3 clause
import warnings
import numpy as np
from .base import BaseEstimator, ClassifierMixin
from .externals.six.moves import xrange
from .utils import check_array, check_X_y
from .utils.validation import check_is_fitted
from .utils.fixes import bincount
__all__ = ['QDA']
class QDA(BaseEstimator, ClassifierMixin):
"""
Quadratic Discriminant Analysis (QDA)
A classifier with a quadratic decision boundary, generated
by fitting class conditional densities to the data
and using Bayes' rule.
The model fits a Gaussian density to each class.
Read more in the :ref:`User Guide <lda_qda>`.
Parameters
----------
priors : array, optional, shape = [n_classes]
Priors on classes
reg_param : float, optional
Regularizes the covariance estimate as
``(1-reg_param)*Sigma + reg_param*np.eye(n_features)``
Attributes
----------
covariances_ : list of array-like, shape = [n_features, n_features]
Covariance matrices of each class.
means_ : array-like, shape = [n_classes, n_features]
Class means.
priors_ : array-like, shape = [n_classes]
Class priors (sum to 1).
rotations_ : list of arrays
For each class k an array of shape [n_features, n_k], with
``n_k = min(n_features, number of elements in class k)``
It is the rotation of the Gaussian distribution, i.e. its
principal axis.
scalings_ : list of arrays
For each class k an array of shape [n_k]. It contains the scaling
of the Gaussian distributions along its principal axes, i.e. the
variance in the rotated coordinate system.
Examples
--------
>>> from sklearn.qda import QDA
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QDA()
>>> clf.fit(X, y)
QDA(priors=None, reg_param=0.0)
>>> print(clf.predict([[-0.8, -1]]))
[1]
See also
--------
sklearn.lda.LDA: Linear discriminant analysis
"""
def __init__(self, priors=None, reg_param=0.):
self.priors = np.asarray(priors) if priors is not None else None
self.reg_param = reg_param
def fit(self, X, y, store_covariances=False, tol=1.0e-4):
"""
Fit the QDA model according to the given training data and parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array, shape = [n_samples]
Target values (integers)
store_covariances : boolean
If True the covariance matrices are computed and stored in the
`self.covariances_` attribute.
tol : float, optional, default 1.0e-4
Threshold used for rank estimation.
"""
X, y = check_X_y(X, y)
self.classes_, y = np.unique(y, return_inverse=True)
n_samples, n_features = X.shape
n_classes = len(self.classes_)
if n_classes < 2:
raise ValueError('y has less than 2 classes')
if self.priors is None:
self.priors_ = bincount(y) / float(n_samples)
else:
self.priors_ = self.priors
cov = None
if store_covariances:
cov = []
means = []
scalings = []
rotations = []
for ind in xrange(n_classes):
Xg = X[y == ind, :]
meang = Xg.mean(0)
means.append(meang)
if len(Xg) == 1:
raise ValueError('y has only 1 sample in class %s, covariance '
'is ill defined.' % str(self.classes_[ind]))
Xgc = Xg - meang
# Xgc = U * S * V.T
U, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
rank = np.sum(S > tol)
if rank < n_features:
warnings.warn("Variables are collinear")
S2 = (S ** 2) / (len(Xg) - 1)
S2 = ((1 - self.reg_param) * S2) + self.reg_param
if store_covariances:
# cov = V * (S^2 / (n-1)) * V.T
cov.append(np.dot(S2 * Vt.T, Vt))
scalings.append(S2)
rotations.append(Vt.T)
if store_covariances:
self.covariances_ = cov
self.means_ = np.asarray(means)
self.scalings_ = scalings
self.rotations_ = rotations
return self
def _decision_function(self, X):
check_is_fitted(self, 'classes_')
X = check_array(X)
norm2 = []
for i in range(len(self.classes_)):
R = self.rotations_[i]
S = self.scalings_[i]
Xm = X - self.means_[i]
X2 = np.dot(Xm, R * (S ** (-0.5)))
norm2.append(np.sum(X2 ** 2, 1))
norm2 = np.array(norm2).T # shape = [len(X), n_classes]
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
return (-0.5 * (norm2 + u) + np.log(self.priors_))
def decision_function(self, X):
"""Apply decision function to an array of samples.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Array of samples (test vectors).
Returns
-------
C : array, shape = [n_samples, n_classes] or [n_samples,]
Decision function values related to each class, per sample.
In the two-class case, the shape is [n_samples,], giving the
log likelihood ratio of the positive class.
"""
dec_func = self._decision_function(X)
# handle special case of two classes
if len(self.classes_) == 2:
return dec_func[:, 1] - dec_func[:, 0]
return dec_func
def predict(self, X):
"""Perform classification on an array of test vectors X.
The predicted class C for each sample in X is returned.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
"""
d = self._decision_function(X)
y_pred = self.classes_.take(d.argmax(1))
return y_pred
def predict_proba(self, X):
"""Return posterior probabilities of classification.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Array of samples/test vectors.
Returns
-------
C : array, shape = [n_samples, n_classes]
Posterior probabilities of classification per class.
"""
values = self._decision_function(X)
# compute the likelihood of the underlying gaussian models
# up to a multiplicative constant.
likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
# compute posterior probabilities
return likelihood / likelihood.sum(axis=1)[:, np.newaxis]
def predict_log_proba(self, X):
"""Return posterior probabilities of classification.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Array of samples/test vectors.
Returns
-------
C : array, shape = [n_samples, n_classes]
Posterior log-probabilities of classification per class.
"""
# XXX : can do better to avoid precision overflows
probas_ = self.predict_proba(X)
return np.log(probas_)
| bsd-3-clause |
rlung/random | angler.py | 1 | 2727 | #!/usr/bin/env python
import matplotlib.pyplot as plt
import numpy as np
from argparse import ArgumentParser, RawTextHelpFormatter
import pdb
def R(angle):
'''Rotation matrix'''
c, s = np.cos(angle), np.sin(angle)
rot = np.array([[c, -s], [s, c]])
return rot
def angler(angle, x, y, degrees=False, plot=False):
'''Calculate new stereotactic coordinates for angled axis'''
# Convert to radians if necessary
if degrees:
angle = np.radians(angle)
# New coordinates
x_angled, y_angled = R(angle).dot([[x], [y]])
x_angled, y_angled = float(x_angled), float(y_angled)
# y_angled = np.cos(angle) * (y - x * np.tan(angle))
# x_angled = x / np.cos(angle) + np.tan(angle) * y_angled
if plot:
fig, ax = plt.subplots();
# Target
ax.scatter([x], [y], marker='x', s=125, lw=5, c='k', label='target')
ax.annotate(
'old: ({:.3f}, {:.3f})\n'
'new: ({:.3f}, {:.3f})'.format(x, y, x_angled, y_angled),
xy=(x, y), xytext=(x - 1, y + 1), ha='right',
arrowprops=dict(facecolor='black', width=2, headwidth=10, shrink=0.1),
)
# Non-angled path
opts_old = {'ls': '--', 'lw': 2, 'c': 'k'}
ax.plot([0, x, x], [0, 0, y], label='Normal path', **opts_old)
# Angled path
opts_angled = {'ls': '--', 'lw': 2}
i, j = R(-angle).dot([[x_angled], [0]])
ax.plot([0, i, x], [0, j, y], label='Angled path', **opts_angled)
# ax.plot(
# [0, x_angled * np.cos(angle), x],
# [0, x_angled * -np.sin(angle), -y],
# label='Angled path', **opts_angled
# )
# Finalize figure and show
ax.axis('equal')
ax.legend()
ax.spines['left'].set_position('zero')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.show()
return x_angled, y_angled
def main():
parser = ArgumentParser(
description="Convert depth camera data from HDF5 to binary",
formatter_class=RawTextHelpFormatter
)
parser.add_argument('angle', help='Angle of entry')
parser.add_argument('x', help='x coordinate of target')
parser.add_argument('y', help='y coordinate of target')
parser.add_argument('-d', '--degrees', default=False, action='store_true')
opts = parser.parse_args()
angle = float(opts.angle)
x = float(opts.x)
y = float(opts.y)
x_angled, y_angled = angler(angle, x, y, opts.degrees, plot=True)
print('New coordinates angled at {}:\ny: {}\nx: {}'
.format(angle, y_angled, x_angled))
if __name__ == '__main__':
main()
| gpl-3.0 |
NicovincX2/Python-3.5 | Algorithmique/Optimisation/Algorithme d'optimisation/Métaheuristique/Stratégie d'évolution/Covariance Matrix Adaptation Evolution Strategy/cma_mo.py | 1 | 4235 | # -*- coding: utf-8 -*-
import os
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
import numpy
from deap import algorithms
from deap import base
from deap import benchmarks
from deap.benchmarks.tools import hypervolume
from deap import cma
from deap import creator
from deap import tools
# Problem size
N = 5
# ZDT1, ZDT2, DTLZ2
MIN_BOUND = numpy.zeros(N)
MAX_BOUND = numpy.ones(N)
# Kursawe
# MIN_BOUND = numpy.zeros(N) - 5
# MAX_BOUND = numpy.zeros(N) + 5
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
creator.create("Individual", list, fitness=creator.FitnessMin)
def distance(feasible_ind, original_ind):
"""A distance function to the feasibility region."""
return sum((f - o)**2 for f, o in zip(feasible_ind, original_ind))
def closest_feasible(individual):
"""A function returning a valid individual from an invalid one."""
feasible_ind = numpy.array(individual)
feasible_ind = numpy.maximum(MIN_BOUND, feasible_ind)
feasible_ind = numpy.minimum(MAX_BOUND, feasible_ind)
return feasible_ind
def valid(individual):
"""Determines if the individual is valid or not."""
if any(individual < MIN_BOUND) or any(individual > MAX_BOUND):
return False
return True
toolbox = base.Toolbox()
toolbox.register("evaluate", benchmarks.zdt1)
toolbox.decorate("evaluate", tools.ClosestValidPenality(
valid, closest_feasible, 1.0e-6, distance))
def main():
# The cma module uses the numpy random number generator
# numpy.random.seed(128)
MU, LAMBDA = 10, 10
NGEN = 500
verbose = True
# The MO-CMA-ES algorithm takes a full population as argument
population = [creator.Individual(x) for x in (
numpy.random.uniform(0, 1, (MU, N)))]
for ind in population:
ind.fitness.values = toolbox.evaluate(ind)
strategy = cma.StrategyMultiObjective(
population, sigma=1.0, mu=MU, lambda_=LAMBDA)
toolbox.register("generate", strategy.generate, creator.Individual)
toolbox.register("update", strategy.update)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("min", numpy.min, axis=0)
stats.register("max", numpy.max, axis=0)
logbook = tools.Logbook()
logbook.header = ["gen", "nevals"] + (stats.fields if stats else [])
for gen in range(NGEN):
# Generate a new population
population = toolbox.generate()
# Evaluate the individuals
fitnesses = toolbox.map(toolbox.evaluate, population)
for ind, fit in zip(population, fitnesses):
ind.fitness.values = fit
# Update the strategy with the evaluated individuals
toolbox.update(population)
record = stats.compile(population) if stats is not None else {}
logbook.record(gen=gen, nevals=len(population), **record)
if verbose:
print(logbook.stream)
if verbose:
print("Final population hypervolume is %f" %
hypervolume(strategy.parents, [11.0, 11.0]))
# import matplotlib.pyplot as plt
# valid_front = numpy.array([ind.fitness.values for ind in strategy.parents if valid(ind)])
# invalid_front = numpy.array([ind.fitness.values for ind in strategy.parents if not valid(ind)])
# fig = plt.figure()
# if len(valid_front) > 0:
# plt.scatter(valid_front[:,0], valid_front[:,1], c="g")
# if len(invalid_front) > 0:
# plt.scatter(invalid_front[:,0], invalid_front[:,1], c="r")
# plt.show()
return strategy.parents
if __name__ == "__main__":
solutions = main()
os.system("pause")
| gpl-3.0 |
zrhans/pythonanywhere | .virtualenvs/django19/lib/python3.4/site-packages/pandas/tseries/tests/test_util.py | 10 | 3569 | from pandas.compat import range
import nose
import numpy as np
from numpy.testing.decorators import slow
from pandas import Series, date_range
import pandas.util.testing as tm
from datetime import datetime, date
from pandas.tseries.tools import normalize_date
from pandas.tseries.util import pivot_annual, isleapyear
class TestPivotAnnual(tm.TestCase):
"""
New pandas of scikits.timeseries pivot_annual
"""
def test_daily(self):
rng = date_range('1/1/2000', '12/31/2004', freq='D')
ts = Series(np.random.randn(len(rng)), index=rng)
annual = pivot_annual(ts, 'D')
doy = ts.index.dayofyear
doy[(~isleapyear(ts.index.year)) & (doy >= 60)] += 1
for i in range(1, 367):
subset = ts[doy == i]
subset.index = [x.year for x in subset.index]
result = annual[i].dropna()
tm.assert_series_equal(result, subset, check_names=False)
self.assertEqual(result.name, i)
# check leap days
leaps = ts[(ts.index.month == 2) & (ts.index.day == 29)]
day = leaps.index.dayofyear[0]
leaps.index = leaps.index.year
leaps.name = 60
tm.assert_series_equal(annual[day].dropna(), leaps)
def test_hourly(self):
rng_hourly = date_range(
'1/1/1994', periods=(18 * 8760 + 4 * 24), freq='H')
data_hourly = np.random.randint(100, 350, rng_hourly.size)
ts_hourly = Series(data_hourly, index=rng_hourly)
grouped = ts_hourly.groupby(ts_hourly.index.year)
hoy = grouped.apply(lambda x: x.reset_index(drop=True))
hoy = hoy.index.droplevel(0).values
hoy[~isleapyear(ts_hourly.index.year) & (hoy >= 1416)] += 24
hoy += 1
annual = pivot_annual(ts_hourly)
ts_hourly = ts_hourly.astype(float)
for i in [1, 1416, 1417, 1418, 1439, 1440, 1441, 8784]:
subset = ts_hourly[hoy == i]
subset.index = [x.year for x in subset.index]
result = annual[i].dropna()
tm.assert_series_equal(result, subset, check_names=False)
self.assertEqual(result.name, i)
leaps = ts_hourly[(ts_hourly.index.month == 2) &
(ts_hourly.index.day == 29) &
(ts_hourly.index.hour == 0)]
hour = leaps.index.dayofyear[0] * 24 - 23
leaps.index = leaps.index.year
leaps.name = 1417
tm.assert_series_equal(annual[hour].dropna(), leaps)
def test_weekly(self):
pass
def test_monthly(self):
rng = date_range('1/1/2000', '12/31/2004', freq='M')
ts = Series(np.random.randn(len(rng)), index=rng)
annual = pivot_annual(ts, 'M')
month = ts.index.month
for i in range(1, 13):
subset = ts[month == i]
subset.index = [x.year for x in subset.index]
result = annual[i].dropna()
tm.assert_series_equal(result, subset, check_names=False)
self.assertEqual(result.name, i)
def test_period_monthly(self):
pass
def test_period_daily(self):
pass
def test_period_weekly(self):
pass
def test_normalize_date():
value = date(2012, 9, 7)
result = normalize_date(value)
assert(result == datetime(2012, 9, 7))
value = datetime(2012, 9, 7, 12)
result = normalize_date(value)
assert(result == datetime(2012, 9, 7))
if __name__ == '__main__':
nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],
exit=False)
| apache-2.0 |
nmartensen/pandas | pandas/tests/indexes/timedeltas/test_tools.py | 6 | 7568 | import pytest
from datetime import time, timedelta
import numpy as np
import pandas as pd
import pandas.util.testing as tm
from pandas.util.testing import assert_series_equal
from pandas import (Series, Timedelta, to_timedelta, isna,
TimedeltaIndex)
from pandas._libs.tslib import iNaT
class TestTimedeltas(object):
_multiprocess_can_split_ = True
def test_to_timedelta(self):
def conv(v):
return v.astype('m8[ns]')
d1 = np.timedelta64(1, 'D')
assert (to_timedelta('1 days 06:05:01.00003', box=False) ==
conv(d1 + np.timedelta64(6 * 3600 + 5 * 60 + 1, 's') +
np.timedelta64(30, 'us')))
assert (to_timedelta('15.5us', box=False) ==
conv(np.timedelta64(15500, 'ns')))
# empty string
result = to_timedelta('', box=False)
assert result.astype('int64') == iNaT
result = to_timedelta(['', ''])
assert isna(result).all()
# pass thru
result = to_timedelta(np.array([np.timedelta64(1, 's')]))
expected = pd.Index(np.array([np.timedelta64(1, 's')]))
tm.assert_index_equal(result, expected)
# ints
result = np.timedelta64(0, 'ns')
expected = to_timedelta(0, box=False)
assert result == expected
# Series
expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)])
result = to_timedelta(Series(['1d', '1days 00:00:01']))
tm.assert_series_equal(result, expected)
# with units
result = TimedeltaIndex([np.timedelta64(0, 'ns'), np.timedelta64(
10, 's').astype('m8[ns]')])
expected = to_timedelta([0, 10], unit='s')
tm.assert_index_equal(result, expected)
# single element conversion
v = timedelta(seconds=1)
result = to_timedelta(v, box=False)
expected = np.timedelta64(timedelta(seconds=1))
assert result == expected
v = np.timedelta64(timedelta(seconds=1))
result = to_timedelta(v, box=False)
expected = np.timedelta64(timedelta(seconds=1))
assert result == expected
# arrays of various dtypes
arr = np.array([1] * 5, dtype='int64')
result = to_timedelta(arr, unit='s')
expected = TimedeltaIndex([np.timedelta64(1, 's')] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype='int64')
result = to_timedelta(arr, unit='m')
expected = TimedeltaIndex([np.timedelta64(1, 'm')] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype='int64')
result = to_timedelta(arr, unit='h')
expected = TimedeltaIndex([np.timedelta64(1, 'h')] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype='timedelta64[s]')
result = to_timedelta(arr)
expected = TimedeltaIndex([np.timedelta64(1, 's')] * 5)
tm.assert_index_equal(result, expected)
arr = np.array([1] * 5, dtype='timedelta64[D]')
result = to_timedelta(arr)
expected = TimedeltaIndex([np.timedelta64(1, 'D')] * 5)
tm.assert_index_equal(result, expected)
# Test with lists as input when box=false
expected = np.array(np.arange(3) * 1000000000, dtype='timedelta64[ns]')
result = to_timedelta(range(3), unit='s', box=False)
tm.assert_numpy_array_equal(expected, result)
result = to_timedelta(np.arange(3), unit='s', box=False)
tm.assert_numpy_array_equal(expected, result)
result = to_timedelta([0, 1, 2], unit='s', box=False)
tm.assert_numpy_array_equal(expected, result)
# Tests with fractional seconds as input:
expected = np.array(
[0, 500000000, 800000000, 1200000000], dtype='timedelta64[ns]')
result = to_timedelta([0., 0.5, 0.8, 1.2], unit='s', box=False)
tm.assert_numpy_array_equal(expected, result)
def test_to_timedelta_invalid(self):
# bad value for errors parameter
msg = "errors must be one of"
tm.assert_raises_regex(ValueError, msg, to_timedelta,
['foo'], errors='never')
# these will error
pytest.raises(ValueError, lambda: to_timedelta([1, 2], unit='foo'))
pytest.raises(ValueError, lambda: to_timedelta(1, unit='foo'))
# time not supported ATM
pytest.raises(ValueError, lambda: to_timedelta(time(second=1)))
assert to_timedelta(time(second=1), errors='coerce') is pd.NaT
pytest.raises(ValueError, lambda: to_timedelta(['foo', 'bar']))
tm.assert_index_equal(TimedeltaIndex([pd.NaT, pd.NaT]),
to_timedelta(['foo', 'bar'], errors='coerce'))
tm.assert_index_equal(TimedeltaIndex(['1 day', pd.NaT, '1 min']),
to_timedelta(['1 day', 'bar', '1 min'],
errors='coerce'))
# gh-13613: these should not error because errors='ignore'
invalid_data = 'apple'
assert invalid_data == to_timedelta(invalid_data, errors='ignore')
invalid_data = ['apple', '1 days']
tm.assert_numpy_array_equal(
np.array(invalid_data, dtype=object),
to_timedelta(invalid_data, errors='ignore'))
invalid_data = pd.Index(['apple', '1 days'])
tm.assert_index_equal(invalid_data, to_timedelta(
invalid_data, errors='ignore'))
invalid_data = Series(['apple', '1 days'])
tm.assert_series_equal(invalid_data, to_timedelta(
invalid_data, errors='ignore'))
def test_to_timedelta_via_apply(self):
# GH 5458
expected = Series([np.timedelta64(1, 's')])
result = Series(['00:00:01']).apply(to_timedelta)
tm.assert_series_equal(result, expected)
result = Series([to_timedelta('00:00:01')])
tm.assert_series_equal(result, expected)
def test_to_timedelta_on_missing_values(self):
# GH5438
timedelta_NaT = np.timedelta64('NaT')
actual = pd.to_timedelta(Series(['00:00:01', np.nan]))
expected = Series([np.timedelta64(1000000000, 'ns'),
timedelta_NaT], dtype='<m8[ns]')
assert_series_equal(actual, expected)
actual = pd.to_timedelta(Series(['00:00:01', pd.NaT]))
assert_series_equal(actual, expected)
actual = pd.to_timedelta(np.nan)
assert actual.value == timedelta_NaT.astype('int64')
actual = pd.to_timedelta(pd.NaT)
assert actual.value == timedelta_NaT.astype('int64')
def test_to_timedelta_on_nanoseconds(self):
# GH 9273
result = Timedelta(nanoseconds=100)
expected = Timedelta('100ns')
assert result == expected
result = Timedelta(days=1, hours=1, minutes=1, weeks=1, seconds=1,
milliseconds=1, microseconds=1, nanoseconds=1)
expected = Timedelta(694861001001001)
assert result == expected
result = Timedelta(microseconds=1) + Timedelta(nanoseconds=1)
expected = Timedelta('1us1ns')
assert result == expected
result = Timedelta(microseconds=1) - Timedelta(nanoseconds=1)
expected = Timedelta('999ns')
assert result == expected
result = Timedelta(microseconds=1) + 5 * Timedelta(nanoseconds=-2)
expected = Timedelta('990ns')
assert result == expected
pytest.raises(TypeError, lambda: Timedelta(nanoseconds='abc'))
| bsd-3-clause |
DHI-GRAS/processing_SWAT | OSFWF_Assimilate_d.py | 2 | 4679 | """
***************************************************************************
OSFWF_Assimilate_d.py
-------------------------------------
Copyright (C) 2014 TIGER-NET (www.tiger-net.org)
***************************************************************************
* This plugin is part of the Water Observation Information System (WOIS) *
* developed under the TIGER-NET project funded by the European Space *
* Agency as part of the long-term TIGER initiative aiming at promoting *
* the use of Earth Observation (EO) for improved Integrated Water *
* Resources Management (IWRM) in Africa. *
* *
* WOIS is a free software i.e. you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation, either version 3 of the License, *
* or (at your option) any later version. *
* *
* WOIS is distributed in the hope that it will be useful, but WITHOUT ANY *
* WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************
"""
import os
from datetime import date, timedelta
from matplotlib.pylab import *
import subprocess
from PyQt4 import QtGui
from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException
from read_SWAT_out import read_SWAT_time
from SWAT_output_format_specs import SWAT_output_format_specs
from ASS_utilities import ReadNoSubs
import ASS_module3_Assimilation
from processing.core.parameters import *
from SWATAlgorithm import SWATAlgorithm
OUTSPECS = SWAT_output_format_specs()
class OSFWF_Assimilate_d(SWATAlgorithm):
SRC_FOLDER = "SRC_FOLDER"
MOD_DESC = "MOD_DESC"
ASS_FOLDER = "ASS_FOLDER"
STARTDATE = "STARTDATE"
OBS_FILE = "OBS_FILE"
def __init__(self):
super(OSFWF_Assimilate_d, self).__init__(__file__)
def defineCharacteristics(self):
self.name = "4.4 - Assimilate observations (OSFWF) - run assimilation"
self.group = "Operational simulation and forecasting workflow (OSFWF)"
self.addParameter(ParameterFile(OSFWF_Assimilate_d.SRC_FOLDER, "Select model source folder", True))
self.addParameter(ParameterFile(OSFWF_Assimilate_d.MOD_DESC, "Select model description file", False, False))
self.addParameter(ParameterFile(OSFWF_Assimilate_d.ASS_FOLDER, "Select assimilation folder", True))
self.addParameter(ParameterString(OSFWF_Assimilate_d.STARTDATE, "Issue date (yyyy-mm-dd)", str(date.today())))
self.addParameter(ParameterFile(OSFWF_Assimilate_d.OBS_FILE, "File with observation data (date, obs, measurement error, reach ID)", False))
def processAlgorithm(self, progress):
SRC_FOLDER = self.getParameterValue(OSFWF_Assimilate_d.SRC_FOLDER)
MOD_DESC = self.getParameterValue(OSFWF_Assimilate_d.MOD_DESC)
ASS_FOLDER = self.getParameterValue(OSFWF_Assimilate_d.ASS_FOLDER)
STARTDATE = self.getParameterValue(OSFWF_Assimilate_d.STARTDATE)
OBS_FILE = self.getParameterValue(OSFWF_Assimilate_d.OBS_FILE)
# Extract total number of subbasins from model description file
NBRCH = ReadNoSubs(MOD_DESC)
# Get startdate from SWAT file.cio
SWAT_time_info = read_SWAT_time(SRC_FOLDER)
SWAT_startdate = date2num(date(int(SWAT_time_info[1]),1,1) + timedelta(days=int(SWAT_time_info[2])-1))
if SWAT_time_info[4] > 0: # Account for NYSKIP>0
SWAT_startdate = date2num(date(int(SWAT_time_info[1]+SWAT_time_info[4]),1,1))
SWAT_enddate = date2num(date(int(SWAT_time_info[0]+SWAT_time_info[1]-1),1,1)) + SWAT_time_info[3]-1
# Assimilation startdate is equal to SWAT start date
ASS_startdate = SWAT_startdate
# Assimilation enddate is equal to SWAT end date
ASS_enddate = SWAT_enddate
ASS_module3_Assimilation.kf_flows(OBS_FILE, ASS_FOLDER, NBRCH, ASS_enddate, ASS_startdate, SWAT_enddate, SWAT_startdate)
| gpl-3.0 |
quheng/scikit-learn | examples/calibration/plot_calibration_curve.py | 225 | 5903 | """
==============================
Probability Calibration curves
==============================
When performing classification one often wants to predict not only the class
label, but also the associated probability. This probability gives some
kind of confidence on the prediction. This example demonstrates how to display
how well calibrated the predicted probabilities are and how to calibrate an
uncalibrated classifier.
The experiment is performed on an artificial dataset for binary classification
with 100.000 samples (1.000 of them are used for model fitting) with 20
features. Of the 20 features, only 2 are informative and 10 are redundant. The
first figure shows the estimated probabilities obtained with logistic
regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic
calibration and sigmoid calibration. The calibration performance is evaluated
with Brier score, reported in the legend (the smaller the better). One can
observe here that logistic regression is well calibrated while raw Gaussian
naive Bayes performs very badly. This is because of the redundant features
which violate the assumption of feature-independence and result in an overly
confident classifier, which is indicated by the typical transposed-sigmoid
curve.
Calibration of the probabilities of Gaussian naive Bayes with isotonic
regression can fix this issue as can be seen from the nearly diagonal
calibration curve. Sigmoid calibration also improves the brier score slightly,
albeit not as strongly as the non-parametric isotonic regression. This can be
attributed to the fact that we have plenty of calibration data such that the
greater flexibility of the non-parametric model can be exploited.
The second figure shows the calibration curve of a linear support-vector
classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian
naive Bayes: the calibration curve has a sigmoid curve, which is typical for
an under-confident classifier. In the case of LinearSVC, this is caused by the
margin property of the hinge loss, which lets the model focus on hard samples
that are close to the decision boundary (the support vectors).
Both kinds of calibration can fix this issue and yield nearly identical
results. This shows that sigmoid calibration can deal with situations where
the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC)
but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
"""
print(__doc__)
# Author: Alexandre Gramfort <[email protected]>
# Jan Hendrik Metzen <[email protected]>
# License: BSD Style.
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (brier_score_loss, precision_score, recall_score,
f1_score)
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn.cross_validation import train_test_split
# Create dataset of classification task with many redundant and few
# informative features
X, y = datasets.make_classification(n_samples=100000, n_features=20,
n_informative=2, n_redundant=10,
random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99,
random_state=42)
def plot_calibration_curve(est, name, fig_index):
"""Plot calibration curve for est w/o and with calibration. """
# Calibrated with isotonic calibration
isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic')
# Calibrated with sigmoid calibration
sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid')
# Logistic regression with no calibration as baseline
lr = LogisticRegression(C=1., solver='lbfgs')
fig = plt.figure(fig_index, figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),
(est, name),
(isotonic, name + ' + Isotonic'),
(sigmoid, name + ' + Sigmoid')]:
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
if hasattr(clf, "predict_proba"):
prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function
prob_pos = clf.decision_function(X_test)
prob_pos = \
(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
print("%s:" % name)
print("\tBrier: %1.3f" % (clf_score))
print("\tPrecision: %1.3f" % precision_score(y_test, y_pred))
print("\tRecall: %1.3f" % recall_score(y_test, y_pred))
print("\tF1: %1.3f\n" % f1_score(y_test, y_pred))
fraction_of_positives, mean_predicted_value = \
calibration_curve(y_test, prob_pos, n_bins=10)
ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s (%1.3f)" % (name, clf_score))
ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)
ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')
ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)
plt.tight_layout()
# Plot calibration cuve for Gaussian Naive Bayes
plot_calibration_curve(GaussianNB(), "Naive Bayes", 1)
# Plot calibration cuve for Linear SVC
plot_calibration_curve(LinearSVC(), "SVC", 2)
plt.show()
| bsd-3-clause |
David-Estevez/hormodular | bin/evaluate.py | 1 | 6440 | """
Evaluate
Evaluates an individual based on the milestone file
Part of the hormodular project
"""
from __future__ import division
import wx # For GUI
from xml.dom.minidom import parseString # for parsing xml files
import subprocess
import matplotlib
matplotlib.use('WXAgg')
import pylab # for plotting nice fitness graphs
import os
from individual import Individual
__author__ = 'David Estevez-Fernandez'
__license__ = 'GPLv3'
class MainWin( wx.Frame):
def __init__( self, parent):
# Program variables initialization
self.individuals = []
self.evaluationProgramPath = '/home/def/Repositories/hormodular/src/build-qt/evaluate-gaits'
self.gaitTableFile = '/home/def/Repositories/hormodular/data/gait tables/evaluation.txt'
self.robotSceneFile = ''
self.logFile = ''
# Construct the window
super( MainWin, self).__init__( parent, title='hormodular - evaluate', size = ( 400, 300), style=wx.DEFAULT_FRAME_STYLE ^ wx.RESIZE_BORDER)
self.InitUI()
self.Centre()
self.Show()
def InitUI( self):
""" Definition of the UI """
self.panel = wx.Panel(self)
font = wx.SystemSettings_GetFont(wx.SYS_SYSTEM_FONT)
font.SetPointSize(9)
#Textbox to put the filepath of the milestone file
self.fileBox = wx.TextCtrl( self.panel, pos=( 10, 10), size=( 400-10-100-10, 25))
# Button for loading the file
self.loadButton = wx.Button( self.panel, label='Load', pos=(400-10-100, 10), size=( 100, 25))
self.loadButton.Bind( wx.EVT_BUTTON, self.loadFile)
# Listbox for listing the individuals
self.listBoxIndividuals = wx.ListBox( self.panel, pos=(10, 10+25+10), size=(400-10-10, 200))
# Run parameters:
self.runText = wx.StaticText( self.panel, label = 'Run for (ms):', pos=( 10, 10+25+10+200+10), size = (80, 25))
self.runtimeBox = wx.TextCtrl( self.panel, pos = ( 10+80+10, 10+25+10+200+5), size = (130, 25) )
self.runtimeBox.SetValue( '-1')
self.runButton = wx.Button( self.panel, label = 'Run', pos = ( 10+80+10+130+5, 10+25+10+200+5), size = (75, 25))
self.runButton.Bind( wx.EVT_BUTTON, self.runEvaluation )
# Plot fitness function:
self.fitnessButton = wx.Button( self.panel, label = 'Plot fitness', pos = ( 10+80+10+110+5+75+20, 10+25+10+200+5), size = (80, 25))
self.fitnessButton.Bind( wx.EVT_BUTTON, self.plotFitness )
def loadFile(self, e):
"""
Actions to be made when load button is pressed.
"""
lastFilePath = self.fileBox.GetValue()
# Create a file selection dialog
if lastFilePath == '':
lastFilePath = '~/Repositories/hormodular/src'
else:
lastFilePath = os.path.dirname( lastFilePath)
print lastFilePath
fileDialog = wx.FileDialog( self, defaultDir = lastFilePath, wildcard = '*.*', style = wx.FD_OPEN )
# Show dialog to get file path
fileDialog.ShowModal()
filePath = fileDialog.GetPath()
fileDialog.Destroy()
print 'Loading file: ' + filePath
self.fileBox.SetValue( filePath )
# At this point filePath should contain the path to the results file
# Parse the xml file:
self.parseFile( filePath)
def runEvaluation( self, e):
"""
Runs the evaluation program with the specified parameters
"""
print 'Evaluating things...'
print 'Run with individual: ' + str( self.individuals[ self.listBoxIndividuals.GetSelections()[0] ])
# Get the simulation time:
sim_time = int(self.runtimeBox.GetValue())
# Create the gait table:
file = open( self.gaitTableFile, 'w')
file.write( self.individuals[ self.listBoxIndividuals.GetSelections()[0]].generateGaitTable())
file.close()
# Run the program:
subprocess.call( [ self.evaluationProgramPath, self.robotSceneFile, self.gaitTableFile, str(sim_time) ])
def plotFitness( self, e):
"""
Extracts the fitness data from the log file and plots it
"""
print 'Plotting fitness...'
# Get text from log file
print 'Opening ' + self.logFile
f = open( self.logFile, 'r')
# Extract fitness history:
fitness_history = []
generation_history = []
avg_fitness_history = []
for line in f.readlines():
if line.find( 'Generation: ') != -1:
generation_history.append( int( line.split(' ')[1]))
continue
if line.find( '\tmax: ') != -1:
fitness_history.append( float( line.split(' ')[1]))
continue
if line.find( '\tavg: ') != -1:
avg_fitness_history.append( float( line.split(' ')[1]))
continue
f.close()
#print generation_history
#print fitness_history
# Plot
pylab.plot( generation_history, fitness_history, 'b-')
#pylab.plot( generation_history, avg_fitness_history, 'r-')
pylab.show()
def parseFile( self, filePath):
"""
Parses the output file from the evolution process to extract
info about the individuals and their fitness value
"""
print 'Parsing...'
# Open the file and read the contents
file = open( filePath, 'r')
fileContents = file.read();
file.close()
# Parse the xml data
xmlfile = parseString( fileContents)
# Getting population data:
# ---------------------------------------------------------------------------------------------
xmlPopulation = xmlfile.getElementsByTagName('Deme')[0]
# Create new individuals list:
self.individuals = []
# Load the hall of fame individuals
self.individuals.append( Individual( 'HallOfFame', xmlPopulation.getElementsByTagName('Individual')[0] ))
# Load the population individuals
for xmlIndividual in xmlPopulation.getElementsByTagName('Individual')[1:]:
self.individuals.append( Individual( 'Individual'+ str(len(self.individuals)), xmlIndividual))
# Set the info about the loaded individuals on listBox
self.listBoxIndividuals.Set( [ str(i) for i in self.individuals] )
# Getting scene file / log file filepath
# ----------------------------------------------------------------------------------------------
xmlSceneFile = xmlfile.getElementsByTagName('Registry')[0]
found = False
for entry in xmlSceneFile.getElementsByTagName( 'Entry'):
if entry.getAttribute( 'key' ) == 'robot.simulationfile':
self.robotSceneFile = entry.childNodes[0].data
#print self.robotSceneFile
if found:
break
else:
found = True
if entry.getAttribute( 'key') == 'log.filename':
self.logFile = entry.childNodes[0].data
if found:
break
else:
found = True
if __name__ == '__main__':
app = wx.App()
MainWin(None)
app.MainLoop()
| gpl-3.0 |
yl565/statsmodels | examples/python/discrete_choice_example.py | 30 | 5786 |
## Discrete Choice Models
### Fair's Affair data
# A survey of women only was conducted in 1974 by *Redbook* asking about extramarital affairs.
from __future__ import print_function
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.formula.api import logit, probit, poisson, ols
print(sm.datasets.fair.SOURCE)
print(sm.datasets.fair.NOTE)
dta = sm.datasets.fair.load_pandas().data
dta['affair'] = (dta['affairs'] > 0).astype(float)
print(dta.head(10))
print(dta.describe())
affair_mod = logit("affair ~ occupation + educ + occupation_husb"
"+ rate_marriage + age + yrs_married + children"
" + religious", dta).fit()
print(affair_mod.summary())
# How well are we predicting?
affair_mod.pred_table()
# The coefficients of the discrete choice model do not tell us much. What we're after is marginal effects.
mfx = affair_mod.get_margeff()
print(mfx.summary())
respondent1000 = dta.ix[1000]
print(respondent1000)
resp = dict(zip(range(1,9), respondent1000[["occupation", "educ",
"occupation_husb", "rate_marriage",
"age", "yrs_married", "children",
"religious"]].tolist()))
resp.update({0 : 1})
print(resp)
mfx = affair_mod.get_margeff(atexog=resp)
print(mfx.summary())
affair_mod.predict(respondent1000)
affair_mod.fittedvalues[1000]
affair_mod.model.cdf(affair_mod.fittedvalues[1000])
# The "correct" model here is likely the Tobit model. We have an work in progress branch "tobit-model" on github, if anyone is interested in censored regression models.
#### Exercise: Logit vs Probit
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
support = np.linspace(-6, 6, 1000)
ax.plot(support, stats.logistic.cdf(support), 'r-', label='Logistic')
ax.plot(support, stats.norm.cdf(support), label='Probit')
ax.legend();
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
support = np.linspace(-6, 6, 1000)
ax.plot(support, stats.logistic.pdf(support), 'r-', label='Logistic')
ax.plot(support, stats.norm.pdf(support), label='Probit')
ax.legend();
# Compare the estimates of the Logit Fair model above to a Probit model. Does the prediction table look better? Much difference in marginal effects?
#### Genarlized Linear Model Example
print(sm.datasets.star98.SOURCE)
print(sm.datasets.star98.DESCRLONG)
print(sm.datasets.star98.NOTE)
dta = sm.datasets.star98.load_pandas().data
print(dta.columns)
print(dta[['NABOVE', 'NBELOW', 'LOWINC', 'PERASIAN', 'PERBLACK', 'PERHISP', 'PERMINTE']].head(10))
print(dta[['AVYRSEXP', 'AVSALK', 'PERSPENK', 'PTRATIO', 'PCTAF', 'PCTCHRT', 'PCTYRRND']].head(10))
formula = 'NABOVE + NBELOW ~ LOWINC + PERASIAN + PERBLACK + PERHISP + PCTCHRT '
formula += '+ PCTYRRND + PERMINTE*AVYRSEXP*AVSALK + PERSPENK*PTRATIO*PCTAF'
##### Aside: Binomial distribution
# Toss a six-sided die 5 times, what's the probability of exactly 2 fours?
stats.binom(5, 1./6).pmf(2)
from scipy.misc import comb
comb(5,2) * (1/6.)**2 * (5/6.)**3
from statsmodels.formula.api import glm
glm_mod = glm(formula, dta, family=sm.families.Binomial()).fit()
print(glm_mod.summary())
# The number of trials
glm_mod.model.data.orig_endog.sum(1)
glm_mod.fittedvalues * glm_mod.model.data.orig_endog.sum(1)
# First differences: We hold all explanatory variables constant at their means and manipulate the percentage of low income households to assess its impact
# on the response variables:
exog = glm_mod.model.data.orig_exog # get the dataframe
means25 = exog.mean()
print(means25)
means25['LOWINC'] = exog['LOWINC'].quantile(.25)
print(means25)
means75 = exog.mean()
means75['LOWINC'] = exog['LOWINC'].quantile(.75)
print(means75)
resp25 = glm_mod.predict(means25)
resp75 = glm_mod.predict(means75)
diff = resp75 - resp25
# The interquartile first difference for the percentage of low income households in a school district is:
print("%2.4f%%" % (diff[0]*100))
nobs = glm_mod.nobs
y = glm_mod.model.endog
yhat = glm_mod.mu
from statsmodels.graphics.api import abline_plot
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, ylabel='Observed Values', xlabel='Fitted Values')
ax.scatter(yhat, y)
y_vs_yhat = sm.OLS(y, sm.add_constant(yhat, prepend=True)).fit()
fig = abline_plot(model_results=y_vs_yhat, ax=ax)
##### Plot fitted values vs Pearson residuals
# Pearson residuals are defined to be
#
# $$\frac{(y - \mu)}{\sqrt{(var(\mu))}}$$
#
# where var is typically determined by the family. E.g., binomial variance is $np(1 - p)$
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, title='Residual Dependence Plot', xlabel='Fitted Values',
ylabel='Pearson Residuals')
ax.scatter(yhat, stats.zscore(glm_mod.resid_pearson))
ax.axis('tight')
ax.plot([0.0, 1.0],[0.0, 0.0], 'k-');
##### Histogram of standardized deviance residuals with Kernel Density Estimate overlayed
# The definition of the deviance residuals depends on the family. For the Binomial distribution this is
#
# $$r_{dev} = sign\(Y-\mu\)*\sqrt{2n(Y\log\frac{Y}{\mu}+(1-Y)\log\frac{(1-Y)}{(1-\mu)}}$$
#
# They can be used to detect ill-fitting covariates
resid = glm_mod.resid_deviance
resid_std = stats.zscore(resid)
kde_resid = sm.nonparametric.KDEUnivariate(resid_std)
kde_resid.fit()
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, title="Standardized Deviance Residuals")
ax.hist(resid_std, bins=25, normed=True);
ax.plot(kde_resid.support, kde_resid.density, 'r');
##### QQ-plot of deviance residuals
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
fig = sm.graphics.qqplot(resid, line='r', ax=ax)
| bsd-3-clause |
merenlab/anvio | anvio/synteny.py | 2 | 24040 | #!/usr/bin/env python # -*- coding: utf-8
# pylint: disable=line-too-long
"""Classes to work with ngrams of contig functions.
These are classes to deconstruct loci into ngrams. They are used
to analyze conserved genes and synteny structures across loci.
"""
import sys
import pandas as pd
from collections import Counter
import anvio
import anvio.tables as t
import anvio.dbops as dbops
import anvio.utils as utils
import anvio.panops as panops
import anvio.terminal as terminal
import anvio.filesnpaths as filesnpaths
import anvio.genomestorage as genomestorage
import anvio.genomedescriptions as genomedescriptions
from anvio.dbops import PanDatabase
from anvio.errors import ConfigError
__author__ = "Developers of anvi'o (see AUTHORS.txt)"
__copyright__ = "Copyleft 2015-2018, the Meren Lab (http://merenlab.org/)"
__credits__ = []
__license__ = "GPL 3.0"
__version__ = anvio.__version__
__maintainer__ = "Matthew Schechter"
__email__ = "[email protected]"
class NGram(object):
"""class for counting NGrams
anvi-analyze-synteny is designed to work with a group of similar loci, where each locus is a contig (which
can lie in any number of contigs dbs)
Parameters
==========
args : argparse.Namespace
For examples, arguments accepted by anvi-analyze-syntenty
skip_sanity_check : bool, false
If True, sanity_check will not be called.
Notes
=====
- Currently the design assumes that each locus is a contig. In the future we have plans to expand this to
compare genomes, not just loci, to each other. If that behavior is desired in the current design, each
genome should be a single contig.
"""
def __init__(self, args, run=terminal.Run(), progress=terminal.Progress(), skip_sanity_check=False):
"""Parses arguments and run sanity_check"""
self.args = args
self.run = run
self.progress = progress
# Parse arguments
A = lambda x: args.__dict__[x] if x in args.__dict__ else None
self.annotation_source = A('annotation_source')
self.window_range = A('ngram_window_range') or "2:3"
self.is_in_unknowns_mode = A('analyze_unknown_functions')
self.output_file = A('output_file')
self.skip_init_functions = A('skip_init_functions')
self.genome_names_to_focus = A('genome_names')
self.ngram_source = A("ngram_source")
self.first_functional_hit_only = A("first_functional_hit_only")
self.annotation_source_dict = {}
self.pan_db_path = A('pan_db')
if self.annotation_source and self.pan_db_path:
self.annotation_sources = [self.annotation_source, 'gene_clusters']
if self.pan_db_path:
self.pan_db = PanDatabase(self.pan_db_path)
self.p_meta = self.pan_db.meta
self.p_meta['creation_date'] = utils.get_time_to_date(self.p_meta['creation_date']) if 'creation_date' in self.p_meta else 'unknown'
self.p_meta['genome_names'] = sorted([s.strip() for s in self.p_meta['external_genome_names'].split(',') + self.p_meta['internal_genome_names'].split(',') if s])
self.p_meta['num_genomes'] = len(self.p_meta['genome_names'])
self.genome_names = self.p_meta['genome_names']
self.gene_clusters_gene_alignments_available = self.p_meta['gene_alignments_computed']
else:
self.pan_db = None
self.genomes_storage_path = A('genomes_storage')
# confirm genome-storage and pangenome hashes match of pangenome is provided
if self.pan_db:
self.genomes_storage = genomestorage.GenomeStorage(self.genomes_storage_path,
self.p_meta['genomes_storage_hash'],
genome_names_to_focus=self.p_meta['genome_names'],
skip_init_functions=self.skip_init_functions,
run=self.run,
progress=self.progress)
else:
self.genomes_storage = genomestorage.GenomeStorage(self.genomes_storage_path,
skip_init_functions=self.skip_init_functions,
run=self.run,
progress=self.progress)
# list-annotation-resources
self.list_annotation_sources = A('list_annotation_sources')
self.gene_function_source_set = self.genomes_storage.db.get_table_as_dataframe('gene_function_calls').source.unique()
if self.list_annotation_sources:
self.run.info('Available functional annotation sources', ', '.join(self.gene_function_source_set))
sys.exit()
# This houses the ngrams' data
self.ngram_attributes_list = []
# Focus on specfic set of genomes
if self.genome_names_to_focus:
if filesnpaths.is_file_exists(self.genome_names_to_focus, dont_raise=True):
self.genome_names_to_focus = utils.get_column_data_from_TAB_delim_file(self.genome_names_to_focus, column_indices=[0], expected_number_of_fields=1)[0]
else:
self.genome_names_to_focus = [g.strip() for g in self.genome_names_to_focus.split(',')]
self.run.warning("A subset of genome names is found, and anvi'o will focus only on to those.")
self.genomes_storage = genomestorage.GenomeStorage(self.genomes_storage_path, storage_hash=None, genome_names_to_focus=self.genome_names_to_focus)
self.genomes = self.genomes_storage.get_genomes_dict()
self.external_genome_names = [g for g in self.genomes if self.genomes[g]['external_genome']]
self.internal_genome_names = [g for g in self.genomes if not self.genomes[g]['external_genome']]
self.hash_to_genome_name = {}
for genome_name in self.genomes:
self.hash_to_genome_name[self.genomes[genome_name]['genome_hash']] = genome_name
# number of genomes in genome-storage
self.num_contigs_in_external_genomes_with_genes = len(self.genomes)
# number of genomes in genome-storage
if self.genome_names_to_focus:
self.num_contigs_in_external_genomes_with_genes = len(self.genome_names_to_focus)
else:
self.num_contigs_in_external_genomes_with_genes = len(self.genomes_storage.get_all_genome_names())
if not skip_sanity_check:
self.sanity_check()
# unless we are in debug mode, let's keep things quiet.
if anvio.DEBUG:
self.run_object = terminal.Run()
else:
self.run_object = terminal.Run(verbose=False)
def sanity_check(self):
"""Sanity_check will confirm input for NGram class"""
# checking if the annotation source is common across all contigs databases
if self.annotation_source and self.annotation_source not in self.gene_function_source_set:
raise ConfigError("The annotation source you requested does not appear to be in all of "
"the contigs databases from the external-genomes file. "
"Please confirm your annotation-source and that all contigs databases have it :)")
if (self.annotation_source and self.pan_db) and not self.ngram_source:
raise ConfigError("anvi-analyze-synteny needs to know which annotation source to slice Ngrams with. "
"Please use the --ngram-source flag to declare one :)")
if not self.args.output_file:
raise ConfigError("You should provide an output file name.")
# checking window-range input
if self.window_range.count(':') != 1:
raise ConfigError("anvi'o would love to slice and dice your loci, but the "
"Format of window_range must be x:y (e.g. Window sizes 2 to 4 would be denoted as: 2:4)")
try:
self.window_range = [int(n) for n in self.window_range.split(":")]
except ValueError:
raise ConfigError("anvi'o would love to slice and dice your loci, but the "
"window-ranges need to be integers :)")
if self.window_range[0] > self.window_range[1]:
raise ConfigError("anvi'o would love to slice and dice your loci, but the "
"window-range needs to be from small to big :)")
# Window-range must contain 2 integers for window
if len(self.window_range) > 2 or not isinstance(self.window_range[0], int) or not isinstance(self.window_range[1], int):
raise ConfigError("anvi'o would love to slice and dice your loci, but... the "
"window_range must only contain 2 integers and be formated as x:y (e.g. Window sizes 2 to 4 would be denoted as: 2:4)")
# Loop through each contigs db, test that each contig contains at least as many genes as max window size and confirm every contig has annotations
for contigs_db_name in self.genomes_storage.get_genomes_dict():
gene_caller_ids = self.genomes_storage.get_gene_caller_ids(contigs_db_name)
num_genes = len(gene_caller_ids)
if self.window_range[1] > num_genes:
raise ConfigError("The largest window size you requested (%d) is larger than the number of genes found on this genome: %s" % \
(self.window_range[1], contigs_db_name))
def populate_ngram_attributes(self):
"""Iterates through all contigs and use self.count_synteny to count all ngrams in that contig.
This populates the self.ngram_attributes_list, where each element looks like:
(ngram, count, contigs_db_name, contig_name, N)
"""
# Get gene cluster info from panDB
if self.pan_db:
gene_cluster_frequencies_dataframe = self.pan_db.db.get_table_as_dataframe('gene_clusters')
self.run.warning("Anvi'o is now looking for Ngrams in your contigs!", lc='green')
self.run.info_single("What do we say to loci that appear to have no coherent synteny patterns...? Not today! ⚔️", nl_before=1, nl_after=1)
genes_and_functions_list = []
for contigs_db_name in self.genomes_storage.get_genomes_dict():
# Get list of genes-callers-ids
gene_caller_ids_list = list(self.genomes_storage.get_gene_caller_ids(contigs_db_name))
# Use gene_caller_ids_list to get functions table
gene_function_call_df = self.genomes_storage.db.get_table_as_dataframe('gene_function_calls')
# Create dict for annotate Ngrams
if self.annotation_source:
self.gene_caller_id_to_accession_dict = self.get_genes_and_functions_dict(contigs_db_name, gene_function_call_df)
self.annotation_source_dict[self.annotation_source] = self.gene_caller_id_to_accession_dict
if self.pan_db:
self.gene_caller_id_to_gene_cluster_dict = self.get_gene_cluster_dict(contigs_db_name, gene_cluster_frequencies_dataframe)
self.annotation_source_dict['gene_clusters'] = self.gene_caller_id_to_gene_cluster_dict
# Iterate over range of window sizes and run synteny algorithm to count occurrences of ngrams in a contig
for N in range(*self.window_range):
ngram_counts_dict, annotations_dict = self.count_synteny(N, gene_caller_ids_list)
for ngram, count in ngram_counts_dict.items():
for annotation_source, annotation in annotations_dict[ngram].items():
if annotation_source == self.ngram_source:
pass
else:
self.ngram_attributes_list.append([ngram, count, annotations_dict[ngram][annotation_source], contigs_db_name, N])
def count_synteny(self, N, gene_caller_ids_list):
"""This method counts synteny patterns of size N on a contig
This method counts synteny patterns of size N on a contig by taking a window of
gene-callers-ids, annotating it, ordering it consistently, and then counting its occurence
on the contig.
Parameters
==========
n : int
A window size to extract a ngram
gene_caller_ids_list: list
list of all gene-callers-ids on a contig
Returns
=======
ngram_counts_dict : dict
A dict of ngram counts on a contig A tuple of annotations {ngram:count}
Notes
=====
This function assumes that the input list of gene-callers-ids are in the order of which they
occur on the contig
"""
ngram_counts_dict = Counter({})
annotations_dict = {}
gene_callers_id_windows = self.get_windows(N, gene_caller_ids_list)
for window in gene_callers_id_windows:
annotated_window_dict = self.annotate_window(window)
if self.ngram_source:
ngram = self.order_window(annotated_window_dict[self.ngram_source])
elif self.annotation_source:
ngram = self.order_window(annotated_window_dict[self.annotation_source])
else:
ngram = self.order_window(annotated_window_dict['gene_clusters'])
# flip annotation if the ngram was flipped
if ngram[1] == True:
annotated_window_dict_ordered = {}
for annotation_source, annotation in annotated_window_dict.items():
annotated_window_flipped = annotation[::-1]
annotated_window_dict_ordered[annotation_source] = annotated_window_flipped
annotations_dict[ngram[0]] = annotated_window_dict_ordered # record flipped version of annotation
else:
annotations_dict[ngram[0]] = annotated_window_dict
ngram_counts_dict[ngram[0]] += 1
return ngram_counts_dict, annotations_dict
def annotate_window(self, window):
"""This method annotates a gene-callers-id window
This method will annotate a gene-callers-id window based using annotation sources provided
by the user (e.g. COGs, pan_db). If the user provided the `first_functional_hit_only` flag, the COG
annotation will be split by "!!!" and the first (best hit) item will be used.
Parameters
==========
window : tuple
A tuple of gene gene-callers-ids that represents an unannotated Ngram
Returns
=======
ngram_gene_clusters : tuple
A tuple of annotations
"""
# Annotate window based on user input
gene_annotation_dict = {}
for annotation_source, annotations_dict in self.annotation_source_dict.items():
if self.first_functional_hit_only:
ngram_annotation = []
for g in window:
annotation = annotations_dict[g]
if "!!!" in annotation:
annotation_first = annotation.split("!!!")[0]
ngram_annotation.append(annotation_first)
else:
ngram_annotation.append(annotation)
ngram_annotation = tuple(ngram_annotation)
else:
ngram_annotation = tuple([annotations_dict[g] for g in window])
gene_annotation_dict[annotation_source] = ngram_annotation
return gene_annotation_dict
def order_window(self, annotated_window):
"""This method orients an annotated_window in a consistent order
This method is to make sure that all Ngrams are ordered in the same direction. For example,
we want to count A-B-C and C-B-A as the same Ngram.
Parameters
==========
annotated_window : tuple
A tuple of annotations accessions
Returns
=======
ngram : tuple
A tuple Ngram that is correctly oriented
"""
original_order = annotated_window
flipped_order = annotated_window[::-1]
if original_order[0] < flipped_order[0]:
ngram = original_order
flipped = False
else:
ngram = flipped_order
flipped = True
ngram = [ngram, flipped]
return ngram
def convert_to_df(self):
"""Takes self.ngram_attributes_list and returns a pandas dataframe"""
ngram_count_df_list = []
for ngram_attribute in self.ngram_attributes_list:
ngram = "::".join(map(str, list(ngram_attribute[0])))
annotation = "::".join(map(str, list(ngram_attribute[2])))
if self.pan_db and self.annotation_source:
df = pd.DataFrame(columns=['ngram','count', 'annotation', 'contig_db_name', 'N', 'number_of_loci'])
df = df.append({'ngram': ngram,
'count': ngram_attribute[1],
'annotation': annotation,
'contig_db_name': ngram_attribute[3],
'N':ngram_attribute[4],
'number_of_loci':self.num_contigs_in_external_genomes_with_genes}, ignore_index=True)
elif self.pan_db and not self.annotation_source:
ngram = "::".join(map(str, list(ngram_attribute[0])))
df = pd.DataFrame(columns=['ngram','count', 'contig_db_name', 'N', 'number_of_loci'])
df = df.append({'ngram': ngram,
'count': ngram_attribute[1],
'contig_db_name': ngram_attribute[3],
'N':ngram_attribute[4],
'number_of_loci':self.num_contigs_in_external_genomes_with_genes}, ignore_index=True)
else:
ngram = "::".join(map(str, list(ngram_attribute[0])))
df = pd.DataFrame(columns=['ngram','count', 'contig_db_name', 'N', 'number_of_loci'])
df = df.append({'ngram': ngram,
'count': ngram_attribute[1],
'contig_db_name': ngram_attribute[3],
'N':ngram_attribute[4],
'number_of_loci':self.num_contigs_in_external_genomes_with_genes}, ignore_index=True)
ngram_count_df_list.append(df)
ngram_count_df_final = pd.concat(ngram_count_df_list)
if not self.is_in_unknowns_mode:
ngram_count_df_final = ngram_count_df_final[~ngram_count_df_final['ngram'].str.contains("unknown-function" or "no-gene-cluster-annotation")]
return ngram_count_df_final
def report_ngrams_to_user(self):
"""Counts ngrams per contig and reports as tab-delimited file"""
self.populate_ngram_attributes()
df = self.convert_to_df()
df.to_csv(self.output_file, sep = '\t', index=False)
self.run.info("Ngram table", self.output_file)
def get_genes_and_functions_dict(self, contigs_db_name, gene_function_call_df):
"""This method will extract a list of gene attributes from each contig within a contigsDB.
Returns
=======
output : list of lists
first element is gene_caller_id, second is function accession, third is the contig name
"""
# get contigsDB
gene_function_call_df_filtered = gene_function_call_df[(gene_function_call_df['genome_name'] == contigs_db_name) & (gene_function_call_df['source'] == self.annotation_source)]
gene_callers_id_to_accession_dict = gene_function_call_df_filtered[['gene_callers_id','accession']].set_index('gene_callers_id')['accession'].to_dict()
gene_caller_ids_list = self.genomes_storage.get_gene_caller_ids(contigs_db_name)
# Make list of lists containing gene attributes. If there is not annotation add one in!
genes_and_functions_list = [] # List of lists [gene-caller-id, accessions, contig-name]
counter = 0
for gene_callers_id in gene_caller_ids_list:
list_of_gene_attributes = []
if gene_callers_id in gene_callers_id_to_accession_dict:
accession = gene_callers_id_to_accession_dict[gene_callers_id]
accession = accession.replace(" ","")
list_of_gene_attributes.extend((gene_callers_id, accession))
genes_and_functions_list.append(list_of_gene_attributes)
else:
# adding in "unknown annotation" if there is none
accession = "unknown-function"
list_of_gene_attributes.extend((counter, accession))
genes_and_functions_list.append(list_of_gene_attributes)
counter += 1
gene_caller_id_to_accession_dict = {}
for entry in genes_and_functions_list:
gene_caller_id_to_accession_dict[entry[0]] = entry[1]
return gene_caller_id_to_accession_dict
def get_gene_cluster_dict(self, contigs_db_name, gene_cluster_frequencies_dataframe):
gene_cluster_frequencies_dataframe_filtered = gene_cluster_frequencies_dataframe[gene_cluster_frequencies_dataframe['genome_name'] == contigs_db_name]
gene_callers_id_to_gene_cluster_id_dict = gene_cluster_frequencies_dataframe_filtered[['gene_caller_id','gene_cluster_id']].set_index('gene_caller_id')['gene_cluster_id'].to_dict()
gene_caller_ids_list = self.genomes_storage.get_gene_caller_ids(contigs_db_name)
# Make list of lists containing gene cluster attributes. If there is not annotation add one in!
genes_cluster_list = [] # List of lists [gene-caller-id, gene-cluster-id, contig-name]
counter = 0
for gene_callers_id in gene_caller_ids_list:
list_of_gene_attributes = []
if gene_callers_id in gene_callers_id_to_gene_cluster_id_dict:
gene_cluster_id = gene_callers_id_to_gene_cluster_id_dict[gene_callers_id]
gene_cluster_id = gene_cluster_id.replace(" ","")
list_of_gene_attributes.extend((gene_callers_id, gene_cluster_id))
genes_cluster_list.append(list_of_gene_attributes)
else:
# adding in "unknown annotation" if there is none
gene_cluster_id = "no-gene-cluster-annotation"
list_of_gene_attributes.extend((counter, gene_cluster_id))
genes_cluster_list.append(list_of_gene_attributes)
counter += 1
gene_caller_id_to_gene_cluster_dict = {}
for entry in genes_cluster_list:
gene_caller_id_to_gene_cluster_dict[entry[0]] = entry[1]
return gene_caller_id_to_gene_cluster_dict
def get_windows(self, N, gene_caller_ids_list):
"""This method will count NGrams in contigs
This method will use a sliding window of size N to extract gene-callers-id windows.
The final output will be a list of windows of size N.
Parameters
==========
gene_caller_ids_list : list
A list of gene gene-callers-ids as they appear in the contig
n : int
A window size to extract a ngram
Returns
=======
gene_callers_id_windows : list
A list of n sized windows of gene-callers-ids from a contig
"""
gene_callers_id_windows = []
for i in range(0, len(gene_caller_ids_list) - N + 1):
# extract window
window = tuple(gene_caller_ids_list[i:i + N])
gene_callers_id_windows.append(window)
return gene_callers_id_windows
| gpl-3.0 |
SBRG/ssbio | ssbio/databases/uniprot.py | 2 | 24223 | """
UniProtProp
===========
"""
import os.path as op
import re
import warnings
import bioservices
import pandas as pd
import requests
from collections import defaultdict
from dateutil.parser import parse as dateparse
import ssbio.utils
from BCBio import GFF
from ssbio.protein.sequence.seqprop import SeqProp
try:
from StringIO import StringIO
except ImportError:
from io import StringIO
from six.moves.urllib.request import urlretrieve
from Bio import SeqIO
import logging
log = logging.getLogger(__name__)
bsup = bioservices.uniprot.UniProt()
# See the UniProt XML specification for these http://www.uniprot.org/docs/uniprot.xsd
# Also see http://www.uniprot.org/help/sequence_annotation for categories
longname_all_features = ["active site", "binding site", "calcium-binding region", "chain", "coiled-coil region",
"compositionally biased region", "cross-link", "disulfide bond", "DNA-binding region",
"domain", "glycosylation site", "helix", "initiator methionine", "lipid moiety-binding region",
"metal ion-binding site", "modified residue", "mutagenesis site", "non-consecutive residues",
"non-terminal residue", "nucleotide phosphate-binding region", "peptide", "propeptide",
"region of interest", "repeat", "non-standard amino acid", "sequence conflict",
"sequence variant", "short sequence motif", "signal peptide", "site", "splice variant",
"strand", "topological domain", "transit peptide", "transmembrane region", "turn",
"unsure residue", "zinc finger region", "intramembrane region"]
longname_molecule_processing = ["initiator methionine", "signal peptide", "transit peptide", "propeptide", "chain",
"peptide"]
longname_regions = ['repeat','calcium-binding region','compositionally biased region','nucleotide phosphate-binding region',
'topological domain','intramembrane region','coiled-coil region','zinc finger region','domain',
'short sequence motif','DNA-binding region','region of interest','transmembrane region']
longname_sites = ["active site", "binding site", "metal ion-binding site", "site"]
longname_amino_acid_modifications = ["non-standard amino acid", "modified residue", "lipid moiety-binding region",
"glycosylation site", "disulfide bond", "cross-link"]
longname_natural_variations = ["sequence variant", "splice variant"]
longname_experimental_info = ["mutagenesis site", "unsure residue", "sequence conflict", "non-consecutive residues",
"non-terminal residue"]
longname_secondary_structure = ["helix", "turn", "strand"]
class UniProtProp(SeqProp):
"""Generic class to store information on a UniProt entry, extended from a SeqProp object.
The main utilities of this class are to:
#. Download and/or parse UniProt text or xml files
#. Store extra parsed information in attributes
Attributes:
uniprot (str): Main UniProt accession code
alt_uniprots (list): Alternate accession codes that point to the main one
file_type (str): Metadata file type
reviewed (bool): If this entry is a "reviewed" entry. If None, then status is unknown.
ec_number (str): EC number
pfam (list): PFAM IDs
entry_version (str): Date of last update of the UniProt entry
seq_version (str): Date of last update of the UniProt sequence
"""
def __init__(self, seq, id, name='<unknown name>', description='<unknown description>',
fasta_path=None, xml_path=None, gff_path=None):
"""Store basic protein sequence properties from a UniProt ID/ACC.
One or all of the input files can be provided - you might ask why even provide the FASTA if the XML has the
sequence in it? The FASTA file can be used in alignment programs run locally.
Args:
seq (str, Seq, SeqRecord): Sequence string, Biopython Seq or SeqRecord object
id (str): UniProt ID/ACC
fasta_path (str): Path to FASTA file
xml_path (str): Path to UniProt XML file
gff_path (str): Path to GFF feature file
"""
if not is_valid_uniprot_id(id):
raise ValueError("{}: invalid UniProt ID!".format(id))
self.reviewed = False
self.alt_uniprots = None
self.taxonomy = None
self.seq_version = None
self.seq_date = None
self.entry_version = None
self.entry_date = None
SeqProp.__init__(self, id=id, seq=seq, name=name, description=description,
sequence_path=fasta_path, metadata_path=xml_path, feature_path=gff_path)
self.uniprot = id
@SeqProp.seq.getter
def seq(self):
"""Seq: Get the Seq object from the sequence file, metadata file, or in memory"""
if self.sequence_file:
log.debug('{}: reading sequence from sequence file {}'.format(self.id, self.sequence_path))
tmp_sr = SeqIO.read(self.sequence_path, 'fasta')
return tmp_sr.seq
elif self.metadata_file:
log.debug('{}: reading sequence from metadata file {}'.format(self.id, self.metadata_path))
tmp_sr = SeqIO.read(self.metadata_path, 'uniprot-xml')
return tmp_sr.seq
else:
if not self._seq:
log.debug('{}: no sequence stored in memory'.format(self.id))
else:
log.debug('{}: reading sequence from memory'.format(self.id))
return self._seq
@SeqProp.features.getter
def features(self):
"""list: Get the features from the feature file, metadata file, or in memory"""
if self.feature_file:
log.debug('{}: reading features from feature file {}'.format(self.id, self.feature_path))
with open(self.feature_path) as handle:
feats = list(GFF.parse(handle))
if len(feats) > 1:
log.warning('Too many sequences in GFF')
else:
return feats[0].features
elif self.metadata_file:
log.debug('{}: reading features from metadata file {}'.format(self.id, self.metadata_path))
tmp_sr = SeqIO.read(self.metadata_path, 'uniprot-xml')
return tmp_sr.features
else:
return self._features
@SeqProp.metadata_path.setter
def metadata_path(self, m_path):
"""Provide pointers to the paths of the metadata file
Args:
m_path: Path to metadata file
"""
if not m_path:
self.metadata_dir = None
self.metadata_file = None
else:
if not op.exists(m_path):
raise OSError('{}: file does not exist!'.format(m_path))
if not op.dirname(m_path):
self.metadata_dir = '.'
else:
self.metadata_dir = op.dirname(m_path)
self.metadata_file = op.basename(m_path)
# Parse the metadata file using Biopython's built in SeqRecord parser
# Just updating IDs and stuff
tmp_sr = SeqIO.read(self.metadata_path, 'uniprot-xml')
parsed = parse_uniprot_xml_metadata(tmp_sr)
self.update(parsed, overwrite=True)
def metadata_path_unset(self):
"""Copy features to memory and remove the association of the metadata file."""
if not self.metadata_file:
raise IOError('No metadata file to unset')
log.debug('{}: reading from metadata file {}'.format(self.id, self.metadata_path))
tmp_sr = SeqIO.read(self.metadata_path, 'uniprot-xml')
tmp_feats = tmp_sr.features
# TODO: should this be in separate unset functions?
self.metadata_dir = None
self.metadata_file = None
self.features = tmp_feats
if self.sequence_file:
tmp_sr = tmp_sr.seq
self.sequence_dir = None
self.sequence_file = None
self.seq = tmp_sr
def download_seq_file(self, outdir, force_rerun=False):
"""Download and load the UniProt FASTA file"""
uniprot_fasta_file = download_uniprot_file(uniprot_id=self.id,
filetype='fasta',
outdir=outdir,
force_rerun=force_rerun)
self.sequence_path = uniprot_fasta_file
def download_metadata_file(self, outdir, force_rerun=False):
"""Download and load the UniProt XML file"""
uniprot_xml_file = download_uniprot_file(uniprot_id=self.id,
outdir=outdir,
filetype='xml',
force_rerun=force_rerun)
self.metadata_path = uniprot_xml_file
def ranking_score(self):
"""Provide a score for this UniProt ID based on reviewed (True=1, False=0) + number of PDBs
Returns:
int: Scoring for this ID
"""
return self.reviewed + self.num_pdbs
def __json_encode__(self):
# TODO: investigate why saving with # does not work!
# Recon3D problem genes: testers = ['1588.2', '6819.1', '27233.1', '2264.1']
to_return = {}
for x in self.__dict__.keys():
if x == 'description':
sanitized = ssbio.utils.force_string(getattr(self, x)).replace('#', '-')
to_return.update({x: getattr(self, x)})
else:
to_return.update({x: getattr(self, x)})
return to_return
def parse_uniprot_xml_metadata(sr):
"""Load relevant attributes and dbxrefs from a parsed UniProt XML file in a SeqRecord.
Returns:
dict: All parsed information
"""
# TODO: What about "reviewed" status? and EC number
xref_dbs_to_keep = ['GO', 'KEGG', 'PDB', 'PROSITE', 'Pfam', 'RefSeq']
infodict = {}
infodict['alt_uniprots'] = list(set(sr.annotations['accessions']).difference([sr.id]))
infodict['gene_name'] = None
if 'gene_name_primary' in sr.annotations:
infodict['gene_name'] = sr.annotations['gene_name_primary']
infodict['description'] = sr.description
infodict['taxonomy'] = None
if 'organism' in sr.annotations:
infodict['taxonomy'] = sr.annotations['organism']
infodict['seq_version'] = sr.annotations['sequence_version']
infodict['seq_date'] = sr.annotations['sequence_modified']
infodict['entry_version'] = sr.annotations['version']
infodict['entry_date'] = sr.annotations['modified']
tmp = defaultdict(list)
for xref in sr.dbxrefs:
database = xref.split(':', 1)[0]
xrefs = xref.split(':', 1)[-1]
if database in xref_dbs_to_keep:
if database == 'PDB':
tmp['pdbs'].append(xrefs)
else:
tmp[database.lower()].append(xrefs)
infodict.update(tmp)
return infodict
def is_valid_uniprot_id(instring):
"""Check if a string is a valid UniProt ID.
See regex from: http://www.uniprot.org/help/accession_numbers
Args:
instring: any string identifier
Returns: True if the string is a valid UniProt ID
"""
valid_id = re.compile("[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}")
if valid_id.match(str(instring)):
return True
else:
return False
# TODO: method to blast UniProt to find a 100% sequence match
def blast_uniprot(seq_str, seq_ident=1, evalue=0.0001, reviewed_only=True, organism=None):
"""BLAST the UniProt db to find what IDs match the sequence input
Args:
seq_str: Sequence string
seq_ident: Percent identity to match
evalue: E-value of BLAST hit
Returns:
"""
pass
def get_fasta(uniprot_id):
"""Get the protein sequence for a UniProt ID as a string.
Args:
uniprot_id: Valid UniProt ID
Returns:
str: String of the protein (amino acid) sequence
"""
# Silencing the "Will be moved to Biokit" message
with ssbio.utils.suppress_stdout():
return bsup.get_fasta_sequence(uniprot_id)
def uniprot_reviewed_checker(uniprot_id):
"""Check if a single UniProt ID is reviewed or not.
Args:
uniprot_id:
Returns:
bool: If the entry is reviewed
"""
query_string = 'id:' + uniprot_id
uni_rev_raw = StringIO(bsup.search(query_string, columns='id,reviewed', frmt='tab'))
uni_rev_df = pd.read_table(uni_rev_raw, sep='\t', index_col=0)
uni_rev_df = uni_rev_df.fillna(False)
uni_rev_df = uni_rev_df[pd.notnull(uni_rev_df.Status)]
uni_rev_df = uni_rev_df.replace(to_replace="reviewed", value=True)
uni_rev_df = uni_rev_df.replace(to_replace="unreviewed", value=False)
uni_rev_dict_adder = uni_rev_df.to_dict()['Status']
return uni_rev_dict_adder[uniprot_id]
def uniprot_reviewed_checker_batch(uniprot_ids):
"""Batch check if uniprot IDs are reviewed or not
Args:
uniprot_ids: UniProt ID or list of UniProt IDs
Returns:
A dictionary of {UniProtID: Boolean}
"""
uniprot_ids = ssbio.utils.force_list(uniprot_ids)
invalid_ids = [i for i in uniprot_ids if not is_valid_uniprot_id(i)]
uniprot_ids = [i for i in uniprot_ids if is_valid_uniprot_id(i)]
if invalid_ids:
warnings.warn("Invalid UniProt IDs {} will be ignored".format(invalid_ids))
# splitting query up into managable sizes (200 IDs each)
Nmax = 200
N, rest = divmod(len(uniprot_ids), Nmax)
uni_rev_dict = {}
if rest > 0:
N += 1
for i in range(0, N):
i1 = i * Nmax
i2 = (i + 1) * Nmax
if i2 > len(uniprot_ids):
i2 = len(uniprot_ids)
query = uniprot_ids[i1:i2]
query_string = ''
for x in query:
query_string += 'id:' + x + '+OR+'
query_string = query_string.strip('+OR+')
uni_rev_raw = StringIO(bsup.search(query_string, columns='id,reviewed', frmt='tab'))
uni_rev_df = pd.read_table(uni_rev_raw, sep='\t', index_col=0)
uni_rev_df = uni_rev_df.fillna(False)
# no_metadata = uni_rev_df[pd.isnull(uni_rev_df.Status)].index.tolist()
# if no_metadata:
# warnings.warn("Unable to retrieve metadata for {}.".format(no_metadata))
uni_rev_df = uni_rev_df[pd.notnull(uni_rev_df.Status)]
uni_rev_df = uni_rev_df.replace(to_replace="reviewed", value=True)
uni_rev_df = uni_rev_df.replace(to_replace="unreviewed", value=False)
uni_rev_dict_adder = uni_rev_df.to_dict()['Status']
uni_rev_dict.update(uni_rev_dict_adder)
return uni_rev_dict
def uniprot_ec(uniprot_id):
"""Retrieve the EC number annotation for a UniProt ID.
Args:
uniprot_id: Valid UniProt ID
Returns:
"""
r = requests.post('http://www.uniprot.org/uniprot/?query=%s&columns=ec&format=tab' % uniprot_id)
ec = r.content.decode('utf-8').splitlines()[1]
if len(ec) == 0:
ec = None
return ec
def uniprot_sites(uniprot_id):
"""Retrieve a list of UniProt sites parsed from the feature file
Sites are defined here: http://www.uniprot.org/help/site and here: http://www.uniprot.org/help/function_section
Args:
uniprot_id: Valid UniProt ID
Returns:
"""
r = requests.post('http://www.uniprot.org/uniprot/%s.gff' % uniprot_id)
gff = StringIO(r.content.decode('utf-8'))
feats = list(GFF.parse(gff))
if len(feats) > 1:
log.warning('Too many sequences in GFF')
else:
return feats[0].features
# try:
# gff_df = pd.read_table(gff, sep='\t', skiprows=2, header=None)
# except ValueError as e:
# log.error('Error retrieving feature table')
# print(e)
# return pd.DataFrame()
#
# gff_df.drop([0, 1, 5, 6, 7, 9], axis=1, inplace=True)
# gff_df.columns = ['type', 'seq_start', 'seq_end', 'notes']
#
# return gff_df
def download_uniprot_file(uniprot_id, filetype, outdir='', force_rerun=False):
"""Download a UniProt file for a UniProt ID/ACC
Args:
uniprot_id: Valid UniProt ID
filetype: txt, fasta, xml, rdf, or gff
outdir: Directory to download the file
Returns:
str: Absolute path to file
"""
my_file = '{}.{}'.format(uniprot_id, filetype)
url = 'http://www.uniprot.org/uniprot/{}'.format(my_file)
outfile = op.join(outdir, my_file)
if ssbio.utils.force_rerun(flag=force_rerun, outfile=outfile):
urlretrieve(url, outfile)
return outfile
def parse_uniprot_txt_file(infile):
"""Parse a raw UniProt metadata file and return a dictionary.
Args:
infile: Path to metadata file
Returns:
dict: Metadata dictionary
"""
uniprot_metadata_dict = {}
metadata = old_parse_uniprot_txt_file(infile)
metadata_keys = list(metadata.keys())
if metadata_keys:
metadata_key = metadata_keys[0]
else:
return uniprot_metadata_dict
uniprot_metadata_dict['seq_len'] = len(str(metadata[metadata_key]['sequence']))
uniprot_metadata_dict['reviewed'] = metadata[metadata_key]['is_reviewed']
uniprot_metadata_dict['seq_version'] = metadata[metadata_key]['sequence_version']
uniprot_metadata_dict['entry_version'] = metadata[metadata_key]['entry_version']
if 'gene' in metadata[metadata_key]:
uniprot_metadata_dict['gene_name'] = metadata[metadata_key]['gene']
if 'description' in metadata[metadata_key]:
uniprot_metadata_dict['description'] = metadata[metadata_key]['description']
if 'refseq' in metadata[metadata_key]:
uniprot_metadata_dict['refseq'] = metadata[metadata_key]['refseq']
if 'kegg' in metadata[metadata_key]:
uniprot_metadata_dict['kegg'] = metadata[metadata_key]['kegg']
if 'ec' in metadata[metadata_key]:
uniprot_metadata_dict['ec_number'] = metadata[metadata_key]['ec']
if 'pfam' in metadata[metadata_key]:
uniprot_metadata_dict['pfam'] = metadata[metadata_key]['pfam']
if 'pdbs' in metadata[metadata_key]:
uniprot_metadata_dict['pdbs'] = list(set(metadata[metadata_key]['pdbs']))
return uniprot_metadata_dict
def old_parse_uniprot_txt_file(infile):
"""From: boscoh/uniprot github
Parses the text of metadata retrieved from uniprot.org.
Only a few fields have been parsed, but this provides a
template for the other fields.
A single description is generated from joining alternative
descriptions.
Returns a dictionary with the main UNIPROT ACC as keys.
"""
with open(infile, 'r') as txt:
cache_txt = txt.read()
tag = None
uniprot_id = None
metadata_by_seqid = {}
for l in cache_txt.splitlines():
test_tag = l[:5].strip()
if test_tag and test_tag != tag:
tag = test_tag
line = l[5:].strip()
words = line.split()
if tag == "ID":
uniprot_id = words[0]
is_reviewed = words[1].startswith('Reviewed')
length = int(words[2])
metadata_by_seqid[uniprot_id] = {
'id': uniprot_id,
'is_reviewed': is_reviewed,
'length': length,
'sequence': '',
'accs': [],
}
entry = metadata_by_seqid[uniprot_id]
if tag == "DT":
# DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.
# DT 17-OCT-2006, sequence version 3.
# DT 22-JUL-2015, entry version 166.
comma_split = line.split(',')
if 'sequence version' in comma_split[1]:
# print 'sequence_version', comma_split[0],
# dateparse(comma_split[0]).date()
entry['sequence_version'] = str(
dateparse(comma_split[0]).date())
elif 'entry version' in comma_split[1]:
# print 'entry_version', comma_split[0],
# dateparse(comma_split[0]).date()
entry['entry_version'] = str(
dateparse(comma_split[0]).date())
if tag == "SQ":
if words[0] != "SEQUENCE":
entry['sequence'] += ''.join(words)
if tag == "AC":
accs = [w.replace(";", "") for w in words]
entry['accs'].extend(accs)
if tag == "DR":
if len(words) > 0:
if 'PDB' in words[0]:
if 'pdb' not in entry:
entry['pdb'] = words[1][:-1]
if 'pdbs' not in entry:
entry['pdbs'] = []
entry['pdbs'].append(words[1][:-1])
if 'RefSeq' in words[0]:
if 'refseq' not in entry:
entry['refseq'] = []
ids = [w[:-1] for w in words[1:]]
entry['refseq'].extend(ids)
if 'KEGG' in words[0]:
if 'kegg' not in entry:
entry['kegg'] = []
ids = [w[:-1] for w in words[1:]]
ids = filter(lambda w: len(w) > 1, ids)
entry['kegg'].extend(ids)
if 'GO' in words[0]:
if 'go' not in entry:
entry['go'] = []
entry['go'].append(' '.join(words[1:]))
if 'Pfam' in words[0]:
if 'pfam' not in entry:
entry['pfam'] = []
entry['pfam'].append(words[1][:-1])
if tag == "GN":
if 'gene' not in entry and len(words) > 0:
pieces = words[0].split("=")
if len(pieces) > 1 and 'name' in pieces[0].lower():
entry['gene'] = pieces[1].replace(
';', '').replace(',', '')
if tag == "OS":
# OS Homo sapiens (Human).
if 'organism' not in entry:
entry['organism'] = ""
entry['organism'] += line
if tag == "DE":
if 'descriptions' not in entry:
entry['descriptions'] = []
entry['descriptions'].append(line)
if tag == "CC":
if 'comment' not in entry:
entry['comment'] = ''
entry['comment'] += line + '\n'
for entry in metadata_by_seqid.values():
descriptions = entry['descriptions']
for i in reversed(range(len(descriptions))):
description = descriptions[i]
if 'Short' in description or 'Full' in description or 'EC=' in description:
if 'Short' in description or 'Full' in description:
j = description.find('=')
descriptions[i] = description[j + 1:].replace(';', '')
if 'description' not in entry:
entry['description'] = []
entry['description'].append(descriptions[i])
if 'EC=' in description:
j = description.find('=')
descriptions[i] = description[j + 1:].replace(';', '')
if '{' in descriptions[i]:
descriptions[i] = descriptions[i].split(' {')[0]
if 'ec' not in entry:
entry['ec'] = []
entry['ec'].append(descriptions[i])
else:
del descriptions[i]
return metadata_by_seqid
| mit |
karuppayya/zeppelin | python/src/main/resources/python/backend_zinline.py | 61 | 11831 | # Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file provides a static (non-interactive) matplotlib plotting backend
# for zeppelin notebooks for use with the python/pyspark interpreters
from __future__ import print_function
import sys
import uuid
import warnings
import base64
from io import BytesIO
try:
from StringIO import StringIO
except ImportError:
from io import StringIO
import mpl_config
import matplotlib
from matplotlib._pylab_helpers import Gcf
from matplotlib.backends.backend_agg import new_figure_manager, FigureCanvasAgg
from matplotlib.backend_bases import ShowBase, FigureManagerBase
from matplotlib.figure import Figure
########################################################################
#
# The following functions and classes are for pylab and implement
# window/figure managers, etc...
#
########################################################################
class Show(ShowBase):
"""
A callable object that displays the figures to the screen. Valid kwargs
include figure width and height (in units supported by the div tag), block
(allows users to override blocking behavior regardless of whether or not
interactive mode is enabled, currently unused) and close (Implicitly call
matplotlib.pyplot.close('all') with each call to show()).
"""
def __call__(self, close=None, block=None, **kwargs):
if close is None:
close = mpl_config.get('close')
try:
managers = Gcf.get_all_fig_managers()
if not managers:
return
# Tell zeppelin that the output will be html using the %html magic
# We want to do this only once to avoid seeing "%html" printed
# directly to the outout when multiple figures are displayed from
# one paragraph.
if mpl_config.get('angular'):
print('%angular')
else:
print('%html')
# Show all open figures
for manager in managers:
manager.show(**kwargs)
finally:
# This closes all the figures if close is set to True.
if close and Gcf.get_all_fig_managers():
Gcf.destroy_all()
class FigureCanvasZInline(FigureCanvasAgg):
"""
The canvas the figure renders into. Calls the draw and print fig
methods, creates the renderers, etc...
"""
def get_bytes(self, **kwargs):
"""
Get the byte representation of the figure.
Should only be used with jpg/png formats.
"""
# Make sure format is correct
fmt = kwargs.get('format', mpl_config.get('format'))
if fmt == 'svg':
raise ValueError("get_bytes() does not support svg, use png or jpg")
# Express the image as bytes
buf = BytesIO()
self.print_figure(buf, **kwargs)
fmt = fmt.encode()
if sys.version_info >= (3, 4) and sys.version_info < (3, 5):
byte_str = bytes("data:image/%s;base64," %fmt, "utf-8")
else:
byte_str = b"data:image/%s;base64," %fmt
byte_str += base64.b64encode(buf.getvalue())
# Python3 forces all strings to default to unicode, but for raster image
# formats (eg png, jpg), we want to work with bytes. Thus this step is
# needed to ensure compatability for all python versions.
byte_str = byte_str.decode('ascii')
buf.close()
return byte_str
def get_svg(self, **kwargs):
"""
Get the svg representation of the figure.
Should only be used with svg format.
"""
# Make sure format is correct
fmt = kwargs.get('format', mpl_config.get('format'))
if fmt != 'svg':
raise ValueError("get_svg() does not support png or jpg, use svg")
# For SVG the data string has to be unicode, not bytes
buf = StringIO()
self.print_figure(buf, **kwargs)
svg_str = buf.getvalue()
buf.close()
return svg_str
def draw_idle(self, *args, **kwargs):
"""
Called when the figure gets updated (eg through a plotting command).
This is overriden to allow open figures to be reshown after they
are updated when mpl_config.get('close') is False.
"""
if not self._is_idle_drawing:
with self._idle_draw_cntx():
self.draw(*args, **kwargs)
draw_if_interactive()
class FigureManagerZInline(FigureManagerBase):
"""
Wrap everything up into a window for the pylab interface
"""
def __init__(self, canvas, num):
FigureManagerBase.__init__(self, canvas, num)
self.fig_id = "figure_{0}".format(uuid.uuid4().hex)
self._shown = False
def angular_bind(self, **kwargs):
"""
Bind figure data to Zeppelin's Angular Object Registry.
If mpl_config("angular") is True and PY4J is supported, this allows
for the possibility to interactively update a figure from a separate
paragraph without having to display it multiple times.
"""
# This doesn't work for SVG so make sure it's not our format
fmt = kwargs.get('format', mpl_config.get('format'))
if fmt == 'svg':
return
# Get the figure data as a byte array
src = self.canvas.get_bytes(**kwargs)
# Flag to determine whether or not to use
# zeppelin's angular display system
angular = mpl_config.get('angular')
# ZeppelinContext instance (requires PY4J)
context = mpl_config.get('context')
# Finally we must ensure that automatic closing is set to False,
# as otherwise using the angular display system is pointless
close = mpl_config.get('close')
# If above conditions are met, bind the figure data to
# the Angular Object Registry.
if not close and angular:
if hasattr(context, 'angularBind'):
# Binding is performed through figure ID to ensure this works
# if multiple figures are open
context.angularBind(self.fig_id, src)
# Zeppelin will automatically replace this value even if it
# is updated from another pargraph thanks to the {{}} notation
src = "{{%s}}" %self.fig_id
else:
warnings.warn("Cannot bind figure to Angular Object Registry. "
"Check if PY4J is installed.")
return src
def angular_unbind(self):
"""
Unbind figure from angular display system.
"""
context = mpl_config.get('context')
if hasattr(context, 'angularUnbind'):
context.angularUnbind(self.fig_id)
def destroy(self):
"""
Called when close=True or implicitly by pyplot.close().
Overriden to automatically clean up the angular object registry.
"""
self.angular_unbind()
def show(self, **kwargs):
if not self._shown:
zdisplay(self.canvas.figure, **kwargs)
else:
self.canvas.draw_idle()
self.angular_bind(**kwargs)
self._shown = True
def draw_if_interactive():
"""
If interactive mode is on, this allows for updating properties of
the figure when each new plotting command is called.
"""
manager = Gcf.get_active()
interactive = matplotlib.is_interactive()
angular = mpl_config.get('angular')
# Don't bother continuing if we aren't in interactive mode
# or if there are no active figures. Also pointless to continue
# in angular mode as we don't want to reshow the figure.
if not interactive or angular or manager is None:
return
# Allow for figure to be reshown if close is false since
# this function call implies that it has been updated
if not mpl_config.get('close'):
manager._shown = False
def new_figure_manager(num, *args, **kwargs):
"""
Create a new figure manager instance
"""
# if a main-level app must be created, this (and
# new_figure_manager_given_figure) is the usual place to
# do it -- see backend_wx, backend_wxagg and backend_tkagg for
# examples. Not all GUIs require explicit instantiation of a
# main-level app (egg backend_gtk, backend_gtkagg) for pylab
FigureClass = kwargs.pop('FigureClass', Figure)
thisFig = FigureClass(*args, **kwargs)
return new_figure_manager_given_figure(num, thisFig)
def new_figure_manager_given_figure(num, figure):
"""
Create a new figure manager instance for the given figure.
"""
canvas = FigureCanvasZInline(figure)
manager = FigureManagerZInline(canvas, num)
return manager
########################################################################
#
# Backend specific functions
#
########################################################################
def zdisplay(fig, **kwargs):
"""
Publishes a matplotlib figure to the notebook paragraph output.
"""
# kwargs can be width or height (in units supported by div tag)
width = kwargs.pop('width', 'auto')
height = kwargs.pop('height', 'auto')
fmt = kwargs.get('format', mpl_config.get('format'))
# Check if format is supported
supported_formats = mpl_config.get('supported_formats')
if fmt not in supported_formats:
raise ValueError("Unsupported format %s" %fmt)
# For SVG the data string has to be unicode, not bytes
if fmt == 'svg':
img = fig.canvas.get_svg(**kwargs)
# This is needed to ensure the SVG image is the correct size.
# We should find a better way to do this...
width = '{}px'.format(mpl_config.get('width'))
height = '{}px'.format(mpl_config.get('height'))
else:
# Express the image as bytes
src = fig.canvas.manager.angular_bind(**kwargs)
img = "<img src={src} style='width={width};height:{height}'>"
img = img.format(src=src, width=width, height=height)
# Print the image to the notebook paragraph via the %html magic
html = "<div style='width:{width};height:{height}'>{img}<div>"
print(html.format(width=width, height=height, img=img))
def displayhook():
"""
Called post paragraph execution if interactive mode is on
"""
if matplotlib.is_interactive():
show()
########################################################################
#
# Now just provide the standard names that backend.__init__ is expecting
#
########################################################################
# Create a reference to the show function we are using. This is what actually
# gets called by matplotlib.pyplot.show().
show = Show()
# Default FigureCanvas and FigureManager classes to use from the backend
FigureCanvas = FigureCanvasZInline
FigureManager = FigureManagerZInline
| apache-2.0 |
Lyleo/nupic | external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_wxagg.py | 70 | 9051 | from __future__ import division
"""
backend_wxagg.py
A wxPython backend for Agg. This uses the GUI widgets written by
Jeremy O'Donoghue ([email protected]) and the Agg backend by John
Hunter ([email protected])
Copyright (C) 2003-5 Jeremy O'Donoghue, John Hunter, Illinois Institute of
Technology
License: This work is licensed under the matplotlib license( PSF
compatible). A copy should be included with this source code.
"""
import wx
import matplotlib
from matplotlib.figure import Figure
from backend_agg import FigureCanvasAgg
import backend_wx
from backend_wx import FigureManager, FigureManagerWx, FigureCanvasWx, \
FigureFrameWx, DEBUG_MSG, NavigationToolbar2Wx, error_msg_wx, \
draw_if_interactive, show, Toolbar, backend_version
class FigureFrameWxAgg(FigureFrameWx):
def get_canvas(self, fig):
return FigureCanvasWxAgg(self, -1, fig)
def _get_toolbar(self, statbar):
if matplotlib.rcParams['toolbar']=='classic':
toolbar = NavigationToolbarWx(self.canvas, True)
elif matplotlib.rcParams['toolbar']=='toolbar2':
toolbar = NavigationToolbar2WxAgg(self.canvas)
toolbar.set_status_bar(statbar)
else:
toolbar = None
return toolbar
class FigureCanvasWxAgg(FigureCanvasAgg, FigureCanvasWx):
"""
The FigureCanvas contains the figure and does event handling.
In the wxPython backend, it is derived from wxPanel, and (usually)
lives inside a frame instantiated by a FigureManagerWx. The parent
window probably implements a wxSizer to control the displayed
control size - but we give a hint as to our preferred minimum
size.
"""
def draw(self, drawDC=None):
"""
Render the figure using agg.
"""
DEBUG_MSG("draw()", 1, self)
FigureCanvasAgg.draw(self)
self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None)
self._isDrawn = True
self.gui_repaint(drawDC=drawDC)
def blit(self, bbox=None):
"""
Transfer the region of the agg buffer defined by bbox to the display.
If bbox is None, the entire buffer is transferred.
"""
if bbox is None:
self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None)
self.gui_repaint()
return
l, b, w, h = bbox.bounds
r = l + w
t = b + h
x = int(l)
y = int(self.bitmap.GetHeight() - t)
srcBmp = _convert_agg_to_wx_bitmap(self.get_renderer(), None)
srcDC = wx.MemoryDC()
srcDC.SelectObject(srcBmp)
destDC = wx.MemoryDC()
destDC.SelectObject(self.bitmap)
destDC.BeginDrawing()
destDC.Blit(x, y, int(w), int(h), srcDC, x, y)
destDC.EndDrawing()
destDC.SelectObject(wx.NullBitmap)
srcDC.SelectObject(wx.NullBitmap)
self.gui_repaint()
filetypes = FigureCanvasAgg.filetypes
def print_figure(self, filename, *args, **kwargs):
# Use pure Agg renderer to draw
FigureCanvasAgg.print_figure(self, filename, *args, **kwargs)
# Restore the current view; this is needed because the
# artist contains methods rely on particular attributes
# of the rendered figure for determining things like
# bounding boxes.
if self._isDrawn:
self.draw()
class NavigationToolbar2WxAgg(NavigationToolbar2Wx):
def get_canvas(self, frame, fig):
return FigureCanvasWxAgg(frame, -1, fig)
def new_figure_manager(num, *args, **kwargs):
"""
Create a new figure manager instance
"""
# in order to expose the Figure constructor to the pylab
# interface we need to create the figure here
DEBUG_MSG("new_figure_manager()", 3, None)
backend_wx._create_wx_app()
FigureClass = kwargs.pop('FigureClass', Figure)
fig = FigureClass(*args, **kwargs)
frame = FigureFrameWxAgg(num, fig)
figmgr = frame.get_figure_manager()
if matplotlib.is_interactive():
figmgr.frame.Show()
return figmgr
#
# agg/wxPython image conversion functions (wxPython <= 2.6)
#
def _py_convert_agg_to_wx_image(agg, bbox):
"""
Convert the region of the agg buffer bounded by bbox to a wx.Image. If
bbox is None, the entire buffer is converted.
Note: agg must be a backend_agg.RendererAgg instance.
"""
image = wx.EmptyImage(int(agg.width), int(agg.height))
image.SetData(agg.tostring_rgb())
if bbox is None:
# agg => rgb -> image
return image
else:
# agg => rgb -> image => bitmap => clipped bitmap => image
return wx.ImageFromBitmap(_clipped_image_as_bitmap(image, bbox))
def _py_convert_agg_to_wx_bitmap(agg, bbox):
"""
Convert the region of the agg buffer bounded by bbox to a wx.Bitmap. If
bbox is None, the entire buffer is converted.
Note: agg must be a backend_agg.RendererAgg instance.
"""
if bbox is None:
# agg => rgb -> image => bitmap
return wx.BitmapFromImage(_py_convert_agg_to_wx_image(agg, None))
else:
# agg => rgb -> image => bitmap => clipped bitmap
return _clipped_image_as_bitmap(
_py_convert_agg_to_wx_image(agg, None),
bbox)
def _clipped_image_as_bitmap(image, bbox):
"""
Convert the region of a wx.Image bounded by bbox to a wx.Bitmap.
"""
l, b, width, height = bbox.get_bounds()
r = l + width
t = b + height
srcBmp = wx.BitmapFromImage(image)
srcDC = wx.MemoryDC()
srcDC.SelectObject(srcBmp)
destBmp = wx.EmptyBitmap(int(width), int(height))
destDC = wx.MemoryDC()
destDC.SelectObject(destBmp)
destDC.BeginDrawing()
x = int(l)
y = int(image.GetHeight() - t)
destDC.Blit(0, 0, int(width), int(height), srcDC, x, y)
destDC.EndDrawing()
srcDC.SelectObject(wx.NullBitmap)
destDC.SelectObject(wx.NullBitmap)
return destBmp
#
# agg/wxPython image conversion functions (wxPython >= 2.8)
#
def _py_WX28_convert_agg_to_wx_image(agg, bbox):
"""
Convert the region of the agg buffer bounded by bbox to a wx.Image. If
bbox is None, the entire buffer is converted.
Note: agg must be a backend_agg.RendererAgg instance.
"""
if bbox is None:
# agg => rgb -> image
image = wx.EmptyImage(int(agg.width), int(agg.height))
image.SetData(agg.tostring_rgb())
return image
else:
# agg => rgba buffer -> bitmap => clipped bitmap => image
return wx.ImageFromBitmap(_WX28_clipped_agg_as_bitmap(agg, bbox))
def _py_WX28_convert_agg_to_wx_bitmap(agg, bbox):
"""
Convert the region of the agg buffer bounded by bbox to a wx.Bitmap. If
bbox is None, the entire buffer is converted.
Note: agg must be a backend_agg.RendererAgg instance.
"""
if bbox is None:
# agg => rgba buffer -> bitmap
return wx.BitmapFromBufferRGBA(int(agg.width), int(agg.height),
agg.buffer_rgba(0, 0))
else:
# agg => rgba buffer -> bitmap => clipped bitmap
return _WX28_clipped_agg_as_bitmap(agg, bbox)
def _WX28_clipped_agg_as_bitmap(agg, bbox):
"""
Convert the region of a the agg buffer bounded by bbox to a wx.Bitmap.
Note: agg must be a backend_agg.RendererAgg instance.
"""
l, b, width, height = bbox.get_bounds()
r = l + width
t = b + height
srcBmp = wx.BitmapFromBufferRGBA(int(agg.width), int(agg.height),
agg.buffer_rgba(0, 0))
srcDC = wx.MemoryDC()
srcDC.SelectObject(srcBmp)
destBmp = wx.EmptyBitmap(int(width), int(height))
destDC = wx.MemoryDC()
destDC.SelectObject(destBmp)
destDC.BeginDrawing()
x = int(l)
y = int(int(agg.height) - t)
destDC.Blit(0, 0, int(width), int(height), srcDC, x, y)
destDC.EndDrawing()
srcDC.SelectObject(wx.NullBitmap)
destDC.SelectObject(wx.NullBitmap)
return destBmp
def _use_accelerator(state):
"""
Enable or disable the WXAgg accelerator, if it is present and is also
compatible with whatever version of wxPython is in use.
"""
global _convert_agg_to_wx_image
global _convert_agg_to_wx_bitmap
if getattr(wx, '__version__', '0.0')[0:3] < '2.8':
# wxPython < 2.8, so use the C++ accelerator or the Python routines
if state and _wxagg is not None:
_convert_agg_to_wx_image = _wxagg.convert_agg_to_wx_image
_convert_agg_to_wx_bitmap = _wxagg.convert_agg_to_wx_bitmap
else:
_convert_agg_to_wx_image = _py_convert_agg_to_wx_image
_convert_agg_to_wx_bitmap = _py_convert_agg_to_wx_bitmap
else:
# wxPython >= 2.8, so use the accelerated Python routines
_convert_agg_to_wx_image = _py_WX28_convert_agg_to_wx_image
_convert_agg_to_wx_bitmap = _py_WX28_convert_agg_to_wx_bitmap
# try to load the WXAgg accelerator
try:
import _wxagg
except ImportError:
_wxagg = None
# if it's present, use it
_use_accelerator(True)
| gpl-3.0 |
leejz/meta-omics-scripts | generate_kgml_graphics.py | 1 | 13581 | #!/usr/bin/env python
"""
--------------------------------------------------------------------------------
Created: Jackson Lee 9/29/14
This script reads in a tab delimited combined coverage file from
consolidate_coverage.py of phylogeny, protein classifications, and annotations
uses the biopython KGML libraries to generate graphics of KEGG pathways.
Input file:
Phylogeny Organism Protein Classification RPKM1 RPKM2 ...
2 H. Monster Function|K00003 4211.629513 ...
2 H. Monster Function|K00012 2752.574388
3 ... ...
Output
A series of mapping files for each bin over each time point
--------------------------------------------------------------------------------
usage: generate_kgml_graphics.py -i in.file -d out.directory
"""
#-------------------------------------------------------------------------------
#
#
#Code from: http://armchairbiology.blogspot.co.uk/2013/02/keggwatch-part-iii.html
#Generating KEGG maps example 2
#-------------------------------------------------------------------------------
#Header - Linkers, Libs, Constants
from string import strip
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import pandas as pd
import os
import bisect
from numpy import log10, arange
import KGML_parser
from KGML_scrape import retrieve_KEGG_pathway
from KGML_vis import KGMLCanvas
from Bio.Graphics import ColorSpiral
# List of 2010 IDs for metabolic pathways
metabolic = ["ko00010", "ko00020", "ko00030", "ko00040", "ko00051", "ko00052",
"ko00053", "ko00061", "ko00062", "ko00071", "ko00072", "ko00100",
"ko00120", "ko00121", "ko00130", "ko00140", "ko00190", "ko00195",
"ko00196", "ko00230", "ko00231", "ko00232", "ko00240", "ko00250",
"ko00253", "ko00260", "ko00270", "ko00280", "ko00281", "ko00290",
"ko00300", "ko00310", "ko00311", "ko00312", "ko00330", "ko00331",
"ko00340", "ko00350", "ko00351", "ko00360", "ko00361", "ko00362",
"ko00363", "ko00364", "ko00380", "ko00400", "ko00401", "ko00402",
"ko00410", "ko00430", "ko00440", "ko00450", "ko00460", "ko00471",
"ko00472", "ko00473", "ko00480", "ko00500", "ko00510", "ko00511",
"ko00512", "ko00513", "ko00514", "ko00520", "ko00521", "ko00522",
"ko00523", "ko00524", "ko00531", "ko00532", "ko00533", "ko00534",
"ko00540", "ko00550", "ko00561", "ko00562", "ko00563", "ko00564",
"ko00565", "ko00590", "ko00591", "ko00592", "ko00600", "ko00601",
"ko00603", "ko00604", "ko00620", "ko00621", "ko00622", "ko00623",
"ko00624", "ko00625", "ko00626", "ko00627", "ko00630", "ko00633",
"ko00640", "ko00642", "ko00643", "ko00650", "ko00660", "ko00670",
"ko00680", "ko00710", "ko00720", "ko00730", "ko00740", "ko00750",
"ko00760", "ko00770", "ko00780", "ko00785", "ko00790", "ko00791",
"ko00830", "ko00860", "ko00900", "ko00901", "ko00902", "ko00903",
"ko00904", "ko00905", "ko00906", "ko00908", "ko00909", "ko00910",
"ko00920", "ko00930", "ko00940", "ko00941", "ko00942", "ko00943",
"ko00944", "ko00945", "ko00950", "ko00960", "ko00965", "ko00966",
"ko00970", "ko00980", "ko00981", "ko00982", "ko00983", "ko01040",
"ko01051", "ko01053", "ko01055", "ko01056", "ko01057", "ko01058",
"ko01100", "ko01110", "ko01120", "ko04070"]
# List of 2010 IDs for non-metabolic pathways
non_metabolic = ["ko02010", "ko02020", "ko02030", "ko02040", "ko02060",
"ko03008", "ko03010", "ko03013", "ko03015", "ko03018",
"ko03020", "ko03022", "ko03030", "ko03040", "ko03050",
"ko03060", "ko03070", "ko03320", "ko03410", "ko03420",
"ko03430", "ko03440", "ko03450", "ko04010", "ko04011",
"ko04012", "ko04013", "ko04020", "ko04060", "ko04062",
"ko04070", "ko04075", "ko04080", "ko04110", "ko04111",
"ko04112", "ko04113", "ko04114", "ko04115", "ko04120",
"ko04122", "ko04130", "ko04140", "ko04141", "ko04142",
"ko04144", "ko04145", "ko04146", "ko04150", "ko04210",
"ko04260", "ko04270", "ko04310", "ko04320", "ko04330",
"ko04340", "ko04350", "ko04360", "ko04370", "ko04380",
"ko04510", "ko04512", "ko04514", "ko04520", "ko04530",
"ko04540", "ko04610", "ko04612", "ko04614", "ko04620",
"ko04621", "ko04622", "ko04623", "ko04626", "ko04630",
"ko04640", "ko04650", "ko04660", "ko04662", "ko04664",
"ko04666", "ko04670", "ko04672", "ko04710", "ko04711",
"ko04712", "ko04720", "ko04722", "ko04730", "ko04740",
"ko04742", "ko04744", "ko04745", "ko04810", "ko04910",
"ko04912", "ko04914", "ko04916", "ko04920", "ko04930",
"ko04940", "ko04950", "ko04960", "ko04961", "ko04962",
"ko04964", "ko04966", "ko04970", "ko04971", "ko04972",
"ko04973", "ko04974", "ko04975", "ko04976", "ko04977",
"ko04978", "ko05010", "ko05012", "ko05014", "ko05016",
"ko05020", "ko05100", "ko05110", "ko05111", "ko05120",
"ko05130", "ko05131", "ko05140", "ko05142", "ko05143",
"ko05144", "ko05145", "ko05146", "ko05150", "ko05152",
"ko05160", "ko05162", "ko05200", "ko05210", "ko05211",
"ko05212", "ko05213", "ko05214", "ko05215", "ko05216",
"ko05217", "ko05218", "ko05219", "ko05220", "ko05221",
"ko05222", "ko05223", "ko05310", "ko05320", "ko05322",
"ko05323", "ko05330", "ko05332", "ko05340", "ko05410",
"ko05412", "ko05414", "ko05416"]
#all_kegg = metabolic + non_metabolic
#essential
all_kegg = ["ko00010", "ko00020", "ko00030", "ko00040", "ko00051", "ko00052", "ko00053", "ko00061", "ko00071", "ko00190", "ko00195", "ko00196", "ko00230", "ko00240", "ko00250", "ko00260", "ko00270", "ko00500", "ko00510", "ko00520", "ko00562", "ko00620", "ko00625", "ko00630", "ko00640", "ko00650", "ko00660", "ko00680", "ko00710", "ko00720", "ko00910", "ko00920", "ko01100", "ko01110", "ko01120", "ko02010", "ko02020", "ko02060", "ko03070", "ko04710"]
#for bin 27
#all_kegg = ["ko00010", "ko00020", "ko00030", "ko00190", "ko00195", "ko00620", "ko00630", "ko00640", "ko00650", "ko00660", "ko00680", "ko00720", "ko00910", "ko00920", "ko01100", "ko01110", "ko01120", "ko02010", "ko02020", "ko03070", "ko04122"]
#bare set
#all_kegg = ["ko00010", "ko00020", "ko01100", "ko01110", "ko01120"]
#-------------------------------------------------------------------------------
#function declarations
#-------------------------------------------------------------------------------
#Body
print "Running..."
if __name__ == '__main__':
parser = ArgumentParser(usage = "generate_kgml_graphics.py -i in.file -d \
out.directory",
description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument("-i", "--input_file", action="store",
dest="inputfilename", help="text input file")
parser.add_argument("-d", "--output_directory", action="store",
dest="outputdirectory", help="text output file")
parser.add_argument("-K", "--KEGG_directory", action="store",
dest="KEGGdirectory", help="path to KEGG kgml files")
options = parser.parse_args()
mandatories = ["inputfilename","outputdirectory", "KEGGdirectory"]
for m in mandatories:
if not options.__dict__[m]:
print "\nError: Missing Arguments\n"
parser.print_help()
exit(-1)
outputdirectory = options.outputdirectory
inputfilename = options.inputfilename
keggdir = options.KEGGdirectory
if not os.path.exists(outputdirectory):
os.makedirs(outputdirectory)
else:
print "\nError: Directory exists!\n"
parser.print_help()
exit(-1)
print "Reading in datafile..."
with open(inputfilename,'U') as infile:
combined = pd.read_csv(infile, header=0, sep='\t')
infile.close()
combined.columns = ["Phylogeny", "Organism", "Protein Classification"] + combined.columns.tolist()[3:]
combined["Protein Classification"] = combined["Protein Classification"].str.replace('^.*\|', '')
rpkm_columns = combined.columns[3:]
log10_columns = [column_name + '_log10' for column_name in rpkm_columns]
combined[log10_columns] = combined[rpkm_columns].applymap(lambda x: log10(float(x)) if float(x) > 0 else 0)
bin_list = list(combined.Phylogeny.unique())
bin_list.sort()
#cs = ColorSpiral(a=2, b=0.2, v_init=0.85, v_final=0.5, jitter=0.03)
print "Generating graphics..."
for bin in bin_list:
working_df = combined[combined.Phylogeny == bin]
os.makedirs(outputdirectory + '/' + str(bin))
#.reindex(index='Protein Classification')
for timepoint, label in zip(log10_columns,rpkm_columns):
# find rpkm ranges and set color palette
min_rpkm = working_df[working_df[timepoint] != 0][timepoint].min()
max_rpkm = working_df[working_df[timepoint] != 0][timepoint].max()
cutoff_rpkm = working_df[working_df[timepoint] != 0][timepoint].median()
color_range = arange(min_rpkm, max_rpkm, (max_rpkm-min_rpkm)/100)
color_dict = ColorSpiral.get_color_dict(color_range, a=6, b=0.7, v_init=0.7, v_final=0.55, jitter=0.00)
print 'Generating ' + outputdirectory + '/' + str(bin) + '/' + str(bin) + '.' + label
for map in all_kegg:
outfilename = outputdirectory + '/' + str(bin) + '/' + str(bin) + '.' + label + '.' + map + '.pdf'
#print 'Opening ' + keggdir + '/' + map + '.kgml'
pathway = KGML_parser.read(open(keggdir + '/' + map + '.kgml', 'U'))
kgml_map = KGMLCanvas(pathway, show_maps=False)
kgml_map.fontsize = 9
special_maps = ['ko01100','ko01110','ko01120']
if pathway.name.split('path:')[1] in special_maps:
entries = [e for e in pathway.orthologs]
for entry in entries:
ename = entry.name.split('ko:')[1:]
ename = [i[:6].lower() for i in ename]
erpkm = working_df.loc[working_df["Protein Classification"].isin(ename),label].sum()
if erpkm >= 0:
erpkm = log10(erpkm)
if erpkm < min_rpkm:
#print oname
for g in entry.graphics:
g.fgcolor = '#CCCCCC'
g.width = .4
else:
for g in entry.graphics:
g.width = 2
if erpkm > cutoff_rpkm:
for g in entry.graphics:
g.width = 10
kgml_map.show_colorbar_legend = False
kgml_map.import_imagemap = False
kgml_map.show_maps = True
else:
kgml_map.set_colorbar_legend(minmax=['1e%.2f' % min_rpkm,'1e%.2f' % max_rpkm], wh_dims = [60.0, 5.0], xypos= [35.0, 5.0], color_dict=color_dict)
orthologs = [e for e in pathway.orthologs]
for ortholog in orthologs:
oname = ortholog.name.split('ko:')[1:]
oname = [i[:6].lower() for i in oname]
orpkm = working_df.loc[working_df["Protein Classification"].isin(oname),label].sum()
if orpkm != 0:
orpkm = log10(orpkm)
if orpkm > max_rpkm:
orpkm = max_rpkm
if orpkm <= 0:
orpkm = min_rpkm
if bisect.bisect_left(color_range, orpkm) > len(color_range)-1:
ocolor = color_dict[color_range[-1]]
else:
ocolor = color_dict[color_range[bisect.bisect_left(color_range, orpkm)]]
for element in ortholog.graphics:
element.bgcolor = ocolor
# set figure display attributes
kgml_map.import_imagemap = True
#kgml_map.show_maps = True
kgml_map.show_maps = False
#kgml_map.show_orthologs = False
kgml_map.draw_relations = False
kgml_map.show_compounds = False
#kgml_map.show_genes = False
# And rendering elements as an overlay
#kgml_map.show_compounds = True
kgml_map.show_genes = True
kgml_map.show_orthologs = True
# Default settings are for the KGML elements only
kgml_map.draw(outfilename)
print "Done!"
| mit |
eteq/bokeh | bokeh/charts/builder/tests/test_area_builder.py | 33 | 3666 | """ This is the Bokeh charts testing interface.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved.
#
# Powered by the Bokeh Development Team.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
from __future__ import absolute_import
from collections import OrderedDict
import unittest
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
import pandas as pd
from bokeh.charts import Area
from bokeh.models import DataRange1d, Range1d
from bokeh.charts.builder.tests._utils import create_chart
#-----------------------------------------------------------------------------
# Classes and functions
#-----------------------------------------------------------------------------
class TestAreaBuilder(unittest.TestCase):
def test_supported_input(self):
xyvalues = OrderedDict(
python=[2, 3, 7, 5, 26],
pypy=[12, 33, 47, 15, 126],
jython=[22, 43, 10, 25, 26],
)
# prepare some data to check tests results...
zeros = np.zeros(5)
x = np.array([4,3,2,1,0,0,1,2,3,4])
y_jython = np.hstack((zeros, np.array(xyvalues['jython'])))
y_pypy = np.hstack((zeros, np.array(xyvalues['pypy'])))
y_python = np.hstack((zeros, np.array(xyvalues['python'])))
data_keys = ['x', 'y_jython', 'y_pypy', 'y_python']
for _xy in [xyvalues, dict(xyvalues), pd.DataFrame(xyvalues)]:
area = create_chart(Area, _xy)
builder = area._builders[0]
self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys())))
self.assertListEqual(sorted(builder._data.keys()), data_keys)
assert_array_equal(builder._data['x'], x)
assert_array_equal(builder._data['y_jython'], y_jython)
assert_array_equal(builder._data['y_pypy'], y_pypy)
assert_array_equal(builder._data['y_python'], y_python)
self.assertIsInstance(area.x_range, DataRange1d)
self.assertIsInstance(area.y_range, Range1d)
assert_array_almost_equal(area.y_range.start, -12.6, decimal=4)
assert_array_almost_equal(area.y_range.end, 138.6, decimal=4)
self.assertEqual(builder._source._data, builder._data)
data_keys = ['x', 'y_0', 'y_1', 'y_2']
lvalues = [[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]]
y_0, y_1, y_2 = y_python, y_pypy, y_jython
for _xy in [lvalues, np.array(lvalues)]:
area = create_chart(Area, _xy)
builder = area._builders[0]
self.assertEqual(builder._groups, ['0', '1', '2'])
self.assertListEqual(sorted(builder._data.keys()), data_keys)
assert_array_equal(builder._data['x'], x)
assert_array_equal(builder._data['y_0'], y_0)
assert_array_equal(builder._data['y_1'], y_1)
assert_array_equal(builder._data['y_2'], y_2)
self.assertIsInstance(area.x_range, DataRange1d)
self.assertIsInstance(area.y_range, Range1d)
assert_array_almost_equal(area.y_range.start, -12.6, decimal=4)
assert_array_almost_equal(area.y_range.end, 138.6, decimal=4)
self.assertEqual(builder._source._data, builder._data)
| bsd-3-clause |
huzq/scikit-learn | examples/manifold/plot_swissroll.py | 20 | 1277 | """
===================================
Swiss Roll reduction with LLE
===================================
An illustration of Swiss Roll reduction
with locally linear embedding
"""
# Author: Fabian Pedregosa -- <[email protected]>
# License: BSD 3 clause (C) INRIA 2011
print(__doc__)
import matplotlib.pyplot as plt
# This import is needed to modify the way figure behaves
from mpl_toolkits.mplot3d import Axes3D
Axes3D
#----------------------------------------------------------------------
# Locally linear embedding of the swiss roll
from sklearn import manifold, datasets
X, color = datasets.make_swiss_roll(n_samples=1500)
print("Computing LLE embedding")
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12,
n_components=2)
print("Done. Reconstruction error: %g" % err)
#----------------------------------------------------------------------
# Plot result
fig = plt.figure()
ax = fig.add_subplot(211, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)
ax.set_title("Original data")
ax = fig.add_subplot(212)
ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral)
plt.axis('tight')
plt.xticks([]), plt.yticks([])
plt.title('Projected data')
plt.show()
| bsd-3-clause |
Caseyftw/astronet | astronet/visualization/base.py | 1 | 19717 | '''
Created on 26.07.2016
@author: Fabian Gieseke, Cas van den Bogaard
'''
#import matplotlib
#matplotlib.use('Agg')
import os
import numpy as np
import theano
import theano.tensor as T
from lasagne.layers import get_output
from itertools import product
from mpl_toolkits.mplot3d.axes3d import Axes3D
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt
from matplotlib import cm
from sklearn_evaluation import plot as sklearnplot
from sklearn.metrics import matthews_corrcoef, accuracy_score, precision_score, recall_score, roc_curve
import matplotlib.ticker as ticker
from nolearn.lasagne.visualize import occlusion_heatmap, plot_conv_activity
from sklearn import metrics
import seaborn
import pandas
from .io import store_results, ensure_dir
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="matplotlib")
def _colorbar_fmt(x, pos):
fm = '% *d' % (5, x)
return fm
# TO DO:
# Allow both RGB images and a subplot for each layer.
def plot_image(img, ofname, titles=None, figsize=(10,5), mode="2d"):
""" Plots and saves a given image, one subplot for each dimension.
Parameters
----------
img : array-like
The image that is to be plotted.
ofname : string
Filename for the output image.
titles : list, default None
A list of strings that are used as title for each
of the plotted dimensions.
figsize: tuple, default (10,5)
Size of the output figure.
mode : string
Mode of plotting. Either '2d' or '3d'.
"""
assert mode in ["2d", "3d"]
fig = plt.figure(tight_layout=True, figsize=figsize)
for i in range(img.shape[0]):
if mode == "3d":
ax = fig.add_subplot(1, img.shape[0], i + 1, projection='3d')
X, Y = np.meshgrid(np.arange(img.shape[1]), np.arange(img.shape[2]))
surf = ax.plot_surface(X, Y, img[i, :, :], rstride=1, cstride=1,
cmap=cm.coolwarm, linewidth=0, antialiased=False)
ax.view_init(15, 15)
if titles is not None:
ax.set_title(titles[i])
elif mode == "2d":
ax = fig.add_subplot(1, img.shape[0], i + 1)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
if titles is not None:
ax.set_title(titles[i])
im = ax.imshow(img[i,:,:])
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax, format=ticker.FuncFormatter(_colorbar_fmt))
else:
raise Exception("Unknown plotting mode: %s" % str(mode))
plt.savefig(ofname, bbox_inches='tight')
plt.close()
# TO DO:
# Add plot_loss and draw_to_file
class PlotHandler():
""" Class that helps with the plotting of graphs
after testing of the performance.
Parameters
----------
plots : list
List of tuples, the first value being the
name of the plotting method, the second a
dictionary of parameters for that method.
Example:
plots = [
('confusion', {}),
('roc', {'title': "ROC-curve"}),
]
preds : array-like
Class predictions that the model has made.
preds_proba : array-like
Prediction probabilities that the model
has made.
y_test : array-like
True labels for the test patterns.
X_test : array-like
The test patterns.
indices_test : array-like
model : AstroWrapper
The AstroWrapper model used to make these predictions.
odir : string
Relative path to the output directory.
verbose: integer, default 0
Verbosity level.
"""
def __init__(self, plots, preds, preds_proba, y_test, X_test, indices_test, model, odir, verbose=0):
self._methods = {
"confusion": self.confusion,
"roc": self.roc,
"occlusion": self.occlusion,
"conv weights": self.conv_weights,
"conv activation": self.conv_activation,
"misses": self.misses,
}
self.preds = preds
self.preds_proba = preds_proba
self.y_test = y_test
self.X_test = X_test
self.indices_test = indices_test
self.model = model
self.network = model.model
self.odir = odir
self.plots = plots
self.verbose = verbose
self.X_test_trans, self.y_test_trans = self.model.ABI_test.transform(self.X_test, self.y_test)
def plot(self):
""" Method to calls all selected plot methods.
"""
for pl in self.plots:
self._methods[pl[0]](pl[1], self.odir, self.verbose)
def confusion(self,args,odir,verbose):
""" Plots and saves the confusion matrix.
Only works for classification problems.
Parameters
----------
args : dictionary, default {}
Contains the key:value pairs for the
parameters of this plot:
'clabels': list, default ["Negative", "Positive"]
Labels for the negative and positive classes.
'ofname': string, default "confusion.png"
Name for the output file.
'figsize': tuple, default (10,10)
Size of the output figure.
'cmap': string, default "YlGnBu"
Name of the Seaborn color map that should be used.
odir : string
Relative path to the output directory.
verbose : integer, default 0
Verbosity level.
"""
clabels = args['clabels'] if 'clabels' in args else ["Negative", "Positive"]
ofname = args['ofname'] if 'ofname' in args else "confusion.png"
figsize = args['figsize'] if 'figsize' in args else (10,10)
cmap = args['cmap'] if 'cmap' in args else "YlGnBu"
cm = metrics.confusion_matrix(self.y_test, self.preds)
df_cm = pandas.DataFrame(cm, index=clabels, columns = clabels)
plt.figure(figsize=figsize)
seaborn.set(font_scale=6.5)
seaborn.heatmap(df_cm, annot=True, fmt="d", linewidths=.5, cmap=cmap, square=True, cbar=False)
plt.xlabel("Prediction")
plt.ylabel("True Class")
plt.savefig(os.path.join(odir,ofname), bbox_inches='tight')
plt.close()
def roc(self,args,odir,verbose):
""" Plots and saves the ROC curve.
Only works for classification problems.
Parameters
----------
args : dictionary, default {}
Contains the key:value pairs for the
parameters of this plot:
'pos_label': string or integer, default 1
Value of the label of the positive class
'ofname': string, default "confusion.png"
Name for the output file.
'title': string or None, default None
Title to be used in the plot. Set to
None for no title.
'figsize': tuple, default (10,10)
Size of the output figure.
odir : string
Relative path to the output directory.
verbose : integer, default 0
Verbosity level.
"""
pos_label = args['pos_label'] if 'pos_label' in args else 1
title = args['title'] if 'title' in args else None
ofname = args['ofname'] if 'ofname' in args else "roc.png"
figsize = args['figsize'] if 'figsize' in args else (10,10)
fpr, tpr, thres = roc_curve(self.y_test, self.preds_proba[:,pos_label], pos_label=pos_label)
plt.plot(fpr, tpr)
if title:
plt.title(title)
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.savefig(os.path.join(odir, ofname))
plt.close()
def occlusion(self,args,odir,verbose):
""" Computes and plots the occlusion heatmap.
This requires testing the image once for
every pixel and thus may be slow.
Parameters
----------
args : dictionary, default {}
Contains the key:value pairs for the
parameters of this plot:
'image_range': slice, default slice(0,1)
The indices of the images for which to
compute the occlusion heatmap.
'ofname': string, default "occlusion"
Name for the output files, without extension.
'title': string or None, default None
Title to be used in the plot. Set to
None for no title.
'figsize': tuple, default (10,10)
Size of the output figure.
'square_length': integer, default 5
Length of the sides of the square used
in the occlusion.
odir : string
Relative path to the output directory.
verbose : integer, default 0
Verbosity level.
"""
im_range = args['image_range'] if 'image_range' in args else slice(0,1)
title = args['title'] if 'title' in args else None
ofname = args['ofname'] if 'ofname' in args else "occlusion"
figsize = args['figsize'] if 'figsize' in args else (10,10)
length = args['square_length'] if 'square_length' in args else 5
imgs = self.X_test[im_range]
labels = self.y_test[im_range]
for i in range(len(labels)):
hm = occlusion_heatmap(self.network, imgs[i:i+1], labels[i], square_length=length)
fig = plt.figure(tight_layout=True, figsize=figsize)
for j in range(len(imgs[i])):
ax = fig.add_subplot(1, len(imgs[i])+1, j + 1)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
im = ax.imshow(imgs[i,j,:,:])
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax, format=ticker.FuncFormatter(_colorbar_fmt))
ax = fig.add_subplot(1, len(imgs[i])+1, len(imgs[i])+1)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
im = ax.imshow(hm, vmin=0, vmax=1)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
cbar = plt.colorbar(im, cax=cax)
cbar.set_ticks([0,0.2,0.4,0.6,0.8,1])
cbar.set_ticklabels([0,0.2,0.4,0.6,0.8,1])
plt.savefig(os.path.join(odir, ofname+str(i)+".png"), bbox_inches='tight')
plt.close()
def conv_weights(self,args,odir,verbose):
""" Plots the weights for a single
convolutional layer.
Parameters
----------
args : dictionary, default {}
Contains the key:value pairs for the
parameters of this plot:
'layer': integer, default 1
Index of the layer for which the weights
are plotted.
'ofname': string, default "occlusion"
Name for the output files, without extension.
'figsize': tuple, default (10,10)
Size of the output figure.
odir : string
Relative path to the output directory.
verbose : integer, default 0
Verbosity level.
"""
layer_i = args['layer'] if 'layer' in args else 1
ofname = args['ofname'] if 'ofname' in args else "weights"
figsize = args['figsize'] if 'figsize' in args else (10,10)
layer = self.network.layers_[layer_i]
W = layer.W.get_value()
shape = W.shape
nrows = np.ceil(np.sqrt(shape[0])).astype(int)
ncols = nrows
vmin = np.min(W)
vmax = np.max(W)
for feature_map in range(shape[1]):
fig, axes = plt.subplots(int(nrows), int(ncols), figsize=figsize, squeeze=False)
for i, ax in enumerate(axes.flatten()):
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
if i < shape[0]:
ax.set_title( str(round(W[i, feature_map].sum(), 3)), fontsize=10)
im = ax.imshow(W[i, feature_map], cmap='gray', interpolation='none', vmin=vmin, vmax=vmax)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
fig.savefig( os.path.join(odir, ofname+str(feature_map)+".png") )
def conv_activation(self,args,odir,verbose):
""" Plots the activations of a single
convolutional layer for a given image.
Parameters
----------
args : dictionary, default {}
Contains the key:value pairs for the
parameters of this plot:
'layer': integer, default 1
Index of the convolutional layer
for which the activations are plotted.
'image_index': integer, default 0
Index of the image for which the
activations are plotted.
'ofname': string, default "occlusion"
Name for the output file.
'figsize': tuple, default (10,10)
Size of the output figure.
odir : string
Relative path to the output directory.
verbose : integer, default 0
Verbosity level.
"""
layer_i = args['layer'] if 'layer' in args else 1
image_i = args['image index'] if 'image_index' in args else 0
ofname = args['ofname'] if 'ofname' in args else "activity.png"
figsize = args['figsize'] if 'figsize' in args else (10,10)
x = self.X_test_trans[image_i:image_i+1]
layer = self.network.layers_[layer_i]
if x.shape[0] != 1:
raise ValueError("Only one sample can be plotted at a time.")
# compile theano function
xs = T.tensor4('xs').astype(theano.config.floatX)
get_activity = theano.function([xs], get_output(layer, xs))
activity = get_activity(x)
shape = activity.shape
nrows = np.ceil(np.sqrt(shape[1])).astype(int)
ncols = nrows
fig, axes = plt.subplots(nrows + 1, ncols, figsize=figsize, squeeze=False)
for i in range(x.shape[1]):
axes[0, 1 + i].imshow(1 - x[0][i], cmap='Greys', interpolation='none')
axes[0, 1].set_title('before', fontsize=30)
axes[0, 2].set_title('after', fontsize=30)
axes[0, 3].set_title('diff', fontsize=30)
for ax in axes.flatten():
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
for i, (r, c) in enumerate(product(range(nrows), range(ncols))):
if i >= shape[1]:
break
ndim = activity[0][i].ndim
if ndim != 2:
raise ValueError("Wrong number of dimensions, image data should "
"have 2, instead got {}".format(ndim))
axes[r + 1, c].imshow(-activity[0][i], cmap='Greys', interpolation='none')
fig.savefig( os.path.join(odir, ofname) )
# TO DO:
# Make it so that RGB can be plotted in one image, instead of three
def misses(self,args,odir,verbose):
""" Plots all images for which the
predicted class is wrong.
Parameters
----------
args : dictionary, default {}
Contains the key:value pairs for the
parameters of this plot:
#fix
odir : string
Relative path to the output directory.
verbose : integer, default 0
Verbosity level.
"""
titles = args['image labels'] if 'image labels' in args else ["before", "after", "diff"]
mode = args['mode'] if 'mode' in args else '2d'
orig_indices = np.array(self.indices_test)
misclassifications = np.array(range(len(self.y_test)))
misclassifications = misclassifications[self.y_test != self.preds]
misclassifications_indices = orig_indices[self.y_test != self.preds]
if verbose > 0:
print("Number of test elements: %i" % len(self.y_test))
print("Misclassifications: %s" % str(misclassifications_indices))
print("Plotting misclassifications ...")
for i in xrange(len(misclassifications)):
index = misclassifications[i]
orig_index = misclassifications_indices[i]
ofname = os.path.join(odir, str(self.y_test[index]), str(orig_index) + ".png")
ensure_dir(ofname)
plot_image(self.X_test[index], ofname, titles=titles, mode=mode)
# TO DO:
# Test this function, add more metrics or ways to add metrics
def assess_performance(preds, y_test, odir, metrics, ofname='results.txt'):
results = {}
if 'MCC' in metrics:
results['MCC'] = matthews_corrcoef(y_test, preds)
if 'accuracy' in metrics:
results['accuracy'] = accuracy_score(y_test, preds)
if 'precision' in metrics:
results['precision'] = precision_score(y_test, preds)
if 'recall' in metrics:
results['recall'] = recall_score(y_test, preds)
with open(os.path.join(odir, ofname), 'a') as result_file:
for m in metrics:
result_file.write(m + ": " + str(results[m]))
if verbose>0:
print m, ": ", result[m]
# TO DO:
# Replace this with a plotting function
def assess_classification_performance(preds, y_test, odir, plots=None, X_test=None, indices_test=None, preds_proba=None, model=None, verbose=0):
""" Method for the calculation of performance metrics and
creating of selected plots.
Parameters
----------
preds : array-like
Class predictions that the model has made.
y_test : array-like
True labels for the test patterns.
odir : string
Relative path to the output directory.
plots : list or None, default None
List of tuples, the first value being the
name of the plotting method, the second a
dictionary of parameters for that method.
Example:
plots = [
('confusion', {}),
('roc', {'title': "ROC-curve"}),
]
Nothing is plotted when set to None.
X_test : array-like or None, default None
The test patterns, if necessary for plotting.
indices_test : array-like or None, default None
preds_proba : array-like
Prediction probabilities that the model
has made.
model : AstroWrapper
The AstroWrapper model used to make these predictions.
verbose: integer, default 0
Verbosity level.
"""
if plots:
plot_helper = PlotHelper(plots, preds, preds_proba, y_test, X_test, indices_test, model, odir)
plot_helper.plot(odir)
| gpl-2.0 |
cloudlakecho/remote-key-pod | rolling code.py | 1 | 1461 |
# from February 8 2017 to
# Malibu, California
# San Diego, California
# source patent US 6980655
# receiving rolling code
# reverse order of binary digits -> zero the most significant digit -> set initial trinary
# rolling code to zero -> subtract next highest power of three from rolling code ->
# result is bigger than zero -> increment next most significant digit of binary rolling code
# result is smaller or equal to zero -> add next highest power of three to rolling code ->
# next highest power of three
# making the rolling code
#
# Python 3.5 code
import numpy as np
import random
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from numpy import *
def run(total_bit):
each_digit = 0
rolling_code = []
for i in range(total_bit):
if random.random() > 0.5:
each_digit = random.randint(65, 91)
else:
each_digit = random.randint(97, 123)
rolling_code.append(chr(each_digit))
return rolling_code
def main():
total_bit = 40;
total_num = 40;
rolling_code = run(total_bit)
# print("The rolling code is %s" % rolling_code)
group = [run(total_bit) for i in range(total_num)]
# print(type(group), len(group), len(group[0]))
group_2D = np.asarray(group).reshape(total_bit, total_num)
print(group_2D)
print(type(group_2D[0, 0]))
# Change character to RGB color for visualization
if __name__ == '__main__':
main()
| apache-2.0 |
ColumbiaCMB/kid_readout | apps/data_taking_scripts/old_scripts/fast_noise_sweep_upstairs.py | 1 | 3262 | import matplotlib
from kid_readout.roach import baseband
matplotlib.use('agg')
import numpy as np
import time
import sys
from kid_readout.utils import data_file,sweeps
from kid_readout.analysis.resonator import fit_best_resonator
ri = baseband.RoachBasebandWide()
ri.initialize()
#f0s = np.load('/home/gjones/workspace/apps/f8_fit_resonances.npy')
#f0s = np.load('/home/gjones/workspace/apps/first_pass_sc3x3_0813f9.npy')
#f0s = np.load('/home/gjones/workspace/apps/sc5x4_0813f10_first_pass.npy')#[:4]
f0s = np.load('/home/gjones/workspace/apps/sc5x4_0813f12.npy')
f0s.sort()
#f0s = f0s*0.998
nf = len(f0s)
atonce = 4
if nf % atonce > 0:
print "extending list of resonators to make a multiple of ",atonce
f0s = np.concatenate((f0s,np.arange(1,1+atonce-(nf%atonce))+f0s.max()))
#offsets = np.linspace(-4882.8125,4638.671875,20)
#offsets = np.concatenate(([-40e3,-20e3],offsets,[20e3,40e3]))/1e6
#offsets = offsets*8
nsamp = 2**20
step = 1
f0binned = np.round(f0s*nsamp/512.0)*512.0/nsamp
offset_bins = np.arange(-21,21)*step
offsets = offset_bins*512.0/nsamp
offsets = np.concatenate(([-40e-3,-20e-3],offsets,[20e-3,40e-3]))
print f0s
print len(f0s)
print offsets*1e6
start = time.time()
measured_freqs = sweeps.prepare_sweep(ri,f0binned,offsets,nsamp=nsamp)
print "loaded waveforms in", (time.time()-start),"seconds"
sys.stdout.flush()
time.sleep(1)
atten_list = np.linspace(15,46,8)#[30]#[35.5,33.5,46.5,43.5,40.5,37.5]
#atten_list = [33.0]
for atten in atten_list:
df = data_file.DataFile()
ri.set_dac_attenuator(atten)
sweep_data = sweeps.do_prepared_sweep(ri, nchan_per_step=atonce, reads_per_step=8)
df.add_sweep(sweep_data)
meas_cfs = []
idxs = []
for m in range(len(f0s)):
fr,s21,errors = sweep_data.select_by_freq(f0s[m])
thiscf = f0s[m]
res = fit_best_resonator(fr[2:-2],s21[2:-2],errors=errors[2:-2])
delay = res.delay
# delays.append(delay)
s21 = s21*np.exp(2j*np.pi*res.delay*fr)
res = fit_best_resonator(fr,s21,errors=errors)
fmin = fr[np.abs(s21).argmin()]
print "s21 fmin", fmin, "original guess",thiscf,"this fit", res.f_0,"delay",delay,"resid",res.delay
if abs(res.f_0 - thiscf) > 0.1:
if abs(fmin - thiscf) > 0.1:
print "using original guess"
meas_cfs.append(thiscf)
else:
print "using fmin"
meas_cfs.append(fmin)
else:
print "using this fit"
meas_cfs.append(res.f_0)
idx = np.unravel_index(abs(measured_freqs - meas_cfs[-1]).argmin(),measured_freqs.shape)
idxs.append(idx)
print meas_cfs
ri.add_tone_freqs(np.array(meas_cfs))
ri.select_bank(ri.tone_bins.shape[0]-1)
ri._sync()
time.sleep(0.5)
nsets = len(meas_cfs)/atonce
tsg = None
for iset in range(nsets):
selection = range(len(meas_cfs))[iset::nsets]
ri.select_fft_bins(selection)
ri._sync()
time.sleep(0.2)
dmod,addr = ri.get_data_seconds(30,demod=True)
tsg = df.add_timestream_data(dmod, ri, tsg=tsg)
df.sync()
df.log_hw_state(ri)
df.nc.sync()
df.nc.close()
print "completed in",((time.time()-start)/60.0),"minutes"
| bsd-2-clause |
bjornstenqvist/faunus | scripts/csvcompare.py | 2 | 1793 | #!/usr/bin/env python
import sys
if sys.version_info < (3, 0):
sys.stdout.write("Sorry, Python 3 og higher required\n")
sys.exit(1)
import argparse, pandas
from math import fabs
parser = argparse.ArgumentParser(description='Numerically compare two CSV files')
parser.add_argument('--tol', default=0.02, type=float, help='relative error tolerance (default: 0.02)')
parser.add_argument('--small', default=1e-10, type=float, help='always equal if difference is smaller than this (default: 1e-10)')
parser.add_argument('--quiet', '-q', dest='quiet', action='store_true', help='less output')
parser.add_argument('--csv_sep', default=' ', help='CSV separator (default: " ")')
parser.add_argument('file_ref', help='reference file')
parser.add_argument('file_new', help='new file')
args = parser.parse_args()
returncode = 0
def isapprox(a, b):
return fabs(a - b) < args.small or fabs(a - b) < args.tol * fabs(a)
def isnumber(val):
''' filter to compare only ints and floats '''
return isinstance(val, float) or isinstance(val, int)
def compare(a, b):
''' compare ints and floats to relative tolerence '''
if isnumber(a) and isnumber(b):
return isapprox(a, b)
else:
return a == b
dfs = [pandas.read_csv(f, sep=args.csv_sep, header=None) for f in (args.file_ref, args.file_new)]
if len(dfs) == 2:
for (ref_col_name, ref_col), (new_col_name, new_col) in zip(*(df.iteritems() for df in dfs)):
for ref_val, new_val in zip(ref_col, new_col):
if not compare(ref_val, new_val):
if returncode == 0:
returncode = 1
if not args.quiet:
print('mismatch in col {:2d} {} {}'.format(ref_col_name, ref_val, new_val))
else:
returncode = 2
sys.exit(returncode)
| mit |
arjoly/scikit-learn | sklearn/cross_decomposition/cca_.py | 209 | 3150 | from .pls_ import _PLS
__all__ = ['CCA']
class CCA(_PLS):
"""CCA Canonical Correlation Analysis.
CCA inherits from PLS with mode="B" and deflation_mode="canonical".
Read more in the :ref:`User Guide <cross_decomposition>`.
Parameters
----------
n_components : int, (default 2).
number of components to keep.
scale : boolean, (default True)
whether to scale the data?
max_iter : an integer, (default 500)
the maximum number of iterations of the NIPALS inner loop
tol : non-negative real, default 1e-06.
the tolerance used in the iterative algorithm
copy : boolean
Whether the deflation be done on a copy. Let the default value
to True unless you don't care about side effects
Attributes
----------
x_weights_ : array, [p, n_components]
X block weights vectors.
y_weights_ : array, [q, n_components]
Y block weights vectors.
x_loadings_ : array, [p, n_components]
X block loadings vectors.
y_loadings_ : array, [q, n_components]
Y block loadings vectors.
x_scores_ : array, [n_samples, n_components]
X scores.
y_scores_ : array, [n_samples, n_components]
Y scores.
x_rotations_ : array, [p, n_components]
X block to latents rotations.
y_rotations_ : array, [q, n_components]
Y block to latents rotations.
n_iter_ : array-like
Number of iterations of the NIPALS inner loop for each
component.
Notes
-----
For each component k, find the weights u, v that maximizes
max corr(Xk u, Yk v), such that ``|u| = |v| = 1``
Note that it maximizes only the correlations between the scores.
The residual matrix of X (Xk+1) block is obtained by the deflation on the
current X score: x_score.
The residual matrix of Y (Yk+1) block is obtained by deflation on the
current Y score.
Examples
--------
>>> from sklearn.cross_decomposition import CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> cca = CCA(n_components=1)
>>> cca.fit(X, Y)
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06)
>>> X_c, Y_c = cca.transform(X, Y)
References
----------
Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with
emphasis on the two-block case. Technical Report 371, Department of
Statistics, University of Washington, Seattle, 2000.
In french but still a reference:
Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris:
Editions Technic.
See also
--------
PLSCanonical
PLSSVD
"""
def __init__(self, n_components=2, scale=True,
max_iter=500, tol=1e-06, copy=True):
_PLS.__init__(self, n_components=n_components, scale=scale,
deflation_mode="canonical", mode="B",
norm_y_weights=True, algorithm="nipals",
max_iter=max_iter, tol=tol, copy=copy)
| bsd-3-clause |
HyukjinKwon/spark | python/pyspark/pandas/tests/plot/test_series_plot_plotly.py | 14 | 8485 | #
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
from distutils.version import LooseVersion
import pprint
import pandas as pd
import numpy as np
from pyspark import pandas as ps
from pyspark.pandas.config import set_option, reset_option
from pyspark.pandas.utils import name_like_string
from pyspark.testing.pandasutils import (
have_plotly,
plotly_requirement_message,
PandasOnSparkTestCase,
TestUtils,
)
if have_plotly:
from plotly import express
import plotly.graph_objs as go
@unittest.skipIf(not have_plotly, plotly_requirement_message)
@unittest.skipIf(
LooseVersion(pd.__version__) < "1.0.0",
"pandas<1.0; pandas<1.0 does not support latest plotly and/or 'plotting.backend' option.",
)
class SeriesPlotPlotlyTest(PandasOnSparkTestCase, TestUtils):
@classmethod
def setUpClass(cls):
super().setUpClass()
pd.set_option("plotting.backend", "plotly")
set_option("plotting.backend", "plotly")
set_option("plotting.max_rows", 1000)
set_option("plotting.sample_ratio", None)
@classmethod
def tearDownClass(cls):
pd.reset_option("plotting.backend")
reset_option("plotting.backend")
reset_option("plotting.max_rows")
reset_option("plotting.sample_ratio")
super().tearDownClass()
@property
def pdf1(self):
return pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10]
)
@property
def psdf1(self):
return ps.from_pandas(self.pdf1)
@property
def psdf2(self):
return ps.range(1002)
@property
def pdf2(self):
return self.psdf2.to_pandas()
def test_bar_plot(self):
pdf = self.pdf1
psdf = self.psdf1
self.assertEqual(pdf["a"].plot(kind="bar"), psdf["a"].plot(kind="bar"))
self.assertEqual(pdf["a"].plot.bar(), psdf["a"].plot.bar())
def test_line_plot(self):
pdf = self.pdf1
psdf = self.psdf1
self.assertEqual(pdf["a"].plot(kind="line"), psdf["a"].plot(kind="line"))
self.assertEqual(pdf["a"].plot.line(), psdf["a"].plot.line())
def test_barh_plot(self):
pdf = self.pdf1
psdf = self.psdf1
self.assertEqual(pdf["a"].plot(kind="barh"), psdf["a"].plot(kind="barh"))
def test_area_plot(self):
pdf = pd.DataFrame(
{
"sales": [3, 2, 3, 9, 10, 6],
"signups": [5, 5, 6, 12, 14, 13],
"visits": [20, 42, 28, 62, 81, 50],
},
index=pd.date_range(start="2018/01/01", end="2018/07/01", freq="M"),
)
psdf = ps.from_pandas(pdf)
self.assertEqual(pdf["sales"].plot(kind="area"), psdf["sales"].plot(kind="area"))
self.assertEqual(pdf["sales"].plot.area(), psdf["sales"].plot.area())
# just a sanity check for df.col type
self.assertEqual(pdf.sales.plot(kind="area"), psdf.sales.plot(kind="area"))
def test_pie_plot(self):
psdf = self.psdf1
pdf = psdf.to_pandas()
self.assertEqual(
psdf["a"].plot(kind="pie"),
express.pie(pdf, values=pdf.columns[0], names=pdf.index),
)
# TODO: support multi-index columns
# columns = pd.MultiIndex.from_tuples([("x", "y")])
# psdf.columns = columns
# pdf.columns = columns
# self.assertEqual(
# psdf[("x", "y")].plot(kind="pie"),
# express.pie(pdf, values=pdf.iloc[:, 0].to_numpy(), names=pdf.index.to_numpy()),
# )
# TODO: support multi-index
# psdf = ps.DataFrame(
# {
# "a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50],
# "b": [2, 3, 4, 5, 7, 9, 10, 15, 34, 45, 49]
# },
# index=pd.MultiIndex.from_tuples([("x", "y")] * 11),
# )
# pdf = psdf.to_pandas()
# self.assertEqual(
# psdf["a"].plot(kind="pie"), express.pie(pdf, values=pdf.columns[0], names=pdf.index),
# )
def test_hist_plot(self):
def check_hist_plot(psser):
bins = np.array([1.0, 5.9, 10.8, 15.7, 20.6, 25.5, 30.4, 35.3, 40.2, 45.1, 50.0])
data = np.array([5.0, 4.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0])
prev = bins[0]
text_bins = []
for b in bins[1:]:
text_bins.append("[%s, %s)" % (prev, b))
prev = b
text_bins[-1] = text_bins[-1][:-1] + "]"
bins = 0.5 * (bins[:-1] + bins[1:])
name_a = name_like_string(psser.name)
bars = [
go.Bar(
x=bins,
y=data,
name=name_a,
text=text_bins,
hovertemplate=("variable=" + name_a + "<br>value=%{text}<br>count=%{y}"),
),
]
fig = go.Figure(data=bars, layout=go.Layout(barmode="stack"))
fig["layout"]["xaxis"]["title"] = "value"
fig["layout"]["yaxis"]["title"] = "count"
self.assertEqual(
pprint.pformat(psser.plot(kind="hist").to_dict()), pprint.pformat(fig.to_dict())
)
psdf1 = self.psdf1
check_hist_plot(psdf1["a"])
columns = pd.MultiIndex.from_tuples([("x", "y")])
psdf1.columns = columns
check_hist_plot(psdf1[("x", "y")])
def test_pox_plot(self):
def check_pox_plot(psser):
fig = go.Figure()
fig.add_trace(
go.Box(
name=name_like_string(psser.name),
q1=[3],
median=[6],
q3=[9],
mean=[10.0],
lowerfence=[1],
upperfence=[15],
y=[[50]],
boxpoints="suspectedoutliers",
notched=False,
)
)
fig["layout"]["xaxis"]["title"] = name_like_string(psser.name)
fig["layout"]["yaxis"]["title"] = "value"
self.assertEqual(
pprint.pformat(psser.plot(kind="box").to_dict()), pprint.pformat(fig.to_dict())
)
psdf1 = self.psdf1
check_pox_plot(psdf1["a"])
columns = pd.MultiIndex.from_tuples([("x", "y")])
psdf1.columns = columns
check_pox_plot(psdf1[("x", "y")])
def test_pox_plot_arguments(self):
with self.assertRaisesRegex(ValueError, "does not support"):
self.psdf1.a.plot.box(boxpoints="all")
with self.assertRaisesRegex(ValueError, "does not support"):
self.psdf1.a.plot.box(notched=True)
self.psdf1.a.plot.box(hovertext="abc") # other arguments should not throw an exception
def test_kde_plot(self):
psdf = ps.DataFrame({"a": [1, 2, 3, 4, 5]})
pdf = pd.DataFrame(
{
"Density": [0.05709372, 0.07670272, 0.05709372],
"names": ["a", "a", "a"],
"index": [-1.0, 3.0, 7.0],
}
)
actual = psdf.a.plot.kde(bw_method=5, ind=3)
expected = express.line(pdf, x="index", y="Density")
expected["layout"]["xaxis"]["title"] = None
self.assertEqual(pprint.pformat(actual.to_dict()), pprint.pformat(expected.to_dict()))
if __name__ == "__main__":
from pyspark.pandas.tests.plot.test_series_plot_plotly import * # noqa: F401
try:
import xmlrunner # type: ignore[import]
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)
| apache-2.0 |
galtay/neural_learner | make_learning_curves.py | 1 | 3749 | """Make learning curves with the MNIST data.
This plots the cost (and/or accuracy) of both the training set and the
cross validation set as a function of the number of examples in the
training set. This is a useful tool when deciding how to improve a
neural netword (e.g. do we need more features, more samples, more
hidden layers, ...). Good discussion here,
https://www.coursera.org/learn/machine-learning/lecture/Kont7/learning-curves
The variable that determines how long this module will take to run is the
number of samples in each iteration (specified in the variable `m_samples`)
"""
import numpy
import random
import matplotlib.pyplot as plt
import nn
# load training, validatin, and test data
# train: m=50000 images of n=28x28=784 pixels each
# valid: m=10000 images of n=28x28=784 pixels each
# test: m=10000 images of n=28x28=784 pixels each
# each image (and label) is a digit in the range 0-9
#====================================================================
mnist_data = numpy.load('data/mnist_uint8_uint8.npz')
train = nn.create_training_dict(
mnist_data['train_features'], mnist_data['train_labels'])
valid = nn.create_training_dict(
mnist_data['valid_features'], mnist_data['valid_labels'])
test = nn.create_training_dict(
mnist_data['test_features'], mnist_data['test_labels'])
# hard code layer sizes and initialize random weights
#====================================================================
n_input_nodes = 784 # pixels in image
n_hidden_nodes = 25 # variable
n_output_nodes = 10 # number of labels
layer_sizes = [n_input_nodes, n_hidden_nodes, n_output_nodes]
# set initial random weights
#====================================================================
random_weights = nn.initialize_random_weights(layer_sizes)
weight_shapes = [w.shape for w in random_weights]
# make learning curve
#====================================================================
lam = 0.0
m_samples = [(i+1)*5000 for i in range(2)]
train_accs = []
valid_accs = []
train_Js = []
valid_Js = []
for im in m_samples:
# train
res = nn.minimize(
random_weights,
train['Xnorm'][0:im,:],
train['y1hot'][0:im,:],
lam=lam)
trained_weights_flat = res.x
trained_weights = nn.unflatten_array(res.x, weight_shapes)
# compute cost of training sample
J_train = nn.compute_cost_and_grad(
trained_weights_flat,
train['Xnorm'][0:im,:],
train['y1hot'][0:im,:],
weight_shapes,
lam=lam,
cost_only=True)
train_Js.append(J_train)
# compute accuracy on training sample
aa, zz = nn.feed_forward(train['Xnorm'][0:im,:], trained_weights)
h = aa[-1]
y_predict = numpy.argmax(h, axis=1)
accuracy = (train['y'][0:im] == y_predict).astype(numpy.float).mean()
train_accs.append(accuracy)
# compute cost on validation sample
J_valid = nn.compute_cost_and_grad(
trained_weights_flat,
valid['Xnorm'],
valid['y1hot'],
weight_shapes,
lam=lam,
cost_only=True)
valid_Js.append(J_valid)
# compute accuracy on validation sample
aa, zz = nn.feed_forward(valid['Xnorm'], trained_weights)
h = aa[-1]
y_predict = numpy.argmax(h, axis=1)
accuracy = (valid['y'] == y_predict).astype(numpy.float).mean()
valid_accs.append(accuracy)
print
print 'Validation, Training Set Cost (m={}): {}, {}'.format(
im, valid_Js[-1], train_Js[-1])
print 'Validation, Training Set Accuracy (m={}): {}, {}'.format(
im, valid_accs[-1], train_accs[-1])
print
plt.plot(train_Js, lw=3.0, ls='--', color='blue', label='J_train')
plt.plot(valid_Js, lw=3.0, ls='-', color='red', label='J_cv')
plt.legend(loc='best')
| mit |
anntzer/scikit-learn | sklearn/feature_selection/_variance_threshold.py | 10 | 3395 | # Author: Lars Buitinck
# License: 3-clause BSD
import numpy as np
from ..base import BaseEstimator
from ._base import SelectorMixin
from ..utils.sparsefuncs import mean_variance_axis, min_max_axis
from ..utils.validation import check_is_fitted
class VarianceThreshold(SelectorMixin, BaseEstimator):
"""Feature selector that removes all low-variance features.
This feature selection algorithm looks only at the features (X), not the
desired outputs (y), and can thus be used for unsupervised learning.
Read more in the :ref:`User Guide <variance_threshold>`.
Parameters
----------
threshold : float, default=0
Features with a training-set variance lower than this threshold will
be removed. The default is to keep all features with non-zero variance,
i.e. remove the features that have the same value in all samples.
Attributes
----------
variances_ : array, shape (n_features,)
Variances of individual features.
Notes
-----
Allows NaN in the input.
Raises ValueError if no feature in X meets the variance threshold.
Examples
--------
The following dataset has integer features, two of which are the same
in every sample. These are removed with the default setting for threshold::
>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
>>> selector = VarianceThreshold()
>>> selector.fit_transform(X)
array([[2, 0],
[1, 4],
[1, 1]])
"""
def __init__(self, threshold=0.):
self.threshold = threshold
def fit(self, X, y=None):
"""Learn empirical variances from X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Sample vectors from which to compute variances.
y : any, default=None
Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.
Returns
-------
self
"""
X = self._validate_data(X, accept_sparse=('csr', 'csc'),
dtype=np.float64,
force_all_finite='allow-nan')
if hasattr(X, "toarray"): # sparse matrix
_, self.variances_ = mean_variance_axis(X, axis=0)
if self.threshold == 0:
mins, maxes = min_max_axis(X, axis=0)
peak_to_peaks = maxes - mins
else:
self.variances_ = np.nanvar(X, axis=0)
if self.threshold == 0:
peak_to_peaks = np.ptp(X, axis=0)
if self.threshold == 0:
# Use peak-to-peak to avoid numeric precision issues
# for constant features
compare_arr = np.array([self.variances_, peak_to_peaks])
self.variances_ = np.nanmin(compare_arr, axis=0)
if np.all(~np.isfinite(self.variances_) |
(self.variances_ <= self.threshold)):
msg = "No feature in X meets the variance threshold {0:.5f}"
if X.shape[0] == 1:
msg += " (X contains only one sample)"
raise ValueError(msg.format(self.threshold))
return self
def _get_support_mask(self):
check_is_fitted(self)
return self.variances_ > self.threshold
def _more_tags(self):
return {'allow_nan': True}
| bsd-3-clause |
nettrom/importance | python/global-predictions.py | 1 | 10540 | #!/usr/env/python
# -*- coding: utf-8 -*-
'''
Script to load a global dataset of articles and generate predictions.
Articles will be split into two groups depending on whether we have
all available view data or not. For articles that do not, we will calculate
the lower end of a confidence interval to use as a view estimate.
Copyright (c) 2017 Morten Wang
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import re
import logging
import pickle
from yaml import load
import pandas as pd
import numpy as np
import scipy.stats as st
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import GradientBoostingClassifier as gbm
from sklearn.externals.joblib import Parallel, delayed
class GlobalPredictor:
def __init__(self):
self.config = None
self.model = None
self.le = None
def calc_views(self, pg):
'''
Calculate views for a "new" page based on the given group of page data.
:param pg: group of page data (page_id, number of views, etc)
:type pg: `pandas.GroupBy`
'''
## Index the page group by date, then reindex it by our full
## date range to add NaN-rows, then turn all NaNs into 0.
pg.set_index(pd.to_datetime(pg.view_date), inplace=True)
pg = pg.reindex(self.date_range).fillna(0)
## From https://stackoverflow.com/questions/39352554/pandas-dataframe-delete-row-with-certain-value-until-that-value-changes
## Remove all rows until the first non-zero row is encountered.
## This works because at some point in the date range, the page was
## created and therefore _must_ have non-zero views at that point.
pg = pg.loc[pg[(pg != 0).all(axis=1)].first_valid_index():]
## If we only have two data points, the average views is 0,
## otherwise, it's the lower end of the confidence interval.
if len(pg.num_views) <= 2:
return(0.0)
else:
return(st.t.interval(self.config['confidence interval']/100,
len(pg.num_views)-1,
loc=np.mean(pg.num_views),
scale=st.sem(pg.num_views))[0])
def load_datasets(self):
'''
Load in the datasets defined in the configuration file, split them
into "new" and "old" pages. Make any necessary calculations. Return
both datasets.
:param config: the global model configuration
:type config: dict
'''
# read in snapshot
snapshot = pd.read_table(self.config['snapshot file'])
# read in dataset
dataset = pd.read_table(self.config['dataset'])
# read in clickstream
clickstream = pd.read_table(self.config['clickstream file'])
# read in disambiguations
disambiguations = pd.read_table(self.config['disambiguation file'])
# read in the "new" page views
newpage_views = pd.read_table(self.config['new page views'])
logging.info('loaded all datasets, processing and merging')
# Log-transform number of inlinks, views, and calculate prop_proj_inlinks
dataset['log_inlinks'] = np.log10(1 + dataset['num_inlinks'])
## Because this is the global dataset, we don't have WikiProjects,
## so "prop_proj_inlinks" is always (1 + num_inlinks/(1 + num_inlinks))
dataset['prop_proj_inlinks'] = 1 + (dataset['num_inlinks']/ \
(1 + dataset['num_inlinks']))
# Calculate the proportion of clicks from articles
clickstream['prop_from_art'] = np.minimum(
1.0, clickstream['n_from_art']/(1 + clickstream['n_clicks']))
# Join the datasets
# snapshot[dataset[clickstream]]
res = pd.merge(snapshot,
pd.merge(dataset, clickstream,
on='page_id'),
left_on='art_page_id', right_on='page_id')
# filter out pages where the talk page is an archive
res = res[res.talk_is_archive == 0]
# filter out pages where the article is a redirect
res = res[res.art_is_redirect == 0]
# filter out pages where there is no corresponding article
res = res[res.art_page_id > 0]
# filter out disambiguations
res = res[res.art_page_id.isin(disambiguations.page_id) == False]
# Split out the new pages, calculate views for them, then copy those
# views back in.
logging.info('processing new page views')
## We need to extend data for "new" pages so that all of them have
## data for all days after their first day in the dataset.
self.date_range = pd.date_range(start=min(newpage_views.view_date),
end=max(newpage_views.view_date))
## Calculate confidence intervals for all new page views. Set it to
## 0 of it's below 0.
newpage_views = newpage_views.groupby('page_id').apply(self.calc_views)
newpage_views = newpage_views.to_frame()
newpage_views.columns = ['num_views']
newpage_views.num_views = newpage_views.num_views.apply(
lambda n: np.max(n, 0))
## Set all with negative views to NaN, create the index,
## update, then set all rows with NaN to 0 views.
## Consider: df.num_views[df.num_views < 0] = np.nan
res.loc[(res.num_views < 0), 'num_views'] = np.nan
res.set_index('art_page_id', inplace=True)
res.update(newpage_views, overwrite=True)
res.loc[(pd.isnull(res.num_views) | \
(res.num_views < 0)), 'num_views'] = 0
# calculate log views
res['log_views'] = np.log10(1 + res['num_views'])
# calculate proportion of active inlinks
res['prop_act_inlinks'] = np.minimum(
1.0, res['n_act_links']/(1 + res['num_inlinks']))
# add rank variables for views and inlinks, and make them percentiles
res['rank_links'] = res.num_inlinks.rank(method='min')
res['rank_links_perc'] = res.num_inlinks.rank(method='min', pct=True)
res['rank_views'] = res.num_views.rank(method='min')
res['rank_views_perc'] = res.num_views.rank(method='min', pct=True)
# ok, done
return(res)
def predict_ratings(self, dataset):
'''
Trim the given dataset down to the right columns, make predictions
of the importance rating, and also probabilities for each rating.
:param dataset: the dataset to make predictions on
:type dataset: `pandas.DataFrame`
'''
X = dataset[self.config['predictors']].as_matrix()
logging.info('predicting importance ratings')
classes = self.model.predict(X)
logging.info('predicting rating probabilities')
probabilities = self.model.predict_proba(X)
dataset['pred_rating'] = pd.Series(classes, index=dataset.index)
for i in range(probabilities.shape[1]):
col_name = 'proba_{}'.format(self.le.inverse_transform(i))
dataset[col_name] = probabilities[:,i]
## Return the dataset with predictions and probabilities added
return(dataset)
def make_predictions(self, config_file):
'''
Load in the datasets and models defined in the given configuration file,
then predict the importance of all articles in the datasets.
'''
logging.info('loading the configuration file')
# load in the configuration
with open(config_file) as infile:
self.config = load(infile)
logging.info('loading the model')
# load in the model
with open(self.config['model file'], 'rb') as infile:
self.model = pickle.load(infile)
logging.info('loading the label encoder')
# load in the label encoder
with open(self.config['label encoder file'], 'rb') as infile:
self.le = pickle.load(infile)
logging.info('reading in the datasets')
# read in the datasets
self.dataset = self.load_datasets()
# make predictions for all the old pages and write out a dataset
logging.info('making predictions')
self.dataset = self.predict_ratings(self.dataset)
# reset the index so the page id column exists before writing it out
self.dataset.reset_index(inplace=True)
self.dataset[self.config['prediction dataset columns']].to_csv(
self.config['prediction dataset'], sep='\t', index=False,
compression='bz2')
return()
def main():
import argparse
cli_parser = argparse.ArgumentParser(
description="script to make predictions for all articles in a Wikipedia edition using the global model"
)
# Verbosity option
cli_parser.add_argument('-v', '--verbose', action='store_true',
help='write informational output')
## YAML configuration file for the global model
cli_parser.add_argument('config_file',
help='path to the global model YAML configuration file')
args = cli_parser.parse_args()
if args.verbose:
logging.basicConfig(level=logging.INFO)
predictor = GlobalPredictor()
predictor.make_predictions(args.config_file)
return()
if __name__ == '__main__':
main()
| mit |
microsoft/LightGBM | examples/python-guide/plot_example.py | 1 | 2035 | # coding: utf-8
from pathlib import Path
import pandas as pd
import lightgbm as lgb
if lgb.compat.MATPLOTLIB_INSTALLED:
import matplotlib.pyplot as plt
else:
raise ImportError('You need to install matplotlib and restart your session for plot_example.py.')
print('Loading data...')
# load or create your dataset
regression_example_dir = Path(__file__).absolute().parents[1] / 'regression'
df_train = pd.read_csv(str(regression_example_dir / 'regression.train'), header=None, sep='\t')
df_test = pd.read_csv(str(regression_example_dir / 'regression.test'), header=None, sep='\t')
y_train = df_train[0]
y_test = df_test[0]
X_train = df_train.drop(0, axis=1)
X_test = df_test.drop(0, axis=1)
# create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train)
# specify your configurations as a dict
params = {
'num_leaves': 5,
'metric': ('l1', 'l2'),
'verbose': 0
}
evals_result = {} # to record eval results for plotting
print('Starting training...')
# train
gbm = lgb.train(params,
lgb_train,
num_boost_round=100,
valid_sets=[lgb_train, lgb_test],
feature_name=[f'f{i + 1}' for i in range(X_train.shape[-1])],
categorical_feature=[21],
evals_result=evals_result,
verbose_eval=10)
print('Plotting metrics recorded during training...')
ax = lgb.plot_metric(evals_result, metric='l1')
plt.show()
print('Plotting feature importances...')
ax = lgb.plot_importance(gbm, max_num_features=10)
plt.show()
print('Plotting split value histogram...')
ax = lgb.plot_split_value_histogram(gbm, feature='f26', bins='auto')
plt.show()
print('Plotting 54th tree...') # one tree use categorical feature to split
ax = lgb.plot_tree(gbm, tree_index=53, figsize=(15, 15), show_info=['split_gain'])
plt.show()
print('Plotting 54th tree with graphviz...')
graph = lgb.create_tree_digraph(gbm, tree_index=53, name='Tree54')
graph.render(view=True)
| mit |
mxjl620/scikit-learn | sklearn/mixture/tests/test_gmm.py | 200 | 17427 | import unittest
import copy
import sys
from nose.tools import assert_true
import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
assert_raises)
from scipy import stats
from sklearn import mixture
from sklearn.datasets.samples_generator import make_spd_matrix
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raise_message
from sklearn.metrics.cluster import adjusted_rand_score
from sklearn.externals.six.moves import cStringIO as StringIO
rng = np.random.RandomState(0)
def test_sample_gaussian():
# Test sample generation from mixture.sample_gaussian where covariance
# is diagonal, spherical and full
n_features, n_samples = 2, 300
axis = 1
mu = rng.randint(10) * rng.rand(n_features)
cv = (rng.rand(n_features) + 1.0) ** 2
samples = mixture.sample_gaussian(
mu, cv, covariance_type='diag', n_samples=n_samples)
assert_true(np.allclose(samples.mean(axis), mu, atol=1.3))
assert_true(np.allclose(samples.var(axis), cv, atol=1.5))
# the same for spherical covariances
cv = (rng.rand() + 1.0) ** 2
samples = mixture.sample_gaussian(
mu, cv, covariance_type='spherical', n_samples=n_samples)
assert_true(np.allclose(samples.mean(axis), mu, atol=1.5))
assert_true(np.allclose(
samples.var(axis), np.repeat(cv, n_features), atol=1.5))
# and for full covariances
A = rng.randn(n_features, n_features)
cv = np.dot(A.T, A) + np.eye(n_features)
samples = mixture.sample_gaussian(
mu, cv, covariance_type='full', n_samples=n_samples)
assert_true(np.allclose(samples.mean(axis), mu, atol=1.3))
assert_true(np.allclose(np.cov(samples), cv, atol=2.5))
# Numerical stability check: in SciPy 0.12.0 at least, eigh may return
# tiny negative values in its second return value.
from sklearn.mixture import sample_gaussian
x = sample_gaussian([0, 0], [[4, 3], [1, .1]],
covariance_type='full', random_state=42)
print(x)
assert_true(np.isfinite(x).all())
def _naive_lmvnpdf_diag(X, mu, cv):
# slow and naive implementation of lmvnpdf
ref = np.empty((len(X), len(mu)))
stds = np.sqrt(cv)
for i, (m, std) in enumerate(zip(mu, stds)):
ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1)
return ref
def test_lmvnpdf_diag():
# test a slow and naive implementation of lmvnpdf and
# compare it to the vectorized version (mixture.lmvnpdf) to test
# for correctness
n_features, n_components, n_samples = 2, 3, 10
mu = rng.randint(10) * rng.rand(n_components, n_features)
cv = (rng.rand(n_components, n_features) + 1.0) ** 2
X = rng.randint(10) * rng.rand(n_samples, n_features)
ref = _naive_lmvnpdf_diag(X, mu, cv)
lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag')
assert_array_almost_equal(lpr, ref)
def test_lmvnpdf_spherical():
n_features, n_components, n_samples = 2, 3, 10
mu = rng.randint(10) * rng.rand(n_components, n_features)
spherecv = rng.rand(n_components, 1) ** 2 + 1
X = rng.randint(10) * rng.rand(n_samples, n_features)
cv = np.tile(spherecv, (n_features, 1))
reference = _naive_lmvnpdf_diag(X, mu, cv)
lpr = mixture.log_multivariate_normal_density(X, mu, spherecv,
'spherical')
assert_array_almost_equal(lpr, reference)
def test_lmvnpdf_full():
n_features, n_components, n_samples = 2, 3, 10
mu = rng.randint(10) * rng.rand(n_components, n_features)
cv = (rng.rand(n_components, n_features) + 1.0) ** 2
X = rng.randint(10) * rng.rand(n_samples, n_features)
fullcv = np.array([np.diag(x) for x in cv])
reference = _naive_lmvnpdf_diag(X, mu, cv)
lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full')
assert_array_almost_equal(lpr, reference)
def test_lvmpdf_full_cv_non_positive_definite():
n_features, n_samples = 2, 10
rng = np.random.RandomState(0)
X = rng.randint(10) * rng.rand(n_samples, n_features)
mu = np.mean(X, 0)
cv = np.array([[[-1, 0], [0, 1]]])
expected_message = "'covars' must be symmetric, positive-definite"
assert_raise_message(ValueError, expected_message,
mixture.log_multivariate_normal_density,
X, mu, cv, 'full')
def test_GMM_attributes():
n_components, n_features = 10, 4
covariance_type = 'diag'
g = mixture.GMM(n_components, covariance_type, random_state=rng)
weights = rng.rand(n_components)
weights = weights / weights.sum()
means = rng.randint(-20, 20, (n_components, n_features))
assert_true(g.n_components == n_components)
assert_true(g.covariance_type == covariance_type)
g.weights_ = weights
assert_array_almost_equal(g.weights_, weights)
g.means_ = means
assert_array_almost_equal(g.means_, means)
covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2
g.covars_ = covars
assert_array_almost_equal(g.covars_, covars)
assert_raises(ValueError, g._set_covars, [])
assert_raises(ValueError, g._set_covars,
np.zeros((n_components - 2, n_features)))
assert_raises(ValueError, mixture.GMM, n_components=20,
covariance_type='badcovariance_type')
class GMMTester():
do_test_eval = True
def _setUp(self):
self.n_components = 10
self.n_features = 4
self.weights = rng.rand(self.n_components)
self.weights = self.weights / self.weights.sum()
self.means = rng.randint(-20, 20, (self.n_components, self.n_features))
self.threshold = -0.5
self.I = np.eye(self.n_features)
self.covars = {
'spherical': (0.1 + 2 * rng.rand(self.n_components,
self.n_features)) ** 2,
'tied': (make_spd_matrix(self.n_features, random_state=0)
+ 5 * self.I),
'diag': (0.1 + 2 * rng.rand(self.n_components,
self.n_features)) ** 2,
'full': np.array([make_spd_matrix(self.n_features, random_state=0)
+ 5 * self.I for x in range(self.n_components)])}
def test_eval(self):
if not self.do_test_eval:
return # DPGMM does not support setting the means and
# covariances before fitting There is no way of fixing this
# due to the variational parameters being more expressive than
# covariance matrices
g = self.model(n_components=self.n_components,
covariance_type=self.covariance_type, random_state=rng)
# Make sure the means are far apart so responsibilities.argmax()
# picks the actual component used to generate the observations.
g.means_ = 20 * self.means
g.covars_ = self.covars[self.covariance_type]
g.weights_ = self.weights
gaussidx = np.repeat(np.arange(self.n_components), 5)
n_samples = len(gaussidx)
X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx]
ll, responsibilities = g.score_samples(X)
self.assertEqual(len(ll), n_samples)
self.assertEqual(responsibilities.shape,
(n_samples, self.n_components))
assert_array_almost_equal(responsibilities.sum(axis=1),
np.ones(n_samples))
assert_array_equal(responsibilities.argmax(axis=1), gaussidx)
def test_sample(self, n=100):
g = self.model(n_components=self.n_components,
covariance_type=self.covariance_type, random_state=rng)
# Make sure the means are far apart so responsibilities.argmax()
# picks the actual component used to generate the observations.
g.means_ = 20 * self.means
g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1)
g.weights_ = self.weights
samples = g.sample(n)
self.assertEqual(samples.shape, (n, self.n_features))
def test_train(self, params='wmc'):
g = mixture.GMM(n_components=self.n_components,
covariance_type=self.covariance_type)
g.weights_ = self.weights
g.means_ = self.means
g.covars_ = 20 * self.covars[self.covariance_type]
# Create a training set by sampling from the predefined distribution.
X = g.sample(n_samples=100)
g = self.model(n_components=self.n_components,
covariance_type=self.covariance_type,
random_state=rng, min_covar=1e-1,
n_iter=1, init_params=params)
g.fit(X)
# Do one training iteration at a time so we can keep track of
# the log likelihood to make sure that it increases after each
# iteration.
trainll = []
for _ in range(5):
g.params = params
g.init_params = ''
g.fit(X)
trainll.append(self.score(g, X))
g.n_iter = 10
g.init_params = ''
g.params = params
g.fit(X) # finish fitting
# Note that the log likelihood will sometimes decrease by a
# very small amount after it has more or less converged due to
# the addition of min_covar to the covariance (to prevent
# underflow). This is why the threshold is set to -0.5
# instead of 0.
delta_min = np.diff(trainll).min()
self.assertTrue(
delta_min > self.threshold,
"The min nll increase is %f which is lower than the admissible"
" threshold of %f, for model %s. The likelihoods are %s."
% (delta_min, self.threshold, self.covariance_type, trainll))
def test_train_degenerate(self, params='wmc'):
# Train on degenerate data with 0 in some dimensions
# Create a training set by sampling from the predefined distribution.
X = rng.randn(100, self.n_features)
X.T[1:] = 0
g = self.model(n_components=2, covariance_type=self.covariance_type,
random_state=rng, min_covar=1e-3, n_iter=5,
init_params=params)
g.fit(X)
trainll = g.score(X)
self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5)
def test_train_1d(self, params='wmc'):
# Train on 1-D data
# Create a training set by sampling from the predefined distribution.
X = rng.randn(100, 1)
# X.T[1:] = 0
g = self.model(n_components=2, covariance_type=self.covariance_type,
random_state=rng, min_covar=1e-7, n_iter=5,
init_params=params)
g.fit(X)
trainll = g.score(X)
if isinstance(g, mixture.DPGMM):
self.assertTrue(np.sum(np.abs(trainll / 100)) < 5)
else:
self.assertTrue(np.sum(np.abs(trainll / 100)) < 2)
def score(self, g, X):
return g.score(X).sum()
class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester):
covariance_type = 'spherical'
model = mixture.GMM
setUp = GMMTester._setUp
class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester):
covariance_type = 'diag'
model = mixture.GMM
setUp = GMMTester._setUp
class TestGMMWithTiedCovars(unittest.TestCase, GMMTester):
covariance_type = 'tied'
model = mixture.GMM
setUp = GMMTester._setUp
class TestGMMWithFullCovars(unittest.TestCase, GMMTester):
covariance_type = 'full'
model = mixture.GMM
setUp = GMMTester._setUp
def test_multiple_init():
# Test that multiple inits does not much worse than a single one
X = rng.randn(30, 5)
X[:10] += 2
g = mixture.GMM(n_components=2, covariance_type='spherical',
random_state=rng, min_covar=1e-7, n_iter=5)
train1 = g.fit(X).score(X).sum()
g.n_init = 5
train2 = g.fit(X).score(X).sum()
assert_true(train2 >= train1 - 1.e-2)
def test_n_parameters():
# Test that the right number of parameters is estimated
n_samples, n_dim, n_components = 7, 5, 2
X = rng.randn(n_samples, n_dim)
n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41}
for cv_type in ['full', 'tied', 'diag', 'spherical']:
g = mixture.GMM(n_components=n_components, covariance_type=cv_type,
random_state=rng, min_covar=1e-7, n_iter=1)
g.fit(X)
assert_true(g._n_parameters() == n_params[cv_type])
def test_1d_1component():
# Test all of the covariance_types return the same BIC score for
# 1-dimensional, 1 component fits.
n_samples, n_dim, n_components = 100, 1, 1
X = rng.randn(n_samples, n_dim)
g_full = mixture.GMM(n_components=n_components, covariance_type='full',
random_state=rng, min_covar=1e-7, n_iter=1)
g_full.fit(X)
g_full_bic = g_full.bic(X)
for cv_type in ['tied', 'diag', 'spherical']:
g = mixture.GMM(n_components=n_components, covariance_type=cv_type,
random_state=rng, min_covar=1e-7, n_iter=1)
g.fit(X)
assert_array_almost_equal(g.bic(X), g_full_bic)
def assert_fit_predict_correct(model, X):
model2 = copy.deepcopy(model)
predictions_1 = model.fit(X).predict(X)
predictions_2 = model2.fit_predict(X)
assert adjusted_rand_score(predictions_1, predictions_2) == 1.0
def test_fit_predict():
"""
test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict
"""
lrng = np.random.RandomState(101)
n_samples, n_dim, n_comps = 100, 2, 2
mu = np.array([[8, 8]])
component_0 = lrng.randn(n_samples, n_dim)
component_1 = lrng.randn(n_samples, n_dim) + mu
X = np.vstack((component_0, component_1))
for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM):
model = m_constructor(n_components=n_comps, covariance_type='full',
min_covar=1e-7, n_iter=5,
random_state=np.random.RandomState(0))
assert_fit_predict_correct(model, X)
model = mixture.GMM(n_components=n_comps, n_iter=0)
z = model.fit_predict(X)
assert np.all(z == 0), "Quick Initialization Failed!"
def test_aic():
# Test the aic and bic criteria
n_samples, n_dim, n_components = 50, 3, 2
X = rng.randn(n_samples, n_dim)
SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy
for cv_type in ['full', 'tied', 'diag', 'spherical']:
g = mixture.GMM(n_components=n_components, covariance_type=cv_type,
random_state=rng, min_covar=1e-7)
g.fit(X)
aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters()
bic = (2 * n_samples * SGH * n_dim +
np.log(n_samples) * g._n_parameters())
bound = n_dim * 3. / np.sqrt(n_samples)
assert_true(np.abs(g.aic(X) - aic) / n_samples < bound)
assert_true(np.abs(g.bic(X) - bic) / n_samples < bound)
def check_positive_definite_covars(covariance_type):
r"""Test that covariance matrices do not become non positive definite
Due to the accumulation of round-off errors, the computation of the
covariance matrices during the learning phase could lead to non-positive
definite covariance matrices. Namely the use of the formula:
.. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T
instead of:
.. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T
while mathematically equivalent, was observed a ``LinAlgError`` exception,
when computing a ``GMM`` with full covariance matrices and fixed mean.
This function ensures that some later optimization will not introduce the
problem again.
"""
rng = np.random.RandomState(1)
# we build a dataset with 2 2d component. The components are unbalanced
# (respective weights 0.9 and 0.1)
X = rng.randn(100, 2)
X[-10:] += (3, 3) # Shift the 10 last points
gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type,
min_covar=1e-3)
# This is a non-regression test for issue #2640. The following call used
# to trigger:
# numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite
gmm.fit(X)
if covariance_type == "diag" or covariance_type == "spherical":
assert_greater(gmm.covars_.min(), 0)
else:
if covariance_type == "tied":
covs = [gmm.covars_]
else:
covs = gmm.covars_
for c in covs:
assert_greater(np.linalg.det(c), 0)
def test_positive_definite_covars():
# Check positive definiteness for all covariance types
for covariance_type in ["full", "tied", "diag", "spherical"]:
yield check_positive_definite_covars, covariance_type
def test_verbose_first_level():
# Create sample data
X = rng.randn(30, 5)
X[:10] += 2
g = mixture.GMM(n_components=2, n_init=2, verbose=1)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
g.fit(X)
finally:
sys.stdout = old_stdout
def test_verbose_second_level():
# Create sample data
X = rng.randn(30, 5)
X[:10] += 2
g = mixture.GMM(n_components=2, n_init=2, verbose=2)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
g.fit(X)
finally:
sys.stdout = old_stdout
| bsd-3-clause |
person142/scipy | scipy/spatial/kdtree.py | 4 | 38301 | # Copyright Anne M. Archibald 2008
# Released under the scipy license
import numpy as np
from heapq import heappush, heappop
import scipy.sparse
__all__ = ['minkowski_distance_p', 'minkowski_distance',
'distance_matrix',
'Rectangle', 'KDTree']
def minkowski_distance_p(x, y, p=2):
"""
Compute the pth power of the L**p distance between two arrays.
For efficiency, this function computes the L**p distance but does
not extract the pth root. If `p` is 1 or infinity, this is equal to
the actual L**p distance.
Parameters
----------
x : (M, K) array_like
Input array.
y : (N, K) array_like
Input array.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
Examples
--------
>>> from scipy.spatial import minkowski_distance_p
>>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
array([2, 1])
"""
x = np.asarray(x)
y = np.asarray(y)
# Find smallest common datatype with float64 (return type of this function) - addresses #10262.
# Don't just cast to float64 for complex input case.
common_datatype = np.promote_types(np.promote_types(x.dtype, y.dtype), 'float64')
# Make sure x and y are NumPy arrays of correct datatype.
x = x.astype(common_datatype)
y = y.astype(common_datatype)
if p == np.inf:
return np.amax(np.abs(y-x), axis=-1)
elif p == 1:
return np.sum(np.abs(y-x), axis=-1)
else:
return np.sum(np.abs(y-x)**p, axis=-1)
def minkowski_distance(x, y, p=2):
"""
Compute the L**p distance between two arrays.
Parameters
----------
x : (M, K) array_like
Input array.
y : (N, K) array_like
Input array.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
Examples
--------
>>> from scipy.spatial import minkowski_distance
>>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
array([ 1.41421356, 1. ])
"""
x = np.asarray(x)
y = np.asarray(y)
if p == np.inf or p == 1:
return minkowski_distance_p(x, y, p)
else:
return minkowski_distance_p(x, y, p)**(1./p)
class Rectangle(object):
"""Hyperrectangle class.
Represents a Cartesian product of intervals.
"""
def __init__(self, maxes, mins):
"""Construct a hyperrectangle."""
self.maxes = np.maximum(maxes,mins).astype(float)
self.mins = np.minimum(maxes,mins).astype(float)
self.m, = self.maxes.shape
def __repr__(self):
return "<Rectangle %s>" % list(zip(self.mins, self.maxes))
def volume(self):
"""Total volume."""
return np.prod(self.maxes-self.mins)
def split(self, d, split):
"""
Produce two hyperrectangles by splitting.
In general, if you need to compute maximum and minimum
distances to the children, it can be done more efficiently
by updating the maximum and minimum distances to the parent.
Parameters
----------
d : int
Axis to split hyperrectangle along.
split : float
Position along axis `d` to split at.
"""
mid = np.copy(self.maxes)
mid[d] = split
less = Rectangle(self.mins, mid)
mid = np.copy(self.mins)
mid[d] = split
greater = Rectangle(mid, self.maxes)
return less, greater
def min_distance_point(self, x, p=2.):
"""
Return the minimum distance between input and points in the hyperrectangle.
Parameters
----------
x : array_like
Input.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p)
def max_distance_point(self, x, p=2.):
"""
Return the maximum distance between input and points in the hyperrectangle.
Parameters
----------
x : array_like
Input array.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p)
def min_distance_rectangle(self, other, p=2.):
"""
Compute the minimum distance between points in the two hyperrectangles.
Parameters
----------
other : hyperrectangle
Input.
p : float
Input.
"""
return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p)
def max_distance_rectangle(self, other, p=2.):
"""
Compute the maximum distance between points in the two hyperrectangles.
Parameters
----------
other : hyperrectangle
Input.
p : float, optional
Input.
"""
return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p)
class KDTree(object):
"""
kd-tree for quick nearest-neighbor lookup
This class provides an index into a set of k-D points which
can be used to rapidly look up the nearest neighbors of any point.
Parameters
----------
data : (N,K) array_like
The data points to be indexed. This array is not copied, and
so modifying this data will result in bogus results.
leafsize : int, optional
The number of points at which the algorithm switches over to
brute-force. Has to be positive.
Raises
------
RuntimeError
The maximum recursion limit can be exceeded for large data
sets. If this happens, either increase the value for the `leafsize`
parameter or increase the recursion limit by::
>>> import sys
>>> sys.setrecursionlimit(10000)
See Also
--------
cKDTree : Implementation of `KDTree` in Cython
Notes
-----
The algorithm used is described in Maneewongvatana and Mount 1999.
The general idea is that the kd-tree is a binary tree, each of whose
nodes represents an axis-aligned hyperrectangle. Each node specifies
an axis and splits the set of points based on whether their coordinate
along that axis is greater than or less than a particular value.
During construction, the axis and splitting point are chosen by the
"sliding midpoint" rule, which ensures that the cells do not all
become long and thin.
The tree can be queried for the r closest neighbors of any given point
(optionally returning only those within some maximum distance of the
point). It can also be queried, with a substantial gain in efficiency,
for the r approximate closest neighbors.
For large dimensions (20 is already large) do not expect this to run
significantly faster than brute force. High-dimensional nearest-neighbor
queries are a substantial open problem in computer science.
The tree also supports all-neighbors queries, both with arrays of points
and with other kd-trees. These do use a reasonably efficient algorithm,
but the kd-tree is not necessarily the best data structure for this
sort of calculation.
"""
def __init__(self, data, leafsize=10):
self.data = np.asarray(data)
self.n, self.m = np.shape(self.data)
self.leafsize = int(leafsize)
if self.leafsize < 1:
raise ValueError("leafsize must be at least 1")
self.maxes = np.amax(self.data,axis=0)
self.mins = np.amin(self.data,axis=0)
self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)
class node(object):
def __lt__(self, other):
return id(self) < id(other)
def __gt__(self, other):
return id(self) > id(other)
def __le__(self, other):
return id(self) <= id(other)
def __ge__(self, other):
return id(self) >= id(other)
def __eq__(self, other):
return id(self) == id(other)
class leafnode(node):
def __init__(self, idx):
self.idx = idx
self.children = len(idx)
class innernode(node):
def __init__(self, split_dim, split, less, greater):
self.split_dim = split_dim
self.split = split
self.less = less
self.greater = greater
self.children = less.children+greater.children
def __build(self, idx, maxes, mins):
if len(idx) <= self.leafsize:
return KDTree.leafnode(idx)
else:
data = self.data[idx]
# maxes = np.amax(data,axis=0)
# mins = np.amin(data,axis=0)
d = np.argmax(maxes-mins)
maxval = maxes[d]
minval = mins[d]
if maxval == minval:
# all points are identical; warn user?
return KDTree.leafnode(idx)
data = data[:,d]
# sliding midpoint rule; see Maneewongvatana and Mount 1999
# for arguments that this is a good idea.
split = (maxval+minval)/2
less_idx = np.nonzero(data <= split)[0]
greater_idx = np.nonzero(data > split)[0]
if len(less_idx) == 0:
split = np.amin(data)
less_idx = np.nonzero(data <= split)[0]
greater_idx = np.nonzero(data > split)[0]
if len(greater_idx) == 0:
split = np.amax(data)
less_idx = np.nonzero(data < split)[0]
greater_idx = np.nonzero(data >= split)[0]
if len(less_idx) == 0:
# _still_ zero? all must have the same value
if not np.all(data == data[0]):
raise ValueError("Troublesome data array: %s" % data)
split = data[0]
less_idx = np.arange(len(data)-1)
greater_idx = np.array([len(data)-1])
lessmaxes = np.copy(maxes)
lessmaxes[d] = split
greatermins = np.copy(mins)
greatermins[d] = split
return KDTree.innernode(d, split,
self.__build(idx[less_idx],lessmaxes,mins),
self.__build(idx[greater_idx],maxes,greatermins))
def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x))
if p != np.inf:
side_distances **= p
min_distance = np.sum(side_distances)
else:
min_distance = np.amax(side_distances)
# priority queue for chasing nodes
# entries are:
# minimum distance between the cell and the target
# distances between the nearest side of the cell and the target
# the head node of the cell
q = [(min_distance,
tuple(side_distances),
self.tree)]
# priority queue for the nearest neighbors
# furthest known neighbor first
# entries are (-distance**p, i)
neighbors = []
if eps == 0:
epsfac = 1
elif p == np.inf:
epsfac = 1/(1+eps)
else:
epsfac = 1/(1+eps)**p
if p != np.inf and distance_upper_bound != np.inf:
distance_upper_bound = distance_upper_bound**p
while q:
min_distance, side_distances, node = heappop(q)
if isinstance(node, KDTree.leafnode):
# brute-force
data = self.data[node.idx]
ds = minkowski_distance_p(data,x[np.newaxis,:],p)
for i in range(len(ds)):
if ds[i] < distance_upper_bound:
if len(neighbors) == k:
heappop(neighbors)
heappush(neighbors, (-ds[i], node.idx[i]))
if len(neighbors) == k:
distance_upper_bound = -neighbors[0][0]
else:
# we don't push cells that are too far onto the queue at all,
# but since the distance_upper_bound decreases, we might get
# here even if the cell's too far
if min_distance > distance_upper_bound*epsfac:
# since this is the nearest cell, we're done, bail out
break
# compute minimum distances to the children and push them on
if x[node.split_dim] < node.split:
near, far = node.less, node.greater
else:
near, far = node.greater, node.less
# near child is at the same distance as the current node
heappush(q,(min_distance, side_distances, near))
# far child is further by an amount depending only
# on the split value
sd = list(side_distances)
if p == np.inf:
min_distance = max(min_distance, abs(node.split-x[node.split_dim]))
elif p == 1:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
else:
sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p
min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
# far child might be too far, if so, don't bother pushing it
if min_distance <= distance_upper_bound*epsfac:
heappush(q,(min_distance, tuple(sd), far))
if p == np.inf:
return sorted([(-d,i) for (d,i) in neighbors])
else:
return sorted([((-d)**(1./p),i) for (d,i) in neighbors])
def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
"""
Query the kd-tree for nearest neighbors
Parameters
----------
x : array_like, last dimension self.m
An array of points to query.
k : int, optional
The number of nearest neighbors to return.
eps : nonnegative float, optional
Return approximate nearest neighbors; the kth returned value
is guaranteed to be no further than (1+eps) times the
distance to the real kth nearest neighbor.
p : float, 1<=p<=infinity, optional
Which Minkowski p-norm to use.
1 is the sum-of-absolute-values "Manhattan" distance
2 is the usual Euclidean distance
infinity is the maximum-coordinate-difference distance
distance_upper_bound : nonnegative float, optional
Return only neighbors within this distance. This is used to prune
tree searches, so if you are doing a series of nearest-neighbor
queries, it may help to supply the distance to the nearest neighbor
of the most recent point.
Returns
-------
d : float or array of floats
The distances to the nearest neighbors.
If x has shape tuple+(self.m,), then d has shape tuple if
k is one, or tuple+(k,) if k is larger than one. Missing
neighbors (e.g. when k > n or distance_upper_bound is
given) are indicated with infinite distances. If k is None,
then d is an object array of shape tuple, containing lists
of distances. In either case the hits are sorted by distance
(nearest first).
i : integer or array of integers
The locations of the neighbors in self.data. i is the same
shape as d.
Examples
--------
>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 2:8]
>>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
>>> tree.data
array([[0, 2],
[0, 3],
[0, 4],
[0, 5],
[0, 6],
[0, 7],
[1, 2],
[1, 3],
[1, 4],
[1, 5],
[1, 6],
[1, 7],
[2, 2],
[2, 3],
[2, 4],
[2, 5],
[2, 6],
[2, 7],
[3, 2],
[3, 3],
[3, 4],
[3, 5],
[3, 6],
[3, 7],
[4, 2],
[4, 3],
[4, 4],
[4, 5],
[4, 6],
[4, 7]])
>>> pts = np.array([[0, 0], [2.1, 2.9]])
>>> tree.query(pts)
(array([ 2. , 0.14142136]), array([ 0, 13]))
>>> tree.query(pts[0])
(2.0, 0)
"""
x = np.asarray(x)
if np.shape(x)[-1] != self.m:
raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
if p < 1:
raise ValueError("Only p-norms with 1<=p<=infinity permitted")
retshape = np.shape(x)[:-1]
if retshape != ():
if k is None:
dd = np.empty(retshape,dtype=object)
ii = np.empty(retshape,dtype=object)
elif k > 1:
dd = np.empty(retshape+(k,),dtype=float)
dd.fill(np.inf)
ii = np.empty(retshape+(k,),dtype=int)
ii.fill(self.n)
elif k == 1:
dd = np.empty(retshape,dtype=float)
dd.fill(np.inf)
ii = np.empty(retshape,dtype=int)
ii.fill(self.n)
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
for c in np.ndindex(retshape):
hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
if k is None:
dd[c] = [d for (d,i) in hits]
ii[c] = [i for (d,i) in hits]
elif k > 1:
for j in range(len(hits)):
dd[c+(j,)], ii[c+(j,)] = hits[j]
elif k == 1:
if len(hits) > 0:
dd[c], ii[c] = hits[0]
else:
dd[c] = np.inf
ii[c] = self.n
return dd, ii
else:
hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
if k is None:
return [d for (d,i) in hits], [i for (d,i) in hits]
elif k == 1:
if len(hits) > 0:
return hits[0]
else:
return np.inf, self.n
elif k > 1:
dd = np.empty(k,dtype=float)
dd.fill(np.inf)
ii = np.empty(k,dtype=int)
ii.fill(self.n)
for j in range(len(hits)):
dd[j], ii[j] = hits[j]
return dd, ii
else:
raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
def __query_ball_point(self, x, r, p=2., eps=0):
R = Rectangle(self.maxes, self.mins)
def traverse_checking(node, rect):
if rect.min_distance_point(x, p) > r / (1. + eps):
return []
elif rect.max_distance_point(x, p) < r * (1. + eps):
return traverse_no_checking(node)
elif isinstance(node, KDTree.leafnode):
d = self.data[node.idx]
return node.idx[minkowski_distance(d, x, p) <= r].tolist()
else:
less, greater = rect.split(node.split_dim, node.split)
return traverse_checking(node.less, less) + \
traverse_checking(node.greater, greater)
def traverse_no_checking(node):
if isinstance(node, KDTree.leafnode):
return node.idx.tolist()
else:
return traverse_no_checking(node.less) + \
traverse_no_checking(node.greater)
return traverse_checking(self.tree, R)
def query_ball_point(self, x, r, p=2., eps=0):
"""Find all points within distance r of point(s) x.
Parameters
----------
x : array_like, shape tuple + (self.m,)
The point or points to search for neighbors of.
r : positive float
The radius of points to return.
p : float, optional
Which Minkowski p-norm to use. Should be in the range [1, inf].
eps : nonnegative float, optional
Approximate search. Branches of the tree are not explored if their
nearest points are further than ``r / (1 + eps)``, and branches are
added in bulk if their furthest points are nearer than
``r * (1 + eps)``.
Returns
-------
results : list or array of lists
If `x` is a single point, returns a list of the indices of the
neighbors of `x`. If `x` is an array of points, returns an object
array of shape tuple containing lists of neighbors.
Notes
-----
If you have many points whose neighbors you want to find, you may save
substantial amounts of time by putting them in a KDTree and using
query_ball_tree.
Examples
--------
>>> from scipy import spatial
>>> x, y = np.mgrid[0:5, 0:5]
>>> points = np.c_[x.ravel(), y.ravel()]
>>> tree = spatial.KDTree(points)
>>> tree.query_ball_point([2, 0], 1)
[5, 10, 11, 15]
Query multiple points and plot the results:
>>> import matplotlib.pyplot as plt
>>> points = np.asarray(points)
>>> plt.plot(points[:,0], points[:,1], '.')
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
... nearby_points = points[results]
... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
>>> plt.margins(0.1, 0.1)
>>> plt.show()
"""
x = np.asarray(x)
if x.shape[-1] != self.m:
raise ValueError("Searching for a %d-dimensional point in a "
"%d-dimensional KDTree" % (x.shape[-1], self.m))
if len(x.shape) == 1:
return self.__query_ball_point(x, r, p, eps)
else:
retshape = x.shape[:-1]
result = np.empty(retshape, dtype=object)
for c in np.ndindex(retshape):
result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps)
return result
def query_ball_tree(self, other, r, p=2., eps=0):
"""Find all pairs of points whose distance is at most r
Parameters
----------
other : KDTree instance
The tree containing points to search against.
r : float
The maximum distance, has to be positive.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
Returns
-------
results : list of lists
For each element ``self.data[i]`` of this tree, ``results[i]`` is a
list of the indices of its neighbors in ``other.data``.
"""
results = [[] for i in range(self.n)]
def traverse_checking(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
return
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
traverse_no_checking(node1, node2)
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
d = other.data[node2.idx]
for i in node1.idx:
results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist()
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1,rect1,node2.less,less)
traverse_checking(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse_checking(node1.less,less,node2,rect2)
traverse_checking(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1.less,less1,node2.less,less2)
traverse_checking(node1.less,less1,node2.greater,greater2)
traverse_checking(node1.greater,greater1,node2.less,less2)
traverse_checking(node1.greater,greater1,node2.greater,greater2)
def traverse_no_checking(node1, node2):
if isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
for i in node1.idx:
results[i] += node2.idx.tolist()
else:
traverse_no_checking(node1, node2.less)
traverse_no_checking(node1, node2.greater)
else:
traverse_no_checking(node1.less, node2)
traverse_no_checking(node1.greater, node2)
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
other.tree, Rectangle(other.maxes, other.mins))
return results
def query_pairs(self, r, p=2., eps=0):
"""
Find all pairs of points within a distance.
Parameters
----------
r : positive float
The maximum distance.
p : float, optional
Which Minkowski norm to use. `p` has to meet the condition
``1 <= p <= infinity``.
eps : float, optional
Approximate search. Branches of the tree are not explored
if their nearest points are further than ``r/(1+eps)``, and
branches are added in bulk if their furthest points are nearer
than ``r * (1+eps)``. `eps` has to be non-negative.
Returns
-------
results : set
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
positions are close.
"""
results = set()
def traverse_checking(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
return
elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
traverse_no_checking(node1, node2)
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
# Special care to avoid duplicate pairs
if id(node1) == id(node2):
d = self.data[node2.idx]
for i in node1.idx:
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
if i < j:
results.add((i,j))
else:
d = self.data[node2.idx]
for i in node1.idx:
for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
if i < j:
results.add((i,j))
elif j < i:
results.add((j,i))
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1,rect1,node2.less,less)
traverse_checking(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse_checking(node1.less,less,node2,rect2)
traverse_checking(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse_checking(node1.less,less1,node2.less,less2)
traverse_checking(node1.less,less1,node2.greater,greater2)
# Avoid traversing (node1.less, node2.greater) and
# (node1.greater, node2.less) (it's the same node pair twice
# over, which is the source of the complication in the
# original KDTree.query_pairs)
if id(node1) != id(node2):
traverse_checking(node1.greater,greater1,node2.less,less2)
traverse_checking(node1.greater,greater1,node2.greater,greater2)
def traverse_no_checking(node1, node2):
if isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
# Special care to avoid duplicate pairs
if id(node1) == id(node2):
for i in node1.idx:
for j in node2.idx:
if i < j:
results.add((i,j))
else:
for i in node1.idx:
for j in node2.idx:
if i < j:
results.add((i,j))
elif j < i:
results.add((j,i))
else:
traverse_no_checking(node1, node2.less)
traverse_no_checking(node1, node2.greater)
else:
# Avoid traversing (node1.less, node2.greater) and
# (node1.greater, node2.less) (it's the same node pair twice
# over, which is the source of the complication in the
# original KDTree.query_pairs)
if id(node1) == id(node2):
traverse_no_checking(node1.less, node2.less)
traverse_no_checking(node1.less, node2.greater)
traverse_no_checking(node1.greater, node2.greater)
else:
traverse_no_checking(node1.less, node2)
traverse_no_checking(node1.greater, node2)
traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
self.tree, Rectangle(self.maxes, self.mins))
return results
def count_neighbors(self, other, r, p=2.):
"""
Count how many nearby pairs can be formed.
Count the number of pairs (x1,x2) can be formed, with x1 drawn
from self and x2 drawn from ``other``, and where
``distance(x1, x2, p) <= r``.
This is the "two-point correlation" described in Gray and Moore 2000,
"N-body problems in statistical learning", and the code here is based
on their algorithm.
Parameters
----------
other : KDTree instance
The other tree to draw points from.
r : float or one-dimensional array of floats
The radius to produce a count for. Multiple radii are searched with
a single tree traversal.
p : float, 1<=p<=infinity, optional
Which Minkowski p-norm to use
Returns
-------
result : int or 1-D array of ints
The number of pairs. Note that this is internally stored in a numpy
int, and so may overflow if very large (2e9).
"""
def traverse(node1, rect1, node2, rect2, idx):
min_r = rect1.min_distance_rectangle(rect2,p)
max_r = rect1.max_distance_rectangle(rect2,p)
c_greater = r[idx] > max_r
result[idx[c_greater]] += node1.children*node2.children
idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)]
if len(idx) == 0:
return
if isinstance(node1,KDTree.leafnode):
if isinstance(node2,KDTree.leafnode):
ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:],
other.data[node2.idx][np.newaxis,:,:],
p).ravel()
ds.sort()
result[idx] += np.searchsorted(ds,r[idx],side='right')
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse(node1, rect1, node2.less, less, idx)
traverse(node1, rect1, node2.greater, greater, idx)
else:
if isinstance(node2,KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse(node1.less, less, node2, rect2, idx)
traverse(node1.greater, greater, node2, rect2, idx)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse(node1.less,less1,node2.less,less2,idx)
traverse(node1.less,less1,node2.greater,greater2,idx)
traverse(node1.greater,greater1,node2.less,less2,idx)
traverse(node1.greater,greater1,node2.greater,greater2,idx)
R1 = Rectangle(self.maxes, self.mins)
R2 = Rectangle(other.maxes, other.mins)
if np.shape(r) == ():
r = np.array([r])
result = np.zeros(1,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(1))
return result[0]
elif len(np.shape(r)) == 1:
r = np.asarray(r)
n, = r.shape
result = np.zeros(n,dtype=int)
traverse(self.tree, R1, other.tree, R2, np.arange(n))
return result
else:
raise ValueError("r must be either a single value or a one-dimensional array of values")
def sparse_distance_matrix(self, other, max_distance, p=2.):
"""
Compute a sparse distance matrix
Computes a distance matrix between two KDTrees, leaving as zero
any distance greater than max_distance.
Parameters
----------
other : KDTree
max_distance : positive float
p : float, optional
Returns
-------
result : dok_matrix
Sparse matrix representing the results in "dictionary of keys" format.
"""
result = scipy.sparse.dok_matrix((self.n,other.n))
def traverse(node1, rect1, node2, rect2):
if rect1.min_distance_rectangle(rect2, p) > max_distance:
return
elif isinstance(node1, KDTree.leafnode):
if isinstance(node2, KDTree.leafnode):
for i in node1.idx:
for j in node2.idx:
d = minkowski_distance(self.data[i],other.data[j],p)
if d <= max_distance:
result[i,j] = d
else:
less, greater = rect2.split(node2.split_dim, node2.split)
traverse(node1,rect1,node2.less,less)
traverse(node1,rect1,node2.greater,greater)
elif isinstance(node2, KDTree.leafnode):
less, greater = rect1.split(node1.split_dim, node1.split)
traverse(node1.less,less,node2,rect2)
traverse(node1.greater,greater,node2,rect2)
else:
less1, greater1 = rect1.split(node1.split_dim, node1.split)
less2, greater2 = rect2.split(node2.split_dim, node2.split)
traverse(node1.less,less1,node2.less,less2)
traverse(node1.less,less1,node2.greater,greater2)
traverse(node1.greater,greater1,node2.less,less2)
traverse(node1.greater,greater1,node2.greater,greater2)
traverse(self.tree, Rectangle(self.maxes, self.mins),
other.tree, Rectangle(other.maxes, other.mins))
return result
def distance_matrix(x, y, p=2, threshold=1000000):
"""
Compute the distance matrix.
Returns the matrix of all pair-wise distances.
Parameters
----------
x : (M, K) array_like
Matrix of M vectors in K dimensions.
y : (N, K) array_like
Matrix of N vectors in K dimensions.
p : float, 1 <= p <= infinity
Which Minkowski p-norm to use.
threshold : positive int
If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
of large temporary arrays.
Returns
-------
result : (M, N) ndarray
Matrix containing the distance from every vector in `x` to every vector
in `y`.
Examples
--------
>>> from scipy.spatial import distance_matrix
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
array([[ 1. , 1.41421356],
[ 1.41421356, 1. ]])
"""
x = np.asarray(x)
m, k = x.shape
y = np.asarray(y)
n, kk = y.shape
if k != kk:
raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk))
if m*n*k <= threshold:
return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
else:
result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype
if m < n:
for i in range(m):
result[i,:] = minkowski_distance(x[i],y,p)
else:
for j in range(n):
result[:,j] = minkowski_distance(x,y[j],p)
return result
| bsd-3-clause |
WilliamLubega/PGD-Computer-Science-_Project | william/server/Server.py | 2 | 1648 |
# coding: utf-8
# In[ ]:
import socket
import sys
import numpy as np
import matplotlib.pyplot as plt
import caffe
import cv2
import detectobjects as det
import createdb as cdb
from convnet import ConvNetClassifier
opts = {'img_dir': '/some/where/images',
'model_dir': '/some/where/models/models/',
'annotation_dir': '/some/where/annotation',
'model': '2C-1FC-O',
'threshold': 0.5,
'overlapThreshold': 0.3,
'lim': 0,
'prob': det.MAX,
'pos': det.MAX,
'gauss': 1,
'mean': np.array([162.83]),
'input_scale': None,
'raw_scale': 255,
'image_dims': (50,50),
'channel_swap': None,
'probs_area': 40,
'step': 5
}
net = ConvNetClassifier(opts)
trainfiles, valfiles, testfiles = cdb.create_sets(opts['img_dir'])
s = socket.socket()
s.bind(('',xxxx) # remember to change the port and a server address appropriately
s.listen(10)
i=1
while True:
sc, address = s.accept()
print address
f = open("transmit.jpg",'wb') #open in binary; to be later renamed to nomenclature specific to android phone
l = 1
while(l):
l = sc.recv(1024)
while (l):
f.write(l)
l = sc.recv(1024)
f.close()
img = cv2.imread("transmit.jpg", cv2.IMREAD_GRAYSCALE)
#imfile = opts['img_dir'] + testfiles[1]
imfile = '/some/where/tranmit.jpg'
found = det.detect(imfile, net, opts)
#shape = np.shape(img)[1]
sc.send(str(found[1])) # Would like to send back a response, for now the recieved parasite locations
sc.close()
s.close()
| mit |
ElDeveloper/scikit-learn | sklearn/ensemble/tests/test_forest.py | 3 | 41612 | """
Testing for the forest module (sklearn.ensemble.forest).
"""
# Authors: Gilles Louppe,
# Brian Holt,
# Andreas Mueller,
# Arnaud Joly
# License: BSD 3 clause
import pickle
from collections import defaultdict
from itertools import combinations
from itertools import product
import numpy as np
from scipy.misc import comb
from scipy.sparse import csr_matrix
from scipy.sparse import csc_matrix
from scipy.sparse import coo_matrix
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_false, assert_true
from sklearn.utils.testing import assert_less, assert_greater
from sklearn.utils.testing import assert_greater_equal
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import ignore_warnings
from sklearn import datasets
from sklearn.decomposition import TruncatedSVD
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomTreesEmbedding
from sklearn.model_selection import GridSearchCV
from sklearn.svm import LinearSVC
from sklearn.utils.fixes import bincount
from sklearn.utils.validation import check_random_state
from sklearn.tree.tree import SPARSE_SPLITTERS
# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
y = [-1, -1, -1, 1, 1, 1]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [-1, 1, 1]
# also load the iris dataset
# and randomly permute it
iris = datasets.load_iris()
rng = check_random_state(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
# also load the boston dataset
# and randomly permute it
boston = datasets.load_boston()
perm = rng.permutation(boston.target.size)
boston.data = boston.data[perm]
boston.target = boston.target[perm]
# also make a hastie_10_2 dataset
hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1)
hastie_X = hastie_X.astype(np.float32)
FOREST_CLASSIFIERS = {
"ExtraTreesClassifier": ExtraTreesClassifier,
"RandomForestClassifier": RandomForestClassifier,
}
FOREST_REGRESSORS = {
"ExtraTreesRegressor": ExtraTreesRegressor,
"RandomForestRegressor": RandomForestRegressor,
}
FOREST_TRANSFORMERS = {
"RandomTreesEmbedding": RandomTreesEmbedding,
}
FOREST_ESTIMATORS = dict()
FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS)
FOREST_ESTIMATORS.update(FOREST_REGRESSORS)
FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS)
def check_classification_toy(name):
"""Check classification on a toy dataset."""
ForestClassifier = FOREST_CLASSIFIERS[name]
clf = ForestClassifier(n_estimators=10, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(10, len(clf))
clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1)
clf.fit(X, y)
assert_array_equal(clf.predict(T), true_result)
assert_equal(10, len(clf))
# also test apply
leaf_indices = clf.apply(X)
assert_equal(leaf_indices.shape, (len(X), clf.n_estimators))
def test_classification_toy():
for name in FOREST_CLASSIFIERS:
yield check_classification_toy, name
def check_iris_criterion(name, criterion):
# Check consistency on dataset iris.
ForestClassifier = FOREST_CLASSIFIERS[name]
clf = ForestClassifier(n_estimators=10, criterion=criterion,
random_state=1)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert_greater(score, 0.9, "Failed with criterion %s and score = %f"
% (criterion, score))
clf = ForestClassifier(n_estimators=10, criterion=criterion,
max_features=2, random_state=1)
clf.fit(iris.data, iris.target)
score = clf.score(iris.data, iris.target)
assert_greater(score, 0.5, "Failed with criterion %s and score = %f"
% (criterion, score))
def test_iris():
for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")):
yield check_iris_criterion, name, criterion
def check_boston_criterion(name, criterion):
# Check consistency on dataset boston house prices.
ForestRegressor = FOREST_REGRESSORS[name]
clf = ForestRegressor(n_estimators=5, criterion=criterion,
random_state=1)
clf.fit(boston.data, boston.target)
score = clf.score(boston.data, boston.target)
assert_greater(score, 0.95, "Failed with max_features=None, criterion %s "
"and score = %f" % (criterion, score))
clf = ForestRegressor(n_estimators=5, criterion=criterion,
max_features=6, random_state=1)
clf.fit(boston.data, boston.target)
score = clf.score(boston.data, boston.target)
assert_greater(score, 0.95, "Failed with max_features=6, criterion %s "
"and score = %f" % (criterion, score))
def test_boston():
for name, criterion in product(FOREST_REGRESSORS, ("mse", )):
yield check_boston_criterion, name, criterion
def check_regressor_attributes(name):
# Regression models should not have a classes_ attribute.
r = FOREST_REGRESSORS[name](random_state=0)
assert_false(hasattr(r, "classes_"))
assert_false(hasattr(r, "n_classes_"))
r.fit([[1, 2, 3], [4, 5, 6]], [1, 2])
assert_false(hasattr(r, "classes_"))
assert_false(hasattr(r, "n_classes_"))
def test_regressor_attributes():
for name in FOREST_REGRESSORS:
yield check_regressor_attributes, name
def check_probability(name):
# Predict probabilities.
ForestClassifier = FOREST_CLASSIFIERS[name]
with np.errstate(divide="ignore"):
clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1,
max_depth=1)
clf.fit(iris.data, iris.target)
assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1),
np.ones(iris.data.shape[0]))
assert_array_almost_equal(clf.predict_proba(iris.data),
np.exp(clf.predict_log_proba(iris.data)))
def test_probability():
for name in FOREST_CLASSIFIERS:
yield check_probability, name
def check_importances(name, criterion, X, y):
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(n_estimators=20, criterion=criterion,
random_state=0)
est.fit(X, y)
importances = est.feature_importances_
n_important = np.sum(importances > 0.1)
assert_equal(importances.shape[0], 10)
assert_equal(n_important, 3)
# XXX: Remove this test in 0.19 after transform support to estimators
# is removed.
X_new = assert_warns(
DeprecationWarning, est.transform, X, threshold="mean")
assert_less(0 < X_new.shape[1], X.shape[1])
# Check with parallel
importances = est.feature_importances_
est.set_params(n_jobs=2)
importances_parrallel = est.feature_importances_
assert_array_almost_equal(importances, importances_parrallel)
# Check with sample weights
sample_weight = check_random_state(0).randint(1, 10, len(X))
est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion)
est.fit(X, y, sample_weight=sample_weight)
importances = est.feature_importances_
assert_true(np.all(importances >= 0.0))
for scale in [0.5, 10, 100]:
est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion)
est.fit(X, y, sample_weight=scale * sample_weight)
importances_bis = est.feature_importances_
assert_less(np.abs(importances - importances_bis).mean(), 0.001)
def test_importances():
X, y = datasets.make_classification(n_samples=500, n_features=10,
n_informative=3, n_redundant=0,
n_repeated=0, shuffle=False,
random_state=0)
for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]):
yield check_importances, name, criterion, X, y
for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse"]):
yield check_importances, name, criterion, X, y
def test_importances_asymptotic():
# Check whether variable importances of totally randomized trees
# converge towards their theoretical values (See Louppe et al,
# Understanding variable importances in forests of randomized trees, 2013).
def binomial(k, n):
return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True)
def entropy(samples):
n_samples = len(samples)
entropy = 0.
for count in bincount(samples):
p = 1. * count / n_samples
if p > 0:
entropy -= p * np.log2(p)
return entropy
def mdi_importance(X_m, X, y):
n_samples, n_features = X.shape
features = list(range(n_features))
features.pop(X_m)
values = [np.unique(X[:, i]) for i in range(n_features)]
imp = 0.
for k in range(n_features):
# Weight of each B of size k
coef = 1. / (binomial(k, n_features) * (n_features - k))
# For all B of size k
for B in combinations(features, k):
# For all values B=b
for b in product(*[values[B[j]] for j in range(k)]):
mask_b = np.ones(n_samples, dtype=np.bool)
for j in range(k):
mask_b &= X[:, B[j]] == b[j]
X_, y_ = X[mask_b, :], y[mask_b]
n_samples_b = len(X_)
if n_samples_b > 0:
children = []
for xi in values[X_m]:
mask_xi = X_[:, X_m] == xi
children.append(y_[mask_xi])
imp += (coef
* (1. * n_samples_b / n_samples) # P(B=b)
* (entropy(y_) -
sum([entropy(c) * len(c) / n_samples_b
for c in children])))
return imp
data = np.array([[0, 0, 1, 0, 0, 1, 0, 1],
[1, 0, 1, 1, 1, 0, 1, 2],
[1, 0, 1, 1, 0, 1, 1, 3],
[0, 1, 1, 1, 0, 1, 0, 4],
[1, 1, 0, 1, 0, 1, 1, 5],
[1, 1, 0, 1, 1, 1, 1, 6],
[1, 0, 1, 0, 0, 1, 0, 7],
[1, 1, 1, 1, 1, 1, 1, 8],
[1, 1, 1, 1, 0, 1, 1, 9],
[1, 1, 1, 0, 1, 1, 1, 0]])
X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7]
n_features = X.shape[1]
# Compute true importances
true_importances = np.zeros(n_features)
for i in range(n_features):
true_importances[i] = mdi_importance(i, X, y)
# Estimate importances with totally randomized trees
clf = ExtraTreesClassifier(n_estimators=500,
max_features=1,
criterion="entropy",
random_state=0).fit(X, y)
importances = sum(tree.tree_.compute_feature_importances(normalize=False)
for tree in clf.estimators_) / clf.n_estimators
# Check correctness
assert_almost_equal(entropy(y), sum(importances))
assert_less(np.abs(true_importances - importances).mean(), 0.01)
def check_unfitted_feature_importances(name):
assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0),
"feature_importances_")
def test_unfitted_feature_importances():
for name in FOREST_ESTIMATORS:
yield check_unfitted_feature_importances, name
def check_oob_score(name, X, y, n_estimators=20):
# Check that oob prediction is a good estimation of the generalization
# error.
# Proper behavior
est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0,
n_estimators=n_estimators, bootstrap=True)
n_samples = X.shape[0]
est.fit(X[:n_samples // 2, :], y[:n_samples // 2])
test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:])
if name in FOREST_CLASSIFIERS:
assert_less(abs(test_score - est.oob_score_), 0.1)
else:
assert_greater(test_score, est.oob_score_)
assert_greater(est.oob_score_, .8)
# Check warning if not enough estimators
with np.errstate(divide="ignore", invalid="ignore"):
est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0,
n_estimators=1, bootstrap=True)
assert_warns(UserWarning, est.fit, X, y)
def test_oob_score():
for name in FOREST_CLASSIFIERS:
yield check_oob_score, name, iris.data, iris.target
# csc matrix
yield check_oob_score, name, csc_matrix(iris.data), iris.target
# non-contiguous targets in classification
yield check_oob_score, name, iris.data, iris.target * 2 + 1
for name in FOREST_REGRESSORS:
yield check_oob_score, name, boston.data, boston.target, 50
# csc matrix
yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50
def check_oob_score_raise_error(name):
ForestEstimator = FOREST_ESTIMATORS[name]
if name in FOREST_TRANSFORMERS:
for oob_score in [True, False]:
assert_raises(TypeError, ForestEstimator, oob_score=oob_score)
assert_raises(NotImplementedError, ForestEstimator()._set_oob_score,
X, y)
else:
# Unfitted / no bootstrap / no oob_score
for oob_score, bootstrap in [(True, False), (False, True),
(False, False)]:
est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap,
random_state=0)
assert_false(hasattr(est, "oob_score_"))
# No bootstrap
assert_raises(ValueError, ForestEstimator(oob_score=True,
bootstrap=False).fit, X, y)
def test_oob_score_raise_error():
for name in FOREST_ESTIMATORS:
yield check_oob_score_raise_error, name
def check_gridsearch(name):
forest = FOREST_CLASSIFIERS[name]()
clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)})
clf.fit(iris.data, iris.target)
def test_gridsearch():
# Check that base trees can be grid-searched.
for name in FOREST_CLASSIFIERS:
yield check_gridsearch, name
def check_parallel(name, X, y):
"""Check parallel computations in classification"""
ForestEstimator = FOREST_ESTIMATORS[name]
forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0)
forest.fit(X, y)
assert_equal(len(forest), 10)
forest.set_params(n_jobs=1)
y1 = forest.predict(X)
forest.set_params(n_jobs=2)
y2 = forest.predict(X)
assert_array_almost_equal(y1, y2, 3)
def test_parallel():
for name in FOREST_CLASSIFIERS:
yield check_parallel, name, iris.data, iris.target
for name in FOREST_REGRESSORS:
yield check_parallel, name, boston.data, boston.target
def check_pickle(name, X, y):
# Check pickability.
ForestEstimator = FOREST_ESTIMATORS[name]
obj = ForestEstimator(random_state=0)
obj.fit(X, y)
score = obj.score(X, y)
pickle_object = pickle.dumps(obj)
obj2 = pickle.loads(pickle_object)
assert_equal(type(obj2), obj.__class__)
score2 = obj2.score(X, y)
assert_equal(score, score2)
def test_pickle():
for name in FOREST_CLASSIFIERS:
yield check_pickle, name, iris.data[::2], iris.target[::2]
for name in FOREST_REGRESSORS:
yield check_pickle, name, boston.data[::2], boston.target[::2]
def check_multioutput(name):
# Check estimators on multi-output problems.
X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1],
[-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]]
y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2],
[-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]]
X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]]
y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]]
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
y_pred = est.fit(X_train, y_train).predict(X_test)
assert_array_almost_equal(y_pred, y_test)
if name in FOREST_CLASSIFIERS:
with np.errstate(divide="ignore"):
proba = est.predict_proba(X_test)
assert_equal(len(proba), 2)
assert_equal(proba[0].shape, (4, 2))
assert_equal(proba[1].shape, (4, 4))
log_proba = est.predict_log_proba(X_test)
assert_equal(len(log_proba), 2)
assert_equal(log_proba[0].shape, (4, 2))
assert_equal(log_proba[1].shape, (4, 4))
def test_multioutput():
for name in FOREST_CLASSIFIERS:
yield check_multioutput, name
for name in FOREST_REGRESSORS:
yield check_multioutput, name
def check_classes_shape(name):
# Test that n_classes_ and classes_ have proper shape.
ForestClassifier = FOREST_CLASSIFIERS[name]
# Classification, single output
clf = ForestClassifier(random_state=0).fit(X, y)
assert_equal(clf.n_classes_, 2)
assert_array_equal(clf.classes_, [-1, 1])
# Classification, multi-output
_y = np.vstack((y, np.array(y) * 2)).T
clf = ForestClassifier(random_state=0).fit(X, _y)
assert_array_equal(clf.n_classes_, [2, 2])
assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]])
def test_classes_shape():
for name in FOREST_CLASSIFIERS:
yield check_classes_shape, name
def test_random_trees_dense_type():
# Test that the `sparse_output` parameter of RandomTreesEmbedding
# works by returning a dense array.
# Create the RTE with sparse=False
hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False)
X, y = datasets.make_circles(factor=0.5)
X_transformed = hasher.fit_transform(X)
# Assert that type is ndarray, not scipy.sparse.csr.csr_matrix
assert_equal(type(X_transformed), np.ndarray)
def test_random_trees_dense_equal():
# Test that the `sparse_output` parameter of RandomTreesEmbedding
# works by returning the same array for both argument values.
# Create the RTEs
hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False,
random_state=0)
hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True,
random_state=0)
X, y = datasets.make_circles(factor=0.5)
X_transformed_dense = hasher_dense.fit_transform(X)
X_transformed_sparse = hasher_sparse.fit_transform(X)
# Assert that dense and sparse hashers have same array.
assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense)
def test_random_hasher():
# test random forest hashing on circles dataset
# make sure that it is linearly separable.
# even after projected to two SVD dimensions
# Note: Not all random_states produce perfect results.
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
X, y = datasets.make_circles(factor=0.5)
X_transformed = hasher.fit_transform(X)
# test fit and transform:
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
assert_array_equal(hasher.fit(X).transform(X).toarray(),
X_transformed.toarray())
# one leaf active per data point per forest
assert_equal(X_transformed.shape[0], X.shape[0])
assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators)
svd = TruncatedSVD(n_components=2)
X_reduced = svd.fit_transform(X_transformed)
linear_clf = LinearSVC()
linear_clf.fit(X_reduced, y)
assert_equal(linear_clf.score(X_reduced, y), 1.)
def test_random_hasher_sparse_data():
X, y = datasets.make_multilabel_classification(random_state=0)
hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
X_transformed = hasher.fit_transform(X)
X_transformed_sparse = hasher.fit_transform(csc_matrix(X))
assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray())
def test_parallel_train():
rng = check_random_state(12321)
n_samples, n_features = 80, 30
X_train = rng.randn(n_samples, n_features)
y_train = rng.randint(0, 2, n_samples)
clfs = [
RandomForestClassifier(n_estimators=20, n_jobs=n_jobs,
random_state=12345).fit(X_train, y_train)
for n_jobs in [1, 2, 3, 8, 16, 32]
]
X_test = rng.randn(n_samples, n_features)
probas = [clf.predict_proba(X_test) for clf in clfs]
for proba1, proba2 in zip(probas, probas[1:]):
assert_array_almost_equal(proba1, proba2)
def test_distribution():
rng = check_random_state(12321)
# Single variable with 4 values
X = rng.randint(0, 4, size=(1000, 1))
y = rng.rand(1000)
n_trees = 500
clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y)
uniques = defaultdict(int)
for tree in clf.estimators_:
tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-")
for f, t in zip(tree.tree_.feature,
tree.tree_.threshold))
uniques[tree] += 1
uniques = sorted([(1. * count / n_trees, tree)
for tree, count in uniques.items()])
# On a single variable problem where X_0 has 4 equiprobable values, there
# are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of
# them has probability 1/3 while the 4 others have probability 1/6.
assert_equal(len(uniques), 5)
assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6.
assert_greater(0.20, uniques[1][0])
assert_greater(0.20, uniques[2][0])
assert_greater(0.20, uniques[3][0])
assert_greater(uniques[4][0], 0.3)
assert_equal(uniques[4][1], "0,1/0,0/--0,2/--")
# Two variables, one with 2 values, one with 3 values
X = np.empty((1000, 2))
X[:, 0] = np.random.randint(0, 2, 1000)
X[:, 1] = np.random.randint(0, 3, 1000)
y = rng.rand(1000)
clf = ExtraTreesRegressor(n_estimators=100, max_features=1,
random_state=1).fit(X, y)
uniques = defaultdict(int)
for tree in clf.estimators_:
tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-")
for f, t in zip(tree.tree_.feature,
tree.tree_.threshold))
uniques[tree] += 1
uniques = [(count, tree) for tree, count in uniques.items()]
assert_equal(len(uniques), 8)
def check_max_leaf_nodes_max_depth(name):
X, y = hastie_X, hastie_y
# Test precedence of max_leaf_nodes over max_depth.
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(max_depth=1, max_leaf_nodes=4,
n_estimators=1, random_state=0).fit(X, y)
assert_greater(est.estimators_[0].tree_.max_depth, 1)
est = ForestEstimator(max_depth=1, n_estimators=1,
random_state=0).fit(X, y)
assert_equal(est.estimators_[0].tree_.max_depth, 1)
def test_max_leaf_nodes_max_depth():
for name in FOREST_ESTIMATORS:
yield check_max_leaf_nodes_max_depth, name
def check_min_samples_split(name):
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
# test boundary value
assert_raises(ValueError,
ForestEstimator(min_samples_split=-1).fit, X, y)
assert_raises(ValueError,
ForestEstimator(min_samples_split=0).fit, X, y)
assert_raises(ValueError,
ForestEstimator(min_samples_split=1.1).fit, X, y)
est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0)
est.fit(X, y)
node_idx = est.estimators_[0].tree_.children_left != -1
node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]
assert_greater(np.min(node_samples), len(X) * 0.5 - 1,
"Failed with {0}".format(name))
est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0)
est.fit(X, y)
node_idx = est.estimators_[0].tree_.children_left != -1
node_samples = est.estimators_[0].tree_.n_node_samples[node_idx]
assert_greater(np.min(node_samples), len(X) * 0.5 - 1,
"Failed with {0}".format(name))
def test_min_samples_split():
for name in FOREST_ESTIMATORS:
yield check_min_samples_split, name
def check_min_samples_leaf(name):
X, y = hastie_X, hastie_y
# Test if leaves contain more than leaf_count training examples
ForestEstimator = FOREST_ESTIMATORS[name]
# test boundary value
assert_raises(ValueError,
ForestEstimator(min_samples_leaf=-1).fit, X, y)
assert_raises(ValueError,
ForestEstimator(min_samples_leaf=0).fit, X, y)
est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0)
est.fit(X, y)
out = est.estimators_[0].tree_.apply(X)
node_counts = bincount(out)
# drop inner nodes
leaf_count = node_counts[node_counts != 0]
assert_greater(np.min(leaf_count), 4,
"Failed with {0}".format(name))
est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1,
random_state=0)
est.fit(X, y)
out = est.estimators_[0].tree_.apply(X)
node_counts = np.bincount(out)
# drop inner nodes
leaf_count = node_counts[node_counts != 0]
assert_greater(np.min(leaf_count), len(X) * 0.25 - 1,
"Failed with {0}".format(name))
def test_min_samples_leaf():
for name in FOREST_ESTIMATORS:
yield check_min_samples_leaf, name
def check_min_weight_fraction_leaf(name):
X, y = hastie_X, hastie_y
# Test if leaves contain at least min_weight_fraction_leaf of the
# training set
ForestEstimator = FOREST_ESTIMATORS[name]
rng = np.random.RandomState(0)
weights = rng.rand(X.shape[0])
total_weight = np.sum(weights)
# test both DepthFirstTreeBuilder and BestFirstTreeBuilder
# by setting max_leaf_nodes
for frac in np.linspace(0, 0.5, 6):
est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1,
random_state=0)
if "RandomForest" in name:
est.bootstrap = False
est.fit(X, y, sample_weight=weights)
out = est.estimators_[0].tree_.apply(X)
node_weights = bincount(out, weights=weights)
# drop inner nodes
leaf_weights = node_weights[node_weights != 0]
assert_greater_equal(
np.min(leaf_weights),
total_weight * est.min_weight_fraction_leaf,
"Failed with {0} "
"min_weight_fraction_leaf={1}".format(
name, est.min_weight_fraction_leaf))
def test_min_weight_fraction_leaf():
for name in FOREST_ESTIMATORS:
yield check_min_weight_fraction_leaf, name
def check_sparse_input(name, X, X_sparse, y):
ForestEstimator = FOREST_ESTIMATORS[name]
dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y)
sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y)
assert_array_almost_equal(sparse.apply(X), dense.apply(X))
if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS:
assert_array_almost_equal(sparse.predict(X), dense.predict(X))
assert_array_almost_equal(sparse.feature_importances_,
dense.feature_importances_)
if name in FOREST_CLASSIFIERS:
assert_array_almost_equal(sparse.predict_proba(X),
dense.predict_proba(X))
assert_array_almost_equal(sparse.predict_log_proba(X),
dense.predict_log_proba(X))
if name in FOREST_TRANSFORMERS:
assert_array_almost_equal(sparse.transform(X).toarray(),
dense.transform(X).toarray())
assert_array_almost_equal(sparse.fit_transform(X).toarray(),
dense.fit_transform(X).toarray())
def test_sparse_input():
X, y = datasets.make_multilabel_classification(random_state=0,
n_samples=50)
for name, sparse_matrix in product(FOREST_ESTIMATORS,
(csr_matrix, csc_matrix, coo_matrix)):
yield check_sparse_input, name, X, sparse_matrix(X), y
def check_memory_layout(name, dtype):
# Check that it works no matter the memory layout
est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False)
# Nothing
X = np.asarray(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# C-order
X = np.asarray(iris.data, order="C", dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# F-order
X = np.asarray(iris.data, order="F", dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# Contiguous
X = np.ascontiguousarray(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
if est.base_estimator.splitter in SPARSE_SPLITTERS:
# csr matrix
X = csr_matrix(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# csc_matrix
X = csc_matrix(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# coo_matrix
X = coo_matrix(iris.data, dtype=dtype)
y = iris.target
assert_array_equal(est.fit(X, y).predict(X), y)
# Strided
X = np.asarray(iris.data[::3], dtype=dtype)
y = iris.target[::3]
assert_array_equal(est.fit(X, y).predict(X), y)
def test_memory_layout():
for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]):
yield check_memory_layout, name, dtype
for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]):
yield check_memory_layout, name, dtype
@ignore_warnings
def check_1d_input(name, X, X_2d, y):
ForestEstimator = FOREST_ESTIMATORS[name]
assert_raises(ValueError, ForestEstimator(n_estimators=1,
random_state=0).fit, X, y)
est = ForestEstimator(random_state=0)
est.fit(X_2d, y)
if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS:
assert_raises(ValueError, est.predict, X)
@ignore_warnings
def test_1d_input():
X = iris.data[:, 0]
X_2d = iris.data[:, 0].reshape((-1, 1))
y = iris.target
for name in FOREST_ESTIMATORS:
yield check_1d_input, name, X, X_2d, y
def check_class_weights(name):
# Check class_weights resemble sample_weights behavior.
ForestClassifier = FOREST_CLASSIFIERS[name]
# Iris is balanced, so no effect expected for using 'balanced' weights
clf1 = ForestClassifier(random_state=0)
clf1.fit(iris.data, iris.target)
clf2 = ForestClassifier(class_weight='balanced', random_state=0)
clf2.fit(iris.data, iris.target)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
# Make a multi-output problem with three copies of Iris
iris_multi = np.vstack((iris.target, iris.target, iris.target)).T
# Create user-defined weights that should balance over the outputs
clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.},
{0: 2., 1: 1., 2: 2.},
{0: 1., 1: 2., 2: 2.}],
random_state=0)
clf3.fit(iris.data, iris_multi)
assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_)
# Check against multi-output "balanced" which should also have no effect
clf4 = ForestClassifier(class_weight='balanced', random_state=0)
clf4.fit(iris.data, iris_multi)
assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_)
# Inflate importance of class 1, check against user-defined weights
sample_weight = np.ones(iris.target.shape)
sample_weight[iris.target == 1] *= 100
class_weight = {0: 1., 1: 100., 2: 1.}
clf1 = ForestClassifier(random_state=0)
clf1.fit(iris.data, iris.target, sample_weight)
clf2 = ForestClassifier(class_weight=class_weight, random_state=0)
clf2.fit(iris.data, iris.target)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
# Check that sample_weight and class_weight are multiplicative
clf1 = ForestClassifier(random_state=0)
clf1.fit(iris.data, iris.target, sample_weight ** 2)
clf2 = ForestClassifier(class_weight=class_weight, random_state=0)
clf2.fit(iris.data, iris.target, sample_weight)
assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_)
def test_class_weights():
for name in FOREST_CLASSIFIERS:
yield check_class_weights, name
def check_class_weight_balanced_and_bootstrap_multi_output(name):
# Test class_weight works for multi-output"""
ForestClassifier = FOREST_CLASSIFIERS[name]
_y = np.vstack((y, np.array(y) * 2)).T
clf = ForestClassifier(class_weight='balanced', random_state=0)
clf.fit(X, _y)
clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}],
random_state=0)
clf.fit(X, _y)
# smoke test for subsample and balanced subsample
clf = ForestClassifier(class_weight='balanced_subsample', random_state=0)
clf.fit(X, _y)
clf = ForestClassifier(class_weight='subsample', random_state=0)
ignore_warnings(clf.fit)(X, _y)
def test_class_weight_balanced_and_bootstrap_multi_output():
for name in FOREST_CLASSIFIERS:
yield check_class_weight_balanced_and_bootstrap_multi_output, name
def check_class_weight_errors(name):
# Test if class_weight raises errors and warnings when expected.
ForestClassifier = FOREST_CLASSIFIERS[name]
_y = np.vstack((y, np.array(y) * 2)).T
# Invalid preset string
clf = ForestClassifier(class_weight='the larch', random_state=0)
assert_raises(ValueError, clf.fit, X, y)
assert_raises(ValueError, clf.fit, X, _y)
# Warning warm_start with preset
clf = ForestClassifier(class_weight='auto', warm_start=True,
random_state=0)
assert_warns(UserWarning, clf.fit, X, y)
assert_warns(UserWarning, clf.fit, X, _y)
# Not a list or preset for multi-output
clf = ForestClassifier(class_weight=1, random_state=0)
assert_raises(ValueError, clf.fit, X, _y)
# Incorrect length list for multi-output
clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0)
assert_raises(ValueError, clf.fit, X, _y)
def test_class_weight_errors():
for name in FOREST_CLASSIFIERS:
yield check_class_weight_errors, name
def check_warm_start(name, random_state=42):
# Test if fitting incrementally with warm start gives a forest of the
# right size and the same results as a normal fit.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
clf_ws = None
for n_estimators in [5, 10]:
if clf_ws is None:
clf_ws = ForestEstimator(n_estimators=n_estimators,
random_state=random_state,
warm_start=True)
else:
clf_ws.set_params(n_estimators=n_estimators)
clf_ws.fit(X, y)
assert_equal(len(clf_ws), n_estimators)
clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state,
warm_start=False)
clf_no_ws.fit(X, y)
assert_equal(set([tree.random_state for tree in clf_ws]),
set([tree.random_state for tree in clf_no_ws]))
assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X),
err_msg="Failed with {0}".format(name))
def test_warm_start():
for name in FOREST_ESTIMATORS:
yield check_warm_start, name
def check_warm_start_clear(name):
# Test if fit clears state and grows a new forest when warm_start==False.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False,
random_state=1)
clf.fit(X, y)
clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True,
random_state=2)
clf_2.fit(X, y) # inits state
clf_2.set_params(warm_start=False, random_state=1)
clf_2.fit(X, y) # clears old state and equals clf
assert_array_almost_equal(clf_2.apply(X), clf.apply(X))
def test_warm_start_clear():
for name in FOREST_ESTIMATORS:
yield check_warm_start_clear, name
def check_warm_start_smaller_n_estimators(name):
# Test if warm start second fit with smaller n_estimators raises error.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True)
clf.fit(X, y)
clf.set_params(n_estimators=4)
assert_raises(ValueError, clf.fit, X, y)
def test_warm_start_smaller_n_estimators():
for name in FOREST_ESTIMATORS:
yield check_warm_start_smaller_n_estimators, name
def check_warm_start_equal_n_estimators(name):
# Test if warm start with equal n_estimators does nothing and returns the
# same forest and raises a warning.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True,
random_state=1)
clf.fit(X, y)
clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True,
random_state=1)
clf_2.fit(X, y)
# Now clf_2 equals clf.
clf_2.set_params(random_state=2)
assert_warns(UserWarning, clf_2.fit, X, y)
# If we had fit the trees again we would have got a different forest as we
# changed the random state.
assert_array_equal(clf.apply(X), clf_2.apply(X))
def test_warm_start_equal_n_estimators():
for name in FOREST_ESTIMATORS:
yield check_warm_start_equal_n_estimators, name
def check_warm_start_oob(name):
# Test that the warm start computes oob score when asked.
X, y = hastie_X, hastie_y
ForestEstimator = FOREST_ESTIMATORS[name]
# Use 15 estimators to avoid 'some inputs do not have OOB scores' warning.
clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False,
random_state=1, bootstrap=True, oob_score=True)
clf.fit(X, y)
clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False,
random_state=1, bootstrap=True, oob_score=False)
clf_2.fit(X, y)
clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15)
clf_2.fit(X, y)
assert_true(hasattr(clf_2, 'oob_score_'))
assert_equal(clf.oob_score_, clf_2.oob_score_)
# Test that oob_score is computed even if we don't need to train
# additional trees.
clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True,
random_state=1, bootstrap=True, oob_score=False)
clf_3.fit(X, y)
assert_true(not(hasattr(clf_3, 'oob_score_')))
clf_3.set_params(oob_score=True)
ignore_warnings(clf_3.fit)(X, y)
assert_equal(clf.oob_score_, clf_3.oob_score_)
def test_warm_start_oob():
for name in FOREST_CLASSIFIERS:
yield check_warm_start_oob, name
for name in FOREST_REGRESSORS:
yield check_warm_start_oob, name
def test_dtype_convert(n_classes=15):
classifier = RandomForestClassifier(random_state=0, bootstrap=False)
X = np.eye(n_classes)
y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]]
result = classifier.fit(X, y).predict(X)
assert_array_equal(classifier.classes_, y)
assert_array_equal(result, y)
def check_decision_path(name):
X, y = hastie_X, hastie_y
n_samples = X.shape[0]
ForestEstimator = FOREST_ESTIMATORS[name]
est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False,
random_state=1)
est.fit(X, y)
indicator, n_nodes_ptr = est.decision_path(X)
assert_equal(indicator.shape[1], n_nodes_ptr[-1])
assert_equal(indicator.shape[0], n_samples)
assert_array_equal(np.diff(n_nodes_ptr),
[e.tree_.node_count for e in est.estimators_])
# Assert that leaves index are correct
leaves = est.apply(X)
for est_id in range(leaves.shape[1]):
leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j]
for i, j in enumerate(leaves[:, est_id])]
assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples))
def test_decision_path():
for name in FOREST_CLASSIFIERS:
yield check_decision_path, name
for name in FOREST_REGRESSORS:
yield check_decision_path, name
| bsd-3-clause |
pratapvardhan/pandas | pandas/tests/reshape/test_pivot.py | 2 | 81063 | # -*- coding: utf-8 -*-
from datetime import datetime, date, timedelta
import pytest
import numpy as np
from collections import OrderedDict
import pandas as pd
from pandas import (DataFrame, Series, Index, MultiIndex,
Grouper, date_range, concat, Categorical)
from pandas.core.reshape.pivot import pivot_table, crosstab
from pandas.compat import range, product
import pandas.util.testing as tm
from pandas.api.types import CategoricalDtype as CDT
@pytest.fixture(params=[True, False])
def dropna(request):
return request.param
class TestPivotTable(object):
def setup_method(self, method):
self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo',
'bar', 'bar', 'bar', 'bar',
'foo', 'foo', 'foo'],
'B': ['one', 'one', 'one', 'two',
'one', 'one', 'one', 'two',
'two', 'two', 'one'],
'C': ['dull', 'dull', 'shiny', 'dull',
'dull', 'shiny', 'shiny', 'dull',
'shiny', 'shiny', 'shiny'],
'D': np.random.randn(11),
'E': np.random.randn(11),
'F': np.random.randn(11)})
def test_pivot_table(self):
index = ['A', 'B']
columns = 'C'
table = pivot_table(self.data, values='D',
index=index, columns=columns)
table2 = self.data.pivot_table(
values='D', index=index, columns=columns)
tm.assert_frame_equal(table, table2)
# this works
pivot_table(self.data, values='D', index=index)
if len(index) > 1:
assert table.index.names == tuple(index)
else:
assert table.index.name == index[0]
if len(columns) > 1:
assert table.columns.names == columns
else:
assert table.columns.name == columns[0]
expected = self.data.groupby(
index + [columns])['D'].agg(np.mean).unstack()
tm.assert_frame_equal(table, expected)
def test_pivot_table_nocols(self):
df = DataFrame({'rows': ['a', 'b', 'c'],
'cols': ['x', 'y', 'z'],
'values': [1, 2, 3]})
rs = df.pivot_table(columns='cols', aggfunc=np.sum)
xp = df.pivot_table(index='cols', aggfunc=np.sum).T
tm.assert_frame_equal(rs, xp)
rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'})
xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T
tm.assert_frame_equal(rs, xp)
def test_pivot_table_dropna(self):
df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000},
'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'},
'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310},
'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'},
'quantity': {0: 2000000, 1: 500000,
2: 1000000, 3: 1000000}})
pv_col = df.pivot_table('quantity', 'month', [
'customer', 'product'], dropna=False)
pv_ind = df.pivot_table(
'quantity', ['customer', 'product'], 'month', dropna=False)
m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'),
('A', 'd'), ('B', 'a'), ('B', 'b'),
('B', 'c'), ('B', 'd'), ('C', 'a'),
('C', 'b'), ('C', 'c'), ('C', 'd')],
names=['customer', 'product'])
tm.assert_index_equal(pv_col.columns, m)
tm.assert_index_equal(pv_ind.index, m)
def test_pivot_table_categorical(self):
cat1 = Categorical(["a", "a", "b", "b"],
categories=["a", "b", "z"], ordered=True)
cat2 = Categorical(["c", "d", "c", "d"],
categories=["c", "d", "y"], ordered=True)
df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]})
result = pd.pivot_table(df, values='values', index=['A', 'B'],
dropna=True)
exp_index = pd.MultiIndex.from_arrays(
[cat1, cat2],
names=['A', 'B'])
expected = DataFrame(
{'values': [1, 2, 3, 4]},
index=exp_index)
tm.assert_frame_equal(result, expected)
def test_pivot_table_dropna_categoricals(self, dropna):
# GH 15193
categories = ['a', 'b', 'c', 'd']
df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'],
'B': [1, 2, 3, 1, 2, 3, 1, 2, 3],
'C': range(0, 9)})
df['A'] = df['A'].astype(CDT(categories, ordered=False))
result = df.pivot_table(index='B', columns='A', values='C',
dropna=dropna)
expected_columns = Series(['a', 'b', 'c'], name='A')
expected_columns = expected_columns.astype(
CDT(categories, ordered=False))
expected_index = Series([1, 2, 3], name='B')
expected = DataFrame([[0, 3, 6],
[1, 4, 7],
[2, 5, 8]],
index=expected_index,
columns=expected_columns,)
if not dropna:
# add back the non observed to compare
expected = expected.reindex(
columns=Categorical(categories)).astype('float')
tm.assert_frame_equal(result, expected)
def test_pivot_with_non_observable_dropna(self, dropna):
# gh-21133
df = pd.DataFrame(
{'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'],
categories=['low', 'high'],
ordered=True),
'B': range(5)})
result = df.pivot_table(index='A', values='B', dropna=dropna)
expected = pd.DataFrame(
{'B': [2, 3]},
index=pd.Index(
pd.Categorical.from_codes([0, 1],
categories=['low', 'high'],
ordered=True),
name='A'))
tm.assert_frame_equal(result, expected)
# gh-21378
df = pd.DataFrame(
{'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'],
categories=['low', 'high', 'left'],
ordered=True),
'B': range(5)})
result = df.pivot_table(index='A', values='B', dropna=dropna)
expected = pd.DataFrame(
{'B': [2, 3, 0]},
index=pd.Index(
pd.Categorical.from_codes([0, 1, 2],
categories=['low', 'high', 'left'],
ordered=True),
name='A'))
tm.assert_frame_equal(result, expected)
def test_pass_array(self):
result = self.data.pivot_table(
'D', index=self.data.A, columns=self.data.C)
expected = self.data.pivot_table('D', index='A', columns='C')
tm.assert_frame_equal(result, expected)
def test_pass_function(self):
result = self.data.pivot_table('D', index=lambda x: x // 5,
columns=self.data.C)
expected = self.data.pivot_table('D', index=self.data.index // 5,
columns='C')
tm.assert_frame_equal(result, expected)
def test_pivot_table_multiple(self):
index = ['A', 'B']
columns = 'C'
table = pivot_table(self.data, index=index, columns=columns)
expected = self.data.groupby(index + [columns]).agg(np.mean).unstack()
tm.assert_frame_equal(table, expected)
def test_pivot_dtypes(self):
# can convert dtypes
f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [
1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']})
assert f.dtypes['v'] == 'int64'
z = pivot_table(f, values='v', index=['a'], columns=[
'i'], fill_value=0, aggfunc=np.sum)
result = z.get_dtype_counts()
expected = Series(dict(int64=2))
tm.assert_series_equal(result, expected)
# cannot convert dtypes
f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [
1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']})
assert f.dtypes['v'] == 'float64'
z = pivot_table(f, values='v', index=['a'], columns=[
'i'], fill_value=0, aggfunc=np.mean)
result = z.get_dtype_counts()
expected = Series(dict(float64=2))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize('columns,values',
[('bool1', ['float1', 'float2']),
('bool1', ['float1', 'float2', 'bool1']),
('bool2', ['float1', 'float2', 'bool1'])])
def test_pivot_preserve_dtypes(self, columns, values):
# GH 7142 regression test
v = np.arange(5, dtype=np.float64)
df = DataFrame({'float1': v, 'float2': v + 2.0,
'bool1': v <= 2, 'bool2': v <= 3})
df_res = df.reset_index().pivot_table(
index='index', columns=columns, values=values)
result = dict(df_res.dtypes)
expected = {col: np.dtype('O') if col[0].startswith('b')
else np.dtype('float64') for col in df_res}
assert result == expected
def test_pivot_no_values(self):
# GH 14380
idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02',
'2011-01-01', '2011-01-02'])
df = pd.DataFrame({'A': [1, 2, 3, 4, 5]},
index=idx)
res = df.pivot_table(index=df.index.month, columns=df.index.day)
exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)])
exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]],
index=[1, 2], columns=exp_columns)
tm.assert_frame_equal(res, exp)
df = pd.DataFrame({'A': [1, 2, 3, 4, 5],
'dt': pd.date_range('2011-01-01', freq='D',
periods=5)},
index=idx)
res = df.pivot_table(index=df.index.month,
columns=pd.Grouper(key='dt', freq='M'))
exp_columns = pd.MultiIndex.from_tuples([('A',
pd.Timestamp('2011-01-31'))])
exp_columns.names = [None, 'dt']
exp = pd.DataFrame([3.25, 2.0],
index=[1, 2], columns=exp_columns)
tm.assert_frame_equal(res, exp)
res = df.pivot_table(index=pd.Grouper(freq='A'),
columns=pd.Grouper(key='dt', freq='M'))
exp = pd.DataFrame([3],
index=pd.DatetimeIndex(['2011-12-31']),
columns=exp_columns)
tm.assert_frame_equal(res, exp)
def test_pivot_multi_values(self):
result = pivot_table(self.data, values=['D', 'E'],
index='A', columns=['B', 'C'], fill_value=0)
expected = pivot_table(self.data.drop(['F'], axis=1),
index='A', columns=['B', 'C'], fill_value=0)
tm.assert_frame_equal(result, expected)
def test_pivot_multi_functions(self):
f = lambda func: pivot_table(self.data, values=['D', 'E'],
index=['A', 'B'], columns='C',
aggfunc=func)
result = f([np.mean, np.std])
means = f(np.mean)
stds = f(np.std)
expected = concat([means, stds], keys=['mean', 'std'], axis=1)
tm.assert_frame_equal(result, expected)
# margins not supported??
f = lambda func: pivot_table(self.data, values=['D', 'E'],
index=['A', 'B'], columns='C',
aggfunc=func, margins=True)
result = f([np.mean, np.std])
means = f(np.mean)
stds = f(np.std)
expected = concat([means, stds], keys=['mean', 'std'], axis=1)
tm.assert_frame_equal(result, expected)
def test_pivot_index_with_nan(self):
# GH 3588
nan = np.nan
df = DataFrame({'a': ['R1', 'R2', nan, 'R4'],
'b': ['C1', 'C2', 'C3', 'C4'],
'c': [10, 15, 17, 20]})
result = df.pivot('a', 'b', 'c')
expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan],
[nan, 15, nan, nan], [nan, nan, nan, 20]],
index=Index([nan, 'R1', 'R2', 'R4'], name='a'),
columns=Index(['C1', 'C2', 'C3', 'C4'], name='b'))
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T)
# GH9491
df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'),
'c': 100 + np.arange(6)})
df['b'] = df['a'] - pd.Timestamp('2014-02-02')
df.loc[1, 'a'] = df.loc[3, 'a'] = nan
df.loc[1, 'b'] = df.loc[4, 'b'] = nan
pv = df.pivot('a', 'b', 'c')
assert pv.notna().values.sum() == len(df)
for _, row in df.iterrows():
assert pv.loc[row['a'], row['b']] == row['c']
tm.assert_frame_equal(df.pivot('b', 'a', 'c'), pv.T)
def test_pivot_with_tz(self):
# GH 5878
df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0),
datetime(2013, 1, 2, 9, 0),
datetime(2013, 1, 1, 9, 0),
datetime(2013, 1, 2, 9, 0)],
'dt2': [datetime(2014, 1, 1, 9, 0),
datetime(2014, 1, 1, 9, 0),
datetime(2014, 1, 2, 9, 0),
datetime(2014, 1, 2, 9, 0)],
'data1': np.arange(4, dtype='int64'),
'data2': np.arange(4, dtype='int64')})
df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific'))
df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo'))
exp_col1 = Index(['data1', 'data1', 'data2', 'data2'])
exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00',
'2014/01/02 09:00'] * 2,
name='dt2', tz='Asia/Tokyo')
exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2])
expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]],
index=pd.DatetimeIndex(['2013/01/01 09:00',
'2013/01/02 09:00'],
name='dt1',
tz='US/Pacific'),
columns=exp_col)
pv = df.pivot(index='dt1', columns='dt2')
tm.assert_frame_equal(pv, expected)
expected = DataFrame([[0, 2], [1, 3]],
index=pd.DatetimeIndex(['2013/01/01 09:00',
'2013/01/02 09:00'],
name='dt1',
tz='US/Pacific'),
columns=pd.DatetimeIndex(['2014/01/01 09:00',
'2014/01/02 09:00'],
name='dt2',
tz='Asia/Tokyo'))
pv = df.pivot(index='dt1', columns='dt2', values='data1')
tm.assert_frame_equal(pv, expected)
def test_pivot_periods(self):
df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'),
pd.Period('2013-01-02', 'D'),
pd.Period('2013-01-01', 'D'),
pd.Period('2013-01-02', 'D')],
'p2': [pd.Period('2013-01', 'M'),
pd.Period('2013-01', 'M'),
pd.Period('2013-02', 'M'),
pd.Period('2013-02', 'M')],
'data1': np.arange(4, dtype='int64'),
'data2': np.arange(4, dtype='int64')})
exp_col1 = Index(['data1', 'data1', 'data2', 'data2'])
exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2,
name='p2', freq='M')
exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2])
expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]],
index=pd.PeriodIndex(['2013-01-01', '2013-01-02'],
name='p1', freq='D'),
columns=exp_col)
pv = df.pivot(index='p1', columns='p2')
tm.assert_frame_equal(pv, expected)
expected = DataFrame([[0, 2], [1, 3]],
index=pd.PeriodIndex(['2013-01-01', '2013-01-02'],
name='p1', freq='D'),
columns=pd.PeriodIndex(['2013-01', '2013-02'],
name='p2', freq='M'))
pv = df.pivot(index='p1', columns='p2', values='data1')
tm.assert_frame_equal(pv, expected)
@pytest.mark.parametrize('values', [
['baz', 'zoo'], np.array(['baz', 'zoo']),
pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo'])
])
def test_pivot_with_list_like_values(self, values):
# issue #17160
df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
'baz': [1, 2, 3, 4, 5, 6],
'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
result = df.pivot(index='foo', columns='bar', values=values)
data = [[1, 2, 3, 'x', 'y', 'z'],
[4, 5, 6, 'q', 'w', 't']]
index = Index(data=['one', 'two'], name='foo')
columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']],
labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]],
names=[None, 'bar'])
expected = DataFrame(data=data, index=index,
columns=columns, dtype='object')
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('values', [
['bar', 'baz'], np.array(['bar', 'baz']),
pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz'])
])
def test_pivot_with_list_like_values_nans(self, values):
# issue #17160
df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
'baz': [1, 2, 3, 4, 5, 6],
'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
result = df.pivot(index='zoo', columns='foo', values=values)
data = [[np.nan, 'A', np.nan, 4],
[np.nan, 'C', np.nan, 6],
[np.nan, 'B', np.nan, 5],
['A', np.nan, 1, np.nan],
['B', np.nan, 2, np.nan],
['C', np.nan, 3, np.nan]]
index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo')
columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[None, 'foo'])
expected = DataFrame(data=data, index=index,
columns=columns, dtype='object')
tm.assert_frame_equal(result, expected)
@pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails'
'with KeyError #19966')
def test_pivot_with_multiindex(self):
# issue #17160
index = Index(data=[0, 1, 2, 3, 4, 5])
data = [['one', 'A', 1, 'x'],
['one', 'B', 2, 'y'],
['one', 'C', 3, 'z'],
['two', 'A', 4, 'q'],
['two', 'B', 5, 'w'],
['two', 'C', 6, 't']]
columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
df = DataFrame(data=data, index=index, columns=columns, dtype='object')
result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'),
values=('baz', 'first'))
data = {'A': Series([1, 4], index=['one', 'two']),
'B': Series([2, 5], index=['one', 'two']),
'C': Series([3, 6], index=['one', 'two'])}
expected = DataFrame(data)
tm.assert_frame_equal(result, expected)
def test_pivot_with_tuple_of_values(self):
# issue #17160
df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
'baz': [1, 2, 3, 4, 5, 6],
'zoo': ['x', 'y', 'z', 'q', 'w', 't']})
with pytest.raises(KeyError):
# tuple is seen as a single column name
df.pivot(index='zoo', columns='foo', values=('bar', 'baz'))
def test_margins(self):
def _check_output(result, values_col, index=['A', 'B'],
columns=['C'],
margins_col='All'):
col_margins = result.loc[result.index[:-1], margins_col]
expected_col_margins = self.data.groupby(index)[values_col].mean()
tm.assert_series_equal(col_margins, expected_col_margins,
check_names=False)
assert col_margins.name == margins_col
result = result.sort_index()
index_margins = result.loc[(margins_col, '')].iloc[:-1]
expected_ix_margins = self.data.groupby(columns)[values_col].mean()
tm.assert_series_equal(index_margins, expected_ix_margins,
check_names=False)
assert index_margins.name == (margins_col, '')
grand_total_margins = result.loc[(margins_col, ''), margins_col]
expected_total_margins = self.data[values_col].mean()
assert grand_total_margins == expected_total_margins
# column specified
result = self.data.pivot_table(values='D', index=['A', 'B'],
columns='C',
margins=True, aggfunc=np.mean)
_check_output(result, 'D')
# Set a different margins_name (not 'All')
result = self.data.pivot_table(values='D', index=['A', 'B'],
columns='C',
margins=True, aggfunc=np.mean,
margins_name='Totals')
_check_output(result, 'D', margins_col='Totals')
# no column specified
table = self.data.pivot_table(index=['A', 'B'], columns='C',
margins=True, aggfunc=np.mean)
for value_col in table.columns.levels[0]:
_check_output(table[value_col], value_col)
# no col
# to help with a buglet
self.data.columns = [k * 2 for k in self.data.columns]
table = self.data.pivot_table(index=['AA', 'BB'], margins=True,
aggfunc=np.mean)
for value_col in table.columns:
totals = table.loc[('All', ''), value_col]
assert totals == self.data[value_col].mean()
# no rows
rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True,
aggfunc=np.mean)
assert isinstance(rtable, Series)
table = self.data.pivot_table(index=['AA', 'BB'], margins=True,
aggfunc='mean')
for item in ['DD', 'EE', 'FF']:
totals = table.loc[('All', ''), item]
assert totals == self.data[item].mean()
# issue number #8349: pivot_table with margins and dictionary aggfunc
data = [
{'JOB': 'Worker', 'NAME': 'Bob', 'YEAR': 2013,
'MONTH': 12, 'DAYS': 3, 'SALARY': 17},
{'JOB': 'Employ', 'NAME':
'Mary', 'YEAR': 2013, 'MONTH': 12, 'DAYS': 5, 'SALARY': 23},
{'JOB': 'Worker', 'NAME': 'Bob', 'YEAR': 2014,
'MONTH': 1, 'DAYS': 10, 'SALARY': 100},
{'JOB': 'Worker', 'NAME': 'Bob', 'YEAR': 2014,
'MONTH': 1, 'DAYS': 11, 'SALARY': 110},
{'JOB': 'Employ', 'NAME': 'Mary', 'YEAR': 2014,
'MONTH': 1, 'DAYS': 15, 'SALARY': 200},
{'JOB': 'Worker', 'NAME': 'Bob', 'YEAR': 2014,
'MONTH': 2, 'DAYS': 8, 'SALARY': 80},
{'JOB': 'Employ', 'NAME': 'Mary', 'YEAR': 2014,
'MONTH': 2, 'DAYS': 5, 'SALARY': 190},
]
df = DataFrame(data)
df = df.set_index(['JOB', 'NAME', 'YEAR', 'MONTH'], drop=False,
append=False)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = df.pivot_table(index=['JOB', 'NAME'],
columns=['YEAR', 'MONTH'],
values=['DAYS', 'SALARY'],
aggfunc={'DAYS': 'mean', 'SALARY': 'sum'},
margins=True)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
expected = df.pivot_table(index=['JOB', 'NAME'],
columns=['YEAR', 'MONTH'],
values=['DAYS'],
aggfunc='mean', margins=True)
tm.assert_frame_equal(result['DAYS'], expected['DAYS'])
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
expected = df.pivot_table(index=['JOB', 'NAME'],
columns=['YEAR', 'MONTH'],
values=['SALARY'],
aggfunc='sum', margins=True)
tm.assert_frame_equal(result['SALARY'], expected['SALARY'])
def test_margins_dtype(self):
# GH 17013
df = self.data.copy()
df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3)
mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')]
mi = MultiIndex.from_tuples(mi_val, names=('A', 'B'))
expected = DataFrame({'dull': [12, 21, 3, 9, 45],
'shiny': [33, 0, 36, 51, 120]},
index=mi).rename_axis('C', axis=1)
expected['All'] = expected['dull'] + expected['shiny']
result = df.pivot_table(values='D', index=['A', 'B'],
columns='C', margins=True,
aggfunc=np.sum, fill_value=0)
tm.assert_frame_equal(expected, result)
@pytest.mark.xfail(reason='GH 17035 (len of floats is casted back to '
'floats)')
def test_margins_dtype_len(self):
mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')]
mi = MultiIndex.from_tuples(mi_val, names=('A', 'B'))
expected = DataFrame({'dull': [1, 1, 2, 1, 5],
'shiny': [2, 0, 2, 2, 6]},
index=mi).rename_axis('C', axis=1)
expected['All'] = expected['dull'] + expected['shiny']
result = self.data.pivot_table(values='D', index=['A', 'B'],
columns='C', margins=True,
aggfunc=len, fill_value=0)
tm.assert_frame_equal(expected, result)
def test_pivot_integer_columns(self):
# caused by upstream bug in unstack
d = date.min
data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'],
[d + timedelta(i)
for i in range(20)], [1.0]))
df = DataFrame(data)
table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2])
df2 = df.rename(columns=str)
table2 = df2.pivot_table(
values='4', index=['0', '1', '3'], columns=['2'])
tm.assert_frame_equal(table, table2, check_names=False)
def test_pivot_no_level_overlap(self):
# GH #1181
data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2,
'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2,
'c': (['foo'] * 4 + ['bar'] * 4) * 2,
'value': np.random.randn(16)})
table = data.pivot_table('value', index='a', columns=['b', 'c'])
grouped = data.groupby(['a', 'b', 'c'])['value'].mean()
expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all')
tm.assert_frame_equal(table, expected)
def test_pivot_columns_lexsorted(self):
n = 10000
dtype = np.dtype([
("Index", object),
("Symbol", object),
("Year", int),
("Month", int),
("Day", int),
("Quantity", int),
("Price", float),
])
products = np.array([
('SP500', 'ADBE'),
('SP500', 'NVDA'),
('SP500', 'ORCL'),
('NDQ100', 'AAPL'),
('NDQ100', 'MSFT'),
('NDQ100', 'GOOG'),
('FTSE', 'DGE.L'),
('FTSE', 'TSCO.L'),
('FTSE', 'GSK.L'),
], dtype=[('Index', object), ('Symbol', object)])
items = np.empty(n, dtype=dtype)
iproduct = np.random.randint(0, len(products), n)
items['Index'] = products['Index'][iproduct]
items['Symbol'] = products['Symbol'][iproduct]
dr = pd.date_range(date(2000, 1, 1),
date(2010, 12, 31))
dates = dr[np.random.randint(0, len(dr), n)]
items['Year'] = dates.year
items['Month'] = dates.month
items['Day'] = dates.day
items['Price'] = np.random.lognormal(4.0, 2.0, n)
df = DataFrame(items)
pivoted = df.pivot_table('Price', index=['Month', 'Day'],
columns=['Index', 'Symbol', 'Year'],
aggfunc='mean')
assert pivoted.columns.is_monotonic
def test_pivot_complex_aggfunc(self):
f = OrderedDict([('D', ['std']), ('E', ['sum'])])
expected = self.data.groupby(['A', 'B']).agg(f).unstack('B')
result = self.data.pivot_table(index='A', columns='B', aggfunc=f)
tm.assert_frame_equal(result, expected)
def test_margins_no_values_no_cols(self):
# Regression test on pivot table: no values or cols passed.
result = self.data[['A', 'B']].pivot_table(
index=['A', 'B'], aggfunc=len, margins=True)
result_list = result.tolist()
assert sum(result_list[:-1]) == result_list[-1]
def test_margins_no_values_two_rows(self):
# Regression test on pivot table: no values passed but rows are a
# multi-index
result = self.data[['A', 'B', 'C']].pivot_table(
index=['A', 'B'], columns='C', aggfunc=len, margins=True)
assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0]
def test_margins_no_values_one_row_one_col(self):
# Regression test on pivot table: no values passed but row and col
# defined
result = self.data[['A', 'B']].pivot_table(
index='A', columns='B', aggfunc=len, margins=True)
assert result.All.tolist() == [4.0, 7.0, 11.0]
def test_margins_no_values_two_row_two_cols(self):
# Regression test on pivot table: no values passed but rows and cols
# are multi-indexed
self.data['D'] = ['a', 'b', 'c', 'd',
'e', 'f', 'g', 'h', 'i', 'j', 'k']
result = self.data[['A', 'B', 'C', 'D']].pivot_table(
index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True)
assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0]
def test_pivot_table_with_margins_set_margin_name(self):
# see gh-3335
for margin_name in ['foo', 'one', 666, None, ['a', 'b']]:
with pytest.raises(ValueError):
# multi-index index
pivot_table(self.data, values='D', index=['A', 'B'],
columns=['C'], margins=True,
margins_name=margin_name)
with pytest.raises(ValueError):
# multi-index column
pivot_table(self.data, values='D', index=['C'],
columns=['A', 'B'], margins=True,
margins_name=margin_name)
with pytest.raises(ValueError):
# non-multi-index index/column
pivot_table(self.data, values='D', index=['A'],
columns=['B'], margins=True,
margins_name=margin_name)
def test_pivot_timegrouper(self):
df = DataFrame({
'Branch': 'A A A A A A A B'.split(),
'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
'Quantity': [1, 3, 5, 1, 8, 1, 9, 3],
'Date': [datetime(2013, 1, 1),
datetime(2013, 1, 1),
datetime(2013, 10, 1),
datetime(2013, 10, 2),
datetime(2013, 10, 1),
datetime(2013, 10, 2),
datetime(2013, 12, 2),
datetime(2013, 12, 2), ]}).set_index('Date')
expected = DataFrame(np.array([10, 18, 3], dtype='int64')
.reshape(1, 3),
index=[datetime(2013, 12, 31)],
columns='Carl Joe Mark'.split())
expected.index.name = 'Date'
expected.columns.name = 'Buyer'
result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer',
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'),
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected.T)
expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan])
.reshape(2, 3),
index=[datetime(2013, 1, 1),
datetime(2013, 7, 1)],
columns='Carl Joe Mark'.split())
expected.index.name = 'Date'
expected.columns.name = 'Buyer'
result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer',
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'),
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected.T)
# passing the name
df = df.reset_index()
result = pivot_table(df, index=Grouper(freq='6MS', key='Date'),
columns='Buyer',
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index='Buyer',
columns=Grouper(freq='6MS', key='Date'),
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected.T)
pytest.raises(KeyError, lambda: pivot_table(
df, index=Grouper(freq='6MS', key='foo'),
columns='Buyer', values='Quantity', aggfunc=np.sum))
pytest.raises(KeyError, lambda: pivot_table(
df, index='Buyer',
columns=Grouper(freq='6MS', key='foo'),
values='Quantity', aggfunc=np.sum))
# passing the level
df = df.set_index('Date')
result = pivot_table(df, index=Grouper(freq='6MS', level='Date'),
columns='Buyer', values='Quantity',
aggfunc=np.sum)
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index='Buyer',
columns=Grouper(freq='6MS', level='Date'),
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected.T)
pytest.raises(ValueError, lambda: pivot_table(
df, index=Grouper(freq='6MS', level='foo'),
columns='Buyer', values='Quantity', aggfunc=np.sum))
pytest.raises(ValueError, lambda: pivot_table(
df, index='Buyer',
columns=Grouper(freq='6MS', level='foo'),
values='Quantity', aggfunc=np.sum))
# double grouper
df = DataFrame({
'Branch': 'A A A A A A A B'.split(),
'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
'Quantity': [1, 3, 5, 1, 8, 1, 9, 3],
'Date': [datetime(2013, 11, 1, 13, 0), datetime(2013, 9, 1, 13, 5),
datetime(2013, 10, 1, 20, 0),
datetime(2013, 10, 2, 10, 0),
datetime(2013, 11, 1, 20, 0),
datetime(2013, 10, 2, 10, 0),
datetime(2013, 10, 2, 12, 0),
datetime(2013, 12, 5, 14, 0)],
'PayDay': [datetime(2013, 10, 4, 0, 0),
datetime(2013, 10, 15, 13, 5),
datetime(2013, 9, 5, 20, 0),
datetime(2013, 11, 2, 10, 0),
datetime(2013, 10, 7, 20, 0),
datetime(2013, 9, 5, 10, 0),
datetime(2013, 12, 30, 12, 0),
datetime(2013, 11, 20, 14, 0), ]})
result = pivot_table(df, index=Grouper(freq='M', key='Date'),
columns=Grouper(freq='M', key='PayDay'),
values='Quantity', aggfunc=np.sum)
expected = DataFrame(np.array([np.nan, 3, np.nan, np.nan,
6, np.nan, 1, 9,
np.nan, 9, np.nan, np.nan, np.nan,
np.nan, 3, np.nan]).reshape(4, 4),
index=[datetime(2013, 9, 30),
datetime(2013, 10, 31),
datetime(2013, 11, 30),
datetime(2013, 12, 31)],
columns=[datetime(2013, 9, 30),
datetime(2013, 10, 31),
datetime(2013, 11, 30),
datetime(2013, 12, 31)])
expected.index.name = 'Date'
expected.columns.name = 'PayDay'
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=Grouper(freq='M', key='PayDay'),
columns=Grouper(freq='M', key='Date'),
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected.T)
tuples = [(datetime(2013, 9, 30), datetime(2013, 10, 31)),
(datetime(2013, 10, 31),
datetime(2013, 9, 30)),
(datetime(2013, 10, 31),
datetime(2013, 11, 30)),
(datetime(2013, 10, 31),
datetime(2013, 12, 31)),
(datetime(2013, 11, 30),
datetime(2013, 10, 31)),
(datetime(2013, 12, 31), datetime(2013, 11, 30)), ]
idx = MultiIndex.from_tuples(tuples, names=['Date', 'PayDay'])
expected = DataFrame(np.array([3, np.nan, 6, np.nan, 1, np.nan,
9, np.nan, 9, np.nan,
np.nan, 3]).reshape(6, 2),
index=idx, columns=['A', 'B'])
expected.columns.name = 'Branch'
result = pivot_table(
df, index=[Grouper(freq='M', key='Date'),
Grouper(freq='M', key='PayDay')], columns=['Branch'],
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=['Branch'],
columns=[Grouper(freq='M', key='Date'),
Grouper(freq='M', key='PayDay')],
values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected.T)
def test_pivot_datetime_tz(self):
dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00',
'2011-07-19 09:00:00',
'2011-07-19 07:00:00', '2011-07-19 08:00:00',
'2011-07-19 09:00:00']
dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00',
'2013-01-01 15:00:00',
'2013-02-01 15:00:00', '2013-02-01 15:00:00',
'2013-02-01 15:00:00']
df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'],
'dt1': dates1, 'dt2': dates2,
'value1': np.arange(6, dtype='int64'),
'value2': [1, 2] * 3})
df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific'))
df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo'))
exp_idx = pd.DatetimeIndex(['2011-07-19 07:00:00',
'2011-07-19 08:00:00',
'2011-07-19 09:00:00'],
tz='US/Pacific', name='dt1')
exp_col1 = Index(['value1', 'value1'])
exp_col2 = Index(['a', 'b'], name='label')
exp_col = MultiIndex.from_arrays([exp_col1, exp_col2])
expected = DataFrame([[0, 3], [1, 4], [2, 5]],
index=exp_idx, columns=exp_col)
result = pivot_table(df, index=['dt1'], columns=[
'label'], values=['value1'])
tm.assert_frame_equal(result, expected)
exp_col1 = Index(['sum', 'sum', 'sum', 'sum',
'mean', 'mean', 'mean', 'mean'])
exp_col2 = Index(['value1', 'value1', 'value2', 'value2'] * 2)
exp_col3 = pd.DatetimeIndex(['2013-01-01 15:00:00',
'2013-02-01 15:00:00'] * 4,
tz='Asia/Tokyo', name='dt2')
exp_col = MultiIndex.from_arrays([exp_col1, exp_col2, exp_col3])
expected = DataFrame(np.array([[0, 3, 1, 2, 0, 3, 1, 2],
[1, 4, 2, 1, 1, 4, 2, 1],
[2, 5, 1, 2, 2, 5, 1, 2]],
dtype='int64'),
index=exp_idx,
columns=exp_col)
result = pivot_table(df, index=['dt1'], columns=['dt2'],
values=['value1', 'value2'],
aggfunc=[np.sum, np.mean])
tm.assert_frame_equal(result, expected)
def test_pivot_dtaccessor(self):
# GH 8103
dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00',
'2011-07-19 09:00:00',
'2011-07-19 07:00:00', '2011-07-19 08:00:00',
'2011-07-19 09:00:00']
dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00',
'2013-01-01 15:00:00',
'2013-02-01 15:00:00', '2013-02-01 15:00:00',
'2013-02-01 15:00:00']
df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'],
'dt1': dates1, 'dt2': dates2,
'value1': np.arange(6, dtype='int64'),
'value2': [1, 2] * 3})
df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d))
df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d))
result = pivot_table(df, index='label', columns=df['dt1'].dt.hour,
values='value1')
exp_idx = Index(['a', 'b'], name='label')
expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]},
index=exp_idx,
columns=Index([7, 8, 9], name='dt1'))
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=df['dt2'].dt.month,
columns=df['dt1'].dt.hour,
values='value1')
expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]},
index=Index([1, 2], name='dt2'),
columns=Index([7, 8, 9], name='dt1'))
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=df['dt2'].dt.year.values,
columns=[df['dt1'].dt.hour, df['dt2'].dt.month],
values='value1')
exp_col = MultiIndex.from_arrays(
[[7, 7, 8, 8, 9, 9], [1, 2] * 3], names=['dt1', 'dt2'])
expected = DataFrame(np.array([[0, 3, 1, 4, 2, 5]], dtype='int64'),
index=[2013], columns=exp_col)
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=np.array(['X', 'X', 'X',
'X', 'Y', 'Y']),
columns=[df['dt1'].dt.hour, df['dt2'].dt.month],
values='value1')
expected = DataFrame(np.array([[0, 3, 1, np.nan, 2, np.nan],
[np.nan, np.nan, np.nan,
4, np.nan, 5]]),
index=['X', 'Y'], columns=exp_col)
tm.assert_frame_equal(result, expected)
def test_daily(self):
rng = date_range('1/1/2000', '12/31/2004', freq='D')
ts = Series(np.random.randn(len(rng)), index=rng)
annual = pivot_table(DataFrame(ts), index=ts.index.year,
columns=ts.index.dayofyear)
annual.columns = annual.columns.droplevel(0)
doy = np.asarray(ts.index.dayofyear)
for i in range(1, 367):
subset = ts[doy == i]
subset.index = subset.index.year
result = annual[i].dropna()
tm.assert_series_equal(result, subset, check_names=False)
assert result.name == i
def test_monthly(self):
rng = date_range('1/1/2000', '12/31/2004', freq='M')
ts = Series(np.random.randn(len(rng)), index=rng)
annual = pivot_table(pd.DataFrame(ts), index=ts.index.year,
columns=ts.index.month)
annual.columns = annual.columns.droplevel(0)
month = ts.index.month
for i in range(1, 13):
subset = ts[month == i]
subset.index = subset.index.year
result = annual[i].dropna()
tm.assert_series_equal(result, subset, check_names=False)
assert result.name == i
def test_pivot_table_with_iterator_values(self):
# GH 12017
aggs = {'D': 'sum', 'E': 'mean'}
pivot_values_list = pd.pivot_table(
self.data, index=['A'], values=list(aggs.keys()), aggfunc=aggs,
)
pivot_values_keys = pd.pivot_table(
self.data, index=['A'], values=aggs.keys(), aggfunc=aggs,
)
tm.assert_frame_equal(pivot_values_keys, pivot_values_list)
agg_values_gen = (value for value in aggs.keys())
pivot_values_gen = pd.pivot_table(
self.data, index=['A'], values=agg_values_gen, aggfunc=aggs,
)
tm.assert_frame_equal(pivot_values_gen, pivot_values_list)
def test_pivot_table_margins_name_with_aggfunc_list(self):
# GH 13354
margins_name = 'Weekly'
costs = pd.DataFrame(
{'item': ['bacon', 'cheese', 'bacon', 'cheese'],
'cost': [2.5, 4.5, 3.2, 3.3],
'day': ['M', 'M', 'T', 'T']}
)
table = costs.pivot_table(
index="item", columns="day", margins=True,
margins_name=margins_name, aggfunc=[np.mean, max]
)
ix = pd.Index(
['bacon', 'cheese', margins_name], dtype='object', name='item'
)
tups = [('mean', 'cost', 'M'), ('mean', 'cost', 'T'),
('mean', 'cost', margins_name), ('max', 'cost', 'M'),
('max', 'cost', 'T'), ('max', 'cost', margins_name)]
cols = pd.MultiIndex.from_tuples(tups, names=[None, None, 'day'])
expected = pd.DataFrame(table.values, index=ix, columns=cols)
tm.assert_frame_equal(table, expected)
@pytest.mark.xfail(reason='GH 17035 (np.mean of ints is casted back to '
'ints)')
def test_categorical_margins(self, observed):
# GH 10989
df = pd.DataFrame({'x': np.arange(8),
'y': np.arange(8) // 4,
'z': np.arange(8) % 2})
expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]])
expected.index = Index([0, 1, 'All'], name='y')
expected.columns = Index([0, 1, 'All'], name='z')
table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True)
tm.assert_frame_equal(table, expected)
@pytest.mark.xfail(reason='GH 17035 (np.mean of ints is casted back to '
'ints)')
def test_categorical_margins_category(self, observed):
df = pd.DataFrame({'x': np.arange(8),
'y': np.arange(8) // 4,
'z': np.arange(8) % 2})
expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]])
expected.index = Index([0, 1, 'All'], name='y')
expected.columns = Index([0, 1, 'All'], name='z')
df.y = df.y.astype('category')
df.z = df.z.astype('category')
table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True)
tm.assert_frame_equal(table, expected)
def test_categorical_aggfunc(self, observed):
# GH 9534
df = pd.DataFrame({"C1": ["A", "B", "C", "C"],
"C2": ["a", "a", "b", "b"],
"V": [1, 2, 3, 4]})
df["C1"] = df["C1"].astype("category")
result = df.pivot_table("V", index="C1", columns="C2",
dropna=observed, aggfunc="count")
expected_index = pd.CategoricalIndex(['A', 'B', 'C'],
categories=['A', 'B', 'C'],
ordered=False,
name='C1')
expected_columns = pd.Index(['a', 'b'], name='C2')
expected_data = np.array([[1., np.nan],
[1., np.nan],
[np.nan, 2.]])
expected = pd.DataFrame(expected_data,
index=expected_index,
columns=expected_columns)
tm.assert_frame_equal(result, expected)
def test_categorical_pivot_index_ordering(self, observed):
# GH 8731
df = pd.DataFrame({'Sales': [100, 120, 220],
'Month': ['January', 'January', 'January'],
'Year': [2013, 2014, 2013]})
months = ['January', 'February', 'March', 'April', 'May', 'June',
'July', 'August', 'September', 'October', 'November',
'December']
df['Month'] = df['Month'].astype('category').cat.set_categories(months)
result = df.pivot_table(values='Sales',
index='Month',
columns='Year',
dropna=observed,
aggfunc='sum')
expected_columns = pd.Int64Index([2013, 2014], name='Year')
expected_index = pd.CategoricalIndex(['January'],
categories=months,
ordered=False,
name='Month')
expected = pd.DataFrame([[320, 120]],
index=expected_index,
columns=expected_columns)
if not observed:
result = result.dropna().astype(np.int64)
tm.assert_frame_equal(result, expected)
def test_pivot_table_not_series(self):
# GH 4386
# pivot_table always returns a DataFrame
# when values is not list like and columns is None
# and aggfunc is not instance of list
df = DataFrame({'col1': [3, 4, 5],
'col2': ['C', 'D', 'E'],
'col3': [1, 3, 9]})
result = df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum)
m = MultiIndex.from_arrays([[1, 3, 9],
['C', 'D', 'E']],
names=['col3', 'col2'])
expected = DataFrame([3, 4, 5],
index=m, columns=['col1'])
tm.assert_frame_equal(result, expected)
result = df.pivot_table(
'col1', index='col3', columns='col2', aggfunc=np.sum
)
expected = DataFrame([[3, np.NaN, np.NaN],
[np.NaN, 4, np.NaN],
[np.NaN, np.NaN, 5]],
index=Index([1, 3, 9], name='col3'),
columns=Index(['C', 'D', 'E'], name='col2'))
tm.assert_frame_equal(result, expected)
result = df.pivot_table('col1', index='col3', aggfunc=[np.sum])
m = MultiIndex.from_arrays([['sum'],
['col1']])
expected = DataFrame([3, 4, 5],
index=Index([1, 3, 9], name='col3'),
columns=m)
tm.assert_frame_equal(result, expected)
def test_pivot_margins_name_unicode(self):
# issue #13292
greek = u'\u0394\u03bf\u03ba\u03b9\u03bc\u03ae'
frame = pd.DataFrame({'foo': [1, 2, 3]})
table = pd.pivot_table(frame, index=['foo'], aggfunc=len, margins=True,
margins_name=greek)
index = pd.Index([1, 2, 3, greek], dtype='object', name='foo')
expected = pd.DataFrame(index=index)
tm.assert_frame_equal(table, expected)
def test_pivot_string_as_func(self):
# GH #18713
# for correctness purposes
data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar',
'bar', 'bar', 'foo', 'foo', 'foo'],
'B': ['one', 'one', 'one', 'two', 'one', 'one',
'one', 'two', 'two', 'two', 'one'],
'C': range(11)})
result = pivot_table(data, index='A', columns='B', aggfunc='sum')
mi = MultiIndex(levels=[['C'], ['one', 'two']],
labels=[[0, 0], [0, 1]], names=[None, 'B'])
expected = DataFrame({('C', 'one'): {'bar': 15, 'foo': 13},
('C', 'two'): {'bar': 7, 'foo': 20}},
columns=mi).rename_axis('A')
tm.assert_frame_equal(result, expected)
result = pivot_table(data, index='A', columns='B',
aggfunc=['sum', 'mean'])
mi = MultiIndex(levels=[['sum', 'mean'], ['C'], ['one', 'two']],
labels=[[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 1]],
names=[None, None, 'B'])
expected = DataFrame({('mean', 'C', 'one'): {'bar': 5.0, 'foo': 3.25},
('mean', 'C', 'two'): {'bar': 7.0,
'foo': 6.666666666666667},
('sum', 'C', 'one'): {'bar': 15, 'foo': 13},
('sum', 'C', 'two'): {'bar': 7, 'foo': 20}},
columns=mi).rename_axis('A')
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize('f, f_numpy',
[('sum', np.sum),
('mean', np.mean),
('std', np.std),
(['sum', 'mean'], [np.sum, np.mean]),
(['sum', 'std'], [np.sum, np.std]),
(['std', 'mean'], [np.std, np.mean])])
def test_pivot_string_func_vs_func(self, f, f_numpy):
# GH #18713
# for consistency purposes
result = pivot_table(self.data, index='A', columns='B', aggfunc=f)
expected = pivot_table(self.data, index='A', columns='B',
aggfunc=f_numpy)
tm.assert_frame_equal(result, expected)
class TestCrosstab(object):
def setup_method(self, method):
df = DataFrame({'A': ['foo', 'foo', 'foo', 'foo',
'bar', 'bar', 'bar', 'bar',
'foo', 'foo', 'foo'],
'B': ['one', 'one', 'one', 'two',
'one', 'one', 'one', 'two',
'two', 'two', 'one'],
'C': ['dull', 'dull', 'shiny', 'dull',
'dull', 'shiny', 'shiny', 'dull',
'shiny', 'shiny', 'shiny'],
'D': np.random.randn(11),
'E': np.random.randn(11),
'F': np.random.randn(11)})
self.df = df.append(df, ignore_index=True)
def test_crosstab_single(self):
df = self.df
result = crosstab(df['A'], df['C'])
expected = df.groupby(['A', 'C']).size().unstack()
tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64))
def test_crosstab_multiple(self):
df = self.df
result = crosstab(df['A'], [df['B'], df['C']])
expected = df.groupby(['A', 'B', 'C']).size()
expected = expected.unstack(
'B').unstack('C').fillna(0).astype(np.int64)
tm.assert_frame_equal(result, expected)
result = crosstab([df['B'], df['C']], df['A'])
expected = df.groupby(['B', 'C', 'A']).size()
expected = expected.unstack('A').fillna(0).astype(np.int64)
tm.assert_frame_equal(result, expected)
def test_crosstab_ndarray(self):
a = np.random.randint(0, 5, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 10, size=100)
df = DataFrame({'a': a, 'b': b, 'c': c})
result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'))
expected = crosstab(df['a'], [df['b'], df['c']])
tm.assert_frame_equal(result, expected)
result = crosstab([b, c], a, colnames=['a'], rownames=('b', 'c'))
expected = crosstab([df['b'], df['c']], df['a'])
tm.assert_frame_equal(result, expected)
# assign arbitrary names
result = crosstab(self.df['A'].values, self.df['C'].values)
assert result.index.name == 'row_0'
assert result.columns.name == 'col_0'
def test_crosstab_non_aligned(self):
# GH 17005
a = pd.Series([0, 1, 1], index=['a', 'b', 'c'])
b = pd.Series([3, 4, 3, 4, 3], index=['a', 'b', 'c', 'd', 'f'])
c = np.array([3, 4, 3])
expected = pd.DataFrame([[1, 0], [1, 1]],
index=Index([0, 1], name='row_0'),
columns=Index([3, 4], name='col_0'))
result = crosstab(a, b)
tm.assert_frame_equal(result, expected)
result = crosstab(a, c)
tm.assert_frame_equal(result, expected)
def test_crosstab_margins(self):
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
df = DataFrame({'a': a, 'b': b, 'c': c})
result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'),
margins=True)
assert result.index.names == ('a',)
assert result.columns.names == ['b', 'c']
all_cols = result['All', '']
exp_cols = df.groupby(['a']).size().astype('i8')
# to keep index.name
exp_margin = Series([len(df)], index=Index(['All'], name='a'))
exp_cols = exp_cols.append(exp_margin)
exp_cols.name = ('All', '')
tm.assert_series_equal(all_cols, exp_cols)
all_rows = result.loc['All']
exp_rows = df.groupby(['b', 'c']).size().astype('i8')
exp_rows = exp_rows.append(Series([len(df)], index=[('All', '')]))
exp_rows.name = 'All'
exp_rows = exp_rows.reindex(all_rows.index)
exp_rows = exp_rows.fillna(0).astype(np.int64)
tm.assert_series_equal(all_rows, exp_rows)
def test_crosstab_margins_set_margin_name(self):
# GH 15972
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
df = DataFrame({'a': a, 'b': b, 'c': c})
result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'),
margins=True, margins_name='TOTAL')
assert result.index.names == ('a',)
assert result.columns.names == ['b', 'c']
all_cols = result['TOTAL', '']
exp_cols = df.groupby(['a']).size().astype('i8')
# to keep index.name
exp_margin = Series([len(df)], index=Index(['TOTAL'], name='a'))
exp_cols = exp_cols.append(exp_margin)
exp_cols.name = ('TOTAL', '')
tm.assert_series_equal(all_cols, exp_cols)
all_rows = result.loc['TOTAL']
exp_rows = df.groupby(['b', 'c']).size().astype('i8')
exp_rows = exp_rows.append(Series([len(df)], index=[('TOTAL', '')]))
exp_rows.name = 'TOTAL'
exp_rows = exp_rows.reindex(all_rows.index)
exp_rows = exp_rows.fillna(0).astype(np.int64)
tm.assert_series_equal(all_rows, exp_rows)
for margins_name in [666, None, ['a', 'b']]:
with pytest.raises(ValueError):
crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'),
margins=True, margins_name=margins_name)
def test_crosstab_pass_values(self):
a = np.random.randint(0, 7, size=100)
b = np.random.randint(0, 3, size=100)
c = np.random.randint(0, 5, size=100)
values = np.random.randn(100)
table = crosstab([a, b], c, values, aggfunc=np.sum,
rownames=['foo', 'bar'], colnames=['baz'])
df = DataFrame({'foo': a, 'bar': b, 'baz': c, 'values': values})
expected = df.pivot_table('values', index=['foo', 'bar'],
columns='baz', aggfunc=np.sum)
tm.assert_frame_equal(table, expected)
def test_crosstab_dropna(self):
# GH 3820
a = np.array(['foo', 'foo', 'foo', 'bar',
'bar', 'foo', 'foo'], dtype=object)
b = np.array(['one', 'one', 'two', 'one',
'two', 'two', 'two'], dtype=object)
c = np.array(['dull', 'dull', 'dull', 'dull',
'dull', 'shiny', 'shiny'], dtype=object)
res = pd.crosstab(a, [b, c], rownames=['a'],
colnames=['b', 'c'], dropna=False)
m = MultiIndex.from_tuples([('one', 'dull'), ('one', 'shiny'),
('two', 'dull'), ('two', 'shiny')],
names=['b', 'c'])
tm.assert_index_equal(res.columns, m)
def test_crosstab_no_overlap(self):
# GS 10291
s1 = pd.Series([1, 2, 3], index=[1, 2, 3])
s2 = pd.Series([4, 5, 6], index=[4, 5, 6])
actual = crosstab(s1, s2)
expected = pd.DataFrame()
tm.assert_frame_equal(actual, expected)
def test_margin_dropna(self):
# GH 12577
# pivot_table counts null into margin ('All')
# when margins=true and dropna=true
df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan],
'b': [3, 3, 4, 4, 4, 4]})
actual = pd.crosstab(df.a, df.b, margins=True, dropna=True)
expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]])
expected.index = Index([1.0, 2.0, 'All'], name='a')
expected.columns = Index([3, 4, 'All'], name='b')
tm.assert_frame_equal(actual, expected)
df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan],
'b': [3, np.nan, 4, 4, 4, 4]})
actual = pd.crosstab(df.a, df.b, margins=True, dropna=True)
expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
expected.index = Index([1.0, 2.0, 'All'], name='a')
expected.columns = Index([3.0, 4.0, 'All'], name='b')
tm.assert_frame_equal(actual, expected)
df = DataFrame({'a': [1, np.nan, np.nan, np.nan, np.nan, 2],
'b': [3, 3, 4, 4, 4, 4]})
actual = pd.crosstab(df.a, df.b, margins=True, dropna=True)
expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]])
expected.index = Index([1.0, 2.0, 'All'], name='a')
expected.columns = Index([3, 4, 'All'], name='b')
tm.assert_frame_equal(actual, expected)
# GH 12642
# _add_margins raises KeyError: Level None not found
# when margins=True and dropna=False
df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan],
'b': [3, 3, 4, 4, 4, 4]})
actual = pd.crosstab(df.a, df.b, margins=True, dropna=False)
expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 4, 6]])
expected.index = Index([1.0, 2.0, 'All'], name='a')
expected.columns = Index([3, 4, 'All'], name='b')
tm.assert_frame_equal(actual, expected)
df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan],
'b': [3, np.nan, 4, 4, 4, 4]})
actual = pd.crosstab(df.a, df.b, margins=True, dropna=False)
expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 4, 6]])
expected.index = Index([1.0, 2.0, 'All'], name='a')
expected.columns = Index([3.0, 4.0, 'All'], name='b')
tm.assert_frame_equal(actual, expected)
a = np.array(['foo', 'foo', 'foo', 'bar',
'bar', 'foo', 'foo'], dtype=object)
b = np.array(['one', 'one', 'two', 'one',
'two', np.nan, 'two'], dtype=object)
c = np.array(['dull', 'dull', 'dull', 'dull',
'dull', 'shiny', 'shiny'], dtype=object)
actual = pd.crosstab(a, [b, c], rownames=['a'],
colnames=['b', 'c'], margins=True, dropna=False)
m = MultiIndex.from_arrays([['one', 'one', 'two', 'two', 'All'],
['dull', 'shiny', 'dull', 'shiny', '']],
names=['b', 'c'])
expected = DataFrame([[1, 0, 1, 0, 2], [2, 0, 1, 1, 5],
[3, 0, 2, 1, 7]], columns=m)
expected.index = Index(['bar', 'foo', 'All'], name='a')
tm.assert_frame_equal(actual, expected)
actual = pd.crosstab([a, b], c, rownames=['a', 'b'],
colnames=['c'], margins=True, dropna=False)
m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'],
['one', 'two', 'one', 'two', '']],
names=['a', 'b'])
expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2],
[5, 2, 7]], index=m)
expected.columns = Index(['dull', 'shiny', 'All'], name='c')
tm.assert_frame_equal(actual, expected)
actual = pd.crosstab([a, b], c, rownames=['a', 'b'],
colnames=['c'], margins=True, dropna=True)
m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'],
['one', 'two', 'one', 'two', '']],
names=['a', 'b'])
expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2],
[5, 1, 6]], index=m)
expected.columns = Index(['dull', 'shiny', 'All'], name='c')
tm.assert_frame_equal(actual, expected)
def test_crosstab_normalize(self):
# Issue 12578
df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
'c': [1, 1, np.nan, 1, 1]})
rindex = pd.Index([1, 2], name='a')
cindex = pd.Index([3, 4], name='b')
full_normal = pd.DataFrame([[0.2, 0], [0.2, 0.6]],
index=rindex, columns=cindex)
row_normal = pd.DataFrame([[1.0, 0], [0.25, 0.75]],
index=rindex, columns=cindex)
col_normal = pd.DataFrame([[0.5, 0], [0.5, 1.0]],
index=rindex, columns=cindex)
# Check all normalize args
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='all'),
full_normal)
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True),
full_normal)
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index'),
row_normal)
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns'),
col_normal)
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=1),
pd.crosstab(df.a, df.b, normalize='columns'))
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=0),
pd.crosstab(df.a, df.b, normalize='index'))
row_normal_margins = pd.DataFrame([[1.0, 0],
[0.25, 0.75],
[0.4, 0.6]],
index=pd.Index([1, 2, 'All'],
name='a',
dtype='object'),
columns=pd.Index([3, 4], name='b',
dtype='object'))
col_normal_margins = pd.DataFrame([[0.5, 0, 0.2], [0.5, 1.0, 0.8]],
index=pd.Index([1, 2], name='a',
dtype='object'),
columns=pd.Index([3, 4, 'All'],
name='b',
dtype='object'))
all_normal_margins = pd.DataFrame([[0.2, 0, 0.2],
[0.2, 0.6, 0.8],
[0.4, 0.6, 1]],
index=pd.Index([1, 2, 'All'],
name='a',
dtype='object'),
columns=pd.Index([3, 4, 'All'],
name='b',
dtype='object'))
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index',
margins=True), row_normal_margins)
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns',
margins=True), col_normal_margins)
tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True,
margins=True), all_normal_margins)
# Test arrays
pd.crosstab([np.array([1, 1, 2, 2]), np.array([1, 2, 1, 2])],
np.array([1, 2, 1, 2]))
# Test with aggfunc
norm_counts = pd.DataFrame([[0.25, 0, 0.25],
[0.25, 0.5, 0.75],
[0.5, 0.5, 1]],
index=pd.Index([1, 2, 'All'],
name='a',
dtype='object'),
columns=pd.Index([3, 4, 'All'],
name='b'))
test_case = pd.crosstab(df.a, df.b, df.c, aggfunc='count',
normalize='all',
margins=True)
tm.assert_frame_equal(test_case, norm_counts)
df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
'c': [0, 4, np.nan, 3, 3]})
norm_sum = pd.DataFrame([[0, 0, 0.],
[0.4, 0.6, 1],
[0.4, 0.6, 1]],
index=pd.Index([1, 2, 'All'],
name='a',
dtype='object'),
columns=pd.Index([3, 4, 'All'],
name='b',
dtype='object'))
test_case = pd.crosstab(df.a, df.b, df.c, aggfunc=np.sum,
normalize='all',
margins=True)
tm.assert_frame_equal(test_case, norm_sum)
def test_crosstab_with_empties(self):
# Check handling of empties
df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
'c': [np.nan, np.nan, np.nan, np.nan, np.nan]})
empty = pd.DataFrame([[0.0, 0.0], [0.0, 0.0]],
index=pd.Index([1, 2],
name='a',
dtype='int64'),
columns=pd.Index([3, 4], name='b'))
for i in [True, 'index', 'columns']:
calculated = pd.crosstab(df.a, df.b, values=df.c, aggfunc='count',
normalize=i)
tm.assert_frame_equal(empty, calculated)
nans = pd.DataFrame([[0.0, np.nan], [0.0, 0.0]],
index=pd.Index([1, 2],
name='a',
dtype='int64'),
columns=pd.Index([3, 4], name='b'))
calculated = pd.crosstab(df.a, df.b, values=df.c, aggfunc='count',
normalize=False)
tm.assert_frame_equal(nans, calculated)
def test_crosstab_errors(self):
# Issue 12578
df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4],
'c': [1, 1, np.nan, 1, 1]})
error = 'values cannot be used without an aggfunc.'
with tm.assert_raises_regex(ValueError, error):
pd.crosstab(df.a, df.b, values=df.c)
error = 'aggfunc cannot be used without values'
with tm.assert_raises_regex(ValueError, error):
pd.crosstab(df.a, df.b, aggfunc=np.mean)
error = 'Not a valid normalize argument'
with tm.assert_raises_regex(ValueError, error):
pd.crosstab(df.a, df.b, normalize='42')
with tm.assert_raises_regex(ValueError, error):
pd.crosstab(df.a, df.b, normalize=42)
error = 'Not a valid margins argument'
with tm.assert_raises_regex(ValueError, error):
pd.crosstab(df.a, df.b, normalize='all', margins=42)
def test_crosstab_with_categorial_columns(self):
# GH 8860
df = pd.DataFrame({'MAKE': ['Honda', 'Acura', 'Tesla',
'Honda', 'Honda', 'Acura'],
'MODEL': ['Sedan', 'Sedan', 'Electric',
'Pickup', 'Sedan', 'Sedan']})
categories = ['Sedan', 'Electric', 'Pickup']
df['MODEL'] = (df['MODEL'].astype('category')
.cat.set_categories(categories))
result = pd.crosstab(df['MAKE'], df['MODEL'])
expected_index = pd.Index(['Acura', 'Honda', 'Tesla'], name='MAKE')
expected_columns = pd.CategoricalIndex(categories,
categories=categories,
ordered=False,
name='MODEL')
expected_data = [[2, 0, 0], [2, 0, 1], [0, 1, 0]]
expected = pd.DataFrame(expected_data,
index=expected_index,
columns=expected_columns)
tm.assert_frame_equal(result, expected)
def test_crosstab_with_numpy_size(self):
# GH 4003
df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
'B': ['A', 'B', 'C'] * 8,
'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
'D': np.random.randn(24),
'E': np.random.randn(24)})
result = pd.crosstab(index=[df['A'], df['B']],
columns=[df['C']],
margins=True,
aggfunc=np.size,
values=df['D'])
expected_index = pd.MultiIndex(levels=[['All', 'one', 'three', 'two'],
['', 'A', 'B', 'C']],
labels=[[1, 1, 1, 2, 2, 2, 3, 3, 3, 0],
[1, 2, 3, 1, 2, 3, 1, 2, 3, 0]],
names=['A', 'B'])
expected_column = pd.Index(['bar', 'foo', 'All'],
dtype='object',
name='C')
expected_data = np.array([[2., 2., 4.],
[2., 2., 4.],
[2., 2., 4.],
[2., np.nan, 2.],
[np.nan, 2., 2.],
[2., np.nan, 2.],
[np.nan, 2., 2.],
[2., np.nan, 2.],
[np.nan, 2., 2.],
[12., 12., 24.]])
expected = pd.DataFrame(expected_data,
index=expected_index,
columns=expected_column)
tm.assert_frame_equal(result, expected)
def test_crosstab_dup_index_names(self):
# GH 13279
s = pd.Series(range(3), name='foo')
result = pd.crosstab(s, s)
expected_index = pd.Index(range(3), name='foo')
expected = pd.DataFrame(np.eye(3, dtype=np.int64),
index=expected_index,
columns=expected_index)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("names", [['a', ('b', 'c')],
[('a', 'b'), 'c']])
def test_crosstab_tuple_name(self, names):
s1 = pd.Series(range(3), name=names[0])
s2 = pd.Series(range(1, 4), name=names[1])
mi = pd.MultiIndex.from_arrays([range(3), range(1, 4)], names=names)
expected = pd.Series(1, index=mi).unstack(1, fill_value=0)
result = pd.crosstab(s1, s2)
tm.assert_frame_equal(result, expected)
def test_crosstab_unsorted_order(self):
df = pd.DataFrame({"b": [3, 1, 2], 'a': [5, 4, 6]},
index=['C', 'A', 'B'])
result = pd.crosstab(df.index, [df.b, df.a])
e_idx = pd.Index(['A', 'B', 'C'], name='row_0')
e_columns = pd.MultiIndex.from_tuples([(1, 4), (2, 6), (3, 5)],
names=['b', 'a'])
expected = pd.DataFrame([[1, 0, 0], [0, 1, 0], [0, 0, 1]],
index=e_idx,
columns=e_columns)
tm.assert_frame_equal(result, expected)
| bsd-3-clause |
joshloyal/scikit-learn | sklearn/linear_model/tests/test_logistic.py | 18 | 41552 | import numpy as np
import scipy.sparse as sp
from scipy import linalg, optimize, sparse
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_warns
from sklearn.utils.testing import raises
from sklearn.utils.testing import ignore_warnings
from sklearn.utils.testing import assert_raise_message
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils import compute_class_weight
from sklearn.utils.fixes import sp_version
from sklearn.linear_model.logistic import (
LogisticRegression,
logistic_regression_path, LogisticRegressionCV,
_logistic_loss_and_grad, _logistic_grad_hess,
_multinomial_grad_hess, _logistic_loss,
)
from sklearn.model_selection import StratifiedKFold
from sklearn.datasets import load_iris, make_classification
from sklearn.metrics import log_loss
from sklearn.preprocessing import LabelEncoder
X = [[-1, 0], [0, 1], [1, 1]]
X_sp = sp.csr_matrix(X)
Y1 = [0, 1, 1]
Y2 = [2, 1, 0]
iris = load_iris()
def check_predictions(clf, X, y):
"""Check that the model is able to fit the classification data"""
n_samples = len(y)
classes = np.unique(y)
n_classes = classes.shape[0]
predicted = clf.fit(X, y).predict(X)
assert_array_equal(clf.classes_, classes)
assert_equal(predicted.shape, (n_samples,))
assert_array_equal(predicted, y)
probabilities = clf.predict_proba(X)
assert_equal(probabilities.shape, (n_samples, n_classes))
assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples))
assert_array_equal(probabilities.argmax(axis=1), y)
def test_predict_2_classes():
# Simple sanity check on a 2 classes dataset
# Make sure it predicts the correct result on simple datasets.
check_predictions(LogisticRegression(random_state=0), X, Y1)
check_predictions(LogisticRegression(random_state=0), X_sp, Y1)
check_predictions(LogisticRegression(C=100, random_state=0), X, Y1)
check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1)
check_predictions(LogisticRegression(fit_intercept=False,
random_state=0), X, Y1)
check_predictions(LogisticRegression(fit_intercept=False,
random_state=0), X_sp, Y1)
def test_error():
# Test for appropriate exception on errors
msg = "Penalty term must be positive"
assert_raise_message(ValueError, msg,
LogisticRegression(C=-1).fit, X, Y1)
assert_raise_message(ValueError, msg,
LogisticRegression(C="test").fit, X, Y1)
for LR in [LogisticRegression, LogisticRegressionCV]:
msg = "Tolerance for stopping criteria must be positive"
assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1)
assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1)
msg = "Maximum number of iteration must be positive"
assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1)
assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1)
def test_predict_3_classes():
check_predictions(LogisticRegression(C=10), X, Y2)
check_predictions(LogisticRegression(C=10), X_sp, Y2)
def test_predict_iris():
# Test logistic regression with the iris dataset
n_samples, n_features = iris.data.shape
target = iris.target_names[iris.target]
# Test that both multinomial and OvR solvers handle
# multiclass data correctly and give good accuracy
# score (>0.95) for the training data.
for clf in [LogisticRegression(C=len(iris.data)),
LogisticRegression(C=len(iris.data), solver='lbfgs',
multi_class='multinomial'),
LogisticRegression(C=len(iris.data), solver='newton-cg',
multi_class='multinomial'),
LogisticRegression(C=len(iris.data), solver='sag', tol=1e-2,
multi_class='ovr', random_state=42)]:
clf.fit(iris.data, target)
assert_array_equal(np.unique(target), clf.classes_)
pred = clf.predict(iris.data)
assert_greater(np.mean(pred == target), .95)
probabilities = clf.predict_proba(iris.data)
assert_array_almost_equal(probabilities.sum(axis=1),
np.ones(n_samples))
pred = iris.target_names[probabilities.argmax(axis=1)]
assert_greater(np.mean(pred == target), .95)
def test_multinomial_validation():
for solver in ['lbfgs', 'newton-cg', 'sag']:
lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial')
assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1])
def test_check_solver_option():
X, y = iris.data, iris.target
for LR in [LogisticRegression, LogisticRegressionCV]:
msg = ("Logistic Regression supports only liblinear, newton-cg, lbfgs"
" and sag solvers, got wrong_name")
lr = LR(solver="wrong_name")
assert_raise_message(ValueError, msg, lr.fit, X, y)
msg = "multi_class should be either multinomial or ovr, got wrong_name"
lr = LR(solver='newton-cg', multi_class="wrong_name")
assert_raise_message(ValueError, msg, lr.fit, X, y)
# only 'liblinear' solver
msg = "Solver liblinear does not support a multinomial backend."
lr = LR(solver='liblinear', multi_class='multinomial')
assert_raise_message(ValueError, msg, lr.fit, X, y)
# all solvers except 'liblinear'
for solver in ['newton-cg', 'lbfgs', 'sag']:
msg = ("Solver %s supports only l2 penalties, got l1 penalty." %
solver)
lr = LR(solver=solver, penalty='l1')
assert_raise_message(ValueError, msg, lr.fit, X, y)
msg = ("Solver %s supports only dual=False, got dual=True" %
solver)
lr = LR(solver=solver, dual=True)
assert_raise_message(ValueError, msg, lr.fit, X, y)
def test_multinomial_binary():
# Test multinomial LR on a binary problem.
target = (iris.target > 0).astype(np.intp)
target = np.array(["setosa", "not-setosa"])[target]
for solver in ['lbfgs', 'newton-cg', 'sag']:
clf = LogisticRegression(solver=solver, multi_class='multinomial',
random_state=42, max_iter=2000)
clf.fit(iris.data, target)
assert_equal(clf.coef_.shape, (1, iris.data.shape[1]))
assert_equal(clf.intercept_.shape, (1,))
assert_array_equal(clf.predict(iris.data), target)
mlr = LogisticRegression(solver=solver, multi_class='multinomial',
random_state=42, fit_intercept=False)
mlr.fit(iris.data, target)
pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data),
axis=1)]
assert_greater(np.mean(pred == target), .9)
def test_sparsify():
# Test sparsify and densify members.
n_samples, n_features = iris.data.shape
target = iris.target_names[iris.target]
clf = LogisticRegression(random_state=0).fit(iris.data, target)
pred_d_d = clf.decision_function(iris.data)
clf.sparsify()
assert_true(sp.issparse(clf.coef_))
pred_s_d = clf.decision_function(iris.data)
sp_data = sp.coo_matrix(iris.data)
pred_s_s = clf.decision_function(sp_data)
clf.densify()
pred_d_s = clf.decision_function(sp_data)
assert_array_almost_equal(pred_d_d, pred_s_d)
assert_array_almost_equal(pred_d_d, pred_s_s)
assert_array_almost_equal(pred_d_d, pred_d_s)
def test_inconsistent_input():
# Test that an exception is raised on inconsistent input
rng = np.random.RandomState(0)
X_ = rng.random_sample((5, 10))
y_ = np.ones(X_.shape[0])
y_[0] = 0
clf = LogisticRegression(random_state=0)
# Wrong dimensions for training data
y_wrong = y_[:-1]
assert_raises(ValueError, clf.fit, X, y_wrong)
# Wrong dimensions for test data
assert_raises(ValueError, clf.fit(X_, y_).predict,
rng.random_sample((3, 12)))
def test_write_parameters():
# Test that we can write to coef_ and intercept_
clf = LogisticRegression(random_state=0)
clf.fit(X, Y1)
clf.coef_[:] = 0
clf.intercept_[:] = 0
assert_array_almost_equal(clf.decision_function(X), 0)
@raises(ValueError)
def test_nan():
# Test proper NaN handling.
# Regression test for Issue #252: fit used to go into an infinite loop.
Xnan = np.array(X, dtype=np.float64)
Xnan[0, 1] = np.nan
LogisticRegression(random_state=0).fit(Xnan, Y1)
def test_consistency_path():
# Test that the path algorithm is consistent
rng = np.random.RandomState(0)
X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2)))
y = [1] * 100 + [-1] * 100
Cs = np.logspace(0, 4, 10)
f = ignore_warnings
# can't test with fit_intercept=True since LIBLINEAR
# penalizes the intercept
for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'):
coefs, Cs, _ = f(logistic_regression_path)(
X, y, Cs=Cs, fit_intercept=False, tol=1e-5, solver=solver,
random_state=0)
for i, C in enumerate(Cs):
lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-5,
random_state=0)
lr.fit(X, y)
lr_coef = lr.coef_.ravel()
assert_array_almost_equal(lr_coef, coefs[i], decimal=4,
err_msg="with solver = %s" % solver)
# test for fit_intercept=True
for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'):
Cs = [1e3]
coefs, Cs, _ = f(logistic_regression_path)(
X, y, Cs=Cs, fit_intercept=True, tol=1e-6, solver=solver,
intercept_scaling=10000., random_state=0)
lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4,
intercept_scaling=10000., random_state=0)
lr.fit(X, y)
lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_])
assert_array_almost_equal(lr_coef, coefs[0], decimal=4,
err_msg="with solver = %s" % solver)
def test_liblinear_dual_random_state():
# random_state is relevant for liblinear solver only if dual=True
X, y = make_classification(n_samples=20, random_state=0)
lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15)
lr1.fit(X, y)
lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15)
lr2.fit(X, y)
lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15)
lr3.fit(X, y)
# same result for same random state
assert_array_almost_equal(lr1.coef_, lr2.coef_)
# different results for different random states
msg = "Arrays are not almost equal to 6 decimals"
assert_raise_message(AssertionError, msg,
assert_array_almost_equal, lr1.coef_, lr3.coef_)
def test_logistic_loss_and_grad():
X_ref, y = make_classification(n_samples=20, random_state=0)
n_features = X_ref.shape[1]
X_sp = X_ref.copy()
X_sp[X_sp < .1] = 0
X_sp = sp.csr_matrix(X_sp)
for X in (X_ref, X_sp):
w = np.zeros(n_features)
# First check that our derivation of the grad is correct
loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.)
approx_grad = optimize.approx_fprime(
w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3
)
assert_array_almost_equal(grad, approx_grad, decimal=2)
# Second check that our intercept implementation is good
w = np.zeros(n_features + 1)
loss_interp, grad_interp = _logistic_loss_and_grad(
w, X, y, alpha=1.
)
assert_array_almost_equal(loss, loss_interp)
approx_grad = optimize.approx_fprime(
w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3
)
assert_array_almost_equal(grad_interp, approx_grad, decimal=2)
def test_logistic_grad_hess():
rng = np.random.RandomState(0)
n_samples, n_features = 50, 5
X_ref = rng.randn(n_samples, n_features)
y = np.sign(X_ref.dot(5 * rng.randn(n_features)))
X_ref -= X_ref.mean()
X_ref /= X_ref.std()
X_sp = X_ref.copy()
X_sp[X_sp < .1] = 0
X_sp = sp.csr_matrix(X_sp)
for X in (X_ref, X_sp):
w = .1 * np.ones(n_features)
# First check that _logistic_grad_hess is consistent
# with _logistic_loss_and_grad
loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.)
grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.)
assert_array_almost_equal(grad, grad_2)
# Now check our hessian along the second direction of the grad
vector = np.zeros_like(grad)
vector[1] = 1
hess_col = hess(vector)
# Computation of the Hessian is particularly fragile to numerical
# errors when doing simple finite differences. Here we compute the
# grad along a path in the direction of the vector and then use a
# least-square regression to estimate the slope
e = 1e-3
d_x = np.linspace(-e, e, 30)
d_grad = np.array([
_logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1]
for t in d_x
])
d_grad -= d_grad.mean(axis=0)
approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
assert_array_almost_equal(approx_hess_col, hess_col, decimal=3)
# Second check that our intercept implementation is good
w = np.zeros(n_features + 1)
loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.)
loss_interp_2 = _logistic_loss(w, X, y, alpha=1.)
grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.)
assert_array_almost_equal(loss_interp, loss_interp_2)
assert_array_almost_equal(grad_interp, grad_interp_2)
def test_logistic_cv():
# test for LogisticRegressionCV object
n_samples, n_features = 50, 5
rng = np.random.RandomState(0)
X_ref = rng.randn(n_samples, n_features)
y = np.sign(X_ref.dot(5 * rng.randn(n_features)))
X_ref -= X_ref.mean()
X_ref /= X_ref.std()
lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False,
solver='liblinear')
lr_cv.fit(X_ref, y)
lr = LogisticRegression(C=1., fit_intercept=False)
lr.fit(X_ref, y)
assert_array_almost_equal(lr.coef_, lr_cv.coef_)
assert_array_equal(lr_cv.coef_.shape, (1, n_features))
assert_array_equal(lr_cv.classes_, [-1, 1])
assert_equal(len(lr_cv.classes_), 2)
coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values()))
assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features))
assert_array_equal(lr_cv.Cs_.shape, (1, ))
scores = np.asarray(list(lr_cv.scores_.values()))
assert_array_equal(scores.shape, (1, 3, 1))
def test_multinomial_logistic_regression_string_inputs():
# Test with string labels for LogisticRegression(CV)
n_samples, n_features, n_classes = 50, 5, 3
X_ref, y = make_classification(n_samples=n_samples, n_features=n_features,
n_classes=n_classes, n_informative=3,
random_state=0)
y_str = LabelEncoder().fit(['bar', 'baz', 'foo']).inverse_transform(y)
# For numerical labels, let y values be taken from set (-1, 0, 1)
y = np.array(y) - 1
# Test for string labels
lr = LogisticRegression(solver='lbfgs', multi_class='multinomial')
lr_cv = LogisticRegressionCV(solver='lbfgs', multi_class='multinomial')
lr_str = LogisticRegression(solver='lbfgs', multi_class='multinomial')
lr_cv_str = LogisticRegressionCV(solver='lbfgs', multi_class='multinomial')
lr.fit(X_ref, y)
lr_cv.fit(X_ref, y)
lr_str.fit(X_ref, y_str)
lr_cv_str.fit(X_ref, y_str)
assert_array_almost_equal(lr.coef_, lr_str.coef_)
assert_equal(sorted(lr_str.classes_), ['bar', 'baz', 'foo'])
assert_array_almost_equal(lr_cv.coef_, lr_cv_str.coef_)
assert_equal(sorted(lr_str.classes_), ['bar', 'baz', 'foo'])
assert_equal(sorted(lr_cv_str.classes_), ['bar', 'baz', 'foo'])
# The predictions should be in original labels
assert_equal(sorted(np.unique(lr_str.predict(X_ref))),
['bar', 'baz', 'foo'])
assert_equal(sorted(np.unique(lr_cv_str.predict(X_ref))),
['bar', 'baz', 'foo'])
# Make sure class weights can be given with string labels
lr_cv_str = LogisticRegression(
solver='lbfgs', class_weight={'bar': 1, 'baz': 2, 'foo': 0},
multi_class='multinomial').fit(X_ref, y_str)
assert_equal(sorted(np.unique(lr_cv_str.predict(X_ref))), ['bar', 'baz'])
def test_logistic_cv_sparse():
X, y = make_classification(n_samples=50, n_features=5,
random_state=0)
X[X < 1.0] = 0.0
csr = sp.csr_matrix(X)
clf = LogisticRegressionCV(fit_intercept=True)
clf.fit(X, y)
clfs = LogisticRegressionCV(fit_intercept=True)
clfs.fit(csr, y)
assert_array_almost_equal(clfs.coef_, clf.coef_)
assert_array_almost_equal(clfs.intercept_, clf.intercept_)
assert_equal(clfs.C_, clf.C_)
def test_intercept_logistic_helper():
n_samples, n_features = 10, 5
X, y = make_classification(n_samples=n_samples, n_features=n_features,
random_state=0)
# Fit intercept case.
alpha = 1.
w = np.ones(n_features + 1)
grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha)
loss_interp = _logistic_loss(w, X, y, alpha)
# Do not fit intercept. This can be considered equivalent to adding
# a feature vector of ones, i.e column of one vectors.
X_ = np.hstack((X, np.ones(10)[:, np.newaxis]))
grad, hess = _logistic_grad_hess(w, X_, y, alpha)
loss = _logistic_loss(w, X_, y, alpha)
# In the fit_intercept=False case, the feature vector of ones is
# penalized. This should be taken care of.
assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss)
# Check gradient.
assert_array_almost_equal(grad_interp[:n_features], grad[:n_features])
assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1])
rng = np.random.RandomState(0)
grad = rng.rand(n_features + 1)
hess_interp = hess_interp(grad)
hess = hess(grad)
assert_array_almost_equal(hess_interp[:n_features], hess[:n_features])
assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1])
def test_ovr_multinomial_iris():
# Test that OvR and multinomial are correct using the iris dataset.
train, target = iris.data, iris.target
n_samples, n_features = train.shape
# The cv indices from stratified kfold (where stratification is done based
# on the fine-grained iris classes, i.e, before the classes 0 and 1 are
# conflated) is used for both clf and clf1
n_cv = 2
cv = StratifiedKFold(n_cv)
precomputed_folds = list(cv.split(train, target))
# Train clf on the original dataset where classes 0 and 1 are separated
clf = LogisticRegressionCV(cv=precomputed_folds)
clf.fit(train, target)
# Conflate classes 0 and 1 and train clf1 on this modified dataset
clf1 = LogisticRegressionCV(cv=precomputed_folds)
target_copy = target.copy()
target_copy[target_copy == 0] = 1
clf1.fit(train, target_copy)
# Ensure that what OvR learns for class2 is same regardless of whether
# classes 0 and 1 are separated or not
assert_array_almost_equal(clf.scores_[2], clf1.scores_[2])
assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_)
assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_)
# Test the shape of various attributes.
assert_equal(clf.coef_.shape, (3, n_features))
assert_array_equal(clf.classes_, [0, 1, 2])
coefs_paths = np.asarray(list(clf.coefs_paths_.values()))
assert_array_almost_equal(coefs_paths.shape, (3, n_cv, 10, n_features + 1))
assert_equal(clf.Cs_.shape, (10, ))
scores = np.asarray(list(clf.scores_.values()))
assert_equal(scores.shape, (3, n_cv, 10))
# Test that for the iris data multinomial gives a better accuracy than OvR
for solver in ['lbfgs', 'newton-cg', 'sag']:
max_iter = 100 if solver == 'sag' else 15
clf_multi = LogisticRegressionCV(
solver=solver, multi_class='multinomial', max_iter=max_iter,
random_state=42, tol=1e-2, cv=2)
clf_multi.fit(train, target)
multi_score = clf_multi.score(train, target)
ovr_score = clf.score(train, target)
assert_greater(multi_score, ovr_score)
# Test attributes of LogisticRegressionCV
assert_equal(clf.coef_.shape, clf_multi.coef_.shape)
assert_array_equal(clf_multi.classes_, [0, 1, 2])
coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values()))
assert_array_almost_equal(coefs_paths.shape, (3, n_cv, 10,
n_features + 1))
assert_equal(clf_multi.Cs_.shape, (10, ))
scores = np.asarray(list(clf_multi.scores_.values()))
assert_equal(scores.shape, (3, n_cv, 10))
def test_logistic_regression_solvers():
X, y = make_classification(n_features=10, n_informative=5, random_state=0)
ncg = LogisticRegression(solver='newton-cg', fit_intercept=False)
lbf = LogisticRegression(solver='lbfgs', fit_intercept=False)
lib = LogisticRegression(fit_intercept=False)
sag = LogisticRegression(solver='sag', fit_intercept=False,
random_state=42)
ncg.fit(X, y)
lbf.fit(X, y)
sag.fit(X, y)
lib.fit(X, y)
assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=3)
assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=3)
assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=3)
assert_array_almost_equal(sag.coef_, lib.coef_, decimal=3)
assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=3)
assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=3)
def test_logistic_regression_solvers_multiclass():
X, y = make_classification(n_samples=20, n_features=20, n_informative=10,
n_classes=3, random_state=0)
tol = 1e-6
ncg = LogisticRegression(solver='newton-cg', fit_intercept=False, tol=tol)
lbf = LogisticRegression(solver='lbfgs', fit_intercept=False, tol=tol)
lib = LogisticRegression(fit_intercept=False, tol=tol)
sag = LogisticRegression(solver='sag', fit_intercept=False, tol=tol,
max_iter=1000, random_state=42)
ncg.fit(X, y)
lbf.fit(X, y)
sag.fit(X, y)
lib.fit(X, y)
assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=4)
assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=4)
assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=4)
assert_array_almost_equal(sag.coef_, lib.coef_, decimal=4)
assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=4)
assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=4)
def test_logistic_regressioncv_class_weights():
for weight in [{0: 0.1, 1: 0.2}, {0: 0.1, 1: 0.2, 2: 0.5}]:
n_classes = len(weight)
for class_weight in (weight, 'balanced'):
X, y = make_classification(n_samples=30, n_features=3,
n_repeated=0,
n_informative=3, n_redundant=0,
n_classes=n_classes, random_state=0)
clf_lbf = LogisticRegressionCV(solver='lbfgs', Cs=1,
fit_intercept=False,
class_weight=class_weight)
clf_ncg = LogisticRegressionCV(solver='newton-cg', Cs=1,
fit_intercept=False,
class_weight=class_weight)
clf_lib = LogisticRegressionCV(solver='liblinear', Cs=1,
fit_intercept=False,
class_weight=class_weight)
clf_sag = LogisticRegressionCV(solver='sag', Cs=1,
fit_intercept=False,
class_weight=class_weight,
tol=1e-5, max_iter=10000,
random_state=0)
clf_lbf.fit(X, y)
clf_ncg.fit(X, y)
clf_lib.fit(X, y)
clf_sag.fit(X, y)
assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4)
assert_array_almost_equal(clf_ncg.coef_, clf_lbf.coef_, decimal=4)
assert_array_almost_equal(clf_sag.coef_, clf_lbf.coef_, decimal=4)
def test_logistic_regression_sample_weights():
X, y = make_classification(n_samples=20, n_features=5, n_informative=3,
n_classes=2, random_state=0)
sample_weight = y + 1
for LR in [LogisticRegression, LogisticRegressionCV]:
# Test that passing sample_weight as ones is the same as
# not passing them at all (default None)
for solver in ['lbfgs', 'liblinear']:
clf_sw_none = LR(solver=solver, fit_intercept=False,
random_state=42)
clf_sw_none.fit(X, y)
clf_sw_ones = LR(solver=solver, fit_intercept=False,
random_state=42)
clf_sw_ones.fit(X, y, sample_weight=np.ones(y.shape[0]))
assert_array_almost_equal(
clf_sw_none.coef_, clf_sw_ones.coef_, decimal=4)
# Test that sample weights work the same with the lbfgs,
# newton-cg, and 'sag' solvers
clf_sw_lbfgs = LR(solver='lbfgs', fit_intercept=False, random_state=42)
clf_sw_lbfgs.fit(X, y, sample_weight=sample_weight)
clf_sw_n = LR(solver='newton-cg', fit_intercept=False, random_state=42)
clf_sw_n.fit(X, y, sample_weight=sample_weight)
clf_sw_sag = LR(solver='sag', fit_intercept=False, tol=1e-10,
random_state=42)
# ignore convergence warning due to small dataset
with ignore_warnings():
clf_sw_sag.fit(X, y, sample_weight=sample_weight)
clf_sw_liblinear = LR(solver='liblinear', fit_intercept=False,
random_state=42)
clf_sw_liblinear.fit(X, y, sample_weight=sample_weight)
assert_array_almost_equal(
clf_sw_lbfgs.coef_, clf_sw_n.coef_, decimal=4)
assert_array_almost_equal(
clf_sw_lbfgs.coef_, clf_sw_sag.coef_, decimal=4)
assert_array_almost_equal(
clf_sw_lbfgs.coef_, clf_sw_liblinear.coef_, decimal=4)
# Test that passing class_weight as [1,2] is the same as
# passing class weight = [1,1] but adjusting sample weights
# to be 2 for all instances of class 2
for solver in ['lbfgs', 'liblinear']:
clf_cw_12 = LR(solver=solver, fit_intercept=False,
class_weight={0: 1, 1: 2}, random_state=42)
clf_cw_12.fit(X, y)
clf_sw_12 = LR(solver=solver, fit_intercept=False, random_state=42)
clf_sw_12.fit(X, y, sample_weight=sample_weight)
assert_array_almost_equal(
clf_cw_12.coef_, clf_sw_12.coef_, decimal=4)
# Test the above for l1 penalty and l2 penalty with dual=True.
# since the patched liblinear code is different.
clf_cw = LogisticRegression(
solver="liblinear", fit_intercept=False, class_weight={0: 1, 1: 2},
penalty="l1", tol=1e-5, random_state=42)
clf_cw.fit(X, y)
clf_sw = LogisticRegression(
solver="liblinear", fit_intercept=False, penalty="l1", tol=1e-5,
random_state=42)
clf_sw.fit(X, y, sample_weight)
assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4)
clf_cw = LogisticRegression(
solver="liblinear", fit_intercept=False, class_weight={0: 1, 1: 2},
penalty="l2", dual=True, random_state=42)
clf_cw.fit(X, y)
clf_sw = LogisticRegression(
solver="liblinear", fit_intercept=False, penalty="l2", dual=True,
random_state=42)
clf_sw.fit(X, y, sample_weight)
assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4)
def _compute_class_weight_dictionary(y):
# helper for returning a dictionary instead of an array
classes = np.unique(y)
class_weight = compute_class_weight("balanced", classes, y)
class_weight_dict = dict(zip(classes, class_weight))
return class_weight_dict
def test_logistic_regression_class_weights():
# Multinomial case: remove 90% of class 0
X = iris.data[45:, :]
y = iris.target[45:]
solvers = ("lbfgs", "newton-cg")
class_weight_dict = _compute_class_weight_dictionary(y)
for solver in solvers:
clf1 = LogisticRegression(solver=solver, multi_class="multinomial",
class_weight="balanced")
clf2 = LogisticRegression(solver=solver, multi_class="multinomial",
class_weight=class_weight_dict)
clf1.fit(X, y)
clf2.fit(X, y)
assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=4)
# Binary case: remove 90% of class 0 and 100% of class 2
X = iris.data[45:100, :]
y = iris.target[45:100]
solvers = ("lbfgs", "newton-cg", "liblinear")
class_weight_dict = _compute_class_weight_dictionary(y)
for solver in solvers:
clf1 = LogisticRegression(solver=solver, multi_class="ovr",
class_weight="balanced")
clf2 = LogisticRegression(solver=solver, multi_class="ovr",
class_weight=class_weight_dict)
clf1.fit(X, y)
clf2.fit(X, y)
assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=6)
def test_logistic_regression_convergence_warnings():
# Test that warnings are raised if model does not converge
X, y = make_classification(n_samples=20, n_features=20, random_state=0)
clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1)
assert_warns(ConvergenceWarning, clf_lib.fit, X, y)
assert_equal(clf_lib.n_iter_, 2)
def test_logistic_regression_multinomial():
# Tests for the multinomial option in logistic regression
# Some basic attributes of Logistic Regression
n_samples, n_features, n_classes = 50, 20, 3
X, y = make_classification(n_samples=n_samples,
n_features=n_features,
n_informative=10,
n_classes=n_classes, random_state=0)
# 'lbfgs' is used as a referenced
solver = 'lbfgs'
ref_i = LogisticRegression(solver=solver, multi_class='multinomial')
ref_w = LogisticRegression(solver=solver, multi_class='multinomial',
fit_intercept=False)
ref_i.fit(X, y)
ref_w.fit(X, y)
assert_array_equal(ref_i.coef_.shape, (n_classes, n_features))
assert_array_equal(ref_w.coef_.shape, (n_classes, n_features))
for solver in ['sag', 'newton-cg']:
clf_i = LogisticRegression(solver=solver, multi_class='multinomial',
random_state=42, max_iter=1000, tol=1e-6)
clf_w = LogisticRegression(solver=solver, multi_class='multinomial',
random_state=42, max_iter=1000, tol=1e-6,
fit_intercept=False)
clf_i.fit(X, y)
clf_w.fit(X, y)
assert_array_equal(clf_i.coef_.shape, (n_classes, n_features))
assert_array_equal(clf_w.coef_.shape, (n_classes, n_features))
# Compare solutions between lbfgs and the other solvers
assert_almost_equal(ref_i.coef_, clf_i.coef_, decimal=3)
assert_almost_equal(ref_w.coef_, clf_w.coef_, decimal=3)
assert_almost_equal(ref_i.intercept_, clf_i.intercept_, decimal=3)
# Test that the path give almost the same results. However since in this
# case we take the average of the coefs after fitting across all the
# folds, it need not be exactly the same.
for solver in ['lbfgs', 'newton-cg', 'sag']:
clf_path = LogisticRegressionCV(solver=solver, max_iter=2000, tol=1e-6,
multi_class='multinomial', Cs=[1.])
clf_path.fit(X, y)
assert_array_almost_equal(clf_path.coef_, ref_i.coef_, decimal=3)
assert_almost_equal(clf_path.intercept_, ref_i.intercept_, decimal=3)
def test_multinomial_grad_hess():
rng = np.random.RandomState(0)
n_samples, n_features, n_classes = 100, 5, 3
X = rng.randn(n_samples, n_features)
w = rng.rand(n_classes, n_features)
Y = np.zeros((n_samples, n_classes))
ind = np.argmax(np.dot(X, w.T), axis=1)
Y[range(0, n_samples), ind] = 1
w = w.ravel()
sample_weights = np.ones(X.shape[0])
grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1.,
sample_weight=sample_weights)
# extract first column of hessian matrix
vec = np.zeros(n_features * n_classes)
vec[0] = 1
hess_col = hessp(vec)
# Estimate hessian using least squares as done in
# test_logistic_grad_hess
e = 1e-3
d_x = np.linspace(-e, e, 30)
d_grad = np.array([
_multinomial_grad_hess(w + t * vec, X, Y, alpha=1.,
sample_weight=sample_weights)[0]
for t in d_x
])
d_grad -= d_grad.mean(axis=0)
approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel()
assert_array_almost_equal(hess_col, approx_hess_col)
def test_liblinear_decision_function_zero():
# Test negative prediction when decision_function values are zero.
# Liblinear predicts the positive class when decision_function values
# are zero. This is a test to verify that we do not do the same.
# See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600
# and the PR https://github.com/scikit-learn/scikit-learn/pull/3623
X, y = make_classification(n_samples=5, n_features=5, random_state=0)
clf = LogisticRegression(fit_intercept=False)
clf.fit(X, y)
# Dummy data such that the decision function becomes zero.
X = np.zeros((5, 5))
assert_array_equal(clf.predict(X), np.zeros(5))
def test_liblinear_logregcv_sparse():
# Test LogRegCV with solver='liblinear' works for sparse matrices
X, y = make_classification(n_samples=10, n_features=5, random_state=0)
clf = LogisticRegressionCV(solver='liblinear')
clf.fit(sparse.csr_matrix(X), y)
def test_logreg_intercept_scaling():
# Test that the right error message is thrown when intercept_scaling <= 0
for i in [-1, 0]:
clf = LogisticRegression(intercept_scaling=i)
msg = ('Intercept scaling is %r but needs to be greater than 0.'
' To disable fitting an intercept,'
' set fit_intercept=False.' % clf.intercept_scaling)
assert_raise_message(ValueError, msg, clf.fit, X, Y1)
def test_logreg_intercept_scaling_zero():
# Test that intercept_scaling is ignored when fit_intercept is False
clf = LogisticRegression(fit_intercept=False)
clf.fit(X, Y1)
assert_equal(clf.intercept_, 0.)
def test_logreg_cv_penalty():
# Test that the correct penalty is passed to the final fit.
X, y = make_classification(n_samples=50, n_features=20, random_state=0)
lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear')
lr_cv.fit(X, y)
lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear')
lr.fit(X, y)
assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_))
def test_logreg_predict_proba_multinomial():
X, y = make_classification(n_samples=10, n_features=20, random_state=0,
n_classes=3, n_informative=10)
# Predicted probabilites using the true-entropy loss should give a
# smaller loss than those using the ovr method.
clf_multi = LogisticRegression(multi_class="multinomial", solver="lbfgs")
clf_multi.fit(X, y)
clf_multi_loss = log_loss(y, clf_multi.predict_proba(X))
clf_ovr = LogisticRegression(multi_class="ovr", solver="lbfgs")
clf_ovr.fit(X, y)
clf_ovr_loss = log_loss(y, clf_ovr.predict_proba(X))
assert_greater(clf_ovr_loss, clf_multi_loss)
# Predicted probabilites using the soft-max function should give a
# smaller loss than those using the logistic function.
clf_multi_loss = log_loss(y, clf_multi.predict_proba(X))
clf_wrong_loss = log_loss(y, clf_multi._predict_proba_lr(X))
assert_greater(clf_wrong_loss, clf_multi_loss)
@ignore_warnings
def test_max_iter():
# Test that the maximum number of iteration is reached
X, y_bin = iris.data, iris.target.copy()
y_bin[y_bin == 2] = 0
solvers = ['newton-cg', 'liblinear', 'sag']
# old scipy doesn't have maxiter
if sp_version >= (0, 12):
solvers.append('lbfgs')
for max_iter in range(1, 5):
for solver in solvers:
for multi_class in ['ovr', 'multinomial']:
if solver == 'liblinear' and multi_class == 'multinomial':
continue
lr = LogisticRegression(max_iter=max_iter, tol=1e-15,
multi_class=multi_class,
random_state=0, solver=solver)
lr.fit(X, y_bin)
assert_equal(lr.n_iter_[0], max_iter)
def test_n_iter():
# Test that self.n_iter_ has the correct format.
X, y = iris.data, iris.target
y_bin = y.copy()
y_bin[y_bin == 2] = 0
n_Cs = 4
n_cv_fold = 2
for solver in ['newton-cg', 'liblinear', 'sag', 'lbfgs']:
# OvR case
n_classes = 1 if solver == 'liblinear' else np.unique(y).shape[0]
clf = LogisticRegression(tol=1e-2, multi_class='ovr',
solver=solver, C=1.,
random_state=42, max_iter=100)
clf.fit(X, y)
assert_equal(clf.n_iter_.shape, (n_classes,))
n_classes = np.unique(y).shape[0]
clf = LogisticRegressionCV(tol=1e-2, multi_class='ovr',
solver=solver, Cs=n_Cs, cv=n_cv_fold,
random_state=42, max_iter=100)
clf.fit(X, y)
assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs))
clf.fit(X, y_bin)
assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs))
# multinomial case
n_classes = 1
if solver in ('liblinear', 'sag'):
break
clf = LogisticRegression(tol=1e-2, multi_class='multinomial',
solver=solver, C=1.,
random_state=42, max_iter=100)
clf.fit(X, y)
assert_equal(clf.n_iter_.shape, (n_classes,))
clf = LogisticRegressionCV(tol=1e-2, multi_class='multinomial',
solver=solver, Cs=n_Cs, cv=n_cv_fold,
random_state=42, max_iter=100)
clf.fit(X, y)
assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs))
clf.fit(X, y_bin)
assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs))
def test_warm_start():
# A 1-iteration second fit on same data should give almost same result
# with warm starting, and quite different result without warm starting.
# Warm starting does not work with liblinear solver.
X, y = iris.data, iris.target
solvers = ['newton-cg', 'sag']
# old scipy doesn't have maxiter
if sp_version >= (0, 12):
solvers.append('lbfgs')
for warm_start in [True, False]:
for fit_intercept in [True, False]:
for solver in solvers:
for multi_class in ['ovr', 'multinomial']:
clf = LogisticRegression(tol=1e-4, multi_class=multi_class,
warm_start=warm_start,
solver=solver,
random_state=42, max_iter=100,
fit_intercept=fit_intercept)
with ignore_warnings(category=ConvergenceWarning):
clf.fit(X, y)
coef_1 = clf.coef_
clf.max_iter = 1
clf.fit(X, y)
cum_diff = np.sum(np.abs(coef_1 - clf.coef_))
msg = ("Warm starting issue with %s solver in %s mode "
"with fit_intercept=%s and warm_start=%s"
% (solver, multi_class, str(fit_intercept),
str(warm_start)))
if warm_start:
assert_greater(2.0, cum_diff, msg)
else:
assert_greater(cum_diff, 2.0, msg)
| bsd-3-clause |
f3r/scikit-learn | examples/gaussian_process/plot_gpr_prior_posterior.py | 104 | 2878 | """
==========================================================================
Illustration of prior and posterior Gaussian process for different kernels
==========================================================================
This example illustrates the prior and posterior of a GPR with different
kernels. Mean, standard deviation, and 10 samples are shown for both prior
and posterior.
"""
print(__doc__)
# Authors: Jan Hendrik Metzen <[email protected]>
#
# License: BSD 3 clause
import numpy as np
from matplotlib import pyplot as plt
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic,
ExpSineSquared, DotProduct,
ConstantKernel)
kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)),
1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1),
1.0 * ExpSineSquared(length_scale=1.0, periodicity=3.0,
length_scale_bounds=(0.1, 10.0),
periodicity_bounds=(1.0, 10.0)),
ConstantKernel(0.1, (0.01, 10.0))
* (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.0, 10.0)) ** 2),
1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0),
nu=1.5)]
for fig_index, kernel in enumerate(kernels):
# Specify Gaussian Process
gp = GaussianProcessRegressor(kernel=kernel)
# Plot prior
plt.figure(fig_index, figsize=(8, 8))
plt.subplot(2, 1, 1)
X_ = np.linspace(0, 5, 100)
y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - y_std, y_mean + y_std,
alpha=0.5, color='k')
y_samples = gp.sample_y(X_[:, np.newaxis], 10)
plt.plot(X_, y_samples, lw=1)
plt.xlim(0, 5)
plt.ylim(-3, 3)
plt.title("Prior (kernel: %s)" % kernel, fontsize=12)
# Generate data and fit GP
rng = np.random.RandomState(4)
X = rng.uniform(0, 5, 10)[:, np.newaxis]
y = np.sin((X[:, 0] - 2.5) ** 2)
gp.fit(X, y)
# Plot posterior
plt.subplot(2, 1, 2)
X_ = np.linspace(0, 5, 100)
y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - y_std, y_mean + y_std,
alpha=0.5, color='k')
y_samples = gp.sample_y(X_[:, np.newaxis], 10)
plt.plot(X_, y_samples, lw=1)
plt.scatter(X[:, 0], y, c='r', s=50, zorder=10)
plt.xlim(0, 5)
plt.ylim(-3, 3)
plt.title("Posterior (kernel: %s)\n Log-Likelihood: %.3f"
% (gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta)),
fontsize=12)
plt.tight_layout()
plt.show()
| bsd-3-clause |
anntzer/scikit-learn | examples/linear_model/plot_nnls.py | 15 | 2019 | """
==========================
Non-negative least squares
==========================
In this example, we fit a linear model with positive constraints on the
regression coefficients and compare the estimated coefficients to a classic
linear regression.
"""
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
# %%
# Generate some random data
np.random.seed(42)
n_samples, n_features = 200, 50
X = np.random.randn(n_samples, n_features)
true_coef = 3 * np.random.randn(n_features)
# Threshold coefficients to render them non-negative
true_coef[true_coef < 0] = 0
y = np.dot(X, true_coef)
# Add some noise
y += 5 * np.random.normal(size=(n_samples, ))
# %%
# Split the data in train set and test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
# %%
# Fit the Non-Negative least squares.
from sklearn.linear_model import LinearRegression
reg_nnls = LinearRegression(positive=True)
y_pred_nnls = reg_nnls.fit(X_train, y_train).predict(X_test)
r2_score_nnls = r2_score(y_test, y_pred_nnls)
print("NNLS R2 score", r2_score_nnls)
# %%
# Fit an OLS.
reg_ols = LinearRegression()
y_pred_ols = reg_ols.fit(X_train, y_train).predict(X_test)
r2_score_ols = r2_score(y_test, y_pred_ols)
print("OLS R2 score", r2_score_ols)
# %%
# Comparing the regression coefficients between OLS and NNLS, we can observe
# they are highly correlated (the dashed line is the identity relation),
# but the non-negative constraint shrinks some to 0.
# The Non-Negative Least squares inherently yield sparse results.
fig, ax = plt.subplots()
ax.plot(reg_ols.coef_, reg_nnls.coef_, linewidth=0, marker=".")
low_x, high_x = ax.get_xlim()
low_y, high_y = ax.get_ylim()
low = max(low_x, low_y)
high = min(high_x, high_y)
ax.plot([low, high], [low, high], ls="--", c=".3", alpha=.5)
ax.set_xlabel("OLS regression coefficients", fontweight="bold")
ax.set_ylabel("NNLS regression coefficients", fontweight="bold")
| bsd-3-clause |
ambikeshwar1991/sandhi-2 | module/gr36/gr-filter/examples/chirp_channelize.py | 13 | 6948 | #!/usr/bin/env python
#
# Copyright 2009,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
from gnuradio import gr, blks2
from gnuradio import filter
import sys, time
try:
import scipy
from scipy import fftpack
except ImportError:
print "Error: Program requires scipy (see: www.scipy.org)."
sys.exit(1)
try:
import pylab
from pylab import mlab
except ImportError:
print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)."
sys.exit(1)
class pfb_top_block(gr.top_block):
def __init__(self):
gr.top_block.__init__(self)
self._N = 200000 # number of samples to use
self._fs = 9000 # initial sampling rate
self._M = 9 # Number of channels to channelize
# Create a set of taps for the PFB channelizer
self._taps = filter.firdes.low_pass_2(1, self._fs, 500, 20,
attenuation_dB=10,
window=filter.firdes.WIN_BLACKMAN_hARRIS)
# Calculate the number of taps per channel for our own information
tpc = scipy.ceil(float(len(self._taps)) / float(self._M))
print "Number of taps: ", len(self._taps)
print "Number of channels: ", self._M
print "Taps per channel: ", tpc
repeated = True
if(repeated):
self.vco_input = gr.sig_source_f(self._fs, gr.GR_SIN_WAVE, 0.25, 110)
else:
amp = 100
data = scipy.arange(0, amp, amp/float(self._N))
self.vco_input = gr.vector_source_f(data, False)
# Build a VCO controlled by either the sinusoid or single chirp tone
# Then convert this to a complex signal
self.vco = gr.vco_f(self._fs, 225, 1)
self.f2c = gr.float_to_complex()
self.head = gr.head(gr.sizeof_gr_complex, self._N)
# Construct the channelizer filter
self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps)
# Construct a vector sink for the input signal to the channelizer
self.snk_i = gr.vector_sink_c()
# Connect the blocks
self.connect(self.vco_input, self.vco, self.f2c)
self.connect(self.f2c, self.head, self.pfb)
self.connect(self.f2c, self.snk_i)
# Create a vector sink for each of M output channels of the filter and connect it
self.snks = list()
for i in xrange(self._M):
self.snks.append(gr.vector_sink_c())
self.connect((self.pfb, i), self.snks[i])
def main():
tstart = time.time()
tb = pfb_top_block()
tb.run()
tend = time.time()
print "Run time: %f" % (tend - tstart)
if 1:
fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
fig3 = pylab.figure(4, figsize=(16,9), facecolor="w")
Ns = 650
Ne = 20000
fftlen = 8192
winfunc = scipy.blackman
fs = tb._fs
# Plot the input signal on its own figure
d = tb.snk_i.data()[Ns:Ne]
spin_f = fig_in.add_subplot(2, 1, 1)
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X)))
f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
pin_f = spin_f.plot(f_in, X_in, "b")
spin_f.set_xlim([min(f_in), max(f_in)+1])
spin_f.set_ylim([-200.0, 50.0])
spin_f.set_title("Input Signal", weight="bold")
spin_f.set_xlabel("Frequency (Hz)")
spin_f.set_ylabel("Power (dBW)")
Ts = 1.0/fs
Tmax = len(d)*Ts
t_in = scipy.arange(0, Tmax, Ts)
x_in = scipy.array(d)
spin_t = fig_in.add_subplot(2, 1, 2)
pin_t = spin_t.plot(t_in, x_in.real, "b")
pin_t = spin_t.plot(t_in, x_in.imag, "r")
spin_t.set_xlabel("Time (s)")
spin_t.set_ylabel("Amplitude")
Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
Nrows = int(scipy.floor(tb._M / Ncols))
if(tb._M % Ncols != 0):
Nrows += 1
# Plot each of the channels outputs. Frequencies on Figure 2 and
# time signals on Figure 3
fs_o = tb._fs / tb._M
Ts_o = 1.0/fs_o
Tmax_o = len(d)*Ts_o
for i in xrange(len(tb.snks)):
# remove issues with the transients at the beginning
# also remove some corruption at the end of the stream
# this is a bug, probably due to the corner cases
d = tb.snks[i].data()[Ns:Ne]
sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
window = lambda d: d*winfunc(fftlen),
scale_by_freq=True)
X_o = 10.0*scipy.log10(abs(X))
f_o = freq
p2_f = sp1_f.plot(f_o, X_o, "b")
sp1_f.set_xlim([min(f_o), max(f_o)+1])
sp1_f.set_ylim([-200.0, 50.0])
sp1_f.set_title(("Channel %d" % i), weight="bold")
sp1_f.set_xlabel("Frequency (Hz)")
sp1_f.set_ylabel("Power (dBW)")
x_o = scipy.array(d)
t_o = scipy.arange(0, Tmax_o, Ts_o)
sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
p2_o = sp2_o.plot(t_o, x_o.real, "b")
p2_o = sp2_o.plot(t_o, x_o.imag, "r")
sp2_o.set_xlim([min(t_o), max(t_o)+1])
sp2_o.set_ylim([-2, 2])
sp2_o.set_title(("Channel %d" % i), weight="bold")
sp2_o.set_xlabel("Time (s)")
sp2_o.set_ylabel("Amplitude")
sp3 = fig3.add_subplot(1,1,1)
p3 = sp3.plot(t_o, x_o.real)
sp3.set_xlim([min(t_o), max(t_o)+1])
sp3.set_ylim([-2, 2])
sp3.set_title("All Channels")
sp3.set_xlabel("Time (s)")
sp3.set_ylabel("Amplitude")
pylab.show()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass
| gpl-3.0 |
russel1237/scikit-learn | sklearn/svm/tests/test_bounds.py | 280 | 2541 | import nose
from nose.tools import assert_equal, assert_true
from sklearn.utils.testing import clean_warning_registry
import warnings
import numpy as np
from scipy import sparse as sp
from sklearn.svm.bounds import l1_min_c
from sklearn.svm import LinearSVC
from sklearn.linear_model.logistic import LogisticRegression
dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]]
sparse_X = sp.csr_matrix(dense_X)
Y1 = [0, 1, 1, 1]
Y2 = [2, 1, 0, 0]
def test_l1_min_c():
losses = ['squared_hinge', 'log']
Xs = {'sparse': sparse_X, 'dense': dense_X}
Ys = {'two-classes': Y1, 'multi-class': Y2}
intercepts = {'no-intercept': {'fit_intercept': False},
'fit-intercept': {'fit_intercept': True,
'intercept_scaling': 10}}
for loss in losses:
for X_label, X in Xs.items():
for Y_label, Y in Ys.items():
for intercept_label, intercept_params in intercepts.items():
check = lambda: check_l1_min_c(X, Y, loss,
**intercept_params)
check.description = ('Test l1_min_c loss=%r %s %s %s' %
(loss, X_label, Y_label,
intercept_label))
yield check
def test_l2_deprecation():
clean_warning_registry()
with warnings.catch_warnings(record=True) as w:
assert_equal(l1_min_c(dense_X, Y1, "l2"),
l1_min_c(dense_X, Y1, "squared_hinge"))
assert_equal(w[0].category, DeprecationWarning)
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None):
min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling)
clf = {
'log': LogisticRegression(penalty='l1'),
'squared_hinge': LinearSVC(loss='squared_hinge',
penalty='l1', dual=False),
}[loss]
clf.fit_intercept = fit_intercept
clf.intercept_scaling = intercept_scaling
clf.C = min_c
clf.fit(X, y)
assert_true((np.asarray(clf.coef_) == 0).all())
assert_true((np.asarray(clf.intercept_) == 0).all())
clf.C = min_c * 1.01
clf.fit(X, y)
assert_true((np.asarray(clf.coef_) != 0).any() or
(np.asarray(clf.intercept_) != 0).any())
@nose.tools.raises(ValueError)
def test_ill_posed_min_c():
X = [[0, 0], [0, 0]]
y = [0, 1]
l1_min_c(X, y)
@nose.tools.raises(ValueError)
def test_unsupported_loss():
l1_min_c(dense_X, Y1, 'l1')
| bsd-3-clause |
nmayorov/scikit-learn | examples/classification/plot_digits_classification.py | 289 | 2397 | """
================================
Recognizing hand-written digits
================================
An example showing how the scikit-learn can be used to recognize images of
hand-written digits.
This example is commented in the
:ref:`tutorial section of the user manual <introduction>`.
"""
print(__doc__)
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# License: BSD 3 clause
# Standard scientific Python imports
import matplotlib.pyplot as plt
# Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics
# The digits dataset
digits = datasets.load_digits()
# The data that we are interested in is made of 8x8 images of digits, let's
# have a look at the first 3 images, stored in the `images` attribute of the
# dataset. If we were working from image files, we could load them using
# pylab.imread. Note that each image must have the same size. For these
# images, we know which digit they represent: it is given in the 'target' of
# the dataset.
images_and_labels = list(zip(digits.images, digits.target))
for index, (image, label) in enumerate(images_and_labels[:4]):
plt.subplot(2, 4, index + 1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Training: %i' % label)
# To apply a classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)
# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2])
# Now predict the value of the digit on the second half:
expected = digits.target[n_samples / 2:]
predicted = classifier.predict(data[n_samples / 2:])
print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(expected, predicted)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted))
images_and_predictions = list(zip(digits.images[n_samples / 2:], predicted))
for index, (image, prediction) in enumerate(images_and_predictions[:4]):
plt.subplot(2, 4, index + 5)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Prediction: %i' % prediction)
plt.show()
| bsd-3-clause |
Eric89GXL/scikit-learn | sklearn/utils/sparsetools/tests/test_spanning_tree.py | 11 | 2295 | """Test the minimum spanning tree function"""
from __future__ import division, print_function, absolute_import
import numpy as np
from numpy.testing import assert_
import numpy.testing as npt
from scipy.sparse import csr_matrix
from sklearn.utils import minimum_spanning_tree
def test_minimum_spanning_tree():
# Create a graph with two connected components.
graph = [[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 0, 0, 8, 5],
[0, 0, 8, 0, 1],
[0, 0, 5, 1, 0]]
graph = np.asarray(graph)
# Create the expected spanning tree.
expected = [[0, 1, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 5],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 0]]
expected = np.asarray(expected)
# Ensure minimum spanning tree code gives this expected output.
csgraph = csr_matrix(graph)
mintree = minimum_spanning_tree(csgraph)
npt.assert_array_equal(mintree.todense(), expected,
'Incorrect spanning tree found.')
# Ensure that the original graph was not modified.
npt.assert_array_equal(csgraph.todense(), graph,
'Original graph was modified.')
# Now let the algorithm modify the csgraph in place.
mintree = minimum_spanning_tree(csgraph, overwrite=True)
npt.assert_array_equal(mintree.todense(), expected,
'Graph was not properly modified to contain MST.')
np.random.seed(1234)
for N in (5, 10, 15, 20):
# Create a random graph.
graph = 3 + np.random.random((N, N))
csgraph = csr_matrix(graph)
# The spanning tree has at most N - 1 edges.
mintree = minimum_spanning_tree(csgraph)
assert_(mintree.nnz < N)
# Set the sub diagonal to 1 to create a known spanning tree.
idx = np.arange(N - 1)
graph[idx, idx + 1] = 1
csgraph = csr_matrix(graph)
mintree = minimum_spanning_tree(csgraph)
# We expect to see this pattern in the spanning tree and otherwise
# have this zero.
expected = np.zeros((N, N))
expected[idx, idx + 1] = 1
npt.assert_array_equal(mintree.todense(), expected,
'Incorrect spanning tree found.')
| bsd-3-clause |
vascotenner/holoviews | holoviews/plotting/bokeh/util.py | 1 | 11041 | from distutils.version import LooseVersion
from collections import defaultdict
import numpy as np
try:
from matplotlib import colors
import matplotlib.cm as cm
except ImportError:
cm, colors = None, None
import bokeh
bokeh_version = LooseVersion(bokeh.__version__)
from bokeh.core.enums import Palette
from bokeh.document import Document
from bokeh.models.plots import Plot
from bokeh.models import GlyphRenderer
from bokeh.models.widgets import DataTable, Tabs
from bokeh.plotting import Figure
if bokeh_version >= '0.12':
from bokeh.layouts import WidgetBox
from ...core.options import abbreviated_exception
# Conversion between matplotlib and bokeh markers
markers = {'s': {'marker': 'square'},
'd': {'marker': 'diamond'},
'^': {'marker': 'triangle', 'orientation': 0},
'>': {'marker': 'triangle', 'orientation': np.pi/2},
'v': {'marker': 'triangle', 'orientation': np.pi},
'<': {'marker': 'triangle', 'orientation': -np.pi/2},
'1': {'marker': 'triangle', 'orientation': 0},
'2': {'marker': 'triangle', 'orientation': np.pi/2},
'3': {'marker': 'triangle', 'orientation': np.pi},
'4': {'marker': 'triangle', 'orientation': -np.pi/2}}
# List of models that do not update correctly and must be ignored
# Should only include models that have no direct effect on the display
# and can therefore be safely ignored. Axes currently fail saying
# LinearAxis.computed_bounds cannot be updated
IGNORED_MODELS = ['LinearAxis', 'LogAxis']
# Where to look for the ignored models
LOCATIONS = ['new', 'below']
# Model priority order to ensure some types are updated before others
MODEL_PRIORITY = ['Range1d', 'Title', 'Image', 'LinearColorMapper',
'Plot', 'Range1d', 'LinearAxis', 'ColumnDataSource']
def rgb2hex(rgb):
"""
Convert RGB(A) tuple to hex.
"""
if len(rgb) > 3:
rgb = rgb[:-1]
return "#{0:02x}{1:02x}{2:02x}".format(*(int(v*255) for v in rgb))
def mplcmap_to_palette(cmap):
"""
Converts a matplotlib colormap to palette of RGB hex strings."
"""
if colors is None:
raise ValueError("Using cmaps on objects requires matplotlib.")
with abbreviated_exception():
colormap = cm.get_cmap(cmap) #choose any matplotlib colormap here
return [rgb2hex(m) for m in colormap(np.arange(colormap.N))]
def get_cmap(cmap):
"""
Returns matplotlib cmap generated from bokeh palette or
directly accessed from matplotlib.
"""
with abbreviated_exception():
rgb_vals = getattr(Palette, cmap, None)
if rgb_vals:
return colors.ListedColormap(rgb_vals, name=cmap)
return cm.get_cmap(cmap)
def mpl_to_bokeh(properties):
"""
Utility to process style properties converting any
matplotlib specific options to their nearest bokeh
equivalent.
"""
new_properties = {}
for k, v in properties.items():
if k == 's':
new_properties['size'] = v
elif k == 'marker':
new_properties.update(markers.get(v, {'marker': v}))
elif k == 'color' or k.endswith('_color'):
with abbreviated_exception():
v = colors.ColorConverter.colors.get(v, v)
if isinstance(v, tuple):
with abbreviated_exception():
v = rgb2hex(v)
new_properties[k] = v
else:
new_properties[k] = v
new_properties.pop('cmap', None)
return new_properties
def layout_padding(plots):
"""
Temporary workaround to allow empty plots in a
row of a bokeh GridPlot type. Should be removed
when https://github.com/bokeh/bokeh/issues/2891
is resolved.
"""
widths, heights = defaultdict(int), defaultdict(int)
for r, row in enumerate(plots):
for c, p in enumerate(row):
if p is not None:
width = p.plot_width if isinstance(p, Plot) else p.width
height = p.plot_height if isinstance(p, Plot) else p.height
widths[c] = max(widths[c], width)
heights[r] = max(heights[r], height)
expanded_plots = []
for r, row in enumerate(plots):
expanded_plots.append([])
for c, p in enumerate(row):
if p is None:
p = Figure(plot_width=widths[c],
plot_height=heights[r])
p.text(x=0, y=0, text=[' '])
p.xaxis.visible = False
p.yaxis.visible = False
p.outline_line_color = None
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
expanded_plots[r].append(p)
return expanded_plots
def convert_datetime(time):
return time.astype('datetime64[s]').astype(float)*1000
def models_to_json(models):
"""
Convert list of bokeh models into json to update plot(s).
"""
json_data, ids = [], []
for plotobj in models:
if plotobj.ref['id'] in ids:
continue
else:
ids.append(plotobj.ref['id'])
json = plotobj.to_json(False)
json.pop('tool_events', None)
json.pop('renderers', None)
json_data.append({'id': plotobj.ref['id'],
'type': plotobj.ref['type'],
'data': json})
return json_data
def refs(json):
"""
Finds all the references to other objects in the json
representation of a bokeh Document.
"""
result = {}
for obj in json['roots']['references']:
result[obj['id']] = obj
return result
def compute_static_patch(document, models, json=None):
"""
Computes a patch to update an existing document without
diffing the json first, making it suitable for static updates
between arbitrary frames. Note that this only supports changed
attributes and will break if new models have been added since
the plot was first created.
"""
references = refs(json if json else document.to_json())
requested_updates = [m.ref['id'] for m in models]
value_refs = {}
events = []
update_types = defaultdict(list)
for ref_id, obj in references.items():
if ref_id not in requested_updates:
continue
if obj['type'] in MODEL_PRIORITY:
priority = MODEL_PRIORITY.index(obj['type'])
else:
priority = float('inf')
for key, val in obj['attributes'].items():
event = Document._event_for_attribute_change(references,
obj, key, val,
value_refs)
events.append((priority, event))
update_types[obj['type']].append(key)
events = [delete_refs(e, LOCATIONS, IGNORED_MODELS)
for _, e in sorted(events, key=lambda x: x[0])]
value_refs = {ref_id: val for ref_id, val in value_refs.items()}
value_refs = delete_refs(value_refs, LOCATIONS, IGNORED_MODELS)
return dict(events=events, references=list(value_refs.values()))
def delete_refs(obj, locs, delete):
"""
Delete all references to specific model types by recursively
traversing the object and looking for the models to be deleted in
the supplied locations.
Note: Can be deleted once bokeh stops raising errors when updating
LinearAxis.computed_bounds
"""
if isinstance(obj, dict):
if 'type' in obj and obj['type'] in delete:
return None
for k, v in obj.items():
if k in locs:
ref = delete_refs(v, locs, delete)
if ref:
obj[k] = ref
else:
del obj[k]
else:
obj[k] = v
return obj
elif isinstance(obj, list):
objs = [delete_refs(v, locs, delete) for v in obj]
return [o for o in objs if o is not None]
else:
return obj
def hsv_to_rgb(hsv):
"""
Vectorized HSV to RGB conversion, adapted from:
http://stackoverflow.com/questions/24852345/hsv-to-rgb-color-conversion
"""
h, s, v = (hsv[..., i] for i in range(3))
shape = h.shape
i = np.int_(h*6.)
f = h*6.-i
q = f
t = 1.-f
i = np.ravel(i)
f = np.ravel(f)
i%=6
t = np.ravel(t)
q = np.ravel(q)
s = np.ravel(s)
v = np.ravel(v)
clist = (1-s*np.vstack([np.zeros_like(f),np.ones_like(f),q,t]))*v
#0:v 1:p 2:q 3:t
order = np.array([[0,3,1],[2,0,1],[1,0,3],[1,2,0],[3,1,0],[0,1,2]])
rgb = clist[order[i], np.arange(np.prod(shape))[:,None]]
return rgb.reshape(shape+(3,))
def update_plot(old, new):
"""
Updates an existing plot or figure with a new plot,
useful for bokeh charts and mpl conversions, which do
not allow updating an existing plot easily.
ALERT: Should be replaced once bokeh supports it directly
"""
old_renderers = old.select(type=GlyphRenderer)
new_renderers = new.select(type=GlyphRenderer)
old.x_range.update(**new.x_range.properties_with_values())
old.y_range.update(**new.y_range.properties_with_values())
updated = []
for new_r in new_renderers:
for old_r in old_renderers:
if type(old_r.glyph) == type(new_r.glyph):
old_renderers.pop(old_renderers.index(old_r))
new_props = new_r.properties_with_values()
source = new_props.pop('data_source')
old_r.glyph.update(**new_r.glyph.properties_with_values())
old_r.update(**new_props)
old_r.data_source.data.update(source.data)
updated.append(old_r)
break
for old_r in old_renderers:
if old_r not in updated:
emptied = {k: [] for k in old_r.data_source.data}
old_r.data_source.data.update(emptied)
def pad_plots(plots, padding=0.85):
"""
Accepts a grid of bokeh plots in form of a list of lists and
wraps any DataTable or Tabs in a WidgetBox with appropriate
padding. Required to avoid overlap in gridplot.
"""
widths = []
for row in plots:
row_widths = []
for p in row:
if isinstance(p, Tabs):
width = np.max([p.width if isinstance(p, DataTable) else
t.child.plot_width for t in p.tabs])
for p in p.tabs:
p.width = int(padding*width)
elif isinstance(p, DataTable):
width = p.width
p.width = int(padding*width)
elif p:
width = p.plot_width
else:
width = 0
row_widths.append(width)
widths.append(row_widths)
plots = [[WidgetBox(p, width=w) if isinstance(p, (DataTable, Tabs)) else p
for p, w in zip(row, ws)] for row, ws in zip(plots, widths)]
total_width = np.max([np.sum(row) for row in widths])
return plots, total_width
| bsd-3-clause |
Djabbz/scikit-learn | examples/mixture/plot_gmm.py | 248 | 2817 | """
=================================
Gaussian Mixture Model Ellipsoids
=================================
Plot the confidence ellipsoids of a mixture of two Gaussians with EM
and variational Dirichlet process.
Both models have access to five components with which to fit the
data. Note that the EM model will necessarily use all five components
while the DP model will effectively only use as many as are needed for
a good fit. This is a property of the Dirichlet Process prior. Here we
can see that the EM model splits some components arbitrarily, because it
is trying to fit too many components, while the Dirichlet Process model
adapts it number of state automatically.
This example doesn't show it, as we're in a low-dimensional space, but
another advantage of the Dirichlet process model is that it can fit
full covariance matrices effectively even when there are less examples
per cluster than there are dimensions in the data, due to
regularization properties of the inference algorithm.
"""
import itertools
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import mixture
# Number of samples per component
n_samples = 500
# Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),
.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]
# Fit a mixture of Gaussians with EM using five components
gmm = mixture.GMM(n_components=5, covariance_type='full')
gmm.fit(X)
# Fit a Dirichlet process mixture of Gaussians using five components
dpgmm = mixture.DPGMM(n_components=5, covariance_type='full')
dpgmm.fit(X)
color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm'])
for i, (clf, title) in enumerate([(gmm, 'GMM'),
(dpgmm, 'Dirichlet Process GMM')]):
splot = plt.subplot(2, 1, 1 + i)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(
clf.means_, clf._get_covars(), color_iter)):
v, w = linalg.eigh(covar)
u = w[0] / linalg.norm(w[0])
# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y_ == i):
continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)
# Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)
plt.xlim(-10, 10)
plt.ylim(-3, 6)
plt.xticks(())
plt.yticks(())
plt.title(title)
plt.show()
| bsd-3-clause |
MartinDelzant/scikit-learn | sklearn/metrics/cluster/tests/test_bicluster.py | 394 | 1770 | """Testing for bicluster metrics module"""
import numpy as np
from sklearn.utils.testing import assert_equal, assert_almost_equal
from sklearn.metrics.cluster.bicluster import _jaccard
from sklearn.metrics import consensus_score
def test_jaccard():
a1 = np.array([True, True, False, False])
a2 = np.array([True, True, True, True])
a3 = np.array([False, True, True, False])
a4 = np.array([False, False, True, True])
assert_equal(_jaccard(a1, a1, a1, a1), 1)
assert_equal(_jaccard(a1, a1, a2, a2), 0.25)
assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7)
assert_equal(_jaccard(a1, a1, a4, a4), 0)
def test_consensus_score():
a = [[True, True, False, False],
[False, False, True, True]]
b = a[::-1]
assert_equal(consensus_score((a, a), (a, a)), 1)
assert_equal(consensus_score((a, a), (b, b)), 1)
assert_equal(consensus_score((a, b), (a, b)), 1)
assert_equal(consensus_score((a, b), (b, a)), 1)
assert_equal(consensus_score((a, a), (b, a)), 0)
assert_equal(consensus_score((a, a), (a, b)), 0)
assert_equal(consensus_score((b, b), (a, b)), 0)
assert_equal(consensus_score((b, b), (b, a)), 0)
def test_consensus_score_issue2445():
''' Different number of biclusters in A and B'''
a_rows = np.array([[True, True, False, False],
[False, False, True, True],
[False, False, False, True]])
a_cols = np.array([[True, True, False, False],
[False, False, True, True],
[False, False, False, True]])
idx = [0, 2]
s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx]))
# B contains 2 of the 3 biclusters in A, so score should be 2/3
assert_almost_equal(s, 2.0/3.0)
| bsd-3-clause |
timbalam/GroopM | groopm/plot.py | 1 | 51299 | #!/usr/bin/env python
###############################################################################
# #
# plot.py #
# #
# Data visualisation #
# #
# Copyright (C) Michael Imelfort, Tim Lamberton #
# #
###############################################################################
# #
# .d8888b. 888b d888 #
# d88P Y88b 8888b d8888 #
# 888 888 88888b.d88888 #
# 888 888d888 .d88b. .d88b. 88888b. 888Y88888P888 #
# 888 88888 888P" d88""88b d88""88b 888 "88b 888 Y888P 888 #
# 888 888 888 888 888 888 888 888 888 888 Y8P 888 #
# Y88b d88P 888 Y88..88P Y88..88P 888 d88P 888 " 888 #
# "Y8888P88 888 "Y88P" "Y88P" 88888P" 888 888 #
# 888 #
# 888 #
# 888 #
# #
###############################################################################
# #
# This program is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# (at your option) any later version. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with this program. If not, see <http://www.gnu.org/licenses/>. #
# #
###############################################################################
__author__ = "Michael Imelfort, Tim Lamberton"
__copyright__ = "Copyright 2012-2015"
__credits__ = ["Michael Imelfort", "Tim Lamberton"]
__license__ = "GPL3"
__maintainer__ = "Tim Lamberton"
__email__ = "[email protected]"
__status__ = "Development"
###############################################################################
import os
import sys
import colorsys
import operator
import numpy as np
import numpy.linalg as np_linalg
import scipy.spatial.distance as sp_distance
import scipy.cluster.hierarchy as sp_hierarchy
import scipy.stats as sp_stats
import matplotlib.pyplot as plt
import matplotlib.colors as plt_colors
import matplotlib.cm as plt_cm
import matplotlib.colorbar as plt_colorbar
import matplotlib.lines as plt_lines
import matplotlib.markers as plt_markers
import matplotlib.patches as plt_patches
from mpl_toolkits.mplot3d import axes3d, Axes3D
# GroopM imports
from utils import makeSurePathExists, split_contiguous, group_iterator
from groopmExceptions import BinNotFoundException, invalidParameter
from profileManager import ProfileManager
from binManager import BinManager
import distance
from cluster import (ProfileDistanceEngine,
StreamingProfileDistanceEngine,
FileCacher,
MarkerCheckCQE,
MarkerCheckFCE
)
from classification import BinClassifier
import hierarchy
from data3 import ClassificationEngine
from extract import BinReader
np.seterr(all='raise')
###############################################################################
###############################################################################
###############################################################################
###############################################################################
class ExplorePlotManager:
"""Plot and highlight contigs from bins near a contig"""
def __init__(self, dbFileName, folder=None):
self._pm = ProfileManager(dbFileName)
self._dbFileName = dbFileName
self._outDir = os.getcwd() if folder == "" else folder
# make the dir if need be
if self._outDir is not None:
makeSurePathExists(self._outDir)
def loadProfile(self, timer):
return self._pm.loadData(timer,
loadMarkers=True,
loadBins=True,
loadReachability=True)
def plot(self,
timer,
centres=None,
centre_type="bin",
origin="mediod",
colorMap="HSV",
prefix="BIN",
surface=False,
rawDistances=False,
groupfile="",
separator=",",
savedDistsPrefix="",
keepDists=False
):
profile = self.loadProfile(timer)
if centre_type not in ["bin", "group"]:
raise invalidParameter("centre_type", centre_type)
bm = BinManager(profile)
if centre_type=="bin":
if centres is None or len(centres)==0:
centres = bm.getBids()
else:
bm.checkBids(centres)
group_list = None
if groupfile!="":
print " Parsing group assignments"
group_list = GroupAssignmentParser().parse(groupfile, separator, profile.contigNames)
print " %s" % timer.getTimeStamp()
if centre_type=="group":
if group_list is None:
raise ValueError("`group_list` parameter argument cannot be None if `centre_type` argument parameter is `group`.")
if centres is None or len(centres)==0:
centres = np.setdiff1d(np.unique(group_list), [""])
else:
missing_groups = np.in1d(centres, group_list, invert=True)
if np.any(missing_groups):
print ("WARNING: No contig(s) assigned to group(s) {0}.".format(",".join(groups[missing_groups])))
if savedDistsPrefix=="":
savedDistsPrefix = self._dbFileName+".dists"
cacher = FileCacher(savedDistsPrefix)
print " Initialising plotter"
fplot = ContigExplorerPlotter(profile,
colourmap=colorMap,
cacher=cacher,
surface=surface,
rawDistances=rawDistances,
origin=origin
)
print " %s" % timer.getTimeStamp()
first_plot = True
queue = []
for i in range(len(centres)-1,-1,-1):
queue.append(centres[i])
categories = profile.binIds if centre_type=="bin" else group_list
validate = lambda x: x in categories
while len(queue) > 0:
if self._outDir is not None:
centre = queue.pop()
fileName = os.path.join(self._outDir, "{0}_{1}.png".format(prefix, centre))
else:
if not first_plot:
current = self.promptOnPlot(queue[-1], centre_type=centre_type, validate=validate)
if current is None:
break
if current!=queue[-1]:
queue.append(current)
centre = queue.pop()
fileName = ""
first_plot = False
is_central = categories==centre
highlight_markers = np.unique(profile.mapping.markerNames[is_central[profile.mapping.rowIndices]])
highlight_groups = [] if group_list is None else np.setdiff1d(np.unique(group_list[is_central]), [""])
highlight_bins = np.setdiff1d(np.unique(profile.binIds[is_central]), [0])
fplot.plot(fileName=fileName,
centre=centre,
centre_type=centre_type,
highlight_bins=highlight_bins,
highlight_markers=highlight_markers,
highlight_groups=highlight_groups,
group_list=group_list)
if self._outDir is not None:
print " %s" % timer.getTimeStamp()
if not keepDists:
try:
cacher.cleanup()
except:
raise
def promptOnPlot(self, centre, centre_type="bin", validate=lambda _: True, minimal=False):
"""Check that the user wants to continue interactive plotting"""
input_not_ok = True
while(input_not_ok):
if(minimal):
option = raw_input(" Enter {0} id, or q to quit, or enter to continue:".format(centre_type))
else:
option = raw_input(""" The next plot is {0}
Enter {1} id, or q to quit, or enter to continue:""".format(centre, centre_type))
try:
centre = int(option)
if validate(centre):
print "****************************************************************"
return bid
else:
print("Error, no {1} with id '{0}'".format(centre, centre_type))
minimal=True
except ValueError:
if option.upper() in ["Q", ""]:
print "****************************************************************"
if(option.upper() == "Q"):
print("Operation cancelled")
return None
else:
return bid
else:
print("Error, unrecognised choice '{0}'".format(option))
minimal=True
class ReachabilityPlotManager:
"""Plot and highlight contigs from a bin"""
def __init__(self, dbFileName, folder=None):
self._pm = ProfileManager(dbFileName)
self._outDir = os.getcwd() if folder == "" else folder
# make the dir if need be
if self._outDir is not None:
makeSurePathExists(self._outDir)
def loadProfile(self, timer):
return self._pm.loadData(timer, loadBins=True, loadMarkers=True,
loadReachability=True)
return profile
def plot(self,
timer,
bids=None,
label="tag",
filename="REACH.png",
groupfile="",
separator=""
):
profile = self.loadProfile(timer)
bm = BinManager(profile)
if bids is None or len(bids) == 0:
bids = bm.getBids()
show="all"
else:
bm.checkBids(bids)
show="bids"
group_list = None
if groupfile!="":
print " Parsing group assignments"
group_list = GroupAssignmentParser().parse(groupfile, separator, profile.contigNames)
print " %s" % timer.getTimeStamp()
print " Initialising plotter"
fplot = ProfileReachabilityPlotter(profile)
print " %s" % timer.getTimeStamp()
if os.path.splitext(filename)[1] != '.png':
filename+='.png'
fileName = "" if self._outDir is None else os.path.join(self._outDir, filename)
is_in_bin = np.in1d(profile.binIds, bids)
highlight_markers = np.unique(profile.mapping.markerNames[is_in_bin[profile.mapping.rowIndices]])
highlight_groups = [] if group_list is None else np.unique(group_list[is_in_bin])
fplot.plot(fileName=fileName,
bids=bids,
highlight_markers=highlight_markers,
highlight_groups=highlight_groups,
group_list=group_list,
show="bids",
label="bid")
if self._outDir is not None:
print " %s" % timer.getTimeStamp()
# Basic plotting tools
class GenericPlotter:
def plot(self, fileName=""):
# plot contigs in coverage space
fig = plt.figure()
self.plotOnFig(fig)
if(fileName != ""):
try:
fig.set_size_inches(15,15)
plt.savefig(fileName,dpi=300)
except:
print "Error saving image:", fileName, sys.exc_info()[0]
raise
else:
print "Plotting"
try:
plt.show()
except:
print "Error showing image", sys.exc_info()[0]
raise
plt.close(fig)
del fig
def plotOnFig(self, fig): pass
class Plotter2D(GenericPlotter):
def plotOnFig(self, fig):
ax = fig.add_subplot(111)
self.plotOnAx(ax, fig)
def plotOnAx(self, ax, fig): pass
class Plotter3D(GenericPlotter):
def plotOnFig(self, fig):
ax = fig.add_subplot(111, projection='3d')
self.plotOnAx(ax, fig)
def plotOnAx(self, ax, fig): pass
# Plot types
class FeatureAxisPlotter:
def __init__(self, x, y,
colours,
sizes,
edgecolours,
markers,
legend_data=None,
z=None,
xticks=None, yticks=None,
xticklabels=None, yticklabels=None,
xlim=None, ylim=None, zlim=None,
xscale=None, yscale=None,
xlabel="", ylabel="", zlabel=""):
"""
Parameters
------
x: array_like, shape (n,)
y: array_like, shape (n,)
colours: color or sequence of color
sizes: scalar or array_like, shape (n,)
colourmap: Colormap
edgecolours: color or sequence of color
z: array_like, shape (n,), optional
xlabel: string, optional
ylabel: string, optional
zlabel: string, optional
"""
self.x = x
self.y = y
self.z = z
self.sizes = sizes
self.colours = colours
self.edgecolours = edgecolours
self.markers = markers
self.legend_data = legend_data
self.xticks = xticks
self.xticklabels = xticklabels
self.xlim = xlim
self.xscale = xscale
self.yticks = yticks
self.ylim = ylim
self.yticklabels = yticklabels
self.yscale = yscale
self.zlim = zlim
self.xlabel = xlabel
self.ylabel = ylabel
self.zlabel = zlabel
def __call__(self, ax, fig):
coords = (self.x, self.y)
if self.z is not None:
coords += (self.z,)
marker_sets = [(slice(None), '.')] if self.markers is None else self.markers
for (ix, marker) in marker_sets:
sc = ax.scatter(*[x[ix] for x in coords],
c=self.colours[ix],
s=self.sizes[ix],
marker=marker)
sc.set_edgecolors(self.edgecolours[ix])
sc.set_edgecolors = sc.set_facecolors = lambda *args:None
if self.legend_data is not None and len(self.legend_data)>0:
(labels, data) = zip(*self.legend_data)
proxies = [plt_lines.Line2D([0], [0], linestyle="none",
markersize=15, **dat) for dat in data]
ax.legend(proxies, labels, numpoints=1, loc='lower right',
bbox_to_anchor=(1., 0.96), ncol=min(len(labels) // 4, 4)+1)
#ax.set_xmargin(0.05)
#ax.set_ymargin(0.05)
ax.autoscale(True, tight=True)
if self.xticks is not None:
ax.set_xticks(self.xticks)
if self.xticklabels is not None:
ax.set_xticklabels(self.xticklabels)
if self.xscale is not None:
ax.set_xscale(self.xscale)
if self.yticks is not None:
ax.set_yticks(self.yticks)
if self.yticklabels is not None:
ax.set_yticklabels(self.yticklabels)
if self.yscale is not None:
ax.set_yscale(self.yscale)
ax.set_xlabel(self.xlabel)
if self.xlim is not None:
ax.set_xlim(self.xlim)
ax.set_ylabel(self.ylabel)
if self.ylim is not None:
ax.set_ylim(self.ylim)
ax.tick_params(labelsize='11')
if len(coords) == 3:
ax.set_zlabel(self.zlabel)
if self.zlim is not None:
ax.set_zlim(self.zlim)
class FeaturePlotter(Plotter2D):
def __init__(self, *args, **kwargs):
self.plotOnAx = FeatureAxisPlotter(*args, **kwargs)
class SurfacePlotter(Plotter3D):
def __init__(self, *args, **kwargs):
self.plotOnAx = FeatureAxisPlotter(*args, **kwargs)
class DendrogramAxisPlotter:
def __init__(self, Z,
link_colour_func,
leaf_label_func,
colourbar=None,
xlabel="", ylabel=""):
"""
Fields
------
Z: linkage matrix, shape(n, 4)
link_colour_func: callable
leaf_label_func: callable
xlabel: string
ylabel: string
"""
self.Z = Z
self.link_colour_func = link_colour_func
self.leaf_label_func = leaf_label_func
self.xlabel = xlabel
self.ylabel = ylabel
self.colourbar = colourbar
def __call__(self, ax, fig):
sp_hierarchy.dendrogram(self.Z, ax=ax, p=4000,
truncate_mode='lastp',
#distance_sort='ascending',
color_threshold=0,
leaf_label_func=self.leaf_label_func,
link_color_func=self.link_colour_func)
ax.set_xlabel(self.xlabel)
ax.set_ylabel(self.ylabel)
if self.colourbar is not None:
fig.colorbar(self.colourbar, ax=ax)
class DendrogramPlotter(Plotter2D):
def __init__(self, *args, **kwargs):
self.plotOnAx = DendrogramAxisPlotter(*args, **kwargs)
class BarAxisPlotter:
def __init__(self,
height,
colours,
xticks=[], xticklabels=[],
xlabel="", ylabel="",
xlim=None, ylim=None,
text=[],
text_alignment="center",
text_rotation="horizontal",
vlines=[],
legend_data=None,
colourbar=None):
self.y = height
self.colours = colours
self.xlabel = xlabel
self.ylabel = ylabel
self.xticks = xticks
self.xticklabels = xticklabels
self.xlim = xlim
self.ylim = ylim
self.text = text
self.text_alignment = text_alignment
self.text_rotation = text_rotation
self.vlines = vlines
self.legend_data = legend_data
self.colourbar = colourbar
def __call__(self, ax, fig):
y = self.y
x = np.arange(len(y))
bc = ax.bar(x, y, width=1,
color=self.colours,
linewidth=0)
ax.set_xlabel(self.xlabel)
ax.set_ylabel(self.ylabel)
if self.xlim is not None:
ax.set_xlim(self.xlim)
if self.ylim is not None:
ax.set_ylim(self.ylim)
ax.autoscale(True, axis='x', tight=True)
ax.set_xticks(self.xticks)
ax.set_xticklabels(self.xticklabels,
rotation="horizontal")
ax.tick_params(axis="x", length=2.5, direction="out", width=1.2, top='off')
ax.tick_params(axis="y", labelsize='11')
for (x, y, text, dat) in self.text:
ax.text(x, y, text, va="bottom",
ha=self.text_alignment,
rotation=self.text_rotation,
rotation_mode="anchor",
**dat)
for (x, dat) in self.vlines:
ax.axvline(x, **dat)
if self.legend_data is not None and len(self.legend_data)>0:
(labels, color) = zip(*self.legend_data)
proxies = [plt_patches.Rectangle((0,0), 0, 0, fill=True,
color=clr) for clr in color]
ax.legend(proxies, labels, numpoints=1, loc='lower right',
bbox_to_anchor=(1., 0.96), ncol=min(len(labels) // 4, 4)+1
)
if self.colourbar is not None:
fig.colorbar(self.colourbar, ax=ax)
class BarPlotter(Plotter2D):
def __init__(self, *args, **kwargs):
self.plotOnAx = BarAxisPlotter(*args, **kwargs)
# GroopM plotting tools
class ProfileReachabilityPlotter:
"""
Bar plot of reachability distances between points in traversal order.
"""
def __init__(self, profile):
self._profile = profile
self._bc = BinClassifier(self._profile.mapping)
def plot(self,
bids,
highlight_groups=[],
highlight_markers=[],
highlight_taxstring=[],
group_list=None,
label="tag",
show="bids",
limit=20,
fileName=""):
h = self._profile.reachDists
o = self._profile.reachOrder
n = len(o)
# find bin contigs
obids = self._profile.binIds[o]
(first_binned_pos, last_binned_pos) = split_contiguous(obids, filter_groups=[0])
selected_of_bins = np.flatnonzero(np.in1d(obids[first_binned_pos], bids))
# find region containing selected and neighbouring bins
first_of_bins = 0
last_of_bins = len(first_binned_pos)-1
if show=="bids":
min_selected_of_bins = selected_of_bins.min()
max_selected_of_bins = selected_of_bins.max()
first_of_bins = max(first_of_bins, min_selected_of_bins-1)
last_of_bins = min(last_of_bins, max_selected_of_bins+1)
oZ = hierarchy.linkage_from_reachability(np.arange(n), h)
num_obs = sp_hierarchy.num_obs_linkage(oZ)
parent = hierarchy.embed_nodes(oZ, first_binned_pos[[first_of_bins, last_of_bins]])[-1]
(_r, nodes) = sp_hierarchy.to_tree(oZ, rd=True)
region_pos = nodes[parent].pre_order(lambda x: x.id)
retry = True
while retry:
retry = False
#assert np.all(np.diff(np.sort(region_pos))==1)
region_start_pos = np.min(region_pos)
region_end_pos = np.max(region_pos)+1
is_region_bin = np.logical_and(first_binned_pos >= region_start_pos, last_binned_pos <= region_end_pos)
num_bins_left = np.count_nonzero(is_region_bin[:min_selected_of_bins])
num_bins_right = np.count_nonzero(is_region_bin[max_selected_of_bins+1:])
too_many_bins = num_bins_left+num_bins_right > limit
if too_many_bins and parent > num_obs:
left_embed_child = int(oZ[parent - num_obs, 0])
left_region_pos = nodes[left_embed_child].pre_order(lambda x: x.id)
if np.all(np.in1d(first_binned_pos[selected_of_bins], left_region_pos)):
parent = left_embed_child
region_pos = left_region_pos
retry = True
continue
right_embed_child = int(oZ[parent - num_obs, 1])
right_region_pos = nodes[right_embed_child].pre_order(lambda x: x.id)
if np.all(np.in1d(first_binned_pos[selected_of_bins], right_region_pos)):
parent = right_embed_child
region_pos = right_region_pos
retry = True
continue
if region_start_pos > 0:
region_start_pos -= 1
if region_end_pos < n:
region_end_pos += 1
region_height = h[region_start_pos:region_end_pos]
region_indices = o[region_start_pos:region_end_pos]
mask = np.zeros(self._profile.numContigs, dtype=bool)
mask[region_indices] = True
first_binned_region = first_binned_pos[is_region_bin] - region_start_pos
last_binned_region = last_binned_pos[is_region_bin] - region_start_pos
region_bids = obids[region_start_pos:region_end_pos]
selected_of_region_bins = np.flatnonzero(np.in1d(region_bids[first_binned_region], bids))
elif show=="all":
mask=None
region_start_pos = 0
region_end_pos = n
region_height = h
region_indices = o
first_binned_region = first_binned_pos
last_binned_region = last_binned_pos
region_bids = obids
selected_of_region_bins = selected_of_bins
unselected_of_region_bins = np.setdiff1d(np.arange(len(first_binned_region)), selected_of_region_bins)
# ticks with empty labels for contigs with marker hits
he = ProfileHighlightEngine(self._profile)
(tick_groups, tick_labels) = he.getHighlighted(markers=highlight_markers, mask=mask, highlight_per_marker=False)
xticks = [i for i in np.flatnonzero(tick_groups[region_indices,0])]
xticklabels = ["" for _ in xticks]
xlabel = "contigs in traversal order"
# colouring based on group membership
sm = plt_cm.ScalarMappable(norm=plt_colors.Normalize(1, 10), cmap=getColorMap('Highlight1'))
#(group_ids, group_labels) = he.getHighlighted(bids=bids, mask=mask)
(group_ids, group_labels) = he.getHighlighted(groups=highlight_groups, mask=mask, group_list=group_list)
colours = sm.to_rgba(group_ids[region_indices,0])
colours[group_ids[region_indices,0]==0] = plt_colors.colorConverter.to_rgba('cyan')
legend_data = [(format_label(l), sm.to_rgba(i)) for (l, i) in zip(group_labels, range(1, len(group_labels)+1))]
# alternate colouring of lines for different bins
# red and black for selected bins, greys for unselected
num_bins = len(first_binned_region)
#linecolour_ids = np.tile([0,1], num_bins)
#linecolour_ids[2*selected_of_region_bins] += 2
#linecolour_ids[2*selected_of_region_bins+1] += 2
#linecolour_ids = np.zeros(num_bins, dtype=int)
#linecolour_ids[unselected_of_region_bins] = np.arange(len(unselected_of_region_bins)) % 2
#linecolour_ids[selected_of_region_bins] = (np.arange(len(selected_of_region_bins)) % 2) + 2
#linecolourmap = plt_colors.ListedColormap(['0.6', '0.7', 'g', 'orange'])
linesm = plt_cm.ScalarMappable(norm=plt_colors.Normalize(0, 12), cmap=plt_cm.get_cmap('Paired'))
selected_lines = np.zeros(num_bins, dtype=bool)
selected_lines[selected_of_region_bins] = True
vlines = [tup for tups in (((s, dict(c=linesm.to_rgba(2*i), linewidth=i+1, linestyle=':')), (e, dict(c=linesm.to_rgba(2*i+1), linewidth=i+1, linestyle='-'))) for (i, s, e) in zip(selected_lines, first_binned_region, last_binned_region-1)) for tup in tups]
#linecolours = linesm.to_rgba(linecolour_ids)
#linewidths = np.full(num_bins, 1, dtype=int)
#linewidths[selected_of_region_bins] = 2
#linestyles = np.array([':', '-'])
#vlines = zip(
# first_binned_region,
# [dict(c=clr, linewidth=w, linestyle=linestyles[0]) for (clr, w) in zip(linecolours, linewidths)]
# )+zip(
# last_binned_region-1,
# [dict(c=clr, linewidth=w, linestyle=linestyles[1]) for (clr, w) in zip(linecolours, linewidths)]
# )
# label stretches with bin ids
group_centers = (first_binned_region+last_binned_region-1)*0.5
group_heights = np.array([region_height[a:b].max() for (a, b) in ((s+1,e) if s+1<e else (s,e+1) for (s, e) in zip(first_binned_region, last_binned_region))])
# group_heights = [region_height.max()]*len(first_binned_region)
if label=="bid":
group_labels = region_bids[first_binned_region].astype(str)
text_alignment = "center"
text_rotation = "horizontal"
elif label=="tag":
mapping_bids = self._profile.binIds[self._profile.mapping.rowIndices]
group_labels = np.array(["?" if tag=="" else tag for tag in (self._bc.consensusTag(np.flatnonzero(mapping_bids==bid)) for bid in region_bids[first_binned_region])])
text_alignment = "right"
text_rotation = -60
else:
raise ValueError("Parameter value for 'label' argument must be one of 'bid', 'tag'. Got '%s'." % label)
fontsize = np.full(num_bins, 11, dtype=int)
fontsize[selected_of_region_bins] = 14
textcolour_id = np.ones(num_bins, dtype=int)
textcolour_id[selected_of_region_bins] += 2
textcolours = linesm.to_rgba(textcolour_id)
text = zip(group_centers, group_heights, group_labels, [dict(color=clr, fontsize=size) for (clr, size) in zip(textcolours, fontsize)])
hplot = BarPlotter(
height=h[region_start_pos+1:region_end_pos],
colours=colours[1:],
xlabel=xlabel,
ylabel="reachability of closest untraversed contig",
xticks=xticks,
xticklabels=xticklabels,
text=text,
text_alignment=text_alignment,
text_rotation=text_rotation,
vlines=vlines,
legend_data=legend_data,
)
hplot.plot(fileName)
class ContigExplorerPlotter:
def __init__(self,
profile,
colourmap='HSV',
cacher=None,
rawDistances=False,
surface=False,
origin="mediod",
fun=lambda a: a):
self._profile = profile
self._colourmap = getColorMap(colourmap)
self._surface = surface
self._rawDistances = rawDistances
self._fun = fun
self._origin = origin
covProfiles = self._profile.covProfiles
kmerSigs = self._profile.kmerSigs * (self._profile.contigLengths[:, None] - 3) + 1
kmerSigs = distance.logratio(kmerSigs, axis=1, mode="centered")
if not self._rawDistances or self._origin=="mediod":
if cacher is None:
de = ProfileDistanceEngine()
else:
de = StreamingProfileDistanceEngine(cacher=cacher, size=int(2**31-1))
(x, y) = de.makeRanks(covProfiles,
kmerSigs,
self._profile.contigLengths
)
scale_factor = 200. / (self._profile.contigLengths.sum()**2-(self._profile.contigLengths**2).sum())
x *= scale_factor
y *= scale_factor
n = self._profile.numContigs
def getRankCoords(i, j):
condensed_indices = distance.condensed_index(n, i, j)
return (x[condensed_indices], y[condensed_indices])
self._getRankCoords = getRankCoords
if self._rawDistances:
def getCoords(i,j):
x = sp_distance.cdist(covProfiles[[i]], covProfiles[[j]], metric="euclidean")
y = sp_distance.cdist(kmerSigs[[i]], kmerSigs[[j]], metric="euclidean")
return (x, y)
self._getCoords = getCoords
self._xlabel = "TMC distance"
self._ylabel = "T-Freq distance"
else:
self._getCoords = self._getRankCoords
self._xlabel = "TMC pairwise distance percentile"
self._ylabel = "T-Freq pairwise distance percentile"
def _get_origin(self, indices, mode="max_length"):
if mode=="mediod":
#if self._rawDistances:
# raise ValueError("`mode` argument parameter value `mediod` is not appropriate for ContigExplorerPlotter with `rawDistances` flag set.")
(i, j) = distance.pairs(len(indices))
(x, y) = self._getRankCoords(indices[i], indices[j])
choice = distance.mediod(self._fun(x) + self._fun(y))
label = "mediod"
elif mode=="max_density":
h = self._profile.reachDists
o = self._profile.reachOrder
indices = np.flatnonzero(np.in1d(o, indices))
choice = np.argmax(h[indices])
label = "core contig"
return ([indices[choice]], label)
elif mode=="max_coverage":
choice = np.argmax(self._profile.normCoverages[indices])
label = "highest coverage"
elif mode=="max_length":
choice = np.argmax(self._profile.contigLengths[indices])
label = "longest"
else:
raise invalidParameterValue('mode', mode)
return (indices[choice], label)
def plot(self,
centre,
centre_type="bin",
highlight_bins=[],
highlight_groups=[],
highlight_markers=[],
highlight_taxstrings=[],
group_list=None,
fileName=""):
if centre_type=="bin":
indices = np.flatnonzero(self._profile.binIds == centre)
elif centre_type=="group":
indices = np.flatnonzero(group_list == centre)
else:
raise invalidParameter('centre_type', centre_type)
(origin, origin_label) = self._get_origin(indices, mode=self._origin)
if centre_type=="bin":
origin_label = "bin {0} {1}".format(centre, origin_label)
else:
origin_label = "{0} {1}".format(format_label(centre), origin_label)
n = self._profile.numContigs
# sizes
s = 20*(2**np.log10(self._profile.contigLengths / np.min(self._profile.contigLengths)))
# colorize
he = ProfileHighlightEngine(self._profile)
(marker_groups, marker_labels) = he.getHighlighted(bids=highlight_bins)
(edge_groups, edge_labels) = he.getHighlighted(groups=highlight_groups,
group_list=group_list)
(colour_groups, colour_labels) = he.getHighlighted(markers=highlight_markers,
highlight_per_marker=False)
legend_data = []
edgesm = plt_cm.ScalarMappable(norm=plt_colors.Normalize(1, 10), cmap=getColorMap('Highlight1'))
edgecolours = edgesm.to_rgba(edge_groups[:,0])
edgecolours[edge_groups[:,0]==0] = plt_colors.colorConverter.to_rgba('k')
legend_data.extend([(format_label(label), dict(markeredgecolor=edgesm.to_rgba(i), c="w", marker=".")) for (i, label) in enumerate(edge_labels, 1)])
sm = plt_cm.ScalarMappable(plt_colors.Normalize(vmin=0., vmax=1.), self._colourmap)
c = sm.to_rgba(self._profile.contigGCs)
coloursm = plt_cm.ScalarMappable(norm=plt_colors.Normalize(1,9), cmap=getColorMap('Highlight2'))
is_coloured = colour_groups[:,0]>0
c[is_coloured] = coloursm.to_rgba(colour_groups[is_coloured,0])
is_coloured_plain_edge = np.logical_and(is_coloured, edge_groups[:,0]==0)
edgecolours[is_coloured_plain_edge] = c[is_coloured_plain_edge]
legend_data.extend([(format_label("{0} present in {1}".format(l, centre_type)), dict(c=coloursm.to_rgba(i), marker=".")) for (i, l) in enumerate(colour_labels, 1)])
marker_list = ['o', '^', 's', 'v', 'D']
markers = [(marker_groups[:,0]==i, marker_list[i % len(marker_list)]) for i in range(len(marker_labels)+1)]
legend_data.extend([(format_label(l), dict(marker=marker_list[i % len(marker_list)], c="w")) for (i, l) in enumerate(marker_labels, 1)])
# load distances
others = np.array([i for i in range(n) if i!=origin])
x = np.zeros(n, dtype=float)
y = np.zeros(n, dtype=float)
(x[others], y[others]) = self._getCoords(origin, others)
# apply visual transformation
xlabel = "{0} from {1}".format(self._xlabel, origin_label)
ylabel = "{0} from {1}".format(self._ylabel, origin_label)
if self._rawDistances:
x += 50./self._profile.contigLengths
xticks = None
xticklabels = None
xscale = "log"
xlim = [10**(np.fix(np.log10(x.min()))-1), 10**(np.fix(np.log10(x.max()))+1)]
yticks = None
yticklabels = None
ylim = None
else:
x = np.sqrt(self._fun(x))
y = np.sqrt(self._fun(y))
xticks = np.sqrt(np.linspace(0, 100, 5))
xticklabels = np.linspace(0, 100, 5).astype(str)
xscale = None
#xlim = [-0.5, 10.5]
xlim = None
yticks = np.sqrt(np.linspace(0, 100, 5))
yticklabels = np.linspace(0, 100, 5).astype(str)
ylim = None
if self._surface:
z = self.profile.normCoverages.flatten()
fplot = SurfacePlotter(x,
y,
z=z,
colours=c,
sizes=s,
edgecolours=edgecolours,
legend_data=legend_data,
xticks=xticks, yticks=yticks,
xticklabels=xticklabels, yticklabels=yticklabels,
xscale=xscale,
xlim=xlim,
xlabel=xlabel, ylabel=ylabel, zlabel="absolute TMC")
else:
fplot = FeaturePlotter(x,
y,
colours=c,
sizes=s,
edgecolours=edgecolours,
markers=markers,
legend_data=legend_data,
xticks=xticks, yticks=yticks,
xticklabels=xticklabels, yticklabels=yticklabels,
xscale=xscale,
xlim=xlim, ylim=ylim,
xlabel=xlabel, ylabel=ylabel)
fplot.plot(fileName)
class GroupManager:
def __init__(self, n, mask=None):
self._n = n
self._mask = mask
self._labels = []
self._group_members = []
def addGroup(self, indices, label):
is_member = np.zeros(self._n, dtype=bool)
is_member[indices] = True if self._mask is None else self._mask[indices]
if np.any(is_member):
self._group_members.append(is_member)
self._labels.append(label)
def getGroups(self):
if len(self._group_members)==0:
return (np.zeros((self._n, 1), dtype=int), np.array([]))
ngroups = len(self._group_members)
group_ids = np.transpose(self._group_members).astype(int) * np.arange(1,ngroups+1)[None,:]
group_ids[group_ids==0] = ngroups+1
sorted_group_ids = np.sort(group_ids, axis=1)
sorted_group_ids[sorted_group_ids==ngroups+1] = 0
return (sorted_group_ids, self._labels)
def getGroupIntersections(self):
if len(self._group_members)==0:
return (np.zeros(self._n, dtype=int), np.array([]))
flipped_group_members = [m for m in self._group_members]
flipped_group_members.reverse()
order = np.lexsort(flipped_group_members)
sorted_group_intersections = np.fliplr(np.array(flipped_group_members).T[order])
# flag first unique group intersections
flag_first = np.concatenate(([np.any(sorted_group_intersections[0])],
np.any(sorted_group_intersections[1:]!=sorted_group_intersections[:-1], axis=1)))
group_intersection_ids = np.empty(self._n, dtype=int)
group_intersection_ids[order] = np.cumsum(flag_first)
labels = np.array(self._labels)
group_intersection_labels = np.array(["/".join(labels[row]) for row in sorted_group_intersections[flag_first]])
# reverse priority of group intersections
nzids = group_intersection_ids!=0
group_intersection_ids *= -1
group_intersection_ids[nzids] += np.count_nonzero(flag_first)+1
group_intersection_labels = np.flipud(group_intersection_labels)
return (group_intersection_ids[:, None], group_intersection_labels)
class ProfileHighlightEngine:
def __init__(self, profile):
self._profile = profile
def getHighlighted(self,
bids=[],
markers=[],
taxstrings=[],
groups=[],
group_list=None,
mask=None,
highlight_per_bid=True,
highlight_per_marker=True,
highlight_per_group=True,
highlight_per_taxstring=True,
highlight_intersections=False):
# verify highlight inputs
BinManager(self._profile).checkBids(bids)
if group_list is not None:
groups = np.asarray(groups)
missing_groups = np.in1d(groups, group_list, invert=True)
if np.any(missing_groups):
print ("WARNING: No contig(s) assigned to group(s) {0}.".format(",".join(groups[missing_groups])))
markers = np.asarray(markers)
missing_markers = np.in1d(markers, self._profile.mapping.markerNames, invert=True)
if np.any(missing_markers):
print ("WARNING: No hits in database to marker(s) {0}.".format(",".join(markers[missing_markers])))
# highlight groups and labels
n = self._profile.numContigs
gm = GroupManager(n, mask=mask)
if groups is not None and len(groups) > 0:
if group_list is None or len(group_list) != n:
raise ValueError("ERROR: Expected parameter `group_list` to be an array of length {0}.".format(n))
if highlight_per_group:
for group in groups:
if group=="":
continue
gm.addGroup(np.flatnonzero(group_list==group), group)
else:
negroups = groups[groups!=""]
gm.addGroup(np.flatnonzero(np.in1d(group_list, negroups)), "groups")
if highlight_per_bid:
for bid in bids:
if bid == 0:
continue
gm.addGroup(np.flatnonzero(self._profile.binIds==bid), "bin {0}".format(bid))
else:
nzbids = bids[bids!=0]
gm.addGroup(np.flatnonzero(np.in1d(self._profile.binIds, nzbids)), "bins")
if highlight_per_marker:
for marker in markers:
select_mappings = self._profile.mapping.markerNames==marker
gm.addGroup(self._profile.mapping.rowIndices[select_mappings], "scg {0}".format(marker))
else:
select_mappings = np.in1d(self._profile.mapping.markerNames, markers)
gm.addGroup(self._profile.mapping.rowIndices[select_mappings], "scgs")
if highlight_per_taxstring:
for taxstring in taxstrings:
select_mappings = self._profile.mapping.classification.getPrefixed(taxstring)
gm.addGroup(self._profile.mapping.rowIndices[select_mappings], "\"{0}\"".format(taxstring))
else:
select_mappings = np.zeros(n, dtype=bool)
for taxstring in taxstrings:
select_mappings = np.logical_or(select_mappings, self._profile.mapping.classification.getPrefixed(taxstring))
gm.addGroup(self._profile.mapping.rowIndices[select_mappings], "taxons")
return gm.getGroupIntersections() if highlight_intersections else gm.getGroups()
#------------------------------------------------------------------------------
# Helpers
def get_bin_tree(bids, d):
bids = np.asarray(bids)
d = np.asarray(d)
# find bin contigs
(first_binned_indices, last_binned_indices) = split_contiguous(bids, filter_groups=[0])
split_obs = np.concat(([0], [np.arange(s, e)[np.argmax(d[s:e])] for (s, e) in zip(last_binned_indices[:-1], first_binned_indices[1:])]))
Z = hierarchy.linkage_from_reachability(np.arange(len(split_obs)), d[split_obs])
return (Z, split_obs)
class GroupAssignmentParser:
def parse(self, filename, separator, cids):
br = BinReader()
try:
with open(filename, "r") as f:
try:
(con_names, con_groups) = br.parse(f, separator)
contig_groups = dict(zip(con_names, con_groups))
except:
print "Error parsing group assignments"
raise
except:
print "Could not parse group assignment file:", filename, sys.exc_info()[0]
raise
return np.array([contig_groups.get(cid, "") for cid in cids])
def format_label(label):
return "{0}...{1}".format(label[:8], label[-18:]) if len(label)>30 else label
def getColorMap(colorMapStr):
if colorMapStr == 'HSV':
S = 1.0
V = 1.0
return plt_colors.LinearSegmentedColormap.from_list('GC', [colorsys.hsv_to_rgb((1.0 + np.sin(np.pi * (val/1000.0) - np.pi/2))/2., S, V) for val in xrange(0, 1000)], N=1000)
elif colorMapStr == 'Highlight1':
return plt_cm.get_cmap('Set1')
#return plt_colors.ListedColormap(["k", "r", "b", "g", "orange", "darkturquoise", "m"])
elif colorMapStr == 'Highlight2':
return plt_cm.get_cmap('Dark2')
#return plt_colors.ListedColormap(['cyan', 'dimgrey', 'orangered', 'indigo', 'goldenrod'])
elif colorMapStr == 'Accent':
return plt_cm.get_cmap('Accent')
elif colorMapStr == 'Blues':
return plt_cm.get_cmap('Blues')
elif colorMapStr == 'Spectral':
return plt_cm.get_cmap('spectral')
elif colorMapStr == 'Sequential':
return plt_cm.get_cmap('copper')
elif colorMapStr == 'Grayscale':
return plt_cm.get_cmap('gist_yarg')
elif colorMapStr == 'Discrete':
discrete_map = [(0,0,0)]
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
discrete_map.append((141/255.0,211/255.0,199/255.0))
discrete_map.append((255/255.0,255/255.0,179/255.0))
discrete_map.append((190/255.0,186/255.0,218/255.0))
discrete_map.append((251/255.0,128/255.0,114/255.0))
discrete_map.append((128/255.0,177/255.0,211/255.0))
discrete_map.append((253/255.0,180/255.0,98/255.0))
discrete_map.append((179/255.0,222/255.0,105/255.0))
discrete_map.append((252/255.0,205/255.0,229/255.0))
discrete_map.append((217/255.0,217/255.0,217/255.0))
discrete_map.append((188/255.0,128/255.0,189/255.0))
discrete_map.append((204/255.0,235/255.0,197/255.0))
discrete_map.append((255/255.0,237/255.0,111/255.0))
discrete_map.append((1,1,1))
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
return plt_colors.LinearSegmentedColormap.from_list('GC_DISCRETE', discrete_map, N=20)
elif colorMapStr == 'DiscretePaired':
discrete_map = [(0,0,0)]
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
discrete_map.append((166/255.0,206/255.0,227/255.0))
discrete_map.append((31/255.0,120/255.0,180/255.0))
discrete_map.append((178/255.0,223/255.0,138/255.0))
discrete_map.append((51/255.0,160/255.0,44/255.0))
discrete_map.append((251/255.0,154/255.0,153/255.0))
discrete_map.append((227/255.0,26/255.0,28/255.0))
discrete_map.append((253/255.0,191/255.0,111/255.0))
discrete_map.append((255/255.0,127/255.0,0/255.0))
discrete_map.append((202/255.0,178/255.0,214/255.0))
discrete_map.append((106/255.0,61/255.0,154/255.0))
discrete_map.append((255/255.0,255/255.0,179/255.0))
discrete_map.append((217/255.0,95/255.0,2/255.0))
discrete_map.append((1,1,1))
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
discrete_map.append((0,0,0))
return plt_colors.LinearSegmentedColormap.from_list('GC_DISCRETE', discrete_map, N=20)
###############################################################################
###############################################################################
###############################################################################
############################################################################### | gpl-3.0 |
dr-leo/pandaSDMX | pandasdmx/writer/xml.py | 1 | 13596 | """SDMXML v2.1 writer."""
# Contents of this file are organized in the order:
#
# - Utility methods and global variables.
# - writer functions for pandasdmx.message classes, in the same order as message.py
# - writer functions for pandasdmx.model classes, in the same order as model.py
from itertools import chain
from typing import Iterable, cast
from lxml import etree
from lxml.builder import ElementMaker
import pandasdmx.urn
from pandasdmx import message, model
from pandasdmx.format.xml import NS, qname, tag_for_class
from pandasdmx.writer.base import BaseWriter
_element_maker = ElementMaker(nsmap={k: v for k, v in NS.items() if v is not None})
writer = BaseWriter("XML")
def Element(name, *args, **kwargs):
# Remove None
kwargs = dict(filter(lambda kv: kv[1] is not None, kwargs.items()))
return _element_maker(qname(name), *args, **kwargs)
def to_xml(obj, **kwargs):
"""Convert an SDMX *obj* to SDMX-ML.
Parameters
----------
kwargs
Passed to :meth:`lxml.etree.to_string`, e.g. `pretty_print` =
:obj:`True`.
Raises
------
NotImplementedError
If writing specific objects to SDMX-ML has not been implemented in
:mod:`sdmx`.
"""
return etree.tostring(writer.recurse(obj), **kwargs)
def reference(obj, parent=None, tag=None, style="URN"):
"""Write a reference to `obj`."""
tag = tag or tag_for_class(obj.__class__)
elem = Element(tag)
if style == "URN":
ref = Element(":URN", obj.urn)
elif style == "Ref":
if isinstance(obj, model.MaintainableArtefact):
ma = obj
else:
# TODO handle references to non-maintainable children of parent
# objects
if not parent:
for is_ in chain(
writer._message.concept_scheme.values(),
writer._message.category_scheme.values(),
):
if obj in is_:
parent = is_
break
if not parent:
raise NotImplementedError(
f"Cannot write reference to {repr(obj)} without parent"
)
ma = parent
args = {
"id": obj.id,
"maintainableParentID": ma.id if parent else None,
"maintainableParentVersion": ma.version if parent else None,
"agencyID": getattr(ma.maintainer, "id", None),
"version": ma.version,
"package": model.PACKAGE[obj.__class__],
"class": etree.QName(tag_for_class(obj.__class__)).localname,
}
ref = Element(":Ref", **args)
else: # pragma: no cover
raise ValueError(style)
elem.append(ref)
return elem
# Writers for pandasdmx.message classes
@writer
def _dm(obj: message.DataMessage):
elem = Element("mes:GenericData")
header = writer.recurse(obj.header)
elem.append(header)
# Add DSD references to header
for ds in obj.data:
attrib = dict()
dsd_ref = None
if ds.structured_by:
attrib["structureID"] = ds.structured_by.id
# Reference by URN if possible, otherwise with a <Ref> tag
style = "URN" if ds.structured_by.urn else "Ref"
dsd_ref = reference(ds.structured_by, tag="com:Structure", style=style)
if isinstance(obj.observation_dimension, model.DimensionComponent):
attrib["dimensionAtObservation"] = obj.observation_dimension.id
header.append(Element("mes:Structure", **attrib))
header[-1].append(dsd_ref)
elem.append(writer.recurse(ds))
return elem
@writer
def _sm(obj: message.StructureMessage):
# Store a reference to the overal Message for writing references
setattr(writer, "_message", obj)
elem = Element("mes:Structure")
# Empty header element
elem.append(writer.recurse(obj.header))
structures = Element("mes:Structures")
elem.append(structures)
for attr, tag in [
# Order is important here to avoid forward references
("organisation_scheme", "OrganisationSchemes"),
("dataflow", "Dataflows"),
("category_scheme", "CategorySchemes"),
("categorisation", "Categorisations"),
("codelist", "Codelists"),
("concept_scheme", "Concepts"),
("structure", "DataStructures"),
("constraint", "Constraints"),
("provisionagreement", "ProvisionAgreements"),
]:
if not len(getattr(obj, attr)):
continue
container = Element(f"str:{tag}")
container.extend(writer.recurse(s) for s in getattr(obj, attr).values())
structures.append(container)
return elem
@writer
def _header(obj: message.Header):
elem = Element("mes:Header")
elem.append(Element("mes:Test", str(obj.test).lower()))
if obj.id:
elem.append(Element("mes:ID", obj.id))
if obj.prepared:
elem.append(Element("mes:Prepared", obj.prepared.isoformat()))
if obj.sender:
elem.append(writer.recurse(obj.sender, _tag="mes:Sender"))
if obj.source:
elem.extend(i11lstring(obj.source, "mes:Source"))
if obj.receiver:
elem.append(writer.recurse(obj.receiver, _tag="mes:Receiver"))
return elem
# Writers for pandasdmx.model classes
# §3.2: Base structures
def i11lstring(obj, name):
"""InternationalString.
Returns a list of elements with name `name`.
"""
elems = []
for locale, label in obj.localizations.items():
child = Element(name, label)
child.set(qname("xml", "lang"), locale)
elems.append(child)
return elems
@writer
def _a(obj: model.Annotation):
elem = Element("com:Annotation")
if obj.id:
elem.attrib["id"] = obj.id
if obj.type:
elem.append(Element("com:AnnotationType", obj.type))
elem.extend(i11lstring(obj.text, "com:AnnotationText"))
return elem
def annotable(obj, **kwargs):
cls = kwargs.pop("_tag", tag_for_class(obj.__class__))
try:
elem = Element(cls, **kwargs)
except AttributeError: # pragma: no cover
print(repr(obj), cls, kwargs)
raise
if len(obj.annotations):
e_anno = Element("com:Annotations")
e_anno.extend(writer.recurse(a) for a in obj.annotations)
elem.append(e_anno)
return elem
def identifiable(obj, **kwargs):
kwargs.setdefault("id", obj.id)
try:
kwargs.setdefault(
"urn", obj.urn or pandasdmx.urn.make(obj, kwargs.pop("parent", None))
)
except (AttributeError, ValueError):
pass
return annotable(obj, **kwargs)
def nameable(obj, **kwargs):
elem = identifiable(obj, **kwargs)
elem.extend(i11lstring(obj.name, "com:Name"))
elem.extend(i11lstring(obj.description, "com:Description"))
return elem
def maintainable(obj, **kwargs):
kwargs.setdefault("version", obj.version)
kwargs.setdefault("isExternalReference", str(obj.is_external_reference).lower())
kwargs.setdefault("isFinal", str(obj.is_final).lower())
kwargs.setdefault("agencyID", getattr(obj.maintainer, "id", None))
return nameable(obj, **kwargs)
# §3.5: Item Scheme
@writer
def _item(obj: model.Item, **kwargs):
elem = nameable(obj, **kwargs)
if obj.parent:
# Reference to parent Item
e_parent = Element("str:Parent")
e_parent.append(Element(":Ref", id=obj.parent.id))
elem.append(e_parent)
return elem
@writer
def _is(obj: model.ItemScheme):
elem = maintainable(obj)
elem.extend(writer.recurse(i) for i in obj.items.values())
return elem
# §3.6: Structure
@writer
def _facet(obj: model.Facet):
# TODO textType should be CamelCase
return Element("str:TextFormat", textType=getattr(obj.value_type, "name", None))
@writer
def _rep(obj: model.Representation, tag, style="URN"):
elem = Element(f"str:{tag}")
if obj.enumerated:
elem.append(reference(obj.enumerated, tag="str:Enumeration", style=style))
if obj.non_enumerated:
elem.extend(writer.recurse(facet) for facet in obj.non_enumerated)
return elem
# §4.4: Concept Scheme
@writer
def _concept(obj: model.Concept, **kwargs):
elem = _item(obj, **kwargs)
if obj.core_representation:
elem.append(writer.recurse(obj.core_representation, "CoreRepresentation"))
return elem
# §3.3: Basic Inheritance
@writer
def _component(obj: model.Component):
elem = identifiable(obj)
if obj.concept_identity:
elem.append(
reference(obj.concept_identity, tag="str:ConceptIdentity", style="Ref",)
)
if obj.local_representation:
elem.append(
writer.recurse(obj.local_representation, "LocalRepresentation", style="Ref")
)
# DataAttribute only
try:
elem.append(writer.recurse(cast(model.DataAttribute, obj).related_to))
except AttributeError:
pass
return elem
@writer
def _cl(obj: model.ComponentList):
elem = identifiable(obj)
elem.extend(writer.recurse(c) for c in obj.components)
return elem
# §4.5: CategoryScheme
@writer
def _cat(obj: model.Categorisation):
elem = maintainable(obj)
elem.extend(
[
reference(obj.artefact, tag="str:Source", style="Ref"),
reference(obj.category, tag="str:Target", style="Ref"),
]
)
return elem
# §10.3: Constraints
@writer
def _ms(obj: model.MemberSelection):
elem = Element("com:KeyValue", id=obj.values_for.id)
elem.extend(Element("com:Value", mv.value) for mv in obj.values)
return elem
@writer
def _cr(obj: model.CubeRegion):
elem = Element("str:CubeRegion", include=str(obj.included).lower())
elem.extend(writer.recurse(ms) for ms in obj.member.values())
return elem
@writer
def _cc(obj: model.ContentConstraint):
elem = maintainable(
obj, type=obj.role.role.name.replace("allowable", "allowed").title()
)
# Constraint attachment
for ca in obj.content:
elem.append(Element("str:ConstraintAttachment"))
elem[-1].append(reference(ca, style="Ref"))
elem.extend(writer.recurse(dcr) for dcr in obj.data_content_region)
return elem
# §5.2: Data Structure Definition
@writer
def _nsr(obj: model.NoSpecifiedRelationship):
elem = Element("str:AttributeRelationship")
elem.append(Element("str:None"))
return elem
@writer
def _pmr(obj: model.PrimaryMeasureRelationship):
elem = Element("str:AttributeRelationship")
elem.append(Element("str:PrimaryMeasure"))
elem[-1].append(Element(":Ref", id="(not implemented)"))
return elem
@writer
def _dr(obj: model.DimensionRelationship):
elem = Element("str:AttributeRelationship")
for dim in obj.dimensions:
elem.append(Element("str:Dimension"))
elem[-1].append(Element(":Ref", id=dim.id))
return elem
@writer
def _gr(obj: model.GroupRelationship):
elem = Element("str:AttributeRelationship")
elem.append(Element("str:Group"))
elem[-1].append(Element(":Ref", id=getattr(obj.group_key, "id", None)))
return elem
@writer
def _gdd(obj: model.GroupDimensionDescriptor):
elem = identifiable(obj)
for dim in obj.components:
elem.append(Element("str:GroupDimension"))
elem[-1].append(Element("str:DimensionReference"))
elem[-1][0].append(Element(":Ref", id=dim.id))
return elem
@writer
def _dsd(obj: model.DataStructureDefinition):
elem = maintainable(obj)
elem.append(Element("str:DataStructureComponents"))
# Write in a specific order
elem[-1].append(writer.recurse(obj.dimensions))
for group in obj.group_dimensions.values():
elem[-1].append(writer.recurse(group))
elem[-1].append(writer.recurse(obj.attributes))
elem[-1].append(writer.recurse(obj.measures))
return elem
@writer
def _dfd(obj: model.DataflowDefinition):
elem = maintainable(obj)
elem.append(reference(obj.structure, tag="str:Structure", style="Ref"))
return elem
# §5.4: Data Set
def _av(obj: Iterable[model.AttributeValue]):
for av in obj:
assert av.value_for
yield Element("gen:Value", id=av.value_for.id, value=av.value)
@writer
def _sk(obj: model.SeriesKey):
elem = []
elem.append(Element("gen:SeriesKey"))
elem[-1].extend(
Element("gen:Value", id=kv.value_for.id, value=kv.value) for kv in obj
)
if len(obj.attrib):
elem.append(Element("gen:Attributes"))
elem[-1].extend(_av(obj.attrib.values()))
return tuple(elem)
@writer
def _obs(obj: model.Observation):
elem = Element("gen:Obs")
assert obj.dimension and len(obj.dimension) == 1
elem.append(Element("gen:ObsDimension", value=obj.dimension.values[0].value))
elem.append(Element("gen:ObsValue", value=obj.value))
if len(obj.attached_attribute):
elem.append(Element("gen:Attributes"))
elem[-1].extend(_av(obj.attached_attribute.values()))
return elem
@writer
def _ds(obj: model.DataSet):
if len(obj.group):
raise NotImplementedError("to_xml() for DataSet with groups")
attrib = dict()
if obj.action:
attrib["action"] = str(obj.action)
if obj.structured_by:
attrib["structureRef"] = obj.structured_by.id
elem = Element("mes:DataSet", **attrib)
for sk, observations in obj.series.items():
elem.append(Element("gen:Series"))
elem[-1].extend(writer.recurse(sk))
elem[-1].extend(writer.recurse(obs) for obs in observations)
return elem
| apache-2.0 |
FrauBluher/ShR2 | Web Stack/webapp/management/commands/email_interval.py | 2 | 8924 | from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User
from webapp.models import Notification
from django.core.exceptions import ObjectDoesNotExist
import boto3
from botocore.exceptions import ClientError
from django.conf import settings
from matplotlib import pyplot as plt
import numpy as np
from django.template import Context, Template
import os
from time import gmtime, strftime
from influxdb.influxdb08 import client as influxdb
from microdata.models import Device
from sets import Set
import re
import datetime
from calendar import monthrange
import random
from math import factorial
from webapp.models import IntervalNotification
class Object:
def __init__(self, device, value, hungriest):
self.device = device
self.value = value
self.hungriest = hungriest
def get_average_usage(user, notification):
start = 'now() - 1w'
unit = 'h'
time_interval = notification.recurrences.occurrences()[1] - notification.recurrences.occurrences()[0]
if time_interval == datetime.timedelta(days=30):
start = 'now() - 1M'
unit = 'd'
elif time_interval == datetime.timedelta(days=1):
start = 'now() - 1d'
unit = 'm'
elif time_interval == datetime.timedelta(days=365):
start = 'now() - 1y'
unit = 'd'
stop = 'now()'
db = influxdb.InfluxDBClient(settings.INFLUXDB_URI,8086,'root','root','seads')
result = db.query('list series')[0]
averages = {}
for device in Device.objects.filter(owner=user):
appliances = Set()
for series in result['points']:
rg = re.compile('device.'+str(device.serial))
if re.match(rg, series[1]):
appliance = series[1].split('device.'+str(device.serial)+'.')
if (len(appliance) < 2): continue
else:
appliances.add(appliance[-1])
average_wattage = 0
hungriest_appliance = [None, 0]
for appliance in appliances:
try:
wattage = db.query('select * from 1'+unit+'.device.'+str(device.serial)+'.'+appliance +\
' where time > '+start+' and time < '+stop)[0]['points'][0][2]
average_wattage += wattage
if wattage > hungriest_appliance[1]:
hungriest_appliance = [appliance, int(wattage)]
except:
pass
averages[str(device.serial)] = [int(average_wattage), hungriest_appliance]
return averages
def render_chart(user, notification):
date_today = datetime.datetime.today()
date_gmtime = gmtime()
randbits = str(random.getrandbits(128))
start = 'now() - 1w'
unit = 'h'
time_interval = notification.recurrences.occurrences()[1] - notification.recurrences.occurrences()[0]
interval_keyword = 'weekly'
if time_interval == datetime.timedelta(days=30):
start = 'now() - 1M'
unit = 'd'
interval_keyword = 'monthly'
elif time_interval == datetime.timedelta(days=1):
start = 'now() - 1d'
unit = 'm'
interval_keyword = 'daily'
elif time_interval == datetime.timedelta(days=365):
start = 'now() - 1y'
unit = 'd'
interval_keyword = 'annually'
stop = 'now()'
db = influxdb.InfluxDBClient(settings.INFLUXDB_URI,8086,'root','root','seads')
fig = plt.figure(figsize=(10, 5), dpi=100) # 1000px * 500px figure
plt.ylabel('Watts')
for device in Device.objects.filter(owner=user):
points = {}
result = db.query('list series')[0]
appliances = Set()
for series in result['points']:
rg = re.compile('device.'+str(device.serial))
if re.match(rg, series[1]):
appliance = series[1].split('device.'+str(device.serial)+'.')
if (len(appliance) < 2): continue
else: appliances.add(appliance[-1])
for appliance in appliances:
query = 'select * from 1'+unit+'.device.'+str(device.serial)+'.'+appliance+' where time > '+start+' and time < '+stop
try:
group = db.query(query)
except:
continue
if (len(group)): group = group[0]['points']
for s in group:
if s[0] in points:
points[s[0]] += s[2]
else:
points[s[0]] = s[2]
y = []
for key, value in points.iteritems():
y.append(value)
x = 0
if interval_keyword == 'monthly' or interval_keyword == 'annually':
x = np.array([date_today - datetime.timedelta(days=i) for i in range(len(y))])
elif interval_keyword == 'weekly':
x = np.array([date_today - datetime.timedelta(hours=i) for i in range(len(y))])
elif interval_keyword == 'daily':
x = np.array([date_today - datetime.timedelta(minutes=i) for i in range(len(y))])
if (len(y) > 0):
plt.plot(x, y, label=device)
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
ncol=2, mode="expand", borderaxespad=0.)
filepath = settings.STATIC_PATH+'/webapp/img/'
filename = interval_keyword + '_' + str(user.pk)+'_'+randbits+'_plot.png'
plt.savefig(filepath + filename, bbox_inches="tight")
s3 = boto3.resource('s3')
data = open(filepath + filename, 'rb')
bucket = s3.Bucket(settings.S3_BUCKET)
expires = datetime.datetime.today() + datetime.timedelta(days=90)
bucket.put_object(Key='email/'+filename, Body=data, ACL='public-read', Expires=str(expires))
resource_url = 'https://'+settings.S3_BUCKET+'.s3.amazonaws.com/email/'+filename
os.remove(filepath + filename)
return [resource_url, strftime("%a, %d %b %Y %H:%M:%S +0000", date_gmtime)]
class Command(BaseCommand):
help = \
"""
Launches the mail service to send usage information based on the
provided interval.
This should never be run more than once per day.
Intervals:
"""
for n in IntervalNotification.objects.all():
help += n.recurrences.rrules[0].to_text() + " | "
def handle(self, *args, **options):
ses = boto3.client('ses')
# Save the current date and time
today = datetime.datetime.today()
# Loop over all users
for user in User.objects.all():
# Loop over all notifications
for notification in user.usersettings.interval_notification.all():
if notification.recurrences.occurrences()[0].day == today.day:
# specified notification is scheduled to run today
try:
destination = {'ToAddresses': [user.email]}
text = ""
f = notification.email_body
f.open(mode='r')
text = f.read()
f.close()
plot_url, str_time = render_chart(user, notification)
average_objects = []
averages = get_average_usage(user, notification)
for key, value in averages.iteritems():
average_objects.append(Object(Device.objects.get(serial=key), value[0], value[1]))
template = Template(text)
rule = notification.recurrences.rrules[0].to_text()
context = Context({
'time': str_time,
'organization': settings.ORG_NAME,
'base_url': settings.BASE_URL,
'interval': str(rule).title(),
'interval_lower': rule,
'user_firstname': user.first_name,
'plot_location': plot_url,
'average_objects': average_objects,
'devices': Device.objects.filter(owner=user),
})
message = {
'Subject': {
'Data': settings.ORG_NAME + ' ' + str(rule).title() + ' Consumption Details'
},
'Body': {
'Html': {
'Data': template.render(context)
}
}
}
print ""
print "Sending email to "+user.username
print "Time:" + str_time
print settings.ORG_NAME + ' ' + str(rule).title() + ' Consumption Details'
print "==============================="
ses.send_email(Source=settings.SES_EMAIL,
Destination=destination,
Message=message,
ReturnPath=settings.SES_EMAIL
)
except ObjectDoesNotExist:
# user has no usersettings. Skip user.
pass
except ClientError:
# user has no email or is not verified. Skip for now.
pass
| mit |
YzPaul3/h2o-3 | h2o-py/tests/testdir_algos/glm/pyunit_link_functions_gamma_glm.py | 8 | 2455 | from __future__ import division
from __future__ import print_function
from past.utils import old_div
import sys
sys.path.insert(1,"../../../")
import h2o
from tests import pyunit_utils
import pandas as pd
import zipfile
import statsmodels.api as sm
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
def link_functions_gamma():
print("Read in prostate data.")
h2o_data = h2o.import_file(path=pyunit_utils.locate("smalldata/prostate/prostate_complete.csv.zip"))
h2o_data.head()
sm_data = pd.read_csv(zipfile.ZipFile(pyunit_utils.locate("smalldata/prostate/prostate_complete.csv.zip")).
open("prostate_complete.csv")).as_matrix()
sm_data_response = sm_data[:,5]
sm_data_features = sm_data[:,[1,2,3,4,6,7,8,9]]
print("Testing for family: GAMMA")
print("Set variables for h2o.")
myY = "DPROS"
myX = ["ID","AGE","RACE","GLEASON","DCAPS","PSA","VOL","CAPSULE"]
print("Create models with canonical link: INVERSE")
h2o_model_in = H2OGeneralizedLinearEstimator(family="gamma", link="inverse",alpha=0.5, Lambda=0)
h2o_model_in.train(x=myX, y=myY, training_frame=h2o_data)
sm_model_in = sm.GLM(endog=sm_data_response, exog=sm_data_features,
family=sm.families.Gamma(sm.families.links.inverse_power)).fit()
print("Compare model deviances for link function inverse")
h2o_deviance_in = old_div(h2o_model_in.residual_deviance(), h2o_model_in.null_deviance())
sm_deviance_in = old_div(sm_model_in.deviance, sm_model_in.null_deviance)
assert h2o_deviance_in - sm_deviance_in < 0.01, "expected h2o to have an equivalent or better deviance measures"
print("Create models with canonical link: LOG")
h2o_model_log = H2OGeneralizedLinearEstimator(family="gamma", link="log",alpha=0.5, Lambda=0)
h2o_model_log.train(x=myX, y=myY, training_frame=h2o_data)
sm_model_log = sm.GLM(endog=sm_data_response, exog=sm_data_features,
family=sm.families.Gamma(sm.families.links.log)).fit()
print("Compare model deviances for link function log")
h2o_deviance_log = old_div(h2o_model_log.residual_deviance(), h2o_model_log.null_deviance())
sm_deviance_log = old_div(sm_model_log.deviance, sm_model_log.null_deviance)
assert h2o_deviance_log - sm_deviance_log < 0.01, "expected h2o to have an equivalent or better deviance measures"
if __name__ == "__main__":
pyunit_utils.standalone_test(link_functions_gamma)
else:
link_functions_gamma()
| apache-2.0 |
rubikloud/scikit-learn | sklearn/utils/tests/test_extmath.py | 2 | 20990 | # Authors: Olivier Grisel <[email protected]>
# Mathieu Blondel <[email protected]>
# Denis Engemann <[email protected]>
#
# License: BSD 3 clause
import numpy as np
from scipy import sparse
from scipy import linalg
from scipy import stats
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import skip_if_32bit
from sklearn.utils.extmath import density
from sklearn.utils.extmath import logsumexp
from sklearn.utils.extmath import norm, squared_norm
from sklearn.utils.extmath import randomized_svd
from sklearn.utils.extmath import row_norms
from sklearn.utils.extmath import weighted_mode
from sklearn.utils.extmath import cartesian
from sklearn.utils.extmath import log_logistic
from sklearn.utils.extmath import fast_dot, _fast_dot
from sklearn.utils.extmath import svd_flip
from sklearn.utils.extmath import _incremental_mean_and_var
from sklearn.utils.extmath import _deterministic_vector_sign_flip
from sklearn.utils.extmath import softmax
from sklearn.datasets.samples_generator import make_low_rank_matrix
def test_density():
rng = np.random.RandomState(0)
X = rng.randint(10, size=(10, 5))
X[1, 2] = 0
X[5, 3] = 0
X_csr = sparse.csr_matrix(X)
X_csc = sparse.csc_matrix(X)
X_coo = sparse.coo_matrix(X)
X_lil = sparse.lil_matrix(X)
for X_ in (X_csr, X_csc, X_coo, X_lil):
assert_equal(density(X_), density(X))
def test_uniform_weights():
# with uniform weights, results should be identical to stats.mode
rng = np.random.RandomState(0)
x = rng.randint(10, size=(10, 5))
weights = np.ones(x.shape)
for axis in (None, 0, 1):
mode, score = stats.mode(x, axis)
mode2, score2 = weighted_mode(x, weights, axis)
assert_true(np.all(mode == mode2))
assert_true(np.all(score == score2))
def test_random_weights():
# set this up so that each row should have a weighted mode of 6,
# with a score that is easily reproduced
mode_result = 6
rng = np.random.RandomState(0)
x = rng.randint(mode_result, size=(100, 10))
w = rng.random_sample(x.shape)
x[:, :5] = mode_result
w[:, :5] += 1
mode, score = weighted_mode(x, w, axis=1)
assert_array_equal(mode, mode_result)
assert_array_almost_equal(score.ravel(), w[:, :5].sum(1))
def test_logsumexp():
# Try to add some smallish numbers in logspace
x = np.array([1e-40] * 1000000)
logx = np.log(x)
assert_almost_equal(np.exp(logsumexp(logx)), x.sum())
X = np.vstack([x, x])
logX = np.vstack([logx, logx])
assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0))
assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1))
def test_randomized_svd_low_rank():
# Check that extmath.randomized_svd is consistent with linalg.svd
n_samples = 100
n_features = 500
rank = 5
k = 10
# generate a matrix X of approximate effective rank `rank` and no noise
# component (very structured signal):
X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
effective_rank=rank, tail_strength=0.0,
random_state=0)
assert_equal(X.shape, (n_samples, n_features))
# compute the singular values of X using the slow exact method
U, s, V = linalg.svd(X, full_matrices=False)
# compute the singular values of X using the fast approximate method
Ua, sa, Va = randomized_svd(X, k)
assert_equal(Ua.shape, (n_samples, k))
assert_equal(sa.shape, (k,))
assert_equal(Va.shape, (k, n_features))
# ensure that the singular values of both methods are equal up to the real
# rank of the matrix
assert_almost_equal(s[:k], sa)
# check the singular vectors too (while not checking the sign)
assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va))
# check the sparse matrix representation
X = sparse.csr_matrix(X)
# compute the singular values of X using the fast approximate method
Ua, sa, Va = randomized_svd(X, k)
assert_almost_equal(s[:rank], sa[:rank])
def test_norm_squared_norm():
X = np.random.RandomState(42).randn(50, 63)
X *= 100 # check stability
X += 200
assert_almost_equal(np.linalg.norm(X.ravel()), norm(X))
assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6)
assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6)
def test_row_norms():
X = np.random.RandomState(42).randn(100, 100)
sq_norm = (X ** 2).sum(axis=1)
assert_array_almost_equal(sq_norm, row_norms(X, squared=True), 5)
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X))
Xcsr = sparse.csr_matrix(X, dtype=np.float32)
assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), 5)
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr))
def test_randomized_svd_low_rank_with_noise():
# Check that extmath.randomized_svd can handle noisy matrices
n_samples = 100
n_features = 500
rank = 5
k = 10
# generate a matrix X wity structure approximate rank `rank` and an
# important noisy component
X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
effective_rank=rank, tail_strength=0.5,
random_state=0)
assert_equal(X.shape, (n_samples, n_features))
# compute the singular values of X using the slow exact method
_, s, _ = linalg.svd(X, full_matrices=False)
# compute the singular values of X using the fast approximate method
# without the iterated power method
_, sa, _ = randomized_svd(X, k, n_iter=0)
# the approximation does not tolerate the noise:
assert_greater(np.abs(s[:k] - sa).max(), 0.05)
# compute the singular values of X using the fast approximate method with
# iterated power method
_, sap, _ = randomized_svd(X, k, n_iter=5)
# the iterated power method is helping getting rid of the noise:
assert_almost_equal(s[:k], sap, decimal=3)
def test_randomized_svd_infinite_rank():
# Check that extmath.randomized_svd can handle noisy matrices
n_samples = 100
n_features = 500
rank = 5
k = 10
# let us try again without 'low_rank component': just regularly but slowly
# decreasing singular values: the rank of the data matrix is infinite
X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
effective_rank=rank, tail_strength=1.0,
random_state=0)
assert_equal(X.shape, (n_samples, n_features))
# compute the singular values of X using the slow exact method
_, s, _ = linalg.svd(X, full_matrices=False)
# compute the singular values of X using the fast approximate method
# without the iterated power method
_, sa, _ = randomized_svd(X, k, n_iter=0)
# the approximation does not tolerate the noise:
assert_greater(np.abs(s[:k] - sa).max(), 0.1)
# compute the singular values of X using the fast approximate method with
# iterated power method
_, sap, _ = randomized_svd(X, k, n_iter=5)
# the iterated power method is still managing to get most of the structure
# at the requested rank
assert_almost_equal(s[:k], sap, decimal=3)
def test_randomized_svd_transpose_consistency():
# Check that transposing the design matrix has limit impact
n_samples = 100
n_features = 500
rank = 4
k = 10
X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
effective_rank=rank, tail_strength=0.5,
random_state=0)
assert_equal(X.shape, (n_samples, n_features))
U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False,
random_state=0)
U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True,
random_state=0)
U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto',
random_state=0)
U4, s4, V4 = linalg.svd(X, full_matrices=False)
assert_almost_equal(s1, s4[:k], decimal=3)
assert_almost_equal(s2, s4[:k], decimal=3)
assert_almost_equal(s3, s4[:k], decimal=3)
assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]),
decimal=2)
assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]),
decimal=2)
# in this case 'auto' is equivalent to transpose
assert_almost_equal(s2, s3)
def test_svd_flip():
# Check that svd_flip works in both situations, and reconstructs input.
rs = np.random.RandomState(1999)
n_samples = 20
n_features = 10
X = rs.randn(n_samples, n_features)
# Check matrix reconstruction
U, S, V = linalg.svd(X, full_matrices=False)
U1, V1 = svd_flip(U, V, u_based_decision=False)
assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6)
# Check transposed matrix reconstruction
XT = X.T
U, S, V = linalg.svd(XT, full_matrices=False)
U2, V2 = svd_flip(U, V, u_based_decision=True)
assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6)
# Check that different flip methods are equivalent under reconstruction
U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True)
assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6)
U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False)
assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6)
def test_randomized_svd_sign_flip():
a = np.array([[2.0, 0.0], [0.0, 1.0]])
u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41)
for seed in range(10):
u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed)
assert_almost_equal(u1, u2)
assert_almost_equal(v1, v2)
assert_almost_equal(np.dot(u2 * s2, v2), a)
assert_almost_equal(np.dot(u2.T, u2), np.eye(2))
assert_almost_equal(np.dot(v2.T, v2), np.eye(2))
def test_randomized_svd_sign_flip_with_transpose():
# Check if the randomized_svd sign flipping is always done based on u
# irrespective of transpose.
# See https://github.com/scikit-learn/scikit-learn/issues/5608
# for more details.
def max_loading_is_positive(u, v):
"""
returns bool tuple indicating if the values maximising np.abs
are positive across all rows for u and across all columns for v.
"""
u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all()
v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all()
return u_based, v_based
mat = np.arange(10 * 8).reshape(10, -1)
# Without transpose
u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True)
u_based, v_based = max_loading_is_positive(u_flipped, v_flipped)
assert_true(u_based)
assert_false(v_based)
# With transpose
u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd(
mat, 3, flip_sign=True, transpose=True)
u_based, v_based = max_loading_is_positive(
u_flipped_with_transpose, v_flipped_with_transpose)
assert_true(u_based)
assert_false(v_based)
def test_cartesian():
# Check if cartesian product delivers the right results
axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7]))
true_out = np.array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
out = cartesian(axes)
assert_array_equal(true_out, out)
# check single axis
x = np.arange(3)
assert_array_equal(x[:, np.newaxis], cartesian((x,)))
def test_logistic_sigmoid():
# Check correctness and robustness of logistic sigmoid implementation
naive_logistic = lambda x: 1 / (1 + np.exp(-x))
naive_log_logistic = lambda x: np.log(naive_logistic(x))
x = np.linspace(-2, 2, 50)
assert_array_almost_equal(log_logistic(x), naive_log_logistic(x))
extreme_x = np.array([-100., 100.])
assert_array_almost_equal(log_logistic(extreme_x), [-100, 0])
def test_fast_dot():
# Check fast dot blas wrapper function
if fast_dot is np.dot:
return
rng = np.random.RandomState(42)
A = rng.random_sample([2, 10])
B = rng.random_sample([2, 10])
try:
linalg.get_blas_funcs(['gemm'])[0]
has_blas = True
except (AttributeError, ValueError):
has_blas = False
if has_blas:
# Test _fast_dot for invalid input.
# Maltyped data.
for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]:
assert_raises(ValueError, _fast_dot, A.astype(dt1),
B.astype(dt2).T)
# Malformed data.
# ndim == 0
E = np.empty(0)
assert_raises(ValueError, _fast_dot, E, E)
# ndim == 1
assert_raises(ValueError, _fast_dot, A, A[0])
# ndim > 2
assert_raises(ValueError, _fast_dot, A.T, np.array([A, A]))
# min(shape) == 1
assert_raises(ValueError, _fast_dot, A, A[0, :][None, :])
# test for matrix mismatch error
assert_raises(ValueError, _fast_dot, A, A)
# Test cov-like use case + dtypes.
for dtype in ['f8', 'f4']:
A = A.astype(dtype)
B = B.astype(dtype)
# col < row
C = np.dot(A.T, A)
C_ = fast_dot(A.T, A)
assert_almost_equal(C, C_, decimal=5)
C = np.dot(A.T, B)
C_ = fast_dot(A.T, B)
assert_almost_equal(C, C_, decimal=5)
C = np.dot(A, B.T)
C_ = fast_dot(A, B.T)
assert_almost_equal(C, C_, decimal=5)
# Test square matrix * rectangular use case.
A = rng.random_sample([2, 2])
for dtype in ['f8', 'f4']:
A = A.astype(dtype)
B = B.astype(dtype)
C = np.dot(A, B)
C_ = fast_dot(A, B)
assert_almost_equal(C, C_, decimal=5)
C = np.dot(A.T, B)
C_ = fast_dot(A.T, B)
assert_almost_equal(C, C_, decimal=5)
if has_blas:
for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]:
assert_raises(ValueError, _fast_dot, x, x.T)
def test_incremental_variance_update_formulas():
# Test Youngs and Cramer incremental variance formulas.
# Doggie data from http://www.mathsisfun.com/data/standard-deviation.html
A = np.array([[600, 470, 170, 430, 300],
[600, 470, 170, 430, 300],
[600, 470, 170, 430, 300],
[600, 470, 170, 430, 300]]).T
idx = 2
X1 = A[:idx, :]
X2 = A[idx:, :]
old_means = X1.mean(axis=0)
old_variances = X1.var(axis=0)
old_sample_count = X1.shape[0]
final_means, final_variances, final_count = \
_incremental_mean_and_var(X2, old_means, old_variances,
old_sample_count)
assert_almost_equal(final_means, A.mean(axis=0), 6)
assert_almost_equal(final_variances, A.var(axis=0), 6)
assert_almost_equal(final_count, A.shape[0])
@skip_if_32bit
def test_incremental_variance_numerical_stability():
# Test Youngs and Cramer incremental variance formulas.
def np_var(A):
return A.var(axis=0)
# Naive one pass variance computation - not numerically stable
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
def one_pass_var(X):
n = X.shape[0]
exp_x2 = (X ** 2).sum(axis=0) / n
expx_2 = (X.sum(axis=0) / n) ** 2
return exp_x2 - expx_2
# Two-pass algorithm, stable.
# We use it as a benchmark. It is not an online algorithm
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm
def two_pass_var(X):
mean = X.mean(axis=0)
Y = X.copy()
return np.mean((Y - mean)**2, axis=0)
# Naive online implementation
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
# This works only for chunks for size 1
def naive_mean_variance_update(x, last_mean, last_variance,
last_sample_count):
updated_sample_count = (last_sample_count + 1)
samples_ratio = last_sample_count / float(updated_sample_count)
updated_mean = x / updated_sample_count + last_mean * samples_ratio
updated_variance = last_variance * samples_ratio + \
(x - last_mean) * (x - updated_mean) / updated_sample_count
return updated_mean, updated_variance, updated_sample_count
# We want to show a case when one_pass_var has error > 1e-3 while
# _batch_mean_variance_update has less.
tol = 200
n_features = 2
n_samples = 10000
x1 = np.array(1e8, dtype=np.float64)
x2 = np.log(1e-5, dtype=np.float64)
A0 = x1 * np.ones((n_samples // 2, n_features), dtype=np.float64)
A1 = x2 * np.ones((n_samples // 2, n_features), dtype=np.float64)
A = np.vstack((A0, A1))
# Older versions of numpy have different precision
# In some old version, np.var is not stable
if np.abs(np_var(A) - two_pass_var(A)).max() < 1e-6:
stable_var = np_var
else:
stable_var = two_pass_var
# Naive one pass var: >tol (=1063)
assert_greater(np.abs(stable_var(A) - one_pass_var(A)).max(), tol)
# Starting point for online algorithms: after A0
# Naive implementation: >tol (436)
mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2
for i in range(A1.shape[0]):
mean, var, n = \
naive_mean_variance_update(A1[i, :], mean, var, n)
assert_equal(n, A.shape[0])
# the mean is also slightly unstable
assert_greater(np.abs(A.mean(axis=0) - mean).max(), 1e-6)
assert_greater(np.abs(stable_var(A) - var).max(), tol)
# Robust implementation: <tol (177)
mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2
for i in range(A1.shape[0]):
mean, var, n = \
_incremental_mean_and_var(A1[i, :].reshape((1, A1.shape[1])),
mean, var, n)
assert_equal(n, A.shape[0])
assert_array_almost_equal(A.mean(axis=0), mean)
assert_greater(tol, np.abs(stable_var(A) - var).max())
def test_incremental_variance_ddof():
# Test that degrees of freedom parameter for calculations are correct.
rng = np.random.RandomState(1999)
X = rng.randn(50, 10)
n_samples, n_features = X.shape
for batch_size in [11, 20, 37]:
steps = np.arange(0, X.shape[0], batch_size)
if steps[-1] != X.shape[0]:
steps = np.hstack([steps, n_samples])
for i, j in zip(steps[:-1], steps[1:]):
batch = X[i:j, :]
if i == 0:
incremental_means = batch.mean(axis=0)
incremental_variances = batch.var(axis=0)
# Assign this twice so that the test logic is consistent
incremental_count = batch.shape[0]
sample_count = batch.shape[0]
else:
result = _incremental_mean_and_var(
batch, incremental_means, incremental_variances,
sample_count)
(incremental_means, incremental_variances,
incremental_count) = result
sample_count += batch.shape[0]
calculated_means = np.mean(X[:j], axis=0)
calculated_variances = np.var(X[:j], axis=0)
assert_almost_equal(incremental_means, calculated_means, 6)
assert_almost_equal(incremental_variances,
calculated_variances, 6)
assert_equal(incremental_count, sample_count)
def test_vector_sign_flip():
# Testing that sign flip is working & largest value has positive sign
data = np.random.RandomState(36).randn(5, 5)
max_abs_rows = np.argmax(np.abs(data), axis=1)
data_flipped = _deterministic_vector_sign_flip(data)
max_rows = np.argmax(data_flipped, axis=1)
assert_array_equal(max_abs_rows, max_rows)
signs = np.sign(data[range(data.shape[0]), max_abs_rows])
assert_array_equal(data, data_flipped * signs[:, np.newaxis])
def test_softmax():
rng = np.random.RandomState(0)
X = rng.randn(3, 5)
exp_X = np.exp(X)
sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1))
assert_array_almost_equal(softmax(X), exp_X / sum_exp_X)
| bsd-3-clause |
great-expectations/great_expectations | tests/integration/fixtures/yellow_trip_data_pandas_fixture/two_batch_requests_two_validators.py | 1 | 1358 | from great_expectations.core.batch import BatchRequest
from great_expectations.data_context.data_context import DataContext
from great_expectations.validator.validation_graph import MetricConfiguration
context = DataContext()
suite = context.get_expectation_suite("yellow_trip_data_validations")
# Get February BatchRequest and Validator
batch_request_february = BatchRequest(
datasource_name="taxi_pandas",
data_connector_name="monthly",
data_asset_name="my_reports",
data_connector_query={"index": -2},
)
validator_february = context.get_validator(
batch_request=batch_request_february, expectation_suite=suite
)
# Get the table row count for February
february_table_row_count = validator_february.get_metric(
MetricConfiguration("table.row_count", metric_domain_kwargs={})
)
# Get March BatchRequest and Validator
batch_request_march = BatchRequest(
datasource_name="taxi_pandas",
data_connector_name="monthly",
data_asset_name="my_reports",
data_connector_query={"index": -1},
)
validator_march = context.get_validator(
batch_request=batch_request_march, expectation_suite=suite
)
# Create a row count expectation based on the February row count, and validate it against the March row count
result = validator_march.expect_table_row_count_to_equal(value=february_table_row_count)
assert result["success"]
| apache-2.0 |
cheeseywhiz/cheeseywhiz | AvgImg/imglib.py | 1 | 6217 | import os as _os
import sys as _sys
from matplotlib import pyplot as _plt
def load_global(inst):
global g
g = inst
class ImageIter:
def __init__(self, fname=None, px_map=None):
if fname is not None:
self.px_map = _plt.imread(fname)
elif px_map is not None:
self.px_map = px_map
self.width, self.height, self.color_len = self.px_map.shape
def __getitem__(self, row):
return self.px_map[row]
def __iter__(self):
return (
(row, col, self.__getitem__(row)[col])
for row in range(self.width)
for col in range(self.height)
)
def colormaps():
try:
_plt.get_cmap('')
except ValueError as error:
cmaps_str = sorted(str(error).split(':')[1][1:].split(', '))
row_length = 0
row = []
rows = []
for cmap in cmaps_str:
row_length += len(cmap + ', ')
if row_length < 80:
row.append(cmap)
else:
rows.append(
', '.join(row) + ','
)
row.clear()
row.append(cmap)
row_length = len(cmap + ', ')
return '\n'.join(rows)[:-1]
def parse_argv(argv, good_flags):
"""\
argv is the list of arguments passed into the command line.
good_flags is a list of expected flags to parse and is used to build the
initial structure.
Return a dictionary with the following structure:
{
'-flag1': value,
'-flag2': value,
'+flag3': value,
...,
'positional' : ('python3', ...) # e.g.
}
Each flag's value starts off as False. If the flag was not specified, the value
in the dictionary stays as False. If the flag was specified with an option,
(e.g. -f=123) the option (e.g. 123) is stored under the flag in the dictionary.
If the flag was specified without an option (e.g. -h), None is stored in the
dictionary.
'positional' holds user-specified arguments that did not start with + or -
while retaining the order they were specified in the command.\
"""
options = {
key: False
for key in good_flags
}
positional = []
for arg in argv:
if arg[0] in ['-', '+']:
if '=' in arg:
arg, value = arg.split('=')
options[arg] = value
else:
options[arg] = None
if arg not in good_flags:
_sys.exit(f'Unknown flag {arg}')
else:
positional.append(arg)
options['positional'] = tuple(positional)
return options
def trim(argv):
msgs = []
verbose = False
good_flags = [
'-h', '-hc', '-avg', '-c', '-i', '-o', '+o', '-s', '-v',
]
flags = parse_argv(argv, good_flags)
if flags['-h'] is None or len(argv) == 1:
print(g.__DOC__)
_sys.exit(0)
if flags['-hc'] is None:
print(colormaps())
_sys.exit(0)
if flags['-avg']:
avg_func_name = flags['-avg']
msgs.append(f'With {avg_func_name} as average')
elif flags['-avg'] is None:
_sys.exit('Missing required -avg option')
elif not flags['-avg']:
avg_func_name = 'mean'
if flags['-c']:
cmap_name = flags['-c']
g.CMAP = cmap_name
g.GRAYSCALE = True
msgs.append(f'With color map {cmap_name}')
elif flags['-c'] is None:
_sys.exit('Missing required -c option')
elif not flags['-c']:
# Defaults set in global
pass
if flags['-i'] is None:
g.INVERT = not g.INVERT
msgs.append(f'{"With" if g.INVERT else "Without"} inverted colors')
elif not flags['-i']:
# Default set in global
pass
if flags['-o']:
fname = _os.path.abspath(_os.path.expanduser(flags['-o']))
msgs.append(f'Output image at {fname}')
elif flags['-o'] is None:
_sys.exit('Missing required output filename')
elif not flags['-o']:
fname = _os.path.abspath('output.png')
if flags['+o'] is None:
fname = '/tmp/output.png'
elif not flags['+o']:
pass
if flags['-s']:
exit_func_name = flags['-s']
msgs.append(f'Opening with {exit_func_name}')
elif flags['-s'] is None:
_sys.exit('Missing required -s option')
elif not flags['-s']:
exit_func_name = 'done'
if flags['-v'] is None:
verbose = True
msgs.insert(0, 'Parsed options:')
avg_func = getattr(_Avg, avg_func_name)
exit_func = getattr(_Exit, exit_func_name)
try:
given_dir = flags['positional'][1]
except IndexError:
_sys.exit('Missing required source directory')
imgs_dir = _os.path.abspath(_os.path.expanduser(given_dir))
msgs.append(f'Averaging {imgs_dir}/*')
if verbose:
print(msgs[0])
for msg in msgs[1:]:
print(4 * ' ' + msg)
return imgs_dir, avg_func, fname, exit_func
def _average_f(f):
def if_invert(num):
if g.INVERT:
return int(256 - num)
else:
return int(num)
def if_grayscale(nums):
if g.GRAYSCALE:
return sum(nums) / len(nums)
else:
return nums
def decorated_f(tuples, *args, **kwargs):
def avg(tuples, i):
return f([tup[i] for tup in tuples], *args, **kwargs)
return if_grayscale([
if_invert(avg(tuples, i))
for i in range(len(tuples[0]))
])
return decorated_f
class _Avg:
@staticmethod
@_average_f
def mean(nums):
return sum(nums) / len(nums)
@staticmethod
@_average_f
def median(nums):
return sorted(nums)[len(nums) // 2]
@staticmethod
@_average_f
def max(nums):
return max(nums)
@staticmethod
@_average_f
def min(nums):
return min(nums)
class _Exit:
@staticmethod
def feh(fname=None, **kwargs):
_Exit.done()
from subprocess import run
run(f'feh {fname}', shell=True)
@staticmethod
def mpl(array=None, **kwargs):
_Exit.done()
_plt.imshow(array, cmap=g.CMAP)
_plt.show()
@staticmethod
def done(**kwargs):
pass # print('Done')
| mit |
rishikksh20/scikit-learn | sklearn/linear_model/setup.py | 83 | 1719 | import os
from os.path import join
import numpy
from sklearn._build_utils import get_blas_info
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('linear_model', parent_package, top_path)
cblas_libs, blas_info = get_blas_info()
if os.name == 'posix':
cblas_libs.append('m')
config.add_extension('cd_fast', sources=['cd_fast.pyx'],
libraries=cblas_libs,
include_dirs=[join('..', 'src', 'cblas'),
numpy.get_include(),
blas_info.pop('include_dirs', [])],
extra_compile_args=blas_info.pop('extra_compile_args',
[]), **blas_info)
config.add_extension('sgd_fast',
sources=['sgd_fast.pyx'],
include_dirs=[join('..', 'src', 'cblas'),
numpy.get_include(),
blas_info.pop('include_dirs', [])],
libraries=cblas_libs,
extra_compile_args=blas_info.pop('extra_compile_args',
[]),
**blas_info)
config.add_extension('sag_fast',
sources=['sag_fast.pyx'],
include_dirs=numpy.get_include())
# add other directories
config.add_subpackage('tests')
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())
| bsd-3-clause |
rmcgibbo/scipy | scipy/signal/fir_filter_design.py | 25 | 20184 | """Functions for FIR filter design."""
from __future__ import division, print_function, absolute_import
from math import ceil, log
import numpy as np
from numpy.fft import irfft
from scipy.special import sinc
from . import sigtools
__all__ = ['kaiser_beta', 'kaiser_atten', 'kaiserord',
'firwin', 'firwin2', 'remez']
# Some notes on function parameters:
#
# `cutoff` and `width` are given as a numbers between 0 and 1. These
# are relative frequencies, expressed as a fraction of the Nyquist rate.
# For example, if the Nyquist rate is 2KHz, then width=0.15 is a width
# of 300 Hz.
#
# The `order` of a FIR filter is one less than the number of taps.
# This is a potential source of confusion, so in the following code,
# we will always use the number of taps as the parameterization of
# the 'size' of the filter. The "number of taps" means the number
# of coefficients, which is the same as the length of the impulse
# response of the filter.
def kaiser_beta(a):
"""Compute the Kaiser parameter `beta`, given the attenuation `a`.
Parameters
----------
a : float
The desired attenuation in the stopband and maximum ripple in
the passband, in dB. This should be a *positive* number.
Returns
-------
beta : float
The `beta` parameter to be used in the formula for a Kaiser window.
References
----------
Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.
"""
if a > 50:
beta = 0.1102 * (a - 8.7)
elif a > 21:
beta = 0.5842 * (a - 21) ** 0.4 + 0.07886 * (a - 21)
else:
beta = 0.0
return beta
def kaiser_atten(numtaps, width):
"""Compute the attenuation of a Kaiser FIR filter.
Given the number of taps `N` and the transition width `width`, compute the
attenuation `a` in dB, given by Kaiser's formula:
a = 2.285 * (N - 1) * pi * width + 7.95
Parameters
----------
numtaps : int
The number of taps in the FIR filter.
width : float
The desired width of the transition region between passband and
stopband (or, in general, at any discontinuity) for the filter.
Returns
-------
a : float
The attenuation of the ripple, in dB.
See Also
--------
kaiserord, kaiser_beta
"""
a = 2.285 * (numtaps - 1) * np.pi * width + 7.95
return a
def kaiserord(ripple, width):
"""
Design a Kaiser window to limit ripple and width of transition region.
Parameters
----------
ripple : float
Positive number specifying maximum ripple in passband (dB) and minimum
ripple in stopband.
width : float
Width of transition region (normalized so that 1 corresponds to pi
radians / sample).
Returns
-------
numtaps : int
The length of the kaiser window.
beta : float
The beta parameter for the kaiser window.
See Also
--------
kaiser_beta, kaiser_atten
Notes
-----
There are several ways to obtain the Kaiser window:
- ``signal.kaiser(numtaps, beta, sym=0)``
- ``signal.get_window(beta, numtaps)``
- ``signal.get_window(('kaiser', beta), numtaps)``
The empirical equations discovered by Kaiser are used.
References
----------
Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476.
"""
A = abs(ripple) # in case somebody is confused as to what's meant
if A < 8:
# Formula for N is not valid in this range.
raise ValueError("Requested maximum ripple attentuation %f is too "
"small for the Kaiser formula." % A)
beta = kaiser_beta(A)
# Kaiser's formula (as given in Oppenheim and Schafer) is for the filter
# order, so we have to add 1 to get the number of taps.
numtaps = (A - 7.95) / 2.285 / (np.pi * width) + 1
return int(ceil(numtaps)), beta
def firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True,
scale=True, nyq=1.0):
"""
FIR filter design using the window method.
This function computes the coefficients of a finite impulse response
filter. The filter will have linear phase; it will be Type I if
`numtaps` is odd and Type II if `numtaps` is even.
Type II filters always have zero response at the Nyquist rate, so a
ValueError exception is raised if firwin is called with `numtaps` even and
having a passband whose right end is at the Nyquist rate.
Parameters
----------
numtaps : int
Length of the filter (number of coefficients, i.e. the filter
order + 1). `numtaps` must be even if a passband includes the
Nyquist frequency.
cutoff : float or 1D array_like
Cutoff frequency of filter (expressed in the same units as `nyq`)
OR an array of cutoff frequencies (that is, band edges). In the
latter case, the frequencies in `cutoff` should be positive and
monotonically increasing between 0 and `nyq`. The values 0 and
`nyq` must not be included in `cutoff`.
width : float or None, optional
If `width` is not None, then assume it is the approximate width
of the transition region (expressed in the same units as `nyq`)
for use in Kaiser FIR filter design. In this case, the `window`
argument is ignored.
window : string or tuple of string and parameter values, optional
Desired window to use. See `scipy.signal.get_window` for a list
of windows and required parameters.
pass_zero : bool, optional
If True, the gain at the frequency 0 (i.e. the "DC gain") is 1.
Otherwise the DC gain is 0.
scale : bool, optional
Set to True to scale the coefficients so that the frequency
response is exactly unity at a certain frequency.
That frequency is either:
- 0 (DC) if the first passband starts at 0 (i.e. pass_zero
is True)
- `nyq` (the Nyquist rate) if the first passband ends at
`nyq` (i.e the filter is a single band highpass filter);
center of first passband otherwise
nyq : float, optional
Nyquist frequency. Each frequency in `cutoff` must be between 0
and `nyq`.
Returns
-------
h : (numtaps,) ndarray
Coefficients of length `numtaps` FIR filter.
Raises
------
ValueError
If any value in `cutoff` is less than or equal to 0 or greater
than or equal to `nyq`, if the values in `cutoff` are not strictly
monotonically increasing, or if `numtaps` is even but a passband
includes the Nyquist frequency.
See also
--------
scipy.signal.firwin2
Examples
--------
Low-pass from 0 to f::
>>> from scipy import signal
>>> signal.firwin(numtaps, f)
Use a specific window function::
>>> signal.firwin(numtaps, f, window='nuttall')
High-pass ('stop' from 0 to f)::
>>> signal.firwin(numtaps, f, pass_zero=False)
Band-pass::
>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
Band-stop::
>>> signal.firwin(numtaps, [f1, f2])
Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1])::
>>> signal.firwin(numtaps, [f1, f2, f3, f4])
Multi-band (passbands are [f1, f2] and [f3,f4])::
>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
"""
# The major enhancements to this function added in November 2010 were
# developed by Tom Krauss (see ticket #902).
cutoff = np.atleast_1d(cutoff) / float(nyq)
# Check for invalid input.
if cutoff.ndim > 1:
raise ValueError("The cutoff argument must be at most "
"one-dimensional.")
if cutoff.size == 0:
raise ValueError("At least one cutoff frequency must be given.")
if cutoff.min() <= 0 or cutoff.max() >= 1:
raise ValueError("Invalid cutoff frequency: frequencies must be "
"greater than 0 and less than nyq.")
if np.any(np.diff(cutoff) <= 0):
raise ValueError("Invalid cutoff frequencies: the frequencies "
"must be strictly increasing.")
if width is not None:
# A width was given. Find the beta parameter of the Kaiser window
# and set `window`. This overrides the value of `window` passed in.
atten = kaiser_atten(numtaps, float(width) / nyq)
beta = kaiser_beta(atten)
window = ('kaiser', beta)
pass_nyquist = bool(cutoff.size & 1) ^ pass_zero
if pass_nyquist and numtaps % 2 == 0:
raise ValueError("A filter with an even number of coefficients must "
"have zero response at the Nyquist rate.")
# Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff
# is even, and each pair in cutoff corresponds to passband.
cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist))
# `bands` is a 2D array; each row gives the left and right edges of
# a passband.
bands = cutoff.reshape(-1, 2)
# Build up the coefficients.
alpha = 0.5 * (numtaps - 1)
m = np.arange(0, numtaps) - alpha
h = 0
for left, right in bands:
h += right * sinc(right * m)
h -= left * sinc(left * m)
# Get and apply the window function.
from .signaltools import get_window
win = get_window(window, numtaps, fftbins=False)
h *= win
# Now handle scaling if desired.
if scale:
# Get the first passband.
left, right = bands[0]
if left == 0:
scale_frequency = 0.0
elif right == 1:
scale_frequency = 1.0
else:
scale_frequency = 0.5 * (left + right)
c = np.cos(np.pi * m * scale_frequency)
s = np.sum(h * c)
h /= s
return h
# Original version of firwin2 from scipy ticket #457, submitted by "tash".
#
# Rewritten by Warren Weckesser, 2010.
def firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=1.0,
antisymmetric=False):
"""
FIR filter design using the window method.
From the given frequencies `freq` and corresponding gains `gain`,
this function constructs an FIR filter with linear phase and
(approximately) the given frequency response.
Parameters
----------
numtaps : int
The number of taps in the FIR filter. `numtaps` must be less than
`nfreqs`.
freq : array_like, 1D
The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being
Nyquist. The Nyquist frequency can be redefined with the argument
`nyq`.
The values in `freq` must be nondecreasing. A value can be repeated
once to implement a discontinuity. The first value in `freq` must
be 0, and the last value must be `nyq`.
gain : array_like
The filter gains at the frequency sampling points. Certain
constraints to gain values, depending on the filter type, are applied,
see Notes for details.
nfreqs : int, optional
The size of the interpolation mesh used to construct the filter.
For most efficient behavior, this should be a power of 2 plus 1
(e.g, 129, 257, etc). The default is one more than the smallest
power of 2 that is not less than `numtaps`. `nfreqs` must be greater
than `numtaps`.
window : string or (string, float) or float, or None, optional
Window function to use. Default is "hamming". See
`scipy.signal.get_window` for the complete list of possible values.
If None, no window function is applied.
nyq : float, optional
Nyquist frequency. Each frequency in `freq` must be between 0 and
`nyq` (inclusive).
antisymmetric : bool, optional
Whether resulting impulse response is symmetric/antisymmetric.
See Notes for more details.
Returns
-------
taps : ndarray
The filter coefficients of the FIR filter, as a 1-D array of length
`numtaps`.
See also
--------
scipy.signal.firwin
Notes
-----
From the given set of frequencies and gains, the desired response is
constructed in the frequency domain. The inverse FFT is applied to the
desired response to create the associated convolution kernel, and the
first `numtaps` coefficients of this kernel, scaled by `window`, are
returned.
The FIR filter will have linear phase. The type of filter is determined by
the value of 'numtaps` and `antisymmetric` flag.
There are four possible combinations:
- odd `numtaps`, `antisymmetric` is False, type I filter is produced
- even `numtaps`, `antisymmetric` is False, type II filter is produced
- odd `numtaps`, `antisymmetric` is True, type III filter is produced
- even `numtaps`, `antisymmetric` is True, type IV filter is produced
Magnitude response of all but type I filters are subjects to following
constraints:
- type II -- zero at the Nyquist frequency
- type III -- zero at zero and Nyquist frequencies
- type IV -- zero at zero frequency
.. versionadded:: 0.9.0
References
----------
.. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal
Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989).
(See, for example, Section 7.4.)
.. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital
Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm
Examples
--------
A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and
that decreases linearly on [0.5, 1.0] from 1 to 0:
>>> from scipy import signal
>>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0])
>>> print(taps[72:78])
[-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961]
"""
if len(freq) != len(gain):
raise ValueError('freq and gain must be of same length.')
if nfreqs is not None and numtaps >= nfreqs:
raise ValueError(('ntaps must be less than nfreqs, but firwin2 was '
'called with ntaps=%d and nfreqs=%s') %
(numtaps, nfreqs))
if freq[0] != 0 or freq[-1] != nyq:
raise ValueError('freq must start with 0 and end with `nyq`.')
d = np.diff(freq)
if (d < 0).any():
raise ValueError('The values in freq must be nondecreasing.')
d2 = d[:-1] + d[1:]
if (d2 == 0).any():
raise ValueError('A value in freq must not occur more than twice.')
if antisymmetric:
if numtaps % 2 == 0:
ftype = 4
else:
ftype = 3
else:
if numtaps % 2 == 0:
ftype = 2
else:
ftype = 1
if ftype == 2 and gain[-1] != 0.0:
raise ValueError("A Type II filter must have zero gain at the "
"Nyquist rate.")
elif ftype == 3 and (gain[0] != 0.0 or gain[-1] != 0.0):
raise ValueError("A Type III filter must have zero gain at zero "
"and Nyquist rates.")
elif ftype == 4 and gain[0] != 0.0:
raise ValueError("A Type IV filter must have zero gain at zero rate.")
if nfreqs is None:
nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2)))
# Tweak any repeated values in freq so that interp works.
eps = np.finfo(float).eps
for k in range(len(freq)):
if k < len(freq) - 1 and freq[k] == freq[k + 1]:
freq[k] = freq[k] - eps
freq[k + 1] = freq[k + 1] + eps
# Linearly interpolate the desired response on a uniform mesh `x`.
x = np.linspace(0.0, nyq, nfreqs)
fx = np.interp(x, freq, gain)
# Adjust the phases of the coefficients so that the first `ntaps` of the
# inverse FFT are the desired filter coefficients.
shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq)
if ftype > 2:
shift *= 1j
fx2 = fx * shift
# Use irfft to compute the inverse FFT.
out_full = irfft(fx2)
if window is not None:
# Create the window to apply to the filter coefficients.
from .signaltools import get_window
wind = get_window(window, numtaps, fftbins=False)
else:
wind = 1
# Keep only the first `numtaps` coefficients in `out`, and multiply by
# the window.
out = out_full[:numtaps] * wind
if ftype == 3:
out[out.size // 2] = 0.0
return out
def remez(numtaps, bands, desired, weight=None, Hz=1, type='bandpass',
maxiter=25, grid_density=16):
"""
Calculate the minimax optimal filter using the Remez exchange algorithm.
Calculate the filter-coefficients for the finite impulse response
(FIR) filter whose transfer function minimizes the maximum error
between the desired gain and the realized gain in the specified
frequency bands using the Remez exchange algorithm.
Parameters
----------
numtaps : int
The desired number of taps in the filter. The number of taps is
the number of terms in the filter, or the filter order plus one.
bands : array_like
A monotonic sequence containing the band edges in Hz.
All elements must be non-negative and less than half the sampling
frequency as given by `Hz`.
desired : array_like
A sequence half the size of bands containing the desired gain
in each of the specified bands.
weight : array_like, optional
A relative weighting to give to each band region. The length of
`weight` has to be half the length of `bands`.
Hz : scalar, optional
The sampling frequency in Hz. Default is 1.
type : {'bandpass', 'differentiator', 'hilbert'}, optional
The type of filter:
'bandpass' : flat response in bands. This is the default.
'differentiator' : frequency proportional response in bands.
'hilbert' : filter with odd symmetry, that is, type III
(for even order) or type IV (for odd order)
linear phase filters.
maxiter : int, optional
Maximum number of iterations of the algorithm. Default is 25.
grid_density : int, optional
Grid density. The dense grid used in `remez` is of size
``(numtaps + 1) * grid_density``. Default is 16.
Returns
-------
out : ndarray
A rank-1 array containing the coefficients of the optimal
(in a minimax sense) filter.
See Also
--------
freqz : Compute the frequency response of a digital filter.
References
----------
.. [1] J. H. McClellan and T. W. Parks, "A unified approach to the
design of optimum FIR linear phase digital filters",
IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973.
.. [2] J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer
Program for Designing Optimum FIR Linear Phase Digital
Filters", IEEE Trans. Audio Electroacoust., vol. AU-21,
pp. 506-525, 1973.
Examples
--------
We want to construct a filter with a passband at 0.2-0.4 Hz, and
stop bands at 0-0.1 Hz and 0.45-0.5 Hz. Note that this means that the
behavior in the frequency ranges between those bands is unspecified and
may overshoot.
>>> from scipy import signal
>>> bpass = signal.remez(72, [0, 0.1, 0.2, 0.4, 0.45, 0.5], [0, 1, 0])
>>> freq, response = signal.freqz(bpass)
>>> ampl = np.abs(response)
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(111)
>>> ax1.semilogy(freq/(2*np.pi), ampl, 'b-') # freq in Hz
>>> plt.show()
"""
# Convert type
try:
tnum = {'bandpass': 1, 'differentiator': 2, 'hilbert': 3}[type]
except KeyError:
raise ValueError("Type must be 'bandpass', 'differentiator', "
"or 'hilbert'")
# Convert weight
if weight is None:
weight = [1] * len(desired)
bands = np.asarray(bands).copy()
return sigtools._remez(numtaps, bands, desired, weight, tnum, Hz,
maxiter, grid_density)
| bsd-3-clause |
PatrickOReilly/scikit-learn | sklearn/linear_model/tests/test_passive_aggressive.py | 169 | 8809 | import numpy as np
import scipy.sparse as sp
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_raises
from sklearn.base import ClassifierMixin
from sklearn.utils import check_random_state
from sklearn.datasets import load_iris
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import PassiveAggressiveRegressor
iris = load_iris()
random_state = check_random_state(12)
indices = np.arange(iris.data.shape[0])
random_state.shuffle(indices)
X = iris.data[indices]
y = iris.target[indices]
X_csr = sp.csr_matrix(X)
class MyPassiveAggressive(ClassifierMixin):
def __init__(self, C=1.0, epsilon=0.01, loss="hinge",
fit_intercept=True, n_iter=1, random_state=None):
self.C = C
self.epsilon = epsilon
self.loss = loss
self.fit_intercept = fit_intercept
self.n_iter = n_iter
def fit(self, X, y):
n_samples, n_features = X.shape
self.w = np.zeros(n_features, dtype=np.float64)
self.b = 0.0
for t in range(self.n_iter):
for i in range(n_samples):
p = self.project(X[i])
if self.loss in ("hinge", "squared_hinge"):
loss = max(1 - y[i] * p, 0)
else:
loss = max(np.abs(p - y[i]) - self.epsilon, 0)
sqnorm = np.dot(X[i], X[i])
if self.loss in ("hinge", "epsilon_insensitive"):
step = min(self.C, loss / sqnorm)
elif self.loss in ("squared_hinge",
"squared_epsilon_insensitive"):
step = loss / (sqnorm + 1.0 / (2 * self.C))
if self.loss in ("hinge", "squared_hinge"):
step *= y[i]
else:
step *= np.sign(y[i] - p)
self.w += step * X[i]
if self.fit_intercept:
self.b += step
def project(self, X):
return np.dot(X, self.w) + self.b
def test_classifier_accuracy():
for data in (X, X_csr):
for fit_intercept in (True, False):
clf = PassiveAggressiveClassifier(C=1.0, n_iter=30,
fit_intercept=fit_intercept,
random_state=0)
clf.fit(data, y)
score = clf.score(data, y)
assert_greater(score, 0.79)
def test_classifier_partial_fit():
classes = np.unique(y)
for data in (X, X_csr):
clf = PassiveAggressiveClassifier(C=1.0,
fit_intercept=True,
random_state=0)
for t in range(30):
clf.partial_fit(data, y, classes)
score = clf.score(data, y)
assert_greater(score, 0.79)
def test_classifier_refit():
# Classifier can be retrained on different labels and features.
clf = PassiveAggressiveClassifier().fit(X, y)
assert_array_equal(clf.classes_, np.unique(y))
clf.fit(X[:, :-1], iris.target_names[y])
assert_array_equal(clf.classes_, iris.target_names)
def test_classifier_correctness():
y_bin = y.copy()
y_bin[y != 1] = -1
for loss in ("hinge", "squared_hinge"):
clf1 = MyPassiveAggressive(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2)
clf1.fit(X, y_bin)
for data in (X, X_csr):
clf2 = PassiveAggressiveClassifier(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2, shuffle=False)
clf2.fit(data, y_bin)
assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2)
def test_classifier_undefined_methods():
clf = PassiveAggressiveClassifier()
for meth in ("predict_proba", "predict_log_proba", "transform"):
assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
def test_class_weights():
# Test class weights.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(C=0.1, n_iter=100, class_weight=None,
random_state=100)
clf.fit(X2, y2)
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))
# we give a small weights to class 1
clf = PassiveAggressiveClassifier(C=0.1, n_iter=100,
class_weight={1: 0.001},
random_state=100)
clf.fit(X2, y2)
# now the hyperplane should rotate clock-wise and
# the prediction on this point should shift
assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))
def test_partial_fit_weight_class_balanced():
# partial_fit with class_weight='balanced' not supported
clf = PassiveAggressiveClassifier(class_weight="balanced")
assert_raises(ValueError, clf.partial_fit, X, y, classes=np.unique(y))
def test_equal_class_weight():
X2 = [[1, 0], [1, 0], [0, 1], [0, 1]]
y2 = [0, 0, 1, 1]
clf = PassiveAggressiveClassifier(C=0.1, n_iter=1000, class_weight=None)
clf.fit(X2, y2)
# Already balanced, so "balanced" weights should have no effect
clf_balanced = PassiveAggressiveClassifier(C=0.1, n_iter=1000,
class_weight="balanced")
clf_balanced.fit(X2, y2)
clf_weighted = PassiveAggressiveClassifier(C=0.1, n_iter=1000,
class_weight={0: 0.5, 1: 0.5})
clf_weighted.fit(X2, y2)
# should be similar up to some epsilon due to learning rate schedule
assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2)
def test_wrong_class_weight_label():
# ValueError due to wrong class_weight label.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(class_weight={0: 0.5})
assert_raises(ValueError, clf.fit, X2, y2)
def test_wrong_class_weight_format():
# ValueError due to wrong class_weight argument type.
X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
[1.0, 1.0], [1.0, 0.0]])
y2 = [1, 1, 1, -1, -1]
clf = PassiveAggressiveClassifier(class_weight=[0.5])
assert_raises(ValueError, clf.fit, X2, y2)
clf = PassiveAggressiveClassifier(class_weight="the larch")
assert_raises(ValueError, clf.fit, X2, y2)
def test_regressor_mse():
y_bin = y.copy()
y_bin[y != 1] = -1
for data in (X, X_csr):
for fit_intercept in (True, False):
reg = PassiveAggressiveRegressor(C=1.0, n_iter=50,
fit_intercept=fit_intercept,
random_state=0)
reg.fit(data, y_bin)
pred = reg.predict(data)
assert_less(np.mean((pred - y_bin) ** 2), 1.7)
def test_regressor_partial_fit():
y_bin = y.copy()
y_bin[y != 1] = -1
for data in (X, X_csr):
reg = PassiveAggressiveRegressor(C=1.0,
fit_intercept=True,
random_state=0)
for t in range(50):
reg.partial_fit(data, y_bin)
pred = reg.predict(data)
assert_less(np.mean((pred - y_bin) ** 2), 1.7)
def test_regressor_correctness():
y_bin = y.copy()
y_bin[y != 1] = -1
for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"):
reg1 = MyPassiveAggressive(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2)
reg1.fit(X, y_bin)
for data in (X, X_csr):
reg2 = PassiveAggressiveRegressor(C=1.0,
loss=loss,
fit_intercept=True,
n_iter=2, shuffle=False)
reg2.fit(data, y_bin)
assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2)
def test_regressor_undefined_methods():
reg = PassiveAggressiveRegressor()
for meth in ("transform",):
assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
| bsd-3-clause |
GiggleLiu/tba | lattice/tests/test_bond.py | 1 | 3059 | import time,pdb,sys
sys.path.insert(0,'../')
from numpy import *
from matplotlib.pyplot import *
from numpy.testing import dec,assert_,assert_raises,assert_almost_equal,assert_allclose
from bond import *
vdim=2
############# utilities ##################
def _setup_globals(dim):
global vdim
vdim=dim
def _assert_same_collection(bc1,bc2):
assert_(bc1==bc2)
def _random_bond(nsite=10):
atom1=random.randint(0,nsite)
atom2=random.randint(0,nsite)
bondv=random.random(vdim)
return Bond(atom1,atom2,bondv)
def _random_bc(nsite=10,nbond=100):
atom1s=random.randint(0,nsite,nbond)
atom2s=random.randint(0,nsite,nbond)
bondvs=random.random([nbond,vdim])
#check for validity
#atoms=concatenate([atom1s[:,newaxis],atom2s[:,newaxis]],axis=1).view([('',atom1s.dtype)]*2)
#ar,indices=unique(atoms,return_index=True)
#atom1s,atom2s,bondvs=atom1s[indices],atom2s[indices],bondvs[indices]
return BondCollection((atom1s,atom2s,bondvs))
############## start ##################
def test_bond():
print 'Testing Bond.'
b1=_random_bond()
print 'reverse'
b1_r=-b1
assert_(b1.atom1==b1_r.atom2)
assert_(b1.atom2==b1_r.atom1)
assert_allclose(b1.bondv,-b1_r.bondv)
print '=='
b2=Bond(b1.atom1,b1.atom2,b1.bondv)
assert_(b1_r==-b2)
assert_(b1_r!=b2)
print b1
def test_construction():
filename='test.dat'
print 'test construction'
bc=_random_bc()
pm=arange(bc.N); random.shuffle(pm)
bc2=bc[pm]
_assert_same_collection(bc2,bc)
print 'test saveload.'
bc.save(filename)
bc2=load_bonds(filename)
_assert_same_collection(bc2,bc)
def test_add():
print 'test __len__, __(r)add__, __itter__, __getitem__'
nsite=10
bc1=_random_bc(nsite=10)
bc2=_random_bc(nsite=10)
bc3=bc1+bc2
for i,b1 in enumerate(bc1):
assert_(b1==bc3[i])
_assert_same_collection(bc3[len(bc1):],bc2)
print 'test property N, vdim'
assert_(bc3.N==bc2.N+bc1.N)
assert_(bc3.vdim==vdim)
def test_query():
print 'test query.'
nsite=10
bc1=BondCollection(((0,1,2,3,4,2,6),(0,0,0,4,3,1,0),([0,1],[2,3],[1,3],[0,1.],[1,1],[1,1],[2,2])))
xs=[2,5]
_assert_same_collection(bc1.query(atom1=2),BondCollection((bc1.atom1s[xs],bc1.atom2s[xs],bc1.bondvs[xs])))
xs=[0,2,5]
_assert_same_collection(bc1.query(atom1=(0,2)),BondCollection((bc1.atom1s[xs],bc1.atom2s[xs],bc1.bondvs[xs])))
xs=[2]
_assert_same_collection(bc1.query(atom1=2,atom2=0),BondCollection((bc1.atom1s[xs],bc1.atom2s[xs],bc1.bondvs[xs])))
xs=[0,1,2,5,6]
_assert_same_collection(bc1.query(atom1=2,atom2=0,condition='or'),BondCollection((bc1.atom1s[xs],bc1.atom2s[xs],bc1.bondvs[xs])))
xs=[2,4]
_assert_same_collection(bc1.query(atom1=2,bondv=[1,1],condition='xor'),BondCollection((bc1.atom1s[xs],bc1.atom2s[xs],bc1.bondvs[xs])))
def test_all():
test_bond()
test_construction()
test_add()
test_query()
if __name__=='__main__':
for i in xrange(3):
_setup_globals(dim=i+1)
test_all()
| gpl-2.0 |
ucsd-progsys/nate | learning/decisionpath.py | 2 | 5736 | import math
import os.path
import random
random.seed()
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import pandas as pd
# import plotly.plotly as py
# import plotly.graph_objs as go
import pydotplus
# from IPython.display import Image
import sys
import input_old
model = sys.argv[1]
test, fs, ls = input_old.load_csv(sys.argv[2], filter_no_labels=True, only_slice=True)
# print test
test_samps = test.loc[:,'F-Is-Eq':]
test_labels = test.loc[:,'L-DidChange']
test_span = test.loc[:,'SourceSpan']
# print test.iloc[1]
# print test.values[1]
feature_names = fs[1:]
#------- Loading
from sklearn.externals import joblib
estimator = joblib.load(model)
# # -----PLOTTING
dot_data = tree.export_graphviz(estimator, out_file=None,
feature_names=feature_names,
filled=True,
rounded=True)
graph = pydotplus.graph_from_dot_data(dot_data)
# graph.write_png(model+'.png')
# ---------
# graph.render(filename='img/g1')
graph.write_pdf(model+".pdf")
# --------------
X_test = test_samps.values
# Using those arrays, we can parse the tree structure:
n_nodes = estimator.tree_.node_count
children_left = estimator.tree_.children_left
children_right = estimator.tree_.children_right
feature = estimator.tree_.feature
threshold = estimator.tree_.threshold
# The tree structure can be traversed to compute various properties such
# as the depth of each node and whether or not it is a leaf.
# node_depth = np.zeros(shape=n_nodes)
# is_leaves = np.zeros(shape=n_nodes, dtype=bool)
# stack = [(0, -1)] # seed is the root node id and its parent depth
# while len(stack) > 0:
# node_id, parent_depth = stack.pop()
# node_depth[node_id] = parent_depth + 1
# # If we have a test node
# if (children_left[node_id] != children_right[node_id]):
# stack.append((children_left[node_id], parent_depth + 1))
# stack.append((children_right[node_id], parent_depth + 1))
# else:
# is_leaves[node_id] = True
# print("The binary tree structure has %s nodes and has "
# "the following tree structure:"
# % n_nodes)
# for i in range(n_nodes):
# if is_leaves[i]:
# print("%snode=%s leaf node." % (node_depth[i] * "\t", i))
# else:
# print("%snode=%s test node: go to node %s if X[:, %s] <= %ss else to "
# "node %s."
# % (node_depth[i] * "\t",
# i,
# children_left[i],
# feature[i],
# threshold[i],
# children_right[i],
# ))
# print()
#i = n_nodes # lol loop
# First let's retrieve the decision path of each sample. The decision_path
# method allows to retrieve the node indicator functions. A non zero element of
# indicator matrix at the position (i, j) indicates that the sample i goes
# through the node j.
node_indicator = estimator.decision_path(X_test)
# Similarly, we can also have the leaves ids reached by each sample.
leave_id = estimator.apply(X_test)
# Now, it's possible to get the tests that were used to predict a sample or
# a group of samples. First, let's make it for the sample.
# sample_id = 50
# node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
# node_indicator.indptr[sample_id + 1]]
# print('Rules used to predict sample %s: ' % sample_id)
# for node_id in node_index:
# if leave_id[sample_id] != node_id:
# continue
# if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
# threshold_sign = "<="
# else:
# threshold_sign = ">"
# print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
# % (node_id,
# sample_id,
# feature[node_id],
# X_test[sample_id, feature[node_id]],
# threshold_sign,
# threshold[node_id]))
#print (estimator.decision_path(X_test[50]))
#samp_inds = [i for i, x in enumerate(test_samps) if x]
for ind, _ in enumerate(test_samps):
if ind >= len(test_samps): # WTF?
continue
print ('----------------------------------')
print ('For span')
print(test_span.values[ind])
print ('with confidence')
print ((estimator.predict_proba(X_test[ind].reshape(1,-1)))[0][1])
print ('our prediction is')
print ((estimator.predict(X_test[ind].reshape(1,-1)))[0])
print ('should be')
print (test_labels.values[ind])
sample_id = ind
# print X_test[sample_id]
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
node_indicator.indptr[sample_id + 1]]
print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:
if leave_id[sample_id] == node_id: # <-- changed != to ==
#continue # <-- comment out
print("leaf node {} reached, no decision here".format(leave_id[sample_id])) # <--
else: # < -- added else to iterate through decision nodes
if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
threshold_sign = "<="
else:
threshold_sign = ">"
print("%s : (= %s) %s %s"
% (feature_names[feature[node_id]],
X_test[sample_id, feature[node_id]],
threshold_sign,
threshold[node_id]))
# print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
# % (node_id,
# sample_id,
# feature[node_id],
# X_test[sample_id, feature[node_id]], # <-- changed i to sample_id
# threshold_sign,
# threshold[node_id]))
# print(feature_names[feature[node_id]]);
| bsd-3-clause |
Windy-Ground/scikit-learn | examples/linear_model/plot_ransac.py | 250 | 1673 | """
===========================================
Robust linear model estimation using RANSAC
===========================================
In this example we see how to robustly fit a linear model to faulty data using
the RANSAC algorithm.
"""
import numpy as np
from matplotlib import pyplot as plt
from sklearn import linear_model, datasets
n_samples = 1000
n_outliers = 50
X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1,
n_informative=1, noise=10,
coef=True, random_state=0)
# Add outlier data
np.random.seed(0)
X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers)
# Fit line using all data
model = linear_model.LinearRegression()
model.fit(X, y)
# Robustly fit linear model with RANSAC algorithm
model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression())
model_ransac.fit(X, y)
inlier_mask = model_ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)
# Predict data of estimated models
line_X = np.arange(-5, 5)
line_y = model.predict(line_X[:, np.newaxis])
line_y_ransac = model_ransac.predict(line_X[:, np.newaxis])
# Compare estimated coefficients
print("Estimated coefficients (true, normal, RANSAC):")
print(coef, model.coef_, model_ransac.estimator_.coef_)
plt.plot(X[inlier_mask], y[inlier_mask], '.g', label='Inliers')
plt.plot(X[outlier_mask], y[outlier_mask], '.r', label='Outliers')
plt.plot(line_X, line_y, '-k', label='Linear regressor')
plt.plot(line_X, line_y_ransac, '-b', label='RANSAC regressor')
plt.legend(loc='lower right')
plt.show()
| bsd-3-clause |
aslihandincer/ibis | docs/sphinxext/ipython_sphinxext/ipython_directive.py | 9 | 37645 | # -*- coding: utf-8 -*-
"""
Sphinx directive to support embedded IPython code.
This directive allows pasting of entire interactive IPython sessions, prompts
and all, and their code will actually get re-executed at doc build time, with
all prompts renumbered sequentially. It also allows you to input code as a pure
python input by giving the argument python to the directive. The output looks
like an interactive ipython section.
To enable this directive, simply list it in your Sphinx ``conf.py`` file
(making sure the directory where you placed it is visible to sphinx, as is
needed for all Sphinx directives). For example, to enable syntax highlighting
and the IPython directive::
extensions = ['IPython.sphinxext.ipython_console_highlighting',
'IPython.sphinxext.ipython_directive']
The IPython directive outputs code-blocks with the language 'ipython'. So
if you do not have the syntax highlighting extension enabled as well, then
all rendered code-blocks will be uncolored. By default this directive assumes
that your prompts are unchanged IPython ones, but this can be customized.
The configurable options that can be placed in conf.py are:
ipython_savefig_dir:
The directory in which to save the figures. This is relative to the
Sphinx source directory. The default is `html_static_path`.
ipython_rgxin:
The compiled regular expression to denote the start of IPython input
lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You
shouldn't need to change this.
ipython_rgxout:
The compiled regular expression to denote the start of IPython output
lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You
shouldn't need to change this.
ipython_promptin:
The string to represent the IPython input prompt in the generated ReST.
The default is 'In [%d]:'. This expects that the line numbers are used
in the prompt.
ipython_promptout:
The string to represent the IPython prompt in the generated ReST. The
default is 'Out [%d]:'. This expects that the line numbers are used
in the prompt.
ipython_mplbackend:
The string which specifies if the embedded Sphinx shell should import
Matplotlib and set the backend. The value specifies a backend that is
passed to `matplotlib.use()` before any lines in `ipython_execlines` are
executed. If not specified in conf.py, then the default value of 'agg' is
used. To use the IPython directive without matplotlib as a dependency, set
the value to `None`. It may end up that matplotlib is still imported
if the user specifies so in `ipython_execlines` or makes use of the
@savefig pseudo decorator.
ipython_execlines:
A list of strings to be exec'd in the embedded Sphinx shell. Typical
usage is to make certain packages always available. Set this to an empty
list if you wish to have no imports always available. If specified in
conf.py as `None`, then it has the effect of making no imports available.
If omitted from conf.py altogether, then the default value of
['import numpy as np', 'import matplotlib.pyplot as plt'] is used.
ipython_holdcount
When the @suppress pseudo-decorator is used, the execution count can be
incremented or not. The default behavior is to hold the execution count,
corresponding to a value of `True`. Set this to `False` to increment
the execution count after each suppressed command.
As an example, to use the IPython directive when `matplotlib` is not available,
one sets the backend to `None`::
ipython_mplbackend = None
An example usage of the directive is:
.. code-block:: rst
.. ipython::
In [1]: x = 1
In [2]: y = x**2
In [3]: print(y)
See http://matplotlib.org/sampledoc/ipython_directive.html for additional
documentation.
ToDo
----
- Turn the ad-hoc test() function into a real test suite.
- Break up ipython-specific functionality from matplotlib stuff into better
separated code.
Authors
-------
- John D Hunter: orignal author.
- Fernando Perez: refactoring, documentation, cleanups, port to 0.11.
- VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations.
- Skipper Seabold, refactoring, cleanups, pure python addition
"""
from __future__ import print_function
from __future__ import unicode_literals
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
# Stdlib
import os
import re
import sys
import tempfile
import ast
from pandas.compat import zip, range, map, lmap, u, cStringIO as StringIO
import warnings
# To keep compatibility with various python versions
try:
from hashlib import md5
except ImportError:
from md5 import md5
# Third-party
import sphinx
from docutils.parsers.rst import directives
from docutils import nodes
from sphinx.util.compat import Directive
# Our own
try:
from traitlets.config import Config
except ImportError:
from IPython import Config
from IPython import InteractiveShell
from IPython.core.profiledir import ProfileDir
from IPython.utils import io
from IPython.utils.py3compat import PY3
if PY3:
from io import StringIO
text_type = str
else:
from StringIO import StringIO
text_type = unicode
#-----------------------------------------------------------------------------
# Globals
#-----------------------------------------------------------------------------
# for tokenizing blocks
COMMENT, INPUT, OUTPUT = range(3)
#-----------------------------------------------------------------------------
# Functions and class declarations
#-----------------------------------------------------------------------------
def block_parser(part, rgxin, rgxout, fmtin, fmtout):
"""
part is a string of ipython text, comprised of at most one
input, one ouput, comments, and blank lines. The block parser
parses the text into a list of::
blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...]
where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and
data is, depending on the type of token::
COMMENT : the comment string
INPUT: the (DECORATOR, INPUT_LINE, REST) where
DECORATOR: the input decorator (or None)
INPUT_LINE: the input as string (possibly multi-line)
REST : any stdout generated by the input line (not OUTPUT)
OUTPUT: the output string, possibly multi-line
"""
block = []
lines = part.split('\n')
N = len(lines)
i = 0
decorator = None
while 1:
if i==N:
# nothing left to parse -- the last line
break
line = lines[i]
i += 1
line_stripped = line.strip()
if line_stripped.startswith('#'):
block.append((COMMENT, line))
continue
if line_stripped.startswith('@'):
# we're assuming at most one decorator -- may need to
# rethink
decorator = line_stripped
continue
# does this look like an input line?
matchin = rgxin.match(line)
if matchin:
lineno, inputline = int(matchin.group(1)), matchin.group(2)
# the ....: continuation string
continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2))
Nc = len(continuation)
# input lines can continue on for more than one line, if
# we have a '\' line continuation char or a function call
# echo line 'print'. The input line can only be
# terminated by the end of the block or an output line, so
# we parse out the rest of the input line if it is
# multiline as well as any echo text
rest = []
while i<N:
# look ahead; if the next line is blank, or a comment, or
# an output line, we're done
nextline = lines[i]
matchout = rgxout.match(nextline)
#print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation))
if matchout or nextline.startswith('#'):
break
elif nextline.startswith(continuation):
nextline = nextline[Nc:]
if nextline and nextline[0] == ' ':
nextline = nextline[1:]
inputline += '\n' + nextline
else:
rest.append(nextline)
i+= 1
block.append((INPUT, (decorator, inputline, '\n'.join(rest))))
continue
# if it looks like an output line grab all the text to the end
# of the block
matchout = rgxout.match(line)
if matchout:
lineno, output = int(matchout.group(1)), matchout.group(2)
if i<N-1:
output = '\n'.join([output] + lines[i:])
block.append((OUTPUT, output))
break
return block
class DecodingStringIO(StringIO, object):
def __init__(self,buf='',encodings=('utf8',), *args, **kwds):
super(DecodingStringIO, self).__init__(buf, *args, **kwds)
self.set_encodings(encodings)
def set_encodings(self, encodings):
self.encodings = encodings
def write(self,data):
if isinstance(data, text_type):
return super(DecodingStringIO, self).write(data)
else:
for enc in self.encodings:
try:
data = data.decode(enc)
return super(DecodingStringIO, self).write(data)
except :
pass
# default to brute utf8 if no encoding succeded
return super(DecodingStringIO, self).write(data.decode('utf8', 'replace'))
class EmbeddedSphinxShell(object):
"""An embedded IPython instance to run inside Sphinx"""
def __init__(self, exec_lines=None,state=None):
self.cout = DecodingStringIO(u'')
if exec_lines is None:
exec_lines = []
self.state = state
# Create config object for IPython
config = Config()
config.InteractiveShell.autocall = False
config.InteractiveShell.autoindent = False
config.InteractiveShell.colors = 'NoColor'
# create a profile so instance history isn't saved
tmp_profile_dir = tempfile.mkdtemp(prefix='profile_')
profname = 'auto_profile_sphinx_build'
pdir = os.path.join(tmp_profile_dir,profname)
profile = ProfileDir.create_profile_dir(pdir)
# Create and initialize global ipython, but don't start its mainloop.
# This will persist across different EmbededSphinxShell instances.
IP = InteractiveShell.instance(config=config, profile_dir=profile)
# io.stdout redirect must be done after instantiating InteractiveShell
io.stdout = self.cout
io.stderr = self.cout
# For debugging, so we can see normal output, use this:
#from IPython.utils.io import Tee
#io.stdout = Tee(self.cout, channel='stdout') # dbg
#io.stderr = Tee(self.cout, channel='stderr') # dbg
# Store a few parts of IPython we'll need.
self.IP = IP
self.user_ns = self.IP.user_ns
self.user_global_ns = self.IP.user_global_ns
self.input = ''
self.output = ''
self.is_verbatim = False
self.is_doctest = False
self.is_suppress = False
# Optionally, provide more detailed information to shell.
self.directive = None
# on the first call to the savefig decorator, we'll import
# pyplot as plt so we can make a call to the plt.gcf().savefig
self._pyplot_imported = False
# Prepopulate the namespace.
for line in exec_lines:
self.process_input_line(line, store_history=False)
def clear_cout(self):
self.cout.seek(0)
self.cout.truncate(0)
def process_input_line(self, line, store_history=True):
"""process the input, capturing stdout"""
stdout = sys.stdout
splitter = self.IP.input_splitter
try:
sys.stdout = self.cout
splitter.push(line)
more = splitter.push_accepts_more()
if not more:
try:
source_raw = splitter.source_raw_reset()[1]
except:
# recent ipython #4504
source_raw = splitter.raw_reset()
self.IP.run_cell(source_raw, store_history=store_history)
finally:
sys.stdout = stdout
def process_image(self, decorator):
"""
# build out an image directive like
# .. image:: somefile.png
# :width 4in
#
# from an input like
# savefig somefile.png width=4in
"""
savefig_dir = self.savefig_dir
source_dir = self.source_dir
saveargs = decorator.split(' ')
filename = saveargs[1]
# insert relative path to image file in source
outfile = os.path.relpath(os.path.join(savefig_dir,filename),
source_dir)
imagerows = ['.. image:: %s'%outfile]
for kwarg in saveargs[2:]:
arg, val = kwarg.split('=')
arg = arg.strip()
val = val.strip()
imagerows.append(' :%s: %s'%(arg, val))
image_file = os.path.basename(outfile) # only return file name
image_directive = '\n'.join(imagerows)
return image_file, image_directive
# Callbacks for each type of token
def process_input(self, data, input_prompt, lineno):
"""
Process data block for INPUT token.
"""
decorator, input, rest = data
image_file = None
image_directive = None
is_verbatim = decorator=='@verbatim' or self.is_verbatim
is_doctest = (decorator is not None and \
decorator.startswith('@doctest')) or self.is_doctest
is_suppress = decorator=='@suppress' or self.is_suppress
is_okexcept = decorator=='@okexcept' or self.is_okexcept
is_okwarning = decorator=='@okwarning' or self.is_okwarning
is_savefig = decorator is not None and \
decorator.startswith('@savefig')
# set the encodings to be used by DecodingStringIO
# to convert the execution output into unicode if
# needed. this attrib is set by IpythonDirective.run()
# based on the specified block options, defaulting to ['ut
self.cout.set_encodings(self.output_encoding)
input_lines = input.split('\n')
if len(input_lines) > 1:
if input_lines[-1] != "":
input_lines.append('') # make sure there's a blank line
# so splitter buffer gets reset
continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2))
if is_savefig:
image_file, image_directive = self.process_image(decorator)
ret = []
is_semicolon = False
# Hold the execution count, if requested to do so.
if is_suppress and self.hold_count:
store_history = False
else:
store_history = True
# Note: catch_warnings is not thread safe
with warnings.catch_warnings(record=True) as ws:
for i, line in enumerate(input_lines):
if line.endswith(';'):
is_semicolon = True
if i == 0:
# process the first input line
if is_verbatim:
self.process_input_line('')
self.IP.execution_count += 1 # increment it anyway
else:
# only submit the line in non-verbatim mode
self.process_input_line(line, store_history=store_history)
formatted_line = '%s %s'%(input_prompt, line)
else:
# process a continuation line
if not is_verbatim:
self.process_input_line(line, store_history=store_history)
formatted_line = '%s %s'%(continuation, line)
if not is_suppress:
ret.append(formatted_line)
if not is_suppress and len(rest.strip()) and is_verbatim:
# the "rest" is the standard output of the
# input, which needs to be added in
# verbatim mode
ret.append(rest)
self.cout.seek(0)
output = self.cout.read()
if not is_suppress and not is_semicolon:
ret.append(output)
elif is_semicolon: # get spacing right
ret.append('')
# context information
filename = self.state.document.current_source
lineno = self.state.document.current_line
# output any exceptions raised during execution to stdout
# unless :okexcept: has been specified.
if not is_okexcept and "Traceback" in output:
s = "\nException in %s at block ending on line %s\n" % (filename, lineno)
s += "Specify :okexcept: as an option in the ipython:: block to suppress this message\n"
sys.stdout.write('\n\n>>>' + ('-' * 73))
sys.stdout.write(s)
sys.stdout.write(output)
sys.stdout.write('<<<' + ('-' * 73) + '\n\n')
# output any warning raised during execution to stdout
# unless :okwarning: has been specified.
if not is_okwarning:
for w in ws:
s = "\nWarning in %s at block ending on line %s\n" % (filename, lineno)
s += "Specify :okwarning: as an option in the ipython:: block to suppress this message\n"
sys.stdout.write('\n\n>>>' + ('-' * 73))
sys.stdout.write(s)
sys.stdout.write('-' * 76 + '\n')
s=warnings.formatwarning(w.message, w.category,
w.filename, w.lineno, w.line)
sys.stdout.write(s)
sys.stdout.write('<<<' + ('-' * 73) + '\n')
self.cout.truncate(0)
return (ret, input_lines, output, is_doctest, decorator, image_file,
image_directive)
def process_output(self, data, output_prompt,
input_lines, output, is_doctest, decorator, image_file):
"""
Process data block for OUTPUT token.
"""
TAB = ' ' * 4
if is_doctest and output is not None:
found = output
found = found.strip()
submitted = data.strip()
if self.directive is None:
source = 'Unavailable'
content = 'Unavailable'
else:
source = self.directive.state.document.current_source
content = self.directive.content
# Add tabs and join into a single string.
content = '\n'.join([TAB + line for line in content])
# Make sure the output contains the output prompt.
ind = found.find(output_prompt)
if ind < 0:
e = ('output does not contain output prompt\n\n'
'Document source: {0}\n\n'
'Raw content: \n{1}\n\n'
'Input line(s):\n{TAB}{2}\n\n'
'Output line(s):\n{TAB}{3}\n\n')
e = e.format(source, content, '\n'.join(input_lines),
repr(found), TAB=TAB)
raise RuntimeError(e)
found = found[len(output_prompt):].strip()
# Handle the actual doctest comparison.
if decorator.strip() == '@doctest':
# Standard doctest
if found != submitted:
e = ('doctest failure\n\n'
'Document source: {0}\n\n'
'Raw content: \n{1}\n\n'
'On input line(s):\n{TAB}{2}\n\n'
'we found output:\n{TAB}{3}\n\n'
'instead of the expected:\n{TAB}{4}\n\n')
e = e.format(source, content, '\n'.join(input_lines),
repr(found), repr(submitted), TAB=TAB)
raise RuntimeError(e)
else:
self.custom_doctest(decorator, input_lines, found, submitted)
def process_comment(self, data):
"""Process data fPblock for COMMENT token."""
if not self.is_suppress:
return [data]
def save_image(self, image_file):
"""
Saves the image file to disk.
"""
self.ensure_pyplot()
command = ('plt.gcf().savefig("%s", bbox_inches="tight", '
'dpi=100)' % image_file)
#print 'SAVEFIG', command # dbg
self.process_input_line('bookmark ipy_thisdir', store_history=False)
self.process_input_line('cd -b ipy_savedir', store_history=False)
self.process_input_line(command, store_history=False)
self.process_input_line('cd -b ipy_thisdir', store_history=False)
self.process_input_line('bookmark -d ipy_thisdir', store_history=False)
self.clear_cout()
def process_block(self, block):
"""
process block from the block_parser and return a list of processed lines
"""
ret = []
output = None
input_lines = None
lineno = self.IP.execution_count
input_prompt = self.promptin % lineno
output_prompt = self.promptout % lineno
image_file = None
image_directive = None
for token, data in block:
if token == COMMENT:
out_data = self.process_comment(data)
elif token == INPUT:
(out_data, input_lines, output, is_doctest, decorator,
image_file, image_directive) = \
self.process_input(data, input_prompt, lineno)
elif token == OUTPUT:
out_data = \
self.process_output(data, output_prompt,
input_lines, output, is_doctest,
decorator, image_file)
if out_data:
ret.extend(out_data)
# save the image files
if image_file is not None:
self.save_image(image_file)
return ret, image_directive
def ensure_pyplot(self):
"""
Ensures that pyplot has been imported into the embedded IPython shell.
Also, makes sure to set the backend appropriately if not set already.
"""
# We are here if the @figure pseudo decorator was used. Thus, it's
# possible that we could be here even if python_mplbackend were set to
# `None`. That's also strange and perhaps worthy of raising an
# exception, but for now, we just set the backend to 'agg'.
if not self._pyplot_imported:
if 'matplotlib.backends' not in sys.modules:
# Then ipython_matplotlib was set to None but there was a
# call to the @figure decorator (and ipython_execlines did
# not set a backend).
#raise Exception("No backend was set, but @figure was used!")
import matplotlib
matplotlib.use('agg')
# Always import pyplot into embedded shell.
self.process_input_line('import matplotlib.pyplot as plt',
store_history=False)
self._pyplot_imported = True
def process_pure_python(self, content):
"""
content is a list of strings. it is unedited directive content
This runs it line by line in the InteractiveShell, prepends
prompts as needed capturing stderr and stdout, then returns
the content as a list as if it were ipython code
"""
output = []
savefig = False # keep up with this to clear figure
multiline = False # to handle line continuation
multiline_start = None
fmtin = self.promptin
ct = 0
for lineno, line in enumerate(content):
line_stripped = line.strip()
if not len(line):
output.append(line)
continue
# handle decorators
if line_stripped.startswith('@'):
output.extend([line])
if 'savefig' in line:
savefig = True # and need to clear figure
continue
# handle comments
if line_stripped.startswith('#'):
output.extend([line])
continue
# deal with lines checking for multiline
continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2))
if not multiline:
modified = u"%s %s" % (fmtin % ct, line_stripped)
output.append(modified)
ct += 1
try:
ast.parse(line_stripped)
output.append(u'')
except Exception: # on a multiline
multiline = True
multiline_start = lineno
else: # still on a multiline
modified = u'%s %s' % (continuation, line)
output.append(modified)
# if the next line is indented, it should be part of multiline
if len(content) > lineno + 1:
nextline = content[lineno + 1]
if len(nextline) - len(nextline.lstrip()) > 3:
continue
try:
mod = ast.parse(
'\n'.join(content[multiline_start:lineno+1]))
if isinstance(mod.body[0], ast.FunctionDef):
# check to see if we have the whole function
for element in mod.body[0].body:
if isinstance(element, ast.Return):
multiline = False
else:
output.append(u'')
multiline = False
except Exception:
pass
if savefig: # clear figure if plotted
self.ensure_pyplot()
self.process_input_line('plt.clf()', store_history=False)
self.clear_cout()
savefig = False
return output
def custom_doctest(self, decorator, input_lines, found, submitted):
"""
Perform a specialized doctest.
"""
from .custom_doctests import doctests
args = decorator.split()
doctest_type = args[1]
if doctest_type in doctests:
doctests[doctest_type](self, args, input_lines, found, submitted)
else:
e = "Invalid option to @doctest: {0}".format(doctest_type)
raise Exception(e)
class IPythonDirective(Directive):
has_content = True
required_arguments = 0
optional_arguments = 4 # python, suppress, verbatim, doctest
final_argumuent_whitespace = True
option_spec = { 'python': directives.unchanged,
'suppress' : directives.flag,
'verbatim' : directives.flag,
'doctest' : directives.flag,
'okexcept': directives.flag,
'okwarning': directives.flag,
'output_encoding': directives.unchanged_required
}
shell = None
seen_docs = set()
def get_config_options(self):
# contains sphinx configuration variables
config = self.state.document.settings.env.config
# get config variables to set figure output directory
confdir = self.state.document.settings.env.app.confdir
savefig_dir = config.ipython_savefig_dir
source_dir = os.path.dirname(self.state.document.current_source)
if savefig_dir is None:
savefig_dir = config.html_static_path
if isinstance(savefig_dir, list):
savefig_dir = savefig_dir[0] # safe to assume only one path?
savefig_dir = os.path.join(confdir, savefig_dir)
# get regex and prompt stuff
rgxin = config.ipython_rgxin
rgxout = config.ipython_rgxout
promptin = config.ipython_promptin
promptout = config.ipython_promptout
mplbackend = config.ipython_mplbackend
exec_lines = config.ipython_execlines
hold_count = config.ipython_holdcount
return (savefig_dir, source_dir, rgxin, rgxout,
promptin, promptout, mplbackend, exec_lines, hold_count)
def setup(self):
# Get configuration values.
(savefig_dir, source_dir, rgxin, rgxout, promptin, promptout,
mplbackend, exec_lines, hold_count) = self.get_config_options()
if self.shell is None:
# We will be here many times. However, when the
# EmbeddedSphinxShell is created, its interactive shell member
# is the same for each instance.
if mplbackend:
import matplotlib
# Repeated calls to use() will not hurt us since `mplbackend`
# is the same each time.
matplotlib.use(mplbackend)
# Must be called after (potentially) importing matplotlib and
# setting its backend since exec_lines might import pylab.
self.shell = EmbeddedSphinxShell(exec_lines, self.state)
# Store IPython directive to enable better error messages
self.shell.directive = self
# reset the execution count if we haven't processed this doc
#NOTE: this may be borked if there are multiple seen_doc tmp files
#check time stamp?
if not self.state.document.current_source in self.seen_docs:
self.shell.IP.history_manager.reset()
self.shell.IP.execution_count = 1
self.shell.IP.prompt_manager.width = 0
self.seen_docs.add(self.state.document.current_source)
# and attach to shell so we don't have to pass them around
self.shell.rgxin = rgxin
self.shell.rgxout = rgxout
self.shell.promptin = promptin
self.shell.promptout = promptout
self.shell.savefig_dir = savefig_dir
self.shell.source_dir = source_dir
self.shell.hold_count = hold_count
# setup bookmark for saving figures directory
self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir,
store_history=False)
self.shell.clear_cout()
return rgxin, rgxout, promptin, promptout
def teardown(self):
# delete last bookmark
self.shell.process_input_line('bookmark -d ipy_savedir',
store_history=False)
self.shell.clear_cout()
def run(self):
debug = False
#TODO, any reason block_parser can't be a method of embeddable shell
# then we wouldn't have to carry these around
rgxin, rgxout, promptin, promptout = self.setup()
options = self.options
self.shell.is_suppress = 'suppress' in options
self.shell.is_doctest = 'doctest' in options
self.shell.is_verbatim = 'verbatim' in options
self.shell.is_okexcept = 'okexcept' in options
self.shell.is_okwarning = 'okwarning' in options
self.shell.output_encoding = [options.get('output_encoding', 'utf8')]
# handle pure python code
if 'python' in self.arguments:
content = self.content
self.content = self.shell.process_pure_python(content)
parts = '\n'.join(self.content).split('\n\n')
lines = ['.. code-block:: ipython', '']
figures = []
for part in parts:
block = block_parser(part, rgxin, rgxout, promptin, promptout)
if len(block):
rows, figure = self.shell.process_block(block)
for row in rows:
lines.extend([' %s'%line for line in row.split('\n')])
if figure is not None:
figures.append(figure)
for figure in figures:
lines.append('')
lines.extend(figure.split('\n'))
lines.append('')
if len(lines)>2:
if debug:
print('\n'.join(lines))
else:
# This has to do with input, not output. But if we comment
# these lines out, then no IPython code will appear in the
# final output.
self.state_machine.insert_input(
lines, self.state_machine.input_lines.source(0))
# cleanup
self.teardown()
return []
# Enable as a proper Sphinx directive
def setup(app):
setup.app = app
app.add_directive('ipython', IPythonDirective)
app.add_config_value('ipython_savefig_dir', None, 'env')
app.add_config_value('ipython_rgxin',
re.compile('In \[(\d+)\]:\s?(.*)\s*'), 'env')
app.add_config_value('ipython_rgxout',
re.compile('Out\[(\d+)\]:\s?(.*)\s*'), 'env')
app.add_config_value('ipython_promptin', 'In [%d]:', 'env')
app.add_config_value('ipython_promptout', 'Out[%d]:', 'env')
# We could just let matplotlib pick whatever is specified as the default
# backend in the matplotlibrc file, but this would cause issues if the
# backend didn't work in headless environments. For this reason, 'agg'
# is a good default backend choice.
app.add_config_value('ipython_mplbackend', 'agg', 'env')
# If the user sets this config value to `None`, then EmbeddedSphinxShell's
# __init__ method will treat it as [].
execlines = ['import numpy as np', 'import matplotlib.pyplot as plt']
app.add_config_value('ipython_execlines', execlines, 'env')
app.add_config_value('ipython_holdcount', True, 'env')
# Simple smoke test, needs to be converted to a proper automatic test.
def test():
examples = [
r"""
In [9]: pwd
Out[9]: '/home/jdhunter/py4science/book'
In [10]: cd bookdata/
/home/jdhunter/py4science/book/bookdata
In [2]: from pylab import *
In [2]: ion()
In [3]: im = imread('stinkbug.png')
@savefig mystinkbug.png width=4in
In [4]: imshow(im)
Out[4]: <matplotlib.image.AxesImage object at 0x39ea850>
""",
r"""
In [1]: x = 'hello world'
# string methods can be
# used to alter the string
@doctest
In [2]: x.upper()
Out[2]: 'HELLO WORLD'
@verbatim
In [3]: x.st<TAB>
x.startswith x.strip
""",
r"""
In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\
.....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv'
In [131]: print url.split('&')
['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv']
In [60]: import urllib
""",
r"""\
In [133]: import numpy.random
@suppress
In [134]: numpy.random.seed(2358)
@doctest
In [135]: numpy.random.rand(10,2)
Out[135]:
array([[ 0.64524308, 0.59943846],
[ 0.47102322, 0.8715456 ],
[ 0.29370834, 0.74776844],
[ 0.99539577, 0.1313423 ],
[ 0.16250302, 0.21103583],
[ 0.81626524, 0.1312433 ],
[ 0.67338089, 0.72302393],
[ 0.7566368 , 0.07033696],
[ 0.22591016, 0.77731835],
[ 0.0072729 , 0.34273127]])
""",
r"""
In [106]: print x
jdh
In [109]: for i in range(10):
.....: print i
.....:
.....:
0
1
2
3
4
5
6
7
8
9
""",
r"""
In [144]: from pylab import *
In [145]: ion()
# use a semicolon to suppress the output
@savefig test_hist.png width=4in
In [151]: hist(np.random.randn(10000), 100);
@savefig test_plot.png width=4in
In [151]: plot(np.random.randn(10000), 'o');
""",
r"""
# use a semicolon to suppress the output
In [151]: plt.clf()
@savefig plot_simple.png width=4in
In [151]: plot([1,2,3])
@savefig hist_simple.png width=4in
In [151]: hist(np.random.randn(10000), 100);
""",
r"""
# update the current fig
In [151]: ylabel('number')
In [152]: title('normal distribution')
@savefig hist_with_text.png
In [153]: grid(True)
@doctest float
In [154]: 0.1 + 0.2
Out[154]: 0.3
@doctest float
In [155]: np.arange(16).reshape(4,4)
Out[155]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
In [1]: x = np.arange(16, dtype=float).reshape(4,4)
In [2]: x[0,0] = np.inf
In [3]: x[0,1] = np.nan
@doctest float
In [4]: x
Out[4]:
array([[ inf, nan, 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 12., 13., 14., 15.]])
""",
]
# skip local-file depending first example:
examples = examples[1:]
#ipython_directive.DEBUG = True # dbg
#options = dict(suppress=True) # dbg
options = dict()
for example in examples:
content = example.split('\n')
IPythonDirective('debug', arguments=None, options=options,
content=content, lineno=0,
content_offset=None, block_text=None,
state=None, state_machine=None,
)
# Run test suite as a script
if __name__=='__main__':
if not os.path.isdir('_static'):
os.mkdir('_static')
test()
print('All OK? Check figures in _static/')
| apache-2.0 |
synergetics/nest | examples/neuronview/neuronview.py | 13 | 10544 | # -*- coding: utf-8 -*-
#
# neuronview.py
#
# This file is part of NEST.
#
# Copyright (C) 2004 The NEST Initiative
#
# NEST is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# NEST is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with NEST. If not, see <http://www.gnu.org/licenses/>.
import pygtk
pygtk.require('2.0')
import gtk
import pango
import gobject
from matplotlib.figure import Figure
from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas
import matplotlib.gridspec as gridspec
import os
import nest
default_neuron = "iaf_neuron"
default_stimulator = "dc_generator"
class Main() :
def __init__(self):
self._gladefile = "neuronview.glade"
self._builder = gtk.Builder()
self._builder.add_from_file(self._gladefile)
self._builder.connect_signals(self)
self._win = self._builder.get_object("mainwindow")
self._win.resize(900, 700)
box = self._builder.get_object("box5")
self._stimulatordictview = DictView()
self._builder.get_object("scrolledwindow2").add(self._stimulatordictview)
box = self._builder.get_object("box4")
self._neurondictview = DictView()
self._builder.get_object("scrolledwindow3").add(self._neurondictview)
self.populate_comboboxes()
self._figure = Figure(figsize=(5,4), dpi=100)
canvas = FigureCanvas(self._figure)
canvas.set_size_request(200, 250)
canvas.show()
box = self._builder.get_object("box3")
bg_style = box.get_style().bg[gtk.STATE_NORMAL]
gtk_color = (bg_style.red_float, bg_style.green_float, bg_style.blue_float)
self._figure.set_facecolor(gtk_color)
box.pack_start(canvas)
self._win.show()
gtk.main()
def update_figure(self, spikes, potentials):
if nest.GetKernelStatus("time") != 0.0:
self._figure.clear()
# num_figures = (len(spikes) != 0) + (len(potentials) != 0)
# fig_num = 1
gs = gridspec.GridSpec(2, 1, height_ratios=[1, 4])
ax0 = self._figure.add_subplot(gs[0])
ax0.plot(spikes[0]["times"], [1]*len(spikes[0]["times"]), ".")
ax0.set_yticks([])
ax0.set_xticks([])
ax1 = self._figure.add_subplot(gs[1])
ax1.plot(potentials[0]["times"], potentials[0]["V_m"], "r-")
ax1.set_ylabel("$V_m$ (mV)")
ax1.set_xlabel("time (s)")
# plt.tight_layout()
self._figure.canvas.draw()
def filter_statusdict(self, params):
for key in ["archiver_length", "available", "capacity",
"elementsize", "frozen", "global_id",
"instantiations", "is_refractory", "local",
"model", "element_type", "offset", "origin",
"receptor_types", "recordables",
"refractory_input", "rmax", "state", "t_spike",
"thread", "tlast", "tspike", "type_id", "vp",
"ymod"]:
if key in params.keys():
params.pop(key)
def populate_comboboxes(self):
neuronmodels = self._builder.get_object("neuronmodels")
neuronmodelsliststore = neuronmodels.get_model()
stimulatormodels = self._builder.get_object("stimulatormodels")
stimulatormodelsliststore = stimulatormodels.get_model()
neuron_it = None
stimulator_it = None
models = nest.Models("nodes")
models = [x for x in models if x not in ["correlation_detector", "sli_neuron",
"iaf_psc_alpha_norec", "parrot_neuron", "parrot_neuron_ps"]]
for entry in models:
try:
entrytype = nest.GetDefaults(entry)["element_type"]
except:
entrytype = "unknown"
if entrytype == "neuron":
it = neuronmodelsliststore.append([entry])
if entry == default_neuron: neuron_it = it
elif entrytype == "stimulator":
it = stimulatormodelsliststore.append([entry])
if entry == default_stimulator: stimulator_it = it
cell = gtk.CellRendererText()
neuronmodels.pack_start(cell, True)
neuronmodels.add_attribute(cell, 'text', 0)
neuronmodels.set_active_iter(neuron_it)
stimulatormodels.pack_start(cell, True)
stimulatormodels.add_attribute(cell, 'text', 0)
stimulatormodels.set_active_iter(stimulator_it)
docviewcombo = self._builder.get_object("docviewcombo")
docviewcomboliststore = docviewcombo.get_model()
docviewcomboliststore.append(["Stimulating device"])
it = docviewcomboliststore.append(["Neuron"])
docviewcombo.pack_start(cell, True)
docviewcombo.add_attribute(cell, 'text', 0)
docviewcombo.set_active_iter(it)
def get_help_text(self, name):
nest.sli_run("statusdict /prgdocdir get")
docdir = nest.sli_pop()
helptext = "No documentation available"
for subdir in ["cc", "sli"]:
filename = os.path.join(docdir, "help", subdir, name + ".hlp")
if os.path.isfile(filename):
helptext = open(filename, 'r').read()
return helptext
def on_model_selected(self, widget):
liststore = widget.get_model()
model = liststore.get_value(widget.get_active_iter(), 0)
statusdict = nest.GetDefaults(model)
self.filter_statusdict(statusdict)
if widget == self._builder.get_object("neuronmodels"):
self._neurondictview.set_params(statusdict)
if widget == self._builder.get_object("stimulatormodels"):
self._stimulatordictview.set_params(statusdict)
self.on_doc_selected(self._builder.get_object("docviewcombo"))
def on_doc_selected(self, widget):
liststore = widget.get_model()
doc = liststore.get_value(widget.get_active_iter(), 0)
docview = self._builder.get_object("docview")
docbuffer = gtk.TextBuffer()
if doc == "Neuron":
combobox = self._builder.get_object("neuronmodels")
if doc == "Stimulating device":
combobox = self._builder.get_object("stimulatormodels")
liststore = combobox.get_model()
model = liststore.get_value(combobox.get_active_iter(), 0)
docbuffer.set_text(self.get_help_text(model))
docview.set_buffer(docbuffer)
docview.modify_font(pango.FontDescription("monospace 10"))
def on_simulate_clicked(self, widget):
nest.ResetKernel()
combobox = self._builder.get_object("stimulatormodels")
liststore = combobox.get_model()
stimulatormodel = liststore.get_value(combobox.get_active_iter(), 0)
params = self._stimulatordictview.get_params()
stimulator = nest.Create(stimulatormodel, params=params)
combobox = self._builder.get_object("neuronmodels")
liststore = combobox.get_model()
neuronmodel = liststore.get_value(combobox.get_active_iter(), 0)
neuron = nest.Create(neuronmodel, params=self._neurondictview.get_params())
weight = self._builder.get_object("weight").get_value()
delay = self._builder.get_object("delay").get_value()
nest.Connect(stimulator, neuron, weight, delay)
sd = nest.Create("spike_detector", params={"record_to": ["memory"]})
nest.Connect(neuron, sd)
vm = nest.Create("voltmeter", params={"record_to": ["memory"],
"interval": 0.1})
nest.Connect(vm, neuron)
simtime = self._builder.get_object("simtime").get_value()
nest.Simulate(simtime)
self.update_figure(nest.GetStatus(sd, "events"), nest.GetStatus(vm, "events"))
def on_delete_event(self, widget, event):
self.on_quit(widget)
return True
def on_quit(self, project):
self._builder.get_object("mainwindow").hide()
gtk.main_quit()
class DictView(gtk.TreeView) :
def __init__(self, params = None) :
gtk.TreeView.__init__(self)
if params:
self.params = params
self.repopulate()
renderer = gtk.CellRendererText()
column = gtk.TreeViewColumn("Name", renderer, text=1)
self.append_column(column)
renderer = gtk.CellRendererText()
renderer.set_property("mode", gtk.CELL_RENDERER_MODE_EDITABLE)
renderer.set_property("editable", True)
column = gtk.TreeViewColumn("Value", renderer, text=2)
self.append_column(column)
self.set_size_request(200, 150)
renderer.connect("edited", self.check_value)
self.show()
def repopulate(self) :
model = gtk.TreeStore(gobject.TYPE_PYOBJECT, gobject.TYPE_STRING, gobject.TYPE_STRING)
for key in sorted(self.params.keys()) :
pos = model.insert_after(None, None)
data = {"key" : key, "element_type" : type(self.params[key])}
model.set_value(pos, 0, data)
model.set_value(pos, 1, str(key))
model.set_value(pos, 2, str(self.params[key]))
self.set_model(model)
def check_value(self, widget, path, new_text) :
model = self.get_model()
data = model[path][0]
try :
typename = data["element_type"].__name__
new_value = eval("%s('%s')" % (typename, new_text))
if typename == "bool" and new_text.lower() in ["false", "0"] :
new_value = False
self.params[data["key"]] = new_value
model[path][2] = str(new_value)
except ValueError :
old_value = self.params[data["key"]]
model[path][2] = str(old_value)
def get_params(self) :
return self.params
def set_params(self, params) :
self.params = params
self.repopulate()
if __name__ == "__main__" :
Main()
| gpl-2.0 |
vanzaj/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers | Chapter2_MorePyMC/separation_plot.py | 86 | 1494 | # separation plot
# Author: Cameron Davidson-Pilon,2013
# see http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf
import matplotlib.pyplot as plt
import numpy as np
def separation_plot( p, y, **kwargs ):
"""
This function creates a separation plot for logistic and probit classification.
See http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf
p: The proportions/probabilities, can be a nxM matrix which represents M models.
y: the 0-1 response variables.
"""
assert p.shape[0] == y.shape[0], "p.shape[0] != y.shape[0]"
n = p.shape[0]
try:
M = p.shape[1]
except:
p = p.reshape( n, 1 )
M = p.shape[1]
#colors = np.array( ["#fdf2db", "#e44a32"] )
colors_bmh = np.array( ["#eeeeee", "#348ABD"] )
fig = plt.figure( )#figsize = (8, 1.3*M) )
for i in range(M):
ax = fig.add_subplot(M, 1, i+1)
ix = np.argsort( p[:,i] )
#plot the different bars
bars = ax.bar( np.arange(n), np.ones(n), width=1.,
color = colors_bmh[ y[ix].astype(int) ],
edgecolor = 'none')
ax.plot( np.arange(n+1), np.append(p[ix,i], p[ix,i][-1]), "k",
linewidth = 1.,drawstyle="steps-post" )
#create expected value bar.
ax.vlines( [(1-p[ix,i]).sum()], [0], [1] )
#ax.grid(False)
#ax.axis('off')
plt.xlim( 0, n)
plt.tight_layout()
return
| mit |
stefanv/brainx | doc/sphinxext/inheritance_diagram.py | 6 | 13678 | """
Defines a docutils directive for inserting inheritance diagrams.
Provide the directive with one or more classes or modules (separated
by whitespace). For modules, all of the classes in that module will
be used.
Example::
Given the following classes:
class A: pass
class B(A): pass
class C(A): pass
class D(B, C): pass
class E(B): pass
.. inheritance-diagram: D E
Produces a graph like the following:
A
/ \
B C
/ \ /
E D
The graph is inserted as a PNG+image map into HTML and a PDF in
LaTeX.
"""
import inspect
import os
import re
import subprocess
try:
from hashlib import md5
except ImportError:
from md5 import md5
from docutils.nodes import Body, Element
from docutils.parsers.rst import directives
from sphinx.roles import xfileref_role
def my_import(name):
"""Module importer - taken from the python documentation.
This function allows importing names with dots in them."""
mod = __import__(name)
components = name.split('.')
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
class DotException(Exception):
pass
class InheritanceGraph(object):
"""
Given a list of classes, determines the set of classes that
they inherit from all the way to the root "object", and then
is able to generate a graphviz dot graph from them.
"""
def __init__(self, class_names, show_builtins=False):
"""
*class_names* is a list of child classes to show bases from.
If *show_builtins* is True, then Python builtins will be shown
in the graph.
"""
self.class_names = class_names
self.classes = self._import_classes(class_names)
self.all_classes = self._all_classes(self.classes)
if len(self.all_classes) == 0:
raise ValueError("No classes found for inheritance diagram")
self.show_builtins = show_builtins
py_sig_re = re.compile(r'''^([\w.]*\.)? # class names
(\w+) \s* $ # optionally arguments
''', re.VERBOSE)
def _import_class_or_module(self, name):
"""
Import a class using its fully-qualified *name*.
"""
try:
path, base = self.py_sig_re.match(name).groups()
except:
raise ValueError(
"Invalid class or module '%s' specified for inheritance diagram" % name)
fullname = (path or '') + base
path = (path and path.rstrip('.'))
if not path:
path = base
try:
module = __import__(path, None, None, [])
# We must do an import of the fully qualified name. Otherwise if a
# subpackage 'a.b' is requested where 'import a' does NOT provide
# 'a.b' automatically, then 'a.b' will not be found below. This
# second call will force the equivalent of 'import a.b' to happen
# after the top-level import above.
my_import(fullname)
except ImportError:
raise ValueError(
"Could not import class or module '%s' specified for inheritance diagram" % name)
try:
todoc = module
for comp in fullname.split('.')[1:]:
todoc = getattr(todoc, comp)
except AttributeError:
raise ValueError(
"Could not find class or module '%s' specified for inheritance diagram" % name)
# If a class, just return it
if inspect.isclass(todoc):
return [todoc]
elif inspect.ismodule(todoc):
classes = []
for cls in todoc.__dict__.values():
if inspect.isclass(cls) and cls.__module__ == todoc.__name__:
classes.append(cls)
return classes
print 'todoc?',todoc
raise ValueError(
"'%s' does not resolve to a class or module" % name)
def _import_classes(self, class_names):
"""
Import a list of classes.
"""
classes = []
for name in class_names:
classes.extend(self._import_class_or_module(name))
return classes
def _all_classes(self, classes):
"""
Return a list of all classes that are ancestors of *classes*.
"""
all_classes = {}
def recurse(cls):
all_classes[cls] = None
for c in cls.__bases__:
if c not in all_classes:
recurse(c)
for cls in classes:
recurse(cls)
return all_classes.keys()
def class_name(self, cls, parts=0):
"""
Given a class object, return a fully-qualified name. This
works for things I've tested in matplotlib so far, but may not
be completely general.
"""
module = cls.__module__
if module == '__builtin__':
fullname = cls.__name__
else:
fullname = "%s.%s" % (module, cls.__name__)
if parts == 0:
return fullname
name_parts = fullname.split('.')
return '.'.join(name_parts[-parts:])
def get_all_class_names(self):
"""
Get all of the class names involved in the graph.
"""
return [self.class_name(x) for x in self.all_classes]
# These are the default options for graphviz
default_graph_options = {
"rankdir": "LR",
"size": '"8.0, 12.0"'
}
default_node_options = {
"shape": "box",
"fontsize": 10,
"height": 0.25,
"fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",
"style": '"setlinewidth(0.5)"'
}
default_edge_options = {
"arrowsize": 0.5,
"style": '"setlinewidth(0.5)"'
}
def _format_node_options(self, options):
return ','.join(["%s=%s" % x for x in options.items()])
def _format_graph_options(self, options):
return ''.join(["%s=%s;\n" % x for x in options.items()])
def generate_dot(self, fd, name, parts=0, urls={},
graph_options={}, node_options={},
edge_options={}):
"""
Generate a graphviz dot graph from the classes that
were passed in to __init__.
*fd* is a Python file-like object to write to.
*name* is the name of the graph
*urls* is a dictionary mapping class names to http urls
*graph_options*, *node_options*, *edge_options* are
dictionaries containing key/value pairs to pass on as graphviz
properties.
"""
g_options = self.default_graph_options.copy()
g_options.update(graph_options)
n_options = self.default_node_options.copy()
n_options.update(node_options)
e_options = self.default_edge_options.copy()
e_options.update(edge_options)
fd.write('digraph %s {\n' % name)
fd.write(self._format_graph_options(g_options))
for cls in self.all_classes:
if not self.show_builtins and cls in __builtins__.values():
continue
name = self.class_name(cls, parts)
# Write the node
this_node_options = n_options.copy()
url = urls.get(self.class_name(cls))
if url is not None:
this_node_options['URL'] = '"%s"' % url
fd.write(' "%s" [%s];\n' %
(name, self._format_node_options(this_node_options)))
# Write the edges
for base in cls.__bases__:
if not self.show_builtins and base in __builtins__.values():
continue
base_name = self.class_name(base, parts)
fd.write(' "%s" -> "%s" [%s];\n' %
(base_name, name,
self._format_node_options(e_options)))
fd.write('}\n')
def run_dot(self, args, name, parts=0, urls={},
graph_options={}, node_options={}, edge_options={}):
"""
Run graphviz 'dot' over this graph, returning whatever 'dot'
writes to stdout.
*args* will be passed along as commandline arguments.
*name* is the name of the graph
*urls* is a dictionary mapping class names to http urls
Raises DotException for any of the many os and
installation-related errors that may occur.
"""
try:
dot = subprocess.Popen(['dot'] + list(args),
stdin=subprocess.PIPE, stdout=subprocess.PIPE,
close_fds=True)
except OSError:
raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?")
except ValueError:
raise DotException("'dot' called with invalid arguments")
except:
raise DotException("Unexpected error calling 'dot'")
self.generate_dot(dot.stdin, name, parts, urls, graph_options,
node_options, edge_options)
dot.stdin.close()
result = dot.stdout.read()
returncode = dot.wait()
if returncode != 0:
raise DotException("'dot' returned the errorcode %d" % returncode)
return result
class inheritance_diagram(Body, Element):
"""
A docutils node to use as a placeholder for the inheritance
diagram.
"""
pass
def inheritance_diagram_directive(name, arguments, options, content, lineno,
content_offset, block_text, state,
state_machine):
"""
Run when the inheritance_diagram directive is first encountered.
"""
node = inheritance_diagram()
class_names = arguments
# Create a graph starting with the list of classes
graph = InheritanceGraph(class_names)
# Create xref nodes for each target of the graph's image map and
# add them to the doc tree so that Sphinx can resolve the
# references to real URLs later. These nodes will eventually be
# removed from the doctree after we're done with them.
for name in graph.get_all_class_names():
refnodes, x = xfileref_role(
'class', ':class:`%s`' % name, name, 0, state)
node.extend(refnodes)
# Store the graph object so we can use it to generate the
# dot file later
node['graph'] = graph
# Store the original content for use as a hash
node['parts'] = options.get('parts', 0)
node['content'] = " ".join(class_names)
return [node]
def get_graph_hash(node):
return md5(node['content'] + str(node['parts'])).hexdigest()[-10:]
def html_output_graph(self, node):
"""
Output the graph for HTML. This will insert a PNG with clickable
image map.
"""
graph = node['graph']
parts = node['parts']
graph_hash = get_graph_hash(node)
name = "inheritance%s" % graph_hash
path = '_images'
dest_path = os.path.join(setup.app.builder.outdir, path)
if not os.path.exists(dest_path):
os.makedirs(dest_path)
png_path = os.path.join(dest_path, name + ".png")
path = setup.app.builder.imgpath
# Create a mapping from fully-qualified class names to URLs.
urls = {}
for child in node:
if child.get('refuri') is not None:
urls[child['reftitle']] = child.get('refuri')
elif child.get('refid') is not None:
urls[child['reftitle']] = '#' + child.get('refid')
# These arguments to dot will save a PNG file to disk and write
# an HTML image map to stdout.
image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'],
name, parts, urls)
return ('<img src="%s/%s.png" usemap="#%s" class="inheritance"/>%s' %
(path, name, name, image_map))
def latex_output_graph(self, node):
"""
Output the graph for LaTeX. This will insert a PDF.
"""
graph = node['graph']
parts = node['parts']
graph_hash = get_graph_hash(node)
name = "inheritance%s" % graph_hash
dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images'))
if not os.path.exists(dest_path):
os.makedirs(dest_path)
pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf"))
graph.run_dot(['-Tpdf', '-o%s' % pdf_path],
name, parts, graph_options={'size': '"6.0,6.0"'})
return '\n\\includegraphics{%s}\n\n' % pdf_path
def visit_inheritance_diagram(inner_func):
"""
This is just a wrapper around html/latex_output_graph to make it
easier to handle errors and insert warnings.
"""
def visitor(self, node):
try:
content = inner_func(self, node)
except DotException, e:
# Insert the exception as a warning in the document
warning = self.document.reporter.warning(str(e), line=node.line)
warning.parent = node
node.children = [warning]
else:
source = self.document.attributes['source']
self.body.append(content)
node.children = []
return visitor
def do_nothing(self, node):
pass
def setup(app):
setup.app = app
setup.confdir = app.confdir
app.add_node(
inheritance_diagram,
latex=(visit_inheritance_diagram(latex_output_graph), do_nothing),
html=(visit_inheritance_diagram(html_output_graph), do_nothing))
app.add_directive(
'inheritance-diagram', inheritance_diagram_directive,
False, (1, 100, 0), parts = directives.nonnegative_int)
| bsd-3-clause |
moritzschaefer/kickercam | src/kickercam/labeling/interpolate.py | 1 | 1231 | #!/usr/bin/env python3
import argparse
import pandas as pd
import numpy as np
import sys
def interpolate(df):
new_index = pd.Index(range(df.index.max() + 1))
interpolate_df = pd.DataFrame(index=new_index).join(df)
for i, index in enumerate(df.index):
try:
index2 = df.index[i+1]
except:
break
if isinstance(df.loc[index, 'x'], np.int64) and df.loc[index, 'x'] >= 0 and \
isinstance(df.loc[index2, 'x'], np.int64) and df.loc[index2, 'x'] >= 0:
interpolate_df.loc[index:index2, 'x'] = np.linspace(df.loc[index, 'x'], df.loc[index2, 'x'],
num=1+index2-index, endpoint=True)
interpolate_df.loc[index:index2, 'y'] = np.linspace(df.loc[index, 'y'], df.loc[index2, 'y'],
num=1+index2-index, endpoint=True)
return interpolate_df.fillna(-1)
if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument('input', type=str)
ap.add_argument('output', type=str)
args = ap.parse_args(sys.argv[1:])
df = pd.read_csv(args.input, index_col=0)
interpolate(df).to_csv(args.output) | gpl-3.0 |
kanchenxi04/vnpy-app | vn.trader/ctaAlgo/strategy_TripleMa_v0.3.py | 1 | 32295 | # encoding: UTF-8
# 首先写系统内置模块
from datetime import datetime, timedelta, date
from time import sleep
# 其次,导入vnpy的基础模块
import sys
sys.path.append('C:\\vnpy-master\\vnpy-master\\vn.trader')
from vtConstant import EMPTY_STRING, EMPTY_INT, DIRECTION_LONG, DIRECTION_SHORT, OFFSET_OPEN, STATUS_CANCELLED, EMPTY_FLOAT
from utilSinaClient import UtilSinaClient
# 然后是自己编写的模块
from ctaTemplate import *
from ctaBase import *
from ctaLineBar import *
from ctaPolicy import *
class Strategy_TripleMa(CtaTemplate):
"""螺纹钢、5分钟级别、三均线策略
策略:
10,20,120均线,120均线做多空过滤
MA120之上
MA10 上穿 MA20,金叉,做多
MA10 下穿 MA20,死叉,平多
MA120之下
MA10 下穿 MA20,死叉,做空
MA10 上穿 MA20,金叉,平空
更新记录
v0.1 初始版本,带有1分钟后撤单逻辑
v0.2 优化开仓条件
v0.3 优化平仓,设定移动止损
"""
className = 'Strategy_TripleMa'
author = u'李来佳'
# 策略在外部设置的参数
inputSS = 1 # 参数SS,下单,范围是1~100,步长为1,默认=1,
minDiff = 1 # 商品的最小交易单位
atrLength = 20 # 平均波动周期 ATR Length 20个5分钟的平均波动
# ----------------------------------------------------------------------
def __init__(self, ctaEngine, setting=None):
"""Constructor"""
super(Strategy_TripleMa, self).__init__(ctaEngine, setting)
# 增加监控参数项目
self.paramList.append('inputSS')
self.paramList.append('minDiff')
# 增加监控变量项目
self.varList.append('pos') # 仓位
self.varList.append('entrust') # 是否正在委托
self.curDateTime = None # 当前Tick时间
self.curTick = None # 最新的tick
self.lastOrderTime = None # 上一次委托时间
self.cancelSeconds = 60 # 撤单时间(秒)
# 定义日内的交易窗口
self.openWindow = False # 开市窗口
self.tradeWindow = False # 交易窗口
self.closeWindow = False # 收市平仓窗口
self.inited = False # 是否完成了策略初始化
self.backtesting = False # 是否回测
self.lineM5 = None # 5分钟K线
# 创建一个策略规则
self.policy = CtaPolicy()
self.atr = 10 # 平均波动
self.highPriceInLong = EMPTY_FLOAT # 成交后,最高价格
self.lowPriceInShort = EMPTY_FLOAT # 成交后,最低价格
if setting:
# 根据配置文件更新参数
self.setParam(setting)
# 创建的M5 K线
lineM5Setting = {}
lineM5Setting['name'] = u'M5' # k线名称
lineM5Setting['barTimeInterval'] = 60 * 5 # K线的Bar时长
lineM5Setting['inputMa1Len'] = 10 # 第1条均线
lineM5Setting['inputMa2Len'] = 20 # 第2条均线
lineM5Setting['inputMa3Len'] = 120 # 第3条均线
lineM5Setting['inputAtr1Len'] = self.atrLength # ATR
lineM5Setting['inputPreLen'] = 10 # 前高/前低
lineM5Setting['minDiff'] = self.minDiff
lineM5Setting['shortSymbol'] = self.shortSymbol
self.lineM5 = CtaLineBar(self, self.onBarM5, lineM5Setting)
try:
mode = setting['mode']
if mode != EMPTY_STRING:
self.lineM5.setMode(setting['mode'])
except KeyError:
self.lineM5.setMode(self.lineM5.TICK_MODE)
self.onInit()
# ----------------------------------------------------------------------
def onInit(self, force=False):
"""初始化 """
if force:
self.writeCtaLog(u'策略强制初始化')
self.inited = False
self.trading = False # 控制是否启动交易
else:
self.writeCtaLog(u'策略初始化')
if self.inited:
self.writeCtaLog(u'已经初始化过,不再执行')
return
self.pos = EMPTY_INT # 初始化持仓
self.entrust = EMPTY_INT # 初始化委托状态
if not self.backtesting:
# 这里需要加载前置数据哦。
if not self.__initDataFromSina():
return
self.inited = True # 更新初始化标识
self.trading = True # 启动交易
self.putEvent()
self.writeCtaLog(u'策略初始化完成')
def __initDataFromSina(self):
"""从sina初始化5分钟数据"""
sina = UtilSinaClient(self)
ret = sina.getMinBars(symbol=self.symbol, minute=5, callback=self.lineM5.addBar)
if not ret:
self.writeCtaLog(u'获取M5数据失败')
return False
return True
def onStart(self):
"""启动策略(必须由用户继承实现)"""
self.writeCtaLog(u'启动')
# ----------------------------------------------------------------------
def onStop(self):
"""停止策略(必须由用户继承实现)"""
self.uncompletedOrders.clear()
self.pos = EMPTY_INT
self.entrust = EMPTY_INT
self.writeCtaLog(u'停止')
self.putEvent()
# ----------------------------------------------------------------------
def onTrade(self, trade):
"""交易更新"""
self.writeCtaLog(u'{0},OnTrade(),当前持仓:{1} '.format(self.curDateTime, self.pos))
# ----------------------------------------------------------------------
def onOrder(self, order):
"""报单更新"""
self.writeCtaLog(
u'OnOrder()报单更新,orderID:{0},{1},totalVol:{2},tradedVol:{3},offset:{4},price:{5},direction:{6},status:{7}'
.format(order.orderID, order.vtSymbol, order.totalVolume, order.tradedVolume,
order.offset, order.price, order.direction, order.status))
# 委托单主键,vnpy使用 "gateway.orderid" 的组合
orderkey = order.gatewayName + u'.' + order.orderID
if orderkey in self.uncompletedOrders:
if order.totalVolume == order.tradedVolume:
# 开仓,平仓委托单全部成交
# 平空仓完成(cover)
if self.uncompletedOrders[orderkey]['DIRECTION'] == DIRECTION_LONG and order.offset != OFFSET_OPEN:
self.writeCtaLog(u'平空仓完成')
# 更新仓位
self.pos = EMPTY_INT
# 平多仓完成(sell)
if self.uncompletedOrders[orderkey]['DIRECTION'] == DIRECTION_SHORT and order.offset != OFFSET_OPEN:
self.writeCtaLog(u'平多仓完成')
# 更新仓位
self.pos = EMPTY_INT
# 开多仓完成
if self.uncompletedOrders[orderkey]['DIRECTION'] == DIRECTION_LONG and order.offset == OFFSET_OPEN:
self.writeCtaLog(u'开多仓完成')
# 更新仓位
self.pos = order.tradedVolume
# 开空仓完成
if self.uncompletedOrders[orderkey]['DIRECTION'] == DIRECTION_SHORT and order.offset == OFFSET_OPEN:
self.writeCtaLog(u'开空仓完成')
self.pos = 0 - order.tradedVolume
del self.uncompletedOrders[orderkey]
if len(self.uncompletedOrders) == 0:
self.entrust = 0
self.lastOrderTime = None
if self.pos == 0:
self.highPriceInLong = EMPTY_FLOAT
self.lowPriceInShort = EMPTY_FLOAT
elif order.tradedVolume > 0 and not order.totalVolume == order.tradedVolume and order.offset != OFFSET_OPEN:
# 平仓委托单部分成交
pass
elif order.offset == OFFSET_OPEN and order.status == STATUS_CANCELLED:
# 开仓委托单被撤销
self.entrust = 0
pass
else:
self.writeCtaLog(u'OnOrder()委托单返回,total:{0},traded:{1}'
.format(order.totalVolume, order.tradedVolume, ))
self.putEvent() # 更新监控事件
# ----------------------------------------------------------------------
def onStopOrder(self, orderRef):
"""停止单更新"""
self.writeCtaLog(u'{0},停止单触发,orderRef:{1}'.format(self.curDateTime, orderRef))
pass
# ----------------------------------------------------------------------
def onTick(self, tick):
"""行情更新
:type tick: object
"""
self.curTick = tick
if (tick.datetime.hour >= 3 and tick.datetime.hour <= 8) or (
tick.datetime.hour >= 16 and tick.datetime.hour <= 20):
self.writeCtaLog(u'休市/集合竞价排名时数据不处理')
return
# 更新策略执行的时间(用于回测时记录发生的时间)
self.curDateTime = tick.datetime
# 2、计算交易时间和平仓时间
self.__timeWindow(self.curDateTime)
# 推送Tick到lineM5
self.lineM5.onTick(tick)
# 首先检查是否是实盘运行还是数据预处理阶段
if not (self.inited and len(self.lineM5.lineMa3) > 0):
return
# tick级别的开平仓逻辑
if self.pos != 0:
# policy 跟随止损
if self.policy.exitOnLastRtnPips > 0:
if self.pos > 0 and self.entrust != 1 \
and tick.lastPrice < (self.highPriceInLong - self.policy.exitOnLastRtnPips * self.minDiff):
self.writeCtaLog(
u'{0},onTick跟随止损,平仓多单{1}手,价格:{2}'.format(tick.datetime, self.inputSS, tick.lastPrice))
orderid = self.sell(price=tick.lastPrice, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
if self.pos < 0 and self.entrust != -1 \
and tick.lastPrice > (self.lowPriceInShort + self.policy.exitOnLastRtnPips * self.minDiff):
self.writeCtaLog(
u'{0},onTick跟随止损,平仓空单{1}手,价格:{2}'.format(tick.datetime, self.inputSS, tick.lastPrice))
orderid = self.cover(price=tick.lastPrice, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
# 固定止损
if self.policy.exitOnStopPrice > 0:
if self.pos > 0 and self.entrust != 1 \
and tick.lastPrice < self.policy.exitOnStopPrice:
self.writeCtaLog(
u'{0},onTick固定止损,平仓多单{1}手,价格:{2}'.format(tick.datetime, self.inputSS, tick.lastPrice))
orderid = self.sell(price=tick.lastPrice, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
if self.pos < 0 and self.entrust != -1 \
and tick.lastPrice > self.policy.exitOnStopPrice:
self.writeCtaLog(
u'{0},onTick固定止损,平仓空单{1}手,价格:{2}'.format(tick.datetime, self.inputSS, tick.lastPrice))
orderid = self.cover(price=tick.lastPrice, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
# ----------------------------------------------------------------------
def onBar(self, bar):
"""分钟K线数据更新(仅用于回测时,从策略外部调用)"""
# 更新策略执行的时间(用于回测时记录发生的时间)
# 回测数据传送的bar.datetime,为bar的开始时间,所以,到达策略时,当前时间为bar的结束时间
self.curDateTime = bar.datetime + timedelta(seconds=self.lineM5.barTimeInterval)
# 2、计算交易时间和平仓时间
self.__timeWindow(bar.datetime)
# 推送tick到15分钟K线
self.lineM5.addBar(bar)
# 4、交易逻辑
# 首先检查是否是实盘运行还是数据预处理阶段
if not self.inited:
if len(self.lineM5.lineBar) > 120 + 5:
self.inited = True
else:
return
def onBarM5(self, bar):
""" 分钟K线数据更新,实盘时,由self.lineM5的回调"""
# 调用lineM5的显示bar内容
self.writeCtaLog(self.lineM5.displayLastBar())
# 未初始化完成
if not self.inited:
if len(self.lineM5.lineBar) > 120 + 5:
self.inited = True
else:
return
if self.lineM5.mode == self.lineM5.TICK_MODE:
idx = 2
else:
idx = 1
# 更新ATR
if self.lineM5.lineAtr1[-1] > 2:
self.atr = max(self.lineM5.lineAtr1[-1], 5)
# 2倍的ATR作为跟随止损,盈利后最后开仓的回调点数exitOnLastRtnPips
self.policy.exitOnLastRtnPips = int((self.atr * 2) / self.minDiff) + 1
# 更新最高价/最低价
if self.backtesting:
# 持有多仓时,更新最高价
if self.pos > 0:
if bar.high > self.highPriceInLong:
self.highPriceInLong = bar.high
# 持有空仓时,更新最低价
if self.pos < 0:
if bar.low < self.lowPriceInShort:
self.lowPriceInShort = bar.low
# 执行撤单逻辑
self.__cancelLogic(dt=self.curDateTime)
if len(self.lineM5.lineMa3) > 5:
# 取前五个第三条均线的均值
ma5_Ma120 = ta.MA(numpy.array(self.lineM5.lineMa3, dtype=float), 5)[-1]
else:
ma5_Ma120 = self.lineM5.lineMa3[-1]
ma5_Ma10 = ta.MA(numpy.array(self.lineM5.lineMa1, dtype=float), 5)[-1]
# 如果未持仓,检查是否符合开仓逻辑
if self.pos == 0:
# MA10 上穿MA20, MA10 > MA120, bar.close > MA120, MA(MA120)< MA120
if self.lineM5.lineMa1[-1 - idx] < self.lineM5.lineMa2[-1 - idx] \
and self.lineM5.lineMa1[0 - idx] > self.lineM5.lineMa2[0 - idx] \
and self.lineM5.lineMa1[0 - idx] > self.lineM5.lineMa3[0 - idx] \
and bar.close > self.lineM5.lineMa3[-1] \
and ma5_Ma120 < self.lineM5.lineMa3[-1] \
and self.lineM5.lineMa1[-1] > ma5_Ma10:
self.writeCtaLog(u'{0},开仓多单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.buy(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
# 更新开仓价格,开仓价格为bar的收盘价,entryPrice是开仓价格
self.policy.entryPrice = bar.close
# 多仓,设置前低为止损价,设定固定止损价格为前低
self.policy.exitOnStopPrice = self.lineM5.preLow[-1]
return
# MA10 下穿MA20, MA10 < MA120, bar.close < MA120, MA(MA120) > MA120
if self.lineM5.lineMa1[-1 - idx] > self.lineM5.lineMa2[-1 - idx] \
and self.lineM5.lineMa1[0 - idx] < self.lineM5.lineMa2[0 - idx] \
and self.lineM5.lineMa1[0 - idx] < self.lineM5.lineMa3[0 - idx] \
and bar.close < self.lineM5.lineMa3[-1] \
and ma5_Ma120 > self.lineM5.lineMa3[-1] \
and self.lineM5.lineMa1[-1] < ma5_Ma10:
self.writeCtaLog(u'{0},开仓空单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.short(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
# 更新开仓价格
self.policy.entryPrice = bar.close
# 更新最低价
self.lowPriceInShort = bar.close
# 做空,设置前高为止损价,exitOnStopPrice固定止损价格
self.policy.exitOnStopPrice = self.lineM5.preHigh[-1]
return
# 持仓,检查是否满足平仓条件
else:
# MA10下穿MA20,多单离场
if self.lineM5.lineMa1[-1] < self.lineM5.lineMa2[-1] \
and self.pos > 0 and self.entrust != -1:
self.writeCtaLog(u'{0},平仓多单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.sell(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
# MA10上穿MA20,空离场
if self.lineM5.lineMa1[-1] > self.lineM5.lineMa2[-1] \
and self.pos < 0 and self.entrust != 1:
self.writeCtaLog(u'{0},平仓空单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.cover(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
# policy 跟随止损
if self.policy.exitOnLastRtnPips > 0: # 盈利后最后开仓的回调点数大于0
# 做多
if self.pos > 0 and self.entrust != 1 \
and bar.close < (self.highPriceInLong - self.policy.exitOnLastRtnPips * self.minDiff):
self.writeCtaLog(u'{0},跟随止损,平仓多单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.sell(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
# 做空
if self.pos < 0 and self.entrust != -1 \
and bar.close > (self.lowPriceInShort + self.policy.exitOnLastRtnPips * self.minDiff):
self.writeCtaLog(u'{0},跟随止损,平仓空单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.cover(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
# 固定止损
if self.policy.exitOnStopPrice > 0: #
if self.pos > 0 and self.entrust != 1 \
and bar.close < self.policy.exitOnStopPrice:
self.writeCtaLog(u'{0},固定止损,平仓多单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.sell(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
if self.pos < 0 and self.entrust != -1 \
and bar.close > self.policy.exitOnStopPrice:
self.writeCtaLog(u'{0},固定止损,平仓空单{1}手,价格:{2}'.format(bar.datetime, self.inputSS, bar.close))
orderid = self.cover(price=bar.close, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return
# 执行收盘前平仓检查
self.__dailyCloseCheck(bar)
# ----------------------------------------------------------------------
def __cancelLogic(self, dt, force=False):
"撤单逻辑"""
if len(self.uncompletedOrders) < 1:
return
if not self.lastOrderTime:
self.writeCtaLog(u'异常,上一交易时间为None')
return
# 平仓检查时间比开开仓时间需要短一倍
if (self.pos >= 0 and self.entrust == 1) \
or (self.pos <= 0 and self.entrust == -1):
i = 1
else:
i = 1 # 原来是2,暂时取消
canceled = False
if ((dt - self.lastOrderTime).seconds > self.cancelSeconds / i) \
or force: # 超过设置的时间还未成交
for order in self.uncompletedOrders.keys():
self.writeCtaLog(u'{0}超时{1}秒未成交,取消委托单:{2}'.format(dt, (dt - self.lastOrderTime).seconds, order))
self.cancelOrder(str(order))
canceled = True
# 取消未完成的订单
self.uncompletedOrders.clear()
if canceled:
self.entrust = 0
self.policy.entryPrice = 0
else:
self.writeCtaLog(u'异常:没有撤单')
def __dailyCloseCheck(self, bar):
"""每天收盘前检查,如果是亏损单,则平掉"""
if self.pos == 0 and self.entrust == 0:
return False
if bar.time not in ['14:45:00', '14:50:00', '14:55:00', '22:45:00', '22:50:00', '22:55:00']:
return False
# 撤销未成交的订单
if len(self.uncompletedOrders) > 0:
for order in self.uncompletedOrders.keys():
self.writeCtaLog(u'{0},收盘前15分钟,仍未成交,取消委托单:{1}'.format(bar.datetime, order))
self.cancelOrder(str(order))
self.uncompletedOrders.clear()
self.entrust = 0
# 强制平仓
if self.pos > 0 and bar.close < self.policy.entryPrice + self.atr: # 当盈利还不是很多的时候就会强制它平仓
self.writeCtaLog(u'强制日内平亏损多仓')
# 降低两个滑点
orderid = self.sell(price=bar.close - 2 * self.minDiff, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间
self.lastOrderTime = self.curDateTime
return True
if self.pos < 0 and bar.close > self.policy.entryPrice - self.atr:
self.writeCtaLog(u'强制日内平亏损空仓')
orderid = self.cover(price=bar.close + 2 * self.minDiff, volume=self.inputSS, orderTime=self.curDateTime)
if orderid:
# 更新下单时间(为了定时撤单)
self.lastOrderTime = self.curDateTime
return True
return True
def __timeWindow(self, dt):
"""交易与平仓窗口"""
# 交易窗口 避开早盘和夜盘的前5分钟,防止隔夜跳空。
self.closeWindow = False
self.tradeWindow = False
self.openWindow = False
# 初始化当日的首次交易
# if (tick.datetime.hour == 9 or tick.datetime.hour == 21) and tick.datetime.minute == 0 and tick.datetime.second ==0:
# self.firstTrade = True
# 开市期,波动较大,用于判断止损止盈,或开仓
if (dt.hour == 9 or dt.hour == 21) and dt.minute < 2:
self.openWindow = True
# 日盘
if dt.hour == 9 and dt.minute >= 0:
self.tradeWindow = True
return
if dt.hour == 10:
if dt.minute <= 15 or dt.minute >= 30:
self.tradeWindow = True
return
if dt.hour == 11 and dt.minute <= 30:
self.tradeWindow = True
return
if dt.hour == 13 and dt.minute >= 30:
self.tradeWindow = True
return
if dt.hour == 14:
if dt.minute < 59:
self.tradeWindow = True
return
if dt.minute == 59: # 日盘平仓
self.closeWindow = True
return
# 夜盘
if dt.hour == 21 and dt.minute >= 0:
self.tradeWindow = True
return
# 上期 贵金属, 次日凌晨2:30
if self.shortSymbol in NIGHT_MARKET_SQ1:
if dt.hour == 22 or dt.hour == 23 or dt.hour == 0 or dt.hour == 1:
self.tradeWindow = True
return
if dt.hour == 2:
if dt.minute < 29: # 收市前29分钟
self.tradeWindow = True
return
if dt.minute == 29: # 夜盘平仓
self.closeWindow = True
return
return
# 上期 有色金属,黑色金属,沥青 次日01:00
if self.shortSymbol in NIGHT_MARKET_SQ2:
if dt.hour == 22 or dt.hour == 23:
self.tradeWindow = True
return
if dt.hour == 0:
if dt.minute < 59: # 收市前29分钟
self.tradeWindow = True
return
if dt.minute == 59: # 夜盘平仓
self.closeWindow = True
return
return
# 上期 天然橡胶 23:00
if self.shortSymbol in NIGHT_MARKET_SQ3:
if dt.hour == 22:
if dt.minute < 59: # 收市前1分钟
self.tradeWindow = True
return
if dt.minute == 59: # 夜盘平仓
self.closeWindow = True
return
# 郑商、大连 23:30
if self.shortSymbol in NIGHT_MARKET_ZZ or self.shortSymbol in NIGHT_MARKET_DL:
if dt.hour == 22:
self.tradeWindow = True
return
if dt.hour == 23:
if dt.minute < 29: # 收市前1分钟
self.tradeWindow = True
return
if dt.minute == 29 and dt.second > 30: # 夜盘平仓
self.closeWindow = True
return
return
# ----------------------------------------------------------------------
def strToTime(self, t, ms):
"""从字符串时间转化为time格式的时间"""
hh, mm, ss = t.split(':')
tt = datetime.time(int(hh), int(mm), int(ss), microsecond=ms)
return tt
# ----------------------------------------------------------------------
def saveData(self, id):
"""保存过程数据"""
# 保存K线
if not self.backtesting:
return
def testRbByTick():
# 创建回测引擎
engine = BacktestingEngine()
# 设置引擎的回测模式为Tick
engine.setBacktestingMode(engine.TICK_MODE)
# 设置回测用的数据起始日期
engine.setStartDate('20160101')
# 设置回测用的数据结束日期
engine.setEndDate('20160330')
# engine.connectMysql()
engine.setDatabase(dbName='stockcn', symbol='rb')
# 设置产品相关参数
engine.setSlippage(0) # 1跳(0.1)2跳0.2
engine.setRate(float(0.0001)) # 万1
engine.setSize(10) # 合约大小
settings = {}
settings['shortSymbol'] = 'RB'
settings['name'] = 'TripleMa'
settings['mode'] = 'tick'
settings['backtesting'] = True
# 在引擎中创建策略对象
engine.initStrategy(Strategy_TripleMa, setting=settings)
# 使用简单复利模式计算
engine.usageCompounding = False # True时,只针对FINAL_MODE有效
# 启用实时计算净值模式REALTIME_MODE / FINAL_MODE 回测结束时统一计算模式
engine.calculateMode = engine.REALTIME_MODE
engine.initCapital = 100000 # 设置期初资金
engine.percentLimit = 30 # 设置资金使用上限比例(%)
engine.barTimeInterval = 60 * 5 # bar的周期秒数,用于csv文件自动减时间
engine.fixCommission = 10 # 固定交易费用(每次开平仓收费)
# 开始跑回测
engine.runBacktestingWithMysql()
# 显示回测结果
engine.showBacktestingResult()
def testRbByBar():
# 创建回测引擎
engine = BacktestingEngine()
# 设置引擎的回测模式为Tick
engine.setBacktestingMode(engine.BAR_MODE)
# 设置回测用的数据起始日期
engine.setStartDate('20100101')
# 设置回测用的数据结束日期
engine.setEndDate('20161231')
engine.setDatabase(dbName='stockcn', symbol='rb')
# 设置产品相关参数
engine.setSlippage(0) # 1跳(0.1)2跳0.2
engine.setRate(float(0.0001)) # 万1
engine.setSize(10) # 合约大小
settings = {}
settings['shortSymbol'] = 'RB'
settings['name'] = 'TripleMa'
settings['mode'] = 'bar'
settings['backtesting'] = True
settings['percentLimit'] = 30
# 在引擎中创建策略对象
engine.initStrategy(Strategy_TripleMa, setting=settings)
# 使用简单复利模式计算
engine.usageCompounding = False # True时,只针对FINAL_MODE有效
# 启用实时计算净值模式REALTIME_MODE / FINAL_MODE 回测结束时统一计算模式
engine.calculateMode = engine.REALTIME_MODE
engine.initCapital = 100000 # 设置期初资金
engine.percentLimit = 30 # 设置资金使用上限比例(%)
engine.barTimeInterval = 300 # bar的周期秒数,用于csv文件自动减时间
# 开始跑回测
engine.runBackTestingWithBarFile(os.getcwd() + '/cache/RB88_20100101_20161231_5m.csv')
# 显示回测结果
engine.showBacktestingResult()
# 从csv文件进行回测
if __name__ == '__main__':
# 提供直接双击回测的功能
# 导入PyQt4的包是为了保证matplotlib使用PyQt4而不是PySide,防止初始化出错
from ctaBacktesting import *
from setup_logger import setup_logger
setup_logger(
filename=u'TestLogs/{0}_{1}.log'.format(Strategy_TripleMa.className, datetime.now().strftime('%m%d_%H%M')),
debug=False)
# 回测螺纹
testRbByBar()
| mit |
cauchycui/scikit-learn | sklearn/tests/test_common.py | 127 | 7665 | """
General tests for all estimators in sklearn.
"""
# Authors: Andreas Mueller <[email protected]>
# Gael Varoquaux [email protected]
# License: BSD 3 clause
from __future__ import print_function
import os
import warnings
import sys
import pkgutil
from sklearn.externals.six import PY3
from sklearn.utils.testing import assert_false, clean_warning_registry
from sklearn.utils.testing import all_estimators
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_in
from sklearn.utils.testing import ignore_warnings
import sklearn
from sklearn.cluster.bicluster import BiclusterMixin
from sklearn.linear_model.base import LinearClassifierMixin
from sklearn.utils.estimator_checks import (
_yield_all_checks,
CROSS_DECOMPOSITION,
check_parameters_default_constructible,
check_class_weight_balanced_linear_classifier,
check_transformer_n_iter,
check_non_transformer_estimators_n_iter,
check_get_params_invariance)
def test_all_estimator_no_base_class():
# test that all_estimators doesn't find abstract classes.
for name, Estimator in all_estimators():
msg = ("Base estimators such as {0} should not be included"
" in all_estimators").format(name)
assert_false(name.lower().startswith('base'), msg=msg)
def test_all_estimators():
# Test that estimators are default-constructible, clonable
# and have working repr.
estimators = all_estimators(include_meta_estimators=True)
# Meta sanity-check to make sure that the estimator introspection runs
# properly
assert_greater(len(estimators), 0)
for name, Estimator in estimators:
# some can just not be sensibly default constructed
yield check_parameters_default_constructible, name, Estimator
def test_non_meta_estimators():
# input validation etc for non-meta estimators
estimators = all_estimators()
for name, Estimator in estimators:
if issubclass(Estimator, BiclusterMixin):
continue
if name.startswith("_"):
continue
for check in _yield_all_checks(name, Estimator):
yield check, name, Estimator
def test_configure():
# Smoke test the 'configure' step of setup, this tests all the
# 'configure' functions in the setup.pys in the scikit
cwd = os.getcwd()
setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..'))
setup_filename = os.path.join(setup_path, 'setup.py')
if not os.path.exists(setup_filename):
return
try:
os.chdir(setup_path)
old_argv = sys.argv
sys.argv = ['setup.py', 'config']
clean_warning_registry()
with warnings.catch_warnings():
# The configuration spits out warnings when not finding
# Blas/Atlas development headers
warnings.simplefilter('ignore', UserWarning)
if PY3:
with open('setup.py') as f:
exec(f.read(), dict(__name__='__main__'))
else:
execfile('setup.py', dict(__name__='__main__'))
finally:
sys.argv = old_argv
os.chdir(cwd)
def test_class_weight_balanced_linear_classifiers():
classifiers = all_estimators(type_filter='classifier')
clean_warning_registry()
with warnings.catch_warnings(record=True):
linear_classifiers = [
(name, clazz)
for name, clazz in classifiers
if 'class_weight' in clazz().get_params().keys()
and issubclass(clazz, LinearClassifierMixin)]
for name, Classifier in linear_classifiers:
if name == "LogisticRegressionCV":
# Contrary to RidgeClassifierCV, LogisticRegressionCV use actual
# CV folds and fit a model for each CV iteration before averaging
# the coef. Therefore it is expected to not behave exactly as the
# other linear model.
continue
yield check_class_weight_balanced_linear_classifier, name, Classifier
@ignore_warnings
def test_import_all_consistency():
# Smoke test to check that any name in a __all__ list is actually defined
# in the namespace of the module or package.
pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.',
onerror=lambda _: None)
submods = [modname for _, modname, _ in pkgs]
for modname in submods + ['sklearn']:
if ".tests." in modname:
continue
package = __import__(modname, fromlist="dummy")
for name in getattr(package, '__all__', ()):
if getattr(package, name, None) is None:
raise AttributeError(
"Module '{0}' has no attribute '{1}'".format(
modname, name))
def test_root_import_all_completeness():
EXCEPTIONS = ('utils', 'tests', 'base', 'setup')
for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__,
onerror=lambda _: None):
if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS:
continue
assert_in(modname, sklearn.__all__)
def test_non_transformer_estimators_n_iter():
# Test that all estimators of type which are non-transformer
# and which have an attribute of max_iter, return the attribute
# of n_iter atleast 1.
for est_type in ['regressor', 'classifier', 'cluster']:
regressors = all_estimators(type_filter=est_type)
for name, Estimator in regressors:
# LassoLars stops early for the default alpha=1.0 for
# the iris dataset.
if name == 'LassoLars':
estimator = Estimator(alpha=0.)
else:
estimator = Estimator()
if hasattr(estimator, "max_iter"):
# These models are dependent on external solvers like
# libsvm and accessing the iter parameter is non-trivial.
if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC',
'RidgeClassifier', 'SVC', 'RandomizedLasso',
'LogisticRegressionCV']):
continue
# Tested in test_transformer_n_iter below
elif (name in CROSS_DECOMPOSITION or
name in ['LinearSVC', 'LogisticRegression']):
continue
else:
# Multitask models related to ENet cannot handle
# if y is mono-output.
yield (check_non_transformer_estimators_n_iter,
name, estimator, 'Multi' in name)
def test_transformer_n_iter():
transformers = all_estimators(type_filter='transformer')
for name, Estimator in transformers:
estimator = Estimator()
# Dependent on external solvers and hence accessing the iter
# param is non-trivial.
external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding',
'RandomizedLasso', 'LogisticRegressionCV']
if hasattr(estimator, "max_iter") and name not in external_solver:
yield check_transformer_n_iter, name, estimator
def test_get_params_invariance():
# Test for estimators that support get_params, that
# get_params(deep=False) is a subset of get_params(deep=True)
# Related to issue #4465
estimators = all_estimators(include_meta_estimators=False, include_other=True)
for name, Estimator in estimators:
if hasattr(Estimator, 'get_params'):
yield check_get_params_invariance, name, Estimator
| bsd-3-clause |
rgommers/statsmodels | statsmodels/stats/tests/test_statstools.py | 8 | 10621 | # TODO: Test robust skewness
# TODO: Test robust kurtosis
import numpy as np
import pandas as pd
from numpy.testing import (assert_almost_equal, assert_raises, TestCase)
from statsmodels.stats.stattools import (omni_normtest, jarque_bera,
durbin_watson, _medcouple_1d, medcouple,
robust_kurtosis, robust_skewness)
from statsmodels.stats.adnorm import normal_ad
#a random array, rounded to 4 decimals
x = np.array([-0.1184, -1.3403, 0.0063, -0.612, -0.3869, -0.2313, -2.8485,
-0.2167, 0.4153, 1.8492, -0.3706, 0.9726, -0.1501, -0.0337,
-1.4423, 1.2489, 0.9182, -0.2331, -0.6182, 0.183])
def test_durbin_watson():
#benchmark values from R car::durbinWatsonTest(x)
#library("car")
#> durbinWatsonTest(x)
#[1] 1.95298958377419
#> durbinWatsonTest(x**2)
#[1] 1.848802400319998
#> durbinWatsonTest(x[2:20]+0.5*x[1:19])
#[1] 1.09897993228779
#> durbinWatsonTest(x[2:20]+0.8*x[1:19])
#[1] 0.937241876707273
#> durbinWatsonTest(x[2:20]+0.9*x[1:19])
#[1] 0.921488912587806
st_R = 1.95298958377419
assert_almost_equal(durbin_watson(x), st_R, 14)
st_R = 1.848802400319998
assert_almost_equal(durbin_watson(x**2), st_R, 14)
st_R = 1.09897993228779
assert_almost_equal(durbin_watson(x[1:] + 0.5 * x[:-1]), st_R, 14)
st_R = 0.937241876707273
assert_almost_equal(durbin_watson(x[1:] + 0.8 * x[:-1]), st_R, 14)
st_R = 0.921488912587806
assert_almost_equal(durbin_watson(x[1:] + 0.9 * x[:-1]), st_R, 14)
def test_omni_normtest():
#tests against R fBasics
from scipy import stats
st_pv_R = np.array(
[[3.994138321207883, -1.129304302161460, 1.648881473704978],
[0.1357325110375005, 0.2587694866795507, 0.0991719192710234]])
nt = omni_normtest(x)
assert_almost_equal(nt, st_pv_R[:, 0], 14)
st = stats.skewtest(x)
assert_almost_equal(st, st_pv_R[:, 1], 14)
kt = stats.kurtosistest(x)
assert_almost_equal(kt, st_pv_R[:, 2], 11)
st_pv_R = np.array(
[[34.523210399523926, 4.429509162503833, 3.860396220444025],
[3.186985686465249e-08, 9.444780064482572e-06, 1.132033129378485e-04]])
x2 = x**2
#TODO: fix precision in these test with relative tolerance
nt = omni_normtest(x2)
assert_almost_equal(nt, st_pv_R[:, 0], 12)
st = stats.skewtest(x2)
assert_almost_equal(st, st_pv_R[:, 1], 12)
kt = stats.kurtosistest(x2)
assert_almost_equal(kt, st_pv_R[:, 2], 12)
def test_omni_normtest_axis():
#test axis of omni_normtest
x = np.random.randn(25, 3)
nt1 = omni_normtest(x)
nt2 = omni_normtest(x, axis=0)
nt3 = omni_normtest(x.T, axis=1)
assert_almost_equal(nt2, nt1, decimal=13)
assert_almost_equal(nt3, nt1, decimal=13)
def test_jarque_bera():
#tests against R fBasics
st_pv_R = np.array([1.9662677226861689, 0.3741367669648314])
jb = jarque_bera(x)[:2]
assert_almost_equal(jb, st_pv_R, 14)
st_pv_R = np.array([78.329987305556, 0.000000000000])
jb = jarque_bera(x**2)[:2]
assert_almost_equal(jb, st_pv_R, 13)
st_pv_R = np.array([5.7135750796706670, 0.0574530296971343])
jb = jarque_bera(np.log(x**2))[:2]
assert_almost_equal(jb, st_pv_R, 14)
st_pv_R = np.array([2.6489315748495761, 0.2659449923067881])
jb = jarque_bera(np.exp(-x**2))[:2]
assert_almost_equal(jb, st_pv_R, 14)
def test_shapiro():
#tests against R fBasics
#testing scipy.stats
from scipy.stats import shapiro
st_pv_R = np.array([0.939984787255526, 0.239621898000460])
sh = shapiro(x)
assert_almost_equal(sh, st_pv_R, 4)
#st is ok -7.15e-06, pval agrees at -3.05e-10
st_pv_R = np.array([5.799574255943298e-01, 1.838456834681376e-06 * 1e4])
sh = shapiro(x**2) * np.array([1, 1e4])
assert_almost_equal(sh, st_pv_R, 5)
st_pv_R = np.array([0.91730442643165588, 0.08793704167882448])
sh = shapiro(np.log(x**2))
assert_almost_equal(sh, st_pv_R, 5)
#diff is [ 9.38773155e-07, 5.48221246e-08]
st_pv_R = np.array([0.818361863493919373, 0.001644620895206969])
sh = shapiro(np.exp(-x**2))
assert_almost_equal(sh, st_pv_R, 5)
def test_adnorm():
#tests against R fBasics
st_pv = []
st_pv_R = np.array([0.5867235358882148, 0.1115380760041617])
ad = normal_ad(x)
assert_almost_equal(ad, st_pv_R, 12)
st_pv.append(st_pv_R)
st_pv_R = np.array([2.976266267594575e+00, 8.753003709960645e-08])
ad = normal_ad(x**2)
assert_almost_equal(ad, st_pv_R, 11)
st_pv.append(st_pv_R)
st_pv_R = np.array([0.4892557856308528, 0.1968040759316307])
ad = normal_ad(np.log(x**2))
assert_almost_equal(ad, st_pv_R, 12)
st_pv.append(st_pv_R)
st_pv_R = np.array([1.4599014654282669312, 0.0006380009232897535])
ad = normal_ad(np.exp(-x**2))
assert_almost_equal(ad, st_pv_R, 12)
st_pv.append(st_pv_R)
ad = normal_ad(np.column_stack((x, x**2, np.log(x**2), np.exp(-x**2))).T,
axis=1)
assert_almost_equal(ad, np.column_stack(st_pv), 11)
def test_durbin_watson_pandas():
x = np.random.randn(50)
x_series = pd.Series(x)
assert_almost_equal(durbin_watson(x), durbin_watson(x_series), decimal=13)
class TestStattools(TestCase):
@classmethod
def setup_class(cls):
x = np.random.standard_normal(1000)
e1, e2, e3, e4, e5, e6, e7 = np.percentile(x, (12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5))
c05, c50, c95 = np.percentile(x, (5.0, 50.0, 95.0))
f025, f25, f75, f975 = np.percentile(x, (2.5, 25.0, 75.0, 97.5))
mean = np.mean
kr1 = mean(((x - mean(x)) / np.std(x))**4.0) - 3.0
kr2 = ((e7 - e5) + (e3 - e1)) / (e6 - e2) - 1.2330951154852172
kr3 = (mean(x[x > c95]) - mean(x[x < c05])) / (mean(x[x > c50]) - mean(x[x < c50])) - 2.5852271228708048
kr4 = (f975 - f025) / (f75 - f25) - 2.9058469516701639
cls.kurtosis_x = x
cls.expected_kurtosis = np.array([kr1, kr2, kr3, kr4])
cls.kurtosis_constants = np.array([3.0,1.2330951154852172,2.5852271228708048,2.9058469516701639])
def test_medcouple_no_axis(self):
x = np.reshape(np.arange(100.0), (50, 2))
mc = medcouple(x, axis=None)
assert_almost_equal(mc, medcouple(x.ravel()))
def test_medcouple_1d(self):
x = np.reshape(np.arange(100.0),(50,2))
assert_raises(ValueError, _medcouple_1d, x)
def test_medcouple_symmetric(self):
mc = medcouple(np.arange(5.0))
assert_almost_equal(mc, 0)
def test_medcouple_nonzero(self):
mc = medcouple(np.array([1, 2, 7, 9, 10.0]))
assert_almost_equal(mc, -0.3333333)
def test_medcouple_symmetry(self):
x = np.random.standard_normal(100)
mcp = medcouple(x)
mcn = medcouple(-x)
assert_almost_equal(mcp + mcn, 0)
def test_durbin_watson(self):
x = np.random.standard_normal(100)
dw = sum(np.diff(x)**2.0) / np.dot(x, x)
assert_almost_equal(dw, durbin_watson(x))
def test_durbin_watson_2d(self):
shape = (1, 10)
x = np.random.standard_normal(100)
dw = sum(np.diff(x)**2.0) / np.dot(x, x)
x = np.tile(x[:, None], shape)
assert_almost_equal(np.squeeze(dw * np.ones(shape)), durbin_watson(x))
def test_durbin_watson_3d(self):
shape = (10, 1, 10)
x = np.random.standard_normal(100)
dw = sum(np.diff(x)**2.0) / np.dot(x, x)
x = np.tile(x[None, :, None], shape)
assert_almost_equal(np.squeeze(dw * np.ones(shape)), durbin_watson(x, axis=1))
def test_robust_skewness_1d(self):
x = np.arange(21.0)
sk = robust_skewness(x)
assert_almost_equal(np.array(sk), np.zeros(4))
def test_robust_skewness_1d_2d(self):
x = np.random.randn(21)
y = x[:, None]
sk_x = robust_skewness(x)
sk_y = robust_skewness(y, axis=None)
assert_almost_equal(np.array(sk_x), np.array(sk_y))
def test_robust_skewness_symmetric(self):
x = np.random.standard_normal(100)
x = np.hstack([x, np.zeros(1), -x])
sk = robust_skewness(x)
assert_almost_equal(np.array(sk), np.zeros(4))
def test_robust_skewness_3d(self):
x = np.random.standard_normal(100)
x = np.hstack([x, np.zeros(1), -x])
x = np.tile(x, (10, 10, 1))
sk_3d = robust_skewness(x, axis=2)
result = np.zeros((10, 10))
for sk in sk_3d:
assert_almost_equal(sk, result)
def test_robust_kurtosis_1d_2d(self):
x = np.random.randn(100)
y = x[:, None]
kr_x = np.array(robust_kurtosis(x))
kr_y = np.array(robust_kurtosis(y, axis=None))
assert_almost_equal(kr_x, kr_y)
def test_robust_kurtosis(self):
x = self.kurtosis_x
assert_almost_equal(np.array(robust_kurtosis(x)), self.expected_kurtosis)
def test_robust_kurtosis_3d(self):
x = np.tile(self.kurtosis_x, (10, 10, 1))
kurtosis = np.array(robust_kurtosis(x, axis=2))
for i, r in enumerate(self.expected_kurtosis):
assert_almost_equal(r * np.ones((10, 10)), kurtosis[i])
def test_robust_kurtosis_excess_false(self):
x = self.kurtosis_x
expected = self.expected_kurtosis + self.kurtosis_constants
kurtosis = np.array(robust_kurtosis(x, excess=False))
assert_almost_equal(expected, kurtosis)
def test_robust_kurtosis_ab(self):
"""Test custom alpha, beta in kr3"""
x = self.kurtosis_x
alpha, beta = (10.0, 45.0)
kurtosis = robust_kurtosis(self.kurtosis_x, ab=(alpha,beta), excess=False)
num = np.mean(x[x>np.percentile(x,100.0 - alpha)]) - np.mean(x[x<np.percentile(x,alpha)])
denom = np.mean(x[x>np.percentile(x,100.0 - beta)]) - np.mean(x[x<np.percentile(x,beta)])
assert_almost_equal(kurtosis[2], num/denom)
def test_robust_kurtosis_dg(self):
"""Test custom delta, gamma in kr4"""
x = self.kurtosis_x
delta, gamma = (10.0, 45.0)
kurtosis = robust_kurtosis(self.kurtosis_x, dg=(delta,gamma), excess=False)
q = np.percentile(x,[delta, 100.0-delta, gamma, 100.0-gamma])
assert_almost_equal(kurtosis[3], (q[1] - q[0]) / (q[3] - q[2]))
if __name__ == "__main__":
import nose
nose.runmodule(argv=[__file__, '-vvs', '-x'], exit=False) #, '--pdb'
# run_module_suite()
#nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'],
# exit=False)
| bsd-3-clause |
SciTools/iris | lib/iris/tests/unit/plot/__init__.py | 3 | 3875 | # Copyright Iris contributors
#
# This file is part of Iris and is released under the LGPL license.
# See COPYING and COPYING.LESSER in the root of the repository for full
# licensing details.
"""Unit tests for the :mod:`iris.plot` module."""
# Import iris.tests first so that some things can be initialised before
# importing anything else.
import iris.tests as tests
from iris.plot import _broadcast_2d as broadcast
from iris.coords import AuxCoord
from iris.tests.stock import simple_2d, lat_lon_cube
@tests.skip_plot
class TestGraphicStringCoord(tests.GraphicsTest):
def setUp(self):
super().setUp()
self.cube = simple_2d(with_bounds=True)
self.cube.add_aux_coord(
AuxCoord(list("abcd"), long_name="str_coord"), 1
)
self.lat_lon_cube = lat_lon_cube()
def tick_loc_and_label(self, axis_name, axes=None):
# Intentional lazy import so that subclasses can have an opportunity
# to change the backend.
import matplotlib.pyplot as plt
# Draw the plot to 'fix' the ticks.
if axes:
axes.figure.canvas.draw()
else:
axes = plt.gca()
plt.draw()
axis = getattr(axes, axis_name)
locations = axis.get_majorticklocs()
labels = [tick.get_text() for tick in axis.get_ticklabels()]
return list(zip(locations, labels))
def assertBoundsTickLabels(self, axis, axes=None):
actual = self.tick_loc_and_label(axis, axes)
expected = [
(-1.0, ""),
(0.0, "a"),
(1.0, "b"),
(2.0, "c"),
(3.0, "d"),
(4.0, ""),
]
self.assertEqual(expected, actual)
def assertPointsTickLabels(self, axis, axes=None):
actual = self.tick_loc_and_label(axis, axes)
expected = [(0.0, "a"), (1.0, "b"), (2.0, "c"), (3.0, "d")]
self.assertEqual(expected, actual)
@tests.skip_plot
class MixinCoords:
"""
Mixin class of common plotting tests providing 2-dimensional
permutations of coordinates and anonymous dimensions.
"""
def _check(self, u, v, data=None):
self.assertEqual(self.mpl_patch.call_count, 1)
if data is not None:
(actual_u, actual_v, actual_data), _ = self.mpl_patch.call_args
self.assertArrayEqual(actual_data, data)
else:
(actual_u, actual_v), _ = self.mpl_patch.call_args
self.assertArrayEqual(actual_u, u)
self.assertArrayEqual(actual_v, v)
def test_foo_bar(self):
self.draw_func(self.cube, coords=("foo", "bar"))
u, v = broadcast(self.foo, self.bar)
self._check(u, v, self.data)
def test_bar_foo(self):
self.draw_func(self.cube, coords=("bar", "foo"))
u, v = broadcast(self.bar, self.foo)
self._check(u, v, self.dataT)
def test_foo_0(self):
self.draw_func(self.cube, coords=("foo", 0))
u, v = broadcast(self.foo, self.bar_index)
self._check(u, v, self.data)
def test_1_bar(self):
self.draw_func(self.cube, coords=(1, "bar"))
u, v = broadcast(self.foo_index, self.bar)
self._check(u, v, self.data)
def test_1_0(self):
self.draw_func(self.cube, coords=(1, 0))
u, v = broadcast(self.foo_index, self.bar_index)
self._check(u, v, self.data)
def test_0_foo(self):
self.draw_func(self.cube, coords=(0, "foo"))
u, v = broadcast(self.bar_index, self.foo)
self._check(u, v, self.dataT)
def test_bar_1(self):
self.draw_func(self.cube, coords=("bar", 1))
u, v = broadcast(self.bar, self.foo_index)
self._check(u, v, self.dataT)
def test_0_1(self):
self.draw_func(self.cube, coords=(0, 1))
u, v = broadcast(self.bar_index, self.foo_index)
self._check(u, v, self.dataT)
| lgpl-3.0 |
ch3ll0v3k/scikit-learn | examples/semi_supervised/plot_label_propagation_digits_active_learning.py | 294 | 3417 | """
========================================
Label Propagation digits active learning
========================================
Demonstrates an active learning technique to learn handwritten digits
using label propagation.
We start by training a label propagation model with only 10 labeled points,
then we select the top five most uncertain points to label. Next, we train
with 15 labeled points (original 10 + 5 new ones). We repeat this process
four times to have a model trained with 30 labeled examples.
A plot will appear showing the top 5 most uncertain digits for each iteration
of training. These may or may not contain mistakes, but we will train the next
model with their true labels.
"""
print(__doc__)
# Authors: Clay Woolam <[email protected]>
# Licence: BSD
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix
digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)
X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]
n_total_samples = len(y)
n_labeled_points = 10
unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()
for i in range(5):
y_train = np.copy(y)
y_train[unlabeled_indices] = -1
lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)
lp_model.fit(X, y_train)
predicted_labels = lp_model.transduction_[unlabeled_indices]
true_labels = y[unlabeled_indices]
cm = confusion_matrix(true_labels, predicted_labels,
labels=lp_model.classes_)
print('Iteration %i %s' % (i, 70 * '_'))
print("Label Spreading model: %d labeled & %d unlabeled (%d total)"
% (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))
print(classification_report(true_labels, predicted_labels))
print("Confusion matrix")
print(cm)
# compute the entropies of transduced label distributions
pred_entropies = stats.distributions.entropy(
lp_model.label_distributions_.T)
# select five digit examples that the classifier is most uncertain about
uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:]
# keep track of indices that we get labels for
delete_indices = np.array([])
f.text(.05, (1 - (i + 1) * .183),
"model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10)
for index, image_index in enumerate(uncertainty_index):
image = images[image_index]
sub = f.add_subplot(5, 5, index + 1 + (5 * i))
sub.imshow(image, cmap=plt.cm.gray_r)
sub.set_title('predict: %i\ntrue: %i' % (
lp_model.transduction_[image_index], y[image_index]), size=10)
sub.axis('off')
# labeling 5 points, remote from labeled set
delete_index, = np.where(unlabeled_indices == image_index)
delete_indices = np.concatenate((delete_indices, delete_index))
unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
n_labeled_points += 5
f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
"uncertain labels to learn with the next model.")
plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45)
plt.show()
| bsd-3-clause |
f3r/scikit-learn | sklearn/neighbors/approximate.py | 30 | 22370 | """Approximate nearest neighbor search"""
# Author: Maheshakya Wijewardena <[email protected]>
# Joel Nothman <[email protected]>
import numpy as np
import warnings
from scipy import sparse
from .base import KNeighborsMixin, RadiusNeighborsMixin
from ..base import BaseEstimator
from ..utils.validation import check_array
from ..utils import check_random_state
from ..metrics.pairwise import pairwise_distances
from ..random_projection import GaussianRandomProjection
__all__ = ["LSHForest"]
HASH_DTYPE = '>u4'
MAX_HASH_SIZE = np.dtype(HASH_DTYPE).itemsize * 8
def _find_matching_indices(tree, bin_X, left_mask, right_mask):
"""Finds indices in sorted array of integers.
Most significant h bits in the binary representations of the
integers are matched with the items' most significant h bits.
"""
left_index = np.searchsorted(tree, bin_X & left_mask)
right_index = np.searchsorted(tree, bin_X | right_mask,
side='right')
return left_index, right_index
def _find_longest_prefix_match(tree, bin_X, hash_size,
left_masks, right_masks):
"""Find the longest prefix match in tree for each query in bin_X
Most significant bits are considered as the prefix.
"""
hi = np.empty_like(bin_X, dtype=np.intp)
hi.fill(hash_size)
lo = np.zeros_like(bin_X, dtype=np.intp)
res = np.empty_like(bin_X, dtype=np.intp)
left_idx, right_idx = _find_matching_indices(tree, bin_X,
left_masks[hi],
right_masks[hi])
found = right_idx > left_idx
res[found] = lo[found] = hash_size
r = np.arange(bin_X.shape[0])
kept = r[lo < hi] # indices remaining in bin_X mask
while kept.shape[0]:
mid = (lo.take(kept) + hi.take(kept)) // 2
left_idx, right_idx = _find_matching_indices(tree,
bin_X.take(kept),
left_masks[mid],
right_masks[mid])
found = right_idx > left_idx
mid_found = mid[found]
lo[kept[found]] = mid_found + 1
res[kept[found]] = mid_found
hi[kept[~found]] = mid[~found]
kept = r[lo < hi]
return res
class ProjectionToHashMixin(object):
"""Turn a transformed real-valued array into a hash"""
@staticmethod
def _to_hash(projected):
if projected.shape[1] % 8 != 0:
raise ValueError('Require reduced dimensionality to be a multiple '
'of 8 for hashing')
# XXX: perhaps non-copying operation better
out = np.packbits((projected > 0).astype(int)).view(dtype=HASH_DTYPE)
return out.reshape(projected.shape[0], -1)
def fit_transform(self, X, y=None):
self.fit(X)
return self.transform(X)
def transform(self, X, y=None):
return self._to_hash(super(ProjectionToHashMixin, self).transform(X))
class GaussianRandomProjectionHash(ProjectionToHashMixin,
GaussianRandomProjection):
"""Use GaussianRandomProjection to produce a cosine LSH fingerprint"""
def __init__(self,
n_components=8,
random_state=None):
super(GaussianRandomProjectionHash, self).__init__(
n_components=n_components,
random_state=random_state)
def _array_of_arrays(list_of_arrays):
"""Creates an array of array from list of arrays."""
out = np.empty(len(list_of_arrays), dtype=object)
out[:] = list_of_arrays
return out
class LSHForest(BaseEstimator, KNeighborsMixin, RadiusNeighborsMixin):
"""Performs approximate nearest neighbor search using LSH forest.
LSH Forest: Locality Sensitive Hashing forest [1] is an alternative
method for vanilla approximate nearest neighbor search methods.
LSH forest data structure has been implemented using sorted
arrays and binary search and 32 bit fixed-length hashes.
Random projection is used as the hash family which approximates
cosine distance.
The cosine distance is defined as ``1 - cosine_similarity``: the lowest
value is 0 (identical point) but it is bounded above by 2 for the farthest
points. Its value does not depend on the norm of the vector points but
only on their relative angles.
Read more in the :ref:`User Guide <approximate_nearest_neighbors>`.
Parameters
----------
n_estimators : int (default = 10)
Number of trees in the LSH Forest.
min_hash_match : int (default = 4)
lowest hash length to be searched when candidate selection is
performed for nearest neighbors.
n_candidates : int (default = 10)
Minimum number of candidates evaluated per estimator, assuming enough
items meet the `min_hash_match` constraint.
n_neighbors : int (default = 5)
Number of neighbors to be returned from query function when
it is not provided to the :meth:`kneighbors` method.
radius : float, optinal (default = 1.0)
Radius from the data point to its neighbors. This is the parameter
space to use by default for the :meth`radius_neighbors` queries.
radius_cutoff_ratio : float, optional (default = 0.9)
A value ranges from 0 to 1. Radius neighbors will be searched until
the ratio between total neighbors within the radius and the total
candidates becomes less than this value unless it is terminated by
hash length reaching `min_hash_match`.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
Attributes
----------
hash_functions_ : list of GaussianRandomProjectionHash objects
Hash function g(p,x) for a tree is an array of 32 randomly generated
float arrays with the same dimenstion as the data set. This array is
stored in GaussianRandomProjectionHash object and can be obtained
from ``components_`` attribute.
trees_ : array, shape (n_estimators, n_samples)
Each tree (corresponding to a hash function) contains an array of
sorted hashed values. The array representation may change in future
versions.
original_indices_ : array, shape (n_estimators, n_samples)
Original indices of sorted hashed values in the fitted index.
References
----------
.. [1] M. Bawa, T. Condie and P. Ganesan, "LSH Forest: Self-Tuning
Indexes for Similarity Search", WWW '05 Proceedings of the
14th international conference on World Wide Web, 651-660,
2005.
Examples
--------
>>> from sklearn.neighbors import LSHForest
>>> X_train = [[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]]
>>> X_test = [[9, 1, 6], [3, 1, 10], [7, 10, 3]]
>>> lshf = LSHForest(random_state=42)
>>> lshf.fit(X_train) # doctest: +NORMALIZE_WHITESPACE
LSHForest(min_hash_match=4, n_candidates=50, n_estimators=10,
n_neighbors=5, radius=1.0, radius_cutoff_ratio=0.9,
random_state=42)
>>> distances, indices = lshf.kneighbors(X_test, n_neighbors=2)
>>> distances # doctest: +ELLIPSIS
array([[ 0.069..., 0.149...],
[ 0.229..., 0.481...],
[ 0.004..., 0.014...]])
>>> indices
array([[1, 2],
[2, 0],
[4, 0]])
"""
def __init__(self, n_estimators=10, radius=1.0, n_candidates=50,
n_neighbors=5, min_hash_match=4, radius_cutoff_ratio=.9,
random_state=None):
self.n_estimators = n_estimators
self.radius = radius
self.random_state = random_state
self.n_candidates = n_candidates
self.n_neighbors = n_neighbors
self.min_hash_match = min_hash_match
self.radius_cutoff_ratio = radius_cutoff_ratio
def _compute_distances(self, query, candidates):
"""Computes the cosine distance.
Distance is from the query to points in the candidates array.
Returns argsort of distances in the candidates
array and sorted distances.
"""
if candidates.shape == (0,):
# needed since _fit_X[np.array([])] doesn't work if _fit_X sparse
return np.empty(0, dtype=np.int), np.empty(0, dtype=float)
if sparse.issparse(self._fit_X):
candidate_X = self._fit_X[candidates]
else:
candidate_X = self._fit_X.take(candidates, axis=0, mode='clip')
distances = pairwise_distances(query, candidate_X,
metric='cosine')[0]
distance_positions = np.argsort(distances)
distances = distances.take(distance_positions, mode='clip', axis=0)
return distance_positions, distances
def _generate_masks(self):
"""Creates left and right masks for all hash lengths."""
tri_size = MAX_HASH_SIZE + 1
# Called once on fitting, output is independent of hashes
left_mask = np.tril(np.ones((tri_size, tri_size), dtype=int))[:, 1:]
right_mask = left_mask[::-1, ::-1]
self._left_mask = np.packbits(left_mask).view(dtype=HASH_DTYPE)
self._right_mask = np.packbits(right_mask).view(dtype=HASH_DTYPE)
def _get_candidates(self, query, max_depth, bin_queries, n_neighbors):
"""Performs the Synchronous ascending phase.
Returns an array of candidates, their distance ranks and
distances.
"""
index_size = self._fit_X.shape[0]
# Number of candidates considered including duplicates
# XXX: not sure whether this is being calculated correctly wrt
# duplicates from different iterations through a single tree
n_candidates = 0
candidate_set = set()
min_candidates = self.n_candidates * self.n_estimators
while (max_depth > self.min_hash_match and
(n_candidates < min_candidates or
len(candidate_set) < n_neighbors)):
left_mask = self._left_mask[max_depth]
right_mask = self._right_mask[max_depth]
for i in range(self.n_estimators):
start, stop = _find_matching_indices(self.trees_[i],
bin_queries[i],
left_mask, right_mask)
n_candidates += stop - start
candidate_set.update(
self.original_indices_[i][start:stop].tolist())
max_depth -= 1
candidates = np.fromiter(candidate_set, count=len(candidate_set),
dtype=np.intp)
# For insufficient candidates, candidates are filled.
# Candidates are filled from unselected indices uniformly.
if candidates.shape[0] < n_neighbors:
warnings.warn(
"Number of candidates is not sufficient to retrieve"
" %i neighbors with"
" min_hash_match = %i. Candidates are filled up"
" uniformly from unselected"
" indices." % (n_neighbors, self.min_hash_match))
remaining = np.setdiff1d(np.arange(0, index_size), candidates)
to_fill = n_neighbors - candidates.shape[0]
candidates = np.concatenate((candidates, remaining[:to_fill]))
ranks, distances = self._compute_distances(query,
candidates.astype(int))
return (candidates[ranks[:n_neighbors]],
distances[:n_neighbors])
def _get_radius_neighbors(self, query, max_depth, bin_queries, radius):
"""Finds radius neighbors from the candidates obtained.
Their distances from query are smaller than radius.
Returns radius neighbors and distances.
"""
ratio_within_radius = 1
threshold = 1 - self.radius_cutoff_ratio
total_candidates = np.array([], dtype=int)
total_neighbors = np.array([], dtype=int)
total_distances = np.array([], dtype=float)
while (max_depth > self.min_hash_match and
ratio_within_radius > threshold):
left_mask = self._left_mask[max_depth]
right_mask = self._right_mask[max_depth]
candidates = []
for i in range(self.n_estimators):
start, stop = _find_matching_indices(self.trees_[i],
bin_queries[i],
left_mask, right_mask)
candidates.extend(
self.original_indices_[i][start:stop].tolist())
candidates = np.setdiff1d(candidates, total_candidates)
total_candidates = np.append(total_candidates, candidates)
ranks, distances = self._compute_distances(query, candidates)
m = np.searchsorted(distances, radius, side='right')
positions = np.searchsorted(total_distances, distances[:m])
total_neighbors = np.insert(total_neighbors, positions,
candidates[ranks[:m]])
total_distances = np.insert(total_distances, positions,
distances[:m])
ratio_within_radius = (total_neighbors.shape[0] /
float(total_candidates.shape[0]))
max_depth = max_depth - 1
return total_neighbors, total_distances
def fit(self, X, y=None):
"""Fit the LSH forest on the data.
This creates binary hashes of input data points by getting the
dot product of input points and hash_function then
transforming the projection into a binary string array based
on the sign (positive/negative) of the projection.
A sorted array of binary hashes is created.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single data point.
Returns
-------
self : object
Returns self.
"""
self._fit_X = check_array(X, accept_sparse='csr')
# Creates a g(p,x) for each tree
self.hash_functions_ = []
self.trees_ = []
self.original_indices_ = []
rng = check_random_state(self.random_state)
int_max = np.iinfo(np.int32).max
for i in range(self.n_estimators):
# This is g(p,x) for a particular tree.
# Builds a single tree. Hashing is done on an array of data points.
# `GaussianRandomProjection` is used for hashing.
# `n_components=hash size and n_features=n_dim.
hasher = GaussianRandomProjectionHash(MAX_HASH_SIZE,
rng.randint(0, int_max))
hashes = hasher.fit_transform(self._fit_X)[:, 0]
original_index = np.argsort(hashes)
bin_hashes = hashes[original_index]
self.original_indices_.append(original_index)
self.trees_.append(bin_hashes)
self.hash_functions_.append(hasher)
self._generate_masks()
return self
def _query(self, X):
"""Performs descending phase to find maximum depth."""
# Calculate hashes of shape (n_samples, n_estimators, [hash_size])
bin_queries = np.asarray([hasher.transform(X)[:, 0]
for hasher in self.hash_functions_])
bin_queries = np.rollaxis(bin_queries, 1)
# descend phase
depths = [_find_longest_prefix_match(tree, tree_queries, MAX_HASH_SIZE,
self._left_mask, self._right_mask)
for tree, tree_queries in zip(self.trees_,
np.rollaxis(bin_queries, 1))]
return bin_queries, np.max(depths, axis=0)
def kneighbors(self, X, n_neighbors=None, return_distance=True):
"""Returns n_neighbors of approximate nearest neighbors.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single query.
n_neighbors : int, opitonal (default = None)
Number of neighbors required. If not provided, this will
return the number specified at the initialization.
return_distance : boolean, optional (default = False)
Returns the distances of neighbors if set to True.
Returns
-------
dist : array, shape (n_samples, n_neighbors)
Array representing the cosine distances to each point,
only present if return_distance=True.
ind : array, shape (n_samples, n_neighbors)
Indices of the approximate nearest points in the population
matrix.
"""
if not hasattr(self, 'hash_functions_'):
raise ValueError("estimator should be fitted.")
if n_neighbors is None:
n_neighbors = self.n_neighbors
X = check_array(X, accept_sparse='csr')
neighbors, distances = [], []
bin_queries, max_depth = self._query(X)
for i in range(X.shape[0]):
neighs, dists = self._get_candidates(X[[i]], max_depth[i],
bin_queries[i],
n_neighbors)
neighbors.append(neighs)
distances.append(dists)
if return_distance:
return np.array(distances), np.array(neighbors)
else:
return np.array(neighbors)
def radius_neighbors(self, X, radius=None, return_distance=True):
"""Finds the neighbors within a given radius of a point or points.
Return the indices and distances of some points from the dataset
lying in a ball with size ``radius`` around the points of the query
array. Points lying on the boundary are included in the results.
The result points are *not* necessarily sorted by distance to their
query point.
LSH Forest being an approximate method, some true neighbors from the
indexed dataset might be missing from the results.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
List of n_features-dimensional data points. Each row
corresponds to a single query.
radius : float
Limiting distance of neighbors to return.
(default is the value passed to the constructor).
return_distance : boolean, optional (default = False)
Returns the distances of neighbors if set to True.
Returns
-------
dist : array, shape (n_samples,) of arrays
Each element is an array representing the cosine distances
to some points found within ``radius`` of the respective query.
Only present if ``return_distance=True``.
ind : array, shape (n_samples,) of arrays
Each element is an array of indices for neighbors within ``radius``
of the respective query.
"""
if not hasattr(self, 'hash_functions_'):
raise ValueError("estimator should be fitted.")
if radius is None:
radius = self.radius
X = check_array(X, accept_sparse='csr')
neighbors, distances = [], []
bin_queries, max_depth = self._query(X)
for i in range(X.shape[0]):
neighs, dists = self._get_radius_neighbors(X[[i]], max_depth[i],
bin_queries[i], radius)
neighbors.append(neighs)
distances.append(dists)
if return_distance:
return _array_of_arrays(distances), _array_of_arrays(neighbors)
else:
return _array_of_arrays(neighbors)
def partial_fit(self, X, y=None):
"""
Inserts new data into the already fitted LSH Forest.
Cost is proportional to new total size, so additions
should be batched.
Parameters
----------
X : array_like or sparse (CSR) matrix, shape (n_samples, n_features)
New data point to be inserted into the LSH Forest.
"""
X = check_array(X, accept_sparse='csr')
if not hasattr(self, 'hash_functions_'):
return self.fit(X)
if X.shape[1] != self._fit_X.shape[1]:
raise ValueError("Number of features in X and"
" fitted array does not match.")
n_samples = X.shape[0]
n_indexed = self._fit_X.shape[0]
for i in range(self.n_estimators):
bin_X = self.hash_functions_[i].transform(X)[:, 0]
# gets the position to be added in the tree.
positions = self.trees_[i].searchsorted(bin_X)
# adds the hashed value into the tree.
self.trees_[i] = np.insert(self.trees_[i],
positions, bin_X)
# add the entry into the original_indices_.
self.original_indices_[i] = np.insert(self.original_indices_[i],
positions,
np.arange(n_indexed,
n_indexed +
n_samples))
# adds the entry into the input_array.
if sparse.issparse(X) or sparse.issparse(self._fit_X):
self._fit_X = sparse.vstack((self._fit_X, X))
else:
self._fit_X = np.row_stack((self._fit_X, X))
return self
| bsd-3-clause |
jcpeterson/Dallinger | setup.py | 1 | 1637 | """Install Dallinger as a command line utility."""
import os
from setuptools import setup
setup_args = dict(
name='dallinger',
packages=['dallinger'],
version="4.0.0",
description='Laboratory automation for the behavioral and social sciences',
url='http://github.com/Dallinger/Dallinger',
maintainer='Jordan Suchow',
maintainer_email='[email protected]',
license='MIT',
keywords=['science', 'cultural evolution', 'experiments', 'psychology'],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.6',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3.6',
],
include_package_data=True,
zip_safe=False,
entry_points={
'console_scripts': [
'dallinger = dallinger.command_line:dallinger',
],
'dallinger.experiments': [],
},
extras_require={
'data': [
"networkx==1.11",
"odo==0.5.0",
"openpyxl==2.4.11", # 2.5 is incompatible with tablib
"pandas==0.22.0",
"tablib==0.11.5",
],
'jupyter': [
"jupyter",
"ipywidgets",
],
}
)
# If not on Heroku, install setuptools-markdown.
try:
os.environ["DYNO"]
except KeyError:
setup_args.update({
"setup_requires": ['setuptools-markdown==0.2'],
"long_description_markdown_filename": 'README.md',
})
setup(**setup_args)
| mit |
fabioticconi/scikit-learn | sklearn/linear_model/tests/test_perceptron.py | 378 | 1815 | import numpy as np
import scipy.sparse as sp
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_raises
from sklearn.utils import check_random_state
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron
iris = load_iris()
random_state = check_random_state(12)
indices = np.arange(iris.data.shape[0])
random_state.shuffle(indices)
X = iris.data[indices]
y = iris.target[indices]
X_csr = sp.csr_matrix(X)
X_csr.sort_indices()
class MyPerceptron(object):
def __init__(self, n_iter=1):
self.n_iter = n_iter
def fit(self, X, y):
n_samples, n_features = X.shape
self.w = np.zeros(n_features, dtype=np.float64)
self.b = 0.0
for t in range(self.n_iter):
for i in range(n_samples):
if self.predict(X[i])[0] != y[i]:
self.w += y[i] * X[i]
self.b += y[i]
def project(self, X):
return np.dot(X, self.w) + self.b
def predict(self, X):
X = np.atleast_2d(X)
return np.sign(self.project(X))
def test_perceptron_accuracy():
for data in (X, X_csr):
clf = Perceptron(n_iter=30, shuffle=False)
clf.fit(data, y)
score = clf.score(data, y)
assert_true(score >= 0.7)
def test_perceptron_correctness():
y_bin = y.copy()
y_bin[y != 1] = -1
clf1 = MyPerceptron(n_iter=2)
clf1.fit(X, y_bin)
clf2 = Perceptron(n_iter=2, shuffle=False)
clf2.fit(X, y_bin)
assert_array_almost_equal(clf1.w, clf2.coef_.ravel())
def test_undefined_methods():
clf = Perceptron()
for meth in ("predict_proba", "predict_log_proba"):
assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
| bsd-3-clause |
bobbymckinney/seebeck_measurement | old versions/Seebeck_HighTemp_CMDLine.py | 1 | 34381 | #! /usr/bin/python
# -*- coding: utf-8 -*-
"""
Created: 2016-02-09
@author: Bobby McKinney ([email protected])
"""
import os
import numpy as np
import matplotlib.pyplot as plt
import minimalmodbus as modbus # For communicating with the cn7500s
import omegacn7500 # Driver for cn7500s under minimalmodbus, adds a few easy commands
import visa # pyvisa, essential for communicating with the Keithley
import time
from datetime import datetime # for getting the current date and time
import exceptions
#==============================================================================
version = '1.0 (2016-02-09)'
# Keeps Windows from complaining that the port is already open:
modbus.CLOSE_PORT_AFTER_EACH_CALL = True
#ResourceManager for visa instrument control
ResourceManager = visa.ResourceManager()
###############################################################################
class Keithley_2700:
''' Used for the matrix card operations. '''
#--------------------------------------------------------------------------
def __init__(self, instr):
self.ctrl = ResourceManager.open_resource(instr)
#end init
#--------------------------------------------------------------------------
def fetch(self, channel):
"""
Scan the channel and take a reading
"""
measure = False
while (not measure):
try:
self.ctrl.write(":ROUTe:SCAN:INTernal (@ %s)" % (channel)) # Specify Channel
#keithley.write(":SENSe1:FUNCtion 'TEMPerature'") # Specify Data type
self.ctrl.write(":ROUTe:SCAN:LSELect INTernal") # Scan Selected Channel
time.sleep(.1)
self.ctrl.write(":ROUTe:SCAN:LSELect NONE") # Stop Scan
time.sleep(.1)
data = self.ctrl.query(":FETCh?")
time.sleep(.1)
data = float(str(data)[0:15])
measure = True
except exceptions.ValueError as VE:
print(VE)
measure = False
#end while
return data # Fetches Reading
#end def
#--------------------------------------------------------------------------
def openAllChannels(self):
self.ctrl.write("ROUTe:OPEN:ALL")
#end def
#end class
###############################################################################
###############################################################################
class PID(omegacn7500.OmegaCN7500):
#--------------------------------------------------------------------------
def __init__(self, portname, slaveaddress):
omegacn7500.OmegaCN7500.__init__(self, portname, slaveaddress)
#end init
#--------------------------------------------------------------------------
# Commands for easy reference:
# Use .write_register(command, value) and .read_register(command)
# All register values can be found in the Manual or Instruction Sheet.
# You must convert each address from Hex to Decimal.
control = 4101 # Register for control method
pIDcontrol = 0 # Value for PID control method
pIDparam = 4124 # Register for PID parameter selection
pIDparam_Auto = 4 # Value for Auto PID
tCouple = 4100 # Register for setting the temperature sensor type
tCouple_K = 0 # K type thermocouple
heatingCoolingControl = 4102 # Register for Heating/Cooling control selection
heating = 0 # Value for Heating setting
#end class
###############################################################################
###############################################################################
class Main:
def __init__(self):
self.Get_User_Input()
self.open_files()
self.Setup()
self.abort_ID = 0
self.start = time.time()
self.delay = 1.0
self.plotnumber = 0
try:
for self.avgtemp in self.measureList:
self.dT = 0
self.plotnumber +=1
self.timecalclist = []
self.Vchromelcalclist = []
self.Valumelcalclist = []
self.dTcalclist = []
self.avgTcalclist = []
print "\n****\nSet avg temp to %f C\n****" %(self.avgtemp)
print "set sample A temp to %f" %(self.avgtemp)
while True:
try:
self.sampleApid.set_setpoint(self.avgtemp)
break
except IOError:
print 'IOError: communication failure'
#end while
print "set sample B temp to %f" %(self.avgtemp)
while True:
try:
self.sampleBpid.set_setpoint(self.avgtemp)
break
except IOError:
print 'IOError: communication failure'
#end while
self.recenttempA = []
self.recenttempAtime=[]
self.recenttempB = []
self.recenttempBtime=[]
self.stabilityA = '-'
self.stabilityB = '-'
while True:
self.data_measurement()
self.write_data_to_file('status')
time.sleep(5)
if self.abort_ID==1: break
if (self.tol == 'OK' and self.stable == 'OK'):
for self.dT in self.dTlist:
print "\n****\nSet delta temp to %f C\n\n" %(self.dT)
print "set sample A temp to %f" %(self.avgtemp+self.dT/2.0)
while True:
try:
self.sampleApid.set_setpoint(self.avgtemp+self.dT/2.0)
break
except IOError:
print 'IOError: communication failure'
#end while
print "set sample B temp to %f" %(self.avgtemp-self.dT/2.0)
while True:
try:
self.sampleBpid.set_setpoint(self.avgtemp-self.dT/2.0)
break
except IOError:
print 'IOError: communication failure'
#end while
self.recenttempA = []
self.recenttempAtime=[]
self.recenttempB = []
self.recenttempBtime=[]
self.stabilityA = '-'
self.stabilityB = '-'
while True:
self.data_measurement()
self.write_data_to_file('status')
time.sleep(3)
if self.abort_ID==1: break
if (self.tol == 'OK' and self.stable == 'OK'):
for n in range(self.measurement_number):
# start measurement
print "\n****\nseebeck measurement"
print 'measurement number: ', n
self.data_measurement()
self.write_data_to_file('status')
self.write_data_to_file('data')
if self.abort_ID==1: break
#end for
if self.abort_ID==1: break
self.tol = 'NO'
self.stable = 'NO'
break
#end if
# end while
if self.abort_ID==1: break
#end for
break
#end if
# end while
self.process_data()
if self.abort_ID==1: break
#end for
except KeyboardInterrupt:
print '\n****\nprogram interrupted\nsaving files at current location\n****\n'
self.save_files()
print "set sample A temp to %f" %(20)
while True:
try:
self.sampleApid.set_setpoint(20)
break
except IOError:
print 'IOError: communication failure'
#end while
print "set sample B temp to %f" %(20)
while True:
try:
self.sampleBpid.set_setpoint(20)
break
except IOError:
print 'IOError: communication failure'
#end while
self.sampleApid.stop()
self.sampleBpid.stop()
print "Huzzah! Your program finished! You are awesome, sir or maam!"
#end def
#--------------------------------------------------------------------------
def Setup(self):
"""
Prepare the Keithley to take data on the specified channels:
"""
# Define Keithley instrument port:
self.k2700 = Keithley_2700('GPIB0::1::INSTR')
# Define the ports for the PID
self.sampleApid = PID('/dev/cu.usbserial', 1) # Top heater
self.sampleBpid = PID('/dev/cu.usbserial', 2) # Bottom heater
self.blockApid = PID('/dev/cu.usbserial', 3) # Top block
self.blockBpid = PID('/dev/cu.usbserial', 4) # Top block
"""
Prepare the Keithley for operation:
"""
self.k2700.openAllChannels
# Define the type of measurement for the channels we are looking at:
self.k2700.ctrl.write(":SENSe1:FUNCtion 'VOLTage:DC', (@ 107,108)")
self.k2700.ctrl.write(":TRIGger:SEQuence1:DELay 0")
self.k2700.ctrl.write(":TRIGger:SEQuence1:COUNt 1") # Set the count rate
# Sets the the acquisition rate of the measurements
self.k2700.ctrl.write(":SENSe1:VOLTage:DC:NPLCycles 4, (@ 107,108)") # Sets integration period based on frequency
"""
Prepare the PID for operation:
"""
# Set the control method to PID
self.sampleApid.write_register(PID.control, PID.pIDcontrol)
self.sampleBpid.write_register(PID.control, PID.pIDcontrol)
# Set the PID to auto parameter
self.sampleApid.write_register(PID.pIDparam, PID.pIDparam_Auto)
self.sampleBpid.write_register(PID.pIDparam, PID.pIDparam_Auto)
# Set the thermocouple type
self.sampleApid.write_register(PID.tCouple, PID.tCouple_K)
self.sampleBpid.write_register(PID.tCouple, PID.tCouple_K)
self.blockApid.write_register(PID.tCouple, PID.tCouple_K)
self.blockBpid.write_register(PID.tCouple, PID.tCouple_K)
# Set the control to heating only
self.sampleApid.write_register(PID.heatingCoolingControl, PID.heating)
self.sampleBpid.write_register(PID.heatingCoolingControl, PID.heating)
# Run the controllers
self.sampleApid.run()
self.sampleBpid.run()
#end def
#--------------------------------------------------------------------------
def Get_User_Input(self):
print "Get Input From User"
self.oscillation = input("Please enter PID oscillation in deg C (example: 6 or 8): ")
self.oscillation = float(self.oscillation)
self.dTlist = [self.oscillation*i/2 for i in range(0,-3,-1)+range(-1,3)+range(1,-1,-1)]
#self.oscillation = 4
#self.dTlist = [-4,0,4]
self.tolerance = input("Please enter PID tolerance in deg C (example: 1): ")
self.tolerance = float(self.tolerance)
self.stability_threshold = input("Please enter stability threshold in deg C per min (example: .25): ")
self.stability_threshold = float(self.stability_threshold) / 60
self.measurement_number = input("Please enter measurement number at each delta temp (example: 3): ")
self.measurement_number = int(self.measurement_number)
self.measureList = input("Please enter the temperatures to measure as a list (example: [50, 75, ...]): ")
for self.temp in self.measureList:
if self.temp > 600:
self.temp = 600
#end if
#end for
print "Your data folder will be saved to Desktop automatically"
self.folder_name = raw_input("Please enter name for folder: ")
self.folder_name = str(self.folder_name)
if self.folder_name == '':
date = str(datetime.now())
self.folder_name = 'Seebeck_Data %s.%s.%s' % (date[0:13], date[14:16], date[17:19])
#end if
self.make_new_folder(self.folder_name)
#end def
#--------------------------------------------------------------------------
def make_new_folder(self, folder_name):
self.filePath = "/Users/tobererlab1/Desktop/" + folder_name
found = False
if not os.path.exists(self.filePath):
os.makedirs(self.filePath)
os.chdir(self.filePath)
#end if
else:
n = 1
while found == False:
path = self.filePath + ' - ' + str(n)
if os.path.exists(path):
n = n + 1
#end if
else:
os.makedirs(path)
os.chdir(path)
n = 1
found = True
#end else
#end while
#end else
if found == True:
self.filePath = path
#end if
#end def
#--------------------------------------------------------------------------
def open_files(self):
self.datafile = open('Data.csv', 'w') # opens file for writing/overwriting
self.statusfile = open('Status.csv','w')
self.seebeckfile = open('Seebeck.csv','w')
begin = datetime.now() # Current date and time
self.datafile.write('Start Time: ' + str(begin) + '\n')
self.statusfile.write('Start Time: ' + str(begin) + '\n')
self.seebeckfile.write('Start Time: ' + str(begin) + '\n')
dataheaders = 'time (s), tempA (C), tempB (C), avgtemp (C), deltatemp (C), Vchromel (uV), Valumel (uV)\n'
self.datafile.write(dataheaders)
statusheaders1 = 'time (s), sampletempA (C), samplesetpointA (C), blocktempA (C), stabilityA (C/min), sampletempB (C), samplesetpointB (C), blocktempB (C), stabilityB (C/min),'
statusheaders2 = 'chromelvoltageraw (uV), chromelvoltagecalc (uV), alumelvoltageraw(C), alumelvoltagecalc (uV), tolerance, stability\n'
self.statusfile.write(statusheaders1 + statusheaders2)
seebeckheaders = 'time(s),temperature (C),seebeck_chromel (uV/K),offset_chromel (uV),R^2_chromel,seebeck_alumel (uV/K),offset_alumel (uV),R^2_alumel\n'
self.seebeckfile.write(seebeckheaders)
#end def
#--------------------------------------------------------------------------
def data_measurement(self):
# Takes and writes to file the data on the Keithley
# The only change between blocks like this one is the specific
# channel on the Keithley that is being measured.
self.sampletempA = float(self.sampleApid.get_pv())
self.samplesetpointA = float(self.sampleApid.get_setpoint())
self.blocktempA = float(self.blockApid.get_pv())
self.time_sampletempA = time.time() - self.start
print "time: %.2f s\ttempA: %.2f C\tsetpointA: %.2f C" % (self.time_sampletempA, self.sampletempA,self.samplesetpointA)
time.sleep(self.delay)
self.sampletempB = float(self.sampleBpid.get_pv())
self.samplesetpointB = float(self.sampleBpid.get_setpoint())
self.blocktempB = float(self.blockBpid.get_pv())
self.time_sampletempB = time.time() - self.start
print "time: %.2f s\ttempB: %.2f C\tsetpointB: %.2f C" % (self.time_sampletempB, self.sampletempB, self.samplesetpointB)
time.sleep(self.delay)
self.Vchromelraw = float(self.k2700.fetch('107'))*10**6
self.Vchromelcalc = self.voltage_Correction(self.Vchromelraw,self.sampletempA,self.sampletempB, 'chromel')
self.time_Vchromel = time.time() - self.start
print "time: %.2f s\tvoltage (Ch): %f uV" % (self.time_Vchromel, self.Vchromelcalc)
time.sleep(self.delay)
self.Valumelraw = float(self.k2700.fetch('108'))*10**6
self.Valumelcalc = self.voltage_Correction(self.Valumelraw,self.sampletempA,self.sampletempB, 'alumel')
self.time_Valumel = time.time() - self.start
print "time: %.2f s\tvoltage (Al): %f uV" % (self.time_Valumel, self.Valumelcalc)
time.sleep(self.delay)
self.Valumelraw2 = float(self.k2700.fetch('108'))*10**6
self.Valumelcalc2 = self.voltage_Correction(self.Valumelraw2,self.sampletempA,self.sampletempB, 'alumel')
self.time_Valumel2 = time.time() - self.start
print "time: %.2f s\tvoltage (Al): %f uV" % (self.time_Valumel2, self.Valumelcalc2)
time.sleep(self.delay)
self.Vchromelraw2 = float(self.k2700.fetch('107'))*10**6
self.Vchromelcalc2 = self.voltage_Correction(self.Vchromelraw2,self.sampletempA,self.sampletempB, 'chromel')
self.time_Vchromel2 = time.time() - self.start
print "time: %.2f s\tvoltage (Ch): %f uV" % (self.time_Vchromel2, self.Vchromelcalc2)
time.sleep(self.delay)
self.sampletempB2 = float(self.sampleBpid.get_pv())
self.samplesetpointB = float(self.sampleBpid.get_setpoint())
self.blocktempB = float(self.blockApid.get_pv())
self.time_sampletempB2 = time.time() - self.start
print "time: %.2f s\ttempB: %.2f C\tsetpointB: %.2f C" % (self.time_sampletempB2, self.sampletempB2,self.samplesetpointB)
time.sleep(self.delay)
self.sampletempA2 = float(self.sampleApid.get_pv())
self.samplesetpointA = float(self.sampleApid.get_setpoint())
self.blocktempA = float(self.blockApid.get_pv())
self.time_sampletempA2 = time.time() - self.start
print "time: %.2f s\ttempA: %.2f C\tsetpointA: %.2f C" % (self.time_sampletempA2, self.sampletempA2,self.samplesetpointA)
self.time = ( self.time_sampletempA + self.time_sampletempB + self.time_Vchromel + self.time_Valumel + self.time_Valumel2 + self.time_Vchromel2 + self.time_sampletempB2 + self.time_sampletempA2 ) / 8
#check stability of PID
if (len(self.recenttempA)<3):
self.recenttempA.append(self.sampletempA)
self.recenttempAtime.append(self.time_sampletempA)
self.recenttempA.append(self.sampletempA2)
self.recenttempAtime.append(self.time_sampletempA2)
#end if
else:
self.recenttempA.pop(0)
self.recenttempAtime.pop(0)
self.recenttempA.pop(0)
self.recenttempAtime.pop(0)
self.recenttempA.append(self.sampletempA)
self.recenttempAtime.append(self.time_sampletempA)
self.recenttempA.append(self.sampletempA2)
self.recenttempAtime.append(self.time_sampletempA2)
self.stabilityA = self.getStability(self.recenttempA,self.recenttempAtime)
print "stability A: %.4f C/min" % (self.stabilityA*60)
#end else
if (len(self.recenttempB)<3):
self.recenttempB.append(self.sampletempB)
self.recenttempBtime.append(self.time_sampletempB)
self.recenttempB.append(self.sampletempB2)
self.recenttempBtime.append(self.time_sampletempB2)
#end if
else:
self.recenttempB.pop(0)
self.recenttempBtime.pop(0)
self.recenttempB.pop(0)
self.recenttempBtime.pop(0)
self.recenttempB.append(self.sampletempB)
self.recenttempBtime.append(self.time_sampletempB)
self.recenttempB.append(self.sampletempB2)
self.recenttempBtime.append(self.time_sampletempB2)
self.stabilityB = self.getStability(self.recenttempB,self.recenttempBtime)
print "stability B: %.4f C/min" % (self.stabilityB*60)
#end else
self.safety_check()
self.check_status()
#end def
#--------------------------------------------------------------------------
def voltage_Correction(self, raw_voltage, tempA, tempB, side):
''' raw_data must be in uV '''
# Kelvin conversion for polynomial correction.
dT = tempA - tempB
avgT = (tempA + tempB)/2 + 273.15
# Correction for effect from Thermocouple Seebeck
out = self.alpha(avgT, side)*dT - raw_voltage
return out
#end def
#--------------------------------------------------------------------------
def alpha(self, x, side):
''' x = avgT
alpha in uV/K
'''
### If Chromel, taken from Chromel_Seebeck.txt
if side == 'chromel':
if ( x >= 270 and x < 700):
alpha = -2467.61114613*x**0 + 55.6028987953*x**1 + \
-0.552110359087*x**2 + 0.00320554346691*x**3 + \
-1.20477254034e-05*x**4 + 3.06344710205e-08*x**5 + \
-5.33914758601e-11*x**6 + 6.30044607727e-14*x**7 + \
-4.8197269477e-17*x**8 + 2.15928374212e-20*x**9 + \
-4.30421084091e-24*x**10
#end if
elif ( x >= 700 and x < 1599):
alpha = 1165.13254764*x**0 + -9.49622421414*x**1 + \
0.0346344390853*x**2 + -7.27785048931e-05*x**3 + \
9.73981855547e-08*x**4 + -8.64369652227e-11*x**5 + \
5.10080771762e-14*x**6 + -1.93318725171e-17*x**7 + \
4.27299905603e-21*x**8 + -4.19761748937e-25*x**9
#end if
else:
print "Error in voltage correction, out of range."
#end if (Chromel)
### If Alumel, taken from Alumel_Seebeck.txt
elif side == 'alumel':
if ( x >= 270 and x < 570):
alpha = -3465.28789643*x**0 + 97.4007289124*x**1 + \
-1.17546754681*x**2 + 0.00801252041119*x**3 + \
-3.41263237031e-05*x**4 + 9.4391002358e-08*x**5 + \
-1.69831949233e-10*x**6 + 1.91977765586e-13*x**7 + \
-1.2391854625e-16*x**8 + 3.48576207577e-20*x**9
#end if
elif ( x >= 570 and x < 1599):
alpha = 254.644633774*x**0 + -2.17639940109*x**1 + \
0.00747127856327*x**2 + -1.41920634198e-05*x**3 + \
1.61971537881e-08*x**4 + -1.14428153299e-11*x**5 + \
4.969263632e-15*x**6 + -1.27526741699e-18*x**7 + \
1.80403838088e-22*x**8 + -1.23699936952e-26*x**9
#end if
else:
print "Error in voltage correction, out of range."
#end if (Alumel)
else:
print "Error in voltage correction."
#end else
return alpha
#end def
#--------------------------------------------------------------------------
def getStability(self, temps, times):
coeffs = np.polyfit(times, temps, 1)
# Polynomial Coefficients
results = coeffs.tolist()
return results[0]
#end def
#--------------------------------------------------------------------------
def safety_check(self):
print 'safety check'
if self.sampletempA >600 or self.sampletempA2 > 600:
self.abort_ID = 1
print 'Safety Failure: Sample Temp A greater than 600'
#end if
if self.sampletempB > 600 or self.sampletempA2 > 600:
self.abort_ID = 1
print 'Safety Failure: Sample Temp B greater than Max Limit'
#end if
if self.blocktempA > 600:
self.abort_ID = 1
print 'Safety Failure: Block Temp A greater than Max Limit'
#end if
if self.blocktempB > 600:
self.abort_ID = 1
print 'Safety Failure: Block Temp B greater than Max Limit'
#end if
if self.blocktempA > self.sampletempA + 100 or self.blocktempA > self.sampletempA2 + 100:
self.abort_ID = 1
print 'Safety Failure: Block Temp A 100 C greater than Sample Temp A'
#end if
if self.blocktempB > self.sampletempB + 100 or self.blocktempB > self.sampletempB2 + 100:
self.abort_ID = 1
print 'Safety Failure: Block Temp B 100 C greater than Sample Temp B'
#end if
if self.sampletempA > self.blocktempA + 100 or self.sampletempA2 > self.blocktempA + 100:
self.abort_ID = 1
print 'Safety Failure: Sample Temp A 100 C greater than Block Temp A'
#end if
if self.sampletempB > self.blocktempB + 100 or self.sampletempB2 > self.blocktempB + 100:
self.abort_ID = 1
print 'Safety Failure: Sample Temp B 100 C greater than Block Temp B'
#end if
#end def
#--------------------------------------------------------------------------
def check_status(self):
print 'check tolerance'
tempA = (self.sampletempA + self.sampletempA2)/2
tempB = (self.sampletempB + self.sampletempB2)/2
self.tolA = (np.abs(tempA-(self.avgtemp+self.dT/2.0)) < self.tolerance)
self.tolB = (np.abs(tempB-(self.avgtemp-self.dT/2.0)) < self.tolerance)
print 'tolerance A: ',self.tolA
print 'tolerance B:', self.tolB
if (self.tolA and self.tolB):
self.tol = 'OK'
#end if
else:
self.tol = 'NO'
#end else
print 'check stability'
if (self.stabilityA != '-'):
self.stableA = (np.abs(self.stabilityA) < self.stability_threshold)
print 'stable A: ',self.stableA
#end if
else:
self.stableA = False
print 'stable A: ',self.stableA
#end else
if (self.stabilityB != '-'):
self.stableB = (np.abs(self.stabilityB) < self.stability_threshold)
print 'stable B: ',self.stableB
#end if
else:
self.stableB = False
print 'stable B: ',self.stableB
#end else
if (self.stableA and self.stableB):
self.stable = 'OK'
#end if
else:
self.stable = 'NO'
#end else
print "\ntolerance: %s\nstable: %s\n" % (self.tol, self.stable)
#end def
#--------------------------------------------------------------------------
def process_data(self):
print '\n***\n'
print 'process data to get seebeck coefficient'
time = np.average(self.timecalclist)
avgT = np.average(self.avgTcalclist)
dTchromellist = self.dTcalclist
dTalumellist = self.dTcalclist
results_chromel = {}
results_alumel = {}
coeffs_chromel = np.polyfit(dTchromellist, self.Vchromelcalclist, 1)
coeffs_alumel = np.polyfit(dTalumellist,self.Valumelcalclist,1)
# Polynomial Coefficients
polynomial_chromel = coeffs_chromel.tolist()
polynomial_alumel = coeffs_alumel.tolist()
seebeck_chromel = polynomial_chromel[0]
offset_chromel = polynomial_chromel[1]
seebeck_alumel = polynomial_alumel[0]
offset_alumel = polynomial_alumel[1]
print 'seebeck (chromel): %.3f uV/K'%(seebeck_chromel)
print 'seebeck (alumel): %.3f uV/K'%(seebeck_alumel)
print '\n***\n'
# Calculate coefficient of determination (r-squared):
p_chromel = np.poly1d(coeffs_chromel)
p_alumel = np.poly1d(coeffs_alumel)
# fitted values:
yhat_chromel = p_chromel(dTchromellist)
yhat_alumel = p_alumel(dTalumellist)
# mean of values:
ybar_chromel = np.sum(self.Vchromelcalclist)/len(self.Vchromelcalclist)
ybar_alumel = np.sum(self.Valumelcalclist)/len(self.Valumelcalclist)
# regression sum of squares:
ssreg_chromel = np.sum((yhat_chromel-ybar_chromel)**2) # or sum([ (yihat - ybar)**2 for yihat in yhat])
ssreg_alumel = np.sum((yhat_alumel-ybar_alumel)**2)
# total sum of squares:
sstot_chromel = np.sum((self.Vchromelcalclist - ybar_chromel)**2)
sstot_alumel = np.sum((self.Valumelcalclist - ybar_alumel)**2) # or sum([ (yi - ybar)**2 for yi in y])
rsquared_chromel = ssreg_chromel / sstot_chromel
rsquared_alumel = ssreg_alumel / sstot_alumel
self.seebeckfile.write('%.3f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f,%.5f\n'%(time,avgT,seebeck_chromel,offset_chromel,rsquared_chromel,seebeck_alumel,offset_alumel,rsquared_alumel))
fitchromel = {}
fitalumel = {}
fitchromel['polynomial'] = polynomial_chromel
fitalumel['polynomial'] = polynomial_alumel
fitchromel['r-squared'] = rsquared_chromel
fitalumel['r-squared'] = rsquared_alumel
celsius = u"\u2103"
self.create_backup_file(str(self.plotnumber)+'_'+str(avgT)+ 'C_backupfile.csv',self.timecalclist,self.avgTcalclist,self.dTcalclist,self.Vchromelcalclist,self.Valumelcalclist)
self.create_plot(dTalumellist,dTchromellist,self.Valumelcalclist,self.Vchromelcalclist,fitalumel,fitchromel,str(self.plotnumber)+'_'+str(avgT)+ 'C')
#end def
#--------------------------------------------------------------------------
def create_backup_file(self, title,tlist,avgTlist,dTlist,Vchlist,Vallist):
backup_folder = self.filePath + '/Seebeck Backup Files/'
if not os.path.exists(backup_folder):
os.makedirs(backup_folder)
#end if
tempfile = open('Seebeck Backup Files/' + title,'w')
tempfile.write(title + '\n')
tempfile.write('time,avgT,dT,Vch,Val\n')
for i in range(len(tlist)):
tempfile.write('%.3f,%.4f,%.4f,%.6f,%.6f\n'%(tlist[i],avgTlist[i],dTlist[i],Vchlist[i],Vallist[i]))
#end for
tempfile.close()
#end def
#--------------------------------------------------------------------------
def create_plot(self, xalumel, xchromel, yalumel, ychromel, fitalumel, fitchromel, title):
print 'create seebeck plot'
dpi = 400
plt.ioff()
# Create Plot:
fig = plt.figure(self.plotnumber, dpi=dpi)
ax = fig.add_subplot(111)
ax.grid()
ax.set_title(title)
ax.set_xlabel("dT (K)")
ax.set_ylabel("dV (uV)")
# Plot data points:
ax.scatter(xalumel, yalumel, color='r', marker='.', label="alumel Voltage")
ax.scatter(xchromel, ychromel, color='b', marker='.', label="chromel Voltage")
# Overlay linear fits:
coeffsalumel = fitalumel['polynomial']
coeffschromel = fitchromel['polynomial']
p_alumel = np.poly1d(coeffsalumel)
p_chromel = np.poly1d(coeffschromel)
xp = np.linspace(min(xalumel+xchromel), max(xalumel+xchromel), 5000)
alumel_eq = 'dV = %.2f*(dT) + %.2f' % (coeffsalumel[0], coeffsalumel[1])
chromel_eq = 'dV = %.2f*(dT) + %.2f' % (coeffschromel[0], coeffschromel[1])
ax.plot(xp, p_alumel(xp), '-', c='#FF9900', label="alumel Voltage Fit\n %s" % alumel_eq)
ax.plot(xp, p_chromel(xp), '-', c='g', label="chromel Voltage Fit\n %s" % chromel_eq)
ax.legend(loc='upper left', fontsize='10')
# Save:
plot_folder = self.filePath + '/Seebeck Plots/'
if not os.path.exists(plot_folder):
os.makedirs(plot_folder)
fig.savefig('%s.png' % (plot_folder + title) , dpi=dpi)
plt.close()
#end def
#--------------------------------------------------------------------------
def write_data_to_file(self, file):
if file == 'status':
print('Write status to file\n')
self.statusfile.write('%.1f,'%(self.time))
self.statusfile.write('%.2f,%.2f,%.2f,' %(self.sampletempA2,self.samplesetpointA,self.blocktempA))
self.statusfile.write(str(self.stabilityA)+',')
self.statusfile.write('%.2f,%.2f,%.2f,' %(self.sampletempB2,self.samplesetpointB,self.blocktempB))
self.statusfile.write(str(self.stabilityB)+',')
self.statusfile.write('%.3f,%.3f,%.3f,%.3f,'%(self.Vchromelraw2, self.Vchromelcalc2,self.Valumelraw2, self.Valumelcalc2))
self.statusfile.write(str(self.tol)+','+str(self.stable)+'\n')
#end if
elif file == 'data':
print('Write data to file\n')
ta = (self.sampletempA + self.sampletempA2)/2
tb = (self.sampletempB + self.sampletempB2)/2
avgt = (ta + tb)/2
dt = ta-tb
vchromel = (self.Vchromelcalc + self.Vchromelcalc2)/2
valumel = (self.Valumelcalc + self.Valumelcalc2)/2
self.datafile.write('%.3f,' %(self.time))
self.datafile.write('%.4f,%.4f,%.4f,%.4f,' % (ta, tb, avgt, dt) )
self.datafile.write('%.6f,%.6f\n' % (vchromel,valumel))
self.timecalclist.append(self.time)
self.Vchromelcalclist.append(vchromel)
self.Valumelcalclist.append(valumel)
self.dTcalclist.append(dt)
self.avgTcalclist.append(avgt)
#end elif
#end def
#--------------------------------------------------------------------------
def save_files(self):
print('\nSave Files\n')
self.datafile.close()
self.statusfile.close()
self.seebeckfile.close()
#end def
#end class
###############################################################################
#==============================================================================
if __name__=='__main__':
runprogram = Main()
#end if | gpl-3.0 |
jstoxrocky/statsmodels | statsmodels/tools/_testing.py | 29 | 4809 | """Testing helper functions
Warning: current status experimental, mostly copy paste
Warning: these functions will be changed without warning as the need
during refactoring arises.
The first group of functions provide consistency checks
"""
import numpy as np
from numpy.testing import assert_allclose, assert_
from nose import SkipTest
# the following are copied from
# statsmodels.base.tests.test_generic_methods.CheckGenericMixin
# and only adjusted to work as standalone functions
def check_ttest_tvalues(results):
# test that t_test has same results a params, bse, tvalues, ...
res = results
mat = np.eye(len(res.params))
tt = res.t_test(mat)
assert_allclose(tt.effect, res.params, rtol=1e-12)
# TODO: tt.sd and tt.tvalue are 2d also for single regressor, squeeze
assert_allclose(np.squeeze(tt.sd), res.bse, rtol=1e-10)
assert_allclose(np.squeeze(tt.tvalue), res.tvalues, rtol=1e-12)
assert_allclose(tt.pvalue, res.pvalues, rtol=5e-10)
assert_allclose(tt.conf_int(), res.conf_int(), rtol=1e-10)
# test params table frame returned by t_test
table_res = np.column_stack((res.params, res.bse, res.tvalues,
res.pvalues, res.conf_int()))
table1 = np.column_stack((tt.effect, tt.sd, tt.tvalue, tt.pvalue,
tt.conf_int()))
table2 = tt.summary_frame().values
assert_allclose(table2, table_res, rtol=1e-12)
# move this to test_attributes ?
assert_(hasattr(res, 'use_t'))
tt = res.t_test(mat[0])
tt.summary() # smoke test for #1323
assert_allclose(tt.pvalue, res.pvalues[0], rtol=5e-10)
def check_ftest_pvalues(results):
res = results
use_t = res.use_t
k_vars = len(res.params)
# check default use_t
pvals = [res.wald_test(np.eye(k_vars)[k], use_f=use_t).pvalue
for k in range(k_vars)]
assert_allclose(pvals, res.pvalues, rtol=5e-10, atol=1e-25)
# sutomatic use_f based on results class use_t
pvals = [res.wald_test(np.eye(k_vars)[k]).pvalue
for k in range(k_vars)]
assert_allclose(pvals, res.pvalues, rtol=5e-10, atol=1e-25)
# label for pvalues in summary
string_use_t = 'P>|z|' if use_t is False else 'P>|t|'
summ = str(res.summary())
assert_(string_use_t in summ)
# try except for models that don't have summary2
try:
summ2 = str(res.summary2())
except AttributeError:
summ2 = None
if summ2 is not None:
assert_(string_use_t in summ2)
# TODO The following is not (yet) guaranteed across models
#@knownfailureif(True)
def check_fitted(results):
# ignore wrapper for isinstance check
from statsmodels.genmod.generalized_linear_model import GLMResults
from statsmodels.discrete.discrete_model import DiscreteResults
# FIXME: work around GEE has no wrapper
if hasattr(results, '_results'):
results = results._results
else:
results = results
if (isinstance(results, GLMResults) or
isinstance(results, DiscreteResults)):
raise SkipTest
res = results
fitted = res.fittedvalues
assert_allclose(res.model.endog - fitted, res.resid, rtol=1e-12)
assert_allclose(fitted, res.predict(), rtol=1e-12)
def check_predict_types(results):
res = results
# squeeze to make 1d for single regressor test case
p_exog = np.squeeze(np.asarray(res.model.exog[:2]))
# ignore wrapper for isinstance check
from statsmodels.genmod.generalized_linear_model import GLMResults
from statsmodels.discrete.discrete_model import DiscreteResults
# FIXME: work around GEE has no wrapper
if hasattr(results, '_results'):
results = results._results
else:
results = results
if (isinstance(results, GLMResults) or
isinstance(results, DiscreteResults)):
# SMOKE test only TODO
res.predict(p_exog)
res.predict(p_exog.tolist())
res.predict(p_exog[0].tolist())
else:
fitted = res.fittedvalues[:2]
assert_allclose(fitted, res.predict(p_exog), rtol=1e-12)
# this needs reshape to column-vector:
assert_allclose(fitted, res.predict(np.squeeze(p_exog).tolist()),
rtol=1e-12)
# only one prediction:
assert_allclose(fitted[:1], res.predict(p_exog[0].tolist()),
rtol=1e-12)
assert_allclose(fitted[:1], res.predict(p_exog[0]),
rtol=1e-12)
# predict doesn't preserve DataFrame, e.g. dot converts to ndarray
#import pandas
#predicted = res.predict(pandas.DataFrame(p_exog))
#assert_(isinstance(predicted, pandas.DataFrame))
#assert_allclose(predicted, fitted, rtol=1e-12)
| bsd-3-clause |
SheffieldML/GPy | GPy/plotting/matplot_dep/maps.py | 15 | 5721 | # Copyright (c) 2012, GPy authors (see AUTHORS.txt).
# Licensed under the BSD 3-clause license (see LICENSE.txt)
import numpy as np
try:
from matplotlib import pyplot as pb
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
#from matplotlib import cm
try:
__IPYTHON__
pb.ion()
except NameError:
pass
except:
pass
import re
def plot(shape_records,facecolor='w',edgecolor='k',linewidths=.5, ax=None,xlims=None,ylims=None):
"""
Plot the geometry of a shapefile
:param shape_records: geometry and attributes list
:type shape_records: ShapeRecord object (output of a shapeRecords() method)
:param facecolor: color to be used to fill in polygons
:param edgecolor: color to be used for lines
:param ax: axes to plot on.
:type ax: axes handle
"""
#Axes handle
if ax is None:
fig = pb.figure()
ax = fig.add_subplot(111)
#Iterate over shape_records
for srec in shape_records:
points = np.vstack(srec.shape.points)
sparts = srec.shape.parts
par = list(sparts) + [points.shape[0]]
polygs = []
for pj in range(len(sparts)):
polygs.append(Polygon(points[par[pj]:par[pj+1]]))
ax.add_collection(PatchCollection(polygs,facecolor=facecolor,edgecolor=edgecolor, linewidths=linewidths))
#Plot limits
_box = np.vstack([srec.shape.bbox for srec in shape_records])
minx,miny = np.min(_box[:,:2],0)
maxx,maxy = np.max(_box[:,2:],0)
if xlims is not None:
minx,maxx = xlims
if ylims is not None:
miny,maxy = ylims
ax.set_xlim(minx,maxx)
ax.set_ylim(miny,maxy)
def string_match(sf,regex,field=2):
"""
Return the geometry and attributes of a shapefile whose fields match a regular expression given
:param sf: shapefile
:type sf: shapefile object
:regex: regular expression to match
:type regex: string
:field: field number to be matched with the regex
:type field: integer
"""
index = []
shape_records = []
for rec in enumerate(sf.shapeRecords()):
m = re.search(regex,rec[1].record[field])
if m is not None:
index.append(rec[0])
shape_records.append(rec[1])
return index,shape_records
def bbox_match(sf,bbox,inside_only=True):
"""
Return the geometry and attributes of a shapefile that lie within (or intersect) a bounding box
:param sf: shapefile
:type sf: shapefile object
:param bbox: bounding box
:type bbox: list of floats [x_min,y_min,x_max,y_max]
:inside_only: True if the objects returned are those that lie within the bbox and False if the objects returned are any that intersect the bbox
:type inside_only: Boolean
"""
A,B,C,D = bbox
index = []
shape_records = []
for rec in enumerate(sf.shapeRecords()):
a,b,c,d = rec[1].shape.bbox
if inside_only:
if A <= a and B <= b and C >= c and D >= d:
index.append(rec[0])
shape_records.append(rec[1])
else:
cond1 = A <= a and B <= b and C >= a and D >= b
cond2 = A <= c and B <= d and C >= c and D >= d
cond3 = A <= a and D >= d and C >= a and B <= d
cond4 = A <= c and D >= b and C >= c and B <= b
cond5 = a <= C and b <= B and d >= D
cond6 = c <= A and b <= B and d >= D
cond7 = d <= B and a <= A and c >= C
cond8 = b <= D and a <= A and c >= C
if cond1 or cond2 or cond3 or cond4 or cond5 or cond6 or cond7 or cond8:
index.append(rec[0])
shape_records.append(rec[1])
return index,shape_records
def plot_bbox(sf,bbox,inside_only=True):
"""
Plot the geometry of a shapefile within a bbox
:param sf: shapefile
:type sf: shapefile object
:param bbox: bounding box
:type bbox: list of floats [x_min,y_min,x_max,y_max]
:inside_only: True if the objects returned are those that lie within the bbox and False if the objects returned are any that intersect the bbox
:type inside_only: Boolean
"""
index,shape_records = bbox_match(sf,bbox,inside_only)
A,B,C,D = bbox
plot(shape_records,xlims=[bbox[0],bbox[2]],ylims=[bbox[1],bbox[3]])
def plot_string_match(sf,regex,field,**kwargs):
"""
Plot the geometry of a shapefile whose fields match a regular expression given
:param sf: shapefile
:type sf: shapefile object
:regex: regular expression to match
:type regex: string
:field: field number to be matched with the regex
:type field: integer
"""
index,shape_records = string_match(sf,regex,field)
plot(shape_records,**kwargs)
def new_shape_string(sf,name,regex,field=2,type=None):
import shapefile
if type is None:
type = shapefile.POINT
newshp = shapefile.Writer(shapeType = sf.shapeType)
newshp.autoBalance = 1
index,shape_records = string_match(sf,regex,field)
_fi = [sf.fields[j] for j in index]
for f in _fi:
newshp.field(name=f[0],fieldType=f[1],size=f[2],decimal=f[3])
_shre = shape_records
for sr in _shre:
_points = []
_parts = []
for point in sr.shape.points:
_points.append(point)
_parts.append(_points)
newshp.line(parts=_parts)
newshp.records.append(sr.record)
print(len(sr.record))
newshp.save(name)
print(index)
def apply_bbox(sf,ax):
"""
Use bbox as xlim and ylim in ax
"""
limits = sf.bbox
xlim = limits[0],limits[2]
ylim = limits[1],limits[3]
ax.set_xlim(xlim)
ax.set_ylim(ylim)
| bsd-3-clause |
idlead/scikit-learn | sklearn/cluster/tests/test_affinity_propagation.py | 341 | 2620 | """
Testing for Clustering methods
"""
import numpy as np
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raises
from sklearn.cluster.affinity_propagation_ import AffinityPropagation
from sklearn.cluster.affinity_propagation_ import affinity_propagation
from sklearn.datasets.samples_generator import make_blobs
from sklearn.metrics import euclidean_distances
n_clusters = 3
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(n_samples=60, n_features=2, centers=centers,
cluster_std=0.4, shuffle=True, random_state=0)
def test_affinity_propagation():
# Affinity Propagation algorithm
# Compute similarities
S = -euclidean_distances(X, squared=True)
preference = np.median(S) * 10
# Compute Affinity Propagation
cluster_centers_indices, labels = affinity_propagation(
S, preference=preference)
n_clusters_ = len(cluster_centers_indices)
assert_equal(n_clusters, n_clusters_)
af = AffinityPropagation(preference=preference, affinity="precomputed")
labels_precomputed = af.fit(S).labels_
af = AffinityPropagation(preference=preference, verbose=True)
labels = af.fit(X).labels_
assert_array_equal(labels, labels_precomputed)
cluster_centers_indices = af.cluster_centers_indices_
n_clusters_ = len(cluster_centers_indices)
assert_equal(np.unique(labels).size, n_clusters_)
assert_equal(n_clusters, n_clusters_)
# Test also with no copy
_, labels_no_copy = affinity_propagation(S, preference=preference,
copy=False)
assert_array_equal(labels, labels_no_copy)
# Test input validation
assert_raises(ValueError, affinity_propagation, S[:, :-1])
assert_raises(ValueError, affinity_propagation, S, damping=0)
af = AffinityPropagation(affinity="unknown")
assert_raises(ValueError, af.fit, X)
def test_affinity_propagation_predict():
# Test AffinityPropagation.predict
af = AffinityPropagation(affinity="euclidean")
labels = af.fit_predict(X)
labels2 = af.predict(X)
assert_array_equal(labels, labels2)
def test_affinity_propagation_predict_error():
# Test exception in AffinityPropagation.predict
# Not fitted.
af = AffinityPropagation(affinity="euclidean")
assert_raises(ValueError, af.predict, X)
# Predict not supported when affinity="precomputed".
S = np.dot(X, X.T)
af = AffinityPropagation(affinity="precomputed")
af.fit(S)
assert_raises(ValueError, af.predict, X)
| bsd-3-clause |
elijah513/scikit-learn | sklearn/decomposition/tests/test_pca.py | 199 | 10949 | import numpy as np
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_array_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_greater
from sklearn.utils.testing import assert_raises
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.decomposition import RandomizedPCA
from sklearn.decomposition.pca import _assess_dimension_
from sklearn.decomposition.pca import _infer_dimension_
iris = datasets.load_iris()
def test_pca():
# PCA on dense arrays
pca = PCA(n_components=2)
X = iris.data
X_r = pca.fit(X).transform(X)
np.testing.assert_equal(X_r.shape[1], 2)
X_r2 = pca.fit_transform(X)
assert_array_almost_equal(X_r, X_r2)
pca = PCA()
pca.fit(X)
assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3)
X_r = pca.transform(X)
X_r2 = pca.fit_transform(X)
assert_array_almost_equal(X_r, X_r2)
# Test get_covariance and get_precision with n_components == n_features
# with n_components < n_features and with n_components == 0
for n_components in [0, 2, X.shape[1]]:
pca.n_components = n_components
pca.fit(X)
cov = pca.get_covariance()
precision = pca.get_precision()
assert_array_almost_equal(np.dot(cov, precision),
np.eye(X.shape[1]), 12)
def test_whitening():
# Check that PCA output has unit-variance
rng = np.random.RandomState(0)
n_samples = 100
n_features = 80
n_components = 30
rank = 50
# some low rank data with correlated features
X = np.dot(rng.randn(n_samples, rank),
np.dot(np.diag(np.linspace(10.0, 1.0, rank)),
rng.randn(rank, n_features)))
# the component-wise variance of the first 50 features is 3 times the
# mean component-wise variance of the remaingin 30 features
X[:, :50] *= 3
assert_equal(X.shape, (n_samples, n_features))
# the component-wise variance is thus highly varying:
assert_almost_equal(X.std(axis=0).std(), 43.9, 1)
for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA)
for y in (True, False)]:
# whiten the data while projecting to the lower dim subspace
X_ = X.copy() # make sure we keep an original across iterations.
pca = this_PCA(n_components=n_components, whiten=True, copy=copy)
# test fit_transform
X_whitened = pca.fit_transform(X_.copy())
assert_equal(X_whitened.shape, (n_samples, n_components))
X_whitened2 = pca.transform(X_)
assert_array_almost_equal(X_whitened, X_whitened2)
assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components))
assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components))
X_ = X.copy()
pca = this_PCA(n_components=n_components, whiten=False,
copy=copy).fit(X_)
X_unwhitened = pca.transform(X_)
assert_equal(X_unwhitened.shape, (n_samples, n_components))
# in that case the output components still have varying variances
assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1)
# we always center, so no test for non-centering.
def test_explained_variance():
# Check that PCA output has unit-variance
rng = np.random.RandomState(0)
n_samples = 100
n_features = 80
X = rng.randn(n_samples, n_features)
pca = PCA(n_components=2).fit(X)
rpca = RandomizedPCA(n_components=2, random_state=42).fit(X)
assert_array_almost_equal(pca.explained_variance_,
rpca.explained_variance_, 1)
assert_array_almost_equal(pca.explained_variance_ratio_,
rpca.explained_variance_ratio_, 3)
# compare to empirical variances
X_pca = pca.transform(X)
assert_array_almost_equal(pca.explained_variance_,
np.var(X_pca, axis=0))
X_rpca = rpca.transform(X)
assert_array_almost_equal(rpca.explained_variance_,
np.var(X_rpca, axis=0))
def test_pca_check_projection():
# Test that the projection of data is correct
rng = np.random.RandomState(0)
n, p = 100, 3
X = rng.randn(n, p) * .1
X[:10] += np.array([3, 4, 5])
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
Yt = PCA(n_components=2).fit(X).transform(Xt)
Yt /= np.sqrt((Yt ** 2).sum())
assert_almost_equal(np.abs(Yt[0][0]), 1., 1)
def test_pca_inverse():
# Test that the projection of data can be inverted
rng = np.random.RandomState(0)
n, p = 50, 3
X = rng.randn(n, p) # spherical data
X[:, 1] *= .00001 # make middle component relatively small
X += [5, 4, 3] # make a large mean
# same check that we can find the original data from the transformed
# signal (since the data is almost of rank n_components)
pca = PCA(n_components=2).fit(X)
Y = pca.transform(X)
Y_inverse = pca.inverse_transform(Y)
assert_almost_equal(X, Y_inverse, decimal=3)
# same as above with whitening (approximate reconstruction)
pca = PCA(n_components=2, whiten=True)
pca.fit(X)
Y = pca.transform(X)
Y_inverse = pca.inverse_transform(Y)
assert_almost_equal(X, Y_inverse, decimal=3)
def test_pca_validation():
X = [[0, 1], [1, 0]]
for n_components in [-1, 3]:
assert_raises(ValueError, PCA(n_components).fit, X)
def test_randomized_pca_check_projection():
# Test that the projection by RandomizedPCA on dense data is correct
rng = np.random.RandomState(0)
n, p = 100, 3
X = rng.randn(n, p) * .1
X[:10] += np.array([3, 4, 5])
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
Yt = RandomizedPCA(n_components=2, random_state=0).fit(X).transform(Xt)
Yt /= np.sqrt((Yt ** 2).sum())
assert_almost_equal(np.abs(Yt[0][0]), 1., 1)
def test_randomized_pca_check_list():
# Test that the projection by RandomizedPCA on list data is correct
X = [[1.0, 0.0], [0.0, 1.0]]
X_transformed = RandomizedPCA(n_components=1,
random_state=0).fit(X).transform(X)
assert_equal(X_transformed.shape, (2, 1))
assert_almost_equal(X_transformed.mean(), 0.00, 2)
assert_almost_equal(X_transformed.std(), 0.71, 2)
def test_randomized_pca_inverse():
# Test that RandomizedPCA is inversible on dense data
rng = np.random.RandomState(0)
n, p = 50, 3
X = rng.randn(n, p) # spherical data
X[:, 1] *= .00001 # make middle component relatively small
X += [5, 4, 3] # make a large mean
# same check that we can find the original data from the transformed signal
# (since the data is almost of rank n_components)
pca = RandomizedPCA(n_components=2, random_state=0).fit(X)
Y = pca.transform(X)
Y_inverse = pca.inverse_transform(Y)
assert_almost_equal(X, Y_inverse, decimal=2)
# same as above with whitening (approximate reconstruction)
pca = RandomizedPCA(n_components=2, whiten=True,
random_state=0).fit(X)
Y = pca.transform(X)
Y_inverse = pca.inverse_transform(Y)
relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max()
assert_almost_equal(relative_max_delta, 0.11, decimal=2)
def test_pca_dim():
# Check automated dimensionality setting
rng = np.random.RandomState(0)
n, p = 100, 5
X = rng.randn(n, p) * .1
X[:10] += np.array([3, 4, 5, 1, 2])
pca = PCA(n_components='mle').fit(X)
assert_equal(pca.n_components, 'mle')
assert_equal(pca.n_components_, 1)
def test_infer_dim_1():
# TODO: explain what this is testing
# Or at least use explicit variable names...
n, p = 1000, 5
rng = np.random.RandomState(0)
X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2])
+ np.array([1, 0, 7, 4, 6]))
pca = PCA(n_components=p)
pca.fit(X)
spect = pca.explained_variance_
ll = []
for k in range(p):
ll.append(_assess_dimension_(spect, k, n, p))
ll = np.array(ll)
assert_greater(ll[1], ll.max() - .01 * n)
def test_infer_dim_2():
# TODO: explain what this is testing
# Or at least use explicit variable names...
n, p = 1000, 5
rng = np.random.RandomState(0)
X = rng.randn(n, p) * .1
X[:10] += np.array([3, 4, 5, 1, 2])
X[10:20] += np.array([6, 0, 7, 2, -1])
pca = PCA(n_components=p)
pca.fit(X)
spect = pca.explained_variance_
assert_greater(_infer_dimension_(spect, n, p), 1)
def test_infer_dim_3():
n, p = 100, 5
rng = np.random.RandomState(0)
X = rng.randn(n, p) * .1
X[:10] += np.array([3, 4, 5, 1, 2])
X[10:20] += np.array([6, 0, 7, 2, -1])
X[30:40] += 2 * np.array([-1, 1, -1, 1, -1])
pca = PCA(n_components=p)
pca.fit(X)
spect = pca.explained_variance_
assert_greater(_infer_dimension_(spect, n, p), 2)
def test_infer_dim_by_explained_variance():
X = iris.data
pca = PCA(n_components=0.95)
pca.fit(X)
assert_equal(pca.n_components, 0.95)
assert_equal(pca.n_components_, 2)
pca = PCA(n_components=0.01)
pca.fit(X)
assert_equal(pca.n_components, 0.01)
assert_equal(pca.n_components_, 1)
rng = np.random.RandomState(0)
# more features than samples
X = rng.rand(5, 20)
pca = PCA(n_components=.5).fit(X)
assert_equal(pca.n_components, 0.5)
assert_equal(pca.n_components_, 2)
def test_pca_score():
# Test that probabilistic PCA scoring yields a reasonable score
n, p = 1000, 3
rng = np.random.RandomState(0)
X = rng.randn(n, p) * .1 + np.array([3, 4, 5])
pca = PCA(n_components=2)
pca.fit(X)
ll1 = pca.score(X)
h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p
np.testing.assert_almost_equal(ll1 / h, 1, 0)
def test_pca_score2():
# Test that probabilistic PCA correctly separated different datasets
n, p = 100, 3
rng = np.random.RandomState(0)
X = rng.randn(n, p) * .1 + np.array([3, 4, 5])
pca = PCA(n_components=2)
pca.fit(X)
ll1 = pca.score(X)
ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5]))
assert_greater(ll1, ll2)
# Test that it gives the same scores if whiten=True
pca = PCA(n_components=2, whiten=True)
pca.fit(X)
ll2 = pca.score(X)
assert_almost_equal(ll1, ll2)
def test_pca_score3():
# Check that probabilistic PCA selects the right model
n, p = 200, 3
rng = np.random.RandomState(0)
Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5])
+ np.array([1, 0, 7]))
Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5])
+ np.array([1, 0, 7]))
ll = np.zeros(p)
for k in range(p):
pca = PCA(n_components=k)
pca.fit(Xl)
ll[k] = pca.score(Xt)
assert_true(ll.argmax() == 1)
| bsd-3-clause |
AgainstWind/python-demos | mathematics/function_visual.py | 1 | 1714 | #!/usr/bin/python
# -*- coding: UTF-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def printTwoDimension():
plt.figure(1)
ax = plt.subplot(111)
x = np.linspace(0, np.pi * 2, 200) # 在0到2pi之间,均匀产生200点的数组
# r = 2cosθ
r = 2 * np.cos(x) # 半径
ax.plot(r * np.cos(x), r * np.sin(x))
# r = 1
r = 1
ax.plot(r * np.cos(x), r * np.sin(x))
plt.show()
def printThreeDimension():
fig = plt.figure(1)
ax = fig.add_subplot(1, 1, 1, projection='3d') # 指定三维空间做图
t = np.linspace(0, 4, 200) # 在0到4之间,均匀产生200点的数组
theta = t * 2 * np.pi # 角度
# r(t)=(sint,cost,t)
z = t
x = np.sin(theta)
y = np.cos(theta)
ax.plot(x, y, z, label='r(t)')
# r’(t)
z = 1
x = np.cos(theta)
y = -np.sin(theta)
ax.plot(x, y, z, label='r\'(t)')
ax.legend()
plt.show()
def printCurve():
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-2, 2, 0.1)
Y = np.arange(-2, 2, 0.1)
X, Y = np.meshgrid(X, Y)
Z = X ** 2 + Y ** 2
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()
#printThreeDimension()
#printCurve()
def fun():
x = np.arange(-50,50,0.1)
y = np.arange(-50,50,0.1)
z = np.power(x,2)+np.sin(y)
return (x,y,z)
def functionShow():
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(0, 3, 0.03)
Y = np.arange(0, 3, 0.03)
X, Y = np.meshgrid(X, Y)
#Z = np.cos(X) + np.sin(Y)* 2
Z = np.sin(X**X+Y**Y)/(X**X+Y**Y+1)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
plt.show()
functionShow()
| apache-2.0 |
ammarkhann/FinalSeniorCode | lib/python2.7/site-packages/pandas/core/resample.py | 3 | 44151 | from datetime import timedelta
import numpy as np
import warnings
import copy
from textwrap import dedent
import pandas as pd
from pandas.core.base import AbstractMethodError, GroupByMixin
from pandas.core.groupby import (BinGrouper, Grouper, _GroupBy, GroupBy,
SeriesGroupBy, groupby, PanelGroupBy)
from pandas.tseries.frequencies import to_offset, is_subperiod, is_superperiod
from pandas.core.indexes.datetimes import DatetimeIndex, date_range
from pandas.core.indexes.timedeltas import TimedeltaIndex
from pandas.tseries.offsets import DateOffset, Tick, Day, _delta_to_nanoseconds
from pandas.core.indexes.period import PeriodIndex, period_range
import pandas.core.common as com
import pandas.core.algorithms as algos
import pandas.compat as compat
from pandas.compat.numpy import function as nv
from pandas._libs import lib, tslib
from pandas._libs.lib import Timestamp
from pandas._libs.period import IncompatibleFrequency
from pandas.util._decorators import Appender
from pandas.core.generic import _shared_docs
_shared_docs_kwargs = dict()
class Resampler(_GroupBy):
"""
Class for resampling datetimelike data, a groupby-like operation.
See aggregate, transform, and apply functions on this object.
It's easiest to use obj.resample(...) to use Resampler.
Parameters
----------
obj : pandas object
groupby : a TimeGrouper object
axis : int, default 0
kind : str or None
'period', 'timestamp' to override default index treatement
Notes
-----
After resampling, see aggregate, apply, and transform functions.
Returns
-------
a Resampler of the appropriate type
"""
# to the groupby descriptor
_attributes = ['freq', 'axis', 'closed', 'label', 'convention',
'loffset', 'base', 'kind']
# API compat of allowed attributes
_deprecated_valids = _attributes + ['__doc__', '_cache', '_attributes',
'binner', 'grouper', 'groupby',
'sort', 'kind', 'squeeze', 'keys',
'group_keys', 'as_index', 'exclusions',
'_groupby']
# don't raise deprecation warning on attributes starting with these
# patterns - prevents warnings caused by IPython introspection
_deprecated_valid_patterns = ['_ipython', '_repr']
# API compat of disallowed attributes
_deprecated_invalids = ['iloc', 'loc', 'ix', 'iat', 'at']
def __init__(self, obj, groupby=None, axis=0, kind=None, **kwargs):
self.groupby = groupby
self.keys = None
self.sort = True
self.axis = axis
self.kind = kind
self.squeeze = False
self.group_keys = True
self.as_index = True
self.exclusions = set()
self.binner = None
self.grouper = None
if self.groupby is not None:
self.groupby._set_grouper(self._convert_obj(obj), sort=True)
def __unicode__(self):
""" provide a nice str repr of our rolling object """
attrs = ["{k}={v}".format(k=k, v=getattr(self.groupby, k))
for k in self._attributes if
getattr(self.groupby, k, None) is not None]
return "{klass} [{attrs}]".format(klass=self.__class__.__name__,
attrs=', '.join(attrs))
@property
def obj(self):
return self.groupby.obj
@property
def ax(self):
return self.groupby.ax
@property
def _typ(self):
""" masquerade for compat as a Series or a DataFrame """
if isinstance(self._selected_obj, pd.Series):
return 'series'
return 'dataframe'
@property
def _from_selection(self):
""" is the resampling from a DataFrame column or MultiIndex level """
# upsampling and PeriodIndex resampling do not work
# with selection, this state used to catch and raise an error
return (self.groupby is not None and
(self.groupby.key is not None or
self.groupby.level is not None))
def _deprecated(self, op):
warnings.warn(("\n.resample() is now a deferred operation\n"
"You called {op}(...) on this deferred object "
"which materialized it into a {klass}\nby implicitly "
"taking the mean. Use .resample(...).mean() "
"instead").format(op=op, klass=self._typ),
FutureWarning, stacklevel=3)
return self.mean()
def _make_deprecated_binop(op):
# op is a string
def _evaluate_numeric_binop(self, other):
result = self._deprecated(op)
return getattr(result, op)(other)
return _evaluate_numeric_binop
def _make_deprecated_unary(op, name):
# op is a callable
def _evaluate_numeric_unary(self):
result = self._deprecated(name)
return op(result)
return _evaluate_numeric_unary
def __array__(self):
return self._deprecated('__array__').__array__()
__gt__ = _make_deprecated_binop('__gt__')
__ge__ = _make_deprecated_binop('__ge__')
__lt__ = _make_deprecated_binop('__lt__')
__le__ = _make_deprecated_binop('__le__')
__eq__ = _make_deprecated_binop('__eq__')
__ne__ = _make_deprecated_binop('__ne__')
__add__ = __radd__ = _make_deprecated_binop('__add__')
__sub__ = __rsub__ = _make_deprecated_binop('__sub__')
__mul__ = __rmul__ = _make_deprecated_binop('__mul__')
__floordiv__ = __rfloordiv__ = _make_deprecated_binop('__floordiv__')
__truediv__ = __rtruediv__ = _make_deprecated_binop('__truediv__')
if not compat.PY3:
__div__ = __rdiv__ = _make_deprecated_binop('__div__')
__neg__ = _make_deprecated_unary(lambda x: -x, '__neg__')
__pos__ = _make_deprecated_unary(lambda x: x, '__pos__')
__abs__ = _make_deprecated_unary(lambda x: np.abs(x), '__abs__')
__inv__ = _make_deprecated_unary(lambda x: -x, '__inv__')
def __getattr__(self, attr):
if attr in self._internal_names_set:
return object.__getattribute__(self, attr)
if attr in self._attributes:
return getattr(self.groupby, attr)
if attr in self.obj:
return self[attr]
if attr in self._deprecated_invalids:
raise ValueError(".resample() is now a deferred operation\n"
"\tuse .resample(...).mean() instead of "
".resample(...)")
matches_pattern = any(attr.startswith(x) for x
in self._deprecated_valid_patterns)
if not matches_pattern and attr not in self._deprecated_valids:
self = self._deprecated(attr)
return object.__getattribute__(self, attr)
def __setattr__(self, attr, value):
if attr not in self._deprecated_valids:
raise ValueError("cannot set values on {0}".format(
self.__class__.__name__))
object.__setattr__(self, attr, value)
def __getitem__(self, key):
try:
return super(Resampler, self).__getitem__(key)
except (KeyError, com.AbstractMethodError):
# compat for deprecated
if isinstance(self.obj, com.ABCSeries):
return self._deprecated('__getitem__')[key]
raise
def __setitem__(self, attr, value):
raise ValueError("cannot set items on {0}".format(
self.__class__.__name__))
def _convert_obj(self, obj):
"""
provide any conversions for the object in order to correctly handle
Parameters
----------
obj : the object to be resampled
Returns
-------
obj : converted object
"""
obj = obj._consolidate()
return obj
def _get_binner_for_time(self):
raise AbstractMethodError(self)
def _set_binner(self):
"""
setup our binners
cache these as we are an immutable object
"""
if self.binner is None:
self.binner, self.grouper = self._get_binner()
def _get_binner(self):
"""
create the BinGrouper, assume that self.set_grouper(obj)
has already been called
"""
binner, bins, binlabels = self._get_binner_for_time()
bin_grouper = BinGrouper(bins, binlabels)
return binner, bin_grouper
def _assure_grouper(self):
""" make sure that we are creating our binner & grouper """
self._set_binner()
def plot(self, *args, **kwargs):
# for compat with prior versions, we want to
# have the warnings shown here and just have this work
return self._deprecated('plot').plot(*args, **kwargs)
_agg_doc = dedent("""
Examples
--------
>>> s = Series([1,2,3,4,5],
index=pd.date_range('20130101',
periods=5,freq='s'))
2013-01-01 00:00:00 1
2013-01-01 00:00:01 2
2013-01-01 00:00:02 3
2013-01-01 00:00:03 4
2013-01-01 00:00:04 5
Freq: S, dtype: int64
>>> r = s.resample('2s')
DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left,
label=left, convention=start, base=0]
>>> r.agg(np.sum)
2013-01-01 00:00:00 3
2013-01-01 00:00:02 7
2013-01-01 00:00:04 5
Freq: 2S, dtype: int64
>>> r.agg(['sum','mean','max'])
sum mean max
2013-01-01 00:00:00 3 1.5 2
2013-01-01 00:00:02 7 3.5 4
2013-01-01 00:00:04 5 5.0 5
>>> r.agg({'result' : lambda x: x.mean() / x.std(),
'total' : np.sum})
total result
2013-01-01 00:00:00 3 2.121320
2013-01-01 00:00:02 7 4.949747
2013-01-01 00:00:04 5 NaN
See also
--------
pandas.DataFrame.groupby.aggregate
pandas.DataFrame.resample.transform
pandas.DataFrame.aggregate
""")
@Appender(_agg_doc)
@Appender(_shared_docs['aggregate'] % dict(
klass='DataFrame',
versionadded=''))
def aggregate(self, arg, *args, **kwargs):
self._set_binner()
result, how = self._aggregate(arg, *args, **kwargs)
if result is None:
result = self._groupby_and_aggregate(arg,
*args,
**kwargs)
result = self._apply_loffset(result)
return result
agg = aggregate
apply = aggregate
def transform(self, arg, *args, **kwargs):
"""
Call function producing a like-indexed Series on each group and return
a Series with the transformed values
Parameters
----------
func : function
To apply to each group. Should return a Series with the same index
Examples
--------
>>> resampled.transform(lambda x: (x - x.mean()) / x.std())
Returns
-------
transformed : Series
"""
return self._selected_obj.groupby(self.groupby).transform(
arg, *args, **kwargs)
def _downsample(self, f):
raise AbstractMethodError(self)
def _upsample(self, f, limit=None, fill_value=None):
raise AbstractMethodError(self)
def _gotitem(self, key, ndim, subset=None):
"""
sub-classes to define
return a sliced object
Parameters
----------
key : string / list of selections
ndim : 1,2
requested ndim of result
subset : object, default None
subset to act on
"""
self._set_binner()
grouper = self.grouper
if subset is None:
subset = self.obj
grouped = groupby(subset, by=None, grouper=grouper, axis=self.axis)
# try the key selection
try:
return grouped[key]
except KeyError:
return grouped
def _groupby_and_aggregate(self, how, grouper=None, *args, **kwargs):
""" re-evaluate the obj with a groupby aggregation """
if grouper is None:
self._set_binner()
grouper = self.grouper
obj = self._selected_obj
try:
grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis)
except TypeError:
# panel grouper
grouped = PanelGroupBy(obj, grouper=grouper, axis=self.axis)
try:
result = grouped.aggregate(how, *args, **kwargs)
except Exception:
# we have a non-reducing function
# try to evaluate
result = grouped.apply(how, *args, **kwargs)
result = self._apply_loffset(result)
return self._wrap_result(result)
def _apply_loffset(self, result):
"""
if loffset is set, offset the result index
This is NOT an idempotent routine, it will be applied
exactly once to the result.
Parameters
----------
result : Series or DataFrame
the result of resample
"""
needs_offset = (
isinstance(self.loffset, (DateOffset, timedelta)) and
isinstance(result.index, DatetimeIndex) and
len(result.index) > 0
)
if needs_offset:
result.index = result.index + self.loffset
self.loffset = None
return result
def _get_resampler_for_grouping(self, groupby, **kwargs):
""" return the correct class for resampling with groupby """
return self._resampler_for_grouping(self, groupby=groupby, **kwargs)
def _wrap_result(self, result):
""" potentially wrap any results """
if isinstance(result, com.ABCSeries) and self._selection is not None:
result.name = self._selection
return result
def pad(self, limit=None):
"""
Forward fill the values
Parameters
----------
limit : integer, optional
limit of how many values to fill
See Also
--------
Series.fillna
DataFrame.fillna
"""
return self._upsample('pad', limit=limit)
ffill = pad
def backfill(self, limit=None):
"""
Backward fill the values
Parameters
----------
limit : integer, optional
limit of how many values to fill
See Also
--------
Series.fillna
DataFrame.fillna
"""
return self._upsample('backfill', limit=limit)
bfill = backfill
def fillna(self, method, limit=None):
"""
Fill missing values
Parameters
----------
method : str, method of resampling ('ffill', 'bfill')
limit : integer, optional
limit of how many values to fill
See Also
--------
Series.fillna
DataFrame.fillna
"""
return self._upsample(method, limit=limit)
@Appender(_shared_docs['interpolate'] % _shared_docs_kwargs)
def interpolate(self, method='linear', axis=0, limit=None, inplace=False,
limit_direction='forward', downcast=None, **kwargs):
"""
Interpolate values according to different methods.
.. versionadded:: 0.18.1
"""
result = self._upsample(None)
return result.interpolate(method=method, axis=axis, limit=limit,
inplace=inplace,
limit_direction=limit_direction,
downcast=downcast, **kwargs)
def asfreq(self, fill_value=None):
"""
return the values at the new freq,
essentially a reindex
Parameters
----------
fill_value: scalar, optional
Value to use for missing values, applied during upsampling (note
this does not fill NaNs that already were present).
.. versionadded:: 0.20.0
See Also
--------
Series.asfreq
DataFrame.asfreq
"""
return self._upsample('asfreq', fill_value=fill_value)
def std(self, ddof=1, *args, **kwargs):
"""
Compute standard deviation of groups, excluding missing values
Parameters
----------
ddof : integer, default 1
degrees of freedom
"""
nv.validate_resampler_func('std', args, kwargs)
return self._downsample('std', ddof=ddof)
def var(self, ddof=1, *args, **kwargs):
"""
Compute variance of groups, excluding missing values
Parameters
----------
ddof : integer, default 1
degrees of freedom
"""
nv.validate_resampler_func('var', args, kwargs)
return self._downsample('var', ddof=ddof)
Resampler._deprecated_valids += dir(Resampler)
# downsample methods
for method in ['min', 'max', 'first', 'last', 'sum', 'mean', 'sem',
'median', 'prod', 'ohlc']:
def f(self, _method=method, *args, **kwargs):
nv.validate_resampler_func(_method, args, kwargs)
return self._downsample(_method)
f.__doc__ = getattr(GroupBy, method).__doc__
setattr(Resampler, method, f)
# groupby & aggregate methods
for method in ['count', 'size']:
def f(self, _method=method):
return self._downsample(_method)
f.__doc__ = getattr(GroupBy, method).__doc__
setattr(Resampler, method, f)
# series only methods
for method in ['nunique']:
def f(self, _method=method):
return self._downsample(_method)
f.__doc__ = getattr(SeriesGroupBy, method).__doc__
setattr(Resampler, method, f)
def _maybe_process_deprecations(r, how=None, fill_method=None, limit=None):
""" potentially we might have a deprecation warning, show it
but call the appropriate methods anyhow """
if how is not None:
# .resample(..., how='sum')
if isinstance(how, compat.string_types):
method = "{0}()".format(how)
# .resample(..., how=lambda x: ....)
else:
method = ".apply(<func>)"
# if we have both a how and fill_method, then show
# the following warning
if fill_method is None:
warnings.warn("how in .resample() is deprecated\n"
"the new syntax is "
".resample(...).{method}".format(
method=method),
FutureWarning, stacklevel=3)
r = r.aggregate(how)
if fill_method is not None:
# show the prior function call
method = '.' + method if how is not None else ''
args = "limit={0}".format(limit) if limit is not None else ""
warnings.warn("fill_method is deprecated to .resample()\n"
"the new syntax is .resample(...){method}"
".{fill_method}({args})".format(
method=method,
fill_method=fill_method,
args=args),
FutureWarning, stacklevel=3)
if how is not None:
r = getattr(r, fill_method)(limit=limit)
else:
r = r.aggregate(fill_method, limit=limit)
return r
class _GroupByMixin(GroupByMixin):
""" provide the groupby facilities """
def __init__(self, obj, *args, **kwargs):
parent = kwargs.pop('parent', None)
groupby = kwargs.pop('groupby', None)
if parent is None:
parent = obj
# initialize our GroupByMixin object with
# the resampler attributes
for attr in self._attributes:
setattr(self, attr, kwargs.get(attr, getattr(parent, attr)))
super(_GroupByMixin, self).__init__(None)
self._groupby = groupby
self._groupby.mutated = True
self._groupby.grouper.mutated = True
self.groupby = copy.copy(parent.groupby)
def _apply(self, f, **kwargs):
"""
dispatch to _upsample; we are stripping all of the _upsample kwargs and
performing the original function call on the grouped object
"""
def func(x):
x = self._shallow_copy(x, groupby=self.groupby)
if isinstance(f, compat.string_types):
return getattr(x, f)(**kwargs)
return x.apply(f, **kwargs)
result = self._groupby.apply(func)
return self._wrap_result(result)
_upsample = _apply
_downsample = _apply
_groupby_and_aggregate = _apply
class DatetimeIndexResampler(Resampler):
@property
def _resampler_for_grouping(self):
return DatetimeIndexResamplerGroupby
def _get_binner_for_time(self):
# this is how we are actually creating the bins
if self.kind == 'period':
return self.groupby._get_time_period_bins(self.ax)
return self.groupby._get_time_bins(self.ax)
def _downsample(self, how, **kwargs):
"""
Downsample the cython defined function
Parameters
----------
how : string / cython mapped function
**kwargs : kw args passed to how function
"""
self._set_binner()
how = self._is_cython_func(how) or how
ax = self.ax
obj = self._selected_obj
if not len(ax):
# reset to the new freq
obj = obj.copy()
obj.index.freq = self.freq
return obj
# do we have a regular frequency
if ax.freq is not None or ax.inferred_freq is not None:
if len(self.grouper.binlabels) > len(ax) and how is None:
# let's do an asfreq
return self.asfreq()
# we are downsampling
# we want to call the actual grouper method here
result = obj.groupby(
self.grouper, axis=self.axis).aggregate(how, **kwargs)
result = self._apply_loffset(result)
return self._wrap_result(result)
def _adjust_binner_for_upsample(self, binner):
""" adjust our binner when upsampling """
if self.closed == 'right':
binner = binner[1:]
else:
binner = binner[:-1]
return binner
def _upsample(self, method, limit=None, fill_value=None):
"""
method : string {'backfill', 'bfill', 'pad',
'ffill', 'asfreq'} method for upsampling
limit : int, default None
Maximum size gap to fill when reindexing
fill_value : scalar, default None
Value to use for missing values
See also
--------
.fillna
"""
self._set_binner()
if self.axis:
raise AssertionError('axis must be 0')
if self._from_selection:
raise ValueError("Upsampling from level= or on= selection"
" is not supported, use .set_index(...)"
" to explicitly set index to"
" datetime-like")
ax = self.ax
obj = self._selected_obj
binner = self.binner
res_index = self._adjust_binner_for_upsample(binner)
# if we have the same frequency as our axis, then we are equal sampling
if limit is None and to_offset(ax.inferred_freq) == self.freq:
result = obj.copy()
result.index = res_index
else:
result = obj.reindex(res_index, method=method,
limit=limit, fill_value=fill_value)
return self._wrap_result(result)
def _wrap_result(self, result):
result = super(DatetimeIndexResampler, self)._wrap_result(result)
# we may have a different kind that we were asked originally
# convert if needed
if self.kind == 'period' and not isinstance(result.index, PeriodIndex):
result.index = result.index.to_period(self.freq)
return result
class DatetimeIndexResamplerGroupby(_GroupByMixin, DatetimeIndexResampler):
"""
Provides a resample of a groupby implementation
.. versionadded:: 0.18.1
"""
@property
def _constructor(self):
return DatetimeIndexResampler
class PeriodIndexResampler(DatetimeIndexResampler):
@property
def _resampler_for_grouping(self):
return PeriodIndexResamplerGroupby
def _convert_obj(self, obj):
obj = super(PeriodIndexResampler, self)._convert_obj(obj)
offset = to_offset(self.freq)
if offset.n > 1:
if self.kind == 'period': # pragma: no cover
print('Warning: multiple of frequency -> timestamps')
# Cannot have multiple of periods, convert to timestamp
self.kind = 'timestamp'
# convert to timestamp
if not (self.kind is None or self.kind == 'period'):
if self._from_selection:
# see GH 14008, GH 12871
msg = ("Resampling from level= or on= selection"
" with a PeriodIndex is not currently supported,"
" use .set_index(...) to explicitly set index")
raise NotImplementedError(msg)
else:
obj = obj.to_timestamp(how=self.convention)
return obj
def aggregate(self, arg, *args, **kwargs):
result, how = self._aggregate(arg, *args, **kwargs)
if result is None:
result = self._downsample(arg, *args, **kwargs)
result = self._apply_loffset(result)
return result
agg = aggregate
def _get_new_index(self):
""" return our new index """
ax = self.ax
if len(ax) == 0:
values = []
else:
start = ax[0].asfreq(self.freq, how=self.convention)
end = ax[-1].asfreq(self.freq, how='end')
values = period_range(start, end, freq=self.freq).asi8
return ax._shallow_copy(values, freq=self.freq)
def _downsample(self, how, **kwargs):
"""
Downsample the cython defined function
Parameters
----------
how : string / cython mapped function
**kwargs : kw args passed to how function
"""
# we may need to actually resample as if we are timestamps
if self.kind == 'timestamp':
return super(PeriodIndexResampler, self)._downsample(how, **kwargs)
how = self._is_cython_func(how) or how
ax = self.ax
new_index = self._get_new_index()
# Start vs. end of period
memb = ax.asfreq(self.freq, how=self.convention)
if is_subperiod(ax.freq, self.freq):
# Downsampling
if len(new_index) == 0:
bins = []
else:
i8 = memb.asi8
rng = np.arange(i8[0], i8[-1] + 1)
bins = memb.searchsorted(rng, side='right')
grouper = BinGrouper(bins, new_index)
return self._groupby_and_aggregate(how, grouper=grouper)
elif is_superperiod(ax.freq, self.freq):
return self.asfreq()
elif ax.freq == self.freq:
return self.asfreq()
raise IncompatibleFrequency(
'Frequency {} cannot be resampled to {}, as they are not '
'sub or super periods'.format(ax.freq, self.freq))
def _upsample(self, method, limit=None, fill_value=None):
"""
method : string {'backfill', 'bfill', 'pad', 'ffill'}
method for upsampling
limit : int, default None
Maximum size gap to fill when reindexing
fill_value : scalar, default None
Value to use for missing values
See also
--------
.fillna
"""
if self._from_selection:
raise ValueError("Upsampling from level= or on= selection"
" is not supported, use .set_index(...)"
" to explicitly set index to"
" datetime-like")
# we may need to actually resample as if we are timestamps
if self.kind == 'timestamp':
return super(PeriodIndexResampler, self)._upsample(
method, limit=limit, fill_value=fill_value)
ax = self.ax
obj = self.obj
new_index = self._get_new_index()
# Start vs. end of period
memb = ax.asfreq(self.freq, how=self.convention)
# Get the fill indexer
indexer = memb.get_indexer(new_index, method=method, limit=limit)
return self._wrap_result(_take_new_index(
obj, indexer, new_index, axis=self.axis))
class PeriodIndexResamplerGroupby(_GroupByMixin, PeriodIndexResampler):
"""
Provides a resample of a groupby implementation
.. versionadded:: 0.18.1
"""
@property
def _constructor(self):
return PeriodIndexResampler
class TimedeltaIndexResampler(DatetimeIndexResampler):
@property
def _resampler_for_grouping(self):
return TimedeltaIndexResamplerGroupby
def _get_binner_for_time(self):
return self.groupby._get_time_delta_bins(self.ax)
def _adjust_binner_for_upsample(self, binner):
""" adjust our binner when upsampling """
ax = self.ax
if is_subperiod(ax.freq, self.freq):
# We are actually downsampling
# but are in the asfreq path
# GH 12926
if self.closed == 'right':
binner = binner[1:]
else:
binner = binner[:-1]
return binner
class TimedeltaIndexResamplerGroupby(_GroupByMixin, TimedeltaIndexResampler):
"""
Provides a resample of a groupby implementation
.. versionadded:: 0.18.1
"""
@property
def _constructor(self):
return TimedeltaIndexResampler
def resample(obj, kind=None, **kwds):
""" create a TimeGrouper and return our resampler """
tg = TimeGrouper(**kwds)
return tg._get_resampler(obj, kind=kind)
resample.__doc__ = Resampler.__doc__
def get_resampler_for_grouping(groupby, rule, how=None, fill_method=None,
limit=None, kind=None, **kwargs):
""" return our appropriate resampler when grouping as well """
# .resample uses 'on' similar to how .groupby uses 'key'
kwargs['key'] = kwargs.pop('on', None)
tg = TimeGrouper(freq=rule, **kwargs)
resampler = tg._get_resampler(groupby.obj, kind=kind)
r = resampler._get_resampler_for_grouping(groupby=groupby)
return _maybe_process_deprecations(r,
how=how,
fill_method=fill_method,
limit=limit)
class TimeGrouper(Grouper):
"""
Custom groupby class for time-interval grouping
Parameters
----------
freq : pandas date offset or offset alias for identifying bin edges
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
nperiods : optional, integer
convention : {'start', 'end', 'e', 's'}
If axis is PeriodIndex
Notes
-----
Use begin, end, nperiods to generate intervals that cannot be derived
directly from the associated object
"""
def __init__(self, freq='Min', closed=None, label=None, how='mean',
nperiods=None, axis=0,
fill_method=None, limit=None, loffset=None, kind=None,
convention=None, base=0, **kwargs):
freq = to_offset(freq)
end_types = set(['M', 'A', 'Q', 'BM', 'BA', 'BQ', 'W'])
rule = freq.rule_code
if (rule in end_types or
('-' in rule and rule[:rule.find('-')] in end_types)):
if closed is None:
closed = 'right'
if label is None:
label = 'right'
else:
if closed is None:
closed = 'left'
if label is None:
label = 'left'
self.closed = closed
self.label = label
self.nperiods = nperiods
self.kind = kind
self.convention = convention or 'E'
self.convention = self.convention.lower()
if isinstance(loffset, compat.string_types):
loffset = to_offset(loffset)
self.loffset = loffset
self.how = how
self.fill_method = fill_method
self.limit = limit
self.base = base
# always sort time groupers
kwargs['sort'] = True
super(TimeGrouper, self).__init__(freq=freq, axis=axis, **kwargs)
def _get_resampler(self, obj, kind=None):
"""
return my resampler or raise if we have an invalid axis
Parameters
----------
obj : input object
kind : string, optional
'period','timestamp','timedelta' are valid
Returns
-------
a Resampler
Raises
------
TypeError if incompatible axis
"""
self._set_grouper(obj)
ax = self.ax
if isinstance(ax, DatetimeIndex):
return DatetimeIndexResampler(obj,
groupby=self,
kind=kind,
axis=self.axis)
elif isinstance(ax, PeriodIndex) or kind == 'period':
return PeriodIndexResampler(obj,
groupby=self,
kind=kind,
axis=self.axis)
elif isinstance(ax, TimedeltaIndex):
return TimedeltaIndexResampler(obj,
groupby=self,
axis=self.axis)
raise TypeError("Only valid with DatetimeIndex, "
"TimedeltaIndex or PeriodIndex, "
"but got an instance of %r" % type(ax).__name__)
def _get_grouper(self, obj):
# create the resampler and return our binner
r = self._get_resampler(obj)
r._set_binner()
return r.binner, r.grouper, r.obj
def _get_binner_for_grouping(self, obj):
# return an ordering of the transformed group labels,
# suitable for multi-grouping, e.g the labels for
# the resampled intervals
binner, grouper, obj = self._get_grouper(obj)
l = []
for key, group in grouper.get_iterator(self.ax):
l.extend([key] * len(group))
if isinstance(self.ax, PeriodIndex):
grouper = binner.__class__(l, freq=binner.freq, name=binner.name)
else:
# resampling causes duplicated values, specifying freq is invalid
grouper = binner.__class__(l, name=binner.name)
# since we may have had to sort
# may need to reorder groups here
if self.indexer is not None:
indexer = self.indexer.argsort(kind='quicksort')
grouper = grouper.take(indexer)
return grouper
def _get_time_bins(self, ax):
if not isinstance(ax, DatetimeIndex):
raise TypeError('axis must be a DatetimeIndex, but got '
'an instance of %r' % type(ax).__name__)
if len(ax) == 0:
binner = labels = DatetimeIndex(
data=[], freq=self.freq, name=ax.name)
return binner, [], labels
first, last = ax.min(), ax.max()
first, last = _get_range_edges(first, last, self.freq,
closed=self.closed,
base=self.base)
tz = ax.tz
# GH #12037
# use first/last directly instead of call replace() on them
# because replace() will swallow the nanosecond part
# thus last bin maybe slightly before the end if the end contains
# nanosecond part and lead to `Values falls after last bin` error
binner = labels = DatetimeIndex(freq=self.freq,
start=first,
end=last,
tz=tz,
name=ax.name)
# a little hack
trimmed = False
if (len(binner) > 2 and binner[-2] == last and
self.closed == 'right'):
binner = binner[:-1]
trimmed = True
ax_values = ax.asi8
binner, bin_edges = self._adjust_bin_edges(binner, ax_values)
# general version, knowing nothing about relative frequencies
bins = lib.generate_bins_dt64(
ax_values, bin_edges, self.closed, hasnans=ax.hasnans)
if self.closed == 'right':
labels = binner
if self.label == 'right':
labels = labels[1:]
elif not trimmed:
labels = labels[:-1]
else:
if self.label == 'right':
labels = labels[1:]
elif not trimmed:
labels = labels[:-1]
if ax.hasnans:
binner = binner.insert(0, tslib.NaT)
labels = labels.insert(0, tslib.NaT)
# if we end up with more labels than bins
# adjust the labels
# GH4076
if len(bins) < len(labels):
labels = labels[:len(bins)]
return binner, bins, labels
def _adjust_bin_edges(self, binner, ax_values):
# Some hacks for > daily data, see #1471, #1458, #1483
bin_edges = binner.asi8
if self.freq != 'D' and is_superperiod(self.freq, 'D'):
day_nanos = _delta_to_nanoseconds(timedelta(1))
if self.closed == 'right':
bin_edges = bin_edges + day_nanos - 1
# intraday values on last day
if bin_edges[-2] > ax_values.max():
bin_edges = bin_edges[:-1]
binner = binner[:-1]
return binner, bin_edges
def _get_time_delta_bins(self, ax):
if not isinstance(ax, TimedeltaIndex):
raise TypeError('axis must be a TimedeltaIndex, but got '
'an instance of %r' % type(ax).__name__)
if not len(ax):
binner = labels = TimedeltaIndex(
data=[], freq=self.freq, name=ax.name)
return binner, [], labels
start = ax[0]
end = ax[-1]
labels = binner = TimedeltaIndex(start=start,
end=end,
freq=self.freq,
name=ax.name)
end_stamps = labels + 1
bins = ax.searchsorted(end_stamps, side='left')
# Addresses GH #10530
if self.base > 0:
labels += type(self.freq)(self.base)
return binner, bins, labels
def _get_time_period_bins(self, ax):
if not isinstance(ax, DatetimeIndex):
raise TypeError('axis must be a DatetimeIndex, but got '
'an instance of %r' % type(ax).__name__)
if not len(ax):
binner = labels = PeriodIndex(
data=[], freq=self.freq, name=ax.name)
return binner, [], labels
labels = binner = PeriodIndex(start=ax[0],
end=ax[-1],
freq=self.freq,
name=ax.name)
end_stamps = (labels + 1).asfreq(self.freq, 's').to_timestamp()
if ax.tzinfo:
end_stamps = end_stamps.tz_localize(ax.tzinfo)
bins = ax.searchsorted(end_stamps, side='left')
return binner, bins, labels
def _take_new_index(obj, indexer, new_index, axis=0):
from pandas.core.api import Series, DataFrame
if isinstance(obj, Series):
new_values = algos.take_1d(obj.values, indexer)
return Series(new_values, index=new_index, name=obj.name)
elif isinstance(obj, DataFrame):
if axis == 1:
raise NotImplementedError("axis 1 is not supported")
return DataFrame(obj._data.reindex_indexer(
new_axis=new_index, indexer=indexer, axis=1))
else:
raise ValueError("'obj' should be either a Series or a DataFrame")
def _get_range_edges(first, last, offset, closed='left', base=0):
if isinstance(offset, compat.string_types):
offset = to_offset(offset)
if isinstance(offset, Tick):
is_day = isinstance(offset, Day)
day_nanos = _delta_to_nanoseconds(timedelta(1))
# #1165
if (is_day and day_nanos % offset.nanos == 0) or not is_day:
return _adjust_dates_anchored(first, last, offset,
closed=closed, base=base)
if not isinstance(offset, Tick): # and first.time() != last.time():
# hack!
first = first.normalize()
last = last.normalize()
if closed == 'left':
first = Timestamp(offset.rollback(first))
else:
first = Timestamp(first - offset)
last = Timestamp(last + offset)
return first, last
def _adjust_dates_anchored(first, last, offset, closed='right', base=0):
# First and last offsets should be calculated from the start day to fix an
# error cause by resampling across multiple days when a one day period is
# not a multiple of the frequency.
#
# See https://github.com/pandas-dev/pandas/issues/8683
# 14682 - Since we need to drop the TZ information to perform
# the adjustment in the presence of a DST change,
# save TZ Info and the DST state of the first and last parameters
# so that we can accurately rebuild them at the end.
first_tzinfo = first.tzinfo
last_tzinfo = last.tzinfo
first_dst = bool(first.dst())
last_dst = bool(last.dst())
first = first.tz_localize(None)
last = last.tz_localize(None)
start_day_nanos = first.normalize().value
base_nanos = (base % offset.n) * offset.nanos // offset.n
start_day_nanos += base_nanos
foffset = (first.value - start_day_nanos) % offset.nanos
loffset = (last.value - start_day_nanos) % offset.nanos
if closed == 'right':
if foffset > 0:
# roll back
fresult = first.value - foffset
else:
fresult = first.value - offset.nanos
if loffset > 0:
# roll forward
lresult = last.value + (offset.nanos - loffset)
else:
# already the end of the road
lresult = last.value
else: # closed == 'left'
if foffset > 0:
fresult = first.value - foffset
else:
# start of the road
fresult = first.value
if loffset > 0:
# roll forward
lresult = last.value + (offset.nanos - loffset)
else:
lresult = last.value + offset.nanos
return (Timestamp(fresult).tz_localize(first_tzinfo, ambiguous=first_dst),
Timestamp(lresult).tz_localize(last_tzinfo, ambiguous=last_dst))
def asfreq(obj, freq, method=None, how=None, normalize=False, fill_value=None):
"""
Utility frequency conversion method for Series/DataFrame
"""
if isinstance(obj.index, PeriodIndex):
if method is not None:
raise NotImplementedError("'method' argument is not supported")
if how is None:
how = 'E'
new_obj = obj.copy()
new_obj.index = obj.index.asfreq(freq, how=how)
elif len(obj.index) == 0:
new_obj = obj.copy()
new_obj.index = obj.index._shallow_copy(freq=to_offset(freq))
else:
dti = date_range(obj.index[0], obj.index[-1], freq=freq)
dti.name = obj.index.name
new_obj = obj.reindex(dti, method=method, fill_value=fill_value)
if normalize:
new_obj.index = new_obj.index.normalize()
return new_obj
| mit |
wzbozon/scikit-learn | sklearn/feature_selection/tests/test_from_model.py | 244 | 1593 | import numpy as np
import scipy.sparse as sp
from nose.tools import assert_raises, assert_true
from sklearn.utils.testing import assert_less
from sklearn.utils.testing import assert_greater
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.svm import LinearSVC
iris = load_iris()
def test_transform_linear_model():
for clf in (LogisticRegression(C=0.1),
LinearSVC(C=0.01, dual=False),
SGDClassifier(alpha=0.001, n_iter=50, shuffle=True,
random_state=0)):
for thresh in (None, ".09*mean", "1e-5 * median"):
for func in (np.array, sp.csr_matrix):
X = func(iris.data)
clf.set_params(penalty="l1")
clf.fit(X, iris.target)
X_new = clf.transform(X, thresh)
if isinstance(clf, SGDClassifier):
assert_true(X_new.shape[1] <= X.shape[1])
else:
assert_less(X_new.shape[1], X.shape[1])
clf.set_params(penalty="l2")
clf.fit(X_new, iris.target)
pred = clf.predict(X_new)
assert_greater(np.mean(pred == iris.target), 0.7)
def test_invalid_input():
clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None)
clf.fit(iris.data, iris.target)
assert_raises(ValueError, clf.transform, iris.data, "gobbledigook")
assert_raises(ValueError, clf.transform, iris.data, ".5 * gobbledigook")
| bsd-3-clause |
orion-42/numerics-physics-stuff | solar_system.py | 1 | 2094 | import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.constants import gravitational_constant as G
# newtonian dynamics of an n body system
def rhs(y, t, *masses):
num_planets = len(masses)
y = y.reshape((num_planets, 2, 3))
ans = y.copy()
for i in range(num_planets):
ans[i, 0, :] = y[i, 1, :] # dx/dt = v
accel = np.zeros(3)
for j in range(num_planets):
if i != j:
between = y[j, 0, :] - y[i, 0, :]
dist = np.linalg.norm(between)
accel += G*masses[j]/dist**3*between
ans[i, 1, :] = accel # dv/dt = a
return ans.reshape(ans.size)
# Parameter
# earth mars sun
masses = (5.97237e24, 6.4171e23, 1.988544e30) # kg
# Initial Conditions
# km, km/s
# Data from Ephemerides from some day
earth_pos = [-1.012268338703987E+08, -1.111875886682171E+08, -1.939665193599463E+04]
earth_vel = [2.152795356301499E+01, -2.018669837471565E+01, 1.000460883457954E-03]
mars_pos = [-1.345930796446981E+08, -1.863155816469951E+08, -6.188645620241463E+05]
mars_vel = [2.053477661794103E+01, -1.212126142710785E+01, -7.582624591585443E-01]
sun_pos = [5.626768185365887E+05, 3.432765388815567E+05, -2.436414149240617E+04]
sun_vel = [-7.612831360793502E-04, 1.210783982822092E-02, -1.274982680357986E-06]
y0 = np.array([
[earth_pos, earth_vel],
[mars_pos, mars_vel],
[sun_pos, sun_vel],
]) # [km, km/s]
num_planets = y0.shape[0]
y0 *= 1000.0 # km -> m
y0 = y0.reshape(y0.size)
# Timeframe
T = 2*365*24*60*60.0 # 2y -> [s]
steps = 10000
ts = np.linspace(0, T, steps)
# Integration of the equations
ans = odeint(rhs, y0, ts, args=masses)
ans = ans.reshape((steps, num_planets, 2, 3))
# Plot the result
planet_names = ["Earth", "Mars", "Sun"]
colors = ["blue", "red", "yellow"]
for i in range(num_planets):
xs = ans[:, i, 0, 0]/1000.0
ys = ans[:, i, 0, 1]/1000.0
plt.plot(xs, ys, label=planet_names[i], color=colors[i])
plt.legend(loc=3)
plt.title("Solarsystem Simulation")
plt.xlabel("x/km")
plt.ylabel("y/km")
plt.grid()
plt.show()
| mit |
hainm/scikit-learn | sklearn/utils/multiclass.py | 83 | 12343 |
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi
#
# License: BSD 3 clause
"""
Multi-class / multi-label utility function
==========================================
"""
from __future__ import division
from collections import Sequence
from itertools import chain
from scipy.sparse import issparse
from scipy.sparse.base import spmatrix
from scipy.sparse import dok_matrix
from scipy.sparse import lil_matrix
import numpy as np
from ..externals.six import string_types
from .validation import check_array
from ..utils.fixes import bincount
def _unique_multiclass(y):
if hasattr(y, '__array__'):
return np.unique(np.asarray(y))
else:
return set(y)
def _unique_indicator(y):
return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1])
_FN_UNIQUE_LABELS = {
'binary': _unique_multiclass,
'multiclass': _unique_multiclass,
'multilabel-indicator': _unique_indicator,
}
def unique_labels(*ys):
"""Extract an ordered array of unique labels
We don't allow:
- mix of multilabel and multiclass (single label) targets
- mix of label indicator matrix and anything else,
because there are no explicit labels)
- mix of label indicator matrices of different sizes
- mix of string and integer labels
At the moment, we also don't allow "multiclass-multioutput" input type.
Parameters
----------
*ys : array-likes,
Returns
-------
out : numpy array of shape [n_unique_labels]
An ordered array of unique labels.
Examples
--------
>>> from sklearn.utils.multiclass import unique_labels
>>> unique_labels([3, 5, 5, 5, 7, 7])
array([3, 5, 7])
>>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4])
array([1, 2, 3, 4])
>>> unique_labels([1, 2, 10], [5, 11])
array([ 1, 2, 5, 10, 11])
"""
if not ys:
raise ValueError('No argument has been passed.')
# Check that we don't mix label format
ys_types = set(type_of_target(x) for x in ys)
if ys_types == set(["binary", "multiclass"]):
ys_types = set(["multiclass"])
if len(ys_types) > 1:
raise ValueError("Mix type of y not allowed, got types %s" % ys_types)
label_type = ys_types.pop()
# Check consistency for the indicator format
if (label_type == "multilabel-indicator" and
len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1]
for y in ys)) > 1):
raise ValueError("Multi-label binary indicator input with "
"different numbers of labels")
# Get the unique set of labels
_unique_labels = _FN_UNIQUE_LABELS.get(label_type, None)
if not _unique_labels:
raise ValueError("Unknown label type: %s" % repr(ys))
ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys))
# Check that we don't mix string type with number type
if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1):
raise ValueError("Mix of label input types (string and number)")
return np.array(sorted(ys_labels))
def _is_integral_float(y):
return y.dtype.kind == 'f' and np.all(y.astype(int) == y)
def is_multilabel(y):
""" Check if ``y`` is in a multilabel format.
Parameters
----------
y : numpy array of shape [n_samples]
Target values.
Returns
-------
out : bool,
Return ``True``, if ``y`` is in a multilabel format, else ```False``.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.multiclass import is_multilabel
>>> is_multilabel([0, 1, 0, 1])
False
>>> is_multilabel([[1], [0, 2], []])
False
>>> is_multilabel(np.array([[1, 0], [0, 0]]))
True
>>> is_multilabel(np.array([[1], [0], [0]]))
False
>>> is_multilabel(np.array([[1, 0, 0]]))
True
"""
if hasattr(y, '__array__'):
y = np.asarray(y)
if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1):
return False
if issparse(y):
if isinstance(y, (dok_matrix, lil_matrix)):
y = y.tocsr()
return (len(y.data) == 0 or np.ptp(y.data) == 0 and
(y.dtype.kind in 'biu' or # bool, int, uint
_is_integral_float(np.unique(y.data))))
else:
labels = np.unique(y)
return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint
_is_integral_float(labels))
def type_of_target(y):
"""Determine the type of data indicated by target `y`
Parameters
----------
y : array-like
Returns
-------
target_type : string
One of:
* 'continuous': `y` is an array-like of floats that are not all
integers, and is 1d or a column vector.
* 'continuous-multioutput': `y` is a 2d array of floats that are
not all integers, and both dimensions are of size > 1.
* 'binary': `y` contains <= 2 discrete values and is 1d or a column
vector.
* 'multiclass': `y` contains more than two discrete values, is not a
sequence of sequences, and is 1d or a column vector.
* 'multiclass-multioutput': `y` is a 2d array that contains more
than two discrete values, is not a sequence of sequences, and both
dimensions are of size > 1.
* 'multilabel-indicator': `y` is a label indicator matrix, an array
of two dimensions with at least two columns, and at most 2 unique
values.
* 'unknown': `y` is array-like but none of the above, such as a 3d
array, sequence of sequences, or an array of non-sequence objects.
Examples
--------
>>> import numpy as np
>>> type_of_target([0.1, 0.6])
'continuous'
>>> type_of_target([1, -1, -1, 1])
'binary'
>>> type_of_target(['a', 'b', 'a'])
'binary'
>>> type_of_target([1.0, 2.0])
'binary'
>>> type_of_target([1, 0, 2])
'multiclass'
>>> type_of_target([1.0, 0.0, 3.0])
'multiclass'
>>> type_of_target(['a', 'b', 'c'])
'multiclass'
>>> type_of_target(np.array([[1, 2], [3, 1]]))
'multiclass-multioutput'
>>> type_of_target([[1, 2]])
'multiclass-multioutput'
>>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]]))
'continuous-multioutput'
>>> type_of_target(np.array([[0, 1], [1, 1]]))
'multilabel-indicator'
"""
valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__'))
and not isinstance(y, string_types))
if not valid:
raise ValueError('Expected array-like (array or non-string sequence), '
'got %r' % y)
if is_multilabel(y):
return 'multilabel-indicator'
try:
y = np.asarray(y)
except ValueError:
# Known to fail in numpy 1.3 for array of arrays
return 'unknown'
# The old sequence of sequences format
try:
if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence)
and not isinstance(y[0], string_types)):
raise ValueError('You appear to be using a legacy multi-label data'
' representation. Sequence of sequences are no'
' longer supported; use a binary array or sparse'
' matrix instead.')
except IndexError:
pass
# Invalid inputs
if y.ndim > 2 or (y.dtype == object and len(y) and
not isinstance(y.flat[0], string_types)):
return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"]
if y.ndim == 2 and y.shape[1] == 0:
return 'unknown' # [[]]
if y.ndim == 2 and y.shape[1] > 1:
suffix = "-multioutput" # [[1, 2], [1, 2]]
else:
suffix = "" # [1, 2, 3] or [[1], [2], [3]]
# check float and contains non-integer float values
if y.dtype.kind == 'f' and np.any(y != y.astype(int)):
# [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.]
return 'continuous' + suffix
if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1):
return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]]
else:
return 'binary' # [1, 2] or [["a"], ["b"]]
def _check_partial_fit_first_call(clf, classes=None):
"""Private helper function for factorizing common classes param logic
Estimators that implement the ``partial_fit`` API need to be provided with
the list of possible classes at the first call to partial_fit.
Subsequent calls to partial_fit should check that ``classes`` is still
consistent with a previous value of ``clf.classes_`` when provided.
This function returns True if it detects that this was the first call to
``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also
set on ``clf``.
"""
if getattr(clf, 'classes_', None) is None and classes is None:
raise ValueError("classes must be passed on the first call "
"to partial_fit.")
elif classes is not None:
if getattr(clf, 'classes_', None) is not None:
if not np.all(clf.classes_ == unique_labels(classes)):
raise ValueError(
"`classes=%r` is not the same as on last call "
"to partial_fit, was: %r" % (classes, clf.classes_))
else:
# This is the first call to partial_fit
clf.classes_ = unique_labels(classes)
return True
# classes is None and clf.classes_ has already previously been set:
# nothing to do
return False
def class_distribution(y, sample_weight=None):
"""Compute class priors from multioutput-multiclass target data
Parameters
----------
y : array like or sparse matrix of size (n_samples, n_outputs)
The labels for each example.
sample_weight : array-like of shape = (n_samples,), optional
Sample weights.
Returns
-------
classes : list of size n_outputs of arrays of size (n_classes,)
List of classes for each column.
n_classes : list of integrs of size n_outputs
Number of classes in each column
class_prior : list of size n_outputs of arrays of size (n_classes,)
Class distribution of each column.
"""
classes = []
n_classes = []
class_prior = []
n_samples, n_outputs = y.shape
if issparse(y):
y = y.tocsc()
y_nnz = np.diff(y.indptr)
for k in range(n_outputs):
col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]]
# separate sample weights for zero and non-zero elements
if sample_weight is not None:
nz_samp_weight = np.asarray(sample_weight)[col_nonzero]
zeros_samp_weight_sum = (np.sum(sample_weight) -
np.sum(nz_samp_weight))
else:
nz_samp_weight = None
zeros_samp_weight_sum = y.shape[0] - y_nnz[k]
classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]],
return_inverse=True)
class_prior_k = bincount(y_k, weights=nz_samp_weight)
# An explicit zero was found, combine its wieght with the wieght
# of the implicit zeros
if 0 in classes_k:
class_prior_k[classes_k == 0] += zeros_samp_weight_sum
# If an there is an implict zero and it is not in classes and
# class_prior, make an entry for it
if 0 not in classes_k and y_nnz[k] < y.shape[0]:
classes_k = np.insert(classes_k, 0, 0)
class_prior_k = np.insert(class_prior_k, 0,
zeros_samp_weight_sum)
classes.append(classes_k)
n_classes.append(classes_k.shape[0])
class_prior.append(class_prior_k / class_prior_k.sum())
else:
for k in range(n_outputs):
classes_k, y_k = np.unique(y[:, k], return_inverse=True)
classes.append(classes_k)
n_classes.append(classes_k.shape[0])
class_prior_k = bincount(y_k, weights=sample_weight)
class_prior.append(class_prior_k / class_prior_k.sum())
return (classes, n_classes, class_prior)
| bsd-3-clause |
kagayakidan/scikit-learn | sklearn/cluster/tests/test_mean_shift.py | 150 | 3651 | """
Testing for mean shift clustering methods
"""
import numpy as np
import warnings
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_raise_message
from sklearn.cluster import MeanShift
from sklearn.cluster import mean_shift
from sklearn.cluster import estimate_bandwidth
from sklearn.cluster import get_bin_seeds
from sklearn.datasets.samples_generator import make_blobs
n_clusters = 3
centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
X, _ = make_blobs(n_samples=300, n_features=2, centers=centers,
cluster_std=0.4, shuffle=True, random_state=11)
def test_estimate_bandwidth():
# Test estimate_bandwidth
bandwidth = estimate_bandwidth(X, n_samples=200)
assert_true(0.9 <= bandwidth <= 1.5)
def test_mean_shift():
# Test MeanShift algorithm
bandwidth = 1.2
ms = MeanShift(bandwidth=bandwidth)
labels = ms.fit(X).labels_
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
assert_equal(n_clusters_, n_clusters)
cluster_centers, labels = mean_shift(X, bandwidth=bandwidth)
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
assert_equal(n_clusters_, n_clusters)
def test_parallel():
ms1 = MeanShift(n_jobs=2)
ms1.fit(X)
ms2 = MeanShift()
ms2.fit(X)
assert_array_equal(ms1.cluster_centers_,ms2.cluster_centers_)
assert_array_equal(ms1.labels_,ms2.labels_)
def test_meanshift_predict():
# Test MeanShift.predict
ms = MeanShift(bandwidth=1.2)
labels = ms.fit_predict(X)
labels2 = ms.predict(X)
assert_array_equal(labels, labels2)
def test_meanshift_all_orphans():
# init away from the data, crash with a sensible warning
ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]])
msg = "No point was within bandwidth=0.1"
assert_raise_message(ValueError, msg, ms.fit, X,)
def test_unfitted():
# Non-regression: before fit, there should be not fitted attributes.
ms = MeanShift()
assert_false(hasattr(ms, "cluster_centers_"))
assert_false(hasattr(ms, "labels_"))
def test_bin_seeds():
# Test the bin seeding technique which can be used in the mean shift
# algorithm
# Data is just 6 points in the plane
X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2],
[2., 1.], [2.1, 1.1], [0., 0.]])
# With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be
# found
ground_truth = set([(1., 1.), (2., 1.), (0., 0.)])
test_bins = get_bin_seeds(X, 1, 1)
test_result = set([tuple(p) for p in test_bins])
assert_true(len(ground_truth.symmetric_difference(test_result)) == 0)
# With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be
# found
ground_truth = set([(1., 1.), (2., 1.)])
test_bins = get_bin_seeds(X, 1, 2)
test_result = set([tuple(p) for p in test_bins])
assert_true(len(ground_truth.symmetric_difference(test_result)) == 0)
# With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found
# we bail and use the whole data here.
with warnings.catch_warnings(record=True):
test_bins = get_bin_seeds(X, 0.01, 1)
assert_array_equal(test_bins, X)
# tight clusters around [0, 0] and [1, 1], only get two bins
X, _ = make_blobs(n_samples=100, n_features=2, centers=[[0, 0], [1, 1]],
cluster_std=0.1, random_state=0)
test_bins = get_bin_seeds(X, 1)
assert_array_equal(test_bins, [[0, 0], [1, 1]])
| bsd-3-clause |
juanprietob/ExtractMSLesion | py/sgd_fit_ms_wm.py | 1 | 5045 | from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
import tarfile
from IPython.display import display, Image
from scipy import ndimage
from sklearn import neighbors, linear_model
from six.moves.urllib.request import urlretrieve
from six.moves import cPickle as pickle
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--pickle', help='Pickle file, check the script readImages to generate this file.', required=True)
args = parser.parse_args()
pickle_file = args.pickle
f = open(pickle_file, 'rb')
data = pickle.load(f)
train_dataset = data["train_dataset"]
train_labels = data["train_labels"]
valid_dataset = data["valid_dataset"]
valid_labels = data["valid_labels"]
test_dataset = data["test_dataset"]
test_labels = data["test_labels"]
img_head = data["img_head"]
img_size = img_head["sizes"]
h = .02
# Reformat into a TensorFlow-friendly shape:
# - convolutions need the image data formatted as a cube (width by height by #channels)
# - labels as float 1-hot encodings.
num_labels = 3
in_depth = img_size[3] #zdim
in_height = img_size[2] #ydim
in_width = img_size[1] #xdim
num_channels = img_size[0] #num channels
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)
(samples, depth, height, width, num_channels) = train_dataset.shape
train_dataset = np.reshape(train_dataset,(samples,depth*height*width*num_channels))[0:samples]
(samples, depth, height, width, num_channels) = valid_dataset.shape
valid_dataset = np.reshape(valid_dataset,(samples,depth*height*width*num_channels))[0:samples]
(samples, depth, height, width, num_channels) = test_dataset.shape
test_dataset = np.reshape(test_dataset,(samples,depth*height*width*num_channels))[0:samples]
print('Training set reshaped', train_dataset.shape, train_labels.shape)
print('Validation set reshaped', valid_dataset.shape, valid_labels.shape)
print('Validation set reshaped', test_dataset.shape, test_labels.shape)
basedir = os.path.dirname(pickle_file);
filename = os.path.splitext(os.path.basename(pickle_file))[0]
pickle_file = os.path.join(basedir, filename + "sgdfit.pickle")
try:
f = open(pickle_file, 'rb')
data = pickle.load(f)
sgdc = data['sgdc']
except Exception as e:
print(e)
sgdc = linear_model.SGDClassifier(n_iter=100, n_jobs=-1, loss='log')
sgdc.fit(train_dataset, train_labels)
try:
f = open(pickle_file, 'wb')
save = {
'sgdc': sgdc
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
raise
print('SGDC test score: %f' % sgdc.score(test_dataset, test_labels))
print('SGDC validation score: %f' % sgdc.score(valid_dataset, valid_labels))
pickle_file = os.path.join(basedir, filename + 'pca.pickle')
try:
f = open(pickle_file, 'rb')
data = pickle.load(f)
reduced_data = data['pca']
except Exception as e:
print('Decomposing data:')
reduced_data = PCA(n_components=2).fit_transform(train_dataset)
try:
print('Saving data:')
f = open(pickle_file, 'wb')
save = {
'pca': reduced_data
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
raise
pickle_file = os.path.join(basedir, filename + '_kmeans.pickle')
try:
f = open(pickle_file, 'rb')
data = pickle.load(f)
kmeans = data['kmeans']
except Exception as e:
print('Clustering data:')
kmeans = KMeans(init='k-means++', n_clusters=num_labels, n_init=10)
kmeans.fit(reduced_data)
try:
f = open(pickle_file, 'wb')
save = {
'kmeans': kmeans
}
pickle.dump(save, f, pickle.HIGHEST_PROTOCOL)
f.close()
except Exception as e:
print('Unable to save data to', pickle_file, ':', e)
raise
# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
plt.figure(1)
plt.clf()
# plt.imshow(reduced_data, interpolation='nearest',
# extent=(x_min, x_max, y_min, y_max),
# cmap=plt.cm.Paired,
# aspect='auto', origin='lower')
def getColor(l):
if l == 0:
return 'magenta'
elif l == 1:
return 'yellow'
return 'cyan'
colors = [getColor(l) for l in train_labels]
plt.scatter(reduced_data[:, 0], reduced_data[:, 1], c=colors)
#Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],
marker='x', s=169, linewidths=3,
c=['r','b'], zorder=10)
#plt.title('K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
| apache-2.0 |
NWine/trading-with-python | lib/cboe.py | 76 | 4433 | # -*- coding: utf-8 -*-
"""
toolset working with cboe data
@author: Jev Kuznetsov
Licence: BSD
"""
from datetime import datetime, date
import urllib2
from pandas import DataFrame, Index
from pandas.core import datetools
import numpy as np
import pandas as pd
def monthCode(month):
"""
perform month->code and back conversion
Input: either month nr (int) or month code (str)
Returns: code or month nr
"""
codes = ('F','G','H','J','K','M','N','Q','U','V','X','Z')
if isinstance(month,int):
return codes[month-1]
elif isinstance(month,str):
return codes.index(month)+1
else:
raise ValueError('Function accepts int or str')
def vixExpiration(year,month):
"""
expriration date of a VX future
"""
t = datetime(year,month,1)+datetools.relativedelta(months=1)
offset = datetools.Week(weekday=4)
if t.weekday()<>4:
t_new = t+3*offset
else:
t_new = t+2*offset
t_exp = t_new-datetools.relativedelta(days=30)
return t_exp
def getPutCallRatio():
""" download current Put/Call ratio"""
urlStr = 'http://www.cboe.com/publish/ScheduledTask/MktData/datahouse/totalpc.csv'
try:
lines = urllib2.urlopen(urlStr).readlines()
except Exception, e:
s = "Failed to download:\n{0}".format(e);
print s
headerLine = 2
header = lines[headerLine].strip().split(',')
data = [[] for i in range(len(header))]
for line in lines[(headerLine+1):]:
fields = line.rstrip().split(',')
data[0].append(datetime.strptime(fields[0],'%m/%d/%Y'))
for i,field in enumerate(fields[1:]):
data[i+1].append(float(field))
return DataFrame(dict(zip(header[1:],data[1:])), index = Index(data[0]))
def getHistoricData(symbols = ['VIX','VXV','VXMT','VVIX']):
''' get historic data from CBOE
return dataframe
'''
if not isinstance(symbols,list):
symbols = [symbols]
urls = {'VIX':'http://www.cboe.com/publish/ScheduledTask/MktData/datahouse/vixcurrent.csv',
'VXV':'http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vxvdailyprices.csv',
'VXMT':'http://www.cboe.com/publish/ScheduledTask/MktData/datahouse/vxmtdailyprices.csv',
'VVIX':'http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/VVIXtimeseries.csv'}
startLines = {'VIX':1,'VXV':2,'VXMT':2,'VVIX':1}
cols = {'VIX':'VIX Close','VXV':'CLOSE','VXMT':'Close','VVIX':'VVIX'}
data = {}
for symbol in symbols:
urlStr = urls[symbol]
print 'Downloading %s from %s' % (symbol,urlStr)
data[symbol] = pd.read_csv(urllib2.urlopen(urlStr), header=startLines[symbol],index_col=0,parse_dates=True)[cols[symbol]]
return pd.DataFrame(data)
#---------------------classes--------------------------------------------
class VixFuture(object):
"""
Class for easy handling of futures data.
"""
def __init__(self,year,month):
self.year = year
self.month = month
def expirationDate(self):
return vixExpiration(self.year,self.month)
def daysLeft(self,date):
""" business days to expiration date """
from pandas import DateRange # this will cause a problem with pandas 0.14 and higher... Method is depreciated and replaced by DatetimeIndex
r = DateRange(date,self.expirationDate())
return len(r)
def __repr__(self):
return 'VX future [%i-%i %s] Exprires: %s' % (self.year,self.month,monthCode(self.month),
self.expirationDate())
#-------------------test functions---------------------------------------
def testDownload():
vix = getHistoricData('VIX')
vxv = getHistoricData('VXV')
vix.plot()
vxv.plot()
def testExpiration():
for month in xrange(1,13):
d = vixExpiration(2011,month)
print d.strftime("%B, %d %Y (%A)")
if __name__ == '__main__':
#testExpiration()
v = VixFuture(2011,11)
print v
print v.daysLeft(datetime(2011,11,10))
| bsd-3-clause |
karstenw/nodebox-pyobjc | examples/Extended Application/matplotlib/examples/api/quad_bezier.py | 1 | 1362 | """
============
Bezier Curve
============
This example showcases the PathPatch object to create a Bezier polycurve path
patch.
"""
import matplotlib.path as mpath
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
# nodebox section
if __name__ == '__builtin__':
# were in nodebox
import os
import tempfile
W = 800
inset = 20
size(W, 600)
plt.cla()
plt.clf()
plt.close('all')
def tempimage():
fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False)
fname = fob.name
fob.close()
return fname
imgx = 20
imgy = 0
def pltshow(plt, dpi=150):
global imgx, imgy
temppath = tempimage()
plt.savefig(temppath, dpi=dpi)
dx,dy = imagesize(temppath)
w = min(W,dx)
image(temppath,imgx,imgy,width=w)
imgy = imgy + dy + 20
os.remove(temppath)
size(W, HEIGHT+dy+40)
else:
def pltshow(mplpyplot):
mplpyplot.show()
# nodebox section end
Path = mpath.Path
fig, ax = plt.subplots()
pp1 = mpatches.PathPatch(
Path([(0, 0), (1, 0), (1, 1), (0, 0)],
[Path.MOVETO, Path.CURVE3, Path.CURVE3, Path.CLOSEPOLY]),
fc="none", transform=ax.transData)
ax.add_patch(pp1)
ax.plot([0.75], [0.25], "ro")
ax.set_title('The red point should be on the path')
pltshow(plt)
| mit |
shenzebang/scikit-learn | sklearn/feature_extraction/image.py | 263 | 17600 | """
The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to
extract features from images.
"""
# Authors: Emmanuelle Gouillart <[email protected]>
# Gael Varoquaux <[email protected]>
# Olivier Grisel
# Vlad Niculae
# License: BSD 3 clause
from itertools import product
import numbers
import numpy as np
from scipy import sparse
from numpy.lib.stride_tricks import as_strided
from ..utils import check_array, check_random_state
from ..utils.fixes import astype
from ..base import BaseEstimator
__all__ = ['PatchExtractor',
'extract_patches_2d',
'grid_to_graph',
'img_to_graph',
'reconstruct_from_patches_2d']
###############################################################################
# From an image to a graph
def _make_edges_3d(n_x, n_y, n_z=1):
"""Returns a list of edges for a 3D image.
Parameters
===========
n_x: integer
The size of the grid in the x direction.
n_y: integer
The size of the grid in the y direction.
n_z: integer, optional
The size of the grid in the z direction, defaults to 1
"""
vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z))
edges_deep = np.vstack((vertices[:, :, :-1].ravel(),
vertices[:, :, 1:].ravel()))
edges_right = np.vstack((vertices[:, :-1].ravel(),
vertices[:, 1:].ravel()))
edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel()))
edges = np.hstack((edges_deep, edges_right, edges_down))
return edges
def _compute_gradient_3d(edges, img):
n_x, n_y, n_z = img.shape
gradient = np.abs(img[edges[0] // (n_y * n_z),
(edges[0] % (n_y * n_z)) // n_z,
(edges[0] % (n_y * n_z)) % n_z] -
img[edges[1] // (n_y * n_z),
(edges[1] % (n_y * n_z)) // n_z,
(edges[1] % (n_y * n_z)) % n_z])
return gradient
# XXX: Why mask the image after computing the weights?
def _mask_edges_weights(mask, edges, weights=None):
"""Apply a mask to edges (weighted or not)"""
inds = np.arange(mask.size)
inds = inds[mask.ravel()]
ind_mask = np.logical_and(np.in1d(edges[0], inds),
np.in1d(edges[1], inds))
edges = edges[:, ind_mask]
if weights is not None:
weights = weights[ind_mask]
if len(edges.ravel()):
maxval = edges.max()
else:
maxval = 0
order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1))
edges = order[edges]
if weights is None:
return edges
else:
return edges, weights
def _to_graph(n_x, n_y, n_z, mask=None, img=None,
return_as=sparse.coo_matrix, dtype=None):
"""Auxiliary function for img_to_graph and grid_to_graph
"""
edges = _make_edges_3d(n_x, n_y, n_z)
if dtype is None:
if img is None:
dtype = np.int
else:
dtype = img.dtype
if img is not None:
img = np.atleast_3d(img)
weights = _compute_gradient_3d(edges, img)
if mask is not None:
edges, weights = _mask_edges_weights(mask, edges, weights)
diag = img.squeeze()[mask]
else:
diag = img.ravel()
n_voxels = diag.size
else:
if mask is not None:
mask = astype(mask, dtype=np.bool, copy=False)
mask = np.asarray(mask, dtype=np.bool)
edges = _mask_edges_weights(mask, edges)
n_voxels = np.sum(mask)
else:
n_voxels = n_x * n_y * n_z
weights = np.ones(edges.shape[1], dtype=dtype)
diag = np.ones(n_voxels, dtype=dtype)
diag_idx = np.arange(n_voxels)
i_idx = np.hstack((edges[0], edges[1]))
j_idx = np.hstack((edges[1], edges[0]))
graph = sparse.coo_matrix((np.hstack((weights, weights, diag)),
(np.hstack((i_idx, diag_idx)),
np.hstack((j_idx, diag_idx)))),
(n_voxels, n_voxels),
dtype=dtype)
if return_as is np.ndarray:
return graph.toarray()
return return_as(graph)
def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None):
"""Graph of the pixel-to-pixel gradient connections
Edges are weighted with the gradient values.
Read more in the :ref:`User Guide <image_feature_extraction>`.
Parameters
----------
img : ndarray, 2D or 3D
2D or 3D image
mask : ndarray of booleans, optional
An optional mask of the image, to consider only part of the
pixels.
return_as : np.ndarray or a sparse matrix class, optional
The class to use to build the returned adjacency matrix.
dtype : None or dtype, optional
The data of the returned sparse matrix. By default it is the
dtype of img
Notes
-----
For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled
by returning a dense np.matrix instance. Going forward, np.ndarray
returns an np.ndarray, as expected.
For compatibility, user code relying on this method should wrap its
calls in ``np.asarray`` to avoid type issues.
"""
img = np.atleast_3d(img)
n_x, n_y, n_z = img.shape
return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype)
def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix,
dtype=np.int):
"""Graph of the pixel-to-pixel connections
Edges exist if 2 voxels are connected.
Parameters
----------
n_x : int
Dimension in x axis
n_y : int
Dimension in y axis
n_z : int, optional, default 1
Dimension in z axis
mask : ndarray of booleans, optional
An optional mask of the image, to consider only part of the
pixels.
return_as : np.ndarray or a sparse matrix class, optional
The class to use to build the returned adjacency matrix.
dtype : dtype, optional, default int
The data of the returned sparse matrix. By default it is int
Notes
-----
For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled
by returning a dense np.matrix instance. Going forward, np.ndarray
returns an np.ndarray, as expected.
For compatibility, user code relying on this method should wrap its
calls in ``np.asarray`` to avoid type issues.
"""
return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as,
dtype=dtype)
###############################################################################
# From an image to a set of small image patches
def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None):
"""Compute the number of patches that will be extracted in an image.
Read more in the :ref:`User Guide <image_feature_extraction>`.
Parameters
----------
i_h : int
The image height
i_w : int
The image with
p_h : int
The height of a patch
p_w : int
The width of a patch
max_patches : integer or float, optional default is None
The maximum number of patches to extract. If max_patches is a float
between 0 and 1, it is taken to be a proportion of the total number
of patches.
"""
n_h = i_h - p_h + 1
n_w = i_w - p_w + 1
all_patches = n_h * n_w
if max_patches:
if (isinstance(max_patches, (numbers.Integral))
and max_patches < all_patches):
return max_patches
elif (isinstance(max_patches, (numbers.Real))
and 0 < max_patches < 1):
return int(max_patches * all_patches)
else:
raise ValueError("Invalid value for max_patches: %r" % max_patches)
else:
return all_patches
def extract_patches(arr, patch_shape=8, extraction_step=1):
"""Extracts patches of any n-dimensional array in place using strides.
Given an n-dimensional array it will return a 2n-dimensional array with
the first n dimensions indexing patch position and the last n indexing
the patch content. This operation is immediate (O(1)). A reshape
performed on the first n dimensions will cause numpy to copy data, leading
to a list of extracted patches.
Read more in the :ref:`User Guide <image_feature_extraction>`.
Parameters
----------
arr : ndarray
n-dimensional array of which patches are to be extracted
patch_shape : integer or tuple of length arr.ndim
Indicates the shape of the patches to be extracted. If an
integer is given, the shape will be a hypercube of
sidelength given by its value.
extraction_step : integer or tuple of length arr.ndim
Indicates step size at which extraction shall be performed.
If integer is given, then the step is uniform in all dimensions.
Returns
-------
patches : strided ndarray
2n-dimensional array indexing patches on first n dimensions and
containing patches on the last n dimensions. These dimensions
are fake, but this way no data is copied. A simple reshape invokes
a copying operation to obtain a list of patches:
result.reshape([-1] + list(patch_shape))
"""
arr_ndim = arr.ndim
if isinstance(patch_shape, numbers.Number):
patch_shape = tuple([patch_shape] * arr_ndim)
if isinstance(extraction_step, numbers.Number):
extraction_step = tuple([extraction_step] * arr_ndim)
patch_strides = arr.strides
slices = [slice(None, None, st) for st in extraction_step]
indexing_strides = arr[slices].strides
patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) //
np.array(extraction_step)) + 1
shape = tuple(list(patch_indices_shape) + list(patch_shape))
strides = tuple(list(indexing_strides) + list(patch_strides))
patches = as_strided(arr, shape=shape, strides=strides)
return patches
def extract_patches_2d(image, patch_size, max_patches=None, random_state=None):
"""Reshape a 2D image into a collection of patches
The resulting patches are allocated in a dedicated array.
Read more in the :ref:`User Guide <image_feature_extraction>`.
Parameters
----------
image : array, shape = (image_height, image_width) or
(image_height, image_width, n_channels)
The original image data. For color images, the last dimension specifies
the channel: a RGB image would have `n_channels=3`.
patch_size : tuple of ints (patch_height, patch_width)
the dimensions of one patch
max_patches : integer or float, optional default is None
The maximum number of patches to extract. If max_patches is a float
between 0 and 1, it is taken to be a proportion of the total number
of patches.
random_state : int or RandomState
Pseudo number generator state used for random sampling to use if
`max_patches` is not None.
Returns
-------
patches : array, shape = (n_patches, patch_height, patch_width) or
(n_patches, patch_height, patch_width, n_channels)
The collection of patches extracted from the image, where `n_patches`
is either `max_patches` or the total number of patches that can be
extracted.
Examples
--------
>>> from sklearn.feature_extraction import image
>>> one_image = np.arange(16).reshape((4, 4))
>>> one_image
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> print(patches.shape)
(9, 2, 2)
>>> patches[0]
array([[0, 1],
[4, 5]])
>>> patches[1]
array([[1, 2],
[5, 6]])
>>> patches[8]
array([[10, 11],
[14, 15]])
"""
i_h, i_w = image.shape[:2]
p_h, p_w = patch_size
if p_h > i_h:
raise ValueError("Height of the patch should be less than the height"
" of the image.")
if p_w > i_w:
raise ValueError("Width of the patch should be less than the width"
" of the image.")
image = check_array(image, allow_nd=True)
image = image.reshape((i_h, i_w, -1))
n_colors = image.shape[-1]
extracted_patches = extract_patches(image,
patch_shape=(p_h, p_w, n_colors),
extraction_step=1)
n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches)
if max_patches:
rng = check_random_state(random_state)
i_s = rng.randint(i_h - p_h + 1, size=n_patches)
j_s = rng.randint(i_w - p_w + 1, size=n_patches)
patches = extracted_patches[i_s, j_s, 0]
else:
patches = extracted_patches
patches = patches.reshape(-1, p_h, p_w, n_colors)
# remove the color dimension if useless
if patches.shape[-1] == 1:
return patches.reshape((n_patches, p_h, p_w))
else:
return patches
def reconstruct_from_patches_2d(patches, image_size):
"""Reconstruct the image from all of its patches.
Patches are assumed to overlap and the image is constructed by filling in
the patches from left to right, top to bottom, averaging the overlapping
regions.
Read more in the :ref:`User Guide <image_feature_extraction>`.
Parameters
----------
patches : array, shape = (n_patches, patch_height, patch_width) or
(n_patches, patch_height, patch_width, n_channels)
The complete set of patches. If the patches contain colour information,
channels are indexed along the last dimension: RGB patches would
have `n_channels=3`.
image_size : tuple of ints (image_height, image_width) or
(image_height, image_width, n_channels)
the size of the image that will be reconstructed
Returns
-------
image : array, shape = image_size
the reconstructed image
"""
i_h, i_w = image_size[:2]
p_h, p_w = patches.shape[1:3]
img = np.zeros(image_size)
# compute the dimensions of the patches array
n_h = i_h - p_h + 1
n_w = i_w - p_w + 1
for p, (i, j) in zip(patches, product(range(n_h), range(n_w))):
img[i:i + p_h, j:j + p_w] += p
for i in range(i_h):
for j in range(i_w):
# divide by the amount of overlap
# XXX: is this the most efficient way? memory-wise yes, cpu wise?
img[i, j] /= float(min(i + 1, p_h, i_h - i) *
min(j + 1, p_w, i_w - j))
return img
class PatchExtractor(BaseEstimator):
"""Extracts patches from a collection of images
Read more in the :ref:`User Guide <image_feature_extraction>`.
Parameters
----------
patch_size : tuple of ints (patch_height, patch_width)
the dimensions of one patch
max_patches : integer or float, optional default is None
The maximum number of patches per image to extract. If max_patches is a
float in (0, 1), it is taken to mean a proportion of the total number
of patches.
random_state : int or RandomState
Pseudo number generator state used for random sampling.
"""
def __init__(self, patch_size=None, max_patches=None, random_state=None):
self.patch_size = patch_size
self.max_patches = max_patches
self.random_state = random_state
def fit(self, X, y=None):
"""Do nothing and return the estimator unchanged
This method is just there to implement the usual API and hence
work in pipelines.
"""
return self
def transform(self, X):
"""Transforms the image samples in X into a matrix of patch data.
Parameters
----------
X : array, shape = (n_samples, image_height, image_width) or
(n_samples, image_height, image_width, n_channels)
Array of images from which to extract patches. For color images,
the last dimension specifies the channel: a RGB image would have
`n_channels=3`.
Returns
-------
patches: array, shape = (n_patches, patch_height, patch_width) or
(n_patches, patch_height, patch_width, n_channels)
The collection of patches extracted from the images, where
`n_patches` is either `n_samples * max_patches` or the total
number of patches that can be extracted.
"""
self.random_state = check_random_state(self.random_state)
n_images, i_h, i_w = X.shape[:3]
X = np.reshape(X, (n_images, i_h, i_w, -1))
n_channels = X.shape[-1]
if self.patch_size is None:
patch_size = i_h // 10, i_w // 10
else:
patch_size = self.patch_size
# compute the dimensions of the patches array
p_h, p_w = patch_size
n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches)
patches_shape = (n_images * n_patches,) + patch_size
if n_channels > 1:
patches_shape += (n_channels,)
# extract the patches
patches = np.empty(patches_shape)
for ii, image in enumerate(X):
patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d(
image, patch_size, self.max_patches, self.random_state)
return patches
| bsd-3-clause |
blockstack/pybitcoin | pybitcoin/passphrases/english_words.py | 2 | 753213 | # -*- coding: utf-8 -*-
"""
pybitcoin
~~~~~
:copyright: (c) 2014 by Halfmoon Labs
:license: MIT, see LICENSE for more details.
"""
# 2048 words
english_words_bip39 = 'abandon,ability,able,about,above,absent,absorb,abstract,absurd,abuse,access,accident,account,accuse,achieve,acid,acoustic,acquire,across,act,action,actor,actress,actual,adapt,add,addict,address,adjust,admit,adult,advance,advice,aerobic,affair,afford,afraid,again,age,agent,agree,ahead,aim,air,airport,aisle,alarm,album,alcohol,alert,alien,all,alley,allow,almost,alone,alpha,already,also,alter,always,amateur,amazing,among,amount,amused,analyst,anchor,ancient,anger,angle,angry,animal,ankle,announce,annual,another,answer,antenna,antique,anxiety,any,apart,apology,appear,apple,approve,april,arch,arctic,area,arena,argue,arm,armed,armor,army,around,arrange,arrest,arrive,arrow,art,artefact,artist,artwork,ask,aspect,assault,asset,assist,assume,asthma,athlete,atom,attack,attend,attitude,attract,auction,audit,august,aunt,author,auto,autumn,average,avocado,avoid,awake,aware,away,awesome,awful,awkward,axis,baby,bachelor,bacon,badge,bag,balance,balcony,ball,bamboo,banana,banner,bar,barely,bargain,barrel,base,basic,basket,battle,beach,bean,beauty,because,become,beef,before,begin,behave,behind,believe,below,belt,bench,benefit,best,betray,better,between,beyond,bicycle,bid,bike,bind,biology,bird,birth,bitter,black,blade,blame,blanket,blast,bleak,bless,blind,blood,blossom,blouse,blue,blur,blush,board,boat,body,boil,bomb,bone,bonus,book,boost,border,boring,borrow,boss,bottom,bounce,box,boy,bracket,brain,brand,brass,brave,bread,breeze,brick,bridge,brief,bright,bring,brisk,broccoli,broken,bronze,broom,brother,brown,brush,bubble,buddy,budget,buffalo,build,bulb,bulk,bullet,bundle,bunker,burden,burger,burst,bus,business,busy,butter,buyer,buzz,cabbage,cabin,cable,cactus,cage,cake,call,calm,camera,camp,can,canal,cancel,candy,cannon,canoe,canvas,canyon,capable,capital,captain,car,carbon,card,cargo,carpet,carry,cart,case,cash,casino,castle,casual,cat,catalog,catch,category,cattle,caught,cause,caution,cave,ceiling,celery,cement,census,century,cereal,certain,chair,chalk,champion,change,chaos,chapter,charge,chase,chat,cheap,check,cheese,chef,cherry,chest,chicken,chief,child,chimney,choice,choose,chronic,chuckle,chunk,churn,cigar,cinnamon,circle,citizen,city,civil,claim,clap,clarify,claw,clay,clean,clerk,clever,click,client,cliff,climb,clinic,clip,clock,clog,close,cloth,cloud,clown,club,clump,cluster,clutch,coach,coast,coconut,code,coffee,coil,coin,collect,color,column,combine,come,comfort,comic,common,company,concert,conduct,confirm,congress,connect,consider,control,convince,cook,cool,copper,copy,coral,core,corn,correct,cost,cotton,couch,country,couple,course,cousin,cover,coyote,crack,cradle,craft,cram,crane,crash,crater,crawl,crazy,cream,credit,creek,crew,cricket,crime,crisp,critic,crop,cross,crouch,crowd,crucial,cruel,cruise,crumble,crunch,crush,cry,crystal,cube,culture,cup,cupboard,curious,current,curtain,curve,cushion,custom,cute,cycle,dad,damage,damp,dance,danger,daring,dash,daughter,dawn,day,deal,debate,debris,decade,december,decide,decline,decorate,decrease,deer,defense,define,defy,degree,delay,deliver,demand,demise,denial,dentist,deny,depart,depend,deposit,depth,deputy,derive,describe,desert,design,desk,despair,destroy,detail,detect,develop,device,devote,diagram,dial,diamond,diary,dice,diesel,diet,differ,digital,dignity,dilemma,dinner,dinosaur,direct,dirt,disagree,discover,disease,dish,dismiss,disorder,display,distance,divert,divide,divorce,dizzy,doctor,document,dog,doll,dolphin,domain,donate,donkey,donor,door,dose,double,dove,draft,dragon,drama,drastic,draw,dream,dress,drift,drill,drink,drip,drive,drop,drum,dry,duck,dumb,dune,during,dust,dutch,duty,dwarf,dynamic,eager,eagle,early,earn,earth,easily,east,easy,echo,ecology,economy,edge,edit,educate,effort,egg,eight,either,elbow,elder,electric,elegant,element,elephant,elevator,elite,else,embark,embody,embrace,emerge,emotion,employ,empower,empty,enable,enact,end,endless,endorse,enemy,energy,enforce,engage,engine,enhance,enjoy,enlist,enough,enrich,enroll,ensure,enter,entire,entry,envelope,episode,equal,equip,era,erase,erode,erosion,error,erupt,escape,essay,essence,estate,eternal,ethics,evidence,evil,evoke,evolve,exact,example,excess,exchange,excite,exclude,excuse,execute,exercise,exhaust,exhibit,exile,exist,exit,exotic,expand,expect,expire,explain,expose,express,extend,extra,eye,eyebrow,fabric,face,faculty,fade,faint,faith,fall,false,fame,family,famous,fan,fancy,fantasy,farm,fashion,fat,fatal,father,fatigue,fault,favorite,feature,february,federal,fee,feed,feel,female,fence,festival,fetch,fever,few,fiber,fiction,field,figure,file,film,filter,final,find,fine,finger,finish,fire,firm,first,fiscal,fish,fit,fitness,fix,flag,flame,flash,flat,flavor,flee,flight,flip,float,flock,floor,flower,fluid,flush,fly,foam,focus,fog,foil,fold,follow,food,foot,force,forest,forget,fork,fortune,forum,forward,fossil,foster,found,fox,fragile,frame,frequent,fresh,friend,fringe,frog,front,frost,frown,frozen,fruit,fuel,fun,funny,furnace,fury,future,gadget,gain,galaxy,gallery,game,gap,garage,garbage,garden,garlic,garment,gas,gasp,gate,gather,gauge,gaze,general,genius,genre,gentle,genuine,gesture,ghost,giant,gift,giggle,ginger,giraffe,girl,give,glad,glance,glare,glass,glide,glimpse,globe,gloom,glory,glove,glow,glue,goat,goddess,gold,good,goose,gorilla,gospel,gossip,govern,gown,grab,grace,grain,grant,grape,grass,gravity,great,green,grid,grief,grit,grocery,group,grow,grunt,guard,guess,guide,guilt,guitar,gun,gym,habit,hair,half,hammer,hamster,hand,happy,harbor,hard,harsh,harvest,hat,have,hawk,hazard,head,health,heart,heavy,hedgehog,height,hello,helmet,help,hen,hero,hidden,high,hill,hint,hip,hire,history,hobby,hockey,hold,hole,holiday,hollow,home,honey,hood,hope,horn,horror,horse,hospital,host,hotel,hour,hover,hub,huge,human,humble,humor,hundred,hungry,hunt,hurdle,hurry,hurt,husband,hybrid,ice,icon,idea,identify,idle,ignore,ill,illegal,illness,image,imitate,immense,immune,impact,impose,improve,impulse,inch,include,income,increase,index,indicate,indoor,industry,infant,inflict,inform,inhale,inherit,initial,inject,injury,inmate,inner,innocent,input,inquiry,insane,insect,inside,inspire,install,intact,interest,into,invest,invite,involve,iron,island,isolate,issue,item,ivory,jacket,jaguar,jar,jazz,jealous,jeans,jelly,jewel,job,join,joke,journey,joy,judge,juice,jump,jungle,junior,junk,just,kangaroo,keen,keep,ketchup,key,kick,kid,kidney,kind,kingdom,kiss,kit,kitchen,kite,kitten,kiwi,knee,knife,knock,know,lab,label,labor,ladder,lady,lake,lamp,language,laptop,large,later,latin,laugh,laundry,lava,law,lawn,lawsuit,layer,lazy,leader,leaf,learn,leave,lecture,left,leg,legal,legend,leisure,lemon,lend,length,lens,leopard,lesson,letter,level,liar,liberty,library,license,life,lift,light,like,limb,limit,link,lion,liquid,list,little,live,lizard,load,loan,lobster,local,lock,logic,lonely,long,loop,lottery,loud,lounge,love,loyal,lucky,luggage,lumber,lunar,lunch,luxury,lyrics,machine,mad,magic,magnet,maid,mail,main,major,make,mammal,man,manage,mandate,mango,mansion,manual,maple,marble,march,margin,marine,market,marriage,mask,mass,master,match,material,math,matrix,matter,maximum,maze,meadow,mean,measure,meat,mechanic,medal,media,melody,melt,member,memory,mention,menu,mercy,merge,merit,merry,mesh,message,metal,method,middle,midnight,milk,million,mimic,mind,minimum,minor,minute,miracle,mirror,misery,miss,mistake,mix,mixed,mixture,mobile,model,modify,mom,moment,monitor,monkey,monster,month,moon,moral,more,morning,mosquito,mother,motion,motor,mountain,mouse,move,movie,much,muffin,mule,multiply,muscle,museum,mushroom,music,must,mutual,myself,mystery,myth,naive,name,napkin,narrow,nasty,nation,nature,near,neck,need,negative,neglect,neither,nephew,nerve,nest,net,network,neutral,never,news,next,nice,night,noble,noise,nominee,noodle,normal,north,nose,notable,note,nothing,notice,novel,now,nuclear,number,nurse,nut,oak,obey,object,oblige,obscure,observe,obtain,obvious,occur,ocean,october,odor,off,offer,office,often,oil,okay,old,olive,olympic,omit,once,one,onion,online,only,open,opera,opinion,oppose,option,orange,orbit,orchard,order,ordinary,organ,orient,original,orphan,ostrich,other,outdoor,outer,output,outside,oval,oven,over,own,owner,oxygen,oyster,ozone,pact,paddle,page,pair,palace,palm,panda,panel,panic,panther,paper,parade,parent,park,parrot,party,pass,patch,path,patient,patrol,pattern,pause,pave,payment,peace,peanut,pear,peasant,pelican,pen,penalty,pencil,people,pepper,perfect,permit,person,pet,phone,photo,phrase,physical,piano,picnic,picture,piece,pig,pigeon,pill,pilot,pink,pioneer,pipe,pistol,pitch,pizza,place,planet,plastic,plate,play,please,pledge,pluck,plug,plunge,poem,poet,point,polar,pole,police,pond,pony,pool,popular,portion,position,possible,post,potato,pottery,poverty,powder,power,practice,praise,predict,prefer,prepare,present,pretty,prevent,price,pride,primary,print,priority,prison,private,prize,problem,process,produce,profit,program,project,promote,proof,property,prosper,protect,proud,provide,public,pudding,pull,pulp,pulse,pumpkin,punch,pupil,puppy,purchase,purity,purpose,purse,push,put,puzzle,pyramid,quality,quantum,quarter,question,quick,quit,quiz,quote,rabbit,raccoon,race,rack,radar,radio,rail,rain,raise,rally,ramp,ranch,random,range,rapid,rare,rate,rather,raven,raw,razor,ready,real,reason,rebel,rebuild,recall,receive,recipe,record,recycle,reduce,reflect,reform,refuse,region,regret,regular,reject,relax,release,relief,rely,remain,remember,remind,remove,render,renew,rent,reopen,repair,repeat,replace,report,require,rescue,resemble,resist,resource,response,result,retire,retreat,return,reunion,reveal,review,reward,rhythm,rib,ribbon,rice,rich,ride,ridge,rifle,right,rigid,ring,riot,ripple,risk,ritual,rival,river,road,roast,robot,robust,rocket,romance,roof,rookie,room,rose,rotate,rough,round,route,royal,rubber,rude,rug,rule,run,runway,rural,sad,saddle,sadness,safe,sail,salad,salmon,salon,salt,salute,same,sample,sand,satisfy,satoshi,sauce,sausage,save,say,scale,scan,scare,scatter,scene,scheme,school,science,scissors,scorpion,scout,scrap,screen,script,scrub,sea,search,season,seat,second,secret,section,security,seed,seek,segment,select,sell,seminar,senior,sense,sentence,series,service,session,settle,setup,seven,shadow,shaft,shallow,share,shed,shell,sheriff,shield,shift,shine,ship,shiver,shock,shoe,shoot,shop,short,shoulder,shove,shrimp,shrug,shuffle,shy,sibling,sick,side,siege,sight,sign,silent,silk,silly,silver,similar,simple,since,sing,siren,sister,situate,six,size,skate,sketch,ski,skill,skin,skirt,skull,slab,slam,sleep,slender,slice,slide,slight,slim,slogan,slot,slow,slush,small,smart,smile,smoke,smooth,snack,snake,snap,sniff,snow,soap,soccer,social,sock,soda,soft,solar,soldier,solid,solution,solve,someone,song,soon,sorry,sort,soul,sound,soup,source,south,space,spare,spatial,spawn,speak,special,speed,spell,spend,sphere,spice,spider,spike,spin,spirit,split,spoil,sponsor,spoon,sport,spot,spray,spread,spring,spy,square,squeeze,squirrel,stable,stadium,staff,stage,stairs,stamp,stand,start,state,stay,steak,steel,stem,step,stereo,stick,still,sting,stock,stomach,stone,stool,story,stove,strategy,street,strike,strong,struggle,student,stuff,stumble,style,subject,submit,subway,success,such,sudden,suffer,sugar,suggest,suit,summer,sun,sunny,sunset,super,supply,supreme,sure,surface,surge,surprise,surround,survey,suspect,sustain,swallow,swamp,swap,swarm,swear,sweet,swift,swim,swing,switch,sword,symbol,symptom,syrup,system,table,tackle,tag,tail,talent,talk,tank,tape,target,task,taste,tattoo,taxi,teach,team,tell,ten,tenant,tennis,tent,term,test,text,thank,that,theme,then,theory,there,they,thing,this,thought,three,thrive,throw,thumb,thunder,ticket,tide,tiger,tilt,timber,time,tiny,tip,tired,tissue,title,toast,tobacco,today,toddler,toe,together,toilet,token,tomato,tomorrow,tone,tongue,tonight,tool,tooth,top,topic,topple,torch,tornado,tortoise,toss,total,tourist,toward,tower,town,toy,track,trade,traffic,tragic,train,transfer,trap,trash,travel,tray,treat,tree,trend,trial,tribe,trick,trigger,trim,trip,trophy,trouble,truck,true,truly,trumpet,trust,truth,try,tube,tuition,tumble,tuna,tunnel,turkey,turn,turtle,twelve,twenty,twice,twin,twist,two,type,typical,ugly,umbrella,unable,unaware,uncle,uncover,under,undo,unfair,unfold,unhappy,uniform,unique,unit,universe,unknown,unlock,until,unusual,unveil,update,upgrade,uphold,upon,upper,upset,urban,urge,usage,use,used,useful,useless,usual,utility,vacant,vacuum,vague,valid,valley,valve,van,vanish,vapor,various,vast,vault,vehicle,velvet,vendor,venture,venue,verb,verify,version,very,vessel,veteran,viable,vibrant,vicious,victory,video,view,village,vintage,violin,virtual,virus,visa,visit,visual,vital,vivid,vocal,voice,void,volcano,volume,vote,voyage,wage,wagon,wait,walk,wall,walnut,want,warfare,warm,warrior,wash,wasp,waste,water,wave,way,wealth,weapon,wear,weasel,weather,web,wedding,weekend,weird,welcome,west,wet,whale,what,wheat,wheel,when,where,whip,whisper,wide,width,wife,wild,will,win,window,wine,wing,wink,winner,winter,wire,wisdom,wise,wish,witness,wolf,woman,wonder,wood,wool,word,work,world,worry,worth,wrap,wreck,wrestle,wrist,write,wrong,yard,year,yellow,you,young,youth,zebra,zero,zone,zoo'
# 25202 words
english_words_wiktionary = 'aardvark,aargh,aback,abacus,abandon,abandoned,abandoning,abandonment,abandons,abba,abbey,abbot,abbots,abdomen,abdominal,abduct,abducted,abducting,abduction,abductions,aberration,abetted,abide,abiding,abigail,abilities,ability,ablaze,able,abnormal,abnormalities,abnormality,abnormally,aboard,abode,abolish,abominable,abomination,aboriginal,abort,abortion,abortions,abound,about,above,aboveboard,abrasive,abreast,abroad,abrupt,abruptly,abs,absconded,absence,absences,absent,absentee,absolute,absolutely,absolutes,absolution,absolved,absorb,absorbed,absorbent,absorbing,absorption,abstain,abstinence,abstract,absurd,absurdity,absurdly,abundance,abundant,abundantly,abuse,abused,abuser,abusing,abusive,abut,abysmal,academia,academic,academics,academy,accelerant,accelerate,accelerated,accelerating,acceleration,accent,accents,accept,acceptable,acceptance,accepted,accepting,accepts,access,accessible,accessing,accessories,accessory,accident,accidental,accidentally,accidently,accidents,acclaim,acclimate,acclimated,accolades,accommodate,accommodating,accommodation,accommodations,accompanied,accompany,accompanying,accomplice,accomplices,accomplish,accomplished,accomplishing,accomplishment,accomplishments,accord,accordance,accorded,according,accordingly,account,accountability,accountable,accountant,accountants,accounted,accounting,accounts,accoutrements,accumulate,accumulated,accumulation,accuracy,accurate,accurately,accursed,accusation,accusations,accuse,accused,accuser,accusers,accuses,accusing,accustomed,ace,aced,aces,acetate,ache,ached,aches,achieve,achieved,achievement,achieving,aching,achingly,acid,acids,acing,acknowledge,acknowledged,acknowledgement,acknowledges,acme,acne,acorn,acoustic,acoustics,acquaint,acquaintance,acquaintances,acquainted,acquire,acquired,acquisition,acquisitions,acquitted,acre,acres,acrobat,across,act,acted,actin,acting,action,actionable,actions,activate,activated,activating,activation,activators,active,actively,activists,activities,activity,actor,actors,actress,actresses,acts,actual,actuality,actualization,actually,actuarial,acupuncture,acupuncturist,acute,ad,adage,adamant,adapt,adaptable,adapted,adapting,add,added,addendum,addict,addicted,addiction,addictive,addicts,adding,addition,additional,additions,additives,addled,address,addressed,addresses,addressing,adds,adenoids,adept,adequate,adequately,adhere,adherence,adhesive,adjacent,adjective,adjectives,adjourn,adjourned,adjust,adjustable,adjusted,adjusting,adjustment,adjustments,adjutant,administer,administered,administering,administration,administrative,administrator,administrators,admirable,admirably,admiral,admiration,admire,admired,admirer,admirers,admires,admiring,admission,admissions,admit,admits,admittance,admitted,admittedly,admitting,admonish,admonished,admonition,ado,adobe,adolescence,adolescent,adolescents,adopt,adopted,adopting,adoption,adoptive,adorable,adoration,adore,adored,adores,adoring,adrenaline,adrenals,ads,adult,adults,advance,advanced,advancement,advancements,advances,advancing,advantage,advantageous,advantages,advent,adventure,adventurer,adventures,adventurous,adversaries,adversary,adverse,adversely,adversity,advert,advertise,advertised,advertisement,advertisers,advertises,advertising,advice,advisable,advise,advised,adviser,advises,advising,advisor,advocacy,advocate,advocating,aerial,aerobic,aerobics,aerodynamics,aeroplane,aerosol,aerospace,aesthetic,aesthetics,afar,affair,affairs,affect,affected,affecting,affection,affectionate,affectionately,affections,affects,affidavit,affidavits,affiliated,affiliates,affiliation,affinity,affirm,affirmative,affirming,afflicted,afford,afforded,affront,afloat,afoot,aforementioned,aforethought,afraid,aft,after,afterglow,afterlife,aftermath,afternoon,afternoons,afterthought,afterward,afterwards,ag,aga,again,against,age,aged,ageing,ageless,agencies,agency,agenda,agendas,agent,agents,ages,aggravate,aggravated,aggravating,aggravation,aggression,aggressive,aggressively,aggressor,agile,agility,agin,aging,agitate,agitated,agitation,agitators,ago,agonized,agonizing,agony,agree,agreeable,agreed,agreeing,agreement,agreements,agrees,agricultural,aground,ah,aha,ahead,ahem,ahold,ahoy,ai,aid,aide,aided,aides,aiding,aids,ail,ailing,ailment,ailments,ails,aim,aimed,aiming,aimless,aimlessly,aims,ain,air,airborne,aircraft,airfield,airhead,airing,airlift,airlifted,airline,airlines,airman,airmen,airplane,airplanes,airport,airports,airs,airspace,airstrip,airtight,airwaves,airway,airways,aisle,aisles,ajar,al,ala,alabaster,alameda,alamo,alan,alarm,alarmed,alarming,alarmist,alarms,alas,alaska,alastor,albacore,albatross,albino,album,albums,alcazar,alchemist,alchemy,alcohol,alcoholic,alcoholics,alcoholism,alcove,alderman,ale,alec,alert,alerted,alerting,alerts,ales,alexander,alfalfa,algae,algebra,algorithms,alias,aliases,alibi,alibis,alien,alienate,alienated,alienating,alienation,aliens,alight,aligning,alike,alimony,alive,all,allee,allegation,allegations,alleged,allegedly,allegiance,allegiances,alleging,alleluia,allergic,allergies,allergy,alleviate,alley,alleys,alliance,allies,alligator,alligators,alliteration,allotted,allow,allowable,allowance,allowed,allowing,allows,alluding,allure,alluring,ally,alma,almighty,almond,almonds,almost,aloe,aloft,aloha,alone,along,alongside,aloud,alpha,alphabet,alphabetically,alphabetized,alpine,already,alright,als,also,alt,altar,alter,alteration,alterations,altercation,altered,altering,alternate,alternates,alternating,alternative,alternatives,alternator,alters,although,altitude,alto,altogether,altruistic,aluminum,alumni,alumnus,always,am,ama,amah,amaretto,amassed,amateur,amateurs,amaze,amazed,amazes,amazing,amazingly,amazon,ambassador,amber,ambiance,ambience,ambient,ambiguity,ambiguous,ambition,ambitions,ambitious,ambivalence,ambivalent,ambrosia,ambulance,ambulances,ambush,ambushed,amen,amend,amended,amendment,amendments,amends,amenities,ami,amiable,amicable,amigo,amigos,amin,amino,amiss,ammo,ammonia,ammunition,amnesia,amniotic,among,amongst,amoral,amorous,amount,amounted,amounts,amp,amphetamines,ampicillin,ample,amply,ampule,amputate,amputated,amputation,amulet,amulets,amuse,amused,amusement,amuses,amusing,an,ana,anachronism,anaesthetic,anagram,analogy,analyse,analysis,analyst,analysts,analyze,analyzed,analyzing,anaphylactic,anarchist,anarchists,anarchy,anatomically,anatomy,ancestor,ancestors,anchor,anchorage,anchoring,anchors,anchovies,ancient,ancients,and,android,ane,anecdote,anecdotes,anemia,anemic,anesthesia,anesthesiologist,anesthesiology,anesthetic,anesthetics,aneurysm,anew,angel,angels,angelus,anger,angina,angiogram,angioplasty,angle,angles,angling,angora,angrier,angrily,angry,angst,anguish,anguished,ani,animal,animals,animated,animation,animosity,anise,ankle,ankles,anna,annals,annex,annihilate,annihilated,annihilation,anniversary,announce,announced,announcement,announcements,announcer,announces,announcing,annoy,annoyance,annoyances,annoyed,annoying,annoyingly,annoys,annual,annually,annul,annulled,annulment,anoint,anointed,anomalies,anomaly,anon,anonymity,anonymous,anorexia,anorexic,another,answer,answered,answering,answers,ant,antacid,antagonism,antagonistic,antagonize,antagonizing,ante,antelope,antenna,antennae,anthem,anthology,anthrax,anthropologist,anthropologists,anthropology,anti,antibiotic,antibiotics,antibodies,antibody,anticipate,anticipated,anticipating,anticipation,antics,antidepressant,antidepressants,antidote,antihistamine,antihistamines,antiquated,antique,antiques,antiquing,antiquities,antiquity,antisocial,antivenin,antler,ants,antsy,anvil,anxiety,anxious,anxiously,any,anybody,anyhow,anymore,anyone,anyplace,anything,anytime,anyway,anyways,anywhere,apache,apart,apartheid,apartment,apartments,apathy,ape,apes,apex,aphrodisiac,apiece,aplastic,apocalypse,apocalyptic,apollo,apologetic,apologies,apologise,apologize,apologized,apologizes,apologizing,apology,apostle,apostles,apostrophe,appalled,appalling,apparatus,apparel,apparent,apparently,apparition,appeal,appealed,appealing,appeals,appear,appearance,appearances,appeared,appearing,appears,appease,appeased,appendage,appendages,appendectomy,appendicitis,appendix,appetite,appetites,appetizer,appetizers,appetizing,applaud,applauded,applauding,applause,apple,applejack,apples,applesauce,appliance,appliances,applicants,application,applications,applied,applies,apply,applying,appoint,appointed,appointing,appointment,appointments,appraisal,appraise,appreciate,appreciated,appreciates,appreciation,appreciative,apprehend,apprehended,apprehension,apprehensive,apprentice,apprised,approach,approached,approaches,approaching,appropriate,appropriately,appropriations,approval,approve,approved,approving,approximate,approximately,approximation,apricot,apron,aprons,apropos,aptitude,aptly,aqua,aquarium,aquatic,ar,arachnid,arachnids,arbitrary,arbitration,arbitrator,arbor,arboretum,arc,arcade,arch,archaic,arched,archenemy,archeological,archeology,archer,arches,architect,architects,architecture,archives,arctic,ardent,are,area,areas,arena,arf,argentine,argon,arguably,argue,argued,argues,arguing,argument,argumentative,arguments,argyle,aria,arid,ariel,aright,arise,arises,aristocratic,arithmetic,ark,arm,armaments,armed,armies,arming,armor,armored,armory,armour,armpits,arms,army,aroma,arose,around,arouse,aroused,arousing,arraigned,arraignment,arrange,arranged,arrangement,arrangements,arranging,array,arrears,arrest,arrested,arresting,arrests,arrhythmia,arrival,arrivals,arrive,arrived,arrives,arriving,arrogance,arrogant,arrow,arrowhead,arrows,arroyo,arse,arsenal,arsenic,arson,arsonist,art,arterial,arteries,artery,artful,arthritis,artichoke,artichokes,article,articles,articulate,artifact,artifacts,artificial,artillery,artist,artiste,artistic,artistry,artists,arts,artsy,artwork,arty,arugula,as,asbestos,ascension,ascot,ash,ashamed,ashes,ashore,ashram,ashtray,ashtrays,aside,asinine,ask,asked,askew,asking,asks,asleep,asparagus,aspect,aspects,aspen,asphalt,asphyxiation,aspirations,aspire,aspirin,aspirins,assailant,assassin,assassinate,assassination,assassins,assault,assaulted,assaulting,assaults,assemble,assembled,assembler,assemblies,assembling,assembly,assertive,assertiveness,asses,assess,assessed,assessing,assessment,asset,assets,assign,assigned,assigning,assignment,assignments,assimilate,assimilated,assist,assistance,assistant,assistants,assisted,assisting,associate,associated,associates,associating,association,associations,assorted,assortment,assume,assumed,assumes,assuming,assumption,assumptions,assurance,assurances,assure,assured,assuredly,assures,assuring,asteroid,asteroids,asthma,astonished,astonishing,astonishment,astound,astounding,astral,astray,astronaut,astronauts,astronomer,astronomical,astronomy,astrophysics,astute,asunder,asylum,at,ate,atheists,athlete,athletes,athletic,atlas,atmosphere,atom,atomic,atonement,atop,atrium,atrocious,atrocities,atrophied,atropine,att,attaboy,attach,attache,attached,attachment,attachments,attack,attacked,attacker,attackers,attacking,attacks,attain,attained,attempt,attempted,attempting,attempts,attend,attendance,attendant,attendants,attended,attending,attends,attention,attentions,attentive,attest,attic,attired,attitude,attitudes,attorney,attorneys,attract,attracted,attracting,attraction,attractive,attracts,attribute,attributed,attributes,attuned,auction,auctioneer,auctioning,audacity,audible,audience,audiences,audio,audiotape,audit,audited,auditing,audition,auditioning,auditions,auditor,auditorium,auditory,auger,aught,augmentation,august,auk,auld,aunt,auntie,aunties,aunts,aura,auras,aurora,auspicious,authentic,authenticate,authenticated,authenticity,author,authoritative,authorities,authority,authorization,authorize,authorized,authorizing,authors,autism,autistic,auto,autobiographical,autograph,autographed,autographs,automated,automatic,automatically,automatics,automaton,automobile,automobiles,automotive,autonomous,autonomy,autopsies,autopsy,autumn,auxiliary,ava,availability,available,avalanche,avatar,avatars,ave,avenge,avenged,avenger,avengers,avenue,average,averages,averse,aversion,aviation,avid,avocado,avoid,avoidance,avoided,avoiding,avoids,aw,await,awaiting,awaits,awake,awaken,awakened,awakening,awakes,award,awarded,awards,aware,awareness,away,awe,awed,awesome,awful,awfully,awhile,awkward,awkwardly,awkwardness,awoke,awol,awry,ax,axe,axel,axis,axle,ay,aye,baba,babble,babbling,babe,babes,babies,baboon,baboons,babu,baby,babysitter,babysitters,bach,bachelor,bachelorette,bachelors,back,backbone,backdoor,backdrop,backed,backer,backfire,backfired,backfires,backfiring,backgammon,background,backhand,backing,backpack,backpacking,backpacks,backroom,backs,backseat,backside,backslide,backstabbing,backstage,backstreet,backstroke,backup,backups,backward,backwards,backyard,bacon,bacteria,bacterial,bad,badder,baddest,badge,badgered,badgering,badges,badly,badminton,badness,baffled,baffles,baffling,bag,bagel,bagels,baggage,bagged,baggies,bagging,baggy,bagman,bagpipes,bags,bah,bail,bailed,bailey,bailiff,bailiffs,bailing,bails,bait,baited,baiting,bake,baked,baker,bakeries,bakers,bakery,bakes,baking,baklava,balance,balanced,balances,balancing,balboa,balconies,balcony,bald,balding,baldness,bale,balk,ball,ballads,ballast,balled,baller,ballerina,ballet,ballgame,ballistic,ballistics,ballon,balloon,balloons,ballot,ballots,ballpark,ballplayer,ballplayers,ballpoint,ballroom,balls,ballsy,balm,balmoral,baloney,bam,bambino,bamboo,bamboozled,ban,banal,banality,banana,bananas,band,bandage,bandages,bandit,bandits,bands,bandwagon,bane,bang,banged,bangers,banging,bangles,bangs,banish,banished,banister,banjo,bank,bankbooks,banker,bankers,banking,bankroll,bankrolled,bankrupt,bankruptcy,bankrupted,banks,banned,banner,banners,banning,bannister,banquet,banshee,banter,banzai,baptism,baptist,baptists,baptize,baptized,bar,barb,barbarian,barbarians,barbaric,barbecue,barbecued,barbecues,barbed,barber,barbers,barbershop,barbs,bard,bare,bared,barefoot,barely,barf,barfed,barfing,bargain,bargained,bargaining,barge,barged,barges,barging,baring,barium,bark,barked,barkeep,barker,barking,barks,barley,barlow,barmaid,barman,barn,barnacle,barnyard,barometer,baron,baroness,baronet,baroque,barracks,barracuda,barrage,barre,barred,barrel,barreling,barrels,barren,barricade,barricaded,barricades,barrier,barring,barrio,barrister,barroom,barrow,bars,barstool,bartender,bartending,barter,base,baseball,based,baseless,baseman,basement,basements,bases,bash,bashed,bashful,bashing,basic,basically,basics,basil,basin,basis,bask,basket,basketball,basketballs,baskets,basking,bass,bassett,bassinet,bassoon,baste,bastille,bat,batch,bates,bath,bathe,bathed,bathing,bathrobe,bathrobes,bathroom,bathrooms,baths,bathtub,batman,baton,bats,batted,batter,battered,batteries,battering,battery,batting,battle,battlefield,battleground,battles,battleship,battling,batty,bauble,baubles,bawdy,bawl,bawling,bay,bayberry,bayonet,bayou,bays,bazaar,bazooka,be,beach,beaches,beacon,beaded,beads,beagle,beak,beakers,beam,beamed,beaming,beams,bean,beanbag,beanie,beans,bear,bearable,beard,bearded,beards,bearer,bearers,bearing,bearings,bears,beast,beastie,beasts,beat,beaten,beater,beating,beatings,beatnik,beats,beau,beaucoup,beauties,beautiful,beautifully,beauty,beaver,beavers,became,because,beck,beckons,becks,become,becomes,becoming,bed,bedbug,bedbugs,bedlam,bedpan,bedpans,bedridden,bedrock,bedroom,bedrooms,beds,bedside,bedspread,bedtime,bee,beech,beef,beefcake,beefed,beefs,beefy,been,beep,beeped,beeper,beepers,beeps,beer,beers,beery,bees,beeswax,beetle,beetles,beets,befall,befitting,before,beforehand,beg,began,begat,begets,beggar,beggars,begged,begging,begin,beginner,beginning,beginnings,begins,begrudge,begs,begun,behalf,behave,behaved,behaving,behavior,behavioral,behaviour,beheading,behind,behold,behooves,beige,being,beings,bel,belabor,belated,beleaguered,belie,belief,beliefs,believable,believe,believed,believer,believers,believes,believing,belittle,belive,bell,bellboy,belle,bellhops,bellies,belligerent,bellman,bells,belly,bellyaching,bellybutton,belong,belonged,belonging,belongings,belongs,beloved,below,belt,belted,belts,belvedere,ben,bench,benched,benches,benching,bend,bended,bender,bending,bends,bendy,bene,beneath,benedict,benefactor,benefactors,beneficial,benefit,benefited,benefits,benes,benevolence,benevolent,benign,benjamin,benjamins,bennet,benny,bent,benthic,bequest,berate,berating,bereavement,bereft,beret,berg,berlin,berries,berry,berserk,berserker,bertha,beryllium,beseech,beside,besides,besieged,besmirch,best,bested,bestow,bestowed,bestseller,bet,beta,beth,bethesda,betray,betrayal,betrayals,betrayed,betrayer,betraying,betrays,bets,better,betting,between,beverage,beware,bewitched,bey,beyond,bi,bialy,bias,biased,bib,bible,bibles,biblical,bibliography,bicentennial,bicker,bickering,bicuspids,bicycle,bicycles,bid,bidder,bidding,bide,biding,bids,biff,big,bigamist,bigamy,bigfoot,bigger,biggest,biggie,bighorn,bigmouth,bigness,bigot,bigotry,bijou,bike,biker,bikers,bikes,biking,bikini,bikinis,bilateral,bilge,bilingual,bill,billboard,billboards,billiard,billie,billing,billion,billionaire,billionaires,billions,bills,billy,bimbo,bimbos,bin,binary,bind,binder,binding,binds,binge,bingo,binoculars,bins,bio,biochemist,biochemistry,biographical,biographies,biography,biohazard,biological,biologically,biology,bionic,biopsy,bios,biotech,bipartisan,bipolar,birch,bird,birdcage,birdie,birdies,birds,birdseed,birth,birthday,birthdays,birthing,birthmark,birthplace,birthright,births,biscuit,biscuits,bishop,bishops,bison,bisque,bistro,bit,bite,bites,biting,bits,bitsy,bitten,bitter,bitterness,bitty,biz,bizarre,blab,blabbermouth,blabbing,black,blackberry,blackbird,blackboard,blacked,blacking,blackjack,blackmail,blackmailed,blackmailer,blackmailing,blackness,blackout,blackouts,blacks,blacksmith,bladder,bladders,blade,blades,blah,blam,blame,blamed,blameless,blames,blaming,bland,blank,blanket,blankets,blankly,blanks,blaring,blarney,blasphemous,blasphemy,blast,blasted,blasters,blasting,blatant,blatantly,blather,blathering,blaze,blazer,blazers,blazes,blazing,bleach,bleached,bleachers,bleaching,bleak,bled,bleed,bleeder,bleeding,bleeds,bleep,blemish,blend,blended,blender,blending,blends,bless,blessed,blessing,blessings,blew,blight,blimey,blimp,blind,blinded,blinders,blindfold,blindfolded,blinding,blindly,blindness,blinds,blindsided,blink,blinked,blinking,blinks,blip,blips,bliss,blissful,blissfully,blisters,blithely,blithering,blitz,blizzard,bloated,blob,bloc,block,blockade,blockage,blockbusters,blocked,blockhead,blocking,blocks,bloke,blokes,blond,blonde,blondes,blonds,blood,blooded,bloodhound,bloodied,bloodless,bloodline,bloods,bloodshed,bloodshot,bloodstream,bloodsucker,bloodsucking,bloody,bloom,blooming,blooms,blossom,blossomed,blossoms,blot,blotchy,blotter,blotto,blouse,blow,blowed,blower,blowfish,blowhard,blowing,blowjob,blowjobs,blown,blowout,blows,blowtorch,blowup,blubber,blubbering,bludgeoned,blue,bluebells,blueberries,blueberry,bluepoint,blueprints,bluer,blues,bluest,bluff,bluffing,bluffs,blume,blunder,blundering,blunders,blunt,blur,blurb,blurred,blurry,blurt,blurted,blurting,blush,blushing,bluster,bo,boa,boar,board,boarded,boarder,boarding,boardinghouse,boardroom,boards,boardwalk,boast,boat,boathouse,boating,boatload,boatman,boats,bob,bobbin,bobbing,bobby,bobcat,bod,bodega,bodies,bodily,body,bodyguard,bodyguards,bogeyman,boggle,boggles,boggling,bogs,bogus,bohemian,boil,boiled,boiler,boilers,boiling,boils,bold,bolder,boldly,bollocks,bologna,bolster,bolt,bolted,bolts,bomb,bombarded,bombarding,bombed,bomber,bombers,bombing,bombings,bombs,bombshell,bonbon,bond,bondage,bonded,bonding,bonds,bondsman,bone,boned,bonehead,boneless,bones,bonfire,bong,bongo,bongos,boning,bonkers,bonnet,bonnie,bonus,bonuses,bony,boo,boob,boobies,boobs,booby,booger,boogey,boogeyman,boogie,book,bookcase,booked,bookends,booker,bookie,booking,bookish,bookkeeper,booklet,booklets,bookman,bookmark,books,bookshelf,bookshelves,bookstore,boom,boombox,boomer,boomerang,boon,boonies,boorish,boost,boosted,booster,boosters,boosts,boot,booted,booth,booths,booties,bootleg,boots,booty,booze,boozer,boozing,bop,bora,bordeaux,bordello,border,bordering,borderline,borders,bore,bored,boredom,boring,born,borrow,borrowed,borrowing,bosom,bosomy,boss,bossed,bosses,bossing,bossy,boston,bot,botanical,botany,botched,both,bother,bothered,bothering,bothers,bottle,bottled,bottles,bottling,bottom,bottomed,bottomless,bottoms,botulism,bought,boulder,boulevard,bounce,bounced,bouncer,bouncing,bouncy,bound,boundaries,boundary,bounds,bounty,bouquet,bouquets,bourbon,bourgeois,bourne,bout,boutique,boutiques,boutonniere,bouts,bow,bowed,bowel,bowels,bowers,bowery,bowing,bowl,bowled,bowler,bowline,bowling,bowls,bowman,bows,box,boxcar,boxed,boxer,boxers,boxes,boxing,boy,boycott,boyfriend,boyfriends,boyhood,boys,boysenberry,bozo,bozos,bra,brace,bracelet,bracelets,braces,bracing,bracken,bracket,brad,brag,braggart,bragged,bragging,brags,braid,braided,braiding,braille,brain,brained,brainiest,brains,brainstorm,brainstorming,brainwash,brainwashed,brainwashing,brake,brakes,bran,branch,branched,branches,branching,brand,brandies,brandy,bras,brash,brass,brassiere,brassieres,brat,brats,bratwurst,brava,bravado,brave,braved,bravely,braver,bravery,bravest,bravo,brawl,brays,brazen,brazil,breach,breached,bread,breadth,break,breakable,breakdown,breakdowns,breaker,breakfast,breaking,breakout,breaks,breakthrough,breakthroughs,breakup,breakups,breakwater,breast,breasted,breasts,breath,breathable,breathe,breathed,breather,breathes,breathing,breathless,breaths,breathtaking,bred,bree,breech,breed,breeding,breeds,breeze,breezing,breezy,bren,brent,brethren,brew,brewed,brewer,brewery,brewing,brews,briar,bribe,bribed,bribery,bribes,bribing,brick,bricked,bricks,bridal,bride,bridegroom,brides,bridesmaid,bridesmaids,bridge,bridges,brie,brief,briefcase,briefcases,briefed,briefing,briefings,briefly,briefs,brig,brigade,brigadier,bright,brighten,brighter,brightest,brightly,brill,brilliance,brilliant,brilliantly,brim,brin,bring,bringing,brings,brink,brioche,bris,brisket,briskly,bristol,brit,britches,britt,brittle,bro,broad,broadcast,broadcasting,broadcasts,broadening,broader,broads,broccoli,brochure,brochures,brock,broiled,broiler,broke,broken,brokenhearted,broker,brokerage,bronchial,bronco,bronze,bronzed,bronzing,brooch,brood,brooding,broody,brook,brooks,broom,brooms,broomstick,broomsticks,bros,broth,brothel,brother,brotherhood,brotherly,brothers,brought,brouhaha,brow,browbeat,browbeating,brown,brownie,brownies,browning,brownout,browns,brownstone,browse,browsing,brr,bruise,bruised,bruises,bruising,brumby,brunch,brunette,brunettes,brunt,brush,brushed,brushes,brushing,brutal,brutality,brutally,brute,bubbies,bubble,bubbles,bubbly,buck,buckaroo,bucket,buckets,buckeyes,buckle,buckled,buckling,bucko,bucks,buckshot,bud,buddies,budding,buddy,budge,budget,budgeted,budgets,budging,buds,buff,buffalo,buffer,buffet,buffoon,buffoons,buffs,buffy,bug,bugged,bugger,buggered,bugging,buggy,bugle,bugs,build,builder,building,buildings,builds,buildup,built,bulb,bulbous,bulbs,bulge,bulging,bulimic,bulk,bulky,bull,bulldog,bulldoze,bulldozers,bullet,bulletin,bulletins,bulletproof,bullets,bullheaded,bullied,bullies,bullion,bullpen,bulls,bully,bum,bumble,bumbling,bummed,bummer,bummers,bumming,bump,bumped,bumper,bumping,bumpkins,bumps,bumpy,bums,bun,bunch,bunches,bundle,bundles,bungalow,bungalows,bungee,bungled,bunion,bunions,bunk,bunker,bunking,bunks,bunnies,bunny,buns,bunt,bunting,bura,burbs,burden,burdened,burdens,bureau,bureaucrat,bureaucrats,burgeoning,burger,burgers,burgess,burglar,burglaries,burglary,burgundy,burial,buried,buries,burke,burlap,burley,burly,burn,burned,burner,burning,burnout,burns,burnt,burp,burping,burrito,burritos,burro,burrows,burst,bursting,burton,bury,burying,bus,busboy,busboys,buses,bush,bushel,bushes,busier,busiest,business,businesses,businessman,businessmen,businesswoman,businesswomen,busload,bussing,bust,busted,buster,bustier,busting,bustle,bustling,busts,busty,busy,busybody,but,butch,butcher,butchered,butchers,butler,butlers,buts,butt,butted,butter,butterball,buttercup,butterflies,butterfly,buttering,butters,butterscotch,buttery,butting,buttocks,button,buttoned,buttoning,buttons,butts,buy,buyer,buyers,buying,buyout,buys,buzz,buzzard,buzzards,buzzed,buzzer,buzzes,buzzing,bwana,by,bye,byes,bygones,bylaws,byline,bypass,byproduct,bystander,bystanders,cab,caballero,cabaret,cabbage,cabdriver,cabernet,cabin,cabinet,cabinets,cabins,cable,cables,caboose,cabs,cacciatore,cache,cachet,cackle,cackling,cacophony,cactus,cad,cadavers,caddie,caddy,cadet,cadmium,caesar,cafe,cafeteria,caff,caffeinated,caffeine,cage,caged,cages,cagey,cahoots,cain,cake,cakes,cakewalk,calamitous,calamity,calcium,calculate,calculated,calculating,calculation,calculations,calculator,calculators,calculus,calendar,calendars,calender,calf,caliber,calibre,calico,call,called,caller,callers,calling,callous,calls,calm,calmed,calmer,calming,calmly,calms,calorie,calories,calves,calzone,calzones,cam,camcorder,came,camel,camels,camera,cameraman,cameras,camp,campaign,campaigned,campaigning,campaigns,camped,camper,campers,campfire,camping,campos,camps,campus,campuses,cams,camshaft,can,canal,canals,canape,canaries,canary,canasta,cancel,canceled,canceling,cancellation,cancellations,cancelled,cancels,cancer,cancers,candid,candidacy,candidate,candidates,candies,candle,candlelight,candlelit,candles,candlestick,candlesticks,candor,candy,cane,canine,canines,canisters,cannabis,canned,cannery,cannibal,cannibals,cannoli,cannon,cannonball,cannons,cannot,canoe,canoes,canopy,cans,cant,canteen,canter,canton,canvas,canvass,canyon,canyons,cap,capabilities,capable,capacity,cape,caper,capital,capitalism,capitalist,capitalists,capitalize,capitals,capitol,capo,capote,capper,capping,cappuccino,caprice,caps,capsize,capsized,capsule,capsules,captain,captains,captioning,captivated,captivating,captive,captives,captivity,capture,captured,capturing,car,caramba,caramel,carat,carats,carb,carbo,carbohydrates,carbon,carbs,carbuncle,carburetor,carcass,carcinogens,card,cardboard,cardiac,cardigan,cardinal,cardinals,cardiogram,cardiologist,cardiology,cardiovascular,cards,care,cared,career,careers,carefree,careful,carefully,caregiver,careless,carelessness,cares,caress,caretaker,cargo,caribou,caring,caritas,carjacking,carl,carlin,carmen,carmine,carney,carnie,carnival,carnivore,carnivorous,carol,carolers,caroling,carolling,carotid,carousel,carp,carpenter,carpentry,carpet,carpeting,carpool,carr,carriage,carriages,carried,carrier,carriers,carries,carrot,carrots,carry,carrying,cars,cart,carted,cartel,cartels,carter,cartilage,carting,cartographers,carton,cartons,cartoon,cartoonist,cartoons,cartouche,cartridge,carts,carve,carved,carvel,carver,carvers,carving,carvings,carwash,casa,casbah,cascade,case,cased,caseload,cases,cash,cashed,cashews,cashier,cashing,cashmere,casing,casings,casino,casinos,casitas,casket,caskets,casserole,cassette,cassettes,cast,caste,casting,castle,castles,castor,castrated,casts,casual,casually,casualties,casualty,cat,cataclysmic,catalog,cataloging,catalogue,catalyst,catapult,cataracts,catastrophe,catastrophic,catatonic,catch,catcher,catchers,catches,catching,catchy,categorically,categories,categorized,category,cater,caterer,caterers,catering,caterpillar,caterpillars,caters,caterwauling,cates,catfight,catharsis,cathartic,cathedral,catheter,catholic,cats,catsup,cattle,catty,catwalk,caucus,caught,cauldron,cauliflower,cause,caused,causes,causing,caution,cautionary,cautious,cautiously,cavalcade,cavalier,cavalry,cave,caved,caveman,cavern,caverns,caves,caviar,cavities,cavity,cayman,caymans,cease,ceased,cedar,cedars,cee,ceiling,celebrate,celebrated,celebrates,celebrating,celebration,celebrities,celebrity,celery,celeste,celibacy,celibate,cell,cellar,cellars,celled,cellist,cellmate,cellmates,cello,cells,cellular,cellulite,cement,cemeteries,cemetery,censor,censorship,censure,censured,census,cent,centennial,center,centered,centerfold,centerpiece,centerpieces,centers,centimeter,centimeters,central,centre,centred,cents,centuries,century,ceramic,cereal,cerebellum,cerebral,cerebrum,ceremonial,ceremonies,ceremony,certain,certainly,certainties,certainty,certifiable,certifiably,certificate,certificates,certification,certified,certify,cerulean,cervical,cessation,cesspool,chad,chaff,chafing,chagrined,chain,chained,chains,chainsaw,chainsaws,chair,chairman,chairs,chalet,chalk,chalkboard,chalked,challenge,challenged,challenger,challenges,challenging,chamber,chamberlain,chambers,chameleon,chamomile,champ,champagne,champion,champions,championship,championships,champs,chance,chancellor,chances,chandelier,chandeliers,chandler,chang,change,changed,changes,changing,channel,channeled,channels,chant,chanteuse,chanting,chants,chaos,chaotic,chap,chapel,chaperon,chaperone,chaperoned,chaperones,chaperoning,chaplain,chapman,chapped,chaps,chapter,chapters,character,characteristics,characterize,characterized,characterizing,characters,charade,charades,charcoal,chardonnay,charge,charged,charger,charges,charging,chariot,chariots,charismatic,charitable,charities,charity,charlatan,charley,charlie,charlies,charlotte,charm,charmed,charmer,charming,charmingly,charms,charred,chart,charted,charter,chartered,chartreuse,charts,chase,chased,chaser,chases,chasing,chasm,chassis,chastity,chat,chateau,chatted,chatter,chatterbox,chatting,chatty,chauffeur,chauvinistic,cheap,cheapen,cheaper,cheapest,cheat,cheated,cheater,cheaters,cheating,cheats,check,checkbook,checked,checker,checkered,checkers,checking,checkmate,checkout,checkpoints,checks,checkup,checkups,cheddar,cheek,cheekbones,cheeks,cheep,cheer,cheered,cheerful,cheering,cheerio,cheerleader,cheerleaders,cheerleading,cheers,cheery,cheese,cheeseburger,cheeseburgers,cheesecake,cheesed,cheeses,cheesy,cheetah,chef,chefs,chemical,chemically,chemicals,chemist,chemistry,chemo,chenille,cheque,cherish,cherished,cherries,cherry,cherub,chess,chessboard,chest,chestnut,chestnuts,chests,chesty,chevalier,chevron,chevy,chew,chewed,chewing,chewy,chez,chi,chic,chicano,chick,chickadee,chicken,chickened,chickening,chickenpox,chickens,chickenshit,chicks,chico,chief,chiefs,chiffon,chigger,chihuahua,child,childbirth,childhood,childhoods,childish,childlike,children,chile,chiles,chili,chill,chilled,chilling,chills,chilly,chime,chimera,chimney,chimp,chimpanzee,chimps,chin,china,chink,chinks,chino,chins,chip,chipmunk,chipped,chipper,chipping,chips,chiropractor,chirp,chirping,chirpy,chisel,chiseling,chit,chitchat,chivalrous,chlamydia,chloride,chlorine,chloroformed,chocolate,chocolates,chocolatey,choice,choices,choir,choirboy,choirs,choke,choked,choker,chokes,choking,cholera,cholesterol,cholinesterase,chomp,chompers,chomping,choose,choosers,chooses,choosing,choosy,chop,chopped,chopper,choppers,chopping,choppy,chops,chopsticks,chord,chords,chore,choreography,chores,chorus,chose,chosen,chow,chowder,christen,christened,christening,christie,christy,chrome,chromic,chromosomes,chronic,chronically,chronicle,chronology,chubby,chuck,chucked,chuckle,chuckles,chucks,chug,chugging,chum,chummy,chump,chumps,chums,chunk,chunks,chunky,church,churches,churn,chute,chutes,ciao,cicely,cider,cigar,cigarette,cigarettes,cigars,cinder,cinema,cinematic,cinnabar,cinnamon,cipher,circle,circled,circles,circling,circuit,circuited,circuitry,circuits,circular,circulate,circulated,circulation,circulatory,circumcision,circumference,circumstance,circumstances,circumstantial,circumvent,circus,cirrhosis,cissy,citation,citations,cite,cited,cities,citing,citizen,citizens,citizenship,citrus,city,citywide,civic,civics,civil,civilian,civilians,civilisation,civility,civilization,civilizations,civilized,civvies,clack,clad,claim,claimed,claiming,claims,clairvoyant,clam,clambake,clammed,clammy,clamoring,clamp,clamped,clamping,clams,clan,clandestine,clang,clanging,clanking,clap,clapped,clapper,clapping,clarence,clarification,clarify,clarifying,clarinet,clarity,clash,clashing,clasp,class,classes,classic,classical,classics,classier,classification,classified,classify,classless,classmate,classmates,classroom,classrooms,classy,clause,clauses,claustrophobia,claustrophobic,clavicle,claw,clawed,claws,clay,claymore,claymores,clean,cleaned,cleaner,cleaners,cleanest,cleaning,cleanliness,cleans,cleanse,cleansed,cleanser,cleanses,cleansing,cleanup,clear,clearance,clearances,cleared,clearer,clearing,clearly,clears,cleats,cleavage,cleave,clef,clemency,clement,clench,clergy,clergyman,clerical,clerk,clerks,clever,cleverly,cleverness,cliche,click,clicked,clicker,clicking,clicks,client,clientele,clients,cliff,cliffhanger,cliffs,climate,climax,climb,climbed,climbers,climbing,clinched,clincher,clinches,cling,clinging,clings,clingy,clinic,clinical,clinically,clinics,clink,clip,clipboard,clipped,clipper,clippers,clipping,clippings,clips,clique,clitoris,cloak,clobbered,clock,clocked,clocking,clocks,clockwise,clockwork,clod,clods,clogged,clogging,clogs,cloistered,clone,cloned,clones,clop,close,closed,closely,closeness,closer,closes,closest,closet,closeted,closets,closing,closure,clot,cloth,clothe,clothed,clothes,clothesline,clothing,cloths,clots,clotted,clotting,cloud,clouded,clouds,cloudy,clout,cloven,clover,cloverleaf,cloves,clown,clowning,clowns,club,clubbed,clubhouse,clubs,cluck,clucking,clue,clueless,clues,clump,clumps,clumsily,clumsiness,clumsy,clung,clunk,clunker,clunkers,clusters,clutch,clutched,clutches,clutter,cluttering,coach,coached,coaches,coaching,coal,coalition,coals,coarse,coast,coastal,coaster,coasters,coasting,coat,coating,coats,coattails,coax,coaxing,cob,cobb,cobbler,cobra,cobras,cobweb,cobwebs,coca,cocaine,cockamamie,cocked,cockles,cockney,cockpit,cockroach,cockroaches,cocktail,cocktails,cocky,coco,cocoa,coconut,coconuts,cocoon,cod,coddle,coddling,code,coded,codependent,codes,codicil,coding,coed,coeds,coerce,coerced,coercion,coexist,coffee,coffeehouse,coffees,coffers,coffin,coffins,cog,cognac,cognizant,coherent,cohesion,cohesive,coiffure,coil,coiled,coin,coincide,coincidence,coincidences,coincidental,coincidentally,coins,coitus,coke,cokes,col,cola,colchicine,cold,colder,coldest,coldly,coldness,colds,cole,coles,coleslaw,colic,colin,coliseum,colitis,collaborate,collaborated,collaborating,collaboration,collaborator,collage,collagen,collapse,collapsed,collapses,collapsing,collar,collarbone,collars,collateral,colleague,colleagues,collect,collected,collecting,collection,collections,collective,collectively,collector,collectors,collects,colleen,college,colleges,collide,collided,collie,collier,collins,collision,cologne,colon,colonel,colonels,colonial,colonials,colonies,colonists,colonization,colonized,colonnade,colony,color,colorado,colored,colorful,coloring,colors,colossal,colosseum,colour,coloured,colours,column,columnist,columnists,columns,coma,comas,comatose,comb,combat,combative,combination,combine,combined,combines,combing,combo,combust,combusted,combustible,combustion,come,comeback,comebacks,comedian,comedians,comedic,comedies,comedy,comer,comers,comes,comet,comeuppance,comfort,comfortable,comfortably,comforted,comforter,comforting,comforts,comfy,comic,comical,comics,coming,comma,command,commandant,commander,commanders,commanding,commandment,commandments,commando,commandos,commands,commemorating,commence,commencing,commendable,commendation,commensurate,comment,commentaries,commentary,commentator,commented,commenting,comments,commerce,commercial,commercialism,commercially,commercials,commie,commies,commiserate,commissary,commission,commissioned,commissioner,commissioners,commit,commitment,commitments,commits,committed,committee,committees,committing,commode,commodities,commodity,common,commoner,commonly,commonplace,commonwealth,commotion,communal,commune,communicate,communicated,communicating,communication,communications,communicator,communing,communion,communique,communism,communist,communists,communities,community,commute,commuted,comp,compact,compactor,compadre,companies,companion,companions,companionship,company,comparable,comparative,comparatively,compare,compared,compares,comparing,comparison,compartment,compartments,compass,compassion,compassionate,compatibility,compatible,compel,compelled,compelling,compels,compensate,compensated,compensation,compete,competence,competent,competing,competition,competitions,competitive,competitiveness,competitor,competitors,compilation,compiling,complacency,complacent,complain,complained,complaining,complains,complaint,complaints,complete,completed,completely,completes,completing,completion,complex,complexion,complexities,complexity,compliant,complicate,complicated,complicates,complicating,complication,complications,compliment,complimentary,compliments,comply,component,components,composed,composer,composers,composite,composition,compost,composure,compound,compounds,comprehend,comprehending,comprehension,comprehensive,compressed,compression,compressions,compressor,comprise,comprised,compromise,compromised,compromises,compromising,compulsion,compulsive,compulsively,compulsory,compute,computer,computerized,computers,comrade,comrades,con,conceal,concealed,concealer,concealing,concealment,concede,conceding,conceited,conceivable,conceivably,conceive,conceived,conceiving,concentrate,concentrated,concentrating,concentration,concentric,concept,conception,concepts,concern,concerned,concerning,concerns,concert,concerts,concession,concessions,concierge,concise,conclave,conclude,concluded,concludes,concluding,conclusion,conclusions,conclusive,conclusively,concocted,concocting,concoction,concord,concourse,concrete,concur,concurrently,concussion,concussions,condemn,condemnation,condemned,condemning,condensation,condensed,condescending,condiment,condition,conditioned,conditioner,conditioners,conditioning,conditions,condo,condolences,condom,condominium,condoms,condone,condoned,condoning,condor,condos,conducive,conduct,conducted,conducting,conductor,conducts,cone,cones,coney,confederacy,confederate,confederates,confederation,confer,conference,conferences,conferred,conferring,confess,confessed,confessing,confession,confessional,confessions,confessor,confetti,confidant,confidante,confide,confided,confidence,confidences,confident,confidential,confidentiality,confidentially,confides,confiding,configuration,confine,confined,confinement,confining,confirm,confirmation,confirmed,confirming,confirms,confiscated,confiscating,confit,conflict,conflicted,conflicting,conflicts,confluence,conform,conformity,confound,confront,confrontation,confrontations,confronted,confronting,confronts,confuse,confused,confusing,confusion,congenial,congeniality,congestion,congrats,congratulate,congratulated,congratulating,congratulations,congregation,congress,congressional,congressman,congresswoman,conjecture,conjugal,conjugate,conjunction,conjure,conjured,conjures,conjuring,conk,conked,conn,connect,connected,connecting,connection,connections,connects,conned,conner,conning,conniption,conniving,connoisseur,conquer,conquered,conquering,conquers,conquest,cons,conscience,conscientious,conscious,consciously,consciousness,consecrated,consecutive,consensual,consensus,consent,consented,consenting,consequence,consequences,consequently,conservation,conservative,conservatory,conserve,consider,considerable,considerably,considerate,consideration,considered,considering,considers,consigliere,consisted,consistent,consistently,consists,consolation,console,consoled,consolidate,consolidated,consoling,consort,consorting,consortium,conspicuous,conspiracies,conspiracy,conspirator,conspirators,conspire,conspired,conspiring,constable,constant,constantly,constellation,constipation,constituents,constitute,constitutes,constitution,constitutional,constitutionally,constraints,constrictor,construct,constructed,construction,constructive,construed,consul,consulate,consult,consultant,consultation,consultations,consulted,consulting,consults,consume,consumed,consumer,consumers,consumes,consuming,consummate,consummated,consumption,contact,contacted,contacting,contacts,contagious,contain,contained,container,containers,containing,containment,contains,contaminate,contaminated,contaminating,contamination,contemplate,contemplated,contemplating,contemporary,contempt,contender,contenders,content,contented,contention,contentment,contents,contest,contestant,contestants,contesting,context,continent,continental,continents,contingencies,contingency,continually,continuance,continuation,continue,continued,continues,continuing,continuity,continuous,continuously,continuum,contortionist,contours,contra,contraband,contraceptives,contract,contracted,contraction,contractions,contractor,contracts,contradict,contradicted,contradicting,contradiction,contradictory,contraption,contrary,contrast,contribute,contributed,contributes,contributing,contribution,contributions,contributor,contributors,contrite,contrived,control,controlled,controller,controlling,controls,controversial,controversy,contusion,contusions,convene,convened,convenes,convenience,convenient,conveniently,convent,convention,conventional,converge,converging,conversation,conversational,conversationalist,conversations,converse,conversion,convert,converted,convertible,convertibles,converting,convey,conveyor,convict,convicted,conviction,convictions,convince,convinced,convinces,convincing,convoy,convulsing,coo,cooing,cook,cookbook,cookbooks,cooked,cooker,cookie,cookies,cooking,cooks,cool,coolant,cooled,cooler,coolers,coolest,cooling,coolly,coolness,cools,coop,cooped,cooper,cooperate,cooperated,cooperating,cooperation,cooperative,coopers,coordinate,coordinated,coordinates,coordinating,coordinator,coot,cooties,cop,copacetic,cope,copied,copier,copies,copilot,coping,copiously,copper,copperhead,coppers,copping,cops,copter,copy,copycat,copying,copyright,cor,coral,cord,cordial,cordless,cordon,cordoned,cords,corduroy,core,coriander,cork,corker,corks,corkscrew,corky,corn,cornball,corned,corner,cornered,cornering,corners,cornerstone,cornfield,cornflakes,cornucopia,corny,corollary,corona,coronary,coronation,coroner,coroners,corporal,corporate,corporation,corporations,corporeal,corps,corpse,corpses,corral,correct,corrected,correcting,correction,correctional,corrections,corrective,correctly,correlation,correspond,corresponded,correspondence,correspondent,correspondents,corresponding,corresponds,corridor,corroborate,corroboration,corrupt,corrupted,corrupting,corruption,corsage,corset,cortex,cory,cos,cosign,cosmetic,cosmetics,cosmic,cosmically,cosmology,cosmopolitan,cosmos,cost,costa,costing,costly,costs,costume,costumes,cosy,cot,cotillion,cots,cottage,cottages,cotton,couch,cougar,cougars,cough,coughing,coughs,could,council,councillor,councilors,counsel,counseling,counselling,counsellor,counselor,counselors,count,countdown,counted,countenance,counter,counterattack,counterfeit,counterfeiting,countermeasures,counteroffer,counterpart,counterproductive,countess,counties,counting,countless,countries,country,countrymen,countryside,counts,county,coup,coupe,couple,couples,coupling,coupon,coupons,courage,courageous,courier,couriers,course,courses,coursing,court,courted,courteous,courtesy,courthouse,courting,courtroom,courtrooms,courts,courtship,courtside,courtyard,cousin,cousins,couture,cove,coven,covenant,cover,coverage,coveralls,covered,covering,covers,covert,coverup,covet,coveted,coveting,cow,coward,cowardice,cowardly,cowards,cowboy,cowboys,cowed,cower,cowering,cowgirl,coworker,cows,cox,coy,coyote,coyotes,coz,cozier,cozy,cozying,crab,crabby,crabgrass,crabs,crack,cracked,cracker,crackerjack,crackers,cracking,crackling,crackpot,cracks,cradle,craft,crafted,crafting,crafts,craftsmanship,craftsmen,crafty,cram,crammed,cramming,cramp,cramped,cramping,cramps,cranberry,crane,cranes,cranial,cranium,crank,cranking,cranks,cranky,cranny,crap,crapped,crapper,crapping,crappy,craps,crash,crashed,crasher,crashers,crashes,crashing,crass,crate,crated,crater,crates,crave,craves,craving,crawl,crawled,crawlers,crawling,crawls,crawly,crayons,craze,crazed,crazier,craziest,craziness,crazy,creak,creaky,cream,creamed,creamer,creaming,creamy,crease,creased,creases,create,created,creates,creating,creation,creations,creative,creatively,creativity,creator,creature,creatures,credence,credentials,credenza,credibility,credible,credit,credited,credits,credo,creed,creeds,creek,creep,creepers,creeping,creeps,creepy,cremated,cremation,crematorium,creme,crepe,crepes,crept,crescent,crest,crested,cretins,crevasse,crew,crewman,crews,crib,cribbage,cribs,crick,cricket,cried,crier,cries,crikey,crime,crimes,criminal,criminalistics,criminally,criminals,criminology,crimp,crimson,cringe,cripes,cripple,crippled,cripples,cris,crises,crisis,crisp,crisps,crispy,criteria,criterion,critic,critical,critically,criticism,criticize,criticized,criticizing,critics,critter,critters,croak,croaker,croc,crock,crocket,crocodile,crocodiles,croft,croissants,cronies,crook,crooked,crooks,croon,crop,cropped,crops,croquet,cross,crossbow,crossed,crosses,crossfire,crosshairs,crossing,crossroads,crossword,crotch,crouch,crouched,crouching,croupier,croutons,crow,crowbar,crowd,crowded,crowding,crowds,crowed,crowing,crown,crowned,crowning,crowns,crows,crucial,crucible,crucified,crucifix,crucifixion,crucify,crud,cruddy,crude,crudely,cruel,cruelly,cruelty,cruise,cruised,cruiser,cruisers,cruises,cruising,crumb,crumble,crumbled,crumbles,crumbling,crumbs,crummy,crumpets,crumpled,crunch,crunched,crunches,crunchy,crusade,crusader,crusades,crush,crushed,crusher,crushes,crushing,crust,crusts,crusty,crutch,crutches,crux,cry,crying,cryogenic,crypt,cryptic,crypto,crypts,crystal,crystals,cub,cubbies,cubby,cube,cubed,cubes,cubic,cubicle,cubs,cuckoo,cucumber,cud,cuddle,cuddled,cuddles,cuddly,cuddy,cue,cued,cuff,cuffed,cuffing,cuffs,cuisine,culinary,culminating,culmination,culottes,culpa,culpability,culpable,cult,cultivate,cultivated,cultivating,cultural,culturally,culture,cultured,cultures,cumin,cummerbund,cumulative,cuneiform,cunning,cup,cupboard,cupboards,cupcake,cupcakes,cupid,cuppa,cups,cur,curacao,curate,curator,curb,curd,curdle,cure,cured,cures,curfew,curfews,curie,curing,curiosity,curious,curiously,curl,curled,curlers,curling,curly,curmudgeon,curran,currency,current,currently,currents,curriculum,curry,curse,cursed,curses,cursing,cursive,cursory,curt,curtain,curtains,curtsy,curvaceous,curve,curveball,curves,cushion,cushions,cushy,cusp,cuss,cussing,custard,custodial,custodian,custody,custom,customarily,customary,customer,customers,customs,cut,cutaway,cutbacks,cute,cuteness,cuter,cutest,cutesy,cuticle,cuticles,cutie,cutlass,cutler,cutlery,cutoff,cutoffs,cutout,cuts,cutter,cutters,cutthroat,cutting,cyanide,cybernetic,cyberspace,cyborg,cycle,cycles,cyclone,cyclops,cyclotron,cylinder,cylinders,cymbal,cynic,cynical,cynicism,cynics,cypher,cypress,cyprus,cyst,cystic,dab,dabble,dabbled,dabbling,dad,daddies,daddy,dads,daffodils,daffy,daft,dag,dagger,dago,dah,dahl,dahlia,dailies,daily,dainty,daiquiri,dairy,dais,daisies,daisy,dale,dalliance,dally,dallying,dalton,dam,damage,damaged,damages,damaging,dame,damn,damnable,damned,damnedest,damning,damp,dampened,dampener,damper,damsel,damsels,dance,danced,dancer,dancers,dances,dancing,dandelion,dandelions,dandruff,dandy,dang,danger,dangerous,dangerously,dangers,dangle,dangled,dangling,danish,daphne,dapper,dare,dared,daredevil,dares,daring,dark,darken,darkened,darker,darkest,darkness,darkroom,darks,darling,darlings,darn,darndest,darned,dart,darts,dash,dashboard,dashed,dasher,dashing,data,database,databases,date,dated,dateless,dateline,dater,dates,dating,dato,daughter,daughters,daunting,dauphin,davenport,davy,dawdling,dawn,dawned,dawning,day,daybreak,daydream,daydreaming,daylight,daylights,days,daytime,daze,dazzle,dazzled,dazzling,de,deacon,dead,deadbeat,deadbeats,deader,deadlier,deadliest,deadline,deadlines,deadlock,deadly,deaf,deafening,deal,dealer,dealers,dealership,dealing,dealings,deals,dealt,dean,dear,dearest,dearie,dearly,dears,death,deathbed,deathly,deaths,deb,debacle,debatable,debate,debated,debates,debating,debilitating,debit,debonair,debrief,debriefed,debriefing,debris,debt,debts,debut,debutante,debutantes,decade,decadence,decadent,decades,decaf,decanter,decapitate,decapitated,decapitation,decay,decaying,deceased,deceit,deceitful,deceive,deceived,deceiving,decency,decent,deception,deceptions,deceptive,deceptively,decibel,decibels,decide,decided,decides,deciding,decipher,deciphering,decision,decisions,decisive,deck,decked,decker,decks,declaration,declare,declared,declaring,decline,declined,declining,deco,decoded,decoder,decompose,decomposed,decomposing,decompress,deconstruction,decontamination,decor,decorate,decorated,decorating,decoration,decorations,decorative,decorator,decorators,decorum,decoupage,decoy,decoys,decreased,decree,decrypted,decryption,dedicate,dedicated,dedicating,dedication,deduce,deduct,deducted,deductible,deduction,deductions,dee,deed,deeded,deeds,deejay,deem,deemed,deep,deeper,deepest,deeply,deer,deets,defaced,defacing,default,defeat,defeated,defeats,defect,defected,defective,defector,defects,defence,defend,defendant,defendants,defended,defender,defending,defense,defenseless,defenses,defensive,deferred,defiance,defiant,defiantly,defibrillator,deficiencies,deficiency,deficient,deficit,defied,defies,define,defined,defining,definite,definitely,definition,definitions,definitive,definitively,deflate,deflated,deflecting,deflection,deflower,deformity,defraud,defrost,deft,deftly,defuse,defused,defy,defying,degenerate,degeneration,degenerative,degradation,degrade,degraded,degrading,degree,degrees,dehydrated,dehydration,deigned,deities,deity,deke,del,delay,delayed,delaying,delays,delectable,delegate,delegates,delegation,delete,deleted,deli,deliberate,deliberately,deliberation,deliberations,delicacy,delicate,delicately,delicates,delicious,delight,delighted,delightful,delightfully,delights,delinquency,delinquent,delirious,delirium,deliver,delivered,deliveries,delivering,delivers,delivery,dell,delly,delta,deltas,delude,deluded,deluding,deluge,delusion,delusional,delusions,deluxe,delve,delving,demand,demanded,demanding,demands,demean,demeaning,demented,dementia,demerits,demise,demo,democracy,democrat,democratic,democrats,demographic,demographics,demolish,demolition,demolitions,demon,demonic,demonology,demons,demonstrate,demonstrated,demonstrates,demonstration,demonstrations,demonstrators,demoted,demur,demure,den,denial,denied,denies,denning,denominational,denominations,denominators,denounce,denouncing,dense,density,dent,dental,dentist,dentists,dents,dentures,deny,denying,deodorant,depart,departed,departing,department,departmental,departments,departure,depend,dependable,dependant,depended,dependency,dependent,depending,depends,depict,depicted,depicting,depiction,depicts,deplete,deplorable,deplore,deploy,deployed,deport,deported,depose,deposed,deposing,deposit,deposited,deposition,depositions,depository,deposits,depot,depraved,deprecating,depress,depressed,depressing,depression,depressor,depressors,deprivation,deprive,deprived,depriving,depth,depths,deputies,deputized,deputy,derail,derailing,deranged,derby,derelict,derision,derivative,derive,derives,dermatologist,derogatory,derrick,derriere,derris,descend,descendants,descending,descends,descent,describe,described,describes,describing,description,descriptive,desecrate,desecrated,desecration,desert,deserted,deserter,deserting,deserts,deserve,deserved,deserves,deserving,design,designate,designated,designation,designed,designer,designers,designing,designs,desirable,desire,desired,desires,desist,desk,desks,desktop,desolate,despair,desperado,desperate,desperately,desperation,despicable,despise,despised,despises,despising,despite,despondent,dessert,desserts,destabilize,destination,destinations,destined,destiny,destitute,destroy,destroyed,destroyer,destroyers,destroying,destroys,destruct,destructing,destruction,destructive,destructs,detach,detached,detachment,detail,detailed,detailing,details,detain,detained,detaining,detect,detected,detecting,detection,detective,detectives,detector,detectors,detente,detention,detergent,deteriorated,deterioration,determination,determine,determined,determines,determining,deterrent,detest,detestable,detests,detonate,detonated,detonates,detonating,detonation,detonator,detonators,detour,detours,detoxing,detract,detrimental,deuce,deuces,devastate,devastated,devastating,devastatingly,devastation,develop,developed,developer,developing,development,developments,develops,deviants,deviated,deviation,device,devices,devil,deviled,devilishly,devils,devious,devise,devised,devon,devote,devoted,devoting,devotion,devour,devoured,devouring,devours,dew,dewars,dewy,dex,dey,diabetes,diabetic,diabetics,diabolical,diagnose,diagnosed,diagnoses,diagnosis,diagnostic,diagnostician,diagonal,diagram,dial,dialect,dialed,dialing,dialogue,dials,dialysis,diameter,diamond,diamonds,diaper,diapers,diaphragm,diaphragms,diaries,diarrhea,diary,diathesis,diatribes,diazepam,dibs,dice,diced,dicey,dickens,dictate,dictated,dictates,dictating,dictation,dictator,dictators,dictatorship,dictatorships,dictionary,did,diddling,diddly,die,died,dies,diesel,diet,dieter,dieting,diets,differ,difference,differences,different,differential,differently,differs,difficult,difficulties,difficulty,diffuse,diffusion,dig,digest,digested,digesting,digestion,digestive,digger,diggers,digging,digit,digital,digitally,digits,dignified,dignify,dignitaries,dignity,digress,digs,dike,dilated,dilation,dilemma,dilettante,diligence,diligent,diligently,dill,dills,dilly,dilute,diluted,dim,dime,dimension,dimensional,dimensions,dimes,diminish,diminished,diminutive,dimly,dimmer,dimming,dimple,dimpled,dimwit,dine,dined,diner,dinero,diners,ding,dinged,dingle,dingo,dings,dingy,dining,dink,dinks,dinky,dinner,dinners,dinnertime,dinning,dinosaur,dinosaurs,dioxide,dip,diphtheria,diploma,diplomas,diplomatic,dipped,dipping,dips,dipstick,dire,direct,directed,directing,direction,directions,directive,directly,director,directorate,directors,directory,dirk,dirt,dirtiest,dirty,dis,disabilities,disability,disable,disabled,disabling,disadvantage,disagree,disagreed,disagreeing,disagreement,disagreements,disagrees,disallowed,disappear,disappearance,disappearances,disappeared,disappearing,disappears,disappoint,disappointed,disappointing,disappointment,disappointments,disappoints,disapproval,disapprove,disapproved,disapproves,disapproving,disarm,disarmed,disarming,disarray,disassembled,disaster,disasters,disastrous,disbarred,disbelief,disc,discarded,discerning,discharge,discharged,disciples,disciplinary,discipline,disciplined,disciplines,disciplining,disclose,disclosed,disclosure,disco,discoloration,discolored,discomfort,disconnect,disconnected,discontent,discontinue,discontinued,discord,discotheque,discount,discounting,discounts,discourage,discouraged,discourse,discourteous,discover,discovered,discoveries,discovering,discovers,discovery,discredit,discreet,discreetly,discrepancies,discrepancy,discrete,discretion,discriminate,discriminated,discriminating,discrimination,discs,discus,discuss,discussed,discusses,discussing,discussion,discussions,disdain,disease,diseased,diseases,disfigured,disfiguring,disgrace,disgraced,disgruntled,disguise,disguised,disguises,disgust,disgusted,disgusting,disgustingly,dish,disheartening,dishes,disheveled,dishonest,dishonor,dishonorable,dishwasher,disillusioned,disillusionment,disinfect,disinfectant,disinformation,disingenuous,disinherit,disinherited,disintegrate,disintegrated,disk,disks,dislike,dislocated,dislodge,dislodged,disloyal,dismal,dismantle,dismantled,dismantling,dismay,dismember,dismemberment,dismiss,dismissal,dismissed,dismissing,dismissive,dismount,disobedience,disobey,disobeyed,disobeying,disorder,disorders,disorganized,disorientation,disoriented,disorienting,disown,disowned,disparaging,disparity,dispatch,dispatched,dispatcher,dispatches,dispensary,dispensation,dispense,dispensed,dispenser,dispensers,dispensing,disperse,displace,displaced,displacement,display,displayed,displaying,displays,displeased,displeasure,disposable,disposal,dispose,disposing,disposition,disproportionate,disprove,dispute,disputes,disputing,disqualified,disqualify,disregard,disregarded,disrespect,disrespected,disrespectful,disrespecting,disrupt,disrupted,disrupting,disruptions,disruptive,disrupts,dissatisfied,dissect,dissected,dissection,dissed,dissent,dissertation,disservice,dissident,dissing,dissipate,dissipated,dissolve,dissolved,dissolves,dissolving,dissuade,distance,distances,distancing,distant,distaste,distasteful,distended,distillery,distinct,distinction,distinctions,distinctive,distinctly,distinguish,distinguished,distinguishing,distort,distorted,distortion,distortions,distract,distracted,distracting,distraction,distractions,distraught,distress,distressed,distressing,distribute,distributed,distributing,distribution,distributor,distributors,district,districts,distrust,distrustful,disturb,disturbance,disturbances,disturbed,disturbing,dit,ditch,ditched,ditches,ditching,ditsy,ditto,ditty,ditz,diuretic,diuretics,diva,divas,dive,diver,divers,diversion,diversionary,diversions,divert,diverted,diverting,dives,divest,divide,divided,dividends,divine,diving,divining,divinity,division,divisional,divisions,divorce,divorced,divorcee,divorces,divorcing,divulged,divvy,dizziness,dizzy,dizzying,do,dobbin,dobbins,dobson,doc,dock,docked,docking,docks,docs,doctor,doctored,doctors,doctrine,document,documentaries,documentary,documented,documents,dodge,dodgeball,dodged,dodger,dodgers,dodging,dodgy,doe,doer,does,dog,dogged,doggie,doggies,doggone,doggy,doghouse,dogs,dogwood,doily,doing,dojo,dol,dolce,dole,doling,doll,dollar,dollars,dolled,dollhouse,dollop,dolls,dolly,dolphin,dolphins,dolt,dom,domain,dome,domes,domestic,domesticated,domesticity,domicile,dominance,dominant,dominate,dominates,dominating,domination,dominick,dominion,dominoes,don,donate,donated,donating,donation,donations,done,dong,dongs,donkey,donkeys,donna,donor,donors,donut,donuts,doodle,doodles,doofus,doohickey,doom,doomed,doomsday,door,doorbell,doorknob,doorknobs,doorman,doormat,doornail,doors,doorstep,doorway,doozy,dopamine,dope,dopes,dopey,doping,doppelganger,dorado,dork,dorky,dorm,dormant,dormitory,dorms,dorsal,dory,dos,dosage,dosages,dose,dosed,doses,dossier,dost,dot,dote,dotes,doth,dots,dotted,dotty,double,doubled,doubles,doubly,doubt,doubted,doubtful,doubting,doubts,dough,doughnut,doughnuts,dour,doused,dove,doves,dowager,dowdy,down,downed,downer,downfall,downgraded,downhill,downing,download,downloaded,downpour,downright,downriver,downs,downside,downsize,downsizing,downstairs,downstream,downtown,downtrodden,downward,downy,dowser,doze,dozed,dozen,dozens,dozer,dozing,drab,draft,drafted,drafting,drafts,drafty,drag,dragged,dragging,dragon,dragonfly,dragons,dragoons,drags,drain,drainage,drained,draining,drainpipe,drake,drama,dramas,dramatic,dramatically,drank,drape,draped,drapes,drastic,drastically,draw,drawback,drawer,drawers,drawing,drawings,drawn,draws,drawstring,dread,dreaded,dreadful,dreading,dream,dreamed,dreamer,dreamers,dreaming,dreamless,dreams,dreamt,dreamy,dreary,dreck,dredge,dredged,dredging,dregs,dreidel,dress,dressed,dresser,dresses,dressing,dressings,dressy,drew,dribble,dribbles,dribbling,dried,drier,dries,drift,drifted,drifter,drifting,driftwood,drill,drilled,drilling,drink,drinker,drinkers,drinking,drinks,drip,dripped,dripping,drippy,drips,drive,drivel,driven,driver,drivers,drives,driveway,driveways,driving,droll,drone,drones,drool,drooled,drooling,drools,droop,droopy,drop,dropout,dropped,dropper,dropping,droppings,drops,drosophila,drought,drove,droves,drown,drowned,drowning,drowsy,drudge,drug,drugged,drugging,druggist,drugs,drugstore,drum,drummed,drummer,drumming,drums,drumstick,drumsticks,drunk,drunkard,drunken,drunks,druthers,dry,dryer,dryers,drying,drywall,dual,duality,dub,dubbed,dubious,duce,duchess,duck,ducked,ducking,duckling,ducks,ducky,duct,ducts,dud,dude,dudes,duds,due,duel,dueling,dues,duet,duff,duffel,duffle,dug,dugout,dui,duke,dukes,dulcet,dull,dullard,dulled,dullest,dullness,duly,dumb,dumber,dumbest,dumdum,dummies,dummkopf,dummy,dump,dumped,dumper,dumping,dumpling,dumplings,dumps,dun,dunes,dung,dungeon,dunk,dunked,dunking,dunks,duo,duped,duplex,duplicate,durable,duration,duress,during,durned,dusk,dusky,dust,dusted,dusting,dusty,dutch,duties,dutiful,duty,duvet,dwarf,dwarfs,dwarves,dweeb,dwell,dweller,dwellers,dwelling,dwells,dwindling,dye,dyed,dyeing,dyer,dying,dynamic,dynamics,dynamite,dynamo,dynasty,dysentery,dysfunction,dysfunctional,each,eager,eagerly,eagle,eagles,ear,earful,earl,earlier,earliest,earlobe,earlobes,early,earmarked,earmarks,earn,earned,earnest,earning,earns,earphones,earpiece,earplugs,earring,earrings,ears,earshot,earth,earthlings,earthly,earthquake,earthquakes,earthy,earwig,ease,easel,eases,easier,easiest,easily,easing,east,eastbound,easter,eastern,easy,easygoing,eat,eaten,eater,eaters,eating,eats,eaves,eavesdrop,eavesdropped,eavesdropping,ebb,ebony,eccentric,eccentricities,echelon,echo,echoes,eclectic,eclipse,ecological,economic,economical,economically,economics,economy,ecosystem,ecstasy,ecstatic,ectopic,ectoplasm,ecumenical,eczema,ed,eddy,edema,edge,edged,edges,edgewise,edging,edgy,edible,edict,edit,edited,editing,edition,editor,editorial,editorials,editors,edits,educate,educated,educating,education,educational,educator,educators,eel,eels,eerie,eerily,effacing,effect,effected,effecting,effective,effectively,effectiveness,effects,effeminate,efficiency,efficient,efficiently,effort,effortless,efforts,egg,egghead,egging,eggnog,eggplant,eggs,eggshell,eggshells,ego,egocentric,egomaniac,egomaniacal,egos,egotistical,egregious,egyptian,eh,eight,eighteen,eighteenth,eighth,eighties,eights,eighty,einstein,either,ejaculate,eject,ejection,eking,el,elaborate,elapsed,elastic,elated,elbow,elbows,elder,elderly,elders,eldest,elect,elected,electing,election,elections,elective,electoral,electorate,electric,electrical,electrician,electricians,electricity,electrified,electro,electrocute,electrocuted,electrodes,electrolyte,electrolytes,electronic,electronically,electronics,electrons,electroshock,elegance,elegant,element,elemental,elementary,elements,elephant,elephants,elevate,elevated,elevates,elevation,elevator,elevators,eleven,eleventh,elf,elicit,eligible,eliminate,eliminated,eliminates,eliminating,elimination,elite,elitist,elixir,elk,elks,ell,elliptical,elm,elms,elope,eloped,eloping,eloquence,eloquent,eloquently,else,elsewhere,elude,eluded,eludes,elusive,elves,em,emanates,emancipated,emancipation,embalmed,embalming,embankment,embark,embarked,embarking,embarrass,embarrassed,embarrasses,embarrassing,embarrassingly,embarrassment,embassies,embassy,embedded,embellished,ember,embezzle,embezzled,embezzlement,embezzler,embezzling,embittered,emblem,embodied,embody,embossed,embrace,embraced,embraces,embracing,embroidered,embroiled,embryo,emerald,emeralds,emerge,emerged,emergencies,emergency,emerges,emery,eminence,eminent,eminently,emission,emissions,emit,emotion,emotional,emotionally,emotions,empathic,empathy,emperor,emperors,emphasis,emphasize,emphasized,emphatic,emphatically,empire,empirical,employ,employed,employee,employees,employer,employers,employing,employment,emporium,empowered,empowerment,empress,emptied,empties,emptiness,empty,emptying,ems,emulating,en,enable,enabled,enables,enabling,enact,enacted,enamel,enamored,encephalitis,enchant,enchanted,enchanting,enchantment,encinas,enclosed,encoded,encore,encounter,encountered,encounters,encourage,encouraged,encouragement,encourages,encouraging,encrusted,encrypted,encryption,encyclopedia,encyclopedias,end,endanger,endangered,endangering,endangerment,endear,endearing,endeavor,endeavors,endeavour,ended,ending,endings,endive,endless,endlessly,endorphins,endorse,endorsement,endorsements,endorsing,endowment,ends,endurance,endure,endured,enduring,enema,enemies,enemy,energized,energy,enforce,enforced,enforcement,enforcer,enforcing,eng,engage,engaged,engagement,engagements,engages,engaging,engine,engineer,engineered,engineering,engineers,engines,english,engraved,engraving,engrossed,engrossing,engulfed,enhance,enhanced,enhancements,enhancer,enhances,enigma,enjoy,enjoyable,enjoyed,enjoying,enjoyment,enjoys,enlarged,enlighten,enlightened,enlightenment,enlist,enlisted,enlisting,ennui,enormity,enormous,enormously,enough,enquiries,enrage,enraged,enrich,enriched,enriching,enrolled,enrolling,enrollment,ensconced,ensemble,ensign,enslave,enslaved,ensue,ensued,ensuing,ensure,ensuring,entail,entails,entanglements,enter,entered,entering,enterprise,enterprises,enterprising,enters,entertain,entertained,entertainer,entertaining,entertainment,enthralled,enthused,enthusiasm,enthusiast,enthusiastic,entice,enticed,entire,entirely,entirety,entities,entitle,entitled,entitles,entity,entomologist,entomology,entourage,entrails,entrance,entrances,entrapment,entree,entrenched,entrepreneur,entrepreneurial,entries,entrust,entrusted,entry,entwined,envelope,envelopes,envied,envious,environment,environmental,environmentalist,envision,envisioned,envoy,envy,enzyme,ephemeral,epic,epidemic,epidural,epilepsy,epileptic,epinephrine,epiphany,episode,episodes,epizootics,epoxy,epsilon,equal,equality,equally,equals,equation,equator,equestrian,equilibrium,equinox,equipment,equipped,equitable,equity,equivalent,er,era,erase,erased,eraser,erasers,erases,erasing,ere,erect,erection,ergo,erica,erode,eroding,erogenous,eros,erosion,erotic,err,errand,errands,errant,erratic,erratically,erred,erroneous,error,errors,ers,erupt,eruption,es,escalated,escalating,escalator,escapade,escapades,escape,escaped,escapee,escapes,escaping,escargot,escort,escorted,escorts,esophagus,esoteric,especially,espionage,espresso,espressos,ess,essay,essays,essence,essential,essentially,establish,established,establishes,establishing,establishment,establishments,estate,esteem,esteemed,ester,estimate,estimated,estimates,estimating,estimation,estranged,estrogen,et,eta,etcetera,etched,eternal,eternally,eternity,eth,ethanol,ether,ethic,ethical,ethically,ethics,ethnic,ethnicity,ethyl,etiquette,eucalyptus,eugenia,eulogy,eunuch,euphemism,euphemisms,euphoric,euro,euros,euthanasia,evacuate,evacuated,evacuating,evacuation,evade,evaluate,evaluated,evaluating,evaluation,evaluations,evangelical,evaporate,evaporated,evasions,evasive,eve,even,evening,evenings,evenly,evens,event,eventful,events,eventual,eventuality,eventually,ever,everglades,everlasting,every,everybody,everyday,everyman,everyone,everything,everywhere,eves,evict,evicted,evidence,evidenced,evident,evidently,evil,evils,eviscerate,eviscerated,evocative,evoked,evolution,evolutionary,evolve,evolved,evolving,ewe,ex,exacerbate,exact,exacting,exactly,exaggerate,exaggerated,exaggerating,exaggeration,exalted,exam,examination,examine,examined,examiner,examining,example,examples,exams,exasperated,exasperating,exceed,exceeded,exceeding,exceedingly,exceeds,excel,excellence,excellency,excellent,excels,except,excepted,exception,exceptional,exceptionally,exceptions,excess,excesses,excessive,excessively,exchange,exchanged,exchanges,exchanging,excite,excited,excitement,excites,exciting,exclamation,excluded,excludes,excluding,exclusion,exclusive,exclusively,excommunicated,excruciating,exculpatory,excursion,excursions,excuse,excused,excuses,excusing,execs,execute,executed,executing,execution,executioner,executions,executive,executives,executor,exemplary,exempt,exemption,exemptions,exercise,exercises,exercising,exerting,exertion,exes,exfoliate,exhale,exhaust,exhausted,exhausting,exhaustion,exhaustive,exhausts,exhibit,exhibited,exhibiting,exhibition,exhibits,exhilarated,exhilarating,exhilaration,exhumation,exhume,exhumed,exigent,exile,exiled,exiles,exist,existed,existence,existent,existential,existentialist,existing,exists,exit,exited,exiting,exits,exodus,exonerate,exonerated,exorbitant,exorcise,exorcism,exorcist,exotic,expand,expanded,expanding,expands,expansion,expect,expectancy,expectation,expectations,expected,expecting,expects,expedient,expedite,expedited,expedition,expel,expelled,expelling,expendable,expenditure,expenditures,expense,expenses,expensive,experience,experienced,experiences,experiencing,experiment,experimental,experimentation,experimented,experimenting,experiments,expert,expertise,experts,expiration,expired,expires,explain,explained,explaining,explains,explanation,explanations,explanatory,explicit,explicitly,explode,exploded,explodes,exploding,exploit,exploitation,exploited,exploiting,exploration,exploratory,explore,explored,explorer,explorers,exploring,explosion,explosions,explosive,explosives,exponential,export,exporter,exporting,exports,expose,exposed,exposes,exposing,exposure,express,expressed,expresses,expressing,expression,expressions,expressive,expressly,expulsion,expunged,exquisite,exquisitely,extend,extended,extending,extension,extensions,extensive,extent,extenuating,exterior,exterminate,exterminated,exterminating,extermination,exterminator,external,extinct,extinction,extinguish,extinguished,extinguisher,extort,extorted,extorting,extortion,extortionist,extra,extract,extracted,extracting,extraction,extracts,extracurricular,extracurriculars,extradite,extradited,extradition,extramarital,extraordinaire,extraordinarily,extraordinary,extras,extraterrestrial,extraterrestrials,extravagant,extravaganza,extreme,extremely,extremes,extremism,extremists,extremities,extricate,eye,eyeball,eyeballs,eyebrow,eyebrows,eyed,eyeful,eyeing,eyelash,eyelashes,eyelids,eyeliner,eyes,eyesight,eyesore,eyewitness,eyewitnesses,eyre,fa,fable,fabled,fabric,fabricate,fabricated,fabrication,fabulous,fabulously,face,faced,facedown,faceless,faces,facet,facetious,facets,facial,facials,facilitate,facilitated,facilities,facility,facing,fact,factions,factoid,factor,factories,factoring,factors,factory,facts,factual,faculties,faculty,fad,fade,faded,fades,fading,fads,fail,failed,failing,failings,fails,failure,failures,faint,fainted,fainter,faintest,fainting,fair,fairer,fairest,fairgrounds,fairies,fairly,fairness,fairway,fairy,faith,faithful,faithfulness,faithless,fajita,fake,faked,faking,falafel,falcon,fall,fallacy,fallback,fallen,fallible,falling,fallout,fallow,falls,false,falsely,falsify,faltered,fame,famed,familial,familiar,familiarize,familiars,families,family,famine,famished,famous,famously,fan,fanatic,fanaticism,fanatics,fancied,fanciful,fancy,fanfare,fang,fangs,fanning,fanny,fans,fantabulous,fantasies,fantasize,fantasized,fantasizing,fantastic,fantastically,fantasy,fantasyland,far,faraway,farce,fare,fared,farewell,farewells,farina,farm,farmer,farmers,farmhouse,farmland,farms,farrow,fart,farted,farther,farthing,farts,fascinate,fascinated,fascinating,fascination,fascism,fascist,fashion,fashionably,fashioned,fashions,fast,fastball,fasten,fastened,faster,fastest,fasting,fat,fatal,fatalities,fatality,fate,fates,father,fathered,fatherhood,fathering,fatherly,fathers,fathom,fatigue,fatigues,fatso,fatten,fattening,fattest,fatty,faucet,faucets,fault,faults,faulty,faun,fauna,faux,fave,favor,favorable,favorably,favored,favorite,favorites,favoritism,favors,favour,favours,fawning,fax,faxed,faxes,fay,fear,feared,fearful,fearing,fearless,fears,fearsome,feasible,feast,feasting,feat,feather,feathering,feathers,feats,feature,featured,features,featuring,feces,feckless,fed,federal,federation,fedora,feds,fee,feeble,feed,feedback,feeder,feeders,feeding,feeds,feel,feelers,feeling,feelings,feels,fees,feet,feign,feisty,felicity,feline,fell,fella,fellah,fellahs,fellas,fellatio,feller,fellers,felling,fellow,fellows,fellowship,felon,felonies,felonious,felons,felony,felt,female,females,feminine,feminist,feminists,femme,femmes,femur,fen,fence,fences,fencing,fend,fender,fenders,fending,fer,ferment,fern,ferret,ferrets,ferry,fertile,fertility,fertilization,fertilize,fertilizer,fervent,fervor,fess,fester,festering,festival,festivals,festive,festivities,feta,fetal,fetch,fetched,fetish,fetus,fetuses,feud,feudal,feuds,fever,feverish,few,fewer,fey,fez,fiance,fiancee,fiasco,fib,fibber,fibbing,fiber,fiberglass,fibers,fibre,fibrosis,fickle,fiction,fictional,ficus,fiddle,fiddler,fiddling,fidelity,fido,fiefdom,field,fielder,fielding,fields,fieldstone,fiend,fiendish,fiends,fierce,fiercest,fiery,fiesta,fife,fifteen,fifteenth,fifth,fifths,fifties,fiftieth,fifty,fig,fight,fighter,fighters,fighting,fights,figment,figurative,figuratively,figure,figured,figurehead,figures,figurines,figuring,file,filed,files,filet,filibuster,filing,fill,filled,filler,fillets,filling,fillings,fills,filly,film,filmed,filming,filmmaker,filmmakers,filmmaking,films,filter,filtered,filters,filth,filthy,filtration,fin,finagle,final,finale,finalist,finalists,finality,finalize,finalized,finalizing,finally,finals,finance,financed,finances,financial,financially,financing,finch,find,finder,finders,finding,findings,finds,fine,fined,finer,fines,finesse,finessed,finest,finger,fingered,fingernail,fingernails,fingerprint,fingerprints,fingers,fingertips,finish,finished,finishes,finishing,fink,fins,fir,fire,firearms,fireball,fireballs,firebird,firebug,firecracker,firecrackers,fired,firefight,firefighters,fireflies,firehouse,firelight,fireman,firemen,fireplace,fireplaces,firepower,fireproof,fires,firestorm,firewater,firewood,fireworks,firing,firm,firmer,firmly,firms,firs,first,firstborn,firsthand,firstly,fish,fished,fisher,fisherman,fishermen,fishes,fishing,fishnet,fishy,fission,fist,fisted,fistfight,fistful,fists,fit,fitch,fitness,fits,fitted,fitter,fittest,fitting,fittings,five,fiver,fives,fix,fixable,fixated,fixating,fixation,fixed,fixer,fixes,fixing,fixings,fixture,fixtures,fizz,fizzle,fizzled,flack,flag,flagged,flagging,flags,flagship,flail,flailing,flair,flak,flake,flaked,flakes,flaky,flame,flamenco,flames,flaming,flammable,flan,flank,flanking,flanks,flannel,flap,flapjacks,flapped,flapping,flaps,flare,flared,flares,flaring,flash,flashback,flashbacks,flashed,flashes,flashing,flashlight,flashlights,flashy,flask,flat,flatbed,flats,flattened,flatter,flattered,flatterer,flattering,flatters,flattery,flatulence,flatware,flaunt,flaunting,flavor,flavored,flavors,flavour,flavours,flaw,flawed,flawless,flawlessly,flaws,flay,flayed,flea,fleabag,fleas,flecks,fled,fledged,fledgling,flee,fleece,fleeing,fleet,fleeting,flesh,fleshy,fletcher,flew,flex,flexibility,flexible,flexing,flick,flicked,flicker,flickering,flicking,flicks,flier,fliers,flies,flight,flights,flighty,flimsy,flinch,flinching,fling,flinging,flint,flip,flipped,flipper,flippers,flipping,flips,flirt,flirtatious,flirted,flirting,float,floated,floater,floating,floats,flock,floe,flog,flogged,flogging,flood,flooded,floodgates,flooding,floods,floor,floorboard,floorboards,floored,floors,floozy,flop,flopped,flopping,floppy,flops,flora,floral,florence,florin,florist,florists,floss,flossing,flotation,flounder,floundering,flour,flourished,flow,flower,flowering,flowers,flowing,flown,flows,flu,flue,fluff,fluffed,fluffing,fluffy,fluid,fluids,fluke,flung,flunk,flunked,flunkies,flunking,flunky,fluorescent,flurries,flurry,flush,flushed,flustered,flute,flutes,fluttering,flux,fly,flyboy,flyer,flyers,flying,foal,foam,foaming,foamy,fob,focal,focus,focused,focuses,focusing,focussed,focussing,fodder,foe,fog,fogged,foggiest,foibles,foil,foiled,foisting,fold,folded,folder,folding,folds,foliage,folk,folklore,folks,folksy,follicle,follow,followed,follower,followers,following,follows,folly,fond,fonder,fondest,fondle,fondled,fondling,fondue,font,food,foods,fool,fooled,foolhardy,fooling,foolish,foolishness,foolproof,fools,foot,footage,football,footed,footer,foothold,footing,footman,footnote,footnotes,footprints,footsies,footsteps,footstool,footwear,footwork,fop,for,forage,foraging,foray,forbade,forbid,forbidden,forbidding,forbids,force,forced,forceful,forceps,forces,forcibly,forcing,ford,fore,forearm,foreclosed,foreclosure,forefathers,forego,foregone,forehead,foreign,foreigners,foreman,foremost,forensic,forensics,foreplay,foresaw,foresee,foreseeable,foresight,foreskin,forest,forester,forestry,forests,forethought,foretold,forever,foreword,forfeit,forfeited,forfeits,forgave,forge,forged,forger,forgeries,forgery,forget,forgetful,forgets,forgettable,forgetting,forging,forgive,forgiven,forgiveness,forgives,forgiving,forgo,forgot,forgotten,fork,forked,forklift,forks,form,formal,formaldehyde,formality,formally,format,formation,formations,formed,former,formerly,formidable,forming,forms,formula,formulas,formulate,formulating,fornicating,fornication,forsake,forsaken,forsaking,fort,forte,forth,forthcoming,forthright,forthwith,forties,fortieth,fortified,fortitude,fortnight,fortress,fortuitous,fortunate,fortunately,fortune,fortunes,fortuneteller,forty,forum,forward,forwarded,forwarding,fosse,fossil,fossilized,foster,fostered,fought,foul,fouled,found,foundation,foundations,founded,founder,founding,fountain,fountainhead,fountains,four,fours,foursome,fourteen,fourteenth,fourth,fowl,fowler,fox,foxes,foxhole,foxholes,foxy,foyer,fraction,fractions,fracture,fractured,fractures,fragile,fragment,fragments,fragrance,frail,frailty,frame,framed,framers,frames,framework,framing,franc,franchise,franchises,francs,frank,frankfurter,franklin,frankly,franks,frantic,frantically,frat,fraternal,fraternities,fraternity,fraternization,fraternizing,fraud,frauds,fraught,fraulein,fray,frayed,frazzled,freak,freaked,freaking,freakish,freaks,freaky,freckle,freckling,free,freebie,freed,freedman,freedom,freedoms,freeing,freelance,freelancer,freelancing,freeloader,freeloading,freely,freeman,freer,frees,freeway,freeways,freeze,freezer,freezers,freezes,freezing,freight,freighter,french,frenzy,frequencies,frequency,frequent,frequently,fresh,freshen,freshener,freshening,fresher,freshest,freshly,freshman,freshmen,freshness,freshwater,fret,fretting,friction,fridge,fried,friend,friendless,friendlier,friendliest,friendly,friends,friendship,friendships,fries,frigate,frigging,fright,frighten,frightened,frightening,frightens,frightful,frightfully,frigid,frills,fringe,fringes,frisk,frisky,fritter,fritters,fritz,frivolous,frizzy,fro,frog,frogs,frolic,from,front,frontal,frontier,frontiers,fronting,fronts,frost,frostbite,frosting,frosty,froufrou,frown,froze,frozen,frugal,fruit,fruitcake,fruitful,fruition,fruitless,fruits,fruity,frustrated,frustrates,frustrating,frustration,fry,fryer,frying,fuchsia,fudge,fudged,fudging,fuel,fueled,fueling,fuels,fugitive,fugitives,fugu,fugue,fuhrer,fulcrum,fulfil,fulfill,fulfilled,fulfilling,fulfillment,full,fuller,fullest,fully,fumble,fumbling,fumes,fumigated,fumigating,fumigation,fun,function,functional,functioning,functions,fund,fundamental,fundamentalist,fundamentally,funded,funding,fundraiser,fundraisers,fundraising,funds,funeral,funerals,fungal,fungi,fungus,funk,funky,funnier,funnies,funniest,funny,fur,furious,furiously,furlong,furnace,furnished,furniture,furrowed,furry,furs,further,furthering,furthermore,furthest,furtive,fury,fuse,fused,fuses,fusilli,fusion,fuss,fussing,fussy,futile,futility,futon,future,futures,futuristic,fuzz,fuzzy,gabbing,gabby,gaby,gadget,gaff,gag,gaga,gage,gagged,gagging,gaggle,gags,gaiety,gain,gained,gainful,gainfully,gaining,gains,gal,gala,galactic,galaxy,gale,galilee,gall,gallant,gallbladder,galleries,gallery,galling,gallivanting,gallon,gallons,galloping,gallows,galore,galoshes,gals,galvanized,gambit,gamble,gambler,gambling,game,gamer,games,gamma,gammy,gams,gamut,gander,gang,ganged,ganging,gangland,gangly,gangrene,gangs,gangster,gangsters,gangway,ganja,gap,gaps,gar,garage,garages,garb,garbage,garcon,garden,gardener,gardeners,gardenias,gardening,gardens,gargantuan,gargling,gargoyle,gargoyles,garibaldi,garish,garland,garlic,garment,garments,garner,garnet,garnish,garrison,garter,garters,garth,gas,gasbag,gases,gasket,gaslight,gasoline,gasp,gasped,gasping,gassed,gasses,gassy,gastric,gat,gate,gated,gatehouse,gatekeeper,gates,gateway,gather,gathered,gathering,gatherings,gathers,gator,gaudy,gauge,gauging,gault,gauntlet,gauze,gave,gavel,gawk,gawking,gaze,gazebo,gazed,gazelle,gazpacho,gear,geared,gearing,gears,gearshift,gecko,ged,gee,geek,geeks,geeky,gees,geese,geez,geezer,geezers,geishas,gel,gelatin,gelato,gels,gem,gemma,gems,gen,gendarme,gender,gene,genealogy,general,generally,generals,generate,generated,generates,generating,generation,generations,generator,generators,generic,generosity,generous,generously,genes,genesis,genetic,genetically,geneticist,genetics,geneva,genie,genital,genitals,genius,geniuses,genoa,genome,genre,gentle,gentleman,gentlemanly,gentlemen,gentler,gently,gents,genuine,genuinely,genus,geographic,geographical,geographically,geography,geological,geologist,geologists,geology,geometric,geometry,geopolitical,geosynchronous,gerbil,gerbils,geriatric,geriatrics,germ,german,germans,germs,gestapo,gestating,gestation,gesture,gestures,get,getaway,gets,getter,getting,getup,geyser,ghastly,ghetto,ghettos,ghost,ghosts,ghoul,ghoulish,giant,giants,gib,gibberish,gibbons,giblets,gibson,giddy,giddyup,gift,gifted,gifts,gig,gigantic,giggle,giggles,giggling,giggly,gigolo,gigs,gilbert,gilded,gill,gills,gimbal,gimlet,gimme,gimmicks,gimmie,gimp,gin,ginger,gingerbread,ginny,ginseng,giraffe,giraffes,girl,girlfriend,girlfriends,girlie,girls,girly,girth,gist,git,give,giveaway,given,givens,giver,givers,gives,giving,gizmo,gizmos,gizzard,glaciers,glad,glade,glades,gladiator,gladiators,gladly,gladstone,glamor,glamorous,glamour,glance,glanced,glances,gland,glands,glare,glares,glaring,glass,glasses,glassware,glassy,glaucoma,glaze,glazed,glazer,gleam,gleaming,glee,glen,glengarry,glib,glide,gliders,gliding,glimmer,glimpse,glimpsed,glint,glitch,glitches,glitter,glittering,gloat,gloating,global,globe,globes,gloom,gloomy,glop,gloria,glorified,glorious,gloriously,glory,gloss,glossy,glove,glover,gloves,glow,glowing,glucose,glue,glued,glues,gluing,glum,glutton,gluttony,glycerin,gnat,gnats,gnaw,gnawing,gnome,gnomes,go,goa,goad,goading,goal,goalie,goals,goat,goatee,goats,gob,gobble,gobbledegook,gobbledygook,gobbles,goblet,goblin,goblins,gobs,god,goddaughter,goddess,goddesses,godfather,godforsaken,godlike,godliness,godly,godmother,gods,godsend,godson,goers,goes,gofer,goggle,goggles,going,goiter,gold,golden,goldenrod,goldfish,golf,golfers,golfing,golly,gondola,gone,goner,goners,gong,gonorrhea,gonzo,goo,goober,goobers,good,goodbye,goodbyes,goodie,goodies,goodly,goodman,goodness,goods,goodwill,goody,gooey,goof,goofball,goofing,goofy,googly,goon,gooney,goonie,goonies,goons,goopy,goose,gopher,gor,gore,gorge,gorgeous,gorilla,gory,gosh,gospel,gossip,gossiping,gossips,got,gothic,gotten,gouge,gouged,gouging,goulash,gourd,gourmet,gout,governed,governess,governing,government,governmental,governments,governor,gown,gowns,grab,grabbed,grabbing,grabby,grabs,grace,graced,graceful,gracefully,graces,gracing,gracious,graciously,grad,grade,graded,grader,graders,grades,grading,gradually,graduate,graduated,graduates,graduating,graduation,graffiti,grafts,graham,grail,grain,grainy,gram,grammar,gramps,grams,gran,grand,grandad,grandbaby,grandchild,grandchildren,granddad,granddaddy,granddaughter,granddaughters,grander,grandeur,grandfather,grandfathers,grandkid,grandkids,grandma,grandmother,grandmothers,grandpa,grandparent,grandparents,grandson,grandstand,grange,granger,granite,granny,granola,grant,granted,granting,grants,grape,grapefruit,grapes,grapevine,graphic,graphics,graphite,graphs,grasp,grasped,grasping,grass,grasshopper,grassy,grate,grated,grateful,gratification,gratified,gratifying,gratitude,gratuitous,gratuity,grave,gravel,gravely,graves,gravest,graveyard,graveyards,gravity,gravy,gray,grazed,grazing,grease,greaseball,greased,greasing,greasy,great,greater,greatest,greatly,greatness,greed,greedy,greek,green,greener,greenhouse,greens,greet,greeting,greetings,greets,gremlin,grenade,grenades,grew,grey,greyhound,grid,griddle,gridlock,grief,grievance,grieve,grieves,grieving,griff,griffin,griffins,grift,grifters,grill,grilled,grilling,grills,grim,grime,grimes,grin,grind,grinder,grinding,grinds,grindstone,grinning,grins,grip,gripe,gripes,griping,gripping,grips,grisly,gristle,grits,grizzly,groaning,grocer,groceries,grocery,grog,groggy,groin,groom,groomed,groomer,grooming,grooms,groomsmen,groove,groovy,grope,groped,groping,gross,grossed,grosser,grosses,grossing,grossly,grotesque,grouch,grouchy,ground,groundbreaking,grounded,groundhog,grounding,groundless,grounds,groundskeeper,groundwork,group,groupie,groupies,grouping,groups,grouse,grove,grovel,groveling,groves,grow,growers,growing,growl,grown,grownup,grownups,grows,growth,grub,grubbing,grubby,grubs,grudge,grudges,grudging,gruel,gruesome,grumbling,grumpy,grunge,grungy,grunt,guacamole,guarantee,guaranteed,guaranteeing,guarantees,guard,guarded,guardian,guardians,guardianship,guarding,guardrail,guards,guava,guerilla,guerillas,guerrilla,guerrillas,guess,guessed,guesses,guessing,guest,guesthouse,guests,guff,guidance,guide,guided,guidelines,guides,guiding,guild,guilder,guillotine,guilt,guilty,guinea,guineas,guitar,guitarist,guitars,gulag,gulch,gulf,gull,gullible,gum,gumption,gums,gumshoe,gun,gunfire,gunk,gunman,gunmen,gunned,gunner,gunnery,gunning,gunpoint,gunpowder,guns,gunshot,gunshots,gurgling,gurney,guru,gush,gusher,gushing,gushy,gusto,gut,gutless,guts,gutter,gutters,gutting,guy,guys,guzzling,gym,gyms,gynecologist,gypped,gypsies,gypsy,ha,haberdashery,habit,habitat,habits,hack,hacked,hacker,hackers,hacking,hackman,hacks,hacksaw,had,hades,hadj,hag,haggis,haggling,hags,hah,haha,hail,hailed,hailing,hails,hair,hairball,hairbrush,haircut,haircuts,hairdo,hairdresser,hairdressers,haired,hairless,hairline,hairnet,hairpin,hairs,hairstyles,hairy,hale,half,halfback,halfway,halibut,halitosis,hall,hallelujah,hallmark,hallo,hallowed,halls,hallucinate,hallucinating,hallucination,hallucinations,hallucinogen,hallway,hallways,halo,halothane,halt,halter,halves,ham,hamburg,hamburger,hamburgers,hamlet,hammer,hammered,hammering,hammers,hammock,hamper,hams,hamster,hamsters,hamstring,hand,handbag,handbags,handball,handbasket,handbook,handcuffed,handcuffs,handed,handful,handgun,handguns,handheld,handicap,handicapped,handing,handkerchief,handle,handled,handler,handles,handling,handoff,handout,handouts,handprint,handrail,hands,handshake,handsome,handsomely,handsomest,handstand,handwriting,handy,handyman,hang,hanged,hanger,hangers,hanging,hangman,hangnail,hangout,hangouts,hangover,hangovers,hangs,hank,hankering,hankie,hanks,hanky,hansom,hap,happen,happened,happening,happenings,happens,happier,happiest,happily,happiness,happy,haps,harass,harassed,harassing,harassment,harbor,harboring,harbors,harbour,harbouring,hard,hardball,harden,hardened,hardens,harder,hardest,hardly,hardship,hardware,hardwired,hardworking,hardy,hare,harem,harlot,harm,harmed,harmful,harming,harmless,harmonious,harmony,harms,harness,harnessed,harp,harper,harpies,harping,harpoons,harps,harpy,harridan,harriers,harrowing,harry,harsh,harshly,hart,harts,harvest,has,hash,hassle,hassled,hassling,hast,haste,hasten,hastened,hastily,hasty,hat,hatch,hatchback,hatched,hatches,hatchet,hate,hated,hateful,hater,hates,hath,hating,hatred,hats,hatter,haughty,haul,hauled,hauling,hauls,haunt,haunted,haunting,haunts,haute,have,haven,having,havoc,haw,hawk,hawker,hawking,hawks,hay,haycock,hayloft,hayseed,haystack,hayward,haywire,hazard,hazardous,hazards,haze,hazel,hazelnut,hazing,hazy,he,head,headache,headaches,headband,headboard,headdress,headed,header,headfirst,headgear,headhunter,heading,headless,headlights,headline,headliner,headlines,headlining,headlock,headlong,headmaster,headphones,headpiece,headquarters,heads,headset,headsets,headstone,headway,heady,heal,healed,healer,healers,healing,heals,health,healthier,healthiest,healthy,heap,heaped,heaping,heaps,hear,heard,hearing,hearings,hears,hearsay,hearse,heart,heartache,heartbeat,heartbeats,heartbreak,heartbreaker,heartbreaking,heartbroken,heartburn,hearted,heartfelt,heartland,heartless,hearts,heartsick,heartthrob,heartwarming,hearty,heat,heated,heater,heath,heathen,heathens,heather,heating,heats,heave,heaved,heaven,heavenly,heavens,heavier,heaviest,heavily,heaving,heavy,heavyset,heavyweight,heck,heckle,heckled,heckles,heckling,hectic,hector,hedge,hedges,hedging,heed,heel,heeled,heels,heft,hefty,heh,heifer,heigh,height,heighten,heightened,heights,heil,heinie,heinous,heir,heiress,heirloom,heirlooms,heirs,heist,held,helicopter,helicopters,helipad,helix,hell,hellbent,heller,hellfire,hellhole,hellhound,hellish,hello,hells,helluva,helm,helmet,helmets,helms,helo,help,helped,helper,helpers,helpful,helping,helpless,helplessly,helplessness,helps,hem,hemisphere,hemline,hemlines,hemlock,hemoglobin,hemolytic,hemorrhaging,hemorrhoid,hemorrhoids,hemp,hen,hence,henchman,henchmen,henhouse,henry,hens,hep,hepatitis,her,herald,herb,herbal,herbs,hercules,herd,herding,herds,here,hereafter,hereby,hereditary,herein,heresy,heritage,hermaphrodite,hernia,hernias,herniated,hero,heroes,heroic,heroics,heroine,herring,hers,herself,hertz,hesitant,hesitate,hesitated,hesitates,hesitating,hesitation,hessian,hetero,heterosexual,hex,hexes,hey,heyday,hi,hiatus,hibernating,hibernation,hibiscus,hic,hiccup,hiccups,hick,hickey,hickory,hicks,hid,hidden,hide,hideaway,hideous,hideously,hideout,hides,hiding,hierarchy,hieroglyphs,high,highball,higher,highest,highland,highlands,highlight,highlighted,highlighters,highlights,highly,highness,highs,hightail,highway,highways,hijacking,hijinks,hike,hiked,hiker,hikers,hiking,hilarious,hilarity,hill,hillbillies,hillbilly,hillcrest,hills,hillside,hilltop,hilt,him,himself,hind,hindrance,hindsight,hinges,hint,hinted,hinting,hints,hip,hippest,hippie,hippies,hippo,hippopotamus,hippos,hips,hire,hired,hires,hiring,his,hiss,hissed,hisself,hisses,hissing,historian,historic,historical,historically,histories,history,hit,hitch,hitched,hitchhike,hitchhiker,hitchhikers,hitchhiking,hitching,hits,hitter,hitters,hitting,hive,hives,hm,hmm,ho,hoagie,hoarding,hoarse,hoax,hoaxes,hob,hobbies,hobbit,hobbits,hobble,hobbling,hobby,hobo,hoboes,hock,hockey,hocking,hocks,hocus,hoe,hoedown,hoes,hog,hogan,hogging,hogs,hogwash,hoist,hoisted,hoisting,hokey,hold,holden,holder,holders,holding,holdings,holds,holdup,hole,holed,holes,holiday,holidays,holier,holies,holiest,holiness,holing,holland,hollandaise,holler,hollering,hollers,hollow,hollowed,holly,holocaust,hologram,holographic,holster,holt,holy,homage,hombre,hombres,home,homebody,homeboy,homeboys,homecoming,homegrown,homeless,homely,homemade,homemaker,homeopathic,homeowners,homer,homeroom,homers,homes,homesick,homestead,hometown,homework,homey,homicidal,homicide,homicides,homily,homing,hon,honda,honed,honest,honestly,honesty,honey,honeymoon,honeymooners,honeymooning,honeymoons,honeysuckle,hong,honk,honks,honky,honor,honorable,honorably,honorary,honored,honoring,honors,honour,honourable,honouring,honours,hooch,hood,hooded,hoodlums,hoodwinked,hoof,hook,hooked,hooker,hookers,hooking,hooks,hookup,hooky,hooligan,hooligans,hoop,hoopla,hoops,hooray,hoosegow,hoot,hootenanny,hooter,hooters,hooves,hop,hope,hoped,hopeful,hopefully,hopeless,hopelessly,hopelessness,hopes,hoping,hopped,hopper,hopping,hoppy,hops,hora,horde,hordes,horizon,horizons,horizontal,hormonal,hormone,hormones,horn,horned,hornet,hornets,horns,horny,horoscope,horoscopes,horrendous,horrible,horribly,horrid,horrific,horrified,horrifying,horror,horrors,horse,horseback,horsehair,horseman,horsemen,horsepower,horseradish,horses,horseshit,horsey,horsing,horticulture,hose,hosed,hoses,hosing,hospice,hospitable,hospital,hospitality,hospitalized,hospitals,host,hostage,hostages,hosted,hostel,hostess,hostile,hostiles,hostilities,hostility,hosting,hosts,hot,hotbed,hotcakes,hotdog,hotdogs,hotel,hotels,hothead,hotheaded,hothouse,hotline,hots,hotshot,hotter,hottest,hound,hounded,hounding,hounds,hour,hourglass,hourly,hours,house,housebroken,housecleaning,housed,houseguest,houseguests,household,households,housekeeper,housekeeping,houseman,houses,housewarming,housewife,housewives,housing,hovel,hover,hovercraft,hovering,how,howdy,howe,however,howl,howling,hows,hoy,hub,hubbub,hubby,hubcaps,hubris,huck,huckleberry,huckster,huddle,huddled,hue,huffed,huffing,huffy,hug,huge,hugest,hugged,hugger,huggers,hugging,hugs,huh,hula,hulk,hulking,hull,hullo,hum,human,humane,humanitarian,humanity,humankind,humanly,humanoid,humans,humble,humbled,humbling,humbly,humbug,humdinger,humid,humidifier,humidity,humidor,humiliate,humiliated,humiliates,humiliating,humiliation,humiliations,humility,hummed,hummer,humming,hummus,humor,humored,humoring,humorless,humour,hump,humpback,humped,humph,humping,humps,hums,humus,hun,hunch,hunchback,hunched,hunches,hundred,hundreds,hundredth,hung,hunger,hungover,hungry,hunh,hunk,hunker,hunks,hunky,huns,hunt,hunted,hunter,hunters,hunting,hup,hurdles,hurl,hurley,hurling,hurrah,hurray,hurricane,hurricanes,hurried,hurry,hurrying,hurst,hurt,hurtful,hurting,hurtling,hurts,husband,husbands,hush,hushed,husk,huskies,husks,husky,hussy,hustle,hustler,hut,hutch,huts,huzzah,hybrid,hybrids,hydra,hydrate,hydrated,hydraulic,hydraulics,hydrochloride,hydrogen,hydrolase,hyenas,hygiene,hygienic,hygienist,hymn,hymns,hype,hyped,hyper,hyperactive,hyperbole,hyperspace,hypertension,hyperventilate,hyperventilating,hyphen,hypnosis,hypnotic,hypnotize,hypnotized,hypo,hypochondriac,hypocrisy,hypocrite,hypocrites,hypocritical,hypodermic,hypotensive,hypotenuse,hypothermia,hypothetical,hypothetically,hysterectomy,hysteria,hysteric,hysterical,hysterically,hysterics,iambic,ibuprofen,ice,iceberg,icebergs,icebox,icebreaker,iced,icehouse,iceman,ich,icicle,icicles,icing,ick,icky,icon,icons,icy,id,idea,ideal,idealist,idealistic,idealized,ideally,ideals,ideas,identical,identifiable,identification,identified,identifies,identify,identifying,identities,identity,ideology,idiocy,idiom,idiosyncrasies,idiot,idiotic,idiots,idle,idling,idly,idol,idolized,idols,idyllic,if,iff,iffy,ifs,igloo,igneous,ignite,ignited,ignition,ignoramus,ignorance,ignorant,ignore,ignored,ignores,ignoring,iguana,iguanas,iliad,ilk,ill,illegal,illegally,illegals,illegible,illegitimate,illicit,illness,illnesses,illogical,ills,illuminate,illuminating,illumination,illusion,illusions,illustrate,illustrated,illustrates,illustration,illustrious,image,imagery,images,imaginable,imaginary,imagination,imaginations,imaginative,imagine,imagined,imagines,imagining,imam,imbecile,imbeciles,imbecilic,imbedded,imbued,imitate,imitating,imitation,immaculate,immaterial,immature,immaturity,immediate,immediately,immense,immensely,immerse,immersion,immigrants,immigration,imminent,immobile,immobilize,immodest,immoral,immortal,immortality,immortalized,immune,immunity,immutable,imp,impact,impacted,impacts,impaired,impala,impale,impaled,impart,impartial,impassioned,impatience,impatient,impeach,impeached,impeccable,impediment,impediments,impeding,impending,impenetrable,imperative,imperfect,imperfection,imperfections,imperial,imperialist,impersonal,impersonate,impersonated,impersonating,impersonator,impertinent,impervious,impetuous,implant,implanted,implants,implausible,implement,implemented,implicate,implicated,implicates,implicating,implication,implications,implicitly,implied,implies,imploding,implore,imply,implying,impolite,import,importance,important,importantly,imported,importer,importing,imports,impose,imposed,imposing,imposition,impossibility,impossible,impossibly,imposter,impostor,impotence,impotent,impound,impounded,impractical,impregnated,impress,impressed,impressing,impression,impressionable,impressionists,impressions,impressive,imprint,imprisoned,imprisonment,impromptu,improper,improperly,impropriety,improve,improved,improvement,improvements,improves,improving,improvise,improvised,improvising,impudence,impudent,impulse,impulses,impulsive,impulsively,impunity,in,inability,inaccessible,inaccuracies,inaccurate,inactive,inadequacy,inadequate,inadmissible,inadvertently,inappropriate,inappropriately,inaugural,inbound,inbred,inbreeding,incantation,incantations,incapable,incapacitate,incapacitated,incarcerate,incarcerated,incarceration,incarnation,incase,incendiary,incense,incensed,incentive,incentives,inception,incessantly,incest,incestuous,inch,inches,incidence,incident,incidental,incidentally,incidents,incinerate,incinerated,incinerator,incision,incite,inclined,include,included,includes,including,incognito,incoherent,income,incoming,incommunicado,incomparable,incompatible,incompetence,incompetent,incomplete,incomprehensible,inconceivable,inconsiderate,inconsistencies,inconsistent,inconsolable,inconspicuous,inconvenience,inconveniencing,inconvenient,incorporate,incorrect,incorrectly,incorrigible,increase,increased,increases,increasing,increasingly,incredible,incredibly,increments,incriminate,incriminating,incrimination,incubation,incubator,incubators,incur,incurred,indebted,indecent,indecision,indeed,indefensible,indefinite,indefinitely,indelicate,indentured,independence,independent,indescribable,indestructible,indeterminate,index,indicate,indicated,indicates,indicating,indication,indications,indicative,indicator,indicators,indict,indicted,indictment,indictments,indie,indies,indifference,indifferent,indigenous,indigestion,indignant,indignation,indignities,indigo,indirectly,indiscreet,indiscretion,indiscretions,indispensable,indistinguishable,individual,individuality,individually,individuals,indoor,indoors,induce,induced,inducement,inducing,induction,indulge,indulged,indulgence,indulgent,indulging,industrial,industrialist,industries,industrious,industry,inedible,ineffective,inefficient,inept,inevitability,inevitable,inevitably,inexcusable,inexpensive,inexperience,inexperienced,inexplicable,infallible,infamous,infamy,infant,infantile,infantry,infants,infarction,infatuated,infatuation,infect,infected,infecting,infection,infections,infectious,infects,inference,inferior,inferiority,infernal,inferno,infertile,infestation,infested,infidelities,infidelity,infighting,infiltrate,infiltrated,infiltration,infinite,infinitely,infinity,infirmary,inflame,inflamed,inflammation,inflammatory,inflate,inflated,inflating,inflation,inflexible,inflict,inflicted,inflicting,infliction,influence,influenced,influences,influencing,influential,influenza,influx,info,infomercial,inform,informal,informant,information,informational,informed,informer,informing,informs,infra,infraction,infrared,infrastructure,infuriate,infuriates,infuriating,infused,ingenious,ingenue,ingest,ingested,ingles,ingrates,ingratitude,ingredient,ingredients,inhabit,inhabitants,inhalation,inhale,inhaled,inhaler,inhaling,inherently,inherit,inheritance,inherited,inheriting,inherits,inhibitor,inhibitors,inhuman,inhumane,initial,initially,initials,initiate,initiated,initiating,initiation,initiative,initiatives,inject,injected,injection,injections,injector,injunction,injure,injured,injuries,injury,injustice,ink,inkling,inlaid,inland,inmate,inmates,inn,innards,inner,innermost,inning,innings,innkeeper,innocence,innocent,innocently,innocents,innocuous,innovation,innovative,innuendo,innuendoes,inopportune,input,inquest,inquiries,inquiry,inquisition,inquisitor,inroads,ins,insane,insanely,insanity,insatiable,inscription,inscrutable,insect,insects,insecure,insecurities,insecurity,inseminated,insensitive,insensitivity,inseparable,insert,insertion,inside,insider,insides,insidious,insight,insightful,insights,insignia,insignificant,insincere,insinuated,insinuating,insinuations,insipid,insist,insisted,insistence,insistent,insisting,insists,insolence,insolent,insomnia,inspect,inspected,inspecting,inspection,inspections,inspector,inspectors,inspiration,inspirational,inspire,inspired,inspires,inspiring,install,installation,installed,installing,installment,installments,instance,instances,instant,instantaneous,instantly,instead,instep,instigated,instigator,instill,instilled,instinct,instinctively,instincts,institute,instituted,institution,institutional,institutionalized,institutions,instruct,instructed,instructing,instruction,instructions,instructor,instructors,instrument,instruments,insufferable,insufficient,insulated,insulation,insulin,insult,insulted,insulting,insults,insurance,insure,insured,insuring,insurmountable,insurrection,intact,intake,integral,integrate,integrated,integration,integrity,intellect,intellectual,intellectually,intellectuals,intelligence,intelligent,intelligently,intend,intended,intending,intends,intense,intensely,intensity,intensive,intent,intention,intentional,intentionally,intentions,intently,inter,interact,interacting,interaction,interactive,intercede,intercept,intercepted,intercepting,interchangeable,intercom,intercourse,interest,interested,interesting,interests,interface,interfacing,interfere,interfered,interference,interferes,interfering,interior,interject,interlude,intermediary,intermediate,intermission,intermittent,intern,internal,internally,international,internationally,interning,internist,internment,interns,internship,interplanetary,interpret,interpretation,interpreted,interpreter,interpreting,interpretive,interracial,interrogate,interrogated,interrogating,interrogation,interrogations,interrupt,interrupted,interrupting,interruption,interruptions,interrupts,intersection,interstate,interstellar,intertwined,intervene,intervened,intervening,intervention,interview,interviewed,interviewer,interviewing,interviews,intestinal,intestines,intimacy,intimate,intimated,intimately,intimidate,intimidated,intimidating,into,intolerable,intolerant,intoxicated,intoxicating,intoxication,intravenous,intravenously,intrigue,intrigued,intrigues,intriguing,intro,introduce,introduced,introduces,introducing,introduction,introductions,introductory,intros,intrude,intruded,intruder,intruders,intruding,intrusion,intubate,intuition,intuitive,inundated,invade,invaded,invaders,invading,invalid,invalidate,invaluable,invasion,invasive,invent,invented,invention,inventions,inventive,inventory,inverted,invest,invested,investigate,investigated,investigates,investigating,investigation,investigations,investigative,investigator,investigators,investing,investment,investments,investors,invigorated,invigorating,invincible,invisibility,invisible,invitation,invitations,invite,invited,invites,inviting,invoice,invoices,invoke,invoked,involve,involved,involvement,involves,involving,ion,ions,ipecac,iris,iron,ironclad,ironed,ironic,ironically,ironies,ironing,irons,irony,irrational,irrationally,irregular,irregularities,irrelevant,irreparable,irreplaceable,irresistible,irresponsibility,irresponsible,irrevocably,irrigate,irrigation,irritable,irritate,irritated,irritating,irritation,is,island,islanders,islands,isolate,isolated,isolation,isotopes,issue,issued,issues,issuing,it,itch,itches,itching,itchy,item,items,itinerary,its,itself,ivories,ivory,ivy,jab,jabber,jabbering,jabot,jabs,jack,jackal,jackals,jacked,jackers,jacket,jackets,jacking,jackpot,jacks,jade,jaded,jag,jagger,jags,jaguar,jaguars,jail,jailbird,jailbreak,jailed,jailhouse,jake,jalopy,jam,jamboree,jammed,jammer,jammies,jamming,jams,jane,janitor,janitorial,janitors,japan,jar,jargon,jarring,jars,jasmine,jasper,jaundice,jaunt,java,javelin,jaw,jawbone,jawed,jaws,jay,jaywalking,jazz,jazzed,jealous,jealousy,jean,jeans,jeep,jeepers,jeeps,jeez,jefe,jell,jellies,jelly,jellybean,jellyfish,jenny,jeopardize,jeopardized,jeopardizing,jeopardy,jerk,jerked,jerkin,jerking,jerks,jerky,jerries,jerry,jersey,jerseys,jess,jesse,jest,jester,jesuit,jesuits,jet,jets,jettison,jew,jewel,jeweler,jewelers,jewellery,jewelry,jewels,jews,jezebel,jib,jiff,jiffy,jig,jiggle,jiggling,jiggly,jigsaw,jihad,jill,jilted,jiminy,jimmies,jimmy,jin,jingle,jingles,jingling,jinx,jitters,jittery,jo,job,jobless,jobs,jock,jockey,jockeys,jocks,jockstrap,joe,joes,joey,jog,jogger,jogging,john,johnny,johns,join,joined,joiner,joining,joins,joint,joints,joke,joked,joker,jokers,jokes,joking,jollies,jolly,jolt,jones,jordan,joseph,josh,jot,jotted,journal,journalism,journalist,journalistic,journalists,journals,journey,journeyed,journeys,joust,joy,joyful,joyous,joys,joystick,jubilee,judas,judge,judged,judgement,judges,judging,judgment,judgmental,judgments,judicial,judiciary,judo,jug,juggernaut,juggle,juggling,jughead,jugs,jugular,juice,juiced,juices,juicy,jujitsu,juke,jukebox,julep,jumble,jumbled,jumbo,jump,jumped,jumper,jumpers,jumping,jumps,jumpsuit,jumpy,junction,juncture,jungle,jungles,junior,juniors,juniper,junk,junkie,junkies,junky,junkyard,juries,jurisdiction,juror,jurors,jury,jus,just,justice,justifiable,justification,justified,justifies,justify,jut,juvenile,ka,kabob,kahuna,kaiser,kale,kaleidoscope,kane,kangaroo,kaon,kappa,kaput,karaoke,karat,karate,karma,kasha,kashmir,kat,kay,kayak,kayaking,keel,keeled,keen,keep,keeper,keepers,keeping,keeps,keg,kegs,keister,kelly,kelp,kelson,ken,kendo,keno,kent,kept,kern,kerosene,kerry,ketch,ketchup,kettle,key,keyboard,keyboards,keycard,keyhole,keynote,keys,keystone,khaki,khakis,khan,kibble,kibosh,kick,kickback,kickbacks,kickboxing,kicked,kicker,kicking,kicks,kicky,kid,kidder,kiddie,kiddies,kidding,kiddo,kidnap,kidnapped,kidnapper,kidnappers,kidnapping,kidnaps,kidney,kidneys,kids,kielbasa,killjoy,kiln,kilo,kilometer,kilometers,kilos,kilt,kilter,kimono,kin,kind,kinder,kindergarten,kindergartners,kindest,kindling,kindly,kindness,kinds,king,kingdom,kingdoms,kingpin,kings,kink,kinky,kins,kinship,kiosk,kip,kirk,kismet,kiss,kissable,kissed,kisser,kisses,kissing,kissy,kit,kitchen,kite,kites,kitten,kittens,kitties,kitty,kiwi,klutz,klutzy,knack,knapsack,knee,kneecap,kneecaps,kneed,kneel,kneeling,knees,knelt,knew,knickers,knickknacks,knife,knifed,knight,knights,knit,knitted,knitting,knives,knob,knobby,knobs,knock,knockdown,knocked,knocker,knockers,knocking,knockoff,knockout,knocks,knoll,knot,knots,knotted,know,knowing,knowingly,knowledge,knowledgeable,known,knows,knuckle,knucklehead,knuckles,koala,kobo,koi,kooks,kooky,kosher,koss,kraft,kremlin,kris,kroner,kudos,la,lab,label,labeled,labelled,labels,labor,laboratories,laboratory,labored,laborers,labour,labrador,labs,labyrinth,lac,lace,laced,lacerated,laceration,lacerations,laces,lacey,lack,lacked,lackeys,lacking,lackluster,lacks,lacquer,lacrosse,lactic,lactose,lacy,lad,ladder,ladders,laddies,laden,ladies,ladle,lads,lady,ladyship,lag,lager,lagging,lagoon,laid,lair,laird,lake,laker,lakers,lakes,lakeshore,lakeside,lam,lama,lamb,lambda,lambert,lambs,lame,lameness,lament,laminated,lamp,lamppost,lamps,lance,lancer,land,landed,lander,landers,landfall,landfill,landing,landings,landlady,landlord,landlords,landmark,landmarks,lands,landscape,landscapes,landscaping,landslide,lane,lanes,lang,langley,language,languages,languishing,lanky,lantern,lanyard,lap,lapdog,lapel,lapping,laps,lapse,lapsed,lapses,laptop,laptops,lar,larceny,larch,lard,large,largely,larger,largest,lark,lars,larvae,larval,laryngitis,las,lasagna,lasagne,lascivious,laser,lasers,lash,lashed,lashes,lashing,lass,lassie,lasso,last,lasted,lasting,lasts,latch,latched,late,lately,latent,later,latest,latex,lathe,lather,latino,latitude,latrine,latte,latter,lattes,laugh,laughable,laughed,laughing,laughingstock,laughs,laughter,launch,launched,launcher,launches,launching,launder,laundered,laundering,laundry,laura,laureate,laurel,lava,lavender,lavish,lavished,law,lawful,lawfully,lawman,lawmen,lawn,lawnmower,lawns,laws,lawsuit,lawsuits,lawyer,lawyered,lawyers,lax,laxative,laxatives,lay,layaway,layer,layers,laying,layman,layout,lays,lazar,laziness,lazy,lead,leader,leaders,leadership,leading,leads,leaf,leaflets,leafs,leafy,league,leagues,leak,leaked,leaking,leaks,leaky,lean,leaned,leaning,leans,leap,leaping,leaps,leapt,lear,learn,learned,learner,learning,learns,learnt,leary,lease,leased,leash,least,leather,leave,leaver,leaves,leaving,lech,lecture,lectured,lectures,lecturing,led,lederhosen,ledge,ledger,ledgers,lee,leech,leeches,leering,leery,leeway,left,leftover,leftovers,lefts,lefty,leg,legacy,legal,legalities,legality,legalizing,legally,legend,legendary,legends,legged,leggy,legion,legions,legislate,legislation,legislative,legislature,legit,legitimacy,legitimate,legs,legwork,lei,leisure,leisurely,lemmings,lemon,lemonade,lemony,lemur,lend,lending,length,lengths,leniency,leno,lens,lenses,lent,lentils,leopard,leopards,leotard,leotards,leper,lepers,leprechaun,lesbian,lesbians,lesions,less,lessee,lessen,lesser,lesson,lessons,lest,let,lethal,lets,letter,letterhead,lettering,letterman,letters,letting,lettuce,leukemia,levee,level,levelheaded,levels,lever,leverage,leveraged,levitate,levitation,levity,levy,lewd,lewis,lex,lez,li,liability,liable,liaison,liane,liar,liars,libation,libel,liberal,liberals,liberated,liberating,liberation,liberties,liberty,libido,librarian,libraries,library,lice,licence,license,licensed,licenses,licensing,lichen,lick,licked,licker,licking,licks,licorice,lid,lido,lidocaine,lids,lie,lied,liege,lien,lier,lies,lieu,lieutenant,lieutenants,life,lifeboats,lifeguard,lifeless,lifelike,lifeline,lifelong,lifer,lifers,lifesaver,lifestyle,lifetime,lifetimes,lift,lifted,lifting,liftoff,lifts,ligament,ligature,light,lighted,lighten,lightened,lightening,lighter,lighters,lightheaded,lighthearted,lighthouse,lighting,lightly,lightness,lightning,lights,like,liked,likelihood,likely,likeness,likes,likewise,liking,lilac,lilacs,lilies,lily,lima,limb,limber,limbo,limbs,lime,limelight,limerick,limes,limestone,limey,limit,limitation,limitations,limited,limitless,limits,limo,limos,limousine,limousines,limp,limping,limps,lin,line,lineage,linear,linebacker,lined,linen,linens,liner,liners,lines,lineup,ling,linger,lingerie,lingering,lingers,lingo,linguistic,lining,link,linked,linking,links,linoleum,lint,lion,lions,lip,liposuction,lipped,lippy,lips,lipstick,liquefy,liquid,liquidate,liquidated,liquidation,liquor,liquored,lira,lis,list,listed,listen,listened,listener,listeners,listening,listens,listing,lists,lit,litany,lite,liter,literacy,literal,literally,literary,literate,literature,liters,lithium,litigation,litigious,litter,littered,littering,little,littlest,live,lived,livelihood,lively,liven,liver,livers,lives,livestock,livid,living,lizard,lizards,llama,lo,load,loaded,loading,loads,loaf,loafers,loan,loaned,loaning,loans,loath,loathe,loathed,loathes,loathing,lob,lobby,lobbying,lobbyist,lobe,lobes,lobotomy,lobster,lobsters,loca,local,locale,localized,locally,locals,locate,located,locating,location,locations,locator,loch,lock,lockdown,locked,locker,lockers,locket,locking,locks,locksmith,lockup,loco,locomotive,locust,locusts,lode,lodge,lodged,lodging,lodgings,loft,lofty,log,logan,logged,logger,logic,logical,logically,logistics,logo,logs,loin,loins,loitering,lollipop,lollipops,lolly,lone,lonelier,loneliest,loneliness,lonely,loner,loners,lonesome,long,longer,longest,longevity,longing,longitude,longs,longtime,loo,loofah,look,looked,looker,looking,lookout,lookouts,looks,loom,looming,loon,looney,loons,loony,loop,looped,loophole,loopholes,loops,loos,loose,loosely,loosen,loosened,loosening,looser,loosing,loot,looting,lop,lopped,lopper,lopsided,loran,lord,lording,lords,lordship,lore,lorry,lose,loser,losers,loses,losing,loss,losses,lost,lot,lothario,lotion,lots,lotte,lottery,lotto,loud,louden,louder,loudest,loudly,louie,louis,lounge,lounging,louse,lousy,lout,louvre,lovable,love,loveable,lovebirds,loved,loveless,lovelier,lovelies,loveliest,lovelorn,lovely,lovemaking,lover,lovers,loves,lovesick,loving,lovingly,low,lowdown,lowe,lower,lowered,lowering,lowers,lowery,lowest,lowlife,lowlifes,lowly,lows,lox,loyal,loyalties,loyalty,lozenges,luau,lube,lubricant,lubricants,lubrication,luce,lucid,lucifer,luck,lucked,luckier,luckiest,luckily,lucky,lucrative,ludicrous,lug,luge,luggage,lukewarm,lull,lullaby,lulu,lum,lumbar,lumber,lumbering,lumberjack,luminous,lump,lumpectomy,lumps,lumpy,luna,lunacy,lunar,lunatic,lunatics,lunch,luncheon,lunches,lunching,lunchroom,lunchtime,lung,lunge,lunged,lungs,lupus,lurch,lure,lured,lures,luring,lurk,lurking,lurks,luscious,lush,lust,luster,lusting,lusts,lutz,luv,lux,luxuries,luxury,lye,lying,lymph,lymphoma,lynch,lynched,lynching,lynx,lyrical,lyrics,ma,mac,macadamia,macaroni,macaroons,macaws,mace,mach,mache,machete,machinations,machine,machinery,machines,machismo,macho,mack,mad,madam,madame,madden,maddening,madder,made,madeleine,mademoiselle,madly,madman,madmen,madness,madonna,madre,madrigal,madwoman,mae,maestro,mafia,mag,magazine,magazines,magdalene,maggot,maggots,magic,magical,magically,magician,magicians,magistrate,magnet,magnetic,magnetism,magnets,magnificence,magnificent,magnificently,magnify,magnitude,magnolia,magnum,mags,maharajah,mahatma,maid,maiden,maidens,maids,mail,mailbox,mailboxes,mailed,mailer,mailing,mailman,mails,maim,maimed,maiming,main,mainframe,mainland,mainline,mainly,maintain,maintained,maintaining,maintains,maintenance,majestic,majesty,major,majored,majoring,majority,majors,make,makeover,makeovers,maker,makers,makes,makeshift,makeup,making,makings,malaria,male,males,malevolent,malfeasance,malfunction,malfunctioning,malfunctions,malice,malicious,maliciously,malign,malignant,mall,mallard,mallet,malls,malnourished,malpractice,malt,mama,mamie,mamma,mammals,man,manage,managed,management,manager,managerial,managers,manages,managing,manatee,manatees,mandarin,mandate,mandates,mandatory,mandrake,maneuver,maneuvered,maneuvering,maneuvers,manger,mangled,mangoes,mangos,mangy,manhandle,manhandled,manhattan,manhole,manhood,manhunt,maniac,maniacal,maniacs,manic,manicure,manicured,manicures,manifest,manifestations,manifested,manifesting,manifesto,manifests,manifold,manila,manipulate,manipulated,manipulates,manipulating,manipulation,manipulations,manipulative,manipulator,mankind,manly,manna,mannequin,mannequins,manner,mannered,manners,manning,mano,manor,manpower,mansion,mansions,manslaughter,mantel,manticore,mantis,mantle,mantra,manual,manually,manufacture,manufactured,manufacturer,manufactures,manufacturing,manure,manuscript,manuscripts,many,map,maple,mapped,mapping,maps,mar,marathon,marble,marbles,marc,marcel,march,marched,marches,marching,mare,margarita,margaritas,marge,margin,marginal,marginally,margins,maria,mariachi,marigold,marijuana,marina,marinate,marine,mariner,mariners,marines,marital,maritime,mark,marked,marker,markers,market,marketing,marketplace,markets,marking,markings,marks,marksmanship,marlin,marmalade,maroon,marooned,marquee,marquis,marriage,marriages,married,marries,marrow,marry,marrying,mars,marsh,marshal,marshall,marshmallow,marshmallows,mart,marten,martial,martin,martini,martinis,martins,martyr,martyrs,marvel,marveling,marvellous,marvelous,marzipan,mas,mascara,mascot,mascots,masculine,masculinity,mash,mashed,mask,masked,masking,masks,mason,masons,masquerade,masquerading,mass,massa,massacre,massacred,massacres,massage,massaged,massager,massages,massaging,masses,masseur,masseuse,massive,massively,mastectomy,master,mastered,mastermind,masterminded,masterpiece,masterpieces,masters,mastery,masturbated,masturbating,masturbation,mat,matador,match,matchbook,matched,matches,matching,matchmaker,matchmaking,mate,mated,material,materialistic,materialize,materialized,materials,maternal,maternity,mates,matey,math,mathematically,mathematician,mathematicians,mathematics,matinee,mating,matriarch,matrimonial,matrimony,matrix,matron,mats,matt,matted,matter,mattered,matters,mattress,mattresses,mature,matured,maturity,matzah,matzoh,maudlin,maul,mauled,mausoleum,maverick,mavis,maw,max,maxi,maxim,maximize,maximum,maxwell,may,maya,mayan,maybe,maybes,mayday,mayflower,mayflowers,mayhem,mayo,mayonnaise,mayor,mayoral,mayors,maze,me,mead,meadow,meadows,meager,meal,meals,mealy,mean,meaner,meanest,meanie,meaning,meaningful,meaningless,meanings,meanness,means,meant,meantime,meanwhile,measles,measly,measure,measured,measurements,measures,measuring,meat,meatball,meatballs,meathead,meatloaf,meats,meaty,mecca,mechanic,mechanical,mechanics,mechanism,mechanisms,med,medal,medals,meddle,meddled,meddlesome,meddling,medevac,media,mediator,medic,medicaid,medical,medically,medicare,medicate,medicating,medication,medications,medicine,medicines,medics,medieval,medina,mediocre,mediocrity,meditate,meditating,meditation,mediterranean,medium,medley,medusa,meet,meeting,meetings,meets,megaphone,mel,melancholy,melding,mellow,mellowed,mellowing,melodrama,melodramatic,melody,melon,melons,melt,meltdown,melted,melting,melts,member,members,membership,membrane,membranes,memento,mementos,memo,memoirs,memorabilia,memorable,memorial,memories,memorize,memorized,memorizing,memory,memos,men,menace,menacing,menage,menagerie,mend,mended,mending,menial,meningitis,menopausal,menopause,menorah,mensa,menstrual,mental,mentality,mentally,mention,mentioned,mentioning,mentions,mentor,menu,menus,meow,mercenaries,mercenary,mercer,merchandise,merchandising,merchant,merciful,mercilessly,mercury,mercy,mere,merely,merger,mergers,merging,meridian,meringue,merit,merits,merl,merle,merlot,mermaid,mermaids,merman,merrier,merrily,merry,mesa,mescaline,mesh,mesmerized,mesmerizing,mesquite,mess,message,messages,messed,messenger,messengers,messes,messier,messing,messy,met,meta,metabolic,metal,metallic,metals,metamorphosis,metaphor,metaphorical,metaphorically,metaphors,metaphysics,meteor,meteorite,meteors,meter,meters,meth,methadone,method,methodical,methodology,methods,meticulous,meticulously,metric,metro,metropolitan,mettle,mew,mezzanine,mi,mice,mick,mickey,micro,microbes,microchips,microfilm,microphone,microphones,microscope,microscopic,microwave,mid,middies,middle,middleman,middleweight,midge,midget,midgets,midland,midlife,midnight,midst,midterm,midterms,midtown,midway,midwestern,midwife,midwives,miffed,miggs,might,mightier,mighty,mignon,migraine,migrate,migration,mike,mikes,mil,mild,mildew,mildly,mile,mileage,miles,milestone,militant,militants,military,militia,milk,milked,milking,milkman,milky,mill,millennia,millennium,miller,millet,milligram,milligrams,millimeter,milling,million,millionaire,millionaires,millions,millisecond,mills,milo,milt,mime,mimes,mimic,mimicking,mimosas,mina,mince,mincemeat,mind,minded,mindful,minding,mindless,minds,mindset,mine,mined,minefield,miner,mineral,minerals,miners,mines,mingle,mini,miniature,minimal,minimalist,minimize,minimum,minimums,mining,minion,minions,miniscule,minister,ministers,ministry,minivan,mink,minks,minnow,minor,minorities,minority,minors,minstrel,mint,mints,minty,minus,minuscule,minuses,minute,minutes,miracle,miracles,miraculous,miraculously,mirage,mirror,mirrors,mirth,mis,misbehave,miscalculated,miscalculation,miscarriage,miscarry,miscellaneous,mischief,miscommunication,misconception,misconceptions,misconstrued,miscreant,misdeeds,misdemeanors,miserable,miserably,misery,misfit,misfits,misfortune,misgivings,misguided,mishandled,mishap,misheard,misinformed,misinterpret,misinterpretation,misinterpreted,misinterpreting,misjudged,mislead,misleading,misled,mismatched,misnomer,misogynistic,misplace,misplaced,misprint,misread,misreading,miss,missed,misses,missile,missiles,missing,mission,missionaries,missionary,missions,missis,misspelled,misspent,misspoke,missus,missy,mist,mistake,mistaken,mistakes,mister,mistletoe,mistook,mistreated,mistress,mistresses,mistrial,mistrust,misty,misunderstand,misunderstanding,misunderstandings,misunderstood,misuse,mite,mites,mitt,mitten,mittens,mitts,mitzvah,mix,mixed,mixer,mixers,mixes,mixing,mixture,mixup,mm,mo,moan,moaning,moans,moat,mob,mobile,mobility,mobilize,mobs,mobster,mocha,mock,mocked,mockery,mocking,mocks,mod,mode,model,modeled,modeling,modelling,models,modem,moderately,moderation,moderator,modern,modest,modesty,modicum,modification,modifications,modified,module,modus,mohair,mohel,moil,moist,moisture,moisturize,moisturizer,mojo,mol,molars,molasses,mold,molded,molding,moldings,molds,moldy,mole,molecular,molecule,molecules,moles,molest,molestation,molested,molester,molesting,moll,mollie,mollusk,molly,moloch,molten,molto,moly,mom,moment,momentarily,momentary,momento,moments,momentum,momma,mommies,mommy,moms,mon,monarchs,monarchy,monastery,monde,mondo,monetary,money,moneybags,moneymaker,moneys,monger,mongoloid,mongoose,mongrel,moniker,monitor,monitored,monitoring,monitors,monk,monkey,monkeys,monks,mono,monogamous,monogamy,monogrammed,monologue,monopolizing,monopoly,monoxide,monsieur,monsignor,monsoon,monster,monsters,monstrous,montage,monte,month,monthly,months,monument,monumental,monumentally,moo,mooch,moocher,mood,moods,moody,moola,moon,moonbeams,moonlight,moonlighting,moonlit,moons,moors,moose,moot,mop,mope,moped,mopes,mopey,moping,mopped,mopping,mops,mor,moral,morale,morales,morality,morally,morals,morbid,more,morello,moreover,morgan,morgue,morgues,morn,morning,mornings,morocco,moron,moronic,morons,morph,morphine,morris,morrow,morse,morsel,mort,mortal,mortality,mortals,mortar,mortars,mortgage,mortgages,mortified,mortifying,mortuary,mosey,mosque,mosquito,mosquitoes,mosquitos,moss,most,mostly,mote,motel,motels,moth,mothballs,mother,motherhood,mothering,motherless,mothers,moths,motif,motion,motions,motivate,motivated,motivates,motivation,motivational,motivations,motive,motives,motley,motor,motorbike,motorcade,motorcycle,motorcycles,motorized,motors,motto,mould,moulin,mound,mounds,mount,mountain,mountaineer,mountains,mountainside,mountaintop,mounted,mounting,mourn,mourned,mourners,mourning,mouse,mousey,mousse,moustache,mousy,mouth,mouthed,mouthful,mouthing,mouthpiece,mouths,mouthwash,mouthy,move,moved,movement,movements,movers,moves,movie,movies,moving,mow,mowed,mower,mowers,mowing,moxie,mu,much,muchacho,muchachos,muck,muckraker,mucous,mucus,mud,muddle,muddy,muff,muffin,muffins,muffled,muffler,mug,mugged,mugger,muggers,mugging,muggings,muggy,mugs,mulberry,mulch,mule,mules,muley,mulled,muller,mullet,mulligan,mulling,multimedia,multimillion,multinational,multiple,multiples,multiplex,multiplication,multiplied,multiply,multitude,mum,mumble,mumbled,mumbles,mumbling,mummies,mummy,mumps,mums,munch,munching,munchkin,munchkins,mundane,munitions,mural,murals,murder,murdered,murderer,murderers,murderess,murdering,murderous,murders,murky,murmur,murphy,muscle,muscled,muscles,muscular,muse,muses,museum,museums,mush,mushroom,mushrooms,mushy,music,musical,musicals,musician,musicians,musing,musket,musketeer,musketeers,muskie,muskrat,muss,mussels,must,mustache,mustang,mustangs,mustard,muster,mutant,mutants,mutated,mutating,mute,mutilate,mutilated,mutilation,mutiny,mutt,mutton,mutual,mutually,muumuu,muzzle,my,myriad,myrtle,myself,mysteries,mysterious,mysteriously,mystery,mystic,mystical,mysticism,mystified,mystifying,myth,mythic,mythical,mythological,mythology,myths,na,nacho,nachos,nada,nag,nagged,nagging,nah,nail,nailed,nailing,nails,naive,naivete,naked,nam,name,named,nameless,namely,names,namesake,nametag,naming,nan,nana,nance,nancy,nannies,nanny,nanosecond,nanotechnology,nap,napalm,naphthalene,napkin,napkins,napoleon,napping,nappy,naps,narc,narcissism,narcissist,narcissistic,narcolepsy,narcotic,narcotics,narrative,narrator,narrow,narrowed,narrowing,narrowly,narrows,narwhal,nary,nasal,nastiest,nasty,nation,national,nationally,nationals,nations,native,natives,nativity,natty,natural,naturally,nature,natured,naught,naughty,nausea,nauseated,nauseating,nauseous,nautical,nautilus,naval,navigate,navigating,navigation,navigational,navigator,navy,naw,nay,nazi,nazis,ne,near,nearby,nearest,nearly,neat,neatly,neatness,nebula,necessarily,necessary,necessity,neck,necking,necklace,necklaces,neckline,necks,necromancer,necrosis,nectar,nee,need,needed,neediness,needing,needle,needlepoint,needles,needless,needlessly,needs,needy,nefarious,negate,negative,negatively,negatives,negativity,neglect,neglected,neglectful,neglecting,negligee,negligence,negligent,negligible,negotiable,negotiate,negotiated,negotiating,negotiation,negotiations,negotiator,neighbor,neighborhood,neighborhoods,neighboring,neighborly,neighbors,neighbour,neighbours,neither,nellie,nelly,nelson,neon,neonatal,nephew,nephews,nepotism,nerd,nerds,nerdy,nerve,nerves,nervous,nervously,nervousness,ness,nest,net,nether,network,networking,networks,neural,neurological,neurologist,neurology,neuroses,neurosis,neurosurgeon,neurosurgery,neurotic,neutered,neutral,neutralize,neutralized,neutron,neve,never,nevermore,nevertheless,new,newborn,newborns,newcomer,newcomers,newest,newfound,newly,newlywed,newlyweds,news,newscast,newsletter,newsman,newspaper,newspapers,newsroom,newsstand,newsstands,newt,newton,next,nexus,nibble,nibbling,nice,nicely,nicer,nicest,niceties,niche,nick,nicked,nickel,nickels,nickname,nicknamed,nicknames,nicks,nicotine,niece,nieces,nifty,nigh,night,nightcap,nightclub,nightfall,nightgown,nighthawk,nightingale,nightlife,nightly,nightmare,nightmares,nightmarish,nights,nightstand,nightstick,nighttime,nighty,nihilist,nil,nimrod,nine,nines,nineteen,nineteenth,nineties,ninety,ninja,ninny,ninth,nip,nipped,nipper,nipping,nipple,nipples,nippy,nirvana,nite,nitrogen,nitroglycerin,nitrous,nitty,nitwit,nix,nixed,no,nobility,noble,nobleman,nobodies,nobody,nocturnal,nod,nodded,nodding,node,nodes,nods,nodules,noel,noggin,noh,noir,noise,noises,noisy,nomad,nomadic,nomads,nome,nominal,nominate,nominated,nominating,nomination,nominations,nominee,nominees,nonchalant,none,nonetheless,nonexistent,nonissue,nonnegotiable,nonsense,nonsensical,nonstop,nonviolent,noo,noodle,noodles,noon,noose,nope,nor,nordic,norland,norm,normal,normalcy,normally,north,northeast,northeastern,norther,northern,northwest,northwestern,nos,nose,nosebleeds,nosed,nosedive,noses,nosey,nosh,nosing,nostalgia,nostalgic,nostril,nostrils,nosy,not,notable,notably,notary,notation,notch,notches,note,notebook,noted,notepad,notes,nothing,nothings,notice,noticeable,noticeably,noticed,notices,noticing,notification,notified,notify,noting,notion,notions,notorious,notoriously,notwithstanding,nougat,noun,nourish,nourishing,nourishment,nous,nouveau,nova,novel,novelist,novels,novelty,novocaine,now,nowadays,nowhere,noxious,nozzle,nu,nuance,nuances,nub,nubile,nuclear,nude,nudes,nudge,nudie,nudist,nudity,nuggets,nuisance,nuke,nuked,nukes,null,numb,number,numbered,numbers,numbing,numbness,numerous,nun,nunnery,nuns,nuptial,nuptials,nurse,nursed,nursery,nurses,nursing,nurtured,nurturing,nut,nutcase,nutcracker,nuthouse,nutmeg,nutrition,nutritional,nutritionist,nutritious,nuts,nutshell,nuttier,nutty,nylon,nylons,nymph,nympho,nymphomaniac,oaf,oak,oaks,oar,oars,oasis,oath,oaths,oatmeal,oats,obese,obey,obeyed,obeying,obi,obits,obituary,object,objected,objecting,objection,objectionable,objections,objective,objectives,objectivity,objects,obligated,obligation,obligations,obligatory,oblige,obliged,oblique,obliterate,obliterated,oblivion,oblivious,obnoxious,oboe,obscene,obscenities,obscenity,obscure,obscured,obscurity,observable,observant,observation,observations,observatory,observe,observed,observer,observers,observing,obsess,obsessed,obsessing,obsession,obsessions,obsessive,obsessively,obsolete,obstacle,obstacles,obstetrician,obstinate,obstructed,obstruction,obtain,obtained,obtuse,obvious,obviously,occasion,occasional,occasionally,occasions,occult,occupancy,occupant,occupants,occupation,occupational,occupations,occupied,occupy,occupying,occur,occurred,occurrence,occurrences,occurs,ocean,oceanographic,oceans,octane,octopus,od,odd,oddball,oddest,oddly,odds,ode,odious,odor,odorless,odyssey,oedipal,of,off,offbeat,offence,offend,offended,offender,offenders,offending,offends,offense,offensive,offer,offered,offering,offerings,offers,office,officer,officers,offices,official,officially,officials,officiate,offing,offs,offset,offshore,offspring,often,oftentimes,ogle,ogling,ogre,ogres,oh,ohm,oho,oil,oiled,oils,oily,oink,ointment,okay,okayed,okeydokey,okra,old,olden,older,oldest,oldie,olds,ole,olfactory,olive,olives,om,omega,omelet,omelette,omelettes,omen,omens,ominous,omitted,omnipotent,on,onboard,once,oncology,oncoming,one,ones,oneself,ongoing,onion,onions,only,onstage,onto,onward,oodles,ooh,oomph,oops,ooze,oozing,op,opal,open,opened,opener,openers,opening,openings,openly,openness,opens,opera,operas,operate,operated,operates,operating,operation,operational,operations,operative,operatives,operator,opinion,opinionated,opinions,opium,opponent,opponents,opportune,opportunist,opportunities,opportunity,opposable,oppose,opposed,opposing,opposite,opposites,opposition,oppress,oppression,oppressive,ops,opted,optic,optimism,optimist,optimistic,optimum,option,optional,options,optometrist,opus,or,oracle,oracles,oral,orally,orange,oranges,orator,orb,orbed,orbing,orbit,orbital,orbiting,orbs,orchard,orchestra,orchestrate,orchestrated,orchestrating,ordeal,order,ordered,ordering,orderlies,orderly,orders,ordinance,ordinarily,ordinary,ordinate,ordinates,ordnance,ore,oregano,organ,organic,organisation,organise,organised,organism,organisms,organization,organizations,organize,organized,organizer,organizing,organs,orgasm,orgasmic,orgasms,orgies,orgy,oriental,orientation,oriented,orienteering,origami,origin,original,originality,originally,originals,originating,origins,orioles,ornament,ornamental,ornaments,ornate,ornery,orphan,orphanage,orphaned,orphans,ort,orthodontist,orthodox,orthopedic,os,ose,ostensibly,ostracized,ostrich,other,others,otherwise,otherworldly,otter,otto,ottoman,ouch,ought,ounce,ounces,our,ours,ourselves,out,outage,outback,outbid,outbound,outbreak,outburst,outcast,outcasts,outcome,outdated,outdid,outdo,outdone,outdoor,outdoors,outdoorsy,outer,outfield,outfit,outfits,outfitted,outgoing,outgrew,outgrow,outgrown,outhouse,outing,outlander,outlandish,outlast,outlaw,outlawed,outlaws,outlet,outlets,outline,outlined,outlines,outlive,outlived,outlook,outnumber,outnumbered,outpatient,outpost,outpouring,outrage,outraged,outrageous,outrageously,outrank,outright,outrun,outs,outset,outside,outsider,outsiders,outskirts,outsmarted,outspoken,outstanding,outvoted,outward,outweigh,outwit,outwitted,oval,ovarian,ovaries,ovation,oven,over,overachiever,overactive,overall,overalls,overanxious,overbearing,overbite,overblown,overboard,overcame,overcast,overcharge,overcome,overcoming,overcompensating,overcooked,overcrowded,overdid,overdo,overdone,overdose,overdosed,overdressed,overdrive,overdue,overestimate,overestimated,overexcited,overflow,overflowing,overgrown,overhaul,overhead,overhear,overheard,overhearing,overheated,overheating,overjoyed,overkill,overlap,overlapping,overload,overlook,overlooked,overlooking,overly,overnight,overnights,overpaid,overpass,overpower,overpriced,overprotective,overqualified,overrated,overreact,overreacted,overreacting,overreaction,override,overrule,overruled,overrun,overseas,oversee,overseeing,oversensitive,oversight,oversized,oversleep,overslept,overstating,overstay,overstayed,overstep,overstepping,overstress,overtaken,overthink,overtime,overtired,overtures,overturned,overview,overweight,overwhelm,overwhelmed,overwhelming,overwhelmingly,overwhelms,overworked,overwrought,ovulating,ow,owe,owed,owes,owing,owl,owls,own,owned,owner,owners,ownership,owning,owns,ox,oxen,oxford,oxygen,oxymoron,oy,oyez,oyster,oysters,ozone,pa,pac,pace,paced,pacemaker,pacer,paces,pachyderm,pacific,pacifier,pacifist,pacing,pack,package,packages,packed,packer,packet,packets,packing,packs,pact,pad,padded,padding,paddle,paddles,paddling,paddock,paddy,padlock,padre,pads,paella,pagan,page,pageant,paged,pager,pagers,pages,paging,pah,paid,pail,pain,pained,painful,painfully,painkiller,painkillers,painless,pains,paint,paintbrush,painted,painter,painters,painting,paintings,paints,pair,paired,pairs,paisley,pajama,pajamas,pal,palace,palaces,pale,paleontologist,paleontology,paler,pales,palette,palm,palmer,palms,palomino,palp,palpable,palpitations,pals,palsy,paltry,pam,pamper,pampered,pampering,pampers,pamphlet,pamphlets,pan,panache,panama,pancake,pancakes,pancreatic,panda,pandering,pandora,pane,panel,panels,panhandle,panic,panicked,panicking,panicky,panics,panned,pans,pansy,pant,pantaloons,pantheon,panther,panties,panting,pantry,pants,panty,pantyhose,pap,papa,paparazzi,papayas,paper,paperback,paperboy,papers,paperweight,paperwork,pappy,paprika,par,para,parable,parabolic,parachute,parachutes,parachuting,parade,paradigm,parading,paradise,paradox,paragon,paragraph,paragraphs,parakeet,paralegal,parallel,parallels,paralysis,paralyze,paralyzed,paralyzing,paramedic,paramedics,parameters,paramilitary,paramour,paranoia,paranoid,paranormal,paraphernalia,parasailing,parasite,parasites,parasitic,paratrooper,paratroopers,parchment,pardner,pardon,pardoned,pardons,pare,parent,parental,parenthood,parenting,parents,parfait,paris,parish,parishioner,parishioners,park,parka,parked,parker,parking,parks,parkway,parliament,parliamentary,parlor,parlors,parlour,parody,parole,paroled,parrot,parrots,parsley,parsons,part,parted,partial,partially,participant,participants,participate,participated,participating,participation,particle,particles,particular,particularly,particulars,partied,parties,parting,partisan,partly,partner,partnered,partners,partnership,partnerships,parton,partridge,parts,party,partying,pas,pass,passable,passage,passages,passageway,passageways,passed,passenger,passengers,passer,passes,passing,passion,passionate,passionately,passions,passive,passkey,passport,passports,password,past,pasta,paste,pasted,pastels,pasties,pastime,pastor,pastrami,pastry,pasts,pasture,pastures,pat,patch,patched,patches,patching,patchouli,pate,patent,patented,patently,patents,paternal,paternity,path,pathetic,pathetically,pathogen,pathological,pathologically,pathologist,pathology,pathos,paths,pathways,patience,patient,patiently,patients,patio,patois,patriarch,patriot,patriotic,patriots,patrol,patrolled,patrolling,patrolman,patrolmen,patron,patronize,patronized,patronizing,patrons,patsy,patten,patter,pattern,patterns,patties,patting,patty,pause,pauses,pave,paved,pavement,pavilion,paving,paw,pawing,pawn,pawning,pawnshop,paws,pax,pay,payable,payback,paycheck,paychecks,payday,paying,payload,payment,payments,payoff,payoffs,payroll,pays,pe,pea,peace,peaceful,peacefully,peacemaker,peacetime,peach,peaches,peachy,peak,peaked,peaks,peanut,peanuts,pear,pearl,pearls,pearly,peas,peasant,peat,pebble,pecan,pecans,peck,pecked,pecker,peckers,pecking,peckish,pecks,pecs,peculiar,pedal,pedaling,pedals,peddle,peddler,peddling,pedestal,pedestrian,pedestrians,pediatric,pediatrician,pediatrics,pedicure,pedicures,pedigree,pedophile,pedro,pee,peed,peeing,peek,peeked,peeking,peeks,peel,peeled,peeling,peels,peep,peepers,peeping,peeps,peer,peering,peerless,peers,pees,peeved,peg,pegged,peignoir,pele,pellet,pellets,pelt,pelting,pelts,pelvic,pemmican,pen,penal,penalize,penalized,penalty,penance,pence,pencil,pencils,pendant,pending,penetrate,penetrated,penetrating,penetration,penguin,penguins,penicillin,peninsula,penitentiary,pennant,penne,penned,pennies,penniless,penny,pens,pension,pensioners,pensions,pentagon,pentagram,penthouse,peon,people,peoples,pep,pepper,peppermint,pepperoni,peppers,per,perceive,perceived,percent,percentage,percentages,percentile,perception,perceptions,perceptive,perch,perchance,perched,percolating,perennial,perfect,perfecting,perfection,perfectionist,perfectly,perfecto,perform,performance,performances,performed,performer,performers,performing,performs,perfume,perfumed,perfumes,perhaps,peril,perils,perimeter,perimeters,period,periodic,periods,peripheral,periphery,periscope,perish,perishable,perished,perjure,perjured,perjury,perk,perks,perky,perm,permanent,permanently,permissible,permission,permit,permits,permitted,permitting,peroxide,perpetrate,perpetrated,perpetrator,perpetrators,perpetual,perpetuating,perry,persecute,persecuted,persecuting,persist,persistence,persistent,persists,persnickety,person,persona,personable,personal,personalities,personality,personalize,personalized,personally,personals,personified,personnel,persons,perspective,perspectives,perspiration,persuade,persuaded,persuasion,persuasive,pertaining,pertains,pertinent,perturbed,peruse,perverse,perversion,pervert,perverted,perverts,pesky,pesos,pessimist,pessimistic,pest,pester,pestering,pesticides,pestilence,pesto,pests,pet,petal,petals,peter,peters,petit,petite,petition,petitioner,petitioning,petrified,petrol,petroleum,pets,petticoat,petting,petty,pew,pewter,pfft,phantom,phantoms,pharaoh,pharaohs,pharmaceutical,pharmaceuticals,pharmacist,pharmacy,phase,phased,phases,phasing,pheasant,pheasants,phenomena,phenomenal,phenomenally,phenomenon,pheromones,phew,phi,philandering,philanthropist,philharmonic,philosopher,philosophers,philosophical,philosophies,philosophy,phobia,phobias,phobic,phoebe,phoenix,phone,phoned,phones,phoney,phonies,phony,phooey,phosphate,phosphorous,photo,photocopy,photogenic,photograph,photographed,photographer,photographers,photographic,photographing,photographs,photography,photos,phrase,phrases,physic,physical,physically,physicals,physician,physicist,physicists,physics,physiological,physiologically,physiology,physique,pi,pianist,piano,pianos,piazza,pic,pick,picked,picker,picket,picketing,picking,pickings,pickle,pickled,pickles,pickpocket,pickpockets,picks,pickup,pickups,picky,picnic,picnics,picture,pictured,pictures,picturing,piddles,piddling,pie,piece,pieced,pieces,piecing,pied,pier,pierce,pierced,piercing,pies,piffle,pig,pigeon,pigeons,piggies,piggy,piggyback,pigheaded,piglet,pigs,pigskin,pigsty,pigtails,pike,pilar,pile,piled,piles,pilgrim,pilgrimage,pilgrims,piling,pill,pillage,pillar,pillars,pillow,pillows,pills,pilot,pilots,pimp,pimped,pimping,pimple,pimples,pimply,pin,pina,pinafore,pinata,pinball,pinch,pinched,pinches,pinching,pincushion,pine,pineapple,pineapples,pinecone,pines,ping,pinhead,pinheads,pining,pink,pinkie,pinks,pinky,pinned,pinning,pinochle,pinot,pinpoint,pinpointed,pins,pint,pinto,pints,pioneer,pious,pip,pipe,pipeline,piper,pipes,piping,piqued,piranhas,pirate,pirated,pirates,pis,piss,pissant,pissed,pisses,pissing,pistachio,pistachios,pistol,pistols,piston,pistons,pit,pitch,pitched,pitcher,pitchers,pitches,pitchfork,pitching,pitfalls,pithy,pitied,pitiful,pits,pittance,pitted,pitting,pity,pitying,pivot,pivotal,pixels,pixie,pixies,pixilated,pizza,pizzas,placate,place,placebos,placed,placement,places,placid,placing,plague,plagued,plagues,plaguing,plaid,plain,plainclothes,plainly,plains,plaintiff,plaintiffs,plait,plan,plane,planes,planet,planetarium,planetary,planets,planing,plank,plankton,planned,planner,planners,planning,plans,plant,plantation,plantations,planted,planting,plants,plaque,plasma,plaster,plastered,plastic,plate,plateau,plateaued,plated,platelets,plates,platform,platforms,plating,platinum,platitudes,platonic,platoon,platter,platters,platypus,plausible,play,playa,playbook,playboy,playboys,played,player,players,playful,playground,playgrounds,playhouse,playing,playmate,playoffs,playroom,plays,plaything,playthings,playtime,playwright,plaza,plea,plead,pleaded,pleading,pleadings,pleads,pleas,pleasant,pleasantly,pleasantries,please,pleased,pleaser,pleases,pleasing,pleasure,pleasures,pleasuring,pled,pledge,pledged,pledges,pledging,plenty,plethora,pliers,plight,plop,plot,plots,plotted,plotting,plow,plowed,plowing,ploy,pluck,plucked,plucking,plucky,plug,plugged,plugging,plugs,plum,plumber,plumbers,plumbing,plummet,plummeted,plummeting,plump,plums,plunder,plunge,plunging,plural,plus,pluses,plush,plutonium,pneumonia,poach,poached,poacher,poachers,poaching,pocket,pocketbook,pocketed,pocketful,pockets,pod,podiatrist,podiatry,podium,pods,poem,poems,poet,poetic,poetry,poets,poi,poignant,point,pointe,pointed,pointer,pointers,pointing,pointless,points,pointy,poise,poised,poison,poisoned,poisoning,poisonous,poisons,poke,poked,poker,pokes,pokey,poking,polar,polarity,pole,polecat,poles,police,policeman,policemen,policies,policing,policy,polio,polish,polished,polishing,polite,politely,political,politically,politician,politicians,politics,polka,poll,pollack,pollard,polled,pollen,polling,pollock,polls,pollute,polluting,pollution,polo,poltergeist,poltergeists,poly,polyester,polygraph,polymerization,pom,pomegranate,pompoms,pompous,poncho,pond,ponder,ponds,pong,ponies,pontoon,pony,ponytail,pooch,poodle,poodles,poof,poofs,poofy,pooh,pool,pooling,pools,poolside,poop,pooped,poor,poorer,poorest,poorhouse,poorly,pop,popcorn,pope,poppa,popped,popper,poppers,poppet,poppies,popping,poppy,poppycock,pops,popular,popularity,populated,population,populations,porcelain,porch,porcupine,pore,pores,poring,pork,porky,porridge,port,portable,portal,portals,portent,porter,porterhouse,portfolio,portion,portions,portrait,portraits,portray,portrayal,portrayed,portrays,ports,pose,posed,poser,poses,posies,posing,position,positioned,positioning,positions,positive,positively,positives,posse,posses,possess,possessed,possesses,possessing,possession,possessions,possessive,possibilities,possibility,possible,possibly,possum,post,postage,postal,postcard,postcards,posted,poster,posterior,posters,posting,postman,postmark,postmaster,postmortem,postpartum,postpone,postponed,postponement,postponing,posts,posttraumatic,posture,pot,potassium,potato,potatoes,potency,potent,potential,potentially,pothead,pothole,potholes,potion,potions,pots,potsie,potted,potter,pottery,potting,potty,pouch,poultry,pounce,pound,pounder,pounding,pounds,pour,poured,pouring,pours,pout,pouting,poverty,pow,powder,powdered,powders,power,powered,powerful,powerhouse,powering,powerless,powers,pox,practical,practicality,practically,practice,practiced,practices,practicing,practise,practising,practitioner,praetorians,pragmatic,pragmatist,prairie,praise,praised,praises,praising,pralines,pram,prance,prancer,prancing,prank,pranks,prankster,prattling,pray,prayed,prayer,prayers,praying,prays,preach,preached,preacher,preachers,preaching,preachy,preamble,precaution,precautionary,precautions,preceded,precedence,precedent,precedents,preceding,precinct,precious,precipice,precise,precisely,precision,precludes,precocious,preconceived,predator,predators,predatory,predecessor,predecessors,predicament,predict,predictable,predicted,predicting,predictions,predisposed,predisposition,prednisone,preeclampsia,preemptive,preface,prefer,preferable,preferably,preference,preferences,preferred,prefers,prefix,pregnancies,pregnancy,pregnant,prehistoric,prejudice,prejudiced,prejudicial,prelim,preliminary,prelude,premarital,premature,prematurely,premed,premeditated,premier,premiere,premise,premises,premium,premiums,premonition,premonitions,prenatal,preoccupied,prep,preparation,preparations,prepare,prepared,preparing,preposterous,prepped,preppie,prepping,preppy,prerequisite,prerogative,preschool,prescribe,prescribed,prescribes,prescribing,prescription,prescriptions,presence,present,presentable,presentation,presented,presenting,presently,presents,preservation,preservatives,preserve,preserved,preserver,preserves,presets,preside,presided,presidency,president,presidential,presidents,presiding,press,pressed,presses,pressing,pressman,pressure,pressured,pressures,pressuring,prestige,prestigious,presto,presumably,presume,presumed,presuming,presumptuous,pretend,pretended,pretending,pretends,pretense,pretenses,pretentious,pretext,pretrial,prettier,prettiest,pretty,pretzel,pretzels,prevail,prevailed,prevails,prevent,preventative,prevented,preventing,prevention,preventive,prevents,preview,previous,previously,prey,preyed,preying,preys,price,priced,priceless,prices,pricey,prick,pricked,prickly,pricks,pride,prided,priest,priesthood,priests,prim,prima,primal,primaries,primarily,primary,primate,primates,prime,primed,primer,primitive,primo,primordial,primping,prince,princely,princes,princess,princesses,principal,principals,principle,principles,print,printed,printer,printers,printing,prints,prior,priorities,prioritize,prioritizing,priority,priors,prison,prisoner,prisoners,prisons,priss,prissy,privacy,private,privately,privilege,privileged,privileges,privy,prize,prized,prizes,pro,proactive,probability,probable,probably,probate,probation,probationary,probe,probes,problem,problematic,problems,procedural,procedure,procedures,proceed,proceeded,proceeding,proceedings,proceeds,process,processed,processes,processing,procession,processional,processors,proclaimed,proclivities,procrastinate,procrastinating,procrastination,procreate,proctologist,procure,procured,prod,prodded,prodding,prodigal,produce,produced,producer,producers,produces,producing,product,production,productions,productive,productivity,products,prof,profanity,profess,professed,profession,professional,professionalism,professionally,professionals,professor,professors,profile,profiles,profiling,profit,profitable,profits,profound,profoundly,profusely,progeny,prognosis,program,programme,programmed,programmer,programming,programs,progress,progressed,progresses,progressing,progression,progressive,prohibit,prohibited,prohibition,prohibits,project,projected,projectile,projecting,projection,projections,projector,projects,proliferation,prolong,prolonged,prom,promenade,prominent,promiscuous,promise,promised,promises,promising,promo,promote,promoted,promotes,promoting,promotion,promotions,prompt,prompter,prompting,promptly,proms,prone,pronounce,pronounced,pronouns,pronto,pronunciation,proof,proofed,proofing,proofs,prop,propaganda,propane,propelled,propellers,propensity,proper,properly,properties,property,prophecies,prophecy,prophesied,prophet,prophets,prophylactic,proportion,proportional,proportioned,proportions,proposal,proposals,propose,proposed,proposes,proposing,proposition,propositioning,propped,propping,proprietary,proprietor,propriety,props,propulsion,pros,prosciutto,prose,prosecute,prosecuted,prosecuting,prosecution,prosecutor,prosecutorial,prosecutors,prospect,prospective,prospector,prospects,prosper,prosperity,prostate,prosthetic,prostitute,prostitutes,prostitution,protect,protected,protecting,protection,protections,protective,protector,protectors,protects,protein,protest,protestant,protestants,protested,protesters,protesting,protestors,protests,proteus,protocol,protocols,protons,prototype,prototypes,protracted,protruding,proud,prouder,proudest,proudly,prove,proved,proven,provenance,proverb,proverbial,proves,provide,provided,providence,provider,provides,providing,provinces,proving,provision,provisional,provisions,provocation,provocations,provocative,provoke,provoked,provoking,provolone,prowess,prowl,prowler,proximity,proxy,prude,prudence,prudent,prudes,prune,prunes,pruning,pry,prying,psalm,pseudo,psi,psst,psych,psyche,psyched,psychiatric,psychiatrist,psychiatrists,psychiatry,psychic,psychically,psycho,psychoanalysis,psychoanalyze,psychobabble,psychological,psychologically,psychologist,psychologists,psychology,psychopath,psychopathic,psychopaths,psychos,psychosis,psychosomatic,psychotherapist,psychotherapy,psychotic,psychotics,pub,puberty,pubes,pubescent,pubic,public,publically,publication,publications,publicist,publicity,publicly,publish,published,publisher,publishers,publishing,puce,puck,pucker,pudding,puddle,puddles,puff,puffed,puffing,puffs,puffy,pug,puke,puking,pull,pulled,puller,pulling,pulls,pulmonary,pulp,pulpit,pulsating,pulse,pulses,pummel,pump,pumped,pumping,pumpkin,pumps,pun,punch,punched,punches,punching,punchy,punctual,punctuality,punctuation,puncture,punctured,pungent,punish,punished,punishes,punishing,punishment,punishments,punitive,punk,punks,punky,puns,punt,punters,puny,pup,pupil,pupils,puppet,puppeteer,puppets,puppies,puppy,purblind,purchase,purchased,purchases,purchasing,pure,puree,purely,purer,purest,purgatory,purge,purged,purging,purification,puritan,puritanical,puritans,purity,purple,purpose,purposefully,purposely,purposes,purr,purse,pursuant,pursue,pursued,pursuing,pursuit,pursuits,purview,pus,push,pushed,pusher,pushers,pushes,pushing,pushover,pushy,puss,pussycat,put,putrid,puts,putter,putting,putty,puzzle,puzzled,puzzles,puzzling,pygmies,pygmy,pyjamas,pyramid,pyramids,pyre,pyromaniac,pyrotechnics,quack,quacks,quad,quadrant,quahog,quaint,quake,quaker,quaking,qualifications,qualified,qualifies,qualify,qualifying,qualities,quality,qualms,quandary,quantities,quantity,quantum,quarantine,quarantined,quark,quarrel,quarreled,quarry,quart,quarter,quarterback,quarterbacks,quarters,quartet,queasy,queen,queens,quell,queller,query,quest,question,questionable,questioned,questioning,questionnaire,questions,queue,quibble,quiche,quick,quicker,quickest,quickie,quickly,quicksand,quid,quiet,quieter,quietly,quilt,quilting,quilts,quince,quinine,quintessential,quintet,quints,quintuplets,quirk,quirks,quirky,quit,quite,quits,quitter,quitters,quitting,quiver,quivering,quixote,quiz,quizmaster,quizzes,quota,quotation,quote,quoted,quotes,quoth,quoting,rabbi,rabbit,rabbits,rabble,rabid,rabies,raccoons,race,raced,racer,races,racetrack,racial,racing,racism,racist,rack,racked,racket,racketeer,racketeering,racking,racks,racquet,racquetball,racy,radar,radial,radiance,radiant,radiating,radiation,radiator,radical,radically,radio,radioactive,radioed,radiologist,radiology,radios,radish,radishes,radius,raffle,raft,rafting,rag,rage,rages,ragged,raggedy,ragging,raging,rags,ragtime,rah,raid,raided,raider,raiders,raiding,raids,rail,railing,railroad,railroading,railroads,rails,rain,rainbow,raincoat,rained,rainier,raining,rains,rainstorm,rainy,raise,raised,raiser,raisers,raises,raisin,raising,raisins,rajah,rake,raked,rallied,rally,rallying,ralph,ram,ramble,rambling,rambunctious,ramifications,rammed,ramp,rampage,ramrod,ramus,ran,ranch,rancher,ranchers,rancho,rancid,rand,random,randomly,randy,rang,range,ranger,rangers,ranges,ranging,rank,ranking,rankings,ranks,ransack,ransom,rant,ranting,rants,rap,rapid,rapidly,rapids,raping,rapist,rapists,rappers,raptor,raptors,rapture,rare,rarely,rarest,raring,rarity,rascals,rash,rashes,rashly,raspberry,rat,rate,rated,rates,rath,rather,rathole,rating,ratings,ratio,ration,rational,rationalize,rationalizing,rationally,rations,rats,ratted,ratting,rattle,rattled,rattles,rattlesnake,rattlesnakes,rattling,ratty,ravage,rave,raved,raven,ravenous,ravens,ravine,raving,ravings,ravish,ravishing,raw,rawhide,ray,rayed,rays,razor,razors,re,reach,reached,reaches,reaching,reacquaint,reacquainted,react,reacted,reacting,reaction,reactionary,reactions,reactive,reactor,reactors,reacts,read,reader,readers,readily,reading,readings,readout,reads,ready,real,realise,realised,realises,realism,realist,realistic,realistically,realities,reality,realization,realize,realized,realizes,realizing,really,realm,realms,realty,ream,reamed,reap,reaper,reapers,reappear,reappeared,reappears,rear,reared,rearing,rearrange,rearranging,rears,reason,reasonable,reasonably,reasoned,reasoning,reasons,reassemble,reassign,reassigned,reassigning,reassignment,reassurance,reassure,reassuring,reattach,rebate,rebel,rebelling,rebellion,rebellious,rebels,rebirth,reboot,reborn,rebound,rebounds,rebuild,rebuilding,rebuilt,rebuttal,rec,recall,recalled,recalling,recant,recanted,recanting,recap,recapture,recaptured,receding,receipt,receipts,receive,received,receiver,receives,receiving,recent,recently,reception,receptionist,receptive,recess,recession,recharge,recheck,rechecked,recipe,recipes,recipient,reciprocal,recital,recitals,recitation,recite,reciting,reckless,recklessly,recklessness,reckon,reckoned,reckoning,reclaim,reclaiming,recliner,reclining,reclusive,recognise,recognised,recognition,recognizable,recognizance,recognize,recognized,recognizes,recognizing,recollection,recombinant,recommend,recommendation,recommendations,recommended,recommending,recommends,recon,reconcile,reconciled,reconciliation,reconciling,reconnaissance,reconnect,reconnected,reconnecting,reconsider,reconsidered,reconstruct,reconvene,record,recorded,recorder,recorders,recording,recordings,records,recount,recourse,recover,recovered,recovering,recovers,recovery,recreate,recreated,recreating,recreation,recreational,recrimination,recriminations,recruit,recruited,recruiter,recruiting,recruits,rectal,rectangle,rectify,rectory,rectum,recuperate,recuperating,recurring,recuse,recycle,recycles,recycling,red,reddish,redecorate,redecorating,redeem,redeeming,redefine,redemption,redevelopment,redhead,redheads,redial,redid,redirect,redneck,rednecks,redo,redone,redress,reds,redskins,reduce,reduced,reduces,reducing,reduction,redundancies,redundancy,redundant,redwood,ree,reed,reef,reefer,reefs,reek,reeking,reeks,reel,reelected,reelection,reeled,reeling,reels,reenter,reevaluate,reeve,reeves,refer,referee,reference,referenced,references,referencing,referendum,referendums,referral,referrals,referred,referring,refers,refill,refills,refined,refinement,refinery,refining,reflect,reflected,reflecting,reflection,reflective,reflects,reflex,reflexes,refocus,reform,reformed,reforms,refrain,refresh,refreshed,refreshing,refreshments,refrigerated,refrigerator,refrigerators,refueling,refuge,refugee,refugees,refund,refundable,refusal,refuse,refused,refuses,refusing,refute,regain,regained,regaining,regal,regard,regarded,regarding,regardless,regards,regatta,regency,regenerate,regenerated,regeneration,regent,reggae,regime,regimen,regiment,regimental,regimes,regina,region,regional,regionals,register,registered,registering,registrar,registration,registry,regret,regrets,regrettable,regrettably,regretted,regretting,regroup,regular,regularity,regularly,regulars,regulate,regulated,regulation,regulations,regurgitate,rehab,rehabilitate,rehabilitated,rehabilitation,rehash,rehashing,rehearsal,rehearsals,rehearse,rehearsed,rehearsing,reheat,reign,reigning,reigns,reimburse,reimbursed,rein,reincarnated,reindeer,reinforced,reinforcement,reinforcements,reinstate,reinstated,reinstatement,reinstating,reinvent,reinvented,reinventing,reiterate,reject,rejected,rejecting,rejection,rejections,rejects,rejoice,rejoicing,rejuvenate,rejuvenated,rejuvenating,rekindle,rekindled,relapse,relapsing,relate,related,relates,relating,relation,relations,relationship,relationships,relative,relatively,relatives,relativity,relax,relaxants,relaxation,relaxed,relaxes,relaxing,relay,release,released,releases,releasing,relegated,relentless,relentlessly,relevance,relevant,reliability,reliable,reliance,relic,relics,relief,relies,relieve,relieved,relieving,religion,religious,religiously,relinquish,relinquishing,relish,relive,reliving,reload,relocate,relocation,reluctant,reluctantly,rely,relying,rem,remain,remainder,remained,remaining,remains,remake,remark,remarkable,remarkably,remarked,remarks,remarried,remarry,rematch,remedial,remedied,remedies,remedy,remember,remembered,remembering,remembers,remembrance,remind,reminded,reminder,reminders,reminding,reminds,reminisce,remission,remitting,remnants,remodeled,remodelling,remorse,remote,remotely,removal,remove,removed,remover,removes,removing,renaissance,renal,rename,render,rendered,renders,rendezvous,renegade,renege,reneging,renegotiate,renew,renewal,renewed,renewing,renounce,renovate,renovating,renovation,renovations,renown,renowned,rent,rental,rentals,rented,renting,rents,reopen,reopened,reopening,reorganize,reorganizing,rep,repaid,repaint,repair,repaired,repairing,repairman,repairs,reparations,repartee,repay,repayment,repeal,repeat,repeated,repeatedly,repeating,repellent,repent,repentance,repercussions,repertoire,repetition,repetitious,repetitive,rephrase,replace,replaceable,replaced,replacement,replacements,replacing,replay,replaying,replenish,replica,replicate,replicating,replied,replies,reply,report,reported,reportedly,reporter,reporters,reporting,reports,repository,repossess,represent,representation,representations,representative,representatives,represented,representing,represents,repress,repressed,repression,reprieve,reprimand,reprimanded,reprisal,reprisals,reproach,reprobate,reproduction,reproductive,reprogram,reprogramming,reps,reptile,reptiles,reptilian,republic,republican,republicans,repugnant,repulsive,reputation,repute,reputed,request,requested,requesting,requests,requiem,require,required,requirement,requirements,requires,requiring,requisite,requisition,requisitions,reread,reroute,rerouted,reruns,res,reschedule,rescheduled,rescinded,rescue,rescued,rescuer,rescuers,rescues,rescuing,research,researcher,researchers,researching,reseda,resemblance,resemble,resembles,resembling,resent,resented,resentful,resenting,resentment,resentments,resents,reservation,reservations,reserve,reserved,reserves,reserving,reset,resetting,reshoot,reshoots,residence,residences,residency,resident,residents,resides,residing,residual,residue,resign,resignation,resigned,resigning,resilient,resin,resist,resistance,resistant,resisted,resisting,resolute,resolution,resolve,resolved,resolving,resonance,resort,resorted,resorts,resource,resourceful,resources,respect,respectability,respectable,respected,respectful,respectfully,respecting,respectively,respects,respiration,respirations,respirator,respiratory,respond,responded,responding,responds,response,responses,responsibilities,responsibility,responsible,responsibly,responsive,rest,restart,restaurant,restaurants,restaurateur,rested,restful,resting,restitution,restless,restorative,restore,restored,restoring,restrain,restraining,restraint,restraints,restrict,restricted,restriction,restrictions,restroom,restrooms,restructuring,rests,result,resulted,resulting,results,resume,resumed,resumes,resurfaced,resurrection,retail,retailers,retain,retained,retainer,retaining,retake,retaliate,retaliated,retaliating,retaliatory,retard,retarded,retest,rethink,rethinking,rethought,retina,retinal,retinas,retire,retired,retirement,retiring,retort,retract,retractable,retraction,retreat,retreated,retreating,retreats,retribution,retrieval,retrieve,retrieved,retrieving,retro,retrofit,retrograde,return,returned,returning,returns,reunion,reunions,reunite,reunited,reuniting,rev,revamp,reveal,revealed,revealing,reveals,revelation,revelations,reveling,revels,revenge,revenue,revenues,revere,revered,reverence,reverend,reverently,reversal,reverse,reversed,reversible,revert,reverts,review,reviewed,reviewer,reviewing,reviews,revise,revised,revising,revisions,revisit,revival,revive,revived,reviving,revoke,revoked,revoking,revolting,revolution,revolutionaries,revolutionary,revolutionize,revolutions,revolve,revolved,revolver,revolves,revolving,revulsion,reward,rewarded,rewarding,rewards,rewind,rewrite,rewrites,rewriting,rewritten,rewrote,rex,rhetorical,rhinestone,rhinestones,rhino,rhinoceros,rhyme,rhymed,rhymes,rhythm,rhythms,rialto,rib,ribbed,ribbon,ribbons,ribs,rice,rich,richer,riches,richest,rick,rickety,rickey,ricks,rickshaw,ricochet,rid,riddance,ridden,ridding,riddle,riddled,riddler,riddles,ride,rider,riders,rides,ridge,ridicule,ridiculed,ridiculous,ridiculously,riding,rife,riff,rifle,rifles,rifling,rift,rig,rigged,rigging,right,righteous,righteousness,rightful,rightfully,rightly,righto,rights,righty,rigid,rigor,rigorous,rigs,rile,riled,riley,rim,rin,ring,ringer,ringers,ringing,rings,ringside,rink,rinse,rinsing,rioja,riot,rioting,riots,rip,ripe,ripped,ripper,ripping,ripple,ripples,rippling,rips,rise,risen,rises,rising,risk,risked,risking,risks,risky,risotto,rite,rites,ritter,ritual,ritualistic,rituals,ritz,ritzy,rival,rivalry,rivals,river,riverbank,rivers,riverside,riveted,riveting,riviera,roach,road,roadblock,roadblocks,roadhouse,roadie,roadies,roads,roadster,roadway,roam,roaming,roar,roaring,roast,roasted,roasting,roasts,rob,robbed,robber,robberies,robbers,robbery,robbin,robbing,robbins,robe,robes,robin,robins,robot,robotic,robots,robs,robust,rock,rocked,rocker,rockers,rocket,rockets,rocking,rocks,rocky,rod,rode,rodent,rodents,rodeo,rodman,rods,roger,rogers,rogue,rogues,role,roles,rolf,roll,rolled,roller,rollers,rolling,rolls,rom,roman,romance,romances,romancing,romantic,romantically,romanticize,romeo,romp,romper,romping,roof,roofer,roofs,rooftop,rooftops,rook,rookie,rookies,room,roomful,roomie,rooming,roommate,roommates,rooms,roomy,roost,rooster,roosters,root,rooted,rooting,roots,rope,roped,ropes,roscoe,rose,rosebud,rosebuds,rosebush,rosemary,roses,rosin,roster,rosy,rot,rotary,rotate,rotated,rotates,rotating,rotation,rotisserie,roto,rots,rotted,rotten,rotting,rotunda,rouge,rough,roughage,rougher,roughing,roughly,roughnecks,roughriders,roulette,round,roundabout,rounded,rounding,rounds,rouse,rousing,roust,rousted,route,routed,router,routes,routine,routinely,routines,routing,rover,roving,row,rowan,rowboat,rowdy,rowing,rows,royal,royally,royals,royalties,royalty,rub,rubbed,rubber,rubbers,rubbing,rubbish,rubble,rube,rubes,rubies,rubs,ruby,ruckus,rudder,rude,rudely,rudeness,ruder,rudimentary,rue,ruff,ruffians,ruffle,ruffled,ruffles,rug,rugby,rugged,ruin,ruined,ruining,ruins,rule,ruled,ruler,rulers,rules,ruling,rum,rumba,rumble,rumbling,rumblings,rummaging,rummy,rumor,rumored,rumors,rumour,rumours,rump,rumpled,rumpus,run,runaround,runaway,runaways,rundown,rune,runes,rung,runner,runners,running,runny,runoff,runs,runt,runway,rupture,ruptured,rural,ruse,rush,rushed,rushes,rushing,rust,rusted,rustle,rusty,rut,ruth,ruthless,ruthlessly,rutting,rya,rye,sabbath,sabbatical,sabe,saber,sabers,sabin,sable,sabotage,sabotaged,sabotaging,sac,saccharine,sack,sacks,sacrament,sacred,sacrifice,sacrificed,sacrifices,sacrificial,sacrificing,sacrilege,sad,saddened,sadder,saddest,saddle,saddled,sade,sadist,sadistic,sadly,sadness,safari,safe,safeguard,safeguards,safely,safer,safes,safest,safety,saffron,saga,sage,sagging,sahib,said,sail,sailboat,sailboats,sailed,sailing,sailor,sailors,sails,saint,saintly,saints,saith,sake,sakes,saki,sal,salaam,salad,salads,salamander,salami,salaries,salary,sale,sales,salesman,salesmen,salesperson,saleswoman,salient,salina,salinas,saline,saliva,sally,salmon,salmonella,salon,saloon,salsa,salt,salted,saltines,saltwater,salty,salutations,salute,saluted,saluting,salvage,salvaged,salvaging,salvation,samaritan,same,sample,sampled,samples,sampling,samurai,sanatorium,sanctimonious,sanction,sanctioned,sanctity,sanctuary,sanctum,sand,sandal,sandals,sandalwood,sandbag,sandbar,sandbox,sanded,sanders,sanding,sandman,sandpaper,sands,sandstorm,sandwich,sandwiches,sandy,sane,sanest,sang,sangria,sanitarium,sanitary,sanitation,sanity,sank,sans,santo,santos,sap,sapiens,sapphire,sapphires,sappy,saps,saran,sarcasm,sarcastic,sarcoidosis,sarcophagus,sardine,sardines,sarge,sark,sashimi,sassy,sat,satanic,satchel,satellite,satellites,satin,satire,satisfaction,satisfactory,satisfied,satisfies,satisfy,satisfying,saturated,saturation,satyr,sauce,saucer,saucers,sauerkraut,saul,sauna,sausage,sausages,savage,savagely,savages,savannah,save,saved,saver,saves,savin,saving,savings,savior,saviour,savor,savored,savoring,savour,savvy,saw,sawdust,sawed,sawing,saws,sawyer,sax,saxophone,say,sayer,saying,sayings,sayonara,says,scab,scabby,scabs,scag,scald,scalding,scale,scaled,scales,scallions,scallop,scallops,scalp,scalped,scalpel,scalper,scalping,scam,scammed,scamming,scamp,scampered,scampi,scams,scan,scandal,scanned,scanner,scanners,scanning,scans,scant,scapegoat,scar,scarce,scarcely,scare,scarecrow,scared,scares,scarf,scarfing,scarier,scariest,scaring,scarlet,scarred,scars,scarves,scary,scat,scatter,scattered,scattering,scavenger,scavenging,scenario,scenarios,scene,scenery,scenes,scenic,scent,scented,scents,scepter,schedule,scheduled,schedules,scheduling,schematics,scheme,schemed,schemes,scheming,schiller,schizo,schizoid,schizophrenia,schizophrenic,schlep,schmo,schmooze,schmoozing,schmuck,schnapps,schnauzer,schnitzel,schnoz,scholar,scholarly,scholarship,scholarships,school,schoolboy,schooled,schoolgirl,schooling,schools,schoolteacher,schoolwork,schooner,science,sciences,scientific,scientist,scientists,scintillating,scissor,scissors,scoff,scolded,scolding,scoliosis,scone,scones,scoop,scooped,scooping,scoops,scoot,scooter,scope,scopes,scoping,scorch,scorched,scorcher,scorching,score,scoreboard,scored,scores,scoring,scorned,scorpion,scorpions,scot,scotch,scotches,scotia,scots,scottie,scoundrel,scoundrels,scoured,scourge,scout,scouted,scouting,scouts,scow,scrabble,scram,scramble,scrambled,scrambler,scrambling,scrap,scrapbook,scrape,scraped,scrapes,scraping,scrapings,scrapped,scrappy,scraps,scratch,scratched,scratches,scratching,scratchy,scrawny,scream,screamed,screamer,screaming,screams,screech,screeching,screen,screened,screening,screens,screw,screwball,screwdriver,screwed,screwing,screws,screwup,screwups,screwy,scribble,scribbled,scribbling,script,scripted,scripts,scripture,scriptures,scroll,scrolls,scrooge,scrotum,scrounge,scrounging,scrub,scrubbed,scrubbing,scrubs,scrunch,scruples,scrutinized,scrutiny,scry,scuba,scud,scuff,scuffle,scullery,sculptor,sculpture,sculptures,scum,scummy,scurry,scurrying,scurvy,scuttled,scuzzy,sea,seaboard,seafood,seagull,seal,sealed,sealing,seals,seam,seaman,seamen,seamless,seams,seamstress,seaplane,sear,search,searched,searches,searching,seared,sears,seas,seascape,seashell,seashells,season,seasonal,seasoned,seasons,seat,seated,seating,seats,seaweed,sec,secluded,seclusion,second,secondary,seconded,secondly,seconds,secrecy,secret,secretarial,secretaries,secretary,secretive,secretly,secrets,section,sections,sector,sectors,secure,secured,securely,securing,securities,security,sedan,sedate,sedated,sedation,sedative,sedatives,seduce,seduced,seduces,seducing,seduction,seductive,see,seed,seeds,seedy,seeing,seek,seeker,seekers,seeking,seeks,seem,seemed,seemingly,seems,seen,seep,seeping,seer,sees,seesaw,seg,segment,segments,segue,seismic,seize,seized,seizes,seizing,seizure,seizures,seldom,select,selected,selecting,selection,selections,selective,selectman,self,selfish,selfishly,selfishness,selfless,selflessness,sell,seller,selling,sells,seltzer,selves,semantics,semblance,semen,semester,semi,semiautomatic,seminal,seminar,seminars,seminary,semple,sen,senate,senator,senators,send,sender,sending,sendoff,sends,senile,senility,senior,seniors,senor,senora,senorita,sensation,sensational,sense,sensed,senseless,senses,sensibilities,sensibility,sensible,sensing,sensitive,sensitivity,sensor,sensors,sensory,sensual,sensuous,sent,sentence,sentenced,sentences,sentencing,sentient,sentiment,sentimental,sentiments,sentinel,sentinels,sentry,separate,separated,separately,separates,separating,separation,seppuku,septic,septum,sequel,sequence,sequences,sequencing,sequestered,sequined,sequins,ser,sera,serenade,serene,serenity,serge,sergeant,serial,series,serious,seriously,seriousness,sermon,sermons,serotonin,serpent,serum,servant,servants,serve,served,server,servers,serves,service,serviced,services,servicing,serving,servings,servitude,sesame,session,sessions,sesterces,set,setback,setbacks,sets,setting,settings,settle,settled,settlement,settlements,settles,settling,setup,seven,sevens,seventeen,seventeenth,seventh,seventies,seventy,sever,several,severance,severe,severed,severely,severity,sew,sewage,sewed,sewer,sewers,sewing,sewn,sex,sexes,sexier,sexiest,sexism,sexist,sexless,sexual,sexuality,sexually,sexy,sh,sha,shabbily,shabby,shack,shackle,shackled,shackles,shad,shade,shades,shading,shadow,shadowing,shadows,shadowy,shady,shaft,shafted,shag,shagged,shagging,shaggy,shah,shake,shaken,shaker,shakers,shakes,shaking,shaky,shale,shall,shallow,shallows,shalom,shalt,sham,shaman,shambles,shame,shamed,shameful,shameless,shaming,shampoo,shamrock,shanghai,shanghaied,shank,shanks,shape,shaped,shapely,shapes,shaping,shards,share,shared,shareholder,shares,sharing,shark,sharking,sharks,sharp,sharpened,sharpener,sharpening,sharpens,sharper,sharpest,sharply,sharpshooters,shat,shatter,shattered,shattering,shave,shaved,shaven,shaver,shaves,shaving,shaw,shawl,shawn,shay,she,shea,shear,shebang,shed,shedding,sheds,sheen,sheeny,sheep,sheepskin,sheer,sheet,sheets,sheila,sheldrake,shelf,shell,shelled,shellfish,shelling,shells,shelly,shelter,sheltered,shelters,shelve,shelves,shenanigans,shepherd,shepherds,sheriff,sherlock,sherry,shes,shh,shield,shielded,shields,shift,shifted,shifter,shifting,shifts,shifty,shill,shillings,shimmer,shimmering,shimmy,shin,shindig,shine,shines,shingle,shingles,shining,shins,shiny,ship,shipment,shipments,shipped,shipping,ships,shipshape,shipwreck,shipwrecked,shipyard,shirking,shirt,shirtless,shirts,shiv,shiva,shiver,shivering,shivers,shoal,shock,shocked,shocker,shocking,shockingly,shocks,shoddy,shoe,shoehorn,shoelace,shoelaces,shoemaker,shoes,shone,shoo,shook,shoot,shooter,shooters,shooting,shootings,shootout,shoots,shop,shopkeeper,shoplifter,shoplifters,shoplifting,shopped,shopper,shopping,shops,shore,shoreline,shores,short,shortage,shortcake,shortcomings,shortcut,shorted,shorten,shorter,shortest,shorthand,shorthanded,shortly,shortness,shorts,shortsighted,shortstop,shorty,shot,shotgun,shotguns,shots,should,shoulder,shoulders,shout,shouted,shouting,shouts,shove,shoved,shovel,shoveled,shoveling,shovels,shoves,shoving,show,showbiz,showcase,showdown,showed,shower,showered,showering,showers,showgirl,showing,shown,showoff,showroom,shows,showstopper,showy,shrapnel,shred,shredded,shredder,shreds,shrew,shrewd,shriek,shrieking,shrimp,shrine,shrink,shrinkage,shrinking,shrinks,shrivel,shriveled,shroud,shrouds,shrub,shrubbery,shrubs,shrug,shrugged,shrugging,shrugs,shrunk,shrunken,shtick,shuck,shucks,shuffle,shuffled,shuffling,shun,shunned,shunt,shush,shushing,shut,shutdown,shuts,shutters,shutting,shuttle,shuttles,shy,shylock,shyness,si,sibling,siblings,sic,sicced,sick,sicken,sickened,sickening,sickens,sicker,sickest,sickly,sickness,sicko,sickos,side,sidebar,sideboard,sideburns,sidecar,sided,sidekick,sidekicks,sideline,sidelines,sides,sideshow,sidetracked,sidewalk,sidewalks,sideways,sidewinder,siding,sidle,siege,sierra,siesta,sift,sifting,sigh,sighing,sighs,sight,sighted,sighting,sightings,sightless,sights,sigma,sign,signal,signaled,signaling,signals,signature,signatures,signed,significance,significant,significantly,signifies,signify,signifying,signing,signor,signora,signore,signs,sikes,silence,silenced,silences,silent,silicone,silk,silken,silks,silky,sill,silliest,silliness,silly,silva,silver,silverware,silvery,sim,similar,similarities,similarity,similarly,simmer,simony,simp,simple,simpler,simplest,simpleton,simpletons,simplicity,simplify,simplistic,simply,sims,simulate,simulated,simulates,simulation,simulations,simulator,simultaneously,sin,since,sincere,sincerely,sincerest,sincerity,sine,sinful,sing,singe,singed,singer,singers,singing,single,singles,singleton,singling,sings,sinister,sink,sinker,sinking,sinks,sinned,sinner,sinners,sins,sinus,sinuses,sip,siphoning,sipped,sipping,sir,sire,siree,siren,sirens,sirloin,sirree,sirs,sis,sissies,sissy,sister,sisterhood,sisters,sit,sitcom,sitcoms,site,sites,sits,sitter,sitters,sitting,situated,situation,situations,six,sixes,sixpence,sixteen,sixteenth,sixth,sixties,sixty,sizable,size,sizeable,sized,sizes,sizing,sizzle,sizzling,skag,skate,skateboard,skateboards,skated,skater,skaters,skates,skating,skedaddle,skeeters,skeletal,skeleton,skeletons,skeptic,skeptical,skepticism,sketch,sketches,sketching,sketchy,skewed,skewer,skewered,ski,skid,skidded,skids,skied,skier,skies,skiff,skiing,skill,skilled,skillet,skillful,skills,skim,skimmed,skimming,skimp,skimpy,skin,skinned,skinner,skinny,skins,skip,skipped,skipper,skipping,skirmish,skirmishes,skirt,skirts,skis,skit,skittish,skittles,skivvies,skulk,skull,skulls,skunk,sky,skylight,skyrocket,skyscraper,skyscrapers,slack,slacker,slackers,slacks,slam,slammed,slammer,slamming,slams,slander,slanderous,slang,slant,slanted,slap,slapped,slapping,slaps,slash,slashed,slasher,slashing,slate,slated,slater,slaughter,slaughtered,slaughterhouse,slaughtering,slave,slaved,slavery,slaves,slaw,slay,slayed,slayer,slayers,slaying,sleaze,sleazebag,sleazeball,sleazy,sled,sledding,sledge,sledgehammer,sleek,sleep,sleeper,sleepers,sleeping,sleepless,sleepover,sleepovers,sleeps,sleepwalk,sleepwalking,sleepy,sleepyhead,sleet,sleeve,sleeves,sleigh,sleight,slender,slept,sleuth,slew,slice,sliced,slicer,slices,slick,slicker,slid,slide,slider,slides,sliding,slight,slighted,slightest,slightly,slim,slime,slimmer,slimming,slimy,sling,slinging,slings,slingshot,slink,slinking,slinky,slip,slipped,slipper,slippers,slippery,slipping,slips,slit,slither,slithered,slithering,sliver,slob,slobbering,slogan,slogans,slop,slope,slopes,sloppy,sloshed,slot,slots,slouch,slough,slow,slowed,slower,slowest,slowing,slowly,sludge,slug,slugged,slugger,slugging,sluggish,slugs,slum,slumber,slumlord,slumming,slumped,slung,slur,slurp,slurping,slush,sly,smack,smacked,smackers,smacks,small,smaller,smallest,smart,smartass,smarter,smartest,smarts,smarty,smash,smashed,smashes,smashing,smear,smeared,smearing,smears,smell,smelled,smelling,smells,smelly,smelt,smidgen,smile,smiled,smiles,smiley,smiling,smirk,smirking,smite,smith,smithereens,smithers,smitten,smock,smog,smoke,smoked,smoker,smokers,smokes,smokey,smoking,smoky,smoldering,smooch,smooching,smoochy,smooth,smoother,smoothest,smoothie,smoothly,smorgasbord,smother,smothered,smothering,smudge,smudged,smug,smuggle,smuggled,smuggler,smugglers,smuggling,smugness,snack,snacking,snacks,snag,snagged,snagging,snags,snails,snake,snakebite,snakes,snakeskin,snap,snapped,snapper,snapping,snappy,snaps,snapshot,snapshots,snarky,snarl,snarling,snatch,snatched,snatcher,snatchers,snatches,snatching,snazzy,sneak,sneaked,sneaker,sneakers,sneaking,sneaks,sneaky,sneer,sneeze,sneezed,sneezing,snicker,snickering,snickers,snide,sniff,sniffed,sniffing,sniffles,sniffling,snifter,snip,snipe,sniper,snipers,sniping,snit,snitch,snitches,snivelling,snob,snobby,snook,snoop,snooping,snoopy,snooty,snooze,snore,snores,snoring,snorkel,snorkeling,snort,snorted,snorting,snot,snotty,snout,snow,snowball,snowballed,snowballing,snowballs,snowbank,snowboard,snowed,snowflake,snowflakes,snowing,snowman,snowmen,snowmobile,snowmobiles,snowstorm,snowy,snub,snubbed,snuck,snuff,snug,snuggle,snuggled,snuggles,snuggling,so,soak,soaked,soaking,soap,soapbox,soaps,soapy,soar,soared,soaring,soars,sob,sobbing,sober,sobered,sobering,soberly,sobriety,sobs,soccer,sociable,social,socialism,socialite,socialize,socialized,socializing,socially,society,sociology,sociopath,sociopathic,sock,socked,socket,sockets,socks,sod,soda,sodas,sodding,sodium,sodomy,sofa,sofas,soft,softball,soften,softener,softening,softer,softest,softly,softness,software,softy,soggy,soil,soiled,soiree,sol,solace,solar,solarium,sold,soldier,soldiers,sole,solely,solemn,solenoid,soles,solicit,solicitation,solicited,soliciting,solicitor,solid,solidify,solitaire,solitary,solitude,solo,solution,solutions,solve,solved,solvent,solves,solving,somber,some,somebody,someday,somehow,someone,someplace,somerset,something,sometime,sometimes,someway,somewhat,somewhere,somewheres,son,sonar,sonata,song,songs,songwriter,sonics,sonnet,sonnets,sonny,sonogram,sons,sook,soon,sooner,soonest,soot,soothe,soothes,soothing,soothsayer,sop,sophisticated,sophistication,sophomore,soprano,sopranos,sorbet,sorcerers,sorcery,sordid,sore,sorel,sores,sororities,sorority,sorrel,sorrow,sorrows,sorry,sort,sorted,sorting,sorts,sos,sot,souffle,sought,soul,soulful,soulless,souls,sound,sounded,sounding,soundly,soundproof,sounds,soundstage,soup,soups,soupy,sour,source,sources,sourpuss,sous,souse,south,southbound,southeast,southern,southwest,souvenir,souvenirs,souvlaki,sovereign,sovereignty,soviet,soviets,sow,sowing,sown,sox,soy,soybean,spa,space,spacecraft,spaced,spaces,spaceship,spacey,spacing,spackle,spade,spades,spaghetti,span,spandex,spaniel,spank,spanked,spanking,spans,spar,spare,spared,spareribs,sparing,spark,sparked,sparkle,sparklers,sparkles,sparkling,sparkly,sparks,sparky,sparring,sparrow,spartan,spas,spasm,spasms,spastic,spat,spate,spatial,spatula,spawn,spawned,spaz,speak,speakeasy,speaker,speakerphone,speakers,speaking,speaks,spear,spears,special,specialise,specialist,specialists,specialize,specialized,specializes,specializing,specially,specials,specialties,specialty,species,specific,specifically,specifications,specifics,specified,specify,specimen,specimens,speck,specs,spectacle,spectacles,spectacular,spectacularly,spectator,spectators,specter,spectra,spectral,spectre,spectrum,speculate,speculating,speculation,speculations,speculative,speech,speeches,speechless,speed,speedboat,speedily,speeding,speedo,speedometer,speedos,speeds,speedway,speedy,spell,spelled,speller,spelling,spells,spelt,spence,spencer,spencers,spend,spender,spending,spends,spent,sperm,spew,spewing,sphere,sphinx,spice,spices,spicy,spider,spiders,spied,spiel,spies,spike,spiked,spikes,spikey,spiking,spiky,spill,spilled,spilling,spills,spin,spinach,spinal,spindly,spine,spineless,spinner,spinning,spins,spinster,spiny,spiral,spiraling,spirals,spirit,spirited,spirits,spiritual,spirituality,spit,spite,spiteful,spitfire,spits,spitting,spitz,splash,splashing,splashy,splat,splatter,spleen,splendid,splendidly,splendor,spliced,splicing,splint,splinter,splinters,split,splits,splitting,splurge,spoil,spoiled,spoiler,spoiling,spoils,spoilsport,spoke,spoken,spokes,spokesman,spokesperson,sponge,sponges,sponsor,sponsored,sponsoring,sponsors,sponsorship,spontaneity,spontaneous,spontaneously,spook,spooked,spooking,spooks,spooky,spool,spoon,spoonful,spooning,spoons,spores,sport,sporting,sports,sportsmanship,sportswear,sporty,spot,spotless,spotlight,spotlights,spots,spotted,spotter,spotters,spotting,spotty,spouse,spouting,sprain,sprained,sprang,sprawled,spray,sprayed,spraying,sprays,spread,spreading,spreads,spreadsheet,spreadsheets,spree,sprightly,spring,springer,springing,springs,springtime,sprinkle,sprinkled,sprinkler,sprinklers,sprinkles,sprint,sprints,sprite,spritzer,sprouted,sprouting,sprouts,spruce,sprung,spry,spud,spun,spunk,spunky,spur,spurred,spurs,spurt,sputnik,spy,spying,squabble,squad,squadron,squads,squall,squalor,squander,squandered,square,squared,squarely,squares,squaring,squash,squashed,squashing,squat,squatter,squatters,squatting,squaw,squawk,squawking,squeak,squeaking,squeaks,squeaky,squeal,squealed,squeegee,squeeze,squeezed,squeezes,squeezing,squid,squiggle,squiggly,squinting,squire,squirm,squirrel,squirrels,squirt,squirts,squish,squished,squishing,sri,stab,stabbed,stabbing,stability,stabilize,stabilized,stabilizing,stable,stables,stack,stacked,stacks,stadium,staff,staffed,staffer,staffers,stag,stage,staged,stages,stagger,staggered,staggering,staggeringly,staging,stagnant,stain,stained,stainless,stains,stair,staircase,stairs,stairway,stairwell,stake,staked,stakeout,stakeouts,stakes,staking,stale,stalemate,stalk,stalked,stalker,stalkers,stalking,stalks,stall,stalled,stalling,stallion,stamina,stammering,stamp,stamped,stampede,stamper,stamps,stance,stand,standard,standardized,standards,standby,standing,standish,standoff,standpoint,stands,standstill,standup,stang,stanza,staple,stapled,stapler,star,starboard,stardom,stardust,stare,stared,stares,staring,stark,starlet,starlets,starling,starred,starring,starry,stars,starship,start,started,starter,starters,starting,startle,startled,startling,starts,startup,starvation,starve,starved,starving,stash,stashed,stasis,stat,state,stated,statehood,stately,statement,statements,stateroom,states,stateside,statesmen,statewide,static,stating,station,stationary,stationed,stationery,stations,statistic,statistical,statistically,statistics,stats,statuary,statue,statues,stature,status,statute,statutes,staunch,stave,stay,stayed,staying,stays,stead,steadfast,steadily,steady,steak,steaks,steal,stealer,stealing,steals,stealth,stealthy,steam,steamed,steamer,steaming,steamroll,steamroller,steamy,steed,steel,steely,steep,steer,steerage,steered,steering,stein,stella,stellar,stem,stemmed,stems,stench,steno,stenographer,step,stepfather,stepmother,steppe,stepped,stepping,steps,stepson,stereo,stereotype,stereotypes,sterile,sterilize,sterilized,sterling,stern,sterner,steroid,steroids,stethoscope,stew,stewardess,stewardesses,stewards,stewed,stick,sticker,stickers,sticking,stickler,sticks,stickup,sticky,stiff,stiffer,stifle,stifler,stifling,stigma,stigmata,stiles,stiletto,stilettos,still,stillness,stills,stilts,stimulated,stimulating,stimulation,stimuli,stimulus,sting,stinger,stinging,stingray,stings,stingy,stink,stinking,stinks,stinky,stint,stipulate,stipulated,stipulates,stipulation,stir,stirred,stirring,stirs,stitch,stitched,stitches,stitching,stock,stockbroker,stockbrokers,stocked,stockholder,stockholders,stocking,stockings,stockpile,stocks,stocky,stodgy,stoic,stoke,stoked,stokes,stole,stolen,stomach,stomachache,stomachs,stomp,stomped,stomper,stomping,stone,stoned,stoner,stones,stonewalled,stoney,stony,stood,stooge,stool,stoolie,stools,stoop,stooped,stooping,stop,stopped,stopping,stops,stopwatch,storage,store,stored,storeroom,stores,stories,storing,stork,storm,stormed,storming,storms,stormy,story,storybook,stove,stow,stowaway,stowaways,stowed,straddle,straddling,straight,straightaway,straighten,straightened,straightening,straightforward,straights,strain,strained,straining,strains,strait,straitjacket,straits,strand,stranded,strange,strangely,strangeness,stranger,strangers,strangest,strangle,strangled,stranglehold,strangler,strangling,strangulation,strap,strapless,strapped,strapping,straps,strategic,strategically,strategies,strategist,strategize,strategizing,strategy,straw,strawberries,strawberry,straws,stray,streak,streaks,stream,streaming,streamlined,streams,street,streetcar,streetlights,streets,streetwalker,strength,strengthen,strengths,strenuous,strenuously,strep,stress,stressed,stresses,stressful,stressing,stretch,stretched,stretcher,stretches,stretching,strewn,stricken,strict,strictly,stride,strides,strife,strike,strikes,striking,strikingly,string,stringing,strings,strip,stripe,striped,stripes,striping,stripped,stripper,strippers,stripping,strips,striptease,strive,striving,strobe,stroke,strokes,stroll,stroller,strolling,strolls,strong,strongbox,stronger,strongest,stronghold,strongly,struck,structural,structure,structured,struggle,struggled,struggles,struggling,strummer,strumpet,strung,strut,struts,strutting,strychnine,stub,stubbed,stubble,stubborn,stubs,stuck,stud,studded,student,students,studied,studies,studio,studios,studious,studly,studs,study,studying,stuff,stuffed,stuffing,stuffs,stuffy,stumble,stumbled,stumbles,stumbling,stump,stumped,stumper,stumps,stun,stung,stunk,stunned,stunning,stunningly,stunt,stunted,stuntman,stunts,stupendous,stupid,stupider,stupidest,stupidity,stupidly,stupor,sturdy,sturgeon,stutter,stuttering,sty,style,styled,styles,stylings,stylish,stylist,stymied,suave,sub,subatomic,subbasement,subbing,subcommittee,subconscious,subconsciously,subdued,subdural,subject,subjected,subjecting,subjective,subjects,subjugation,sublet,subletting,sublevel,sublimating,sublime,submarine,submarines,submersible,submissive,submit,submitted,submitting,subordinate,subpoena,subpoenaed,subpoenas,subscription,subscriptions,subsequently,subservient,subsided,subsidiary,subsidies,subsidize,subsidy,substance,substances,substantial,substantially,substantiate,substantive,substation,substitute,substituting,subterfuge,subterranean,subtext,subtitle,subtitled,subtitles,subtle,subtlety,subtly,suburb,suburban,suburbia,suburbs,subversive,subvert,subway,subways,subzero,succeed,succeeded,succeeds,success,successes,successful,successfully,succession,succinct,succotash,succubus,succulent,succumb,succumbed,such,suck,sucked,sucker,suckered,suckers,sucking,sucks,suction,sudden,suddenly,suds,sue,sued,suede,sues,suffer,suffered,suffering,suffers,suffice,sufficient,sufficiently,suffocate,suffocated,suffocating,suffocation,sugar,sugarcoat,sugarplum,sugars,sugary,suggest,suggested,suggesting,suggestion,suggestions,suggestive,suggests,suicidal,suicide,suicides,suing,suit,suitable,suitcase,suitcases,suite,suited,suites,suitor,suitors,suits,sulfur,sulk,sulking,sullen,sultan,sultry,sum,summarily,summarize,summary,summation,summed,summer,summers,summertime,summit,summon,summoned,summoning,summons,sumo,sump,sumptuous,sums,sun,sunbathing,sunblock,sunburn,sundae,sundaes,sundown,sundress,sunflower,sunflowers,sung,sunglasses,sunk,sunken,sunless,sunlight,sunning,sunny,sunrise,sunroom,sunscreen,sunset,sunsets,sunshine,sunspots,sunstroke,suntan,sup,super,superb,supercollider,superego,superficial,superfluous,superhero,superheroes,superintendent,superior,superiors,superman,supermarket,supermarkets,supermodel,supernatural,supernova,superpower,superpowers,superstar,superstars,superstition,superstitious,supervise,supervised,supervising,supervision,supervisor,superwoman,supper,suppertime,supple,supplement,supplements,supplied,supplier,supplies,supply,support,supported,supporter,supporting,supportive,supports,suppose,supposed,supposedly,supposition,suppress,suppressed,suppression,supremacy,supreme,supremely,sure,surely,surf,surface,surfaced,surfaces,surfboard,surfed,surfer,surfers,surfing,surge,surgeon,surgeons,surgeries,surgery,surgical,surgically,surging,surly,surname,surpass,surpassed,surplus,surprise,surprised,surprises,surprising,surprisingly,surreal,surrender,surrendered,surrendering,surrogate,surround,surrounded,surrounding,surroundings,surrounds,surveillance,survey,survival,survive,survived,survives,surviving,survivor,survivors,susceptible,sushi,suspect,suspected,suspects,suspend,suspended,suspenders,suspending,suspense,suspension,suspicion,suspicions,suspicious,suss,sustain,sustained,sustaining,sustenance,sutra,sutures,swab,swabs,swaddling,swallow,swallowed,swallowing,swallows,swam,swami,swamp,swamped,swamps,swan,swank,swanky,swans,swap,swapped,swapping,swarm,swarming,swastika,swat,swatch,swatches,swatting,sway,swayed,swaying,swear,swearing,swears,sweat,sweater,sweaters,sweating,sweatpants,sweats,sweatshirt,sweatshirts,sweatshop,sweatshops,sweaty,swede,swedes,sweep,sweeper,sweeping,sweeps,sweepstakes,sweet,sweetbreads,sweeter,sweetest,sweetheart,sweethearts,sweetie,sweetly,sweetness,sweets,swell,swelled,swelling,swells,sweltering,swept,swerve,swerving,swift,swig,swill,swilling,swim,swimmer,swimmers,swimming,swimmingly,swims,swimsuit,swimsuits,swindled,swine,swing,swingers,swinging,swings,swipe,swiped,swiping,swirl,swirling,swirly,swiss,switch,switchblade,switched,switcheroo,switches,switching,switchman,swivel,swizzle,swollen,swooning,swoop,swooped,swooping,swoops,sword,swordfish,swords,swore,sworn,swung,sycamore,sycophant,sykes,syllable,syllabus,symbiote,symbiotic,symbol,symbolic,symbolically,symbolism,symbolize,symbolizes,symbols,symmetrical,sympathetic,sympathies,sympathize,sympathy,symphony,symptom,symptomatic,symptoms,synagogue,synapses,synaptic,sync,synch,synchronicity,synchronize,synchronized,syndicate,syndicated,syndrome,syne,synergy,synonymous,synthesis,synthesize,synthetic,syphilis,syphon,syringe,syrup,system,systematic,systematically,systemic,systems,systolic,ta,tab,tabby,table,tableau,tablecloth,tablecloths,tables,tablespoon,tablet,tabloid,tabloids,tabs,tach,tachycardia,tacit,tack,tacked,tackle,tackled,tackles,tackling,tacks,tacky,taco,tacos,tact,tactful,tactic,tactical,tactics,tactile,tad,tadpole,tae,taffeta,taffy,tag,tagged,tagging,tags,tail,tailed,tailing,tailor,tailored,tailors,tails,tailspin,taint,tainted,taj,take,takedown,taken,takeoff,takeout,takeover,taker,takers,takes,takin,taking,talcum,tale,talent,talented,talentless,talents,tales,talisman,talk,talkative,talked,talker,talkie,talking,talks,talky,tall,taller,tallest,tallied,tally,talons,tamales,tambourine,tame,tammy,tamper,tampered,tampering,tampon,tampons,tan,tandem,tangent,tangerine,tangible,tangle,tangled,tangling,tango,tank,tanked,tanker,tankers,tanking,tanks,tanned,tanner,tanning,tantric,tantrum,tantrums,tap,tapas,tape,taped,tapered,tapes,tapeworm,taping,tapioca,tapped,tapping,tar,tarantulas,tardiness,tardy,target,targeted,targeting,targets,tarmac,tarnish,tarnished,tarot,tarp,tarragon,tarred,tart,tartar,tarts,tarzan,tas,task,tasks,tassels,taste,tasted,tasteful,tastes,tasting,tasty,tat,tate,tater,tattered,tattle,tattoo,tattooed,tattoos,tau,taught,taunt,taunted,taunting,taunts,taut,tavern,tawdry,tax,taxed,taxes,taxi,taxicab,taxidermist,taxing,taxis,taxpayer,taxpayers,tea,teach,teacher,teachers,teaches,teaching,teacup,teal,team,teamed,teaming,teammate,teammates,teams,teamsters,teamwork,teapot,tear,tearful,tearing,tears,teary,teas,tease,teased,teasing,teaspoon,teaspoons,technical,technicalities,technicality,technically,technician,technicians,technique,techniques,technological,technologically,technologies,technology,ted,teddy,tedious,tee,teed,teeming,teen,teenage,teenaged,teenager,teenagers,teens,teensy,teeny,teenybopper,teetering,teeth,telegram,telegrams,telegraph,telekinesis,telekinetic,telemarketing,telemetry,telepathic,telepathically,telepathy,telephone,telephones,teleport,teleportation,telescope,telescopic,telethon,televised,television,telex,tell,teller,tellers,telling,tells,telly,temp,temper,temperament,temperamental,temperature,temperatures,tempered,tempers,tempest,temple,tempo,temporarily,temporary,temps,tempt,temptation,temptations,tempted,tempting,temptress,ten,tenacious,tenacity,tenant,tenants,tend,tended,tendencies,tendency,tender,tenderness,tending,tendon,tendonitis,tendons,tends,tenement,tenets,tenner,tennis,tenor,tenors,tens,tense,tension,tensions,tent,tentative,tenth,tenths,tents,tenuous,tenure,tepid,tequila,teriyaki,term,terminal,terminate,terminated,terminating,termination,terminator,terminology,terminus,termites,terms,terra,terrace,terraforming,terrain,terrestrial,terrible,terribly,terrific,terrifically,terrified,terrifies,terrify,terrifying,territorial,territories,territory,terror,terrorism,terrorist,terrorists,terrorize,terrorized,terrorizing,terrors,terry,test,testament,tested,testified,testifies,testify,testifying,testimonies,testimony,testing,testosterone,tests,testy,tet,tetanus,tether,tetherball,texas,text,textbook,textbooks,textile,textiles,texts,texture,than,thank,thanked,thankful,thankfully,thanking,thankless,thanks,thanksgiving,thanksgivings,that,thataway,thatcher,thaw,thawed,thawing,the,theater,theaters,theatre,theatres,theatrical,theatrics,thee,theft,thefts,their,theirs,them,theme,themed,themes,themselves,then,theologian,theological,theology,theorem,theoretical,theoretically,theories,theory,therapeutic,therapist,therapists,therapy,there,thereafter,thereby,therefore,therein,thereof,theres,thermal,thermometer,thermonuclear,thermos,thermostat,thesaurus,these,theses,thesis,thespian,theta,they,thick,thickening,thickens,thicker,thief,thieves,thigh,thighs,thin,thine,thing,things,think,thinkers,thinking,thinks,thinly,thinner,thinners,thinning,thins,third,thirds,thirst,thirsty,thirteen,thirteenth,thirties,thirtieth,thirty,this,thistle,tho,thong,thongs,thoracic,thoracotomy,thorn,thorns,thorough,thoroughly,thorpe,those,thou,though,thought,thoughtful,thoughtfully,thoughtless,thoughts,thousand,thousands,thrall,thrash,thrashing,thread,threads,thready,threat,threaten,threatened,threatening,threatens,threats,three,threesome,threshold,threw,thrice,thrift,thrill,thrilled,thriller,thrilling,thrills,thrive,thrives,thriving,throat,throats,throbbing,throne,thrones,throttle,through,throughout,throughway,throw,thrower,throwers,throwing,thrown,throws,thru,thrust,thrusters,thrusts,thruway,thug,thugs,thumb,thumbing,thumbprint,thumbs,thump,thumping,thunder,thunderbird,thunderbolt,thundering,thunderstorm,thus,thusly,thy,thyme,thyroid,thyself,ti,tiara,tibia,tic,tick,ticked,ticker,ticket,ticketed,tickets,ticking,tickle,tickles,tickling,ticklish,ticks,tidal,tidbits,tide,tides,tidings,tidy,tidying,tie,tied,tier,ties,tiff,tiffany,tiger,tigers,tight,tighten,tightened,tightening,tightens,tighter,tightly,tightness,tightrope,tights,tiki,til,tile,tiles,till,tiller,tilt,tilted,timber,timbers,timbre,time,timed,timeless,timeline,timely,timer,timers,times,timetable,timid,timing,timothy,timpani,tin,tinfoil,ting,tingle,tingling,tingly,tiniest,tinkered,tinkering,tinkle,tins,tinsel,tinted,tiny,tip,tipped,tipper,tippers,tipping,tippy,tips,tipsy,tiptoe,tiptoeing,tiramisu,tire,tired,tireless,tires,tiresome,tiring,tis,tissue,tissues,titan,titanic,titanium,titans,title,titles,tizzy,to,toad,toast,toasted,toaster,toasting,toasts,toasty,tobacco,toby,tod,today,toddle,toddler,toddlers,toddy,toe,toed,toenail,toenails,toes,toffee,tofu,toga,together,togetherness,toilet,toilets,toiling,toke,token,tokens,told,tolerable,tolerance,tolerant,tolerate,tolerated,toll,toller,tolls,tom,tomahawk,tomato,tomatoes,tomb,tombs,tombstone,tomcat,tome,tomfoolery,tommy,tomorrow,tomorrows,toms,ton,tone,toned,toner,tones,tong,tongs,tongue,tongues,tonic,tonics,tonight,tonnage,tons,tonsil,tonsils,tony,too,took,tool,toolbox,tools,toon,toons,toot,tooth,toothache,toothbrush,toothbrushes,toothed,toothpaste,toothpick,toothpicks,toots,top,topaz,topes,topic,topical,topics,topless,topnotch,topped,topping,toppings,topple,tops,topside,tor,torah,torch,torched,torches,torching,tore,torment,tormented,tormenting,torn,tornado,toro,torpedo,torpedoed,torpedoes,torque,torrent,torrid,torso,tortillas,tortious,tortoise,torture,tortured,tortures,torturing,torturous,tory,tosh,toss,tossed,tosses,tossing,total,totaled,totalled,totally,totals,tote,totem,toting,tots,touch,touchdown,touchdowns,touche,touched,touches,touching,touchstone,touchy,tough,toughen,tougher,toughest,toughness,toupee,tour,toured,touring,tourism,tourist,tourists,tournament,tournaments,tours,tow,toward,towards,towed,towel,towels,tower,towers,town,townhouse,townie,townies,towns,townsfolk,townspeople,toxic,toxicity,toxicology,toxin,toxins,toxoplasmosis,toy,toyed,toying,toys,trace,traced,tracer,traces,tracing,track,tracked,tracker,trackers,tracking,tracks,traction,tractor,tractors,trade,traded,trademark,tradeoff,trader,trades,trading,tradition,traditional,traditionally,traditions,traffic,trafficker,trafficking,tragedies,tragedy,tragic,tragically,trail,trailer,trailers,trailing,trails,train,trained,trainee,trainees,trainer,training,trains,traipse,traipsing,trait,traitor,traitors,traits,trajectory,tram,tramp,trample,trampling,tramps,trance,tranquil,tranquility,tranquilizer,trans,transaction,transactions,transatlantic,transcendent,transcends,transcript,transcripts,transfer,transference,transferred,transferring,transfers,transform,transformation,transformed,transfusion,transfusions,transgenic,transgression,transgressions,transient,transistor,transit,transition,transitional,translate,translated,translating,translation,translator,translators,transmission,transmissions,transmit,transmitted,transmitter,transmitters,transparent,transpired,transplant,transponder,transport,transportation,transported,transporting,transports,transsexual,transvestite,transvestites,trap,trapeze,trapped,trapper,trapping,trappings,traps,trash,trashed,trashes,trashing,trashy,trattoria,trauma,traumas,traumatic,traumatized,traumatizing,travel,traveled,traveler,travelers,traveling,travelled,traveller,travellers,travelling,travels,traverse,travesty,trawler,tray,trays,treacherous,treachery,tread,treadmill,treads,treason,treasure,treasured,treasurer,treasures,treasury,treat,treatable,treated,treaters,treaties,treating,treatment,treatments,treats,treaty,tree,trees,trek,trellis,tremble,trembling,tremendous,tremendously,tremor,tremors,trench,trenches,trend,trends,trendy,trespass,trespassed,trespasser,trespassers,trespassing,trey,triad,trial,trials,triangle,triangular,tribal,tribe,tribulations,tribunal,tribune,tribute,triceps,trick,tricked,trickery,trickier,tricking,trickle,tricks,trickster,tricky,tricycle,trident,tried,tries,trifecta,trifle,trifled,trifling,trig,trigger,triggered,triggering,triggers,trigonometry,trillion,trilogy,trim,trimester,trimmed,trimmers,trimmings,trinity,trinket,trinkets,trio,trip,tripe,triple,tripled,triplets,triplicate,tripped,tripping,trippy,trips,trite,triumph,triumphed,triumphs,trivial,troll,trolling,trollop,trolls,trombone,troop,trooper,troopers,troops,trophies,trophy,tropic,tropical,tropics,trot,trotting,troubadour,trouble,troubled,troublemaker,troublemakers,troubles,troublesome,troubling,troupe,trouper,trouser,trousers,trout,trove,troy,truant,truce,truck,truckers,truckload,trucks,true,truer,truest,truffle,truffles,truly,trump,trumpet,trumpets,trumps,trunk,trunks,truss,trussed,trust,trusted,trustee,trustees,trusting,trusts,trustworthy,trusty,truth,truthful,truthfully,truths,try,trying,tryout,tryouts,tsk,tsunami,tub,tuba,tubby,tube,tubers,tubes,tubing,tubs,tuck,tucked,tucker,tucking,tug,tuition,tularemia,tulip,tulle,tumble,tumbler,tumbling,tummy,tumor,tumors,tuna,tundra,tune,tuned,tunes,tung,tunic,tuning,tunnel,tunnels,turban,turbine,turbo,turbulence,turbulent,turd,turds,turf,turk,turkey,turkeys,turks,turmoil,turn,turnaround,turncoat,turndown,turned,turner,turning,turnips,turnout,turnpike,turns,turquoise,turret,turtle,turtleneck,turtles,tush,tushie,tushy,tusk,tussle,tut,tutor,tutoring,tutors,tutti,tutu,tux,tuxedo,tuxedos,tuxes,twain,twas,tweak,tweaked,tweaking,tweed,tweedle,tween,tweet,tweeze,twelfth,twelve,twenties,twentieth,twenty,twerp,twice,twig,twigs,twilight,twin,twine,twinge,twinkle,twins,twirl,twist,twisted,twister,twisting,twists,twisty,twit,twitch,twitching,twitchy,twits,two,twos,twosome,tycoon,tying,tykes,type,typed,types,typewriter,typhoid,typical,typically,typing,typist,typo,tyranny,tyrant,tyrants,tyre,tyres,ubiquitous,ugh,uglies,ugliest,ugliness,ugly,uh,ulcer,ulcers,ulterior,ultimate,ultimately,ultimatum,ultimatums,ultra,ultrasound,um,umbilical,umbrella,umm,ump,umpire,umpteenth,un,unable,unacceptable,unadvisedly,unaffected,unanimous,unanimously,unannounced,unanswered,unappealing,unappreciated,unarmed,unattached,unattainable,unattended,unattractive,unauthorized,unavailable,unavoidable,unaware,unbalanced,unbearable,unbearably,unbeatable,unbecoming,unbeknownst,unbelievable,unbelievably,unblemished,unborn,unbreakable,unbroken,unburden,unbuttoned,uncalled,uncanny,uncaring,uncertain,uncertainty,unchanged,uncharacteristic,uncharacteristically,uncivilized,unclaimed,uncle,unclear,unclench,uncles,uncomfortable,uncommon,uncomplicated,uncompromising,unconcerned,unconditional,unconscionable,unconscious,unconsciously,unconsciousness,unconstitutional,uncontrollable,uncontrollably,uncontrolled,unconventional,uncool,uncooperative,uncover,uncovered,uncovering,uncuff,uncut,undead,undecided,undeniably,under,underage,undercover,undercurrent,undercut,underdeveloped,underdog,underestimate,underestimated,underestimating,undergarment,undergarments,undergo,undergoing,undergone,undergrad,undergraduate,underground,underhanded,underline,underlined,underlings,underlying,undermine,undermined,undermines,undermining,underneath,underpaid,underpants,underpass,underprivileged,undershirt,understand,understandable,understandably,understanding,understands,understatement,understood,understudy,undertake,undertaken,undertaking,undertow,underwater,underway,underwear,underworld,undeserving,undesirable,undetectable,undetected,undies,undisciplined,undisclosed,undiscovered,undisputed,undivided,undo,undoing,undone,undoubtedly,undress,undressed,undressing,undue,unduly,undying,unearth,unearthed,uneasy,uneducated,unemployable,unemployed,unemployment,unencumbered,unending,unequivocally,unethical,uneventful,unexpected,unexpectedly,unexplained,unexplored,unexpressed,unfair,unfairly,unfairness,unfaithful,unfamiliar,unfathomable,unfinished,unfit,unflattering,unfold,unfolding,unfolds,unforeseen,unforgettable,unforgivable,unforgiving,unfortunate,unfortunately,unfounded,unfreeze,unfreezing,unfriendly,unfulfilled,unfunny,ungodly,ungrateful,unguarded,unhand,unhappily,unhappiness,unhappy,unharmed,unhealthy,unheard,unhinged,unholy,unhook,unhooked,unicorn,unicycle,unidentified,unified,uniform,uniformity,uniforms,unimaginative,unimportant,unimpressed,uninformed,uninhibited,uninspired,uninsured,unintelligible,unintentionally,uninteresting,uninterrupted,uninvited,uninvolved,union,unions,unique,unisex,unit,unite,united,units,unity,universal,universally,universe,universes,universities,university,unjustly,unknown,unknowns,unlawful,unleaded,unleash,unleashed,unless,unlikable,unlike,unlikely,unlimited,unlisted,unload,unloading,unlock,unlocked,unlocking,unlocks,unlovable,unloved,unlucky,unmanned,unmarked,unmarried,unmentionable,unmentionables,unmistakable,unmitigated,unnatural,unnecessary,unnerve,unnerved,unofficial,unopened,unorthodox,unpack,unpacked,unpacking,unpaid,unparalleled,unplanned,unpleasant,unpleasantness,unplug,unplugged,unpopular,unprecedented,unpredictable,unprepared,unprincipled,unprofessional,unprotected,unprovoked,unpunished,unqualified,unquenchable,unquote,unravel,unraveled,unraveling,unreachable,unreal,unrealistic,unreasonable,unrelated,unreliable,unresolved,unresponsive,unrest,unruly,uns,unsafe,unsaid,unsanitary,unsatisfactory,unsatisfied,unsatisfying,unsavory,unscathed,unscheduled,unscrupulous,unseal,unsealed,unseasonably,unseat,unseemly,unseen,unselfish,unsettled,unsettling,unshakable,unsigned,unsolved,unspeakable,unspeakably,unspoiled,unspoken,unstable,unstoppable,unstuck,unsubstantiated,unsuccessful,unsuitable,unsung,unsupervised,unsure,unsuspecting,untamed,untangle,untapped,untenable,unthinkable,untie,untied,until,untimely,unto,untouchable,untouched,untoward,untraceable,untrained,untreated,untrue,untrustworthy,unusual,unusually,unveil,unveiling,unwanted,unwarranted,unwashed,unwelcome,unwieldy,unwilling,unwind,unwise,unwitting,unwittingly,unworthy,unwrap,unwrapping,unwritten,unzip,up,upbeat,upbringing,upchuck,upcoming,update,updated,updates,updating,upfront,upgrade,upgraded,upgrades,upgrading,upheaval,upheld,uphill,uphold,upholstery,upkeep,uplifting,uplink,upload,uploading,upon,upped,upper,uppers,upping,uppity,upright,uprising,uproar,uproot,uprooted,ups,upscale,upset,upsets,upsetting,upshot,upside,upstage,upstaged,upstairs,upstanding,upstart,upstate,uptake,uptight,uptown,upward,upwards,uranium,urban,urchin,urethra,urge,urged,urgency,urgent,urgently,urges,urging,urinal,urinary,urinate,urinating,urination,urine,urn,urns,urologist,us,usable,use,used,useful,usefulness,useless,user,users,uses,usher,ushering,ushers,using,usual,usually,utensils,uterine,uterus,utilities,utility,utilize,utmost,utopia,utter,utterly,vacancies,vacant,vacate,vacated,vacation,vacationing,vacations,vaccinated,vaccination,vaccine,vacuum,vacuumed,vacuuming,vagabond,vague,vaguely,vaguest,vail,vain,valentine,valentines,valet,valiant,valid,validate,validated,validity,valise,valley,valor,valuable,valuables,value,valued,values,valve,valves,vamoose,vamp,vampire,vampires,vamps,van,vandalism,vandalized,vandals,vanilla,vanish,vanished,vanishes,vanishing,vanity,vanquish,vanquished,vanquishing,vantage,vapid,vaporize,vaporized,variable,variables,variance,variant,variations,varicose,varied,varies,variety,various,varnish,varsity,vary,vascular,vase,vasectomy,vast,vastly,vat,vault,veal,vector,vee,veer,veered,veering,veg,vegan,vegetable,vegetables,vegetarian,vegetarians,vegetative,veggies,vehicle,vehicles,vehicular,veil,veiled,veils,vein,veins,velocity,velvet,vendetta,vendettas,vending,vendor,vendors,veneer,venerable,venereal,venetian,vengeance,vengeful,venison,venom,venomous,vent,vented,ventilate,ventilated,ventilation,ventilator,venting,ventricle,ventricular,ventriloquism,ventriloquist,vents,venture,ventures,venue,venues,vera,veracity,veranda,verbal,verbally,verbatim,verbs,verdict,verge,verger,verification,verified,verify,verily,veritable,veritas,vermeil,vermin,vermouth,vernacular,veronica,versatile,verse,versed,version,versions,versus,vertebrae,vertical,vertically,vertigo,very,vespers,vessel,vessels,vest,vesta,vested,vestibule,vestigial,vests,vet,veteran,veterans,veterinarian,veterinary,veto,vetoed,vets,vetted,via,viable,vial,vials,vibe,vibes,vibrant,vibrating,vibrations,vibrator,vicar,vicariously,vice,viceroy,vicinity,vicious,viciousness,victim,victimless,victims,victor,victoria,victories,victorious,victory,video,videos,videotape,videotaped,videotapes,vie,view,viewed,viewer,viewers,viewing,viewpoint,views,vig,vigil,vigilance,vigilant,vigilante,vigor,vigorously,viking,vile,vill,villa,village,villagers,villages,villain,villains,villas,vindicated,vindication,vindictive,vindictiveness,vine,vinegar,vineyards,vino,vintage,vinyl,viola,violate,violated,violates,violating,violation,violations,violence,violent,violently,violet,violets,violin,violinist,violins,viper,vipers,viral,virgin,virginal,virginity,virgins,virile,virtual,virtually,virtue,virtuoso,virtuous,virulent,virus,viruses,vis,visa,visage,visas,visceral,viscount,viscous,visibility,visible,vision,visions,visit,visitation,visited,visiting,visitor,visitors,visits,visor,vista,visual,visualize,visualizing,visually,visuals,vital,vitality,vitally,vitals,vitamin,vitamins,viva,vivacious,vive,vivid,vixen,vixens,vocabulary,vocal,vocalist,vocals,vocation,vocational,vodka,vogue,voice,voiced,voices,voicing,void,voila,volant,volatile,volcanic,volcano,volcanoes,volition,volleyball,volt,voltage,volts,volume,volumes,voluntarily,voluntary,volunteer,volunteered,volunteering,volunteers,vomit,vomiting,voodoo,vortex,vote,voted,voter,voters,votes,voting,vouch,vouched,vouching,vow,vowed,vowel,vowels,vows,voyage,voyeur,vroom,vulgar,vulnerability,vulnerable,vulture,vultures,vying,wack,wacko,wackos,wacky,wad,waddle,wade,wading,waffle,waffles,wag,wage,wager,wages,wagging,waging,wagon,wagons,wahoo,waif,wail,wailing,waist,waistband,wait,waited,waiter,waiters,waiting,waitress,waitressed,waitresses,waitressing,waits,waive,waived,waiver,wake,waken,wakes,waking,walk,walked,walker,walking,walks,wall,walla,wallaby,walled,wallet,wallets,walling,wallop,wallow,wallowing,wallpaper,walls,wally,walnut,waltz,waltzing,wampum,wan,wand,wander,wandered,wanderer,wandering,wangler,waning,want,wanted,wanting,wanton,wants,war,ward,warden,wardrobe,ware,warehouse,warehouses,wares,warfare,warfarin,warhead,warheads,warlock,warlocks,warlord,warm,warmed,warmer,warmest,warming,warms,warmth,warn,warned,warner,warning,warnings,warp,warpath,warped,warrant,warranted,warrants,warren,warring,warrior,warriors,wars,warsaw,wart,wartime,warts,wary,was,wash,washcloth,washed,washer,washes,washing,washout,washroom,washrooms,washy,wasp,wasps,waste,wastebasket,wasted,wasteful,wastes,wasting,watch,watched,watcher,watchers,watches,watchful,watching,watchman,water,waterbed,watered,waterfall,waterfront,watering,waterloo,watermelon,waterproof,waters,waterworks,watery,watt,watts,wave,waved,wavelength,wavelengths,wavered,waves,waving,wavy,wax,waxed,waxes,waxing,waxy,way,ways,wayside,wayward,we,weak,weaken,weakened,weakening,weaker,weakest,weakling,weakness,weaknesses,wealth,wealthiest,wealthy,wean,weaning,weapon,weapons,wear,wearer,wearing,wears,weary,weasel,weasels,weather,weathered,weatherman,weathers,weave,weaver,web,webbing,weber,webs,webster,wed,wedded,wedding,weddings,wedge,wedges,wedgie,wedgies,wedlock,weds,wee,weed,weeds,week,weekend,weekends,weekly,weeks,weenie,weenies,weensy,weeny,weep,weeping,weepy,weevil,weigh,weighed,weighing,weighs,weight,weighted,weightless,weights,weiner,weir,weird,weirder,weirdest,weirdly,weirdness,weirdo,weirdoes,weirdos,welch,welcome,welcomed,welcomes,welcoming,weld,welded,welder,welding,welfare,well,welling,wellness,wells,welsh,welt,welts,wench,went,wept,were,werewolf,werewolves,west,westbound,western,westerns,westward,wet,wetlands,wets,wetter,wetting,wha,whack,whacked,whacko,whale,whales,wham,whammo,whammy,wharf,wharves,what,whatchamacallit,whatever,whatnot,whats,whatsoever,wheat,whee,wheel,wheelchair,wheelchairs,wheeler,wheeling,wheels,wheeze,wheezing,when,whence,whenever,where,whereabouts,whereas,wherefore,wherein,whereof,wherever,whet,whether,whew,whey,which,whichever,whiff,while,whilst,whim,whimper,whimpering,whims,whimsical,whimsy,whine,whiner,whining,whiny,whip,whiplash,whipped,whipper,whipping,whirl,whirling,whirlwind,whisk,whisked,whisker,whiskey,whisking,whisky,whisper,whispered,whispering,whispers,whistle,whistler,whistles,whistling,whit,white,whiteness,whiter,whites,whitey,whittle,whittled,whittling,whiz,who,whoa,whodunit,whoever,whole,wholeheartedly,wholesale,wholesaler,wholesome,wholly,whom,whomever,whoop,whoopee,whooping,whoops,whoosh,whopper,whopping,whose,why,whys,wick,wicked,wickedness,wide,widen,widening,wider,widow,widowed,widower,widows,width,wield,wielding,wiener,wieners,wife,wig,wigged,wiggle,wiggled,wiggles,wiggling,wiggly,wiggy,wigs,wild,wildcat,wildcats,wilder,wilderness,wildest,wildfire,wildlife,wildly,will,willed,willful,willfully,willies,willing,willingly,willingness,willow,willows,willpower,wills,willy,wilt,wily,wimp,wimps,wimpy,win,winch,wind,windbag,windbreaker,winded,windfall,winding,windjammer,windmills,window,windows,windowsill,windpipe,winds,windshield,windsurfing,windward,windy,wine,winery,wing,winged,winger,winging,wingman,wings,wining,wink,winking,winkle,winks,winner,winners,winning,winnings,winos,wins,winter,winters,wipe,wiped,wiper,wipers,wipes,wiping,wire,wired,wireless,wires,wiretap,wiretaps,wiring,wisdom,wise,wiseass,wisecracks,wised,wisely,wiser,wisest,wish,wished,wishes,wishful,wishing,wit,witch,witchcraft,witches,witching,witchy,with,withdraw,withdrawal,withdrawals,withdrawing,withdrawn,withdraws,withdrew,wither,withered,withering,withers,withheld,withhold,withholding,within,without,withstand,withstanding,witless,witness,witnessed,witnesses,witnessing,wits,witty,wives,wizard,wo,wobble,woe,woes,wok,woke,woken,wolf,wolfram,wolves,woman,womanhood,womanizer,womanizing,womanly,womb,women,won,wonder,wondered,wonderful,wonderfully,wondering,wonderland,wonders,wondrous,wonky,wont,woo,wood,woodchuck,wooded,wooden,woodland,woodpecker,woods,woodshed,woodsy,woodwork,woody,wooed,woof,wooing,wool,woolly,woops,woozy,word,worded,wording,words,wore,work,workable,workaholic,workday,worked,worker,workers,working,workings,workload,workman,workmen,workout,workplace,works,workshop,workstation,workup,world,worldly,worlds,worldwide,worm,wormed,wormhole,worming,worms,worn,worried,worrier,worries,worrisome,worry,worrying,worrywart,worse,worsened,worship,worshiped,worshipped,worshippers,worshipping,worships,worst,worth,worthless,worthwhile,worthy,would,wound,wounded,wounding,wounds,woven,wow,wowed,wracked,wracking,wraith,wrangle,wrangler,wrap,wrapped,wrapper,wrappers,wrapping,wraps,wrath,wreak,wreaked,wreaking,wreaks,wreaths,wreck,wreckage,wrecked,wrecker,wrecking,wrecks,wrench,wrenched,wrestle,wrestler,wrestling,wretch,wretched,wriggle,wright,wring,wringer,wringing,wrinkle,wrinkled,wrinkles,wrinkly,wrist,wrists,writ,write,writer,writers,writes,writhing,writing,writings,written,wrong,wronged,wrongful,wrongfully,wrongs,wrote,wrought,wrung,wry,wuss,wussies,wussy,wuthering,xerox,ya,yacht,yachts,yah,yahoo,yak,yakking,yam,yammer,yammering,yams,yang,yank,yanked,yanking,yanks,yap,yapping,yard,yards,yardstick,yarn,yaw,yawn,yawning,yay,ye,yea,yeah,year,yearbook,yearbooks,yearned,yearning,yearnings,yearns,years,yeast,yech,yeh,yell,yelled,yeller,yelling,yellow,yells,yen,yep,yes,yesterday,yesterdays,yet,yeti,yield,yielding,yields,yikes,yin,yipe,yippee,yippie,yo,yodel,yoga,yoghurt,yogi,yogurt,yoke,yokel,yokels,yolk,yom,yon,yonkers,yore,you,young,younger,youngest,youngster,youngsters,your,yours,yourself,yourselves,youse,youth,youthful,youths,yuan,yuck,yuk,yuletide,yum,yummy,yup,yuppie,yuppies,zag,zander,zany,zap,zapped,zeal,zebra,zebras,zed,zee,zephyr,zephyrs,zeppelin,zero,zeroed,zeroes,zeros,zest,zesty,zeta,zig,zillion,zillions,zinfandel,zing,zip,zipped,zipper,zipping,zippy,zit,zits,zodiac,zombie,zombies,zone,zoned,zones,zoning,zonked,zoo,zoom,zooming'
# 65536 words
english_words_google = 'the,of,and,to,a,in,for,is,on,that,by,this,with,i,you,it,not,or,be,are,from,at,as,your,all,have,new,more,an,was,we,will,home,can,us,about,if,page,my,has,search,free,but,our,one,other,do,no,information,time,they,site,he,up,may,what,which,their,news,out,use,any,there,see,only,so,his,when,contact,here,business,who,web,also,now,help,get,view,online,c,e,first,am,been,would,how,were,me,s,services,some,these,click,its,like,service,x,than,find,price,date,back,top,people,had,list,name,just,over,state,year,day,into,email,two,health,n,world,re,next,used,go,b,work,last,most,products,music,buy,data,make,them,should,product,system,post,her,city,t,add,policy,number,such,please,available,copyright,support,message,after,best,software,then,jan,good,well,d,where,rights,public,books,high,school,through,m,each,links,she,review,years,order,very,privacy,book,items,company,r,read,group,sex,need,many,user,said,de,does,set,under,general,research,university,january,mail,full,map,reviews,program,life,know,games,way,days,management,p,part,could,great,united,hotel,real,f,item,international,center,must,store,travel,comments,made,development,report,off,member,details,line,terms,before,hotels,did,send,right,type,because,local,those,using,results,office,education,national,car,design,take,posted,internet,address,community,within,states,area,want,phone,shipping,reserved,subject,between,forum,family,l,long,based,w,code,show,o,even,black,check,special,prices,index,being,women,much,sign,file,link,open,today,technology,south,case,project,same,pages,uk,version,section,own,found,sports,house,related,security,both,g,county,american,photo,game,members,power,while,care,network,down,computer,systems,three,total,place,end,following,download,h,him,without,per,access,think,north,resources,current,posts,big,media,law,control,water,history,pictures,size,art,personal,since,including,guide,shop,directory,board,location,change,white,text,small,rating,rate,government,children,during,usa,return,students,v,shopping,account,times,sites,level,digital,profile,previous,form,events,love,old,john,main,call,hours,image,department,title,description,non,k,y,insurance,another,why,shall,property,class,cd,still,money,quality,every,listing,content,country,private,little,visit,save,tools,low,reply,customer,december,compare,movies,include,college,value,article,york,man,card,jobs,provide,j,food,source,author,different,press,u,learn,sale,around,print,course,job,canada,process,teen,room,stock,training,too,credit,point,join,science,men,categories,advanced,west,sales,look,english,left,team,estate,box,conditions,select,windows,gay,thread,week,category,note,live,large,gallery,table,register,however,june,october,november,market,library,really,action,start,series,model,features,air,industry,plan,human,provided,tv,yes,required,second,hot,accessories,cost,movie,march,la,september,better,say,questions,july,going,medical,test,friend,come,dec,study,application,cart,staff,articles,san,again,play,looking,issues,april,never,users,complete,street,topic,comment,financial,things,working,against,standard,tax,person,below,mobile,less,got,party,payment,equipment,login,student,let,programs,offers,legal,above,recent,park,stores,side,act,problem,red,give,memory,performance,social,q,august,quote,language,story,sell,experience,rates,create,key,body,young,america,important,field,few,east,paper,single,ii,age,activities,club,example,girls,additional,password,z,latest,something,road,gift,question,changes,night,ca,hard,texas,oct,pay,four,poker,status,browse,issue,range,building,seller,court,february,always,result,light,write,war,nov,offer,blue,groups,al,easy,given,files,event,release,analysis,request,china,making,picture,needs,possible,might,professional,yet,month,major,star,areas,future,space,committee,hand,sun,cards,problems,london,washington,meeting,become,interest,id,child,keep,enter,california,share,similar,garden,schools,million,added,reference,companies,listed,baby,learning,energy,run,delivery,net,popular,term,film,stories,put,computers,journal,reports,co,try,welcome,central,images,president,notice,god,original,head,radio,until,cell,color,self,council,away,includes,track,australia,discussion,archive,once,others,entertainment,agreement,format,least,society,months,log,safety,friends,sure,trade,edition,cars,messages,marketing,tell,further,updated,association,able,having,provides,david,fun,already,green,studies,close,common,drive,specific,several,gold,feb,living,collection,called,short,arts,lot,ask,display,limited,solutions,means,director,daily,beach,past,natural,whether,due,et,five,upon,period,planning,says,official,weather,mar,land,average,done,technical,window,france,pro,region,island,record,direct,conference,environment,records,st,district,calendar,costs,style,front,statement,parts,aug,ever,early,miles,sound,resource,present,applications,either,ago,document,word,works,material,bill,written,talk,federal,rules,final,adult,tickets,thing,centre,requirements,via,cheap,nude,kids,finance,true,minutes,else,mark,third,rock,gifts,europe,reading,topics,bad,individual,tips,plus,auto,cover,usually,edit,together,percent,fast,function,fact,unit,getting,global,meet,far,economic,en,player,projects,lyrics,often,subscribe,submit,germany,amount,watch,included,feel,though,bank,risk,thanks,everything,deals,various,words,jul,production,commercial,james,weight,town,heart,advertising,received,choose,treatment,newsletter,archives,points,knowledge,magazine,error,camera,girl,currently,construction,toys,registered,clear,golf,receive,domain,methods,chapter,makes,protection,policies,loan,wide,beauty,manager,india,position,taken,sort,models,michael,known,half,cases,step,engineering,florida,simple,quick,none,wireless,license,paul,friday,lake,whole,annual,published,later,basic,shows,corporate,church,method,purchase,customers,active,response,practice,hardware,figure,materials,fire,holiday,chat,enough,designed,along,among,death,writing,speed,html,countries,loss,face,brand,discount,higher,effects,created,remember,standards,oil,bit,yellow,political,increase,advertise,kingdom,base,near,thought,stuff,french,storage,oh,japan,doing,loans,shoes,entry,stay,nature,orders,availability,africa,summary,turn,mean,growth,notes,agency,king,monday,european,activity,copy,although,drug,western,income,force,cash,employment,overall,bay,river,commission,ad,package,contents,seen,players,engine,port,album,regional,stop,supplies,started,administration,bar,institute,views,plans,double,dog,build,screen,exchange,types,soon,lines,electronic,continue,across,benefits,needed,season,apply,someone,held,ny,anything,printer,condition,effective,believe,organization,effect,asked,mind,sunday,selection,casino,lost,tour,menu,volume,cross,anyone,mortgage,hope,silver,corporation,wish,inside,solution,mature,role,rather,weeks,addition,came,supply,nothing,certain,executive,running,lower,necessary,union,jewelry,according,dc,clothing,mon,com,particular,fine,names,robert,hour,gas,skills,six,bush,islands,advice,career,military,rental,decision,leave,british,teens,pre,huge,sat,woman,facilities,zip,bid,kind,sellers,middle,move,cable,opportunities,taking,values,division,coming,tuesday,object,appropriate,machine,length,actually,nice,score,statistics,client,ok,returns,capital,follow,sample,investment,sent,shown,saturday,christmas,england,culture,band,flash,ms,lead,george,choice,went,starting,registration,fri,thursday,courses,consumer,hi,foreign,artist,outside,furniture,levels,channel,letter,mode,ideas,wednesday,structure,fund,summer,allow,degree,contract,button,releases,wed,homes,super,male,matter,custom,virginia,almost,took,located,multiple,asian,distribution,editor,inn,industrial,cause,potential,song,ltd,los,focus,late,fall,featured,idea,rooms,female,responsible,inc,communications,win,associated,thomas,primary,cancer,numbers,reason,tool,browser,spring,foundation,answer,voice,friendly,schedule,documents,communication,purpose,feature,bed,comes,police,everyone,independent,approach,brown,physical,operating,hill,maps,medicine,deal,hold,chicago,forms,glass,happy,tue,smith,wanted,developed,thank,safe,unique,survey,prior,telephone,sport,ready,feed,animal,sources,mexico,population,pa,regular,secure,navigation,operations,therefore,ass,simply,evidence,station,christian,round,favorite,understand,option,master,valley,recently,probably,sea,built,publications,blood,cut,improve,connection,publisher,hall,larger,networks,earth,parents,impact,transfer,introduction,kitchen,strong,tel,carolina,wedding,properties,hospital,ground,overview,ship,accommodation,owners,disease,excellent,paid,italy,perfect,hair,opportunity,kit,classic,basis,command,cities,william,express,award,distance,tree,peter,assessment,ensure,thus,wall,ie,involved,el,extra,especially,pussy,partners,budget,rated,guides,success,maximum,ma,operation,existing,quite,selected,boy,amazon,patients,restaurants,beautiful,warning,wine,locations,horse,vote,forward,flowers,stars,significant,lists,owner,retail,animals,useful,directly,manufacturer,ways,est,son,providing,rule,mac,housing,takes,iii,bring,catalog,searches,max,trying,mother,authority,considered,told,traffic,programme,joined,strategy,feet,agent,valid,bin,modern,senior,ireland,teaching,door,grand,testing,trial,charge,units,instead,canadian,cool,normal,wrote,enterprise,ships,entire,educational,md,leading,metal,positive,fl,fitness,chinese,opinion,asia,football,abstract,uses,output,funds,mr,greater,likely,develop,employees,artists,alternative,processing,responsibility,resolution,java,guest,seems,publication,pass,relations,trust,van,contains,session,photography,republic,fees,components,vacation,century,academic,assistance,completed,skin,indian,mary,il,expected,ring,grade,dating,pacific,mountain,organizations,pop,filter,mailing,vehicle,longer,consider,int,northern,behind,panel,floor,german,buying,match,proposed,default,require,iraq,boys,outdoor,deep,morning,otherwise,allows,rest,protein,plant,reported,hit,transportation,mm,pool,politics,partner,disclaimer,authors,boards,faculty,parties,fish,membership,mission,eye,string,sense,modified,pack,released,stage,internal,goods,recommended,born,unless,richard,detailed,japanese,race,approved,background,target,except,character,maintenance,ability,maybe,functions,ed,moving,brands,places,pretty,spain,southern,yourself,etc,winter,rape,battery,youth,pressure,submitted,boston,incest,debt,medium,television,interested,core,break,purposes,throughout,sets,dance,wood,itself,defined,papers,playing,awards,fee,studio,reader,virtual,device,established,answers,rent,las,remote,dark,external,apple,le,regarding,instructions,min,offered,theory,enjoy,remove,aid,surface,minimum,visual,host,variety,teachers,martin,manual,block,subjects,agents,increased,repair,fair,civil,steel,understanding,songs,fixed,wrong,beginning,hands,associates,finally,classes,paris,ohio,gets,sector,capacity,requires,jersey,un,fat,fully,father,electric,saw,instruments,quotes,officer,driver,businesses,dead,respect,unknown,specified,restaurant,mike,trip,worth,mi,procedures,poor,teacher,xxx,eyes,relationship,workers,farm,georgia,peace,traditional,campus,tom,showing,creative,coast,benefit,progress,funding,devices,lord,grant,sub,agree,fiction,hear,sometimes,watches,careers,beyond,goes,families,led,museum,themselves,fan,transport,interesting,wife,accepted,former,ten,hits,zone,complex,th,cat,galleries,references,die,presented,jack,flat,flow,agencies,literature,respective,parent,spanish,michigan,columbia,setting,dr,scale,stand,economy,highest,helpful,monthly,critical,frame,musical,definition,secretary,path,employee,chief,gives,bottom,magazines,packages,detail,francisco,laws,changed,pet,heard,begin,individuals,colorado,royal,clean,switch,russian,largest,african,guy,titles,relevant,guidelines,justice,bible,cup,basket,applied,weekly,vol,installation,described,demand,pp,suite,na,square,chris,attention,advance,skip,diet,army,auction,gear,lee,os,difference,allowed,correct,charles,nation,selling,lots,piece,sheet,firm,seven,older,illinois,regulations,elements,species,jump,cells,resort,facility,random,certificate,minister,motion,looks,fashion,directions,visitors,monitor,trading,forest,calls,whose,couple,giving,chance,vision,ball,ending,clients,actions,listen,discuss,accept,naked,goal,successful,sold,wind,communities,clinical,situation,sciences,markets,lowest,highly,publishing,appear,emergency,lives,currency,leather,determine,temperature,palm,announcements,patient,actual,historical,stone,bob,commerce,perhaps,persons,difficult,scientific,satellite,fit,tests,village,accounts,amateur,ex,met,pain,particularly,factors,coffee,cum,buyer,cultural,steve,easily,oral,ford,poster,edge,functional,root,au,fi,closed,holidays,ice,pink,zealand,balance,graduate,replies,shot,architecture,initial,label,thinking,scott,sec,recommend,canon,league,waste,minute,bus,optional,dictionary,cold,accounting,manufacturing,sections,chair,fishing,effort,phase,fields,bag,fantasy,po,letters,motor,va,professor,context,install,shirt,apparel,generally,continued,foot,mass,crime,count,breast,ibm,johnson,sc,quickly,dollars,religion,claim,driving,permission,surgery,patch,heat,wild,measures,generation,kansas,miss,chemical,doctor,task,reduce,brought,himself,nor,component,enable,exercise,bug,santa,mid,guarantee,leader,diamond,israel,se,processes,soft,alone,meetings,seconds,jones,arizona,interests,flight,congress,fuel,walk,produced,italian,wait,supported,pocket,saint,rose,freedom,argument,competition,creating,jim,drugs,joint,premium,fresh,characters,attorney,di,factor,growing,thousands,km,stream,apartments,pick,hearing,eastern,entries,dates,generated,signed,upper,administrative,serious,prime,limit,began,louis,steps,errors,shops,bondage,del,efforts,informed,ga,ac,thoughts,creek,ft,worked,quantity,urban,practices,sorted,reporting,essential,myself,tours,platform,load,labor,immediately,nursing,defense,machines,tags,heavy,covered,recovery,joe,guys,configuration,cock,merchant,comprehensive,expert,universal,protect,drop,solid,presentation,languages,became,orange,compliance,vehicles,prevent,theme,rich,im,campaign,marine,improvement,vs,guitar,finding,pennsylvania,examples,saying,spirit,ar,claims,challenge,acceptance,mo,seem,affairs,touch,intended,towards,sa,goals,hire,election,suggest,branch,charges,serve,reasons,magic,mount,smart,talking,gave,ones,latin,avoid,certified,manage,corner,rank,computing,oregon,element,birth,virus,abuse,requests,separate,quarter,procedure,leadership,tables,define,racing,religious,facts,breakfast,kong,column,plants,faith,chain,identify,avenue,missing,died,approximately,domestic,recommendations,moved,houston,reach,comparison,mental,viewed,moment,extended,sequence,inch,attack,sorry,centers,opening,damage,reserve,recipes,plastic,produce,snow,placed,truth,counter,failure,follows,eu,dollar,camp,ontario,automatically,des,minnesota,films,bridge,native,fill,williams,movement,printing,baseball,owned,approval,draft,chart,played,contacts,cc,jesus,readers,clubs,wa,jackson,equal,adventure,matching,offering,shirts,profit,leaders,posters,institutions,assistant,variable,ave,advertisement,expect,headlines,yesterday,compared,determined,wholesale,workshop,russia,gone,codes,kinds,extension,seattle,statements,golden,completely,teams,fort,cm,wi,lighting,senate,forces,funny,brother,gene,turned,portable,tried,electrical,applicable,disc,returned,pattern,boat,named,theatre,earlier,manufacturers,sponsor,classical,warranty,dedicated,indiana,direction,harry,objects,ends,delete,evening,assembly,nuclear,taxes,mouse,signal,criminal,issued,brain,sexual,wisconsin,powerful,dream,obtained,false,da,cast,flower,felt,personnel,passed,supplied,identified,falls,pic,soul,aids,opinions,promote,stated,professionals,appears,carry,flag,decided,covers,hr,em,advantage,hello,designs,maintain,tourism,priority,newsletters,adults,savings,iv,graphic,atom,payments,estimated,binding,brief,ended,winning,eight,anonymous,iron,straight,script,served,wants,miscellaneous,prepared,void,dining,alert,integration,atlanta,dakota,tag,interview,mix,framework,disk,installed,queen,credits,clearly,fix,handle,sweet,desk,dave,massachusetts,diego,hong,vice,associate,ne,truck,behavior,enlarge,ray,frequently,revenue,measure,changing,votes,du,duty,looked,discussions,bear,gain,festival,laboratory,ocean,flights,experts,signs,lack,depth,iowa,whatever,vintage,train,exactly,dry,explore,maryland,spa,concept,nearly,eligible,reality,forgot,handling,origin,knew,gaming,feeds,billion,destination,scotland,faster,intelligence,dallas,bought,con,ups,nations,route,followed,specifications,broken,frank,alaska,blow,battle,residential,speak,decisions,industries,protocol,query,clip,partnership,editorial,nt,expression,es,equity,provisions,speech,wire,principles,suggestions,rural,shared,sounds,replacement,tape,strategic,judge,economics,acid,cent,forced,compatible,fight,apartment,height,null,zero,speaker,filed,netherlands,obtain,recreation,offices,designer,remain,managed,pr,failed,marriage,roll,korea,banks,fr,participants,secret,bath,kelly,leads,negative,austin,favorites,toronto,theater,springs,missouri,andrew,var,perform,healthy,translation,estimates,font,assets,injury,mt,joseph,ministry,drivers,lawyer,figures,married,protected,proposal,sharing,philadelphia,portal,waiting,birthday,beta,fail,gratis,banking,officials,brian,toward,won,slightly,assist,conduct,contained,legislation,calling,serving,bags,miami,comics,matters,houses,doc,postal,relationships,tennessee,wear,controls,breaking,combined,ultimate,wales,representative,frequency,introduced,minor,finish,departments,residents,noted,displayed,reduced,physics,rare,spent,performed,extreme,samples,davis,daniel,bars,reviewed,row,oz,forecast,removed,helps,administrator,cycle,contain,accuracy,dual,rise,sleep,bird,brazil,creation,static,scene,hunter,addresses,lady,crystal,famous,writer,chairman,violence,fans,oklahoma,speakers,drink,academy,dynamic,gender,eat,permanent,agriculture,dell,cleaning,portfolio,practical,delivered,exclusive,seat,concerns,colour,vendor,originally,utilities,philosophy,regulation,officers,reduction,aim,bids,referred,supports,nutrition,recording,regions,junior,toll,les,cape,ann,rings,meaning,tip,secondary,wonderful,mine,ladies,henry,ticket,announced,guess,agreed,prevention,whom,ski,import,posting,presence,instant,mentioned,automatic,viewing,maintained,ch,increasing,majority,connected,christ,dan,dogs,sd,directors,aspects,austria,ahead,moon,participation,scheme,utility,fly,manner,matrix,containing,combination,amendment,despite,strength,guaranteed,turkey,libraries,proper,distributed,degrees,singapore,enterprises,delta,fear,seeking,inches,phoenix,convention,shares,principal,daughter,standing,comfort,colors,wars,ordering,kept,alpha,appeal,cruise,bonus,previously,hey,buildings,beat,disney,household,batteries,adobe,smoking,becomes,drives,arms,alabama,tea,improved,trees,achieve,positions,dress,subscription,dealer,contemporary,sky,utah,nearby,rom,carried,happen,exposure,hide,signature,gambling,refer,miller,provision,outdoors,clothes,caused,luxury,babes,frames,certainly,indeed,newspaper,toy,circuit,layer,printed,slow,removal,easier,liability,trademark,hip,printers,nine,adding,kentucky,mostly,eric,spot,taylor,prints,spend,factory,interior,grow,americans,optical,promotion,relative,amazing,clock,dot,hiv,identity,suites,conversion,feeling,hidden,reasonable,victoria,serial,relief,revision,influence,ratio,importance,rain,onto,planet,copies,recipe,zum,permit,seeing,proof,tennis,bass,prescription,bedroom,empty,instance,hole,pets,ride,licensed,orlando,specifically,tim,bureau,maine,represent,conservation,pair,ideal,recorded,don,pieces,finished,parks,dinner,lawyers,sydney,stress,cream,runs,trends,discover,ap,patterns,boxes,louisiana,hills,fourth,nm,advisor,mn,marketplace,nd,evil,aware,wilson,shape,evolution,irish,certificates,objectives,stations,suggested,op,remains,greatest,firms,concerned,operator,structures,generic,usage,cap,ink,charts,continuing,mixed,census,peak,competitive,exist,wheel,transit,dick,salt,compact,poetry,lights,tracking,angel,bell,keeping,preparation,attempt,receiving,matches,accordance,width,noise,engines,forget,array,discussed,accurate,stephen,elizabeth,climate,reservations,pin,alcohol,greek,instruction,managing,sister,raw,differences,walking,explain,smaller,newest,establish,happened,expressed,jeff,extent,sharp,ben,lane,paragraph,kill,mathematics,compensation,ce,export,managers,aircraft,sweden,conflict,conducted,versions,employer,occur,percentage,knows,mississippi,describe,concern,requested,citizens,connecticut,heritage,immediate,holding,trouble,spread,coach,agricultural,expand,supporting,audience,assigned,jordan,collections,ages,participate,plug,specialist,cook,affect,virgin,experienced,investigation,raised,hat,institution,directed,dealers,searching,sporting,helping,affected,lib,totally,plate,expenses,indicate,blonde,ab,proceedings,favourite,transmission,anderson,characteristics,der,lose,organic,seek,experiences,cheats,extremely,contracts,guests,diseases,concerning,equivalent,chemistry,tony,neighborhood,nevada,thailand,anyway,continues,tracks,advisory,cam,curriculum,logic,prince,circle,soil,grants,anywhere,psychology,responses,atlantic,wet,circumstances,edward,identification,ram,leaving,appliances,matt,cooking,speaking,fox,respond,sizes,plain,exit,entered,iran,arm,keys,launch,wave,checking,costa,belgium,holy,acts,guidance,mesh,trail,enforcement,symbol,crafts,highway,buddy,observed,dean,poll,glossary,fiscal,celebrity,styles,denver,unix,filled,bond,channels,appendix,notify,blues,chocolate,pub,portion,scope,hampshire,cables,cotton,controlled,requirement,authorities,biology,dental,killed,border,ancient,debate,representatives,starts,pregnancy,causes,arkansas,biography,leisure,attractions,learned,transactions,notebook,explorer,historic,attached,opened,husband,disabled,authorized,crazy,britain,concert,retirement,financing,efficiency,sp,comedy,adopted,efficient,linear,commitment,specialty,bears,jean,hop,carrier,edited,constant,visa,mouth,jewish,meter,linked,portland,interviews,concepts,gun,reflect,pure,deliver,wonder,hell,lessons,fruit,begins,qualified,reform,lens,treated,discovery,draw,classified,relating,assume,confidence,alliance,fm,confirm,warm,neither,lewis,howard,leaves,engineer,consistent,replace,clearance,connections,inventory,suck,organisation,babe,checks,reached,becoming,objective,indicated,sugar,crew,legs,sam,stick,securities,allen,relation,enabled,genre,slide,montana,volunteer,tested,rear,democratic,enhance,switzerland,exact,bound,formal,dimensions,contribute,lock,storm,colleges,mile,showed,challenges,editors,mens,threads,bowl,supreme,brothers,recognition,presents,ref,tank,submission,dolls,estimate,encourage,navy,kid,inspection,consumers,cancel,limits,territory,transaction,manchester,weapons,paint,delay,pilot,outlet,contributions,continuous,czech,resulting,cambridge,initiative,novel,pan,execution,disability,increases,ultra,winner,idaho,contractor,episode,examination,potter,dish,plays,bulletin,ia,pt,indicates,modify,oxford,adam,truly,painting,committed,extensive,universe,candidate,patent,slot,outstanding,ha,eating,perspective,planned,watching,lodge,messenger,mirror,tournament,consideration,sterling,sessions,kernel,stocks,buyers,journals,gray,catalogue,ea,antonio,charged,broad,taiwan,und,chosen,greece,swiss,sarah,clark,labour,hate,terminal,publishers,nights,behalf,caribbean,liquid,rice,nebraska,loop,salary,reservation,foods,guard,properly,orleans,saving,remaining,empire,resume,twenty,newly,raise,prepare,gary,depending,illegal,expansion,vary,hundreds,rome,arab,lincoln,helped,premier,tomorrow,purchased,milk,decide,consent,drama,visiting,performing,downtown,keyboard,contest,collected,nw,bands,boot,suitable,ff,absolutely,millions,lunch,audit,push,chamber,guinea,findings,muscle,iso,implement,clicking,scheduled,polls,typical,tower,yours,sum,significantly,chicken,temporary,attend,shower,alan,sending,jason,tonight,dear,sufficient,shell,province,catholic,oak,vat,vancouver,governor,beer,seemed,contribution,measurement,swimming,formula,constitution,solar,jose,catch,jane,pakistan,ps,reliable,consultation,northwest,sir,doubt,earn,finder,unable,periods,classroom,tasks,democracy,attacks,kim,merchandise,const,resistance,doors,symptoms,resorts,memorial,visitor,twin,forth,insert,baltimore,gateway,ky,dont,drawing,candidates,charlotte,ordered,biological,fighting,transition,happens,preferences,spy,romance,instrument,bruce,split,themes,powers,heaven,br,bits,pregnant,twice,classification,focused,egypt,physician,bargain,cellular,norway,vermont,asking,blocks,normally,lo,spiritual,hunting,suit,shift,chip,res,sit,bodies,photographs,cutting,simon,writers,marks,flexible,loved,favourites,numerous,relatively,birds,satisfaction,represents,char,pittsburgh,superior,preferred,saved,paying,cartoon,shots,intellectual,moore,granted,choices,carbon,spending,comfortable,magnetic,interaction,listening,effectively,registry,crisis,outlook,massive,denmark,employed,bright,treat,header,cs,poverty,formed,piano,echo,que,sheets,patrick,experimental,puerto,revolution,consolidation,displays,allowing,earnings,mystery,landscape,dependent,mechanical,journey,delaware,bidding,risks,banner,applicant,charter,fig,barbara,cooperation,counties,acquisition,ports,directories,recognized,dreams,notification,licensing,stands,teach,occurred,rapid,pull,hairy,diversity,cleveland,ut,reverse,deposit,investments,wheels,specify,dutch,sensitive,formats,depends,boots,holds,si,editing,poland,completion,pulse,universities,technique,contractors,voting,courts,notices,subscriptions,calculate,detroit,alexander,broadcast,converted,anniversary,improvements,strip,specification,pearl,accident,nick,accessible,accessory,resident,plot,possibly,typically,representation,regard,pump,exists,arrangements,smooth,conferences,strike,consumption,birmingham,flashing,narrow,afternoon,threat,surveys,sitting,putting,controller,ownership,committees,penis,legislative,vietnam,trailer,anne,castle,gardens,missed,malaysia,antique,labels,willing,molecular,acting,heads,stored,residence,attorneys,antiques,density,hundred,ryan,operators,strange,philippines,statistical,beds,breasts,mention,innovation,employers,grey,parallel,amended,operate,bills,bold,bathroom,stable,opera,definitions,von,doctors,lesson,asset,scan,elections,drinking,reaction,blank,enhanced,entitled,severe,generate,stainless,newspapers,hospitals,vi,humor,aged,exception,lived,duration,bulk,successfully,indonesia,pursuant,fabric,visits,primarily,tight,domains,capabilities,contrast,recommendation,flying,sin,berlin,cute,organized,ba,para,adoption,improving,cr,expensive,meant,capture,pounds,buffalo,organisations,plane,pg,explained,seed,programmes,desire,mechanism,camping,ee,jewellery,meets,welfare,peer,caught,eventually,marked,driven,measured,bottle,agreements,considering,marshall,massage,rubber,conclusion,closing,thousand,meat,legend,grace,susan,ing,adams,monster,alex,bang,villa,bone,columns,disorders,bugs,collaboration,hamilton,detection,ftp,cookies,inner,formation,med,engineers,entity,gate,holder,proposals,sw,settlement,portugal,lawrence,roman,duties,valuable,erotic,tone,ethics,forever,dragon,busy,captain,fantastic,imagine,brings,heating,leg,neck,hd,wing,governments,purchasing,appointed,taste,dealing,commit,tiny,rail,liberal,jay,trips,gap,sides,tube,turns,corresponding,descriptions,cache,belt,jacket,determination,animation,oracle,er,matthew,lease,productions,aviation,proud,excess,disaster,console,commands,jr,instructor,giant,achieved,injuries,shipped,seats,approaches,alarm,anthony,usual,loading,stamps,appeared,franklin,angle,rob,mining,melbourne,worst,betting,scientists,liberty,wyoming,argentina,era,convert,possibility,commissioner,dangerous,garage,exciting,thongs,unfortunately,respectively,volunteers,attachment,finland,morgan,derived,pleasure,honor,asp,eagle,pants,columbus,nurse,prayer,appointment,workshops,hurricane,quiet,luck,postage,producer,represented,mortgages,dial,responsibilities,cheese,comic,carefully,jet,productivity,investors,crown,par,underground,diagnosis,maker,crack,principle,picks,vacations,gang,calculated,fetish,appearance,smoke,apache,incorporated,craft,cake,apart,fellow,blind,lounge,mad,coins,andy,gross,strongly,cafe,valentine,hilton,ken,horror,su,familiar,capable,douglas,till,involving,pen,investing,christopher,admission,shoe,elected,carrying,victory,sand,madison,joy,editions,mainly,ethnic,ran,parliament,actor,finds,seal,situations,fifth,citizen,vertical,corrections,structural,municipal,describes,prize,sr,occurs,jon,absolute,disabilities,consists,substance,prohibited,addressed,lies,pipe,soldiers,guardian,lecture,simulation,ill,concentration,classics,lbs,lay,interpretation,horses,dirty,deck,wayne,donate,taught,bankruptcy,worker,alive,temple,substances,prove,discovered,wings,breaks,restrictions,participating,waters,promise,thin,exhibition,prefer,ridge,cabinet,harris,bringing,sick,dose,tiffany,tropical,collect,bet,composition,streets,definitely,shaved,turning,buffer,purple,existence,commentary,larry,developments,def,immigration,lets,mutual,necessarily,syntax,li,attribute,prison,skill,chairs,nl,everyday,apparently,surrounding,mountains,moves,popularity,inquiry,checked,exhibit,throw,trend,sierra,visible,cats,desert,ya,oldest,rhode,obviously,mercury,steven,handbook,greg,navigate,worse,summit,victims,spaces,fundamental,burning,escape,somewhat,receiver,substantial,tr,progressive,boats,glance,scottish,championship,arcade,richmond,sacramento,impossible,russell,tells,obvious,fiber,depression,graph,covering,platinum,judgment,bedrooms,talks,filing,foster,passing,awarded,testimonials,trials,tissue,nz,clinton,masters,bonds,cartridge,explanation,folk,commons,cincinnati,subsection,fraud,electricity,permitted,spectrum,arrival,pottery,emphasis,roger,aspect,awesome,mexican,confirmed,counts,priced,hist,crash,lift,desired,inter,closer,assumes,heights,shadow,riding,infection,lisa,expense,grove,venture,korean,healing,princess,mall,entering,packet,spray,studios,dad,buttons,observations,thompson,winners,extend,roads,subsequent,pat,dublin,rolling,fell,yard,disclosure,establishment,memories,nelson,te,arrived,creates,faces,tourist,cocks,av,mayor,murder,sean,adequate,senator,yield,grades,cartoons,pour,digest,reg,lodging,tion,dust,hence,entirely,replaced,rescue,undergraduate,losses,combat,reducing,stopped,occupation,lakes,butt,donations,associations,closely,radiation,diary,seriously,kings,shooting,kent,adds,ear,flags,baker,launched,elsewhere,pollution,conservative,shock,effectiveness,walls,abroad,ebony,tie,ward,drawn,arthur,ian,visited,roof,walker,demonstrate,atmosphere,suggests,kiss,beast,ra,operated,experiment,targets,overseas,purchases,dodge,counsel,federation,invited,yards,assignment,chemicals,gordon,mod,farmers,queries,rush,ukraine,absence,nearest,cluster,vendors,whereas,yoga,serves,woods,surprise,lamp,rico,partial,phil,everybody,couples,nashville,ranking,jokes,http,simpson,sublime,palace,acceptable,satisfied,glad,wins,measurements,verify,globe,trusted,copper,milwaukee,rack,warehouse,ec,rep,kerry,receipt,supposed,ordinary,nobody,ghost,violation,stability,mit,applying,southwest,boss,pride,expectations,independence,knowing,reporter,keith,champion,cloudy,linda,ross,personally,chile,anna,plenty,solo,sentence,throat,ignore,maria,uniform,excellence,wealth,tall,somewhere,vacuum,dancing,attributes,recognize,brass,writes,plaza,survival,quest,publish,screening,toe,trans,jonathan,whenever,nova,lifetime,pioneer,booty,forgotten,plates,acres,venue,athletic,essays,behaviour,vital,telling,fairly,coastal,cf,charity,intelligent,edinburgh,vt,excel,modes,obligation,campbell,wake,stupid,harbor,hungary,traveler,segment,realize,lan,enemy,puzzle,rising,aluminum,wells,opens,insight,restricted,republican,secrets,lucky,latter,merchants,thick,repeat,philips,attendance,penalty,drum,glasses,enables,nec,builder,vista,jessica,chips,terry,flood,ease,arguments,amsterdam,orgy,arena,adventures,pupils,stewart,announcement,outcome,xx,appreciate,expanded,casual,grown,polish,lovely,extras,centres,jerry,clause,smile,lands,ri,troops,indoor,bulgaria,armed,broker,charger,regularly,believed,pine,cooling,tend,gulf,rick,trucks,cp,mechanisms,divorce,laura,tokyo,partly,tradition,candy,pills,tiger,donald,folks,exposed,hunt,angels,deputy,sealed,physicians,loaded,fred,complaint,scenes,experiments,balls,afghanistan,scholarship,governance,mill,founded,chronic,moral,den,finger,keeps,pound,locate,pl,trained,burn,roses,ourselves,bread,tobacco,wooden,motors,tough,roberts,incident,gonna,lie,conversation,decrease,chest,pension,billy,revenues,emerging,worship,capability,ak,fe,craig,herself,producing,churches,precision,damages,reserves,contributed,solve,reproduction,minority,diverse,ingredients,sb,ah,johnny,sole,franchise,recorder,complaints,facing,nancy,promotions,tones,passion,rehabilitation,maintaining,sight,laid,clay,defence,patches,weak,refund,towns,divided,reception,wise,cyprus,odds,correctly,consequences,makers,hearts,geography,appearing,integrity,worry,discrimination,eve,carter,legacy,marc,pleased,danger,widely,phrase,genuine,raising,implications,paradise,hybrid,reads,roles,emotional,sons,leaf,pad,glory,platforms,ja,bigger,versus,combine,overnight,geographic,exceed,rod,saudi,fault,cuba,hrs,preliminary,districts,introduce,silk,kate,babies,bi,karen,compiled,romantic,revealed,specialists,generator,albert,examine,jimmy,graham,suspension,bristol,margaret,sad,correction,wolf,slowly,communicate,rugby,supplement,cal,portions,infant,promoting,samuel,fluid,grounds,fits,kick,regards,meal,ta,hurt,machinery,unlike,equation,baskets,probability,pot,dimension,wright,barry,proven,admissions,warren,slip,studied,reviewer,involves,quarterly,profits,devil,grass,comply,marie,illustrated,cherry,continental,alternate,deutsch,achievement,limitations,kenya,cuts,funeral,earrings,enjoyed,chapters,charlie,quebec,passenger,convenient,dennis,mars,francis,sized,noticed,socket,silent,literary,egg,signals,caps,pill,theft,childhood,swing,symbols,lat,meta,humans,facial,choosing,talent,dated,flexibility,seeker,wisdom,shoot,boundary,mint,offset,philip,elite,gi,spin,holders,believes,swedish,poems,jurisdiction,displaying,witness,collins,equipped,stages,encouraged,sur,winds,powder,broadway,acquired,wash,cartridges,stones,entrance,roots,declaration,losing,attempts,noble,glasgow,rev,gospel,advantages,shore,loves,induced,ll,knight,preparing,loose,aims,recipient,linking,extensions,appeals,earned,illness,islamic,athletics,southeast,ho,alternatives,pending,parker,determining,lebanon,kennedy,sh,soap,ae,triple,cooper,vincent,jam,secured,unusual,answered,destruction,increasingly,migration,disorder,routine,rocks,conventional,titans,applicants,wearing,axis,sought,mounted,habitat,median,guns,herein,animated,horny,judicial,rio,adjustment,hero,bachelor,attitude,engaged,falling,montreal,carpet,lenses,binary,attended,difficulty,collective,coalition,pi,dropped,duke,walter,ai,pace,besides,wage,producers,ot,collector,arc,hosts,moments,atlas,strings,dawn,representing,observation,feels,torture,carl,coat,mitchell,mrs,restoration,convenience,returning,ralph,opposition,container,yr,defendant,warner,confirmation,app,embedded,supervisor,wizard,corps,actors,liver,liable,morris,petition,recall,picked,assumed,departure,minneapolis,belief,killing,memphis,shoulder,texts,brokers,roy,ion,diameter,ottawa,doll,ic,tit,seasons,peru,refine,bidder,singer,evans,herald,literacy,fails,aging,intervention,fed,attraction,diving,invite,modification,alice,suppose,reed,involve,moderate,terror,younger,thirty,mice,opposite,understood,rapidly,ban,mercedes,assurance,clerk,happening,vast,mills,outline,amendments,holland,receives,metropolitan,compilation,verification,ent,odd,wrap,refers,mood,favor,veterans,gr,attractive,occasion,jefferson,victim,demands,sleeping,careful,beam,gardening,obligations,arrive,orchestra,sunset,tracked,moreover,lottery,tops,framed,aside,licence,essay,discipline,amy,dialogue,identifying,alphabetical,camps,declared,dispatched,aaron,trace,disposal,shut,packs,ge,switches,romania,voluntary,thou,consult,greatly,mask,midnight,ng,commonly,pe,photographer,inform,turkish,coal,cry,quantum,murray,intent,tt,zoo,largely,pleasant,announce,constructed,additions,requiring,spoke,arrow,engagement,rough,weird,tee,lion,inspired,holes,weddings,blade,suddenly,oxygen,meals,canyon,meters,merely,arrangement,conclusions,passes,bibliography,pointer,stretch,durham,furthermore,permits,cooperative,muslim,xl,neil,sleeve,cleaner,cricket,beef,feeding,stroke,township,cad,hats,robin,robinson,jacksonville,strap,headquarters,sharon,crowd,transfers,surf,olympic,transformation,remained,attachments,dir,entities,customs,administrators,personality,rainbow,hook,roulette,decline,gloves,cord,cloud,facilitate,subscriber,valve,val,explains,proceed,feelings,knife,jamaica,shelf,liked,adopt,denied,incredible,donation,outer,crop,deaths,rivers,commonwealth,manhattan,tales,katrina,islam,tu,fy,thumbs,seeds,cited,lite,hub,realized,twelve,founder,decade,dispute,portuguese,tired,adverse,everywhere,eng,steam,discharge,ef,drinks,ace,voices,acute,climbing,stood,sing,tons,perfume,carol,honest,albany,hazardous,restore,stack,somebody,sue,ep,reputation,democrats,hang,curve,creator,amber,qualifications,museums,variation,passage,transferred,trunk,lb,damn,pierre,photograph,oakland,colombia,waves,camel,lamps,underlying,hood,wrestling,suicide,chi,arabia,gathering,projection,juice,chase,mathematical,logical,sauce,fame,extract,specialized,panama,indianapolis,af,payable,corporations,courtesy,criticism,automobile,confidential,statutory,accommodations,athens,northeast,judges,retired,remarks,detected,decades,paintings,walked,arising,bracelet,ins,eggs,juvenile,injection,yorkshire,populations,protective,afraid,railway,indicator,pointed,causing,mistake,norton,locked,eliminate,fusion,mineral,ruby,steering,beads,fortune,preference,canvas,threshold,parish,claimed,screens,cemetery,croatia,flows,venezuela,exploration,fewer,nurses,stem,proxy,astronomy,lanka,edwards,drew,contests,translate,announces,costume,berkeley,voted,killer,gates,adjusted,rap,tune,bishop,pulled,corn,shaped,compression,seasonal,establishing,farmer,counters,puts,constitutional,grew,perfectly,tin,slave,instantly,cultures,norfolk,coaching,examined,trek,encoding,litigation,heroes,painted,ir,horizontal,resulted,portrait,ethical,carriers,mobility,floral,builders,ties,struggle,schemes,suffering,neutral,fisher,rat,spears,prospective,bedding,ultimately,joining,heading,equally,artificial,bearing,spectacular,seniors,worlds,guilty,affiliated,naturally,haven,tablet,jury,dos,tail,subscribers,charm,lawn,violent,underwear,basin,soup,potentially,ranch,crossing,inclusive,cottage,drunk,considerable,crimes,resolved,byte,nose,branches,delhi,holdings,alien,selecting,processors,broke,nepal,zimbabwe,difficulties,juan,complexity,constantly,browsing,resolve,barcelona,presidential,documentary,cod,territories,melissa,moscow,thesis,thru,jews,discs,rocky,bargains,frequent,nigeria,ceiling,ensuring,legislature,hospitality,gen,anybody,diamonds,fleet,bunch,singing,theoretical,afford,exercises,surveillance,quit,distinct,lung,substitute,inclusion,hopefully,brilliant,turner,sucking,cents,ti,todd,spoken,stayed,civic,manuals,sees,termination,watched,thereof,households,redeem,rogers,grain,authentic,regime,wishes,bull,montgomery,architectural,louisville,depend,differ,movements,ranging,monica,repairs,breath,amenities,virtually,cole,mart,candle,hanging,colored,authorization,tale,verified,lynn,formerly,bp,situated,comparative,seeks,loving,strictly,routing,docs,stanley,psychological,surprised,elegant,gains,renewal,genealogy,opposed,deemed,scoring,expenditure,brooklyn,liverpool,sisters,critics,spots,oo,hacker,madrid,similarly,margin,coin,solely,fake,salon,norman,excluding,headed,voters,cure,madonna,commander,arch,ni,murphy,thinks,suggestion,soldier,phillips,aimed,justin,bomb,harm,interval,mirrors,tricks,brush,investigate,thy,panels,repeated,assault,spare,deer,tongue,bowling,tri,pal,monkey,proportion,filename,skirt,florence,invest,honey,um,analyses,drawings,significance,ye,lovers,atomic,arabic,gauge,essentials,junction,protecting,faced,mat,rachel,solving,transmitted,produces,oven,ted,intensive,chains,kingston,sixth,engage,noon,switching,quoted,correspondence,farms,imports,supervision,cheat,bronze,expenditures,sandy,separation,testimony,suspect,celebrities,sender,boundaries,crucial,celebration,adjacent,filtering,tuition,spouse,exotic,threats,luxembourg,puzzles,reaching,vb,damaged,laugh,joel,surgical,destroy,citation,pitch,yo,premises,perry,proved,offensive,imperial,dozen,benjamin,teeth,cloth,studying,colleagues,stamp,lotus,salmon,olympus,separated,cargo,tan,salem,mate,likes,butter,pepper,weapon,luggage,burden,chef,zones,races,isle,stylish,slim,maple,luke,grocery,offshore,depot,kenneth,comp,alt,pie,blend,harrison,julie,occasionally,attending,emission,pete,finest,janet,bow,penn,recruiting,apparent,autumn,traveling,probe,midi,toilet,ranked,jackets,routes,packed,excited,helen,mounting,recover,tied,balanced,prescribed,catherine,timely,talked,delayed,chuck,reproduced,hon,dale,explicit,calculation,villas,ebook,consolidated,occasions,brooks,newton,oils,sept,exceptional,anxiety,whilst,unto,prompt,precious,minds,annually,considerations,pays,cox,fingers,sunny,ebooks,delivers,je,queensland,necklace,musicians,leeds,composite,cedar,arranged,lang,theaters,advocacy,raleigh,stud,fold,essentially,designing,threaded,uv,qualify,fingering,blair,hopes,mason,diagram,burns,pumps,slut,ejaculation,sg,vic,peoples,victor,mario,pos,attach,licenses,removing,advised,brunswick,spider,ranges,pairs,trails,preservation,hudson,isolated,interim,assisted,divine,streaming,approve,chose,compound,intensity,technological,syndicate,abortion,venues,blast,calcium,newport,addressing,pole,discounted,indians,shield,harvest,membrane,prague,bangladesh,constitute,locally,concluded,desperate,mothers,iceland,demonstration,governmental,manufactured,candles,graduation,bend,sailing,variations,sacred,morocco,tommy,springfield,refused,brake,exterior,greeting,oliver,congo,glen,delays,synthesis,olive,undefined,unemployment,scored,newcastle,velocity,relay,composed,tears,performances,oasis,cab,angry,fa,societies,brazilian,identical,petroleum,compete,ist,norwegian,lover,belong,honolulu,lips,escort,retention,exchanges,pond,rolls,thomson,barnes,wondering,malta,daddy,ferry,rabbit,profession,seating,dam,separately,physiology,collecting,das,exports,omaha,tire,dominican,chad,loads,friendship,heather,passport,unions,treasury,warrant,frozen,occupied,josh,royalty,scales,rally,observer,sunshine,strain,drag,ceremony,somehow,arrested,expanding,provincial,investigations,ripe,rely,hebrew,gained,rochester,dying,laundry,stuck,solomon,placing,stops,adjust,assessed,enabling,filling,sophisticated,imposed,silence,soviet,possession,cu,laboratories,treaty,vocal,trainer,organ,stronger,volumes,advances,vegetables,lemon,darkness,nuts,nail,vienna,implied,span,stanford,stockings,joke,respondent,packing,statute,rejected,satisfy,destroyed,shelter,chapel,manufacture,layers,guided,accredited,appliance,compressed,bahamas,powell,mixture,bench,tub,rider,radius,perspectives,mortality,logging,hampton,christians,borders,pads,butts,inns,bobby,impressive,sheep,accordingly,architect,railroad,lectures,challenging,wines,nursery,harder,cups,ash,microwave,cheapest,accidents,stuart,contributors,salvador,ali,salad,monroe,tender,violations,foam,temperatures,paste,clouds,discretion,tanzania,preserve,poem,unsigned,staying,easter,theories,repository,praise,jeremy,venice,jo,christianity,veteran,streams,landing,signing,executed,katie,negotiations,realistic,integral,asks,relax,namibia,generating,christina,congressional,synopsis,hardly,prairie,reunion,composer,bean,sword,absent,photographic,sells,ecuador,hoping,accessed,spirits,modifications,coral,float,colin,bias,imported,paths,bubble,por,acquire,contrary,millennium,tribune,vessel,acids,cheaper,admitted,dairy,admit,mem,fancy,equality,samoa,achieving,tap,fisheries,exceptions,reactions,beliefs,ci,companion,squad,analyze,ashley,scroll,relate,divisions,swim,wages,suffer,forests,fellowship,invalid,concerts,martial,males,victorian,retain,colours,execute,tunnel,genres,cambodia,patents,yn,chaos,lithuania,wheat,chronicles,obtaining,beaver,distribute,readings,decorative,confused,compiler,enlargement,eagles,bases,vii,accused,bee,campaigns,unity,loud,bride,rats,defines,airports,instances,indigenous,begun,brunette,packets,anchor,socks,parade,corruption,stat,trigger,incentives,gathered,essex,notified,differential,beaches,dramatic,surfaces,terrible,cruz,pendant,dresses,baptist,scientist,hiring,clocks,females,wallace,nevertheless,reflects,taxation,fever,cuisine,surely,practitioners,transcript,inflation,thee,ruth,pray,compounds,pope,drums,contracting,arnold,reasonably,chicks,bare,hung,cattle,radical,graduates,rover,recommends,controlling,treasure,flame,tanks,assuming,monetary,elderly,pit,arlington,floating,extraordinary,tile,indicating,bolivia,spell,hottest,stevens,kuwait,exclusively,emily,alleged,limitation,compile,webster,struck,illustration,plymouth,warnings,construct,inquiries,bridal,annex,mag,inspiration,tribal,curious,affecting,freight,eclipse,sudan,downloading,shuttle,aggregate,stunning,cycles,affects,detect,actively,knee,prep,pb,complicated,fastest,butler,injured,decorating,expressions,ton,courier,shakespeare,hints,collapse,unlikely,oe,gif,pros,conflicts,beverage,tribute,wired,immune,travelers,forestry,barriers,cant,rarely,infected,offerings,martha,genesis,barrier,argue,incorrect,trains,metals,bicycle,furnishings,letting,arise,guatemala,celtic,thereby,jamie,particle,perception,minerals,advise,humidity,bottles,boxing,wy,renaissance,pathology,sara,bra,ordinance,hughes,bitch,jeffrey,chess,operates,survive,oscar,festivals,menus,joan,possibilities,duck,reveal,canal,phi,contributing,herbs,cow,manitoba,analytical,missions,watson,lying,costumes,strict,dive,circulation,drill,offense,bryan,cet,protest,assumption,jerusalem,hobby,tries,invention,nickname,fiji,enquiries,washing,exploring,trick,enquiry,raid,timber,intense,showers,supporters,ruling,steady,dirt,statutes,withdrawal,myers,drops,predicted,wider,saskatchewan,enrolled,screw,ministers,publicly,hourly,blame,geneva,veterinary,handed,suffered,informal,incentive,butterfly,mechanics,heavily,fifty,mistakes,numerical,ons,uncle,defining,counting,reflection,sink,accompanied,assure,invitation,devoted,princeton,jacob,sodium,randy,spirituality,meanwhile,proprietary,timothy,brick,grip,naval,medieval,porcelain,bridges,captured,watt,decent,casting,dayton,translated,shortly,cameron,pins,carlos,reno,donna,andreas,warrior,diploma,cabin,innocent,scanning,consensus,polo,copying,delivering,patricia,horn,eddie,uganda,fired,journalism,perth,frog,grammar,intention,syria,disagree,klein,harvey,tires,logs,undertaken,hazard,leo,gregory,episodes,circular,anger,mainland,illustrations,suits,chances,snap,happiness,arg,substantially,bizarre,glenn,ur,auckland,fruits,geo,ribbon,calculations,doe,conducting,trinidad,kissing,wal,handy,swap,exempt,crops,reduces,accomplished,geometry,impression,guild,correlation,gorgeous,capitol,sim,dishes,barbados,nervous,refuse,extends,fragrance,mcdonald,replica,brussels,tribe,neighbors,trades,superb,buzz,transparent,rid,trinity,charleston,handled,legends,boom,calm,champions,floors,selections,inappropriate,exhaust,comparing,shanghai,speaks,burton,vocational,davidson,copied,scotia,farming,gibson,fork,troy,roller,batch,organize,appreciated,alter,ghana,edges,mixing,handles,skilled,fitted,albuquerque,harmony,distinguished,projected,assumptions,shareholders,twins,rip,triangle,amend,anticipated,oriental,reward,windsor,zambia,completing,hydrogen,comparable,chick,advocate,sims,confusion,copyrighted,tray,warranties,escorts,thong,medal,coaches,vessels,harbour,walks,sucks,sol,sage,knives,vulnerable,arrange,artistic,bat,honors,booth,reflected,unified,bones,breed,ignored,polar,fallen,precise,sussex,respiratory,invoice,lip,sap,gather,maternity,backed,alfred,colonial,carey,forming,embassy,cave,journalists,danny,rebecca,slight,proceeds,indirect,amongst,wool,foundations,arrest,horizon,nu,deeply,marina,liabilities,prizes,bosnia,decreased,patio,tolerance,lloyd,describing,optics,pursue,lightning,overcome,eyed,ou,quotations,grab,inspector,attract,brighton,beans,bookmarks,ellis,disable,snake,succeed,leonard,lending,reminder,xi,searched,riverside,plains,raymond,abilities,initiated,sullivan,za,trap,lonely,fool,ve,lancaster,suspended,observe,julia,attitudes,karl,berry,collar,simultaneously,racial,bermuda,amanda,sociology,exhibitions,confident,retrieved,exhibits,officially,dies,terrace,bacteria,replied,novels,recipients,ought,delicious,traditions,jail,safely,finite,kidney,periodically,fixes,sends,durable,allied,throws,moisture,hungarian,referring,spencer,uruguay,transform,tablets,tuning,gotten,educators,tyler,futures,vegetable,verse,humanities,independently,wanting,custody,scratch,launches,henderson,bk,britannica,ellen,competitors,rocket,bullet,towers,racks,lace,nasty,latitude,consciousness,ste,tumor,ugly,deposits,beverly,mistress,encounter,trustees,watts,duncan,hart,bernard,resolutions,ment,forty,tubes,attempted,col,priest,floyd,ronald,queue,trance,nicholas,yu,bundle,hammer,invasion,witnesses,runner,rows,administered,notion,sq,skins,mailed,spelling,arctic,rewards,beneath,strengthen,defend,frederick,seventh,gods,une,welsh,belly,aggressive,advertisements,quarters,stolen,soonest,haiti,disturbed,determines,sculpture,ears,fist,fitting,fixtures,mere,agrees,passengers,quantities,petersburg,consistently,cons,elder,cheers,dig,taxi,punishment,appreciation,subsequently,om,nat,gravity,providence,thumb,restriction,incorporate,backgrounds,treasurer,essence,flooring,ethiopia,mighty,athletes,humanity,transcription,holmes,complications,scholars,remembered,galaxy,chester,loc,worn,synthetic,shaw,vp,segments,testament,twist,stomach,partially,buried,minimize,darwin,ranks,wilderness,debut,generations,tournaments,bradley,deny,anatomy,judy,fraction,trio,proceeding,cube,defects,uncertainty,breakdown,milton,reconstruction,subsidiary,clarity,rugs,sandra,adelaide,encouraging,furnished,monaco,settled,folding,comparisons,beneficial,belize,fate,promised,penny,robust,threatened,republicans,discusses,porter,gras,jungle,ver,responded,rim,zen,ivory,alpine,dis,prediction,fabulous,alias,individually,battlefield,literally,newer,kay,spice,oval,implies,soma,ser,cooler,consisting,periodic,submitting,overhead,ascii,prospect,shipment,breeding,citations,geographical,donor,mozambique,tension,trash,shapes,tier,earl,manor,envelope,diane,disclaimers,excluded,andrea,breeds,rapids,sheffield,bailey,aus,finishing,emotions,wellington,incoming,prospects,bulgarian,eternal,cite,aboriginal,remarkable,rotation,nam,productive,boulevard,eugene,ix,gdp,pig,metric,minus,penalties,bennett,imagination,joshua,armenia,varied,grande,closest,actress,mess,assign,armstrong,politicians,lit,accommodate,tigers,aurora,una,slides,milan,premiere,lender,villages,shade,chorus,christine,rhythm,digit,argued,dietary,symphony,clarke,sudden,accepting,precipitation,lions,ada,pools,tb,lyric,claire,isolation,speeds,sustained,matched,approximate,rope,carroll,rational,fighters,chambers,dump,greetings,inherited,warming,incomplete,chronicle,fountain,chubby,grave,legitimate,biographies,burner,investigator,plaintiff,finnish,gentle,prisoners,deeper,muslims,hose,mediterranean,worthy,reveals,architects,saints,carries,sig,duo,excessive,devon,helena,saves,regarded,valuation,unexpected,cigarette,fog,characteristic,marion,lobby,egyptian,tunisia,outlined,consequently,treating,punch,appointments,gotta,cowboy,narrative,enormous,karma,consist,betty,queens,quantitative,lucas,subdivision,tribes,defeat,distinction,honduras,naughty,hazards,insured,harper,livestock,exemption,tenant,cabinets,tattoo,shake,algebra,shadows,holly,silly,yea,mercy,hartford,freely,marcus,sunrise,wrapping,mild,fur,nicaragua,tar,belongs,readily,soc,fence,infinite,diana,relatives,lindsay,clan,legally,shame,satisfactory,revolutionary,bracelets,civilian,mesa,fatal,remedy,breathing,briefly,thickness,adjustments,genius,discussing,fighter,flesh,retreat,adapted,barely,wherever,estates,rug,democrat,borough,maintains,failing,ka,retained,pamela,andrews,marble,extending,jesse,hull,surrey,dem,blackberry,highland,meditation,macedonia,combining,brandon,instrumental,giants,organizing,shed,balloon,winston,ham,solved,tide,hawaiian,partition,invisible,consoles,funk,magnet,translations,jaguar,reel,sheer,commodity,posing,wang,kilometers,bind,thanksgiving,rand,hopkins,urgent,guarantees,infants,gothic,cylinder,witch,buck,indication,eh,congratulations,cohen,sie,puppy,acre,cigarettes,revenge,expires,enemies,aqua,chen,emma,finances,accepts,enjoying,conventions,eva,patrol,smell,pest,coordinates,carnival,roughly,promises,responding,reef,physically,divide,consecutive,satin,bon,deserve,attempting,representations,chan,worried,tunes,garbage,competing,combines,mas,beth,bradford,len,phrases,kai,peninsula,chelsea,boring,reynolds,dom,jill,accurately,speeches,reaches,considers,sofa,ministries,vacancies,parliamentary,prefix,lucia,savannah,barrel,typing,nerve,dans,planets,deficit,boulder,pointing,renew,coupled,viii,harold,circuits,texture,jar,somerset,acknowledge,thoroughly,antigua,nottingham,thunder,tent,caution,identifies,qualification,locks,modelling,namely,miniature,hack,dare,interstate,pirates,aerial,hawk,consequence,rebel,systematic,perceived,origins,hired,textile,lamb,madagascar,nathan,tobago,presenting,cos,centuries,magnitude,richardson,hindu,vocabulary,licking,earthquake,fundraising,weights,albania,geological,lasting,wicked,introduces,kills,pushed,ro,participated,junk,wax,lucy,answering,hans,impressed,slope,failures,poet,conspiracy,surname,theology,nails,evident,epic,saturn,organizer,nut,sake,twisted,combinations,preceding,merit,cumulative,planes,edmonton,tackle,disks,arbitrary,prominent,retrieve,lexington,vernon,sans,irs,fairy,builds,shaft,lean,bye,occasional,leslie,deutsche,ana,innovations,kitty,drain,monte,fires,algeria,blessed,luis,reviewing,cardiff,cornwall,favors,potato,panic,explicitly,sticks,leone,ez,citizenship,excuse,reforms,basement,onion,strand,sandwich,uw,lawsuit,alto,cheque,hierarchy,influenced,banners,reject,eau,abandoned,bd,circles,italic,merry,mil,gore,complement,cult,dash,passive,mauritius,valued,cage,requesting,courage,verde,extraction,elevation,coleman,hugh,lap,utilization,beverages,jake,efficiently,textbook,dried,entertaining,luther,frontier,settle,stopping,refugees,knights,hypothesis,palmer,medicines,flux,derby,peaceful,altered,doctrine,scenic,intersection,sewing,consistency,collectors,conclude,recognised,munich,oman,propose,azerbaijan,lighter,rage,uh,prix,astrology,pavilion,tactics,trusts,occurring,supplemental,travelling,talented,annie,pillow,induction,derek,precisely,shorter,harley,spreading,provinces,relying,paraguay,steal,parcel,refined,bo,fifteen,widespread,incidence,fears,predict,boutique,rolled,avon,incidents,peterson,rays,shannon,enhancing,flavor,alike,walt,homeless,horrible,hungry,metallic,blocked,interference,warriors,palestine,undo,atmospheric,wm,dana,halo,curtis,parental,strikes,lesser,publicity,marathon,ant,proposition,pressing,gasoline,apt,dressed,scout,belfast,dealt,niagara,inf,eos,charms,trader,bucks,allowance,denial,uri,designation,thrown,raises,gem,duplicate,criterion,badge,wrist,civilization,analyzed,heath,tremendous,ballot,varying,remedies,validity,trustee,weighted,angola,performs,realm,corrected,jenny,helmet,salaries,elephant,yemen,encountered,scholar,nickel,surrounded,geology,creatures,coating,commented,wallet,cleared,accomplish,boating,drainage,corners,broader,vegetarian,rouge,yeast,yale,newfoundland,sn,pas,clearing,investigated,ambassador,coated,intend,stephanie,contacting,vegetation,doom,louise,kenny,specially,owen,hitting,yukon,beings,bite,aquatic,reliance,habits,striking,myth,infectious,singh,gig,gilbert,continuity,brook,fu,phenomenon,ensemble,assured,biblical,weed,conscious,accent,eleven,wives,utilize,mileage,auburn,unlock,pledge,vampire,angela,relates,nitrogen,dice,dock,differently,framing,organised,musician,blocking,sorts,limiting,dispatch,revisions,papua,restored,hint,armor,riders,chargers,remark,dozens,varies,reasoning,rendered,picking,charitable,guards,annotated,convinced,openings,buys,replacing,watershed,councils,occupations,acknowledged,nudity,pockets,granny,pork,zu,equilibrium,inquire,pipes,characterized,laden,cottages,merge,privilege,edgar,develops,qualifying,estimation,barn,pushing,fleece,fare,pierce,allan,dressing,sperm,bald,frost,leon,institutes,mold,dame,fo,sally,yacht,tracy,prefers,drilling,herb,ate,breach,whale,traveller,appropriations,suspected,tomatoes,beginners,instructors,bedford,stationery,idle,mustang,unauthorized,clusters,competent,momentum,fin,io,pastor,mud,calvin,uni,shark,contributor,demonstrates,phases,grateful,emerald,gradually,laughing,grows,cliff,desirable,tract,ballet,ol,journalist,abraham,bumper,afterwards,religions,garlic,shine,senegal,explosion,banned,briefs,signatures,cove,casa,mu,daughters,conversations,radios,tariff,opponent,simplified,muscles,wrapped,swift,vagina,eden,distant,champagne,ala,decimal,deviation,superintendent,dip,hostel,housewives,employ,mongolia,penguin,magical,influences,irrigation,miracle,reprint,reid,hydraulic,centered,robertson,yearly,penetration,wound,belle,rosa,conviction,hash,omissions,writings,hamburg,lazy,qualities,fathers,charging,cas,marvel,lined,cio,dow,prototype,petite,apparatus,terrain,pens,explaining,yen,strips,gossip,rangers,nomination,empirical,rotary,worm,dependence,beginner,boxed,lid,cubic,deaf,commitments,suggesting,sapphire,skirts,mats,remainder,crawford,labeled,privileges,marking,commodities,serbia,sheriff,griffin,declined,guyana,spies,neighbor,elect,highways,concentrate,intimate,reproductive,preston,deadly,molecules,rounds,refrigerator,intervals,sentences,exclusion,holocaust,keen,peas,receivers,disposition,variance,navigator,investigators,cameroon,baking,computed,needle,baths,cathedral,brakes,og,nirvana,ko,owns,til,sticky,destiny,generous,madness,climb,blowing,fascinating,landscapes,heated,lafayette,wto,computation,hay,salvation,dover,adrian,predictions,accompanying,vatican,brutal,selective,arbitration,token,editorials,zinc,sacrifice,seekers,isa,removable,yields,gibraltar,levy,suited,anthropology,skating,aberdeen,emperor,grad,bras,belts,blacks,educated,reporters,burke,proudly,necessity,rendering,inserted,pulling,curves,suburban,touring,clara,tomato,waterproof,expired,travels,flush,pale,hayes,humanitarian,invitations,functioning,delight,survivor,garcia,economies,alexandria,moses,counted,undertake,declare,continuously,johns,valves,gaps,impaired,achievements,donors,tear,jewel,teddy,convertible,teaches,ventures,nil,stranger,tragedy,julian,nest,painful,velvet,tribunal,ruled,pensions,prayers,nowhere,cop,paragraphs,gale,joins,adolescent,nominations,wesley,dim,lately,cancelled,mattress,likewise,banana,introductory,cakes,stan,reservoir,occurrence,idol,bloody,remind,worcester,charming,mai,tooth,disciplinary,annoying,respected,stays,disclose,affair,drove,upset,restrict,beside,mines,portraits,rebound,logan,mentor,interpreted,fought,baghdad,elimination,metres,hypothetical,immigrants,complimentary,pencil,freeze,performer,abu,titled,commissions,sphere,moss,concord,graduated,endorsed,ty,surprising,walnut,lance,ladder,italia,unnecessary,dramatically,liberia,sherman,cork,hansen,senators,mali,yugoslavia,bleeding,characterization,colon,likelihood,lanes,purse,fundamentals,contamination,endangered,compromise,masturbation,stating,dome,caroline,expiration,bless,engaging,negotiation,crest,opponents,triumph,nominated,electoral,welding,deferred,alternatively,heel,alloy,plots,polished,yang,gently,locking,casey,controversial,draws,blanket,bloom,lou,elliott,recovered,fraser,justify,blades,loops,surge,aw,tahoe,advert,possess,demanding,defensive,sip,forbidden,vanilla,deutschland,picnic,souls,arrivals,practitioner,dumb,smithsonian,hollow,vault,securely,examining,groove,revelation,pursuit,delegation,wires,dictionaries,mails,backing,greenhouse,sleeps,blake,transparency,dee,travis,endless,orbit,niger,bacon,survivors,colony,cannon,circus,forbes,mae,mel,descending,spine,trout,enclosed,feat,cooked,transmit,fatty,gerald,pressed,scanned,reflections,hunger,sic,municipality,joyce,detective,surgeon,cement,experiencing,fireplace,endorsement,disputes,textiles,missile,closes,seq,persistent,deborah,marco,assists,summaries,glow,gabriel,auditor,violin,prophet,bracket,isaac,oxide,oaks,magnificent,erik,colleague,naples,promptly,adaptation,hu,harmful,sexually,enclosure,dividend,newark,kw,paso,phantom,westminster,turtle,distances,absorption,treasures,warned,ware,fossil,mia,badly,apollo,wan,disappointed,persian,continually,communist,greene,grenada,creations,jade,scoop,acquisitions,foul,earning,excitement,somalia,verbal,blink,presently,seas,carlo,mysterious,novelty,bryant,tiles,librarian,switched,stockholm,pose,grams,richards,promising,relaxation,goat,render,carmen,ira,sen,thereafter,hardwood,temporal,sail,forge,commissioners,dense,brave,forwarding,awful,nightmare,reductions,southampton,impose,organisms,telescope,asbestos,portsmouth,meyer,enters,pod,savage,advancement,wu,willow,resumes,bolt,gage,throwing,existed,whore,generators,lu,wagon,dat,favour,knock,urge,generates,potatoes,thorough,inexpensive,kurt,peers,roland,quilt,huntington,creature,ours,mounts,syracuse,lone,refresh,aluminium,michel,subtle,notre,shipments,stripes,antarctica,cope,shepherd,cradle,chancellor,lime,kirk,flour,controversy,legendary,sympathy,choir,avoiding,beautifully,blond,expects,fabrics,hygiene,wit,poultry,virtue,burst,examinations,surgeons,bouquet,promotes,mandate,departmental,ind,corpus,johnston,terminology,gentleman,fibre,reproduce,shades,jets,qui,threatening,spokesman,frankfurt,prisoner,daisy,halifax,encourages,assembled,earliest,donated,insects,terminals,crude,morrison,maiden,sufficiently,examines,viking,myrtle,bored,yarn,knit,conditional,mug,bother,budapest,knitting,attacked,mating,compute,arrives,translator,automobiles,allah,continent,ob,fares,longitude,resist,challenged,hoped,pike,insertion,hugo,wagner,constraint,touched,strengthening,cologne,wishing,ranger,smallest,insulation,newman,marsh,scared,infringement,bent,laos,subjective,monsters,asylum,robbie,stake,cocktail,outlets,varieties,arbor,poison,dominated,costly,derivatives,prevents,stitch,rifle,severity,notable,warfare,judiciary,embroidery,mama,inland,greenland,interpret,accord,modest,countryside,sorting,liaison,unused,bulbs,consuming,tourists,sandals,seconded,waist,attributed,seychelles,fatigue,owl,patriot,sewer,crystals,kathleen,bosch,forthcoming,num,treats,marino,detention,carson,exceeds,complementary,gallon,coil,battles,traders,carlton,bitter,memorandum,burned,cardinal,dragons,converting,romeo,din,incredibly,delegates,turks,roma,balancing,att,vet,sided,claiming,courtyard,presidents,offenders,depart,cuban,tenants,expressly,distinctive,lily,brackets,unofficial,oversight,privately,minded,resin,allies,twilight,preserved,crossed,kensington,monterey,linen,rita,ascending,seals,nominal,alicia,decay,weaknesses,quartz,registers,eighth,usher,herbert,authorised,improves,advocates,phenomena,buffet,deciding,skate,joey,hackers,tilt,granite,repeatedly,lynch,masses,transformed,athlete,franc,bead,enforce,similarity,landlord,leak,timor,assorted,implements,adviser,flats,compelling,vouchers,expecting,heels,voter,urine,capri,towel,ginger,suburbs,imagery,sears,als,flies,competence,inadequate,crying,matthews,amateurs,crane,defendants,deployed,governed,considerably,investigating,rotten,habit,bulb,scattered,honour,useless,protects,northwestern,audiences,iris,coupe,hal,benin,bach,manages,erosion,abundance,carpenter,khan,insufficient,highlands,peters,fertility,clever,primer,che,lords,bu,tends,enjoyable,crescent,freshman,playground,negotiate,sixty,exploit,orgies,permanently,concentrated,distinguish,ei,projections,spark,illustrate,lin,patience,securing,pathway,shallow,stir,spike,plated,jacques,drawer,ingredient,togo,lifting,judith,curtain,disclosed,davies,tactical,pilots,copenhagen,expedition,pile,operative,humour,maturity,caller,distortion,prosecution,het,tonga,imprint,natalie,receipts,assisting,shirley,sanctions,goodbye,emerged,defect,poorly,goddess,backs,observers,magnets,formulas,spacious,shoulders,nas,argues,wade,soils,chapman,organs,det,loyalty,beloved,sometime,ballard,beating,faithful,libya,offence,invested,whatsoever,numbered,terminated,expands,sedan,pony,comprises,leap,bolton,founding,swan,covenant,dropping,archaeology,sailor,fittings,lining,banquet,cares,sanctuary,flora,statue,hilary,quotation,equals,hardy,caravan,diagrams,harness,manipulation,bells,vascular,alongside,impressions,yankees,forwarded,gal,transmitter,dorothy,freeman,andre,ems,puppies,relaxing,delphi,trophy,emotion,nets,sights,uniforms,disasters,asterisk,versatile,liquor,kindergarten,profitable,wounded,clayton,derivative,suffolk,necklaces,tot,occupancy,doses,educate,baked,glove,prejudice,herzegovina,probable,baldwin,incorporation,rem,evolutionary,arriving,decoration,trojan,assistants,counselor,spinal,eliminated,sooner,struggling,enacted,tenure,plush,weber,unstable,elk,nelly,fulfill,urged,reflecting,brent,gaining,definitive,appropriately,shifts,inactive,lansing,traveled,adapt,extracted,accession,patterson,carriage,therein,terminate,rex,fuels,traditionally,withdraw,soy,brett,anchorage,paula,landmark,greens,neat,naming,stern,bentley,bud,slaves,dentist,utilizing,mis,burkina,tutor,idiot,comprised,winnipeg,charities,mickey,sebastian,aliens,domino,raven,defeated,strains,dwelling,slice,tanning,gambia,aspen,lacking,symbolic,cest,objectionable,angles,pressures,webb,mediation,venus,bump,cowboys,flames,primitive,auf,stocking,esp,balloons,malcolm,georgetown,norwich,halls,decorations,pause,simplicity,postscript,dividends,relaxed,periodicals,pearson,demon,welcomed,infinity,gabon,notation,chandler,aunt,interviewed,crow,dia,discontinued,concurrent,decides,caption,bargaining,complain,pulmonary,adhesive,toledo,asses,altitude,compass,closet,couch,evolved,downs,exceeding,rogue,unfair,electronically,augusta,infantry,renowned,corridor,philosophical,scripture,celebrating,sahara,justification,rebuild,vacant,manuscript,fixing,gram,hiding,methodist,dye,sits,alphabet,shelves,toes,cleaned,honored,optic,hannah,telephones,insect,frances,diaries,chili,grief,leicester,sweat,dolphin,pendants,wonders,ventilation,masks,bust,lateral,quake,alley,gardner,sanders,pathways,telegraph,pertaining,memorable,professors,monument,formally,twain,ile,nevis,dew,lavender,justified,withdrawn,breeze,debates,gems,outgoing,mann,yankee,outs,deficiency,gum,progression,adv,saddle,malaria,loyal,torrent,odyssey,spite,nero,capita,imply,inaccuracies,tendency,caledonia,wholly,chill,utilized,embrace,ein,liner,manila,auxiliary,initiate,ua,elevated,purely,fry,lifts,vivid,allegations,stationary,corresponds,foil,whitney,celebrated,alarms,hunters,roi,allison,stairs,kt,acted,byron,critique,honestly,skull,continuation,carnegie,servant,falcon,jointly,canadians,avoided,comprising,tick,terrier,listened,explanations,renewed,incorporating,variant,riley,equatorial,critic,sediment,translators,squares,deg,bot,lea,vans,od,honeymoon,percussion,glue,cone,margins,sands,survived,spinning,adequately,spectral,prevalence,dominica,contaminated,fragment,finishes,lecturer,embroidered,bucket,steak,commits,cobra,threw,sutton,djibouti,authorize,decorated,credited,cherokee,apo,ao,recruit,simmons,gals,hoc,wherein,appearances,performers,dessert,dissertation,walsh,nos,marry,blankets,enthusiasm,confusing,celebrations,approaching,bounce,ivan,spiral,governors,weakness,wills,katherine,atoms,jacobs,mauritania,tissues,reminded,drake,cynthia,roosevelt,practicing,schmidt,nicely,surprisingly,expressing,della,laurel,carolyn,rails,fried,cairo,ambulance,practically,traded,signaling,vivo,domination,shrimp,chords,molecule,dedication,desires,woody,dismissed,cried,psychic,cracks,analyzing,sincerely,beaten,piercing,antilles,establishments,marginal,visions,efficacy,prestige,cocaine,accelerated,pinnacle,tucker,recognizes,plugs,responsive,supra,omitted,molly,proximity,ku,belonging,unbiased,pear,chiefs,franz,collision,supplementary,clue,scandal,lodges,dangers,lys,travellers,gia,scream,discrepancies,pirate,senses,repeats,willie,rival,slower,simulated,culinary,fairfax,beck,huh,accountant,propaganda,offender,waterloo,warwick,rounded,boarding,vanity,mitigation,tome,prof,homer,daylight,macdonald,gases,dependency,dioxide,fireworks,genus,approached,catching,cutter,connects,ont,liberals,aperture,roofing,dixon,elastic,melody,sins,cousin,hath,recalls,consultations,debts,phillip,burial,balcony,prescriptions,prop,avril,willis,myths,camden,coupling,knees,neglect,emerge,winchester,clutch,shy,poets,auditorium,pedro,maid,sid,carrie,towels,canterbury,trent,barber,intuitive,rigid,sta,degradation,ret,orthodox,erin,ferguson,fragments,mariana,qualitative,claude,minorities,blown,diffusion,baton,polynesia,barton,umbrella,rods,stimulation,abbey,pigs,olivia,refugee,straps,maya,discourse,lancashire,headache,stained,marital,socialist,bruno,attracted,undertaking,slavery,notwithstanding,feasible,romans,credibility,shores,fest,thames,flowing,montenegro,deed,whirlpool,perfumes,sustain,mechanic,bauer,eliminating,rejection,bowls,dissemination,cardinals,cosmic,dawson,defective,lengths,beacon,hoover,politically,elective,forensic,botanical,quartet,suspense,drafting,cruel,observing,advertised,commencement,southwestern,conform,helmets,firing,eager,denise,touching,vacancy,papa,settlements,strawberry,chang,gloria,elevator,pupil,feast,maggie,redemption,profound,canton,nina,registering,seth,warn,conservatives,bonnie,laying,provisional,compiling,strive,releasing,martinique,shells,painter,ankle,peso,leagues,monkeys,historically,transitions,prevented,digits,err,banker,sup,easiest,borrow,bamboo,lv,denotes,communicating,ki,decks,vibration,stepped,vent,blunt,protector,aux,react,understands,rises,issuing,accents,insane,buddha,voyage,een,colonel,transitional,mozart,acceleration,sketch,hoffman,balances,firearms,nightly,pitt,deduction,dancer,coats,pol,capsules,hyde,firmly,doo,dots,pursuing,aston,mugs,washed,resonance,mosaic,rhodes,fiesta,vase,forcing,fairs,flute,durability,meadows,hindi,harsh,outfit,substitution,burma,cease,deserves,aboard,irving,perfection,joints,overwhelming,poles,bounds,lyon,santiago,vera,advising,altogether,devils,dignity,europa,wondered,cheshire,boyd,sliding,accumulation,descriptive,inst,feasibility,negotiating,homo,pier,sioux,cote,premiums,lutheran,fellows,valencia,superman,perkins,ideally,splash,equip,saga,probation,ast,gran,commissioned,hedge,ke,fender,violet,dancers,mutation,envelopes,alle,compulsory,favorable,rue,preparations,maxwell,illustrates,inheritance,curry,oblique,pearls,worms,satisfying,succeeded,apples,elf,dewey,surviving,pouch,advent,proposes,hooks,ces,exploitation,singers,mayo,tasmania,mansion,cha,surrender,schneider,accumulated,arsenal,dub,screws,pyramid,enjoys,hacking,stripe,averages,peaks,tai,como,lisp,limousine,churchill,affirmative,keynote,planted,petitioner,spoon,bombs,niche,fortunately,cigar,vis,calculating,erie,berkshire,proportional,credentials,deprecated,municipalities,chin,locker,jenkins,squash,expectation,severely,spotted,curse,ajax,coconut,interrupt,conductor,wont,liberation,grandfather,removes,luxurious,titan,booked,anita,indirectly,nile,blessing,lumber,pillows,portals,illustrator,asleep,potassium,prompted,shout,presidency,abnormal,delicate,convince,whoever,straw,lifted,mankind,uncertain,paramount,upright,breakfasts,inspectors,emergencies,ernest,shocked,alcoholic,bakery,lieutenant,orchid,histories,loses,atkins,variability,observatory,soda,waited,preventive,peach,calculus,stefan,breathe,dunn,smiling,ounces,economically,uncut,intact,noting,shifting,samurai,moines,ivy,delegate,lightly,negotiated,herman,congestion,runners,stove,accidental,talents,nixon,refuge,brady,guadeloupe,walton,carved,ark,freak,obstacles,preferably,bluff,jasper,sed,newborn,sadly,laughed,avail,emerson,regulate,orchard,mythology,trousers,hatch,replaces,tomb,regina,stein,shortage,privileged,spill,goodness,drift,extracts,professions,explored,mysteries,fuller,decreases,crisp,cor,keeper,reinforced,johannesburg,spells,specifying,buddhist,inevitable,etiquette,environ,nic,coloured,births,kr,cubs,wheeler,ritual,miguel,pulp,onset,interpreter,specimens,initiation,assay,reconciliation,pots,recognizing,leigh,slam,respects,tents,plaque,accounted,deposited,lowe,beavers,crib,defending,pulls,autonomous,granting,motoring,appropriation,condensed,philippine,theological,quietly,scenery,drying,assemblies,collateral,learner,welcomes,swallow,tara,transplant,usenet,marines,lighthouse,proves,crab,jen,brightness,maurice,brooke,consumed,maxim,bore,depreciation,technically,enjoyment,cows,austrian,correspond,slate,suzanne,confined,inhabitants,straightforward,delighted,morton,peel,cue,jupiter,simultaneous,monopoly,debris,han,intentions,pagan,widow,sac,peg,randall,benson,sleeves,troubled,footnote,vibrant,evolving,sweater,approximation,skies,barrett,burners,alison,fitzgerald,kicks,disappeared,canoe,sovereign,reminds,organism,corrupt,violated,correspondent,drought,bake,hurricanes,symptom,laughter,propagation,ignorance,explosive,inventor,scaling,juicy,moody,fashioned,grains,vicinity,thyroid,purification,heal,southeastern,wizards,horoscope,prosperity,rainfall,mum,launching,pedal,plantation,storing,asa,tote,jumped,seemingly,tuned,passionate,staples,mayer,backward,sour,combustion,scrap,administer,bilateral,bella,blondes,disposable,williamson,sock,gentlemen,terra,literal,questioned,guiding,charcoal,vapor,beware,aloud,glorious,overlap,handsome,grounded,bail,goose,fn,judgement,cruiser,cumberland,gifted,esteem,cascade,endorse,strokes,shelby,hen,ancestry,dolphins,adopting,landed,nucleus,detached,scouts,warsaw,ib,mist,verb,chic,objection,phosphate,noisy,abide,sentinel,birthdays,preserving,vest,neal,economist,meridian,marriages,regret,stakes,rotating,brigade,movable,doubles,bliss,humiliation,tens,litter,reflective,abbreviations,executing,greenwich,flooding,rugged,jelly,grandmother,renovation,puma,appoint,panthers,perceptions,greenwood,ignition,humble,petrol,midway,mania,edwin,ax,clare,recognise,hostile,aphrodite,establishes,whites,rant,trapped,bolts,diplomatic,fringe,linguistic,internally,planetary,laurent,ego,manuel,gaza,influenza,gill,rude,sang,steele,citing,viewpoint,nay,servants,meanings,conception,unemployed,heavenly,exeter,amusement,middlesex,curl,albanian,overflow,hastings,subsidies,thirds,willingness,implicit,patriotic,simplify,darling,schwartz,satan,ornaments,oppose,terrific,definite,congregation,regiment,cheer,everett,reviewers,misleading,marty,vine,vale,whereby,deceased,sparks,simpler,captures,capitalism,hancock,falkland,cur,mammals,grape,russ,peppers,deeds,lively,inequality,educator,premature,tripod,immigrant,demonstrations,obsolete,rust,lon,interfere,traps,shuffle,wardrobe,vin,successes,racer,fabrication,guilt,sweep,nash,exploited,bladder,inflammatory,iss,immunity,bets,doyle,ducks,paints,neighbourhood,cheating,carr,fade,tastes,storms,smiled,jurisdictions,scrutiny,regeneration,lunar,differentiation,shields,nonsense,invented,elaine,posed,subjected,tasting,gwen,mob,expose,borrowing,arises,imf,precautions,branded,manning,lisbon,forks,monk,boxer,shining,weigh,clerical,voyager,hobart,moose,dorset,buenos,conscience,crush,mystic,solicitation,rectangular,fischer,pooh,enthusiast,positively,shaping,ich,afghan,inspire,paulo,torn,meantime,pumping,patented,revival,disappear,lever,redundant,regency,tasty,gag,mccarthy,heck,civilians,bark,carts,wasted,cocoa,invites,cushion,reversed,lynx,goa,specimen,ancestors,panther,mixes,graves,branding,examiner,vineyard,meadow,feeder,mercer,roms,goodman,listener,chloride,awaiting,kane,becker,bulls,orion,councillor,hurry,clarkson,beneficiary,hanson,offspring,panorama,roth,odor,demanded,wastes,clash,fidelity,sis,castro,flew,holden,ale,sem,rhapsody,trumpet,solitaire,decreasing,freezing,kaiser,wallis,criminals,retire,rumors,accomplishments,emergence,theatres,apex,crimson,compassion,needing,twentieth,pronounced,extensively,stain,conrad,wished,transient,kicked,coloring,curb,reign,trivial,coke,clauses,baron,sensible,unlawful,bates,webs,swinging,accountable,thrust,proving,opposing,novice,hewitt,dei,delightful,cane,cruising,fury,personalities,stiff,todo,noah,wore,christchurch,traces,rabbi,puffy,weston,headings,enthusiasts,ridiculous,scattering,secretaries,contracted,elbow,fights,scholarly,detailing,stark,roberto,strongest,hammond,padded,circa,revise,contributes,surroundings,proficiency,uranium,honours,consolidate,daniels,billions,hut,stafford,labrador,refusal,lima,suppression,weaver,readiness,secular,majesty,fishery,teresa,distributing,estimating,outdated,dues,pewter,distress,pumpkin,notably,intends,trevor,homosexual,garment,supplying,secondly,razor,cough,cerebral,grandma,oceans,displacement,backwards,arrows,volunteering,presumably,plea,constructive,bundles,tibet,pres,isles,stretching,ovens,garrett,esther,abundant,deductible,priests,accompany,compares,hesitate,inspiring,prey,deposition,laurie,tas,zodiac,pavement,keller,pedestrian,fencing,artery,inlet,rub,violate,stimulate,realise,fluids,conveniently,lick,gov,stealth,ter,ness,repayment,canopy,gloss,whip,porch,pertinent,lifelong,promoter,collegiate,construed,interchange,remotely,fletcher,concise,fibers,handful,brains,curtains,eaten,indigo,retaining,kelley,autobiography,conditioned,prohibition,motions,emphasize,excite,rebels,believing,hilarious,salisbury,gu,quoting,sinks,steep,dynasty,creed,nan,raiders,spreads,elegance,volatile,pointers,sensory,throne,chartered,slopes,socially,unfortunate,seized,territorial,leases,consisted,randolph,memoirs,alkaline,expire,och,midst,borne,forgive,competitor,mansfield,neighbours,marvin,conversions,usable,tempo,mutations,readable,almanac,conway,ay,gail,responds,denote,slayer,payne,purchaser,relies,inserting,tibetan,prepares,concludes,waterford,rodney,cylinders,mus,selects,fulton,directing,nationality,torch,zurich,stretched,depressed,encounters,haunted,spares,symmetry,bout,salons,olympia,hank,negligence,screened,helper,carlisle,rancho,transferring,stepping,hacks,attic,appetite,sensation,piper,morality,honorable,wealthy,handicap,skinny,sewage,endowment,demonstrating,avec,sonoma,esta,defender,amos,wretch,sunlight,stems,wo,ventura,convey,ang,evergreen,bearings,govern,feather,fond,sore,fiat,sixteen,blinds,traits,tightly,graded,successor,intrusion,sickness,guiana,underneath,prohibit,noel,cans,abused,avery,brushes,tenth,anthology,prosecutor,smiles,merged,auditors,grandchildren,desks,capsule,aided,suspend,eternity,introductions,weighing,currents,aide,kindly,nes,protests,sharks,notch,minors,dances,revealing,reprinted,fernando,mapped,resurrection,lieu,decree,tor,discovering,tuberculosis,lacks,horizons,daytime,elaborate,contour,gamble,fra,descent,gravel,analyse,disturbing,judged,shutter,illusion,ambitious,ole,notorious,ibid,residue,reds,enlarged,stephens,transforming,stripping,bart,assert,fluctuations,bowie,archaeological,inspect,thrice,babylon,edison,casualty,musings,poses,noir,eli,evan,mushroom,designate,scent,sequel,gymnastics,titanic,knob,wolves,exquisite,upward,sentenced,dundee,principe,acquiring,judging,unchanged,kicking,meg,fines,grasp,streak,ounce,thirteen,tragic,theodore,buena,irrelevant,professionally,liberties,sounding,milano,toast,happily,hooked,shrink,knox,unesco,mutually,beaded,remembering,boca,exodus,compartment,brittany,dove,testified,iis,cunningham,derive,affinity,presbyterian,pretend,buddhism,amnesty,borrower,gloucester,warrants,owens,fairness,needles,coll,quota,discreet,versa,imp,oi,mack,pu,sung,lowell,whichever,starr,elliot,uae,chooses,tuscany,crowded,tickling,wee,unreal,wounds,advisers,manufactures,physiological,addison,charters,generalized,unprecedented,flint,dummy,financially,awake,sanitation,swivel,ally,dissolved,cleanliness,kung,collectively,inhibition,burnt,solidarity,frustrated,muhammad,alma,ger,hanover,inverse,clifton,holt,isis,verdict,nominee,medals,dickinson,christi,lister,recurring,studs,rhetoric,modifying,incubus,impulse,surveyed,creditors,dull,tis,cabins,commenced,ballroom,employing,satellites,ignoring,stevenson,coherent,beetle,converts,majestic,bicycles,omni,clifford,critically,cy,composers,localities,owe,reciprocal,accelerate,hatred,questioning,manifest,indications,petty,permitting,som,behave,bees,zeppelin,felix,shiny,carmel,encore,smash,angelina,braun,destructive,sockets,claimant,psa,ample,countless,energies,repealed,listeners,abusive,merits,scarf,strangers,garland,voor,riviera,apprentice,obscure,napoleon,glamour,hated,sigh,trolley,principals,sidney,spicy,frankly,chronological,itinerary,fools,beard,discoveries,economical,miniatures,wedge,adjusting,mock,peggy,bats,patriots,ruins,sheila,dependencies,benton,chateau,denis,homestead,changer,sergeant,melt,syrian,ned,cypress,courtney,cites,prospectus,protectors,interiors,encouragement,disadvantages,abbott,tailor,chocolates,faux,supervised,interpreting,pascal,tha,serenity,ore,pant,sheridan,gallons,attainment,sanitary,cooperate,dreaming,fortunate,mushrooms,interpretations,geoffrey,faults,silva,grease,diablo,cairns,premise,epidemic,prima,rite,cinnamon,lac,discharged,alba,underworld,variants,palms,lawsuits,seated,lattice,realization,absorbed,sirius,chord,vous,turf,asphalt,improper,dilemma,rebuilding,livingston,commenting,shifted,tangible,smoked,hawks,irons,comet,berg,baltic,corrective,competency,muse,probing,teachings,tyne,fowler,xv,youngest,contingent,refreshing,syrup,xii,warmth,hawkins,lust,correlated,augustine,dominion,verses,astronomical,solvent,luna,amplitude,aesthetic,commercially,dion,wolfgang,completeness,irregular,barker,solids,capturing,certify,consulted,realised,jude,eighteen,singular,jennings,demons,unacceptable,redistribute,coping,baxter,outbreak,abdominal,deficiencies,curved,milestone,erase,lien,nip,bites,prose,marx,incidental,toni,arguing,vein,hale,swear,bel,clown,spontaneous,summers,taboo,equestrian,malicious,consume,amazed,fourteen,legislators,volcano,capacities,skeleton,tsp,suspects,displaced,sounded,honesty,dwarf,bis,northeastern,shocks,rewarding,battalion,candid,schooling,thornton,schoolgirl,caesar,pines,stellar,davenport,locating,monogram,philippe,aix,ornament,urges,sophie,attacking,microscope,threaten,bait,badges,kitten,brides,dent,stealing,bullets,emphasized,glossy,informations,haired,alterations,pablo,biographical,confirms,cavity,molded,vladimir,ida,probate,terrestrial,completes,beams,props,incense,formulated,dough,stool,towing,welch,rosemary,millionaire,turquoise,exposures,boone,substituted,horde,paperwork,nanny,suburb,hutchinson,cohort,succession,alliances,sums,averaged,glacier,pueblo,rigorous,relieve,clarion,override,angus,enthusiastic,lame,squeeze,sar,burgundy,struggles,farewell,soho,ashes,vanguard,natal,locus,evenings,misses,troubles,elton,purity,shaking,witnessed,cellar,friction,prone,valerie,enclosures,mer,equitable,fuse,lobster,judaism,atlantis,amid,onions,corinthians,crosses,uncomfortable,sylvia,furnace,poisoning,doubled,clues,inflammation,rabbits,icc,transported,crews,goodwill,anxious,tariffs,norris,ly,baptism,cutlery,overlooking,knot,rad,gut,staffordshire,factories,swords,advancing,timed,evolve,yuan,esa,suspicious,leased,subscribed,tate,dartmouth,brewing,coop,blossom,scare,confessions,bergen,lowered,thief,prisons,pictured,feminine,grabbed,rocking,nichols,blackwell,fulfilled,sweets,nautical,imprisonment,employs,gutenberg,bubbles,ashton,pitcher,judgments,muscular,motif,illnesses,plum,saloon,prophecy,loft,historian,elm,facsimile,hurts,folded,sofia,comprise,lump,disposed,chestnut,engraved,halt,alta,pastoral,unpaid,ghosts,doubts,locality,substantive,bulletins,worries,hug,rejects,spear,nigel,referee,transporter,jolie,broadly,ethereal,crossroads,aero,constructing,smoothly,parsons,bury,blanc,autonomy,bounded,insist,birch,slash,exercised,detecting,howell,digestive,entertain,cinderella,sesame,duct,touches,joanne,housewife,pursued,lend,corvette,yachts,stacy,christie,unrelated,lois,levi,stimulating,mont,misuse,cosmos,speculation,dixie,pans,enforced,legion,fulfillment,assertion,shook,lincolnshire,dismissal,mah,shocking,overland,prolonged,isaiah,backbone,unanimously,sausage,neighboring,uncommon,centralized,stratford,heidi,objections,unpublished,ames,slaughter,enlightenment,pistol,juniors,rockets,seymour,arithmetic,supposedly,bombay,originals,enrichment,milford,buckle,bartlett,fetch,kitchens,wat,rey,divers,townsend,blackburn,founders,sundays,upside,admiral,patron,sandwiches,sinclair,boiler,anticipate,induce,annapolis,padding,diagonal,unite,cracked,debtor,polk,mets,shear,mortal,sovereignty,franchises,rams,cleansing,gown,ponds,archery,excludes,sabbath,ruin,trump,nate,escaped,precursor,mates,stella,passages,vu,cereal,comprehension,sy,tow,resolving,drills,alexandra,champ,agreeing,rented,deductions,harrisburg,brushed,augmentation,otto,annuity,assortment,credible,ik,cultured,importing,deliberately,openly,crawl,theo,sparkling,bindings,convincing,flaws,este,tracing,deviations,incomes,fragile,jeremiah,sapiens,nyt,olsen,serbian,hai,restoring,sanchez,rushing,behold,amherst,alteration,murdered,hazel,ledger,scarlet,crushed,laughs,connie,referendum,modulation,statues,depths,spices,communion,uncertainties,colonies,followers,caldwell,squadron,bei,rupee,subsidy,demolition,irene,felony,lungs,monuments,veronica,filtered,growers,vinci,adj,haul,acknowledgement,duly,roasted,tenders,inviting,rig,ov,mick,mustard,strait,masterpiece,obey,donkey,jacks,conceived,boasts,praying,oss,multiply,intercourse,radial,mare,instructed,stole,kirby,armour,summarized,avalanche,northampton,manuscripts,cary,exhibited,disciples,shaving,bishops,kite,destroying,humorous,faa,corona,heap,griffith,erection,quasi,energetic,disturbance,saunders,ribbons,jew,exile,bilder,reside,cashier,jaw,butterflies,eats,knots,flea,offences,anton,pals,celebrates,hail,armenian,longitudinal,historians,realities,mentions,samson,jumps,fleming,optimistic,wasting,acclaimed,seldom,morrow,glitter,giovanni,lasted,awhile,scaled,contingency,wiltshire,vague,wraps,constituents,herd,handicapped,exported,lag,warns,harmless,sting,bravo,believers,dispersion,curiosity,resting,missiles,persistence,coarse,continents,carpets,recovering,submarine,blessings,prevailing,originated,axe,sculptures,intrinsic,thoughtful,nicht,archer,hertfordshire,warmer,calf,basil,grouped,dominate,orient,contra,damaging,populated,renee,boiling,journeys,parsing,splitting,derbyshire,abandon,rave,ej,dy,cigars,nicolas,inference,ras,recalled,transformer,weiss,declarations,rib,chattanooga,giles,drafts,excursions,jerk,shack,marrow,tavern,bathing,lambert,epilepsy,allowances,goggles,ses,unhappy,foregoing,certainty,sleek,gerard,antarctic,ord,successive,neglected,ariel,monty,cafes,classmates,hitch,fracture,ama,foremost,nineteenth,chesapeake,mahogany,actresses,clarence,ernst,buster,moderated,mal,nassau,flap,ignorant,allowable,compositions,sings,marcos,sorrow,carte,canned,collects,treaties,endurance,teaspoon,insulated,dupont,harriet,philosopher,rectangle,woo,queer,pains,decatur,wrapper,ahmed,buchanan,drummer,sobre,ceremonies,satisfies,appellate,comma,conformity,avant,supper,fulfilling,hooded,instability,seminary,presenter,offenses,emulation,lengthy,sonata,fortress,contiguous,perez,inaccurate,explanatory,settlers,stools,ministerial,xavier,torah,fao,publishes,stacks,owning,andersen,sermon,facilitating,complained,ferdinand,taps,thrill,lagoon,undoubtedly,withheld,insisted,reluctant,headaches,ramsey,oath,pigeon,rivals,freed,constrained,parrot,magnum,invoked,invaluable,keystone,inclined,gala,cheek,traction,utterly,gavin,illuminated,lasts,gloucestershire,psychologist,dane,claudia,perpetual,solicitor,clustering,glimpse,verbatim,innocence,quicker,grandparents,cardboard,attributable,sketches,angelo,tertiary,exhausted,smarter,shelters,attain,dora,inconvenience,tang,vaccination,farther,chats,riot,fats,mandarin,dungeon,germans,lilly,shire,mosquito,kashmir,lyons,putnam,corpse,speedy,ming,lush,barrels,transformations,analogue,werner,clyde,honorary,irwin,brewer,exchanged,adhere,fran,rafael,ccc,enquire,toilets,mains,whales,lindsey,parity,partitions,grim,hubbard,prism,chasing,flop,aggregation,shelley,batting,borrowed,rests,toss,depicted,grapes,proposing,winding,ripped,cobalt,pity,downward,catalogues,aspire,harvesting,garfield,groom,jewels,saturated,georges,quincy,doughty,weeds,stripped,clive,fixture,canary,steadily,imagined,darby,woke,fills,proportions,grips,clergy,solicitors,moderately,altar,salvage,stanton,creators,kilometres,cuff,repeating,empires,oyster,sturdy,massacre,undergo,risen,blended,imperative,beg,digging,lantern,catches,evangelical,eaton,ruler,henri,tokens,piping,swept,staring,seventy,troop,arose,decomposition,chatham,becky,elders,interpreters,supporter,klaus,conquest,repairing,assemble,whistle,dresden,diversified,fertilizer,analytic,predominantly,amethyst,woodward,rewritten,concerto,adorable,ambition,torres,apologize,restraint,eddy,condemned,berger,parole,corey,kendall,slips,trays,stewardship,esq,kisses,kerr,regulating,flock,exporting,arabian,bending,boris,ammunition,vega,pleasures,shortest,denying,shave,sexe,disruption,galway,colt,artillery,furnish,precedence,grinding,rubbish,missionary,knocked,swamp,pitching,bordeaux,manifold,wf,tornado,possessed,upstairs,turtles,vauxhall,welcoming,learns,manipulate,dividing,hickory,renovated,inmates,slices,cody,lawson,quo,damned,beethoven,faint,rebuilt,proceeded,lei,tentative,peterborough,fierce,jars,authenticity,hips,rene,gland,wigs,resignation,striped,zion,blends,garments,fraternity,tapestry,originating,stu,chap,blows,inevitably,converse,gardener,winnie,ita,higgins,warwickshire,penguins,attracting,jeeves,harp,wes,denton,anthem,tack,whitman,nowadays,woodstock,sack,inferior,abuses,inspected,deb,jockey,indicative,incumbent,ithaca,edmund,upholstery,aggression,practiced,ella,casualties,monarch,housed,administering,temptation,havana,roe,nasal,restrictive,costing,ranged,hier,spruce,paradox,billings,jeanne,oxidation,marin,halfway,amending,conflicting,georgian,compensate,recherche,loser,claus,braves,cracking,sued,shoots,interrupted,hemisphere,miranda,clover,kindness,porto,directs,jolly,snakes,swelling,spanning,politician,femme,unanimous,railways,approves,scriptures,misconduct,lester,resides,wording,obliged,perceive,rockies,siege,exercising,voluntarily,atkinson,nord,truths,grouping,wolfe,thereto,authorizing,enamel,toby,radiant,virgins,firstly,martini,butte,reeves,suspicion,disadvantage,bastard,spends,hicks,pratt,pedigree,fraudulent,sherwood,forgiveness,almond,har,petitions,francais,trenton,chalk,omar,alexis,axle,puppet,cultivation,surveying,grazing,pillar,mirage,questionable,seaside,precinct,renamed,cobb,unbelievable,soluble,piracy,rowing,siding,hardest,forrest,reminders,negro,blanca,equivalents,johann,pineapple,wrath,opal,simplest,patrons,peculiar,toon,europeans,commence,descendants,redmond,safeguard,lars,obsession,grind,albeit,billiards,clint,bankers,righteous,eo,redistribution,freaks,tra,sincere,intentionally,blitz,tended,censorship,cactus,viva,attained,blew,howe,nap,splendid,janice,lava,leonardo,sucked,scissors,cooks,sharply,granada,laurence,rebellion,rainy,tho,regent,evelyn,vinegar,vie,pluto,gil,vail,fisherman,misery,undergoing,limerick,envy,sweeping,healthier,ussr,preface,jameson,grievance,unread,sentiment,pencils,galloway,forged,viola,disclosures,provence,computerized,rustic,rumor,dillon,shah,eleanor,deception,conducts,divorced,rushed,weighs,magnolia,diver,disappointment,castles,notions,plateau,dexter,palette,blaze,wreck,threatens,strengthened,sammy,wakefield,devastating,centro,arabs,bild,robbery,eine,jasmine,crochet,brock,crowds,hoops,macon,stamped,increment,ju,ideals,chloe,ape,gee,apologies,malignant,dismiss,preceded,lawful,stag,crosby,rash,gateways,collapsed,horns,diversion,fantasies,beginnings,reversal,lex,presses,ordination,oxfordshire,yves,tandem,boil,deliberate,gagged,surprises,abe,roc,barley,potent,vo,amusing,mastering,nerves,retains,chimney,naomi,proverbs,risky,mistaken,carving,miracles,clair,slipped,realism,crete,fractions,bloodhound,sherry,desperately,indies,tulip,madame,remedial,vain,bert,dalton,bologna,departing,maze,barefoot,remuneration,bohemian,imposing,damon,tivoli,rode,amen,marching,evacuation,owing,warp,catholics,imo,faculties,denies,reinforce,inception,draper,bowman,subversion,benny,spires,barney,homosexuality,declares,masonry,medicinal,accrued,temples,realizing,annum,cemeteries,indoors,telescopes,magellan,champs,averaging,salads,addicted,flashlight,disappointing,eighty,unlocked,scarce,roche,ropes,spiders,obedience,plague,diluted,canine,gladly,brewery,lineage,mehr,brew,vaughan,kern,julius,coup,cannes,morse,dominance,piston,itu,cords,revisited,cass,sealing,topped,rag,despair,fore,absorb,injected,alps,commodore,enlisted,prophets,supernatural,overlooked,ditch,feared,prelude,rowe,slick,limestone,commentaries,manpower,lec,chunk,reels,lob,slept,gregg,drafted,chalet,hopper,sus,specialization,abstraction,ludwig,scandinavian,detained,luncheon,zenith,browns,waits,tenor,softly,plenary,scrub,wilkinson,limb,intestinal,poe,refusing,suffers,occupy,gan,bethlehem,caves,authoritative,celestial,immense,audrey,merlin,aiming,seizure,stuttgart,diplomacy,differing,foreigners,limp,capitalist,mute,prescott,protestant,metre,tricky,ordinances,koch,topaz,ans,imaginary,albion,sutherland,dar,dart,wrought,robe,theresa,heidelberg,multitude,tutors,ezra,housekeeping,captive,kettle,visitation,chr,gibbs,baggage,dusty,patty,serena,satire,tortured,pioneers,crate,episcopal,moonlight,mast,unfinished,goth,cared,affection,sworn,bowen,vicious,educating,kin,cozy,mackenzie,slippers,earthquakes,hayward,wandering,comb,liquids,beech,vineyards,amer,zur,frogs,consequential,unreasonable,osborne,stimulus,economists,miners,agnes,constituency,rocker,acknowledges,alas,sawyer,maori,tense,predicting,filipino,cooled,prudential,basel,migrant,devotion,invoke,arte,leaning,paddle,watkins,oxley,anterior,chop,rooted,onyx,benches,illumination,freedoms,foolish,finale,weaker,foley,fir,stirling,moran,compose,nausea,comfortably,hoop,temps,clearer,floods,fritz,mover,modeled,erica,malaga,sustaining,repaired,diocese,francois,obituary,painters,thistle,tem,sleepy,footnotes,rupert,shrine,purified,striving,dire,attendant,gull,jour,mir,northumberland,memoir,betsy,meredith,fauna,cliffs,hayden,roadside,smells,dispose,waking,feathers,reflex,falcons,spurs,sion,crashed,travelled,urgency,gould,brit,eliza,graduating,rims,harmonic,darts,shin,intriguing,flaw,tails,emulator,discarded,bibles,hangs,joanna,synonyms,stranded,horton,dolce,hercules,pane,browning,angular,veins,folds,sneak,incorrectly,avoidance,sauces,conquer,probabilities,immortal,mariners,endeavor,creole,mateo,teas,settling,badger,mohammed,saturdays,partisan,pri,gratitude,impress,willy,anon,eminent,ribs,communicated,exceptionally,quilts,splits,subscribing,companions,cheques,edith,screwed,magna,sectional,fashionable,polly,tidal,ballots,hog,testify,poole,boycott,vitality,clerks,crust,bothered,traverse,vengeance,dolly,garrison,sal,barb,huns,miner,fashions,barr,analogy,insomnia,constituent,aura,cecil,sponge,sect,diner,anticipation,enduring,scarborough,regis,winters,nous,explosives,mound,xiv,backgammon,ox,snatch,mole,obs,owed,ethan,kissed,buff,butcher,psalms,rum,chefs,engraving,constituted,hamlet,clad,excursion,inverness,orb,grange,resigned,fled,enriched,harrington,brandy,swings,scion,elle,reptiles,vortex,swallowing,purses,bodily,xiii,awe,beaumont,australasia,mandy,hoods,fireplaces,requisite,retrospective,emphasizes,lizard,hawthorne,bouquets,wears,shropshire,baja,regal,safeguards,cabbage,cub,spectator,arrests,circumstance,numbering,sliced,reproductions,byrd,sidewalk,prob,breaker,curly,alberto,asserted,jealous,refinement,durban,learnt,hound,squirrel,concealed,wharf,rhythms,departures,shotgun,stimulated,chickens,langley,briggs,cheyenne,lug,surveyor,maize,extinction,unaware,discretionary,ry,psalm,scented,gowns,spying,nicholson,lied,ek,bloc,recurrent,talbot,leaks,tam,swell,obstacle,ville,mantle,chico,driveway,irony,gesture,fairbanks,parfum,armies,hy,hugs,greenfield,santos,owls,cutters,acquires,ceased,merging,plaques,breadth,mammoth,convictions,intentional,sophia,prohibits,innings,reorganization,pronunciation,concession,measurable,ami,parcels,pastry,manners,phosphorus,viper,hid,volcanic,gypsy,thieves,preaching,repeal,uncovered,hemp,eileen,proficient,pelican,apocalypse,cousins,discharges,giorgio,admire,nk,poured,usefulness,unsolicited,binds,unveiled,burt,titus,suffix,installment,spindle,heavens,wink,mister,rounding,inorganic,flare,scholastic,wight,withholding,foliage,nod,ocr,fife,generals,crank,goats,autographs,stub,fundamentally,creamy,exposition,rains,buckley,middleton,organise,tort,brace,novelties,gigantic,abdul,sheldon,ryder,octave,struts,ud,suppress,harding,dams,deserved,violates,rutherford,separates,proofs,precedent,confirming,garth,nolan,mach,facilitated,paolo,metaphor,bridget,infusion,jessie,organising,argus,mango,spur,jubilee,landmarks,polite,sith,thigh,paving,cyclone,perennial,jacqueline,seventeen,meats,wie,bulldog,cleavage,analysed,uma,gradual,brethren,embodiment,violating,recruited,toilette,trailing,pact,honourable,lulu,windy,punished,chronology,mastery,thermometer,cranberry,kan,downhill,vita,steer,nesting,vogue,aired,outward,whisper,ipswich,compromised,confession,deprived,benedict,vodka,molding,zaire,bricks,communism,leopard,flowering,wig,jingle,bounty,arcadia,fishes,ringing,knobs,taurus,whiskey,absurd,tolerant,stoves,enactment,embryo,ska,nora,salts,marietta,furious,iteration,vida,ceilings,dispenser,respecting,approving,unsafe,separating,soups,residing,richie,markings,moist,trina,drained,mule,cummings,cessation,append,motive,pests,seasoned,sunflower,duel,bernardino,stocked,bethel,entre,sunderland,doris,motives,reinforcement,dwight,provost,guessing,tal,mead,harlem,throttle,gong,ber,sympathetic,fridays,isolate,unconscious,bays,faulty,affidavit,messiah,infamous,pleasing,seizures,appealed,surveyors,tenacious,waterfall,sensual,persecution,petit,burgess,gaze,chlorine,freshly,saxon,cabo,rye,isabella,monies,assassination,remarkably,pointe,stall,deere,entirety,destined,marcel,lad,hulk,ora,bal,flores,olivier,portage,dwellings,informing,yellowstone,characterize,ricardo,yourselves,rotterdam,hostage,cracker,anglican,monks,compliment,camino,storey,scotch,sermons,remembers,freddie,contention,juliet,adjunct,guernsey,bangor,persia,axes,stirring,wil,haze,pits,utter,bottled,ants,gastric,influencing,rents,christy,theirs,mattresses,donovan,lax,colts,rehearsal,strauss,reputable,wei,tuck,rei,slab,lure,ren,archbishop,ling,incompatible,emblem,roadway,overlapping,walters,dunes,murders,miserable,unsuccessful,decorate,appleton,bottoms,revocation,vomiting,chesterfield,exposing,pea,tubs,simulate,medina,thankful,alaskan,friedrich,elephants,pinch,flynn,braces,calhoun,deficient,annotations,filth,moderation,worrying,outrageous,kraft,blackboard,nitrate,skates,comstock,hers,grin,footprint,tunnels,crises,trillion,comforter,cashmere,heavier,meteorological,spit,labelled,darker,salomon,globes,dissent,daly,choral,unrestricted,happenings,leicestershire,neu,contempt,socialism,hem,edible,anarchy,arden,clicked,ineffective,drawers,byrne,acme,leakage,shady,chemist,evenly,reclamation,rove,lionel,praised,rhymes,blizzard,erect,refining,concessions,commandments,malone,confront,vests,lydia,coyote,breeder,electrode,pollen,drunken,mot,avis,valet,cheng,shrubs,watering,barrow,eliot,jung,transporting,rifles,posterior,aria,elgin,excise,poetic,mortar,blamed,rae,recommending,inmate,dirk,posture,thereon,valleys,declaring,commencing,armada,wrench,thanked,arranging,thrilled,bas,amelia,jonah,discomfort,scar,indictment,apology,collars,andover,pudding,plato,examiners,salzburg,rot,possesses,squared,needless,pies,palma,barnett,ther,heterogeneous,aspirations,fences,excavation,luckily,rutland,lighted,pneumonia,monastery,erected,expresses,migrate,carton,lorraine,councillors,hague,transforms,ammonia,roxy,outlaw,saws,bovine,dislike,systematically,ogden,interruption,demi,imminent,madam,tights,compelled,criticized,hypertext,electra,communal,landlords,emu,libby,seite,dynamite,tease,motley,aroma,pierced,translates,mais,cognition,cain,verona,syn,delegated,chatting,punish,fishermen,conforming,causal,stringent,rowan,assigning,dwell,hacked,inaugural,awkward,weaving,metropolis,psychologists,diligence,stair,dine,enforcing,struggled,lookout,arterial,injustice,mystical,ironing,commanded,woodlands,guardians,manifesto,slap,jaws,finn,pedestal,widening,underwood,saline,sonny,longevity,paw,isabel,sterile,botany,dissolution,pauline,quart,bison,suppressed,allegro,materially,cit,amor,xvi,fungi,phyllis,bengal,scrolls,awakening,fairies,prescribe,greed,nominate,sparkle,autograph,migrating,refrain,lastly,overcoming,wander,kona,relieved,luc,elena,intermittent,ante,vols,revolving,bundled,covert,crater,leah,favored,bred,fractional,fostering,thence,birthplace,bleed,reverend,transmitting,serie,neptune,caucasian,goblet,inventions,dea,practicable,fronts,ancestor,russians,incur,canonical,nodded,confronted,believer,australians,declines,peacock,utmost,yates,leroy,helpers,elapsed,academies,tout,gre,imitation,harvested,dab,hopeful,furnishing,negatively,residences,spinach,liquidation,predecessor,cheeks,hare,beasts,philanthropy,peanuts,discovers,discard,cavalry,breakers,quorum,forwards,prevalent,plat,exploits,dukes,offended,trimmed,py,worcestershire,bonn,prostitution,mosque,horseback,vested,terribly,earnest,homme,clancy,tory,rossi,oldham,gonzales,vor,confederate,presumed,annette,climax,blending,weave,postponed,philosophers,speeding,creditor,exits,pardon,oder,abby,teller,mandates,siena,veil,peck,custodian,dante,lange,quarry,seneca,oceanic,tres,helm,burbank,festive,rosen,alla,preserves,ingram,jess,secretion,insult,scraps,waived,cured,buggy,kennel,drilled,souvenirs,prescribing,slack,gin,differentiate,jays,pilgrim,vines,susceptibility,ambiguous,disputed,scouting,royale,instinct,gorge,righteousness,carrot,opaque,bullying,saul,flaming,apis,marian,liens,caterpillar,remington,chew,benefited,prevail,musik,undermine,omission,boyle,mio,diminished,jonas,locke,cages,jolla,capitals,correctness,implication,pap,banjo,shaker,natives,tive,stout,rewarded,athena,deepest,matthias,duane,sane,climbed,corrupted,relays,hanna,husbands,fading,colchester,persuade,roaming,determinations,weighed,ashamed,concierge,gorilla,gatherings,endure,nom,cheltenham,dickens,juniper,repetition,siberian,preparatory,fielding,dune,hee,adler,yosemite,cursed,youths,migrants,massey,tumble,stare,unlocking,missy,meade,contradiction,helium,wonderfully,dug,congenital,trojans,insanity,embraced,finely,authenticated,reformed,tolerate,lest,adhesion,tic,noticeable,cette,aesthetics,smoker,benign,hypotheses,afforded,aisle,dunno,blur,evidently,limbs,unforgettable,punt,tanned,altering,bunker,multiplication,paved,fabricated,pasture,richest,cruelty,mormon,scots,genuinely,neighbouring,plugged,tyson,souvenir,mifflin,cucumber,occurrences,marshal,anders,seize,decisive,spawn,blanks,dungeons,sailors,stony,fayette,shelving,annals,sadness,periodical,moe,dime,losers,punta,flavour,crypt,accomplishment,onwards,bogus,carp,prompts,witches,skinner,dusk,nouveau,customary,vertically,crashing,cautious,possessions,urging,passions,faded,counterpart,utensils,secretly,tying,lent,magician,indulgence,johan,melted,lund,fam,nel,extremes,puff,galileo,bloomfield,obsessed,flavored,groceries,motto,singled,alton,staple,pathetic,craftsman,irritation,rulers,collisions,militia,eis,conservatory,bananas,adherence,defended,grille,elisabeth,claw,pushes,alain,flagship,kittens,illegally,deter,tyre,furry,cubes,transcribed,bouncing,wand,cavalier,ish,rinse,outfits,charlton,respectfully,ulster,tides,chu,weld,venom,writ,patagonia,dispensing,puppets,tapping,immersion,explode,toulouse,escapes,berries,happier,mummy,punjab,stacked,brighter,cries,speciality,warranted,ruined,damp,sanity,ether,suction,crusade,rumble,correcting,shattered,heroic,retreats,formulate,sheds,anomalies,homogeneous,humphrey,spheres,belonged,assigns,sofas,croix,cushions,fern,defenders,odessa,lore,whipped,vox,dinners,rosie,genealogical,terre,selfish,eventual,nach,mitigate,jamestown,elisa,shelton,boiled,neville,natasha,endeavour,roswell,haute,herring,unfamiliar,expectancy,deterioration,proclaimed,arid,coincidence,idiots,mona,muddy,nuevo,hitchcock,cid,neighbour,raspberry,illusions,spikes,enumeration,suche,permissible,yielded,nuisance,siam,latent,marcia,drowning,spun,shalt,ric,loch,commanding,sparrow,poorest,hector,brotherhood,milling,sinking,sulphur,wicker,balm,figs,browne,nephew,confess,chit,chaotic,alexandre,lays,principally,visor,mundo,jarvis,drip,traced,outright,melodies,myriad,stains,sandal,rubbing,naive,wien,skeptical,remembrance,detects,dragged,foreman,allegiance,conduit,dependable,echoes,ladders,prudent,glowing,alchemy,linden,sven,geographically,alternating,tristan,audible,folio,presiding,mans,waterways,aff,fractures,apprenticeship,childbirth,dumped,barre,rama,johannes,fiery,convex,richer,mop,urn,soleil,connor,northamptonshire,biscuits,disclaims,sich,restless,unanswered,paired,vaults,ahmad,tossed,caucus,cooke,pillars,katy,zoe,overwhelmed,salute,parody,compensated,lacked,circulated,soo,maltese,acorn,bosses,pint,ascension,ply,mornings,mentioning,flagstaff,pretoria,thrive,rightly,paragon,basal,persist,wilde,indispensable,illicit,liar,pledged,pictorial,curling,ares,smoky,opus,aromatic,flirt,slang,emporium,princes,restricting,promoters,soothing,freshmen,departed,aristotle,finch,inherently,krishna,forefront,largo,amazingly,plural,dominic,skipped,hereinafter,nur,extracting,analogous,hebrews,tally,unpleasant,uno,tempted,blindness,creep,staining,shaded,cot,plaster,novo,hearted,obstruction,agility,complying,otis,overture,newcomers,noteworthy,agile,sacks,ionic,stray,runaway,slowing,watchers,supplemented,poppy,monmouth,frenzy,jargon,kangaroo,sleeper,elemental,unnamed,doncaster,particulars,jerking,bungalow,bazaar,predicate,recurrence,recruits,sharper,tablespoons,supervise,termed,frauen,stamping,coolest,reilly,basque,ire,pegasus,silhouette,dorado,daring,realms,maestro,turin,gus,forte,tipping,holster,fiddle,crunch,leipzig,bard,kellogg,reap,exemplary,caliber,apostle,playful,icelandic,multiplied,enchanted,belgrade,styled,commanders,thor,waive,bethany,vance,soprano,polishing,marquis,wen,translating,frontiers,adjoining,greet,acclaim,hardship,hast,miriam,cavaliers,rollers,carleton,pumped,differentiated,sonia,verifying,almighty,vel,intuition,revoked,openness,circulating,bryce,ilo,latch,verbs,drank,darlington,slippery,galerie,outpost,seville,mira,chatter,santo,lettuce,raging,tidy,jong,oppression,bows,yielding,torso,occult,expeditions,nok,hooker,lorenzo,beau,subordinate,lilies,articulate,ecstasy,sweetheart,fulfil,calcutta,hobbs,mediator,tad,cultivated,rang,disconnected,consulate,wilkes,disagreement,strands,sicily,compost,adjourned,familiarity,erroneous,pulses,theses,stuffing,jeux,wilton,flooded,reverted,crackers,greyhound,corsair,ironic,wards,unsupported,hinge,ultima,cockpit,venetian,sew,carrots,faire,laps,memorials,resumed,conversely,emory,stunt,excuses,vitae,hustle,stimuli,upwards,witty,transcend,loosely,anchors,hun,atheist,capped,oro,liking,preacher,complied,intangible,compassionate,substitutes,flown,frau,dubbed,silky,vows,macy,distorted,nathaniel,attracts,bern,qualifies,grizzly,micah,hurting,homicide,await,sparse,corridors,sont,mcdowell,fossils,victories,chemically,compliments,cider,crooked,gangs,segregation,nemo,overcast,inverted,lenny,achieves,forehead,skye,percy,scratches,conan,lilac,intellect,charmed,denny,harman,hears,wilhelm,nationalism,pervasive,auch,enfield,nie,clears,knowingly,pivot,undergraduates,digestion,mixtures,soaring,dragging,virtues,flushing,deprivation,delights,foreword,glide,transverse,engagements,withstand,newbury,authorizes,blooms,soar,uniformly,todos,piedmont,empowered,asi,lena,outlying,slogan,subdivisions,deducted,ezekiel,totaling,elijah,compton,vigorous,flee,biscuit,creme,submits,woes,waltz,menace,emerges,classify,paige,downstairs,statesman,cheerful,blush,leaflet,monde,weymouth,spherical,favourable,informs,dramas,cher,billiard,aut,malay,unseen,optimism,silica,kara,unusually,widest,impotence,medley,cadet,redskins,temper,asserts,stew,hereafter,retiring,smashing,accumulate,tahiti,mariner,collier,hush,whispered,generosity,vibrating,lama,artisan,akin,raphael,lola,embarrassing,aqueous,pembroke,stockholders,lillian,splinter,ibn,preferable,juices,ironically,morale,morales,solder,trench,persuasion,practise,lodged,revolt,renders,pristine,francaise,shines,catalan,auditory,applause,trait,popped,busted,basins,farmhouse,pounding,picturesque,ottoman,eater,utopia,insists,willard,lettering,marlborough,pouring,concentrating,soak,buckingham,hides,goodwin,manure,savior,dade,secrecy,wesleyan,duplicated,dreamed,fertile,hinges,plausible,creepy,narrator,augustus,fahrenheit,hillside,standpoint,nationalist,piazza,denoted,oneself,royalties,abbreviation,blanco,critiques,stroll,anomaly,thighs,boa,expressive,infect,pers,dotted,frontal,havoc,ubiquitous,arsenic,synonym,yer,doomed,francs,ballad,sling,contraction,devised,explorers,billie,ravens,underline,obscene,mes,hymn,continual,slowed,aladdin,tolerated,quay,outing,instruct,wilcox,overhaul,peruvian,indemnity,lev,imaginative,weir,remarked,portrayed,clarendon,ferris,julio,spelled,epoch,mourning,phelps,aft,plaid,fable,rescued,exploded,padres,scars,whisky,tes,uptown,susie,batter,reyes,vivian,nuggets,silently,pesos,shakes,dram,impartial,punctuation,initials,spans,pallet,pistols,mara,tanner,avenues,dun,compress,apostles,sober,tread,legitimacy,zoology,steals,unwilling,lis,paddy,plunge,pearce,vos,sinister,burr,arteries,formations,vantage,texans,diffuse,boredom,norma,crosse,mondo,helpless,wyatt,spades,slug,visionary,coffin,otter,navajo,earns,amplified,recess,dispersed,shouted,shilling,resemble,carbonate,mimi,discriminate,stared,crocodile,ratification,vases,advises,sind,coward,inequalities,garde,dyes,viz,turbulence,yell,fins,ritchie,dresser,rake,ornamental,riches,resign,injunction,intervene,poised,barking,josephine,dread,dag,handwriting,serpent,tapped,articulated,pitched,wisely,accustomed,bremen,steaks,playhouse,superficial,suns,josef,casts,bunk,stab,sanction,dyer,effected,tubular,moi,ode,avoids,richter,evidenced,heinz,argos,dit,larvae,dyke,cassidy,kernels,mobilization,amt,wilkins,manipulated,alleviate,seam,riddle,comedies,fainter,respectful,cabaret,recession,awaited,nozzle,externally,needy,wheeled,booksellers,darn,diners,greeks,reich,armored,weary,solitary,photographed,tweed,snowy,pianist,emmanuel,acapulco,surrounds,knocking,cosmopolitan,magistrate,everlasting,pigment,faction,tous,argentine,scandinavia,minnie,genie,linn,handel,microscopic,clarified,coherence,sensations,orphan,conferred,acp,disturbances,chandelier,embryonic,carver,paterson,delle,graceful,intercept,shouts,ascertain,veto,exhaustive,annoyed,bureaucracy,paz,stalls,fined,bien,inward,reflector,greeted,hartley,defenses,meaningless,clam,francesco,hes,georg,negligible,starch,melinda,godfather,apron,guts,ros,pragmatic,tyranny,warehouses,regimen,axel,antony,hahn,fluffy,marianne,slender,hereford,aides,forma,absorbing,cherries,gaelic,gomez,alec,distinguishing,glazed,judd,dashed,libyan,dickson,distressed,shouting,bullock,villagers,acknowledgments,ethiopian,mermaid,buds,sexes,wilder,sire,centred,confinement,islanders,ding,uncover,contested,coma,husky,conserve,bland,abatement,originator,whipping,skipping,routed,rudolph,abigail,missionaries,householder,plotting,yan,succeeding,elmer,sails,schuster,overlook,robes,sham,fungus,astonishing,graveyard,chunks,bourne,revert,ignores,popping,captains,loaf,pandora,gabrielle,stad,abel,enigma,glands,militant,jug,inferno,torrents,outset,confuse,yvonne,attaching,adept,doubtful,ratified,insecure,explosions,trunks,gareth,versatility,lothian,fem,intricate,strata,depository,hubert,proclamation,beauties,hybrids,gillian,darrell,irrespective,imposition,ensured,kidnapped,sai,cereals,outrage,poop,scrubs,orchestral,bellingham,dripping,afterward,devote,facets,musique,frightened,noises,ambiguity,booths,discourage,elusive,speculative,madeira,intimacy,hallway,whey,ripping,mei,hob,reloaded,garry,ester,annan,thriving,hampers,bragg,gracious,snail,curt,demise,theoretically,grooves,sutra,conveyed,swine,typographical,ellison,ado,trophies,quicken,werden,heron,graft,moth,crossings,derrick,mash,germ,envoy,breckenridge,pug,antoine,domingo,resembles,doorway,grandson,tat,catalina,redding,accompaniment,derivation,warden,voir,tug,margarita,clans,instituted,notary,thi,sociological,offending,forgetting,macedonian,votre,reservoirs,barlow,tyrone,halle,edged,encompass,spade,hermes,glare,metaphysical,insignificant,exchanging,pledges,mentality,turbulent,pip,pup,fortunes,sultan,masked,casing,plotted,haley,generously,amounted,icy,repression,reaper,honoring,facto,climatic,broaden,begging,wharton,sui,freddy,bushes,contend,restraints,truncated,gibbons,nitric,atop,glover,railroads,unicorn,normandy,floats,justices,orderly,wafer,puck,roofs,reefs,hover,quarantine,detrimental,molds,elias,hou,subsistence,chilled,foe,citadel,topography,leaflets,wrinkle,contemplated,adolescence,nun,harmon,indulge,bernhard,hearth,edna,embarrassed,aggressively,coincide,maynard,genoa,enlightened,clippings,radicals,penetrate,stride,catastrophe,greatness,archie,parasites,entertained,inventors,ferret,louisa,agony,marseille,taller,doubling,stupidity,moor,stephenson,enrich,foreground,revelations,replying,incapable,parte,acknowledgment,labyrinth,africans,sway,undergone,lacey,preach,triangular,disabling,cones,inversion,thankfully,taxed,presumption,excitation,salesman,hatfield,constantine,confederation,petals,imprisoned,heller,docks,landowners,sul,juno,deux,defiance,bully,valiant,constructions,youngsters,toad,breasted,banging,vertigo,unsatisfactory,fluent,rhyme,eros,aan,mcintosh,suffice,convened,nah,accusations,debated,stallion,equipments,necessities,camelot,deserted,keepers,logically,caravans,oranges,bum,presse,olga,contends,snort,occupants,organiser,vim,luminous,crowe,unparalleled,anyhow,waterfalls,obtains,antwerp,ulrich,hardened,primal,straits,upheld,wir,malt,sinai,endowed,cameo,attire,blaine,typewriter,pomona,goddard,fanny,plagiarism,milky,combs,upland,unconstitutional,adopts,macao,snaps,defends,depicts,pilgrimage,elevators,ohne,narrowed,eighteenth,hurst,inscription,ascent,pisa,tedious,pods,universally,chewing,accommodated,tendencies,rowland,welded,conforms,reggie,refreshments,depict,coils,callers,navel,arbitrator,prolific,nurseries,footsteps,indefinitely,sucker,bumps,frightening,wildly,sable,retarded,neatly,singleton,spaniel,somerville,worthless,git,spool,jeopardy,rovers,voiced,annoy,clap,aspiring,dazzling,cornelius,scientifically,grandpa,cornish,guessed,kennels,sera,axiom,stamina,hardness,abound,curing,socrates,aztec,confer,vents,mater,oneida,aiken,crowned,sandstone,adapting,cranes,rooster,proctor,prehistoric,balkans,dictate,joker,wiped,contours,abdomen,baden,tudor,paws,villains,poke,prayed,inefficient,heirs,parasite,shortcomings,cures,concentrates,preclude,fasting,loudly,horseshoe,zeus,constellation,recital,utrecht,freud,bedtime,thinkers,hume,reminiscent,rapport,ephesians,dope,truss,kiln,peaches,depressing,strangely,narratives,sud,skipper,gy,drains,maxima,unification,sous,testimonial,khaki,distributes,navigating,slough,prodigy,embossed,mould,jock,blasts,poorer,anglia,dyed,dissatisfied,bourbon,staggering,bismarck,hoe,rubbed,wasp,bookseller,fuss,muir,uterus,chimes,webber,aggregated,pico,exhibiting,gimme,nee,beaufort,radically,terminating,platter,chamberlain,steamboat,brewster,inferred,croft,ism,uplifting,penal,exclusions,pageant,henley,purchasers,pitchers,tracts,morally,hosiery,yt,reptile,overdue,cowan,mohawk,riots,hassan,schwarz,persuaded,teasing,rejecting,emphasizing,unbound,quentin,shepard,sacrifices,delinquent,contrasting,nestle,correspondents,guthrie,imperfect,disguise,eleventh,embassies,lapse,wally,phenomenal,civilizations,friendships,marjorie,shrub,kindred,reconsider,sanctioned,parfums,condemn,renegade,awaits,hue,augmented,amends,fullest,shafts,finer,ys,burdens,invocation,gillespie,brooch,motifs,nineteen,griffiths,invaders,edmond,volunteered,swollen,liste,grasses,scatter,steward,ito,cherished,smack,incidentally,sine,depleted,holiness,divinity,campaigning,tougher,sherlock,comprehend,cloak,pamphlet,clipper,umbrellas,priceless,mig,assassin,exploiting,cynical,toro,etched,bray,choke,underwent,comforts,appoints,keene,rachael,swallowed,imperialism,mouths,halter,ley,ike,pumpkins,shrinking,roar,novelist,potomac,arroyo,tipped,amidst,insurgents,wanda,etching,discouraged,gall,oblivion,gravy,inherit,sprinkle,stitching,advisable,loi,meme,gladstone,jugs,congregations,handing,payer,ze,beforehand,laborer,watcher,vibrations,apes,strawberries,abbas,moods,dobson,ives,soaked,abridged,palate,thierry,masculine,realizes,kahn,petitioners,constable,sayings,unconditional,vue,progressively,topping,baird,chilling,translucent,glaze,newcomer,branching,unmarried,unexpectedly,funniest,bona,scorpion,mirrored,sel,anatomical,misdemeanor,tobias,salle,infra,strasbourg,commemorative,implicitly,ewing,austen,assurances,comedian,rascal,nid,roberta,dizzy,outbreaks,annuities,slit,whitening,occupying,depicting,ordnance,verge,ransom,nomad,dagger,thorn,preamble,mor,spins,solicit,provoking,orchids,buckets,spoil,blazing,palermo,snapped,alligator,detectives,rochelle,nomenclature,abdullah,invade,regulates,rendezvous,strives,trapping,gardeners,clemens,deuteronomy,diminish,britannia,manifestations,tak,stitches,promulgated,mediocre,passports,ayrshire,invent,eagerly,damascus,reformation,hypocrisy,parishes,trooper,bun,compendium,disappears,hymns,monotone,palsy,propositions,locomotive,debating,cuffs,prosperous,famine,orally,elliptical,grabbing,jogging,stipulated,persuasive,horrors,bearer,pastors,acquainted,dependents,dizziness,ture,brilliance,nicky,originate,respectable,horace,prohibiting,disappearance,morals,invaded,spoiled,monet,pickle,quaker,haunting,manipulating,tangent,tempest,petra,dominique,waving,dai,uneven,plata,plurality,warrington,adventurous,luigi,bayou,accueil,confluence,blossoms,succeeds,orphans,louder,boilers,reunions,yelling,trough,leaned,quadrant,discrepancy,slid,antioch,tonic,magnus,harrow,jig,reckless,raining,peasant,vader,qua,figuring,crushing,thorpe,ordained,hodges,saucer,chinook,passover,byzantine,tomas,triangles,curvature,rites,sideways,devious,dreamer,acknowledging,estuary,burglary,pouches,thrilling,spectacle,sentiments,ditto,nana,waiter,oddly,suchen,raft,cul,nutshell,arrogant,hermann,induces,thrift,sae,admired,stunts,iaea,youthful,stumbled,emitted,sufficiency,tempered,slipping,solitude,cylindrical,destroyer,fide,undesirable,mongolian,weakly,parsley,undue,stunned,smiths,magyar,hostility,groves,pursuits,reflux,adaptations,jurisprudence,invariably,lecturers,progressed,brow,elves,kearney,graeme,kimball,chant,turnkey,sprays,tighten,revolver,crowns,intermediary,matted,apricot,tufts,cuckold,unreliable,rosewood,parry,existent,tongues,dictator,jehovah,fanatics,coeur,perpendicular,fay,hedgehog,raves,mamma,entails,folly,wheeling,sharpe,hawthorn,mural,bankrupt,wager,purge,interpolation,adjournment,pitfalls,stationed,ambrose,nightmares,aggravated,deem,melville,cavern,ene,sumner,descended,disgusting,flax,weakened,imposes,withdrew,tart,guerrilla,spoons,persona,poser,tram,distinctions,peabody,alia,iced,faulkner,scarcely,excused,fused,madeleine,roaring,witchcraft,stopper,fibres,cullen,crested,stump,scalp,gunn,erwin,conductors,criticisms,hadley,diplomat,sylvester,melon,tablespoon,manganese,siren,clasp,olives,nino,summons,lucrative,porous,shrewsbury,bile,siegel,cara,ese,ils,hinduism,elevations,thirst,endeavors,sportsman,scratching,iodine,phoebe,wipes,fro,krone,urgently,exposes,natures,liberalism,meer,derry,suisse,frankenstein,parc,heir,phy,successors,eccentric,yarmouth,transports,amour,illustrative,prosecuted,sailed,craving,advocating,titel,leaking,escaping,possessing,suicidal,cruisers,masonic,forage,loco,hellenic,kwh,ethel,distinctly,assertions,baba,pebble,staffs,ets,hoo,denomination,patched,patriotism,battling,tickle,bandit,acquaintance,lambs,loom,blouse,heightened,chests,ambitions,feline,grub,ulcer,slew,menstrual,canals,negatives,threading,duet,intolerance,ammonium,zephyr,tearing,muffins,naar,autor,fannie,foothills,atrium,thine,superiority,gestures,nemesis,engel,confessional,cardigan,taunton,evaporation,devise,abolished,sorrento,blanchard,uns,toying,parma,wreath,plight,opium,irrational,arches,naturalist,encompassing,penetrating,destroys,prussia,lowers,cookery,nal,beatrice,policeman,cartilage,turnpike,migratory,jurors,mea,enumerated,sheltered,doctrines,seams,pleaded,pca,elasticity,cel,gutter,ulcers,sloppy,flannel,volcanoes,ridden,contradictory,misunderstood,steamer,cong,barometer,exclaimed,diem,barge,spartan,nea,crystalline,rumours,famed,brandt,riga,bengali,respite,grimm,shetland,provocative,guido,tasted,licked,banged,rufus,hopeless,henrik,safest,daphne,ame,pollock,meteor,granville,veneer,anonymously,manageable,slant,disciplined,pollard,comme,chops,broom,plainly,ibrahim,snare,shank,uphold,revising,insignia,nurture,leash,hunts,faber,plantations,factions,falmouth,humility,commentators,impeachment,acton,engages,carbide,pullman,characterised,kinder,deems,outsiders,dodd,dissolve,adrienne,deduct,crawling,modifier,muck,colombo,hoax,cohesion,reconnaissance,antagonists,bachelors,observes,corporal,ligne,wary,locust,condenser,articulation,villain,tre,oft,secures,leviticus,impending,rejoice,pickering,poisson,bursts,versailles,hurdles,lucie,geese,condemnation,candies,sidewalks,formidable,pun,autres,mecca,rested,paused,macbeth,abandonment,nada,bertrand,broth,wentworth,seduction,fertilizers,maison,contrasts,giuseppe,tae,improperly,nebula,crows,blooming,mace,seminole,taper,synagogue,sugars,burnham,allure,intestine,ambassadors,reclaim,isla,kingdoms,richness,converge,pianos,dol,workings,penelope,extinct,ponder,revue,lunches,fooled,smear,rigging,derives,praises,detachment,luca,caracas,lids,pore,ey,radiance,oily,quitting,ina,grover,screams,masking,patchwork,heinrich,breton,assures,joys,involuntary,allegation,infinitely,dorchester,serge,morphine,gymnasium,waldo,diese,chiefly,judah,conjecture,mich,restitution,indicted,blasting,confronting,mastered,powders,debtors,grit,slain,nearer,ancestral,mujeres,faithfully,revolutions,sei,quail,tanker,administrations,sho,rector,ballast,immature,recognises,taxing,icing,substituting,executes,originality,pinned,gables,discontinue,bantam,bianca,zimmer,earthly,conceive,forfeiture,disastrous,gladiator,poplar,ence,recourse,martian,equinox,hinder,fredericksburg,presume,weil,armchair,cecilia,strut,kari,pavel,appropriateness,tame,solstice,oats,italien,wolff,plume,sparta,calypso,pantry,etienne,italics,reversing,murderer,courteous,wilt,smoothing,billet,pretending,hammock,receptions,revoke,intruder,wagons,jennie,platte,plank,paddling,ting,interrogation,neue,longing,irresistible,pilgrims,disappearing,sau,enact,inertia,misunderstanding,deity,pruning,agra,mandolin,rolf,swiftly,claws,brightly,manly,emit,shortened,fearful,potency,ifc,flawless,peril,alessandro,breaches,resultant,nestled,hairs,dumfries,drastic,guarded,celery,reconcile,grammatical,collin,ven,admiration,zanzibar,offend,severance,somali,combating,numb,retina,maids,tempting,bureaus,voyages,galatians,flo,planters,rocco,sheath,louie,chaplain,benefiting,dubious,occupies,mammal,shielded,degeneration,listens,swirl,emery,twists,scot,intrigue,blanche,dialect,nominating,fanatic,upton,pave,coverings,danced,slightest,libre,bromley,revive,corolla,predominant,abode,savoy,vogel,insecurity,trustworthy,uniformity,conquered,alarming,dur,amused,horizontally,knitted,exploding,narrowly,campo,rampant,suitcase,embarrassment,spectators,coronado,retaliation,inquirer,dreadful,metaphysics,drifting,ritter,attends,nicer,mellow,boast,gents,respiration,absentee,duplicates,dubois,corollary,tighter,predetermined,asparagus,airy,progresses,canister,stiffness,thrifty,canning,workmanship,complexities,shan,wrinkles,illustrating,perch,craven,divergence,homage,atrocities,londonderry,hops,emmy,chez,admittedly,ruiz,angst,liturgy,nativity,surety,tranquil,disseminated,staircase,cutler,cradles,electorate,airs,reconstructed,resent,opposes,silvia,distraction,dominates,kimberley,despatch,fugitive,tucked,jericho,turmoil,gilles,dietrich,haines,unjust,markedly,fascinated,disturb,terminates,exempted,bounced,rankin,brightest,saddles,scotsman,fitzpatrick,gushing,distracted,secluded,criticize,bog,livelihood,godfrey,minerva,superseded,iceberg,caleb,christening,jealousy,plumber,hagen,squeezed,judas,valle,dole,wick,gertrude,communists,owes,scents,bertha,levied,sag,barns,covenants,peat,proprietor,lizzie,raids,solos,compartments,maj,foi,importation,mss,planter,ici,metz,immaculate,pur,reindeer,telegram,ruben,shaken,wares,rivalry,verve,charley,carpenters,spree,sunk,morley,bespoke,inflicted,abbreviated,drowned,escorted,brute,barracks,kidneys,warbler,onward,kidnapping,inducing,lancet,antelope,terminus,castings,flanders,pellets,enclosing,starred,deacon,kabul,sweeps,butch,mercure,bookcase,assembling,diaphragm,questo,chores,consignment,yarns,liv,seedlings,fortified,reconsideration,barnard,profoundly,bartender,mayfair,jag,maneuver,ridder,vanished,lair,enclose,sinners,lille,calves,defer,desmond,liars,els,sod,lacy,pharaoh,advocated,itching,alles,devotional,taft,comparatively,spartans,tourney,reasoned,lawton,degli,saith,astral,ach,parallels,yelled,wren,terence,hamper,balkan,blurred,smuggling,instincts,hutton,masquerade,deans,duality,sensational,kites,smoother,expulsion,withhold,romano,grievances,betrayed,dumps,buckles,joyful,generalization,hin,pancakes,crave,cordova,focussed,ripple,claimants,consolidating,goldsmith,inclination,measles,arcs,portman,baptized,expelled,rupees,betrayal,flourish,heed,mein,graf,hawking,divides,composing,handicrafts,healed,burmese,boon,valor,pedestrians,gathers,pawn,stitched,camille,ceases,dorsal,collie,hereditary,exaggerated,buccaneers,spleen,allotment,jeu,multiplying,empress,orbits,whence,bois,trusting,sabre,stigma,abduction,attaches,tartan,twisting,tore,eth,mimic,shielding,stormy,vulgar,pathological,hodge,trimming,emanuel,serene,obligatory,corrugated,queenstown,forbid,unhealthy,felicity,ticks,fascination,sono,experimenting,splendor,vigil,robbed,rebirth,winona,progressing,fragrant,defeating,hotter,instantaneous,operatives,carmichael,bulky,exponent,desperation,parlor,setter,monumental,olaf,fer,stirred,toughest,fil,facade,frankfort,monograph,booze,widen,adjective,disciple,cipher,arrears,rhythmic,unaffected,starving,vide,lennox,sil,hearty,triton,deus,devine,adore,entertainer,colds,dependant,thicker,weeping,chandeliers,moneys,infancy,dips,honoured,yachting,cleanse,chilly,digs,bolivar,womb,irritating,monarchy,corset,hinged,attendants,cummins,robins,booming,artikel,scandals,screamed,cramps,enid,herrera,digger,espionage,pups,avenged,norte,glade,pendulum,bounces,nehemiah,thinner,noch,licks,soto,caste,jus,daft,sampson,psyche,rudolf,angling,stubborn,diplomats,physicist,tagalog,coo,requiem,bleu,redeemed,sighed,lures,bavaria,devastation,heroine,bingham,achilles,flaps,indifferent,cadence,frosted,schubert,rhine,manifested,denominations,interrupts,rattle,insults,oatmeal,marta,distilled,stricken,unrest,cascades,druid,dunbar,outsider,ris,abstinence,nag,poodle,wunder,stefano,sitter,colder,laborers,whispers,swarm,elise,ledge,winthrop,historia,peasants,nectar,anecdotes,gilt,masterpieces,symbolism,monsoon,drown,strife,esprit,attaining,consular,treason,reckon,gaston,prosper,napier,supremacy,capillary,germain,islington,anchored,yong,vers,mulberry,sinful,cheeses,bradshaw,mythical,abyss,whitehall,malachi,ble,clipping,niece,irresponsible,pleas,softer,paralysis,devastated,tarzan,shutters,flask,arisen,femmes,relentless,ribbed,omnibus,stables,inhabited,hereof,untold,observable,gretchen,lanterns,tulips,vigorously,interfering,idols,designating,nugget,reminding,gusts,xviii,magistrates,procession,spiritually,attentive,rupture,trad,assimilation,lyrical,concorde,angelica,braided,wooded,intensely,propelled,artisans,bastards,bassett,aspiration,appended,slammed,aviator,implicated,seriousness,conformation,intimidation,paladin,ihr,nests,civilized,marched,cassandra,cath,sighted,hopping,destin,rosary,platoon,andres,loneliness,pulley,alleging,synonymous,confectionery,regrets,consciously,cours,footprints,priscilla,stimulates,darkest,implying,conducive,uncontrolled,ballads,mathew,hugely,sevilla,hostages,rosario,fruitful,franks,indemnify,satisfactorily,thinker,contestants,sia,influx,convoy,sled,pyramids,depended,conveyance,tortoise,milo,cultivate,crocker,dialogues,abolition,coax,padre,lees,mari,quattro,foresight,peppermint,tod,castillo,remnants,nailed,alum,frantic,zachary,comrades,cocoon,doth,gladys,bowers,strengthens,qual,dictatorship,breezy,plow,mundane,douglass,barclay,foes,cloths,clowns,lombard,barren,histoire,plead,behaved,embargo,condensation,yokohama,vow,claudio,blot,primera,commentator,patterned,sheen,specter,imam,assent,hove,shading,scrubbed,warts,roundabout,harmed,paternity,conceal,starvation,appointing,seine,flowed,sewn,zulu,rin,barnet,rift,saviour,lapel,turk,cupboard,archipelago,peep,deceptive,undertakings,tinted,congratulate,constance,vanishing,legislator,notifying,aches,kitchener,leaked,genera,idioms,gardiner,gli,poisonous,chime,spence,mischief,argent,delinquency,cou,sentimental,unsuitable,mildly,forging,pew,waitress,caribou,merced,expansive,footing,manu,sligo,remit,bonnet,stumble,undertook,promenade,exhaustion,unborn,wendell,hammers,coasts,emitting,concur,exert,madeline,sanskrit,torre,worldly,wedges,corded,heirloom,pleasantly,portray,pero,esoteric,luxe,messengers,landings,graphically,shameless,communicates,bourgeois,yeh,napkins,unloading,bakers,selma,pears,heats,lucid,lobe,canaan,oppressed,infer,prosecute,thatcher,bret,hauling,inconsistencies,indebtedness,scramble,adversary,elsa,quaint,oswald,dipping,revere,troopers,domaine,olde,guerra,solemn,eruption,celeste,gentry,enchanting,preached,mica,cadets,lads,endured,ensuite,fermentation,careless,chemists,inca,fad,julien,dandy,narcotic,moulin,paine,incompetent,ain,predecessors,lancer,sorcerer,fishers,invoking,muffin,motherhood,wexford,ihre,dressings,partridge,synod,noticing,inte,newmarket,amigo,discerning,caddy,burrows,furnaces,zee,occupant,livingstone,juggling,wildfire,seductive,scala,pamphlets,rambling,kidd,bedside,lausanne,legality,arbitrarily,heb,luz,regulars,robson,mysticism,accompanies,summed,chopin,torches,dominating,joiner,viejo,explorations,guaranty,procure,stillwater,sunsets,cropping,anastasia,arrogance,diverted,forgiven,bleak,christophe,wenn,drudge,dolores,tramp,saliva,chichester,artemis,lessen,weller,syringe,diversions,admiralty,powdered,granger,prevailed,glacial,alleges,shredded,antiquity,zeal,valparaiso,blaming,embark,manned,porte,johanna,granular,sant,orkney,bah,vero,oscillations,sphinx,spiegel,mujer,ceremonial,sonnet,constituencies,sprung,hedges,inflated,crooks,prospecting,quilted,walled,immensely,trafalgar,relapse,descend,jakob,bolster,nietzsche,fol,rocked,rancid,disparity,malice,vom,knapp,swimmers,syllable,painfully,sweating,demolished,catholicism,trident,lemonade,absences,andes,ciudad,josie,persists,propeller,dents,anarchist,submerged,entrusted,essen,calming,intending,cromwell,drummond,dissertations,highlander,solicitations,lar,punto,survives,darcy,funnel,moons,gent,thirsty,freshness,lathe,shabby,punched,petri,virgil,gaa,marbles,cottonwood,mildred,deletions,cleopatra,undecided,startling,inductive,inadvertently,bursting,wird,halves,moulding,melancholy,observance,leaps,halen,galvanized,hoy,teapot,conveys,lends,squire,ache,counterfeit,waller,duval,yoke,resonant,mak,outskirts,expedite,grayson,sweetness,crook,rearing,davison,tins,deliberations,indifference,xix,invading,dives,loot,coyotes,stale,cosmo,levers,cog,incarnation,strained,putty,reacted,admissible,sunless,puzzled,unexplained,patsy,thermometers,fourteenth,compounded,chippewa,eldest,terrifying,climbs,uprising,gasp,swans,tories,hap,remnant,immoral,sacrificed,unequal,weaken,braxton,categorical,cupid,stalking,sturgeon,jap,piers,ensuing,mitigating,tint,dykes,revived,joachim,eet,earle,hosea,sua,haste,flakes,alfalfa,corfu,argyll,emil,joking,rhetorical,simmer,vert,smallpox,overwhelmingly,waterway,migrated,reacts,bain,norbert,complication,aubrey,adaptable,sainte,bitte,fleur,muy,berth,uninterrupted,lint,chalmers,crabs,tuscan,lingo,einer,budding,roam,resemblance,hackney,toto,hebron,saber,cataract,midday,fait,innate,medallion,prominently,kant,nazareth,nadia,glanced,calais,rapture,sunbeam,abruptly,beetles,caspian,impair,stun,shepherds,susanna,philosophies,lager,projecting,goblin,bluffs,parrots,anthems,terrified,nocturnal,nueva,emulate,accuse,hunted,diminishing,lew,ridley,produits,zipped,intrepid,babel,clustered,primate,eyebrows,compromising,willingly,harlequin,revisit,insulting,prominence,cuckoo,parrish,inspires,acacia,fang,netting,contemplating,erasmus,sop,recalling,practising,hermitage,starlight,foyer,palaces,brood,azure,compel,contradictions,festivities,trenches,sabine,doorstep,sniff,dangling,negligent,gliding,woe,meditations,tranquility,halted,liza,drawback,smyrna,hostess,weep,posse,mosquitoes,commun,weldon,frying,hesitation,imprinted,bereavement,surrendered,iam,bestand,westward,converged,leopold,recognizable,ludlow,sprague,saba,embraces,gustav,waxing,gael,sinner,auspices,coles,ergo,dissenting,melee,radcliffe,countess,pleading,crafty,llama,montague,troubling,vowel,reuben,cob,fearing,coronation,isabelle,reluctance,inconsistency,apostolic,summoned,treble,galley,shovel,kam,entail,mashed,aire,pacing,moan,opec,jimmie,henson,unfolding,tottenham,deserts,milking,wilbur,suitably,enormously,aber,cicero,scribe,nellie,sleigh,formulae,fen,sank,frontage,blister,ration,humid,portrayal,guile,lacquer,unfold,hammered,tutti,mined,caucasus,intervening,bale,astronomers,thrills,therefor,sores,fel,pastures,unattended,playwright,carthage,zechariah,selves,naturalization,whispering,dissipation,sprite,keel,leighton,atheism,gripping,cellars,tainted,remission,praxis,affirmation,perturbation,wandered,reeds,angler,astounding,cosy,resend,augment,flares,shedding,glastonbury,funerals,eucalyptus,conservatism,questa,bumped,fortuna,cripple,lofty,proclaim,cropped,merton,ere,richly,ravi,dogma,priori,vaguely,yam,ple,siberia,melons,farley,seer,evils,spontaneously,unavoidable,ruthless,almonds,ecclesiastes,aptitude,vial,chao,sharpening,seniority,prompting,objected,equator,guilds,blatant,favoured,ridges,oysters,gust,cate,receptacle,mendoza,haus,puberty,shorten,shawl,samaritan,bends,grimes,unison,tabular,amir,dormant,nell,restrained,tropics,concerted,avenir,refrigerated,crouch,pence,formulating,lamentations,napkin,emile,contagious,inaccessible,administers,crockett,conspicuous,barbarian,soaking,reforming,gar,intrusive,thyme,parasitic,abusing,receptive,capt,uwe,xvii,vulcan,musk,lucille,executions,refreshed,guarding,atwood,windmill,lice,garter,footed,dedicate,libros,renewing,burroughs,ioc,skim,touche,welt,veal,perpetrators,embarked,quickest,euclid,tremendously,anglais,smashed,oscillation,thunderstorm,retrospect,jog,hailed,bahia,miraculous,hounds,tightening,draining,paroles,sensibility,rags,punching,distinguishes,poi,dazzle,dangle,eaters,exceedingly,inauguration,inquired,repentance,unprotected,merle,savory,evacuated,reclaimed,prefecture,accented,crawley,baum,racket,hannibal,sickle,violently,attest,untouched,comforting,creeping,kerosene,appraised,restorative,chet,peacefully,stature,sentry,pel,assaults,berwick,vices,amo,tolls,degrading,forster,fireman,maniac,antics,deze,formative,recognising,wordsworth,wrongly,cree,physicists,falsely,abbot,officio,consul,plagued,lahore,aiding,kunst,suckers,swallows,patronage,canoes,matilda,fodder,impetus,peeled,whining,arson,hirsch,tapestries,transatlantic,jak,freeing,kilkenny,redress,settles,seaman,skulls,cayenne,treatise,defeats,testimonies,kali,weitere,itch,withdrawing,solicited,jai,gard,brilliantly,deja,mccann,spalding,dill,reopen,potts,erased,resisting,congregational,antiquities,dunham,monsieur,inhaled,fuses,britt,blinded,madras,sacrificing,faiths,tinker,sonora,echoed,elisha,gazing,skepticism,zane,eighties,groupe,freehold,braid,ance,forester,resisted,alp,munro,agar,arundel,shiraz,disgrace,mediate,rein,realisation,irritable,cunning,fists,pennies,jos,hemorrhage,awning,ointment,spilled,tripping,occidental,vigor,chariot,buoy,geraldine,matrimonial,squads,niet,tenn,disclosing,masthead,ursula,disbursements,boucher,chadwick,candidacy,hypnotic,adultery,fis,seventeenth,temperament,prostitutes,healer,hive,circulate,glued,sycamore,belinda,westmoreland,shuts,tenderness,ocular,smelling,dung,keine,scratched,conclusive,alder,polluted,undersigned,lark,oda,carlyle,restores,lullaby,sanderson,hoes,lawns,midas,choking,castor,plentiful,bonner,stately,raced,deuce,oma,squirrels,paddington,drawbacks,evoked,dictates,studded,individuality,spared,anticipating,californian,brownie,undressing,quits,ensign,restraining,blockade,girard,nearing,ruff,burglar,warped,tributes,freezes,knoll,thinning,reddy,primrose,parting,humber,michelangelo,corduroy,torpedo,muffler,troublesome,eucharist,wadsworth,magnetism,hodgson,inventive,speculate,craze,dispatches,craftsmen,desiring,felipe,hoffmann,texan,nombre,grated,submarines,provoke,romana,accommodating,grenoble,calvary,banded,deportation,harald,cuttings,invests,sculptor,kildare,commended,roper,narrowing,sergey,mechanically,profanity,playmate,scum,seasoning,adolf,adjourn,widows,conveying,precincts,volta,mediums,discern,bran,fumes,futile,disqualified,fenced,eel,animate,faro,resembling,buren,totem,experimentally,drinkers,hermione,indus,harms,asserting,affluent,ell,protesting,dix,lonesome,liberated,unconventional,amore,reckoning,fabian,concurrence,closets,carve,metaphors,muster,labourer,heartfelt,pertain,democracies,gideon,mallory,gauntlet,martyrs,cots,victorious,sylvan,beverley,unnatural,swish,confessed,nae,drumming,patching,fret,abiding,luscious,sighting,relic,slipper,augsburg,bil,argyle,cling,prophetic,commune,agatha,tut,haut,gesellschaft,circumcision,neutrality,aqui,snoring,trembling,reproducing,comets,unitarian,governs,gums,delaying,mainz,reconstruct,toned,erred,modelled,expiring,mabel,whistles,jewellers,kann,caron,understandings,dared,herndon,nudge,seeming,rosebud,alf,andromeda,sixteenth,origination,uso,doves,landowner,preachers,leiden,ramona,glib,brutality,fictitious,francesca,rumour,immortality,saffron,ragged,peerless,constitutions,improbable,reiterated,jesuit,excessively,mounds,extraordinarily,parted,munster,sufferers,skunk,interruptions,placer,lingering,brooches,heaps,hydra,anvil,blinking,sweetest,noe,dishonest,stalk,kun,inert,favorably,vocation,tribunals,cedric,favours,witnessing,eject,seventies,rayon,dryden,foreigner,policemen,unfavorable,anomalous,katharine,barter,rowley,modifies,frugal,starry,thanking,nouns,consequent,entrances,danube,evasion,filenames,mayors,gospels,wicket,cora,lazarus,vile,misguided,reunited,conversational,inspirations,blasted,shingles,gresham,cumbersome,immersed,philemon,roasting,accrue,loire,vented,pont,consolation,cer,frazer,outlay,dreaded,airing,alternately,gracefully,intrigued,antagonist,exalted,cadre,serb,jaeger,overthrow,patiently,cabot,controversies,narrated,squat,illuminating,artificially,saucepan,freshest,noi,martyr,hacienda,koran,quito,tiara,elegantly,temptations,skinned,irrigated,hives,groundwork,cyril,kew,resentment,glaciers,peri,manfred,gaping,infringe,porta,inferences,abrupt,gambler,dissection,nightingale,landau,contemplate,amigos,putt,colonization,coon,crock,ailments,disagreed,boldly,narration,unopened,insisting,yeas,brushing,resolves,sacrament,cram,shortening,cloves,marketable,presto,hiram,broadening,hens,bowed,whimsical,harden,molten,repaid,warmly,hogs,sporadic,eyebrow,strickland,unnecessarily,iom,tess,trois,painless,serbs,verdi,annexation,dissatisfaction,alpes,applaud,haben,primo,abolish,climates,uneasy,busiest,fray,florian,clogs,flank,cartel,numerically,perforated,intensified,sexton,postmaster,washes,shrugged,electors,departs,mindful,lurking,hitherto,egyptians,looms,spectre,downright,refractory,counsellor,inexperienced,outraged,belgique,smother,frosty,mules,sash,truro,moaning,ponies,originates,blight,physique,independents,contentious,cheering,archibald,emancipation,duchess,commemorate,spout,perish,hoist,narrower,captivity,peyton,overloaded,shorthand,ceres,bravery,lizards,einen,fergus,sincerity,calder,oar,mullins,flagged,relics,relish,imagining,belongings,lire,legislatures,unchecked,knocks,alfonso,contradict,fleurs,scarcity,ashby,fleeing,filament,abingdon,theorists,hof,southwark,celia,disguised,implanted,thrash,antiquarian,dina,fluency,uniting,behaves,slabs,conceivable,agate,incline,hartmann,bai,soliciting,thoroughbred,calle,oneness,climber,commonplace,intellectually,casanova,himalayan,downfall,bookcases,strides,vanish,ute,transmits,adair,impatient,aforesaid,elbows,truce,bette,stairway,woodrow,sou,boar,vertebrate,laird,multiplicity,objectively,resigns,anguish,petal,perfected,tomlinson,odors,mite,blackstone,clipped,lago,jed,dries,mejor,sikh,annoyance,grating,prostitute,mina,elixir,guardianship,gamblers,autre,peeps,rol,reverence,sardinia,outweigh,verne,gaylord,bunting,avenger,spar,waugh,captivating,tiers,centurion,propagate,prosecuting,montpellier,willem,slavic,nutritious,marguerite,vapour,pluck,cautiously,prick,contingencies,coercion,picard,rubble,scrambled,agitation,chas,truthful,woodpecker,herds,corsica,penetrated,sein,adder,weakest,weakening,nome,thorne,anticipates,poignant,germs,frees,punishable,fractured,waterman,brat,uranus,salient,gabe,censor,semitic,wits,perverted,bordering,widowed,tombstone,begged,flushed,cautions,lavish,roscoe,brighten,vixen,whips,marches,xxi,anew,commandment,undetermined,horner,yah,conceded,circumference,postpone,disproportionate,pheasant,alonso,bally,zijn,guillaume,marrying,carvings,complains,resided,terriers,weasel,venerable,preis,toasted,admirable,illuminate,holbrook,fades,bulge,eller,lucinda,brittle,bandits,politely,desde,watermelon,ingenious,carols,pensioners,obadiah,mannheim,hepburn,fetched,alderman,lockwood,coughing,hiatus,upholstered,evangelist,louvre,spurious,gloom,severn,angelic,astrological,nobility,bayern,afternoons,ramifications,wakes,ashore,workman,swimmer,sitio,unload,loon,marge,wanderers,sips,badness,undertakes,miscarriage,vulgate,stoned,provoked,herr,fables,crumbs,wort,palisades,confidently,commences,dispense,dangerously,figaro,sadie,protested,capitalists,accusing,stink,convent,valdez,childish,adhered,priesthood,jagged,dispersal,overt,verbally,squeak,constituting,nuns,pronounce,scorpions,incompleteness,thurston,dearly,suggestive,osa,electrified,unbalanced,gypsum,slime,baroness,winnings,imaginable,bromide,lui,crusaders,summing,lament,gregor,terraces,canyons,predatory,towne,descendant,disgust,banked,rationality,screwing,dismal,ranches,cochin,wipo,prologue,whaling,patrols,stumbling,swung,outlaws,sinn,waved,libel,ellipse,alarmed,justine,jest,garda,eskimo,caesars,luce,strapped,reluctantly,woodwork,centrifugal,authorship,cavities,buxton,cravings,decidedly,pau,apathy,mercantile,stalled,infused,peaked,stronghold,huxley,moritz,bearded,greasy,vowed,carnage,asher,ingenuity,mort,infested,creeks,bessie,adele,ota,rattan,coroner,irregularities,tiled,elaboration,hectic,lun,snuff,convene,vai,calmly,horribly,dilute,contemplation,sino,uhr,carta,gaseous,afflicted,gloomy,kirkwood,orchards,prophecies,marques,septuagint,pertains,clothed,plummer,italians,talon,repellent,laval,sorcery,abstain,elsie,barring,undermined,tid,bestowed,habeas,inactivity,crewe,grassy,aprons,clumsy,columbian,ayr,pounded,carrington,stint,rousseau,sarcasm,accomplishing,overturned,uphill,maximus,warmed,parable,jolt,affords,deadlock,deriving,quadrangle,elects,liebe,eradicate,likeness,ral,jem,unter,alpaca,degrade,flemish,shred,conseil,steamed,aroused,remittance,sieve,bloch,alienation,reddish,impulses,interpol,pleads,whitby,goliath,caprice,hors,horned,fowl,janus,hester,benevolent,superstition,cohorts,camilla,rarity,limbo,shove,accusation,bernardo,flake,hating,pate,sewers,spores,mahmoud,shears,mucho,flutes,tabernacle,minced,westerly,despatched,munitions,symmetrical,ornate,midwife,uniformed,snug,coveted,prohibitions,moulded,deceived,convict,nai,tossing,regularity,criticised,lawfully,goethe,slade,dumas,jester,notifies,recount,dearest,nook,commensurate,schiller,bowler,wiser,gallant,disbelief,gon,unqualified,cautioned,recollection,locomotives,condemns,fastening,jeweler,nuremberg,ostrich,maud,flirting,misplaced,prosecutions,dido,poisoned,researches,chou,discriminating,exclamation,collingwood,intercepted,ascendant,flung,clovis,eam,railing,cremation,banter,balconies,awaken,pigeons,singularity,signify,granddaughter,subdirectory,bancroft,progeny,alters,gratefully,divergent,fleets,dorian,juli,tackled,shoals,tributary,clique,rosy,satanic,stubbs,durch,torment,mussels,emigration,howl,wel,iglesias,hir,ecclesiastical,crippled,hilltop,tabor,peut,tenet,fifteenth,chute,bohemia,mountainous,fonds,ogre,unforeseen,pickles,submissive,curses,stampede,utilised,trieste,whine,nus,fatality,tierra,looming,zo,sped,ankles,mosques,fuchs,guerilla,squeezing,fisk,canes,follower,euler,alumina,degenerate,spiked,cru,misrepresentation,strung,chanting,wrestler,officiating,hermit,behaving,colbert,josiah,deepen,acadia,eso,remy,pats,valentin,mora,cri,enrico,reciprocity,crease,wis,ook,bartholomew,perseverance,catalonia,yorktown,impede,clasps,tilted,vicar,confines,prank,dass,repent,dio,agreeable,riddles,bennington,pulpit,appreciates,marshes,bellies,corrosive,ambush,palazzo,franciscan,figurative,gait,emphasised,bonfire,aversion,vicente,stiles,stewards,chauffeur,elicit,henrietta,slapped,bitten,lind,salamanca,martyn,dynamo,hobson,stow,summon,skeletons,parchment,lingua,distractions,forfeit,pepe,paddles,unpopular,republics,inspecting,retainer,hardening,loosen,beowulf,undiscovered,einem,imputed,cabs,cheated,willows,hump,delft,communicative,grieving,chastity,faust,fright,harbors,adorned,obnoxious,diligently,decays,mortimer,marvellous,nouvelle,easing,mathieu,picket,thrones,emilia,eyre,maturing,seu,illogical,awakened,beet,suing,brine,lorna,waning,cartwright,armoire,piled,twinkle,lodgings,maitland,supple,geld,soi,fabio,unfit,uttered,rumanian,shaggy,elongated,ordeal,pegs,astronomer,incompetence,flicker,ramsay,relieving,towering,operas,slaughtered,assaulted,mena,rouse,appel,armand,spiel,impurities,stemming,inscriptions,hos,tentatively,tragedies,interlude,oates,dialects,vas,ovid,carcass,casually,scamp,freedman,reprise,zig,lash,ills,simms,danes,pebbles,quicksilver,sacked,omen,forfeited,stipend,conceptions,lii,amulet,informally,sarcastic,indemnification,hawke,complexion,daisies,informant,sorrows,ite,aegean,andere,sluggish,brig,tiempo,marsden,coy,grouse,reginald,wierd,pasted,moths,batavia,evoke,dispositions,haywood,staunton,nit,amorphous,tributaries,townships,nantes,assam,mousse,shameful,chiffon,archaic,elevate,deafness,bec,sala,laureate,contemporaries,syphilis,vigilance,appalling,palmyra,foxes,davie,affixed,ticking,pantheon,gully,bitterness,brill,defy,stor,consumes,lovingly,agua,thrush,bribery,smokes,ventilated,kettles,ascend,nutmeg,chained,magnify,precautionary,travail,livres,fiddler,wholesome,wrists,severed,mites,puddle,azores,vegetative,agora,sob,elaborated,reeve,embellishments,willful,grandeur,plough,pritchard,mansions,macpherson,overheard,persisted,whereabouts,haydn,symphonies,reclining,rodrigo,bounding,annexed,atheists,umpire,orthodoxy,kilt,doubtless,keyed,esquire,cryptic,primus,wherefore,cholera,midsummer,colouring,intoxicated,mysore,jerks,mise,darius,bullion,deflection,hateful,propensity,journalistic,essences,dispensed,lemons,stratum,vendetta,lod,felicia,restrain,clutches,cults,whit,amaze,manassas,rembrandt,estado,easel,reisen,potion,ovation,paddock,numerals,surpassed,vino,gable,johnnie,thirteenth,laced,quill,saa,mares,enthusiastically,fetching,chaps,tendon,bellows,keats,deceit,caro,unmarked,joyous,boswell,venting,infringing,blythe,chisholm,gunner,verso,samoan,absorbent,grossly,cleft,clog,hongkong,impoverished,stabbed,teaspoons,comedians,awnings,sill,lucknow,bleaching,isolde,startled,mathematician,untrue,algonquin,hurried,vir,dieser,staggered,vacated,vente,fitz,dura,fingered,apprentices,cerca,booted,allie,sens,sprouts,bower,moab,wolcott,extremity,orphaned,requisites,prudence,kaufmann,bij,gingerbread,biggs,tasteful,puritan,osiris,affirming,salud,excavations,forearm,distract,seaport,flashed,longs,dawes,buns,deceive,civilisation,starved,amico,colosseum,stipulation,emptiness,maddox,shoemaker,cushioned,dada,osborn,hastily,ful,invader,patriarch,consents,nils,polynesian,swain,lain,groningen,emilio,mourn,abandoning,oddities,soften,troupe,blacksmith,suicides,powerfully,compromises,helene,thirdly,classifying,deepening,unfairly,connexions,calico,wrongs,pores,johnstone,undermining,burnside,colossus,frivolous,indecent,dishonesty,oiled,turnbull,microbes,sharpen,phonetic,oppressive,coined,tito,moray,simeon,onslaught,nationale,noses,treasured,sharpness,corral,fortnight,lia,plunged,reals,modulated,defiant,brisk,meath,jena,ponce,perjury,mua,generality,vigilant,pronto,vistas,eerie,arne,stonewall,wrestlers,jackass,geometrical,priory,epsom,corpses,wiping,mercenaries,bronchitis,therese,whirlwind,howling,apprehension,raisins,turkeys,tio,hora,bobbie,shale,diligent,nachrichten,dann,adversity,wiggins,torts,egress,adjectives,crepe,dum,sheepskin,concave,heresy,armory,forthwith,avert,oat,guise,curiously,fullness,culminating,kipling,vomit,compounding,afar,ebb,shaky,brutally,pennant,nicest,willoughby,necks,lak,mathias,levee,hindus,powerless,populace,deliberation,soles,jetty,luster,overrun,undone,delia,habitual,alhambra,mee,uplift,causeway,murderers,reopened,guid,inhabit,lorenz,conglomerate,fastened,tompkins,extradition,geschichte,perils,jerky,proportionate,compte,algo,boroughs,deliverance,resists,lovell,discourses,subdued,adhering,falk,suspicions,hampered,bruxelles,detriment,prejudices,purported,tron,ine,mangrove,gab,fawn,scaffolding,prin,narrows,sensed,insuring,babcock,rhys,boasting,norah,ascertained,fluctuation,jeannie,ond,twenties,monstrous,stetson,accuses,calibre,nobles,fumble,attrition,atherton,lassen,proverb,darin,mercenary,clams,reis,tightened,levies,speck,gutters,murderous,rudder,amusements,scares,deformed,wretched,decadent,incarcerated,unsurpassed,surpass,annihilation,pietro,memoranda,steaming,magnifying,serra,hideous,abreast,intuitively,extremities,tyrant,decency,papal,sprang,palais,obscured,duets,mountaineers,blount,butchers,apologise,geologist,piccadilly,axioms,mogul,fiercely,varnish,hysteria,nei,insistence,aer,clockwork,mecklenburg,intelligently,fuer,vials,imputation,albrecht,densely,droit,odin,colton,distrust,ulm,assassins,hatton,fraternal,refinements,eloquent,cwt,silas,wondrous,decrees,touchstone,etext,drayton,grieve,reigns,pleasurable,dobbs,tunis,olin,bustling,galt,flue,lucerne,fiasco,emir,deacons,slings,dwarfs,apportionment,thoreau,reins,anson,broadest,scrambling,misfortune,drenched,astonished,kiel,subconscious,agi,incandescent,disappoint,mobs,cris,rehearsals,massa,firewood,serenade,weathered,truffles,anno,kepler,teatro,lawless,gout,coincides,inhuman,gentiles,jardin,fag,rubs,irritated,despise,floated,fresco,auteur,custard,prius,dias,hasan,branched,shipbuilding,mildew,tombs,frown,fulfilment,accords,privy,caretaker,antonia,feeble,gentile,contractions,combatants,annuals,champlain,valence,deteriorated,droits,disobedience,gat,unpack,divination,haw,nationalities,cultivating,triumphant,superbly,hombres,constrain,magicians,gra,hobbes,contended,nazarene,potsdam,genevieve,shiloh,damper,afrika,forgiving,yahweh,madman,sor,slumber,shimmering,rigidity,bane,marius,inventing,chipped,ane,forts,tumbling,interprets,surat,dormitory,confiscated,discharging,unnoticed,ridicule,thaw,vandals,reinstated,lizzy,unpacking,darien,intersect,finden,janvier,garnish,designates,peeling,levis,blindly,unintentional,durant,repertory,toi,disagreements,gatt,bene,fifties,goody,dugout,battleship,talisman,eels,shun,blackwood,giggle,worden,deforestation,streaks,roderick,bor,corinth,perverse,glittering,jails,casket,brigitte,detour,husbandry,visibly,defunct,unveil,circulars,merciful,ines,tun,tipperary,kinship,springtime,philipp,blouses,hemlock,sniffing,uncanny,stork,concede,combustible,fallacy,nicknames,noxious,tunic,farce,drowsiness,chants,ashe,rhone,lunatic,pyrenees,auctioneer,recovers,haggard,manger,chills,whack,drone,breezes,esteemed,godly,spire,distillation,edging,langdon,mathematicians,soe,cymbals,antidote,emblems,caricature,shroud,stead,recoil,reconciled,daze,raisin,amb,amounting,schon,boer,poisons,nameless,trot,musically,intensify,voltaire,harmonies,benito,accumulating,indebted,wald,breathed,misled,mani,culprit,transact,billig,spiced,berne,pron,puncture,nella,lighten,practised,canteen,fein,hysterical,fick,darkened,requisition,shrug,boils,enchantment,greta,covey,donne,pena,loathing,duc,woof,ominous,parlour,hammocks,quieter,poking,tallest,wrestle,entrenched,rectify,virtuous,ous,davy,snails,decipher,incapacity,mittens,ferns,curls,ens,wrecked,wince,friendliness,invincible,healthiest,prometheus,rushes,deities,wor,comanche,melts,trickle,disapprove,erratic,familiarize,insufficiency,drifted,propagated,hardships,sabres,foraging,wasps,chien,mitre,tonnage,corals,mille,continuance,unrecognized,premieres,affectionate,baptiste,unimportant,ferrara,greener,bowles,endowments,grudge,zoological,norse,wetting,bosom,bales,blackbird,causation,persecuted,deciduous,straighten,convocation,merrick,precaution,playmates,philanthropic,maneuvers,stratified,critter,begs,emphasise,uit,adresse,connell,busts,cutaneous,porters,forgery,pereira,infrequent,mull,ort,brandenburg,incision,jumble,cognac,wading,imitate,grasping,borneo,mortuary,bode,thorns,rightful,scarecrow,mosaics,pious,utterance,undeveloped,basalt,undisputed,distracting,urns,unfolds,brocade,seaweed,prevails,candlelight,votive,wafers,messina,schumann,tarts,cuthbert,nance,babble,pessimistic,niches,untill,quid,cadiz,shortwave,overlooks,diversify,hugging,postman,oas,overboard,goddesses,faithless,regained,coolidge,ephraim,foggy,shone,criticizing,leafy,passionately,stroking,matured,dolor,procured,excellency,camels,partie,tou,justifying,eased,slay,deprive,kremlin,thea,lusty,virtuoso,buzzing,dauphin,steed,cowley,paraffin,unites,stimulant,realising,millet,invert,vermilion,grinned,marche,thelma,enlightening,endlessly,hasty,dexterity,puzzling,nods,dieses,sumatra,nigger,scrape,kendrick,prized,arresting,bewitched,resumption,irma,intimidated,traitor,clove,illiterate,widened,bordered,mallet,leech,giver,discontent,gaz,punishing,seedling,dwellers,mouthpiece,nymph,reassuring,astor,myles,prematurely,frail,adventurer,irradiated,awfully,mayflower,arched,enlist,vedic,exemplified,profane,ubi,cornelia,romney,macaroni,electing,dictation,tage,robber,evacuate,tus,conveniences,roving,drinker,softened,peking,fillet,maar,churn,nimbus,nog,smartest,neale,ett,madre,impart,feats,concomitant,donner,scaffold,oui,ano,millie,libro,leisurely,loki,dislikes,mayonnaise,dra,limitless,knopf,hangman,sloping,mitt,constitutionally,disapproval,bavarian,crucified,pocahontas,masons,surges,literatures,unlucky,yawn,distort,mun,wahl,loosing,canopies,handicraft,buscar,piling,basilica,amine,robbers,juliana,lowland,sausages,spake,feud,subordinated,awoke,unheard,prune,endanger,cairn,nomadic,disgusted,olfactory,prolong,fontaine,knits,thinly,tant,garnett,galen,arable,parallelism,brut,vernacular,latitudes,alkali,mowing,foreseen,palmerston,sever,expend,stahl,gist,auntie,afghans,blames,subdivided,happiest,lucca,francine,reserving,nagasaki,wid,indented,humming,disclaim,frans,diameters,exerted,justifies,freiburg,regenerate,titre,tumbler,bonne,improvised,flocks,bothering,garnered,fling,comrade,ascended,juliette,porcupine,chopping,enacting,stabbing,metamorphosis,hilda,wanderer,flattened,dawkins,spitting,inconvenient,seacoast,imperfections,lewes,chancery,raving,hed,executor,anglesey,choirs,wreaths,tasteless,tomahawk,tact,projet,instructive,absorbs,susannah,toutes,mathematically,godwin,drier,bothers,parades,shoved,invokes,cannons,hamish,chromatic,rife,rallying,enoch,carriages,dales,polled,agnostic,emptied,denounced,delusion,rimini,verity,turret,precede,huts,betts,domes,eras,wildest,foodstuffs,wessex,priming,vowels,sulphate,clandestine,migrations,hovering,texte,tamper,pugh,punishments,dagen,heathen,unduly,rigged,domicile,chargeable,fanning,meu,spurred,broughton,wha,osage,peregrine,tabitha,puede,crumb,fostered,culmination,revolves,mend,theoretic,softening,glimpses,hattie,tastefully,capo,grate,lourdes,diseased,kenilworth,margot,socialists,deduced,buttocks,unmanned,rainbows,gunnar,burials,eunice,bountiful,salazar,mesopotamia,jetzt,poseidon,ratify,mexicans,fiend,drapery,bernice,deported,muzzle,entrant,schoolhouse,retribution,yusuf,stallman,slander,basing,baits,fireside,disposing,herzog,suffrage,triumphs,fortifying,sleepless,schiff,watered,lass,fleas,tully,ventured,recite,kneeling,negation,dismay,smelled,jute,heals,prim,trespass,conciliation,compasses,groomed,leaping,impunity,sunken,inaugurated,encountering,infernal,sewell,pang,swag,reared,pampered,inquiring,numero,praising,momentary,commemoration,favre,poli,holstein,serpentine,hangings,lugar,sundry,protestants,therefrom,espace,wrecking,cristo,pique,swore,novembre,fawcett,journeyman,enlighten,descartes,flashy,prowess,abstractions,enriching,trampling,signet,bello,iroquois,digested,rothschild,trumpets,embodies,messe,manhood,kincaid,cannibal,nephews,oblivious,icao,atmospheres,stricter,jeter,memes,roughness,ancients,snapping,jethro,cauliflower,feudal,unbearable,perpetrated,basses,juni,boarded,olympian,sedgwick,livre,mano,interferes,devotions,myra,devotees,acquaintances,sectarian,fathom,cools,segundo,appreciative,innumerable,parramatta,noticeably,furs,atonement,extant,ignacio,unmask,chisel,mysteriously,wayward,redness,dreamland,wands,illustrious,fishy,nao,pauses,intoxication,glimmer,blooded,slamming,syllables,whim,filmy,timid,ismail,tampering,weavers,magically,pied,thyself,rooting,pretended,nigh,therewith,interment,partitioned,aller,populous,modesty,veils,frei,zest,sumptuous,wayside,spotless,wich,summits,ner,banc,barbed,legions,dona,lustre,wer,sunflowers,sommer,ecstatic,campania,blasphemy,wisp,countenance,skinning,sift,ooze,recounts,adventurers,oktober,bigotry,leaky,contradicts,leven,pagans,dinars,diesem,fume,afloat,bruised,flattering,brigades,leur,engrossed,dashes,impeach,atrophy,hur,brag,earls,confers,totality,circumvent,boulders,negotiator,yolanda,muff,maude,odour,bellamy,snag,fringes,gough,excavated,smoothed,affirms,gulch,irrevocable,wieder,moaned,axles,graciously,radiated,bribe,propel,outspoken,verily,ardent,forcibly,presided,shimmer,tremor,gnp,loaned,violins,extravagant,ghent,astute,jamieson,pemberton,inflict,invalidate,ridiculously,legible,towed,disregarded,auguste,puc,salted,attractiveness,calamity,brewed,aristocrats,fiance,sprawling,vulture,mislead,ventral,twa,retard,medio,platters,canto,germanic,harassed,discriminated,estelle,sponges,cavendish,receptacles,jacinto,revered,harassing,dislocation,shingle,timbers,undergoes,tilting,conquering,harass,meditate,hues,alsace,denominated,ostensibly,lumps,facie,emploi,cretaceous,fished,drizzle,bracing,mesure,blackmail,corte,remorse,navarre,clout,jours,wag,fella,mountaineer,pondering,purposely,worshipped,lucifer,unholy,spectacles,dulce,muttered,aquila,hoff,mme,spat,henceforth,argo,strapping,expedient,unconditionally,ices,secreted,buch,chaucer,livery,recapture,chevalier,incompatibility,anchoring,navigable,personas,milieu,stonehenge,injure,knuckles,zoeken,intermission,amazement,medusa,pagoda,manifests,primed,keg,recited,reformers,ensued,justly,throats,aron,barrage,pis,pari,buoyancy,aussi,curled,raoul,peeping,paces,heaviest,walnuts,ena,broadened,lashes,esplanade,prairies,mandel,conical,tricked,etymology,cheaply,allege,draped,subtly,manslaughter,consort,shad,fleeting,sibley,plumb,needlework,caballero,annoyances,uti,bacchus,chuckle,unfolded,israelites,rit,briar,wavy,moulds,hindered,bloated,pranks,mantel,languedoc,fatima,disordered,belated,englishman,winder,paralyzed,junta,shrunk,crammed,aar,hatchet,unsuspecting,dismissing,cetera,windfall,filaments,jocelyn,companionship,creeper,cuando,epidemics,illegitimate,slag,undisturbed,transcendental,georgina,chantilly,farmed,fuentes,malo,complicate,alston,indistinguishable,skillful,groot,compensating,overrated,reasonableness,nuances,knuckle,bastion,scraping,gypsies,concurring,assemblage,watery,tro,juanita,coiled,yucatan,sipping,beatrix,cheerfully,sledge,gilded,murdering,dijon,unbroken,sages,tropic,capella,beim,condemning,entourage,travers,familia,iota,realist,suppressing,scorn,crusades,pris,whirl,pervert,defences,humiliating,circled,withers,sprout,elicited,swirling,campos,clinging,bunches,bagged,negotiators,deviate,blackened,whereupon,muriel,hostilities,atelier,penned,conte,horatio,cheered,bled,throbbing,sleepers,seiten,zeit,sallie,solace,lucien,havre,moles,unloaded,projectile,transplanted,bandages,handcuffs,beacons,stucco,intrinsically,geschichten,impervious,shams,shawls,aos,flourishing,precedes,bruises,instructs,palatine,lor,carnation,kangaroos,slum,ruffle,knack,rivet,aragon,aggie,tilly,sonya,haue,grunt,talmud,grammars,overalls,doubted,ravaged,whistling,upholding,ailing,obeyed,tattooed,ghostly,mutiny,delusions,foresee,rations,bitterly,windmills,perpetrator,cleverly,misunderstandings,amerika,counsellors,amis,sisterhood,lightening,overturn,doit,thoughtfully,mortem,rencontre,risking,proprietors,tatiana,ingress,gros,barbers,retires,duro,commotion,deduce,bolted,materialism,eternally,senseless,rabid,reassure,recollections,probed,pox,hamlets,unwritten,jammed,moveable,housekeeper,agrarian,humana,lovable,sawmill,abram,catharine,consented,perseus,styx,congested,banished,terraced,buttermilk,laces,toil,hugged,flurry,gower,warmest,horrified,walpole,cada,alte,bertram,perturbations,adversaries,aunts,mau,vapors,skylight,gemma,constantinople,monarchs,unsolved,strenuous,roost,unreasonably,shuffling,ludicrous,tenets,albanians,pius,garb,steadfast,reckoned,promissory,overflows,queried,squarely,softness,crayon,rotting,exhilarating,excepted,flavoured,marque,ditches,millionaires,evade,pars,scourge,twig,lapis,bandage,detach,virginity,mala,doctrinal,adaptability,cramped,wept,ganz,racking,corrects,avignon,servicio,vanishes,obedient,selkirk,mur,sects,modo,anxiously,ascribed,strikers,optimist,gratification,seashore,automaton,otros,pierson,unskilled,brigadier,consonant,acetic,unarmed,dyeing,intolerable,republished,tawny,absinthe,hygienic,sufferings,tahitian,propagating,sacraments,layman,vellum,ignatius,emperors,ferro,stalks,stanza,londres,terminations,novices,grasped,bequest,deo,beggars,redeemer,florin,quixote,chaise,paternal,dey,rained,indigent,trellis,trabajo,mythic,crystallization,marries,echoing,recitation,aptly,alleviation,liege,remittances,romances,nieces,characterizes,papyrus,fop,candlestick,circling,hellas,sheik,pints,girdle,siamese,veiled,blotting,intimates,eruptions,javelin,ipsum,stares,eastward,tecumseh,yon,entree,desist,grasshopper,rheumatic,autobiographical,piety,embody,petites,gris,crawled,soiled,dich,froze,superfluous,gai,disarm,sot,tacit,chansons,parenthesis,reorganized,daybreak,rallied,quakers,pentecost,beulah,unveiling,burg,astray,blisters,infirmary,hinted,sanctity,gad,modus,pedantic,beste,dennison,grandes,bullies,notoriously,lucius,kirsty,caustic,rook,gleaming,dominoes,tua,parochial,bertie,moreau,precedents,exiled,howells,pall,mustered,pretext,whisk,flared,kleine,deference,artful,eld,audacity,margate,judson,downwards,moat,inasmuch,plotters,caress,hails,swam,wilfred,mauve,hazy,twitch,alegre,glorified,combed,reclaiming,baptists,paraphrase,flounder,crept,fibrous,swamps,epilogue,hoof,epistle,exiles,wheatley,clapping,finesse,sociale,cordelia,infrequently,favoring,converging,cour,firma,inquisition,reputed,dinah,seduce,bearers,kimono,guesses,foote,impossibility,ceylon,courant,invasions,eminence,canna,liberate,gracie,gunther,hanged,flatter,acquitted,dimmer,sola,cauldron,dredge,tingling,preferring,cordial,reassurance,superintendents,nervousness,delineated,imaginations,quarrel,bess,aryan,tendering,transitive,furthering,connoisseur,idealism,separable,awa,liqueur,spokes,pastime,pursues,bugle,luxemburg,disperse,incoherent,fours,treffen,devout,strom,alva,unfurnished,blinding,inaction,northward,trotter,subversive,contre,impediments,armoured,breathless,intertwined,steen,corkscrew,trop,affections,inherits,mortals,purgatory,vise,comer,tillage,pere,discloses,easterly,lagged,hawker,vertebrates,toughness,disrespect,lagging,uncovering,indeterminate,refreshment,momentarily,festa,langer,lute,rosette,changeable,tragically,waverley,clapham,trumps,justifiable,twofold,sicilian,marlowe,unearned,thwart,potted,chanson,amelie,incurring,gracias,convalescent,terme,mackerel,goings,brim,clinch,provident,leprosy,chum,cometh,fitter,glut,fasten,locksmith,interrupting,sulla,daggers,pleases,moors,arno,geranium,kendal,revolve,choc,waged,waxed,concourse,confine,jaded,mingle,purify,desolate,withdraws,choked,whereof,pape,gruesome,pleadings,defying,sacs,perished,erskine,tentacles,britons,pringle,outcast,faraday,oblong,ophelia,wearer,propriety,attainable,hearsay,roomy,brutus,obscurity,heros,colonists,matting,overflowing,capers,entice,lasso,soot,yonder,virulence,heretic,draught,comical,generalizations,waiters,gasped,geologists,caverns,boarder,bumping,eines,greets,ova,waxes,whiz,bevel,straining,seduced,angrily,croquet,vacate,stanislaus,soundness,marquise,bonjour,xxiii,protracted,siegfried,affaires,digby,eyelid,undeniable,taming,precluded,repressed,perforce,barons,boundless,hopelessly,grandchild,sucre,pasteur,valuables,indignation,sprinkled,menstruation,stuffs,antichrist,emptying,reiterate,himalayas,monopolies,sowing,frills,wad,shearing,ruining,pinion,yew,windward,hermosa,haunts,unsere,brawl,delirium,unfounded,heroism,gillis,rutledge,barrister,neglecting,saxony,karel,vane,alienated,tum,synagogues,entangled,mane,reise,liberating,embarking,tonneau,cynicism,bayonet,considerate,extraneous,janitor,environs,reverses,reunite,hawkeye,steers,ravenna,crockery,juries,presidente,nang,gare,legacies,tial,theologians,arnaud,enticing,embankment,quadruple,crazed,xxii,equipping,fondly,whither,counteract,sighs,discouraging,flasks,preservative,tribulation,bridesmaids,rhea,raided,salaried,mises,intolerant,rarities,battled,obstructions,discredit,grotesque,artistes,perugia,gij,spoils,monasteries,crucible,modena,generalize,hasta,pronouns,misconception,rudimentary,sown,protege,vulgaris,beak,settler,prag,rabble,rung,piped,orpheus,retour,insurgent,rightfully,hilfe,medici,fabrice,marshals,nue,crumbling,relegated,allotments,immer,stagnant,giacomo,follies,dells,cleanly,unclean,seizing,molasses,tablecloth,hutchins,purifying,delineation,schooner,dignified,numbness,papier,machinist,anima,apologized,meshes,grotto,marais,loam,politique,carnations,rivets,jeune,hatching,leveled,graces,corinne,adheres,collusion,rawhide,propos,knotted,agitated,sorter,misused,relieves,linguist,rigorously,erroneously,especial,betray,dario,cui,heywood,suspending,mormons,davids,bennet,proclaiming,purposeful,undress,procrastination,hemel,gauze,precepts,constellations,gazed,skips,forceful,fuente,magdalena,rut,sehr,hera,subterranean,rumored,galicia,amuse,villager,fixer,condensing,emanating,assassinated,brodie,untimely,associating,romp,idiom,tangle,legitimately,congratulated,couriers,unwelcome,concurred,upsets,sceptre,confederacy,matinee,snatched,plunder,maa,impromptu,searchers,gamut,czar,putney,shattering,refute,amphibious,mush,shudder,eyesight,parson,infidelity,firemen,contrived,exhausts,opposites,dreamers,foal,hesse,hesitated,precarious,hodder,pease,testifying,topographical,instructing,dreary,crispin,horrid,dryness,wreckage,paras,captives,despised,conqueror,innocents,unprepared,dost,treacherous,filet,infidel,volley,carnal,larceny,versed,confronts,parliaments,mitigated,youngster,enigmatic,bridle,stretcher,cosa,enfants,leila,berliner,effecting,hallucinations,unravel,smugglers,intimidate,rubens,galilee,frenchman,tiller,orifice,bragging,hordes,beryl,ferre,forerunner,grinning,slashed,watchful,appalled,silenced,vanities,evaporated,affliction,zag,intestines,saute,iba,schuyler,idyllic,satchel,peruse,revel,alleys,crucifixion,hearn,madly,stiller,experimented,comming,steeped,gripe,summa,eyelids,thereupon,archers,steamers,bubbling,forbids,disdain,exhausting,absurdity,magnified,horsemen,alabaster,reigning,deane,georgie,zara,bribes,kidnap,coercive,romanticism,luo,forme,reinstate,unthinkable,lowly,outburst,scant,mattered,fitzroy,ove,raspberries,sorely,pail,obtainable,elvira,mastiff,drummers,reformer,solemnly,liberally,dahlia,concentric,loin,ved,unwarranted,marmalade,sandoval,applauded,ravine,exponents,brice,ressources,californians,procuring,pours,leer,nave,arranges,valhalla,adoration,amity,superiors,decanter,starve,leek,shortness,fronted,lightest,banquets,picnics,compulsion,prerogative,abscess,paraphernalia,heretofore,memento,lina,tumbled,masterful,insoluble,cockburn,harwich,casas,semper,repressive,clos,sweeter,mattie,deutscher,spilling,saucers,gondola,elizabethan,hein,spines,reiter,amphitheatre,stupendous,flutter,acumen,absolut,shiver,lumiere,shatter,pickled,nieuwe,hades,superimposed,burdened,randal,dandelion,nuance,classmate,catechism,driftwood,rosalind,giorni,juin,bigelow,anointed,mythological,interspersed,horseman,nervously,intruders,chaparral,nya,decaying,vez,muses,padlock,oars,gilead,classed,informer,freer,toute,calabria,dismantled,overcame,exertion,solidly,affidavits,weaves,chimera,handkerchief,foaming,tailors,barbarians,splendour,niveau,sheriffs,tassel,admiring,harmonized,khartoum,leans,frankreich,baffled,wasteful,hertford,tripoli,refraction,grainger,penzance,fillets,aztecs,consults,hoi,foils,retract,inaudible,nurtured,frantically,buoys,tait,disintegration,theologian,aquitaine,sigmund,individualism,starboard,precludes,burdensome,brest,renown,murky,truthfully,deutschen,tongs,perpetuate,vigo,cabal,musa,materia,interwoven,beggar,pard,extinguished,silhouettes,abundantly,declination,excesses,mucous,poked,caricatures,artiste,bogen,repose,hasten,tendered,temperance,risque,resembled,helpfulness,omitting,earthy,adored,embellished,feathered,aggrieved,hacer,assisi,aggravating,insulted,fugitives,passe,anecdote,partake,pseudonym,altitudes,carolinas,strikingly,zy,rancher,morn,bodyguard,gnats,solon,eduard,detract,portraying,pitted,enlarging,wrecks,bombardment,buckner,dares,tems,eigen,siesta,satirical,paar,antoinette,ugo,cynic,amenable,runways,frowned,sass,rout,pus,rubies,checkered,hatched,sketching,hypocritical,trample,courtship,cupboards,tolerable,magi,brescia,alonzo,tutto,attenuated,inefficiency,merci,booms,demented,eri,bonaparte,musketeers,twickenham,glee,forgets,grapple,lowlands,stimulants,greenery,proverbial,tranquillity,numa,monastic,uncles,eph,soared,householders,nestor,impediment,hel,anarchists,freund,perilous,devonshire,tanto,violets,nouvelles,nether,nomads,ramble,ambulances,natura,hams,idiotic,parti,cerberus,bering,formosa,erg,bough,hoot,herewith,workmen,grist,penrose,duster,pronoun,signer,sloth,steely,pulleys,fates,stews,nourishment,gravitation,loophole,drags,retrograde,sade,exaggeration,shadowy,liquors,archangel,fenwick,creases,primordial,nourish,vit,uplifted,percival,gingham,batterie,gossamer,hairdresser,plover,weg,mow,disliked,leinster,impurity,worshipping,chasm,nuovo,greenish,regiments,adel,selfishness,reactionary,adriatic,ejected,grappling,hammering,mingling,earnestly,scribes,leed,monologue,amphitheater,vive,signaled,clem,littered,acutely,razors,masse,legumes,speculated,worded,quant,fleshy,desirability,sundown,persistently,decoy,balsam,baruch,verdicts,authorise,outcry,eyeglass,waterside,grime,extortion,cordon,colorless,idealistic,cutlass,rigor,greyhounds,amalgamation,preponderance,cowardly,pretentious,cervantes,wielding,gusto,maidens,weimar,mijn,humbly,langue,unworthy,expectant,laurens,azalea,jeannette,fruition,florentine,dwelt,vlaanderen,oberon,enslaved,vil,cathay,jura,correspondingly,legalized,predicament,hilly,aisles,trusty,gratuitous,fatally,caged,ephemeral,radium,dissimilar,mutilation,kon,waging,infringed,overwhelm,cognizant,profil,andalusia,rowdy,popes,bravely,sportsmen,stumbles,clematis,slashing,leger,incomprehensible,suez,clogged,gabriella,fluctuating,demeanor,shipboard,labourers,paganism,fido,sounder,mest,caledonian,hegel,stench,cursing,pmb,wickedness,crouching,attila,emits,culminated,thefts,sturm,weiter,auld,spanned,ebenezer,closeness,redeeming,polity,scriptural,transylvania,obscenity,gaul,heartache,reigned,entitles,exacting,wanton,pelle,enforces,necessitate,locket,aver,commemorating,reconciling,desolation,gander,bastille,traceable,voila,savor,darkly,faithfulness,resourceful,heraldry,incomparable,dilated,angered,condone,ahora,mademoiselle,constitutionality,viscount,preliminaries,devolved,liquefied,alcatraz,streamed,resorting,garters,adamant,pontoon,tableau,vernal,napoleonic,tennyson,rubicon,disorderly,tala,ivanhoe,destroyers,analogies,frigate,instalment,dazed,sentient,entrust,iti,puffs,burying,dispatching,cyclops,veritable,posterity,keenly,healthful,nem,meine,repealing,gourd,groaned,ferocious,voicing,mons,sacrificial,defies,abnormally,resuming,bruising,flogging,religiously,mundi,encroachment,demande,seaboard,laplace,southerly,humiliated,unearthed,sut,cataracts,subordinates,vagabond,consecrated,oscillating,jib,bodice,foray,opiate,cristal,unmistakable,filly,rhubarb,silencing,aesop,hab,diminishes,tidings,sneaking,unassisted,insidious,dike,immutable,croton,depots,nodding,jasmin,libri,misrepresented,amici,substantiate,algiers,ocho,templar,cedars,fortitude,aloft,mated,wart,tribus,hollander,ruffled,armament,plums,tien,revisiting,fairer,enterprising,prides,grafting,smoothness,trinket,neutralize,vasco,playwrights,wishful,fal,herod,trailed,habitation,rogues,speechless,expanse,preside,arles,colette,delightfully,oeuvres,concealment,unruly,uncompromising,moriarty,obstruct,unbounded,coincided,encased,undertaker,flickering,sive,gush,saddened,bathe,scarred,ignited,crowding,tew,vrouw,gladiators,krebs,stoddard,scrooge,aeroplane,nagging,contemporaneous,precipitated,hiss,outlawed,injuring,bellow,girth,poppies,inlaid,notched,baldness,didactic,lillie,irritability,provocation,lustrous,reeling,desertification,rennes,crests,molto,loafers,slapping,tiene,squires,insures,slaying,mie,frauds,lobes,dios,thundering,remus,coals,succulent,heartily,hic,yellowish,unsuccessfully,moderne,moustache,geen,lobsters,eventful,feasts,stiletto,teacup,rebekah,kein,alvarado,secession,countered,instinctively,conspiracies,chapels,grado,minions,brunt,infraction,gory,glens,strangest,stagnation,displace,countrymen,perishable,lyra,gustave,proteus,denoting,apiece,jeanie,strasse,gammon,storming,islet,conduits,cinco,headway,friars,maples,alluring,ikke,edouard,buzzard,bony,halting,sana,halley,cranks,headwaters,reviving,burrow,universality,veranda,underrated,insatiable,exquisitely,unfriendly,hatches,christened,actuality,teased,murad,attica,flatten,savant,appreciating,stinging,membres,gulls,prescribes,sultry,sinned,globular,asiatic,macaulay,depositing,engravings,showering,fanatical,caper,yann,predicated,montezuma,lentils,quack,bruges,grooms,ousted,cask,grocer,speedily,auberge,negroes,chases,intervened,mezzo,incarnate,chimneys,hela,preoccupied,hither,diggers,glances,tyrants,constantin,giddy,denounce,entertainments,oaths,furness,ripples,herz,bloodshed,maw,viento,upsetting,durante,oxen,nascent,toda,reinforcements,precept,salerno,pavements,murmured,propellers,violinist,himalaya,gibbon,gratifying,delirious,excepting,unlawfully,spanien,urchin,polygamy,utterances,devising,sustains,woodman,gravely,errands,hells,cartes,impulsive,spasms,rationally,psychologie,uproar,savages,craters,wilmot,mockery,railings,paulina,northerly,tenths,quench,passer,projekt,encompassed,broil,hurrah,modestly,epitaph,allahabad,insurrection,brugge,alger,emigrated,barges,nota,tremblant,antennae,fermented,enfant,headmaster,walrus,secretive,grievous,generative,assyrian,repetitions,pensioner,spellbound,bretagne,tengo,domenico,fend,sapphires,compressing,intoxicating,crumble,resorted,lecturing,retreated,senza,magdalene,veer,netted,dispel,warships,tamar,woodbine,straightening,envious,regretted,colic,oni,membre,adolph,farthest,iniquity,fooling,vaulted,warms,formalities,resounding,aku,brazos,saucy,blistering,illuminates,masque,kazan,shillings,gleaned,decomposed,flowery,scandalous,blas,ciel,menacing,elector,lili,neurotic,bituminous,askew,phipps,groan,dusting,lombardy,uncontrollable,shackles,shrines,bridged,consenting,torturing,toile,relentlessly,bracken,couches,decadence,antes,nourishing,herschel,reconsidered,anche,arduous,morten,assimilated,creeps,gripped,sama,unscrupulous,nymphs,unsettled,inseparable,caso,jurist,vestal,dismisses,variously,arran,unintentionally,sprites,dashing,tiring,abate,piloting,decreed,mossy,ores,banque,keyhole,usages,wickham,vieux,bowels,cornet,reversion,sanctuaries,convicts,osman,lodger,santee,thunderbolt,claudius,tremors,apropos,pitiful,winkel,sparrows,bleached,arbiter,locomotion,hus,antimony,hater,buoyant,expel,martine,combatant,swoop,neuter,prejudicial,gente,introspection,meister,mariage,benedictine,reputations,vitally,mavis,undivided,chatted,lured,hurling,brevity,visage,prickly,septembre,astonishment,overshadowed,rescuing,sensibilities,meritorious,beheld,martyrdom,manna,octobre,moorings,buddhists,soars,gnat,housework,gunpowder,undressed,southward,liszt,zwei,zorn,recounted,denials,prussian,adorn,contemplative,awkwardly,etta,projets,lik,belles,stipulations,lifeless,baffle,pared,sobriety,slums,burnet,spaniards,piloted,successively,cucumbers,squaw,snowdon,pomegranate,glas,bouts,transcends,murmur,bookkeeper,crickets,extinguishing,noche,attache,bulging,chemise,epics,smug,flanking,dons,stadt,prejudiced,larva,laziness,mouldings,tireless,leander,growl,gorges,stata,canons,pastimes,diurnal,coolness,busca,recumbent,shipwreck,fader,unconsciously,buffaloes,marne,dissolving,osmond,highness,abstracted,typhoid,perfecting,nez,furtherance,suis,slits,inquires,yule,phantasy,sprache,hoss,crusty,stillness,precipitate,underlie,pharisees,nicknamed,drones,minster,sully,bate,pert,depositions,camped,fraught,perplexed,replenish,necessitated,slowest,unwillingness,sehen,trimmings,esperanza,divan,lehrer,holborn,concours,extraordinaire,eloquence,definitively,natchez,tripped,strewn,rubles,bewildered,beatings,copious,cade,tremble,instantaneously,thump,ghi,pompeii,alluded,aberrations,sojourn,stateroom,palacio,adherents,herbaceous,distinguishable,immaterial,sina,surging,lop,greased,contraband,flagging,willed,wounding,inclement,ange,magpie,stil,robbing,impartiality,phosphates,harpsichord,capes,impersonal,proposer,interpolated,strolling,moro,salvo,twigs,furiously,epitome,joked,breaths,lilian,glancing,discarding,fared,fleck,inflamed,clough,unlink,shadowing,wert,regimental,signifying,tutte,rectified,savoie,flanked,bayonne,primacy,fuego,buckland,centrale,eyeing,bade,insolvent,mists,nuit,carmine,relinquish,emilie,succinct,palpable,eton,estar,inhale,dreamt,convulsions,snowshoes,fiancee,fue,blumen,yolk,mediocrity,rhyming,sucht,transcendent,lichen,lapsed,stroked,gallop,cull,unsatisfied,wmo,minstrel,ewe,contentment,fareham,cranium,politic,exchequer,falsehood,slugs,carcasses,piero,candlesticks,rosalie,mingled,rafts,indulgent,longed,rammed,wailing,shrugs,negros,vertebrae,moans,buffets,aristocracy,eaves,popularly,brinkley,marred,falconer,watchman,venturing,entitle,bagley,alibi,ahoy,jellies,postponement,brooding,juncture,greenleaf,naturalized,pikes,haar,meager,commandant,copernicus,bourgeoisie,plucked,inflexible,flowered,bueno,discord,patrolling,injurious,voiture,utilitarian,compacted,ende,doughnuts,reread,stormed,crucifix,irreverent,censure,carbine,credo,heartless,contented,vultures,forcible,bushy,thickening,moins,porches,inoculation,luxuries,glorify,abner,maris,admixture,heredity,nominally,forza,chloroform,nettle,mismanagement,convincingly,evangeline,descends,mischievous,fateful,complacency,impregnated,insular,lagoons,sensuality,vere,affix,professed,unrivalled,sensuous,owne,sawing,yelp,herding,mammalia,hopped,sceptical,arma,interfered,halcyon,bowing,cogent,parishioners,traversing,uninformed,yorke,aberration,mollie,nef,conclusively,calcareous,tufted,chieftain,gestalt,honeysuckle,zeitschrift,unspoken,ishmael,apprehended,rhoda,jammer,forbidding,sparring,mindanao,adonis,domed,distressing,prettiest,lif,panes,testifies,filipinos,chambre,dainty,crackle,jes,thwarted,alban,planks,orville,belcher,spirals,speculations,sedentary,extermination,plumes,outweighed,transposition,acheter,beets,repel,pali,coleridge,anxieties,poste,onerous,tenderly,bonny,haddock,virginian,pyjamas,finns,oftentimes,entanglement,miserably,savoir,rojas,argosy,elba,stumps,clouded,diverting,derogatory,esteban,xxiv,sear,rouen,inaccuracy,assimilate,medea,regenerated,laine,gottfried,rapp,credence,welling,patrolled,georgette,lovelace,caen,conferring,incite,divulge,wardens,scrubbing,laughable,momentous,footpath,entreprise,harem,fussy,civility,deluge,squadrons,ventricle,fluted,sweetened,pry,venison,shoal,basking,pare,blushing,breathes,lectured,babylonian,annonce,morte,bord,skillfully,heady,confucius,bombarded,celts,bathed,cortes,intractable,corresponded,speckled,enumerate,persuading,onondaga,diphtheria,plaines,hoard,offre,courting,petrie,lading,woodcock,churning,chariots,battalions,unquestionably,presque,reproach,viol,vishnu,cherub,lieder,trumpeter,straws,serrated,puny,emphatically,reassured,perceiving,commendation,leben,contending,patriarchal,spelt,barks,dodging,antiseptic,browned,oed,hendrik,highlanders,ligaments,wurde,upheaval,cringe,crimea,sugarcane,mouthful,gazelle,gauche,minion,complicity,unstrung,tendons,thrives,penchant,drab,roared,prospector,unwise,financier,allegory,harbours,konstantin,acropolis,stifle,tiberius,paradoxical,rousing,sebastopol,knelt,radiating,devour,treachery,petting,inoculated,princesses,rossini,portraiture,incapacitated,attested,ope,nuestra,overcrowded,warring,arouse,ticked,purged,repulsive,sikkim,seclusion,elucidate,fated,frighten,amputation,halts,subtlety,creditable,protruding,appreciable,delicacy,paradis,cinch,futility,dumplings,diesen,upholds,enlistment,inroads,blissful,boasted,zealanders,stirs,platonic,donkeys,etna,averse,siempre,afield,endearing,mishap,lackey,quod,labors,whooping,sonnets,musing,masai,barricade,inquest,snipe,hapless,cuenta,polen,ably,montagne,brun,mirza,beaux,traversed,sparsely,shrinks,channing,fib,ail,innkeeper,mistrust,overcomes,lordship,egregious,cubans,transacted,blaise,chaplains,conventionally,nuestro,perceptive,haber,lard,destitute,platz,disbanded,singly,headless,petrified,emigrants,thane,salve,hindustan,marseilles,beauchamp,grates,fissure,curtail,talker,divorces,vitesse,winks,harte,loopholes,soit,novelists,bestow,homespun,hulls,complimented,intonation,proclaims,dissecting,clamped,retracted,friar,hospitable,melodrama,creased,preparer,postures,trapper,makeshift,tattered,embarrass,slanted,plagues,jota,harvests,surged,blume,natured,clemency,woolly,blemish,ajouter,bushels,tapers,geniuses,rind,whiskers,huntsman,personne,perpetually,soundings,evicted,rara,divisible,accumulations,lightness,avoir,quelle,admirers,marcello,harbinger,mustache,revolutionize,dwindling,beaker,arcades,baggy,jeweled,rejoicing,uomo,ariadne,dickie,quiver,sylvie,frequented,coronet,agnew,discredited,taverns,prodigal,aden,wield,resolute,adage,wetter,jeg,conjure,rote,recitals,adrift,confiscation,stings,budge,ilk,ose,silks,sequins,fringed,goblins,delineate,organist,kneel,illuminations,chuckled,tacitus,armenians,excels,furthest,virulent,masts,garret,commendable,inadequacy,barbaric,deliciously,ruse,persephone,lifelike,culled,muss,presbytery,tumblers,gunshot,desiree,supposing,sculptors,charme,calicut,inde,castilla,zealous,rattlesnake,iridescent,robberies,elms,excelled,twine,meteors,judicious,unaltered,collation,geist,silvio,parke,diction,unoccupied,tigris,pedestals,tribulations,colman,sabina,meilleurs,buckwheat,enshrined,surpasses,yearling,agape,wrenching,damnation,rapidity,bajo,tempus,deleterious,intersecting,garibaldi,alluvial,xxv,incisive,concealing,clutching,drifts,tenement,discernment,chalice,hypocrite,harrowing,prefect,sweetly,cleave,flimsy,strada,delilah,bedded,shivering,formality,produit,mangroves,suffices,bingley,whosoever,comte,tigre,cham,graced,ultimo,statuary,moraine,moravian,intermittently,armaments,grins,chewed,accomplishes,inapplicable,bly,pasha,scour,motionless,notaries,galant,fallow,indictments,aileen,leapt,pelo,widower,quagmire,taffy,purging,cleansed,bem,fainting,theorist,scaring,serviceable,obstructed,indigestion,jackal,snowflakes,massacres,entailed,curative,bier,traitors,igneous,cambio,lull,rinsed,delectable,proletariat,lise,fanciful,bey,mystics,fresher,consummate,brows,technic,veda,ephesus,domesticated,dismayed,steered,remitted,shew,miraculously,lapses,romagna,freemasonry,dwells,penitentiary,shrewd,impatience,italie,crass,spaulding,jot,gott,benevolence,lancelot,suspiciously,eugenia,reprimand,mangled,staunch,shaven,fez,feld,molestation,quarts,yells,lacs,blindfolded,premiers,wraith,nimble,hyacinth,yonge,durst,naturalists,derelict,gle,shrouded,clarissa,brazen,inundated,joie,brahma,anni,veracity,pinocchio,angers,gustavus,raps,unwittingly,counsels,battlefields,antecedent,matty,dorothea,licht,legislate,voluptuous,complacent,germania,grandmothers,dalla,objet,unaccompanied,schooled,picts,foresters,hag,guerre,dorn,ainsi,orinoco,loveless,sharpened,nostrils,cambrian,impure,gridiron,innermost,wry,pilate,pinning,alms,stung,koko,phantoms,retort,congregate,meditative,smirking,chestnuts,expositions,begotten,gainsborough,sparkles,collared,stringed,barnabas,weeding,evasive,smirk,ancora,pausing,grands,replete,inconceivable,antworten,crutches,apportioned,pawnee,accumulates,failings,otra,bristle,classe,terrors,uriah,oblige,visite,panacea,vibrate,penetrates,mayhew,cathedrals,toads,liber,perceives,nubian,stumped,cramp,sodom,imitations,mistletoe,naam,hallowed,appease,hawes,furlong,heralded,linde,clearest,supersede,shovels,renaud,phrasing,quarries,sensibly,vio,mouthed,gills,braids,milder,inexplicable,counterfeiting,expeditious,intently,chrysalis,rechercher,hoary,corse,crocodiles,ronde,eze,zeno,deceiving,oedipus,beamed,scraped,chagrin,vill,tickled,hindrance,discreetly,sparing,emeralds,wanders,disillusioned,preoccupation,stato,restful,aristocratic,scouring,profitably,pinched,purport,plunging,shambles,juillet,marten,admittance,stinking,porridge,symbolize,standstill,unattractive,diffused,firmer,reproduces,promulgation,unshaven,rakes,sante,incognito,silliness,burgh,giggling,coldest,proviso,quando,barnyard,dikes,vento,donal,artifice,dato,glides,allot,witte,vad,progenitor,abomination,erste,mote,argumentation,passively,hurled,vesta,jacky,wold,habe,straightened,deranged,contesting,darwinian,touchy,rafters,unintelligible,whitworth,hinten,infantile,unspeakable,demolish,comforted,disgraceful,worshippers,servitude,aqueduct,framers,streamers,humbled,marcella,radiate,stipulate,proximate,secretions,attains,gallus,idem,hark,perturbed,cemented,dissolves,crowning,bettina,smuggled,punctuated,blunder,euston,zucker,belted,baal,felon,deen,thud,hagar,antlers,doubting,dunkirk,libretto,debatable,reaping,aborigines,estranged,merthyr,ihn,joh,decisively,swims,undeniably,spasm,kom,notables,eminently,snorting,seguro,mercilessly,firs,cobbler,invigorating,heinous,dusky,kultur,esso,linnaeus,infallible,loaves,dieu,heeled,quibble,meandering,incessant,baines,blick,namen,cheery,curbing,harshly,betterment,rump,oben,sweethearts,slush,mutton,coi,blinked,altri,lenore,townshend,zigzag,lesen,dragoon,sympathies,leggings,benefactor,thales,nacht,merrily,vouch,pompey,blackness,transitory,gales,hypocrites,larynx,droughts,ancona,springing,bethune,nocturne,perdue,altruism,ceasing,dutchman,capricious,angelique,harmonize,crescendo,gipsy,frederik,miserables,amalgamated,obeying,gunners,pent,mishaps,subsidence,plastering,promiscuous,asturias,basso,dusted,sago,inlets,fords,pekka,parentage,mutter,litters,brothel,rive,shelled,outlandish,sneezing,sancho,variegated,abysmal,personnes,bourse,tenacity,partir,moslem,fourths,revolutionized,permanence,coincident,inez,minding,permis,enviable,accessions,carpeted,zeke,eloquently,overtaken,hock,subheading,renews,extinguish,oli,lowing,bullied,accruing,dirge,actuated,bluish,tingle,captivated,parlors,lamented,bruise,cesare,perfumed,dames,unfettered,imogen,lewd,thither,rebuke,collated,occasioned,swayed,dupe,bogs,affording,assuredly,allusions,shadowed,seamen,intelligible,overlaid,censors,shakespearean,edict,octavia,boyhood,sustenance,shrew,freya,disrespectful,confounding,dispensation,arian,depreciated,diagonally,cased,laterally,prays,nonce,lemme,elevating,augustin,beresford,loup,likened,bericht,sketched,plage,firmness,injustices,longfellow,unequivocally,perspiration,mirth,serre,pauper,brooms,horus,casi,fois,ushered,remedied,vocations,depuis,scorched,instep,wilfrid,machiavelli,ivor,mignon,houseboat,krieg,clementine,smokeless,stanhope,thorax,recherches,warship,corinthian,rattles,esti,garten,dislocated,marvels,booby,conceivably,persians,injunctions,crunching,exuberant,dus,composure,contradicted,birthright,errant,proofread,rearranged,heifer,earthen,uplands,paget,portcullis,noose,recur,desirous,exemplar,shivers,smitten,rarest,quiero,averted,publique,dissipated,gregorio,masquerading,discernible,looser,ptolemy,lauded,pais,consonants,demarcation,miocene,steeple,concussion,nailing,deadliest,sparingly,penance,priestly,curtailed,lovejoy,rollo,conspicuously,risked,bowled,modernized,blemishes,eagerness,pearly,recklessly,islets,apothecary,gagne,looted,padua,jointed,heyday,voce,pulsating,beaming,dore,taint,lounging,predisposition,outwardly,tumultuous,overseer,chine,crier,decompose,unimaginable,briton,glistening,moonshine,jurgen,leurs,scribble,anselm,fete,puerta,peculiarities,lichtenstein,favourably,beset,romain,involuntarily,swede,discoverer,livers,plowing,militarism,glassy,riddled,wealthiest,shrill,swedes,headland,agitator,utensil,volk,sheba,glows,heighten,surpassing,ladle,pasa,pinks,rusted,naturalistic,dogmatic,tristram,ballon,surly,presente,sonne,fertilized,admirer,seco,gibt,motioned,catastrophes,thickened,indra,candor,sabin,wigwam,animales,beheaded,postmark,helga,bereaved,malin,drugged,motte,volga,rivalries,gnomes,denne,affectionately,uneducated,necessitates,blunders,proportionately,corea,porque,mocked,holler,fain,hae,sint,darrin,mois,cruelly,tapioca,furrow,fewest,parables,drowsy,bushel,beholder,sedition,lutherans,examen,ghastly,vaudeville,succumb,criticise,inquisitive,doorways,sirs,overruled,menagerie,osgood,teamsters,seul,forked,apprehensive,cowards,cielo,cowl,captors,fils,laity,prefixed,arming,amassed,itinerant,felons,dormitories,dearth,palatable,unmasked,instinctive,corpo,sais,restlessness,baptised,burlesque,regaining,perversion,swells,sujet,acquaint,tog,altro,havelock,lengthening,taut,laa,romulus,sommers,doings,financiers,foolishness,unequivocal,noire,arriba,silken,stringing,bazar,thrusting,pavilions,maddy,clung,hie,bist,needlessly,squatting,cordially,wilkie,succumbed,superstitions,spangled,rectory,alli,multum,iliad,graze,looped,unobtrusive,judea,currant,underlies,intricacies,afoot,oddity,gerrit,cornered,auspicious,splashing,hotly,puffed,disapproved,interlaced,instalments,presumptive,comprehensible,tempore,fallacies,theodor,sawdust,metaphorical,leaped,alertness,embers,assemblages,searchlight,heil,swinton,ize,snob,stave,vertu,snowing,bleeds,canaries,semblance,shins,fickle,outnumbered,recht,lukewarm,quai,rotunda,observances,faintly,indiscriminate,alphonse,piu,raison,eyeballs,barricades,devoting,idolatry,decked,introspective,aggravation,sedge,nou,pinching,tine,pretenders,infidels,dweller,diabolic,demonstrable,letzte,priestess,nimrod,irritate,siguiente,beards,churchyard,despicable,canter,reminiscences,racy,stoop,intr,rendu,facile,christiana,coerced,billets,sneeze,sian,dignitaries,somber,overgrown,statesmen,vecchio,advices,coffers,sikhs,awry,celt,lode,elia,zora,rages,clumps,tithe,subordination,fictions,deposed,trending,disinterested,forsake,conspirators,swinburne,unresponsive,baboon,romani,swamped,ensues,habla,seit,elated,buttered,sangre,selfe,stuffy,depress,eccentricity,transgression,idealized,clings,flamboyant,memoria,nachricht,macht,toma,clergyman,sociales,scape,francia,pledging,dependants,rechte,puddings,partisans,mausoleum,idler,dawned,generale,carelessly,narcissus,crusoe,einfach,skimming,stomachs,namesake,slaps,maximilian,gratuity,reorganize,foothold,reggio,usted,madge,gleam,rudyard,supposition,sprinkling,besieged,malaise,draperies,newby,rococo,brabant,superlative,presser,chamois,dwt,voy,seared,tinged,professorship,diamant,leeward,fruitless,tamer,ticklish,alienate,displeasure,connoisseurs,mutilated,usefully,instituting,balzac,moyen,threefold,innocently,deepened,clef,dak,pura,regarder,trice,pretense,jungles,imitating,shreds,petitioned,thad,archway,danse,loudest,ultimatum,shuffled,moy,shelling,visita,zeitung,observant,unhappiness,cinder,pelt,ung,laurels,methodical,engulfed,bequests,monotonous,pythagoras,operatic,malevolent,lessened,stile,reciting,naught,antagonism,prisms,debby,coinage,unproductive,banqueting,nefarious,stoppage,defray,endangering,zealots,weighty,oeuvre,subsided,sahib,gasping,idiocy,frenzied,postulate,senor,trespassing,pendent,edifice,vermin,loosening,dialectic,tantalizing,rhinoceros,adjutant,otro,sickening,pondered,teil,snows,steeper,rangoon,depriving,stalwart,verandah,schreiben,buttery,deformity,cronies,undervalued,invalidity,soundly,dank,pinkerton,canvases,weakens,paulus,ebcdic,politik,lariat,pursuance,scapegoat,anathema,comptes,trifle,forefathers,piraeus,xxvi,eradicated,toga,fram,inadmissible,strasburg,berths,innocuous,heroines,retake,unpacked,gonzalo,clenched,groupes,evaporate,midwinter,compagnie,bellini,undoing,communes,cassava,disappointments,glace,puns,hilt,devoured,inwardly,adeline,smothered,eulogy,siva,lond,forsythe,pernicious,fenster,continua,babbitt,reims,scrimmage,privates,whims,hew,skirmish,roan,nonsensical,gallows,rheumatism,devotee,nieuw,cowardice,fabled,fangs,animosity,wily,wiles,ensue,jaffa,sagging,chemin,crumbled,sybil,pekin,defied,hopelessness,errand,yeoman,slimy,unser,coerce,overhang,ihren,jeunes,sobbing,muslin,deliberative,gute,tattooing,shekels,emigrant,dodo,jahr,thorny,epistles,trampled,anthracite,meditating,merciless,clump,transcribe,atrocity,elinor,proportionally,untrained,beene,thrusts,tiresome,splashed,antonyms,lune,moccasins,parthenon,abounds,salutes,collided,tilde,potash,boarders,lapping,chivalry,corazon,frustrate,sideboard,poaching,montmartre,foiled,flocked,connaught,tether,hyperbole,borghese,schrieb,brahman,charlemagne,pulsing,heralds,sterility,dynasties,prowl,amiable,akt,sittings,undulating,thatched,felice,esto,irrevocably,bunyan,hinders,tubers,unrelenting,expeditiously,antiquated,jerked,sputtering,opulent,mots,dimly,coconuts,confuses,executors,squall,nothingness,hebrides,demeter,antagonistic,bowery,immovable,caterpillars,consigned,rhein,fervor,pret,scooped,exerts,idling,cursory,dissipate,hymen,refuted,ionian,americanism,pessimism,vehemently,velvety,vedere,wheezing,teeming,paradoxes,lampe,foolishly,ordre,eer,inanimate,panting,comers,romaine,wulf,peckham,tacks,veille,effusion,lunacy,loathe,notoriety,showered,brats,huddle,taxicab,confounded,coughs,pretends,faery,eloise,widens,omnipotent,gautier,poise,zeeland,ringed,cima,huddled,unsteady,zwischen,duchy,malacca,wol,magda,carrion,summarily,heine,voi,ejaculations,leopards,dette,sanctified,tradesmen,excitedly,pentru,braced,gaunt,nourished,cornstarch,doch,effie,daffodils,lettre,boden,pollute,bara,kamen,neuer,pomp,noms,stora,sprouting,summoning,annabel,tartar,brownish,rejoin,rosettes,etats,volition,crawls,suave,riddance,gulp,lottie,hac,lurk,smudge,tulle,helplessness,circumstantial,dermot,naturalism,haga,colle,galloping,indestructible,principality,indulging,allusion,bosh,samaria,smeared,gouvernement,liqueurs,winifred,parasol,coloration,stingy,succinctly,devotes,manet,anos,vigour,snares,schnell,illegible,mortars,didst,curiosities,wither,schloss,seamed,calmed,flattered,babbling,roch,admirably,vipers,nightfall,nul,manos,hurl,loyalists,dory,sheltering,forego,castile,klasse,blockquote,tyrol,irreparable,immunities,broiled,superstitious,evangelists,insides,sedative,defraud,toothed,bygone,wilds,intercession,complet,lettered,mirada,paa,apricots,darkening,depressions,mache,toasting,exhale,markt,altars,abolishing,chauncey,recesses,kinsman,payed,overworked,cecile,orbs,aime,mutable,delicacies,toujours,scorching,coffins,jove,cashed,ushers,jewry,copperfield,chapelle,whoop,cacao,andra,annoys,heiress,godhead,canvassing,portia,shyness,angelus,subjecting,momento,escorte,unsightly,frayed,criminality,woolen,repos,levelling,shrapnel,arthurian,burgos,litany,fairest,nutter,bristles,larder,ganges,machen,truthfulness,atrocious,obelisk,valeria,claret,fru,samos,consecration,forbearance,acerca,plastered,apostrophe,stepmother,ruf,lapland,publius,ihnen,jesuits,voluminous,mottled,plu,tosses,manifesting,estella,publics,rien,normandie,scrip,rocher,inadequately,arabella,matti,throng,flemming,shunned,abandons,appetites,turnip,juxtaposition,crushes,carnivorous,berber,mince,banish,flapping,fino,frets,schism,sculptured,suivant,jemima,heretics,dogged,apparition,barristers,scrutinized,earthworks,thrashing,salome,thumping,vara,quenching,hunch,amaryllis,messes,perdition,wintering,topple,chickasaw,pungent,discontinuance,unbridled,astrologer,dut,canvass,manifestly,emphatic,susy,outgrowth,homeward,withered,baiting,surrendering,fortification,mingo,spurt,elation,wail,artistically,elma,epileptic,crag,hace,feller,enmity,sanctum,mazes,jenks,schutz,materialistic,boaz,jahre,gud,oncoming,racked,cloister,provincia,fancied,spoilt,predisposed,hydrochloric,filippo,strode,agen,marchand,disorganized,shaftesbury,littoral,denn,aggressor,giggled,consummation,fronting,zola,heute,unfaithful,executioner,titular,swears,diminutive,paring,damning,matrimony,armas,humbug,signalled,granulated,ailment,homely,perpetuity,stepfather,disprove,dinero,bernhardt,incurable,dixit,shoving,furnishes,anointing,corinna,strictest,domiciled,minx,eclipses,prise,misdemeanors,hadrian,supremely,mensch,hastened,perpetuating,prostrate,provisionally,cocked,raged,boyne,singularly,elam,gobble,preposterous,symbolized,breech,ripening,pyramidal,shee,choruses,obstructing,phosphoric,parquet,vint,pasquale,reparation,amply,damask,rejoined,impotent,spits,papacy,thimble,lacquered,ablaze,simmering,nettie,grasshoppers,senatorial,thawed,unexplored,transpired,toulon,fortifications,dens,loafer,quin,insurmountable,prettier,peu,haystack,komen,chaque,confining,louvain,etchings,impenetrable,gymnastic,tink,purr,duped,stifling,realises,vindicated,bund,invades,oust,suo,dipper,signified,talkers,exemplify,inane,byways,ibsen,justus,bluntly,bask,mermaids,contemplates,inglis,defensible,spinster,goblets,interrogated,yolks,famille,dello,magdeburg,tarnished,deducting,fie,brimming,ridiculed,baie,ionia,olden,herne,unending,abominable,rattled,basse,farmhouses,tambourine,venomous,impressively,inextricably,etexts,tapering,prinz,unjustly,rehearse,apertures,seducing,screeching,reedy,ceded,sido,imbued,fearsome,bureaux,sleds,christendom,biographer,wreak,planta,bridegroom,swarming,hava,accomplice,vivre,moni,mui,ili,servi,irregularity,gash,impeded,gravestone,pompous,sunt,subvert,hanno,instrumentality,barnaby,antwort,impassioned,mous,esau,desperado,flavoring,mouton,bau,contagion,archimedes,desecration,pocketbook,anselmo,misinterpreted,garlands,varma,mongol,audacious,midshipmen,degrades,maggiore,protestantism,soreness,boldness,schip,inhalt,otras,cassius,powdery,exportation,diverge,loosened,misunderstand,virility,inalienable,norden,untamed,eben,viel,xxviii,meddling,objecting,gib,shoddy,salutation,altercation,octagonal,mended,navigators,notches,odysseus,unfavourable,abject,heretical,riveted,quiescent,strangeness,rideau,tincture,erecting,tenderer,wirtschaft,lucian,jaar,persevere,fittest,tarnish,isthmus,giuliano,wordt,hildebrand,feu,treads,lengthen,bahn,prodigious,spoonful,sociable,requisitions,deftly,raucous,toasts,exaggerate,odes,blushed,saddest,grinds,immorality,addington,marcellus,ciencia,wench,celle,spontaneity,illusory,sympathize,faggot,barrows,tantamount,slaughtering,dissected,borrows,frigid,hemispheres,woollen,musick,speculating,pawns,outermost,selwyn,westphalia,augmenting,winded,poder,methinks,rambles,namur,tyme,dawning,lait,klang,congratulating,sempre,flagrant,wane,loins,uneventful,quis,scoundrels,distraught,assassinate,unwavering,confidentially,piecemeal,soll,inferiority,burnished,clothe,swelled,vides,breda,gentleness,staked,rigidly,simile,phalanx,hindering,sloped,sifting,fixe,isobel,loudness,guillotine,reverting,dionysus,leanings,groans,herbst,canker,keener,embellishment,confesses,mistresses,breakwater,smuggler,busily,poached,aram,shopkeeper,hailing,imparted,traduction,contradicting,headlong,captor,indelible,tethered,whiteness,grazed,unfulfilled,acquittal,meilleur,fluently,ascribe,stalked,deluded,trembled,gens,doon,unobserved,labored,tete,twitching,smacks,silber,troughs,unbelievers,hungerford,brothels,skilful,werk,basta,bolder,omits,endures,heeft,silencio,laski,selle,pueden,impersonation,hote,lavinia,intents,unconnected,ovum,pruned,wedded,lashed,valladolid,contentions,bickering,whaler,unobstructed,menschen,fondling,cref,laissez,ricks,spenser,astounded,permanency,smacked,personen,pallas,anatole,sleet,disgraced,philippa,royaume,grooved,resigning,appareil,alcove,termine,ungodly,felling,landes,hout,ois,disclaimed,aucun,upp,appartement,couleur,montagu,steamship,condescending,recounting,breeches,appellation,mitglied,abbe,montes,exemple,handsomely,fille,segovia,untenable,messer,deformities,necktie,huis,xxvii,tardy,disregarding,matron,seaward,uppermost,adolphus,ciphers,nibble,heim,volver,exerting,fenn,fleeces,industrious,foie,decayed,proprietorship,essere,allgemeine,umsonst,harps,hedged,cleanest,selon,teutonic,viceroy,maintenant,ingrained,caspar,swordsman,commissary,yellows,habitually,naman,maxime,majorities,rendus,mummies,conquests,brimstone,quand,trowel,tyndall,profiting,beseech,hitched,mucha,mair,smelt,fatale,margery,yearn,mismo,culprits,trinkets,whig,enchant,austere,earths,selbst,storehouse,cowhide,plumage,antecedents,diabolical,tugs,rapier,unspoiled,haughty,relinquished,assaulting,admirals,cosi,meisjes,esmeralda,captivate,terug,deterred,agostino,apathetic,uninteresting,lyre,yawning,centralization,prunes,buller,cossacks,attuned,herons,raiding,deft,seething,carne,jardins,alligators,instigated,superstructure,husk,grandiose,clerkship,concisely,sah,scepticism,quatre,constancy,plats,countryman,insufficiently,reappear,boudoir,affinities,glades,crutch,rioting,espoused,mamie,frisch,discursive,disputing,unpaved,lieber,repudiation,clarice,dimples,inhabitant,flourishes,colonized,hessian,feder,ardour,hing,erat,arbeit,levant,imitators,talkative,phonograph,speculators,sty,quelques,smelting,cuss,slats,transcribing,manoeuvre,offends,lumpy,landlocked,embattled,wisest,giulio,zin,diminution,ging,rencontres,southernmost,freckles,civilised,airship,galls,ammon,imitated,inflicting,inducement,heave,cud,gegen,proclamations,rarer,slowness,wrongfully,lessening,aurelius,pout,cognate,mire,sufferer,mores,raindrops,elegy,sanctification,sanded,indignant,godless,sloop,politeness,baffling,hurriedly,characterise,purporting,passo,taunt,ick,hinting,schoolboy,bailiff,outpouring,deflected,inflection,lettres,myrrh,infuse,chaff,defaced,mimicking,counseled,showy,altruistic,aldermen,commends,moorish,etre,bobbing,defiantly,colonels,posible,bli,cualquier,pathos,battleships,smartly,laments,spied,playthings,argumentative,roused,aloof,snore,charred,industria,hij,ihrer,dunstan,bolshevik,unsound,hatter,creepers,recreations,profusely,intelligences,sorrel,reverie,colloquial,callous,oom,perplexing,splashes,homesick,gainer,ochre,dois,bystander,quell,repulsion,capitan,balk,imagines,softens,harnessed,exuberance,flocking,unnumbered,outbursts,undying,stubble,bande,amie,envie,tle,quivering,ete,euery,wein,sark,commending,sofort,flattery,soothes,millstone,mortgaged,impossibly,giorno,compels,succes,drunkenness,indulged,habitable,spn,subtleties,ministre,trappings,afterthought,damsel,euphrates,schoen,decorum,hommes,spoiling,yellowing,robs,giselle,earthenware,incendiary,selina,lenient,dined,idly,freda,devilish,aristocrat,scathing,twinkling,nichts,pantomime,familie,wanderings,decimated,overthrown,moored,peered,bores,regrettable,strangled,maxims,cama,engrossing,fere,jezebel,lethargy,komm,frolic,painstaking,goths,finality,toppled,ewes,mending,wrestled,hurtful,alternation,receding,gast,laban,neuen,paix,candelabra,outposts,treading,hedwig,downy,conformed,characteristically,canadien,goldsmiths,swarms,geographers,somos,evolutions,escorting,irregularly,oratory,sharpest,palisade,moccasin,circumcised,growled,auxiliaries,benefactors,terse,insistent,peppered,sterne,avez,utile,frightful,trite,gentler,vex,dilapidated,mien,avance,wollen,dela,stubby,sixpence,hoch,visto,impaled,forays,charon,flanks,pavia,curbed,efficacious,philanthropist,thaddeus,convinces,rede,minder,orator,abet,dien,ropa,sence,steppe,plowed,sires,transgressions,lingers,smothering,encampment,roque,prophesy,recast,misrepresentations,bards,bestial,neuf,buddhas,oozing,vicenza,richelieu,curd,bookish,subdue,raking,denouncing,ascertaining,stags,vittoria,soldered,privateer,milly,vicarious,traverses,seedy,imbedded,elysium,quenched,antithesis,envoyer,awakens,accentuate,squandered,sortie,withal,eyelashes,colliers,minuten,tilden,asti,blindfold,rampart,possessive,feldspar,facades,idealist,constables,mourns,solidified,cura,conceit,needful,locusts,thatch,cappadocia,weathers,grunts,thicket,zou,depraved,continence,treatises,renseignements,sauvage,prying,rascals,voyageurs,rudely,weeps,deplorable,smacking,aggravate,quoth,snowstorm,lacuna,chambres,rawson,levelled,incessantly,toit,apres,flaring,neues,langton,testa,lye,ditty,pestilence,rapide,thoroughfare,skiff,belligerent,impeached,hight,eclipsed,conspired,catacombs,agonizing,bottomless,sows,attributing,londoners,faut,sardis,excruciating,punctual,runaways,boniface,grafted,watercourse,propped,beaton,telegrams,staking,conversing,acetylene,calamities,viennese,fancies,accuser,bystanders,minos,ganymede,enjoined,animating,mercurial,bargained,repugnant,citron,clave,pageants,grosses,tacked,zeigen,supplant,slates,prue,corroborated,andros,tipsy,tabac,recognisable,neuralgia,timbre,clasped,pecking,womanhood,crimean,exorbitant,tish,grieved,experimenter,tallies,serpents,tampered,severally,bedstead,acquis,bostonian,whirlpools,sotto,caressing,reliefs,tassels,culpa,whiter,froth,obliterated,regalia,peerage,deceitful,storied,unprofitable,doublet,astonishingly,dein,cannibalism,menos,mera,pretender,mosses,subside,burney,conspiring,nostra,retaliate,deafening,beleaguered,jarring,baptismal,magdalen,brackish,direkt,vse,tinsel,edel,scrutinize,adverb,mumbled,commis,yams,breve,mut,worthiness,lazily,disarming,ween,woefully,kaj,promontory,eres,paye,smote,taunting,etruscan,outwards,rend,hezekiah,depravity,wealthier,onda,scientifique,disagreeable,drei,castes,corrupting,massif,murat,kine,lus,overtures,pharaohs,fraudulently,plunges,gibberish,cela,tammany,boulevards,redistributing,darken,dowry,chateaux,quam,skirting,adieu,kindling,affluence,passable,shouldered,hilarity,fulfils,predominance,mitten,conquerors,thar,admonition,ferdinando,perchance,rots,demetrius,precocious,rood,sachsen,luzon,moravia,byzantium,gaf,altre,repress,domini,loro,moiety,steeply,darned,locum,denser,moorland,coincidences,divinely,skimmed,lassie,congratulation,seminaries,hotchkiss,trotting,ambushed,combing,travesty,bewildering,hunchback,aback,deepens,griff,enactments,scaly,heaped,fantastically,cobham,oracles,untied,quince,lage,profusion,conjectures,glint,incitement,hansel,figuratively,sorceress,stoic,fatigued,unconsciousness,quarto,improvise,incipient,avalanches,cheval,crackling,creeds,thro,outrun,extenuating,blackberries,amiss,cavernous,snodgrass,darlings,reprieve,shanty,rapping,proffered,rowena,livid,distasteful,distinctively,luft,hares,overturning,attestation,bravado,overpowering,ravings,childless,voix,grecian,proportioned,lavishly,smite,forthright,kritik,foretold,dado,engraver,saddled,tortures,crusts,vamos,loge,presupposes,trickery,adherent,fragen,populi,astrologers,wuz,vindication,opined,falter,chatty,auvergne,philistines,retainers,tener,cherbourg,imperfection,sorrowful,unchanging,predominate,wodehouse,molested,titres,hyena,wedlock,erstwhile,vist,obtuse,caudal,sternly,chanted,jonson,klug,savour,stabs,indecency,lingered,elke,feasting,suffocation,softest,sniffed,lurks,tenses,lawlessness,recollect,alors,projectiles,heures,larch,interrogatories,dess,whet,impatiently,suspecting,dessous,aline,disjointed,seizes,reine,triomphe,thebes,doer,pandemonium,lege,ravished,discerned,seulement,icicles,fanaticism,flamed,godsend,rubbers,eder,anderen,rehearsed,alix,outrageously,bagdad,petticoat,inhabiting,unrestrained,injures,botha,pigtail,appraising,enthralled,strays,embroiled,toussaint,armistice,ellery,damped,southerners,fissures,clinched,forlorn,apologetic,absolution,inordinate,burdett,clank,individualistic,conseils,marts,obra,artemisia,evermore,engendered,manchu,disconcerting,priestley,appropriating,shinto,attentions,regno,gawd,inhaling,calmer,passers,fluttering,irishman,brier,phoenician,hundredth,firstborn,coves,armes,betraying,screech,fetches,paltry,carelessness,threes,broadside,importante,doers,sods,technicalities,thais,groaning,beckons,rejoiced,quickness,jeunesse,onze,entertains,turban,freie,ruffles,infatuation,gaiters,meisje,geben,nulla,plutarch,curving,misrepresent,tankard,xxxix,amorous,kurz,overflowed,jesu,weaned,armchairs,appartements,vagueness,grumble,wronged,politiques,fireflies,hoisting,falsified,dialectical,schatz,labours,espagne,flatly,harsher,inciting,malleable,indecision,unselfish,shem,starke,alight,epochs,nosotros,genial,langues,revolved,ifad,snowed,cachet,fortify,cherubs,armature,implicate,tolling,provisioned,sista,syriac,dived,baffles,infamy,dapper,belfry,elysian,odious,rehearsing,ellipsis,outhouse,romanesque,gobierno,vanquish,imparts,sobs,laudable,thawing,tienen,writs,omnipresent,gesundheit,hovered,devouring,renunciation,stunted,munching,fumbling,purl,lasse,banal,rears,portico,excites,placard,quartermaster,peculiarly,placards,transposed,ganga,thrace,waistcoat,vier,perusal,petrus,childlike,shamelessly,saison,tomo,cloaked,lichens,brotherly,uninhabited,sawn,unbelief,overtaking,transference,arjuna,pliable,mantua,sardines,dictating,studien,crystallized,reprisal,blighted,kunz,dissect,rumbling,perceptible,blazes,encircled,odette,saxons,transcending,snout,goodly,philosophically,directeur,bigot,bramble,persisting,bouillon,scribbled,celibacy,beaucoup,tooting,gruppe,displeased,portant,lather,falstaff,unchallenged,strayed,commutation,spiritualism,gracia,omnia,engender,fini,jurists,cloaks,streaked,downe,chieftains,garrick,perches,scrapes,silhouetted,crouched,juana,gradation,tole,unanimity,radnor,tycho,impeding,reino,grisly,fornication,contro,sassafras,heure,tramps,assis,blossoming,barbary,irate,partisanship,wean,omelet,suh,sheaf,folios,iban,dictum,refutation,posthumous,inclinations,ledges,wenig,muchas,enlisting,roars,swindle,revolting,candied,plaine,macedon,dingy,bons,frieze,staircases,horas,multiplies,impressing,twirling,lachlan,entwicklung,sergeants,overcoat,shak,tyrannical,infinitesimal,scharf,spouting,origine,humbling,truer,limes,katharina,martians,sullen,machin,prolonging,battering,superficially,upstart,ihm,imps,divulged,shrunken,quays,reprehensible,provokes,distancia,dedicating,confessing,forbade,incursions,viele,pieced,arching,bett,gloriously,gourds,worsted,nevermore,sanguine,acorns,slung,rowers,shockingly,viaje,vagrant,empties,bight,entra,fells,morgen,lors,dormer,geht,ahab,prolongation,uprooted,talons,germaine,dualism,intrigues,cannibals,pounce,marchant,vedas,panier,mouthfuls,instilled,calyx,valour,litle,mightily,cuzco,unwieldy,perpetuated,steht,exaggerating,smoldering,peuvent,snub,coarsely,voz,withstanding,thickens,hissing,crumpled,topmost,intrude,behest,pitkin,snatching,resto,charmer,escapades,haphazard,infirm,pontiff,menage,preaches,varios,growling,indescribable,arraignment,eugen,kentish,napping,sabatini,toppling,sten,astley,bouton,excellently,ier,pails,burly,derecho,formule,hillsides,segunda,xxix,contenu,divest,mange,unfairness,abated,sohn,tiniest,mowed,sano,overhauled,caskets,lecteur,congenial,lut,fervently,sprained,harlot,ravages,choix,superhuman,conclave,humanly,altura,livia,causa,dentro,magnificence,sacramental,peddler,eterna,mystere,fayre,glared,adverbs,donc,ugliness,constantia,shavings,lusts,nunca,helplessly,quintessence,throes,malabar,crowbar,blots,nettles,scud,raked,cruised,stupidly,lashing,gaudy,merriman,swoon,buckskin,kommt,recluse,displacing,neapolitan,blacker,haarlem,quel,aspires,telegraphic,quali,frescoes,patted,puritans,gentlewoman,somme,meinen,nouveaux,victors,revels,droves,slur,laetitia,eisen,phrased,puddles,nobleman,kort,assailant,luxuriously,flatness,pardons,debauchery,wij,extravagance,buttress,entrada,junge,rigors,foregone,stellung,overjoyed,bourgogne,newhaven,apologists,fut,allemagne,vind,waddington,refilled,whiff,burrowing,strolled,estos,regen,encrusted,clashed,harpoon,sombre,machinations,hearse,libertad,roamed,approbation,nen,wut,calmness,confound,lengthwise,fatter,abstained,chasse,christen,comparaison,valeur,senile,cobwebs,tusk,hellish,conquers,iglesia,preceptor,claro,ugliest,ungrateful,renounced,clashing,decomposing,sauter,sain,postponing,israelite,graver,flees,torrid,absalom,preconceived,zug,engrave,dishonor,hoarding,bauxite,barrack,compatriots,stereotyped,conscription,maken,philosophie,minna,tradesman,embodying,unscathed,moslems,courageously,snugly,tarry,fevers,interrogate,eocene,muddled,sklaven,leonora,militaire,subjection,punctuality,hoarse,misfortunes,vexed,delos,vanquished,ibi,inquisitor,floored,inheriting,historique,plied,beaters,twang,ombre,conceiving,syrians,mij,indivisible,poetical,stagger,crusted,heraldic,belli,maladies,adjudged,adolphe,fou,wissen,turrets,pression,efter,calms,misgivings,presumes,juggler,obeys,stifled,preposition,vestibule,heer,mournful,ameliorate,scheming,disarmed,baseless,voile,picturing,dismemberment,quartered,agrippa,lioness,appendages,feverish,pavillon,couleurs,neglects,suckling,scythe,heaving,homily,pensive,lado,fum,upshot,sifted,felder,fuerte,boisterous,sate,alleviated,outbuildings,icj,decanters,elevates,poitiers,goed,ferment,bounties,incursion,aurelia,thinned,consternation,hoisted,aeroplanes,auteurs,antigone,chirp,dimmed,yore,scurry,growths,thoth,halve,conversant,torpedoes,sovereigns,unencumbered,eliciting,tamed,fiends,farmyard,condense,garbled,tallow,unforgiving,immobile,indisputable,unkind,prismatic,aunty,paucity,expediency,frisian,lieutenants,philology,prophesied,backwoods,pheasants,slouch,amulets,cargoes,accentuated,eddies,kategorien,disobey,literatur,bandy,watercourses,amicable,prospered,savoury,colloquy,retorted,fiftieth,joyfully,onder,offensively,plausibility,magnate,pillage,vengeful,lunatics,satis,nol,edom,impracticable,misdirected,weer,surrenders,manchuria,playfully,barony,leyden,gruff,snatches,buxom,deciphering,botanist,deine,timidity,musty,silences,guineas,hebben,ministering,strangle,swerve,proscribed,chattering,esser,franconia,dominions,plateaus,berthold,spaniard,plummet,transplanting,onlookers,wissenschaft,phebe,easiness,trepidation,squatters,plantain,pepys,frailty,neutralized,tangier,ismael,guten,bateau,mourners,twos,passageway,reestablish,fondo,parsonage,quien,sulphide,outcasts,mortally,oot,agni,carbonic,unassuming,disillusionment,nouvel,knead,wilful,gaol,erudite,appreciably,equalize,prepositions,petits,tarn,endeavoured,enl,attentively,interred,indiscriminately,encumbered,herodotus,favouring,neutrals,conspire,recompense,colonnade,unde,eustace,abides,yuh,damen,seus,strove,ogni,dissenters,imparting,apologizing,coups,verdant,secrete,libris,twirl,noo,beadle,denizens,cockney,guppy,leeches,convoys,manoeuvres,shapely,rooks,shuddered,stelle,ornamentation,lynching,sommes,perdido,dictatorial,uncomfortably,defenseless,glean,amory,ander,edad,gratified,participle,schlegel,watchmen,galleon,travaux,eten,enim,chafing,betrays,assyria,inwards,corsican,libertine,immeasurable,esthetic,testator,distaste,offshoot,smithson,resolutely,friendliest,uttering,jacobus,construe,algemeen,mourned,despotism,flotilla,fragmentary,anjou,omniscient,gladness,frisky,generalities,condolence,siddhartha,brightening,inimitable,ineffectual,armorial,poppa,thickly,blossomed,cistern,tableaux,latins,phaeton,fecundity,malle,caliph,dysentery,soir,grenier,funnels,pasty,cuffed,peau,tumult,defoe,curate,donned,wilks,allegorical,monotony,reve,ohr,lucile,amazons,manon,unabated,plante,curzon,wohl,marksman,philosophic,denna,troubadour,volgende,truest,hypnotized,voitures,rudeness,felled,alleen,tinned,concoction,flay,patter,seinen,tortoises,roxana,pli,crone,possessor,wintry,gode,admonished,wickedly,laver,shamed,eluded,incriminating,unsealed,misinformed,tambien,journeyed,presenta,sett,magnificently,unpunished,albatros,apostasy,bereft,lucretia,hibernian,vitriol,vicarage,vestry,gleefully,mercies,paralleled,entwined,fosse,taille,resplendent,thrall,barked,cormac,sju,unum,scorned,relapsed,thicken,sanaa,ceci,selene,artfully,pilgrimages,fides,blazed,edda,wheelbarrow,maimed,chor,dernier,duda,pater,meno,mused,jamais,puffing,besten,wielded,futurity,quicksand,trestle,souffle,rebus,proces,sentinels,pardoned,wormwood,sighing,harz,awed,shrank,conceals,glycerine,staub,abolitionist,foamy,aventure,meunier,unpainted,knolls,unwell,unconscionable,wedged,outgrown,evading,commemorated,lurid,annunciation,rumoured,idee,coalesce,brougham,windings,strongholds,burglars,shrimps,stirrup,seria,creo,dictionnaire,finde,flopped,elbe,whitewash,subservient,suivante,stubbornly,benediction,disobedient,seamstress,immortals,euripides,uninitiated,mikko,mond,zwart,briskly,afflictions,buon,zon,weariness,ascendancy,affront,telephoned,treasuries,energetically,tinge,fingal,defection,murmurs,slog,gav,dispersing,tractable,lapped,syl,petitioning,clawed,einmal,winsome,presuming,englishmen,equaled,flog,notte,deferring,quills,oud,practises,unattainable,lengthened,dramatist,grayish,hallucination,exhortation,arousing,hippopotamus,wile,forgeries,chartres,recline,maitre,remembrances,disturbs,chums,determinate,heeded,telephoning,sophocles,humiliate,erfurt,wasser,tomes,ingen,accompaniments,clairvoyant,shriek,ferocity,quoi,withering,procreation,xxxi,exasperated,eerste,groping,soule,pinnacles,miser,scaffolds,reprisals,culpable,unserer,asunder,qualms,unharmed,sheaves,tritt,godmother,impresses,lidia,plusieurs,buttoned,sprouted,armoury,marshalling,longue,omelette,disintegrated,forgetfulness,muerte,stilts,samaritans,knocker,underfoot,roofed,jinn,nunc,primeval,sakes,horsemanship,aviators,destinies,jure,sherbet,nutritive,hurrying,helden,tepid,opportune,intuitions,dissuade,hemmed,personified,cornice,smock,musket,beautify,tannery,sooty,buckled,purveyor,kindled,provencal,schein,stairways,methodists,bourg,pretence,questioner,repute,nakedness,scabbard,covet,debe,rippling,mony,nelle,rationalism,wistful,admires,hissed,overpowered,pervades,mele,tirade,elucidation,prongs,fumbled,acte,confided,mumbling,abstaining,giotto,punkte,lancers,heimlich,waren,confederates,stretchers,demosthenes,warum,avait,devonian,infinitum,justo,antti,ointments,tugging,opulence,appomattox,bentham,coursing,beschreibung,patrician,zacharias,melodramatic,effet,inexperience,palabras,aantal,rime,casement,kalle,serially,gefunden,apprised,thoughtless,comparer,goad,parle,muddle,levites,christus,blasphemous,unaided,candidature,clapped,fatherland,evergreens,recede,dears,willkommen,spry,objets,toki,maggots,calor,hominem,tints,waver,handkerchiefs,punishes,salut,acquiescence,disaffected,manors,chronicled,laure,inundation,earshot,omens,brule,transfiguration,punctured,coughed,repaying,filial,mocks,niggers,refrained,shallower,durer,patriarchs,respectability,commode,overbearing,townspeople,adoring,trodden,reaped,bequeathed,grumbling,elude,decently,metaphorically,tripe,glitters,ahmet,austerity,mitte,informe,enjoin,dazu,boyish,egotistical,neared,claes,rostov,diverging,estoy,uninvited,irkutsk,trappers,aniline,tuk,spilt,forgetful,conceding,brightened,inconveniences,maun,rigour,evinced,uneasiness,afresh,taal,bunks,ducked,situate,sowie,escapade,loomed,egbert,hungarians,clamor,abdallah,hond,pews,workhouse,handbuch,unorganized,whalers,smuggle,laboring,nooks,wud,autocratic,titania,broder,shyly,stewed,disguises,stowed,unmanageable,denunciation,squeal,ducking,throb,scorch,perusing,duels,villainous,caius,pythagorean,steadfastly,abstention,genealogies,ruthlessly,falsify,swagger,flicked,emigrate,arbour,accomplices,nonproprietary,gebraucht,toothless,frankincense,commendations,comprehended,bravest,crevice,papel,telltale,typewritten,progenitors,forges,loosed,madcap,neigh,evie,casimir,persecute,voracious,foret,rescuer,massacred,signification,quarrels,remoteness,dominus,botticelli,balmy,hele,splinters,kleiner,epithet,blonds,ravenous,mongols,camphor,savagery,ober,navigated,dieppe,mies,pretensions,thunders,prins,diogenes,comings,danke,farthing,crevices,wringing,tearful,betwixt,florent,unmistakably,unu,massed,plucking,slavonic,reprimanded,rebelled,thunderous,rolle,encloses,sorties,revives,toleration,suitors,minutiae,deviated,sleight,burman,skirted,coachman,bigots,reappeared,comprehending,reckons,inexhaustible,canny,fainted,pianoforte,rifts,winking,firmament,hovers,thoroughness,confessor,gooseberry,aimlessly,pronouncing,agassiz,dazzled,inborn,manera,ould,consuls,eure,doria,newness,ascetic,bearable,russet,specie,hothouse,incas,skein,virginie,mettle,ojo,endeavored,matin,demonstrative,seis,detta,bigoted,discordant,lilacs,levying,elles,oriel,buoyed,malady,brahmin,grandsons,tempers,quinine,thirtieth,sige,grog,fester,permeated,retards,resentful,headlands,saintly,oude,aught,cornelis,adjuncts,jeweller,wooing,conjunctions,embellish,cordes,moonlit,intercepting,denounces,besser,wegen,dienst,corks,obscuring,tages,nullify,corroborate,envied,chins,runt,nursed,loathsome,cosas,althea,dando,icebergs,sacking,settee,driest,scipio,stealthy,flaunt,mistaking,saxe,dyspepsia,tryst,cede,annihilate,candidly,honorably,shifty,ello,deceptions,snorted,signe,shivered,teem,replenished,assailants,degeneracy,giovanna,consummated,cosimo,cotes,obstinate,farquhar,retrace,revolvers,lurch,gregarious,allee,oor,nightgown,bombard,missus,mystified,drooping,diable,inconsiderate,swirled,darted,warlike,colons,supplication,fretted,gauged,suet,overhanging,impropriety,maligned,thackeray,nought,barbarous,grandi,olly,diu,scepter,writhing,enticed,schmuck,gasps,exclaim,greve,vestiges,rustling,recaptured,marauders,spars,howls,answerable,inky,ock,sneer,allay,derision,zog,dutifully,octavo,jerrold,maddening,plundered,damit,henriette,decry,buen,devant,conspirator,luring,gallantry,hewn,whisked,pericles,desertion,rumania,yow,wherewith,siliceous,mund,circulates,signore,coldly,envoys,restorer,staves,coldness,existe,friesland,orden,riviere,gusty,brazier,bayreuth,sonntag,semaine,godliness,docile,maliciously,vole,cantons,siglo,enveloping,piedra,subito,tangles,meanest,hollows,luckiest,officiate,mumble,espacio,oppress,grandfathers,usury,russes,greedily,vizier,ojos,nostril,tombstones,wavering,barbarism,vienne,alway,surmise,blanch,inscrutable,campagne,syne,xxxii,saluted,protectorate,hieroglyphics,materialist,landlady,blameless,amalia,absurdly,garnished,fernand,corporeal,passivity,partiality,circumscribed,steno,disposes,berta,emanate,rummage,headstrong,plies,scantily,waar,befriended,professing,nestling,piedras,immortalized,leper,animus,dimple,noblest,supine,bloodthirsty,squint,vitals,lamenting,benedetto,vindictive,overtook,goe,palast,triumphed,scanty,difficile,vagaries,undaunted,lucan,hemming,nuevas,defiled,faltering,saracens,tisch,eke,conceited,denys,naissance,laymen,shopkeepers,mortification,combats,indulgences,tard,fattening,drench,digesting,cupola,hund,kommer,canst,idleness,lunge,mahmud,minuet,entombed,fers,diverged,spouts,pontifical,glided,sleeplessness,iago,axed,overdone,socratic,revulsion,rosamond,schwarze,criticising,porpoise,nowe,oligarchy,psychical,rives,houten,fanned,berge,wagging,germinate,chrysanthemums,misdeeds,acto,earnestness,wetted,undercurrent,steerage,granary,befitting,whitish,irreconcilable,giveth,concocted,essayist,epicurean,blacked,refit,boite,unwashed,detaining,shod,oratorio,befall,appurtenances,wearily,northernmost,trollope,enchanter,unscientific,withstood,sandhills,heaviness,knapsack,animaux,calcul,consciences,inflected,linseed,caisse,staccato,dels,agamemnon,dodged,refusals,outrages,cuneiform,footstool,dopo,uncircumcised,emblazoned,mettre,wrangling,dorcas,confiscate,bloods,odours,mongrel,forewarned,degenerated,eventide,impairing,dispossessed,meagre,mopping,iver,fantastical,dorf,yama,laatste,chintz,nebulous,slink,lineal,droll,honouring,grenadier,anachronism,methodically,stiffened,athenians,hautes,aleppo,whimper,whomsoever,viciously,fiddlers,endow,raum,indistinct,counterbalance,razed,anzahl,invents,loungers,wilberforce,manus,tenfold,scoured,schule,carley,knotty,stewardess,furthered,chancel,inexorably,mitglieder,worships,ironed,inhabits,domestication,olof,japon,appendage,geographer,omnis,naphtha,clairvoyance,frente,aeneas,narrates,girdles,heartbroken,parola,lameness,offal,smithy,dawns,frais,couverture,staid,encircling,verte,wove,pithy,caressed,infinitive,hysterically,incantation,blissfully,shirk,pangs,monsignor,fulness,commande,domestics,unpretentious,poachers,galvanic,narr,joven,parlance,lethargic,drunkard,conveyances,steinmetz,cowper,bronzes,essa,knell,profited,flavia,startle,algernon,exterminate,heikki,exalt,nein,zal,interludes,jahren,bide,suitor,russe,bevy,gravelly,inconspicuous,juste,wisps,urbane,hoek,nebuchadnezzar,diffusing,stupor,gratuitously,aimless,parfait,flit,quietness,accede,sicher,overshadow,xli,principale,turnips,statuette,theobald,dwindled,dispenses,fertilizing,ower,narcissist,sextant,falsehoods,swampy,euch,wast,obtenir,donning,cecily,sappho,estancia,wurden,fama,lustful,guano,presbyterians,worshiped,duque,autem,rebuked,cloisters,luella,presumptuous,toothache,presage,boars,afore,dour,moistened,kegs,unadulterated,reciprocate,rade,quia,begat,propelling,ripen,suffocating,athos,grasse,cinq,xxxiii,brawn,frowning,gaius,matchless,boatman,unconcerned,dood,orthography,conjured,assyrians,selv,vaulting,fonte,gossiping,freshen,tugged,gog,outdone,detest,paraded,trifling,undergrowth,enamored,carlotta,ceux,cuatro,methode,ulterior,puro,heracles,whirled,passim,thei,gebruik,vraag,jovial,scoundrel,romany,xxxviii,duplicity,meddle,exaltation,handiwork,andras,joyously,heaping,strident,oration,grunted,riche,pilote,wampum,dreading,humorist,nourishes,vite,cun,combative,winked,unhappily,rube,chronometer,squaring,wring,apparitions,shrieking,graaf,erst,scurvy,peacocks,ophir,wouldst,pocketed,enormity,coarser,hypnotism,oeil,dissociated,exclaims,ceaseless,emblematic,lerwick,fertilize,disengage,commonest,daj,unreserved,lessens,judicially,vend,smattering,taunts,stealthily,ripened,cleverness,roped,sorcerers,clang,sardinian,waltzes,sunlit,attests,parched,peaceable,achtung,stanzas,infuriated,dismounted,incongruous,kindest,stam,intervenes,vieles,bonnets,bared,frenchmen,callow,edicts,lemuel,inattentive,transmutation,sweeten,confide,voiceless,sombrero,isidore,headdress,nuestros,tannin,limite,boughs,naturel,overseers,presentment,sprigs,amiens,diez,prudently,foresees,patronizing,presentable,pales,dais,adornment,precipitating,hearken,insolence,blockhead,einige,patting,hippocrates,elaborately,lundi,gaslight,presides,divested,pith,eaux,transvaal,gaff,disintegrating,folie,frock,bleue,flambeau,fuming,veel,chattel,wrest,forgives,waterless,effectual,unimproved,paddled,inkling,vigils,schoenen,garcons,gauntlets,patria,blacksmiths,menor,ploughing,timon,parsimony,typified,darting,ashen,blunted,snarl,comptoir,echt,pained,inexcusable,laud,mutterings,precipice,geschrieben,recalcitrant,wos,thoughtfulness,harshness,ailes,neuve,limping,darum,utters,processions,gluttony,kneading,etwas,sait,templars,nineveh,mesures,enquired,aphorisms,compleat,consumptive,dalmatia,noisily,readjustment,unaccountable,weise,trickling,commoner,reminiscence,pouvoir,yeux,fui,waned,assented,overcharged,pucker,sanctify,messrs,insolent,octavio,portes,finis,beastly,fortresses,matrons,thun,gawain,guinevere,heresies,annihilated,tardiness,mangan,mose,specks,futur,incredulous,dere,calvinist,suas,buckler,peal,asunto,adroit,dilettante,georgiana,ecstacy,peasantry,oppressors,boeken,corns,faring,dama,unos,pinkish,blurted,tutelage,merited,hacia,peculiarity,decrepit,encroaching,solemnity,equivocal,lieb,amass,maketh,ihrem,disengaged,distilling,effigy,saloons,assailed,incensed,zachariah,veneration,broach,miseries,personification,partes,scuttle,rougher,supplanted,sardonic,aghast,raiment,disused,vetter,stooped,dower,andalusian,wordy,feudalism,achille,magister,bolting,lumbering,fourfold,forgave,antonius,indien,replenishing,immemorial,indwelling,seh,jaunt,genere,ipso,quartier,wallow,unabashed,haf,homeric,overpower,expounded,downpour,dumbfounded,cubits,outlast,frothy,macedonians,labouring,pouvez,nothings,kommen,allgemein,colonist,sorbonne,rares,colla,philippi,adduced,agli,unrequited,mangle,alludes,theseus,commuted,medan,saracen,annulled,covertly,dalle,rapped,foreboding,fortuitous,autumnal,xxxv,sepulchre,kunt,despotic,dicky,beholden,celui,apostate,enda,faltered,queda,entrar,sicherheit,gorse,louse,wilfully,paralysed,tillie,distanced,vespers,scylla,vats,urchins,implore,kindle,pricks,tenements,tithes,thinnest,sipped,mando,pulsation,hitching,xxxiv,obediently,calvinism,milked,vesuvius,disembodied,aylmer,scoff,confidant,nape,disparaging,impolite,bataille,oia,domine,sluice,darke,whistled,furor,austrians,craves,soiree,trouver,enslave,dimanche,grimly,espouse,casks,conjoined,cabled,muchos,lightened,spongy,verner,specious,threshing,infliction,frederica,entranced,deprives,onde,scimitar,holz,uninterested,cavalcade,adulation,loitering,dastardly,ludovic,avarice,sangen,butchered,pointedly,ouverture,rustle,excitable,hermanos,alluding,frere,insipid,unfathomable,ingmar,holiest,arbre,effeminate,vainly,straying,venereal,mercifully,blatt,pansies,acceded,dregs,obscures,millicent,foresaw,befriend,anker,malign,abortive,embarkation,varnished,zarathustra,valent,knoweth,anemones,sacre,hunched,buzzed,pickets,astringent,soothed,vins,premeditated,cherche,aucune,pueblos,sentimentality,tenable,jumbled,triumphantly,leva,vergessen,scolded,fetters,vulgarity,magasin,perpetuation,tafel,pliny,sewed,jubilant,sangamon,continuo,welche,silesia,staat,amputated,reappears,enquiring,masha,redden,kreis,faccia,gae,sobbed,omnium,copie,snuggled,surest,bribed,alarmingly,kosten,bloodless,basle,sigurd,tute,obliterate,dort,perron,pestle,falsity,sapling,elapse,myne,enamelled,torments,tortuous,oiseaux,seafaring,mooted,repented,infirmity,corydon,selfishly,drudgery,pacha,shrubbery,navies,impartially,imperfectly,slanderous,interminable,ancien,soins,indomitable,unseemly,vix,godlike,scrambles,arbeiten,merriment,rotted,thetis,repulsed,garni,brickwork,soulless,abbots,frontispiece,vivacious,bloodshot,salutations,pela,dogmas,forsooth,geordie,orestes,deathbed,indefensible,brutish,trill,venetia,melchior,xerxes,poudre,ramparts,disband,symmetrically,reek,hearers,frigates,availed,externals,principales,damsels,spielen,monotheism,menelaus,morsels,hatte,skirmishes,congratulatory,zuletzt,melodious,baited,veined,kens,norwegians,imitates,conjugal,boldest,hafen,flaubert,enunciated,strictures,flinging,ferme,discouragement,werke,vesper,parapet,filles,usurp,gerade,traduire,peremptory,unrecorded,seiner,gallia,hayne,lorsque,fronds,interposed,jugglers,veri,dessin,weet,naively,nominative,cleaves,doivent,avenging,ploughed,severing,ety,hev,cremona,martyred,afflict,crags,mimicry,intersected,tomkins,winced,literati,trotted,hungrily,scold,chirping,utan,tress,vaunted,astride,nostro,ruy,emancipated,ordain,rapt,wirt,sawed,receded,emboldened,pessimist,sedate,stammered,supposes,genteel,engulf,huguenot,epicurus,gouverneur,upu,hankering,normans,enumerating,toiling,spiteful,governess,alternated,colander,croak,abhor,boek,inexorable,chercher,harmoniously,bijoux,worshiping,gewicht,coolly,accompli,wann,vieille,ellos,hecho,verry,rowed,elfin,ingots,ridding,tegen,troppo,meads,exhaled,demolishing,pratique,calabash,brigantine,zeb,fitzhugh,rioters,persecutions,arriva,cramming,chuckling,disfigured,mers,chios,muro,oreille,transcended,xxxvi,cuerpo,tiel,faintest,bleek,adela,genitive,civile,haupt,testy,physiologist,imprison,repelled,abend,eran,quem,plundering,abhorrent,rebellions,sympathizers,scribbling,phineas,emissary,inhumanity,wem,belittle,repudiated,divina,leonie,sympathetically,permet,elis,liddy,dabei,rollicking,offhand,geraniums,bashful,doze,currants,absolve,conjectured,grandest,kinsmen,lier,welk,shipwrecked,doen,tacitly,dint,reverberation,quickening,waal,mistook,apprehensions,aunque,celestine,schoolmaster,impressionable,gingerly,apologised,riven,taketh,cornfield,fretting,fetter,jeers,manufactory,jarred,theorie,armen,bewilderment,loveliness,ministered,idiomatic,scalping,slav,attics,wilhelmina,hermits,gullies,prerogatives,banishment,tempering,kampf,fallacious,vestments,morsel,leniency,scrupulous,woodsman,bocca,dicta,meisten,aubert,richtig,clumsily,catholique,turpentine,ells,cussed,evaded,thickets,clink,personage,cavallo,vender,daar,bouche,delinquents,furlough,angleterre,snarling,samedi,creaking,bequeath,subjugation,gape,clase,unquestionable,prendre,irritates,whigs,despatches,titian,arras,fathoms,printemps,physic,nuptial,thickest,bulbous,whist,mieux,darauf,expound,eget,exhilaration,ziel,lordships,chanced,fastenings,ketch,treeless,adores,aground,splendidly,feuille,inattention,discolored,traf,sinning,jouer,forestall,vater,moselle,gnawing,crudely,saplings,profuse,dispelling,attainments,gane,couched,bestows,sone,particularity,knighthood,blesses,dure,sickened,tali,canteens,thoroughfares,donatello,penniless,abrogated,druck,kingship,puis,manes,relapsing,arcadian,claud,swart,eschew,vastness,precipitous,detachments,arsenals,hoofd,tramping,vieja,thereabouts,bloed,resultat,betrothed,pourquoi,dispelled,pierrot,duca,sameness,scruples,gloved,bete,dowdy,clamoring,aguas,visitations,recklessness,stirrups,intimated,allspice,squirming,thunderstruck,pleiades,surreptitiously,finery,langen,eugenie,sequestered,hesitating,stoops,stiffening,scrutinizing,allude,sprawled,interesse,tomar,courted,condoned,unsavory,deservedly,blackbirds,vowing,plying,gangrene,purplish,stille,enliven,hollowed,graven,lengua,craved,fracas,envelop,dismount,grudgingly,quae,bole,believeth,unafraid,stamens,omnipotence,irresponsibility,zelf,seaports,conscientiously,boomed,jussi,joust,grander,shackled,weedy,sacra,ipsa,grope,suomen,echte,brightens,muertos,jailer,gleich,gladden,sarcastically,tuft,quickened,reverent,braved,jaune,joli,beckoned,unquestioned,scrawled,savagely,usurped,monstrosity,certains,ravishing,grumbled,disheartening,nobis,stolz,unavoidably,blest,govinda,menial,clayey,delighting,vielen,conjuring,dutiful,absurdities,cabeza,ony,gordian,edification,flinch,xxxvii,despot,affaire,insincere,inger,vuelta,beckoning,vivant,vendre,ignis,begone,lucidity,feuds,toque,wille,primi,hiver,lateness,dier,nunnery,forefinger,rudiments,erwartet,heathens,celibate,simul,clatter,werd,faultless,awkwardness,praiseworthy,mosca,seigneur,ails,frage,vapours,jij,delphine,bruder,remiss,languishing,entrails,erreur,cossack,thrashed,topsail,modicum,malte,solange,ethiopians,rajah,persuasions,steppes,sheathed,derided,encroach,correlative,maire,diametrically,fasted,eunuch,algunos,gazes,virginians,negligently,sistine,higginson,hadden,unmoved,glum,perplexity,particulier,sabe,sulky,guarda,skyward,woeful,grund,droop,neque,dislodge,voyageur,waded,flore,unacknowledged,quietest,carven,aptitudes,bonnes,confusions,fara,alimentary,wus,republik,encroachments,ineffable,hearer,awakes,republique,generis,zit,probity,formas,grubs,unflinching,murmuring,gaan,jungen,kop,triumphal,affable,hijo,worshipers,avons,flail,adulterated,nicodemus,ardor,wissenschaften,veo,missive,ascends,splintered,transacting,vus,nomine,busen,loafing,talus,republicanism,foibles,cose,choses,squatter,waldemar,colourless,unyielding,flabby,enlarges,apace,doktor,harbored,bulwark,stringy,seront,sonorous,breastplate,draughts,heaved,lazare,uel,fashioning,churned,correspondance,dappled,gallic,tacking,feigned,dross,solidity,doge,indecisive,recurs,dripped,epicure,levity,journeying,dito,oppressor,metrical,kopf,immeasurably,tussle,fiendish,glorification,wayfarer,arabians,expanses,nuits,dervish,irrepressible,leider,joppa,wilted,emoluments,egal,conned,mutes,outwit,magnesia,patronize,impassable,serf,koning,buries,vobis,signor,phlegm,reste,freedmen,obliging,hermetically,gravestones,uncommonly,nudged,inhospitable,dissension,intermingled,dwarfed,langs,asters,surmounted,elspeth,salutary,bringt,frosts,ached,defile,odio,ansehen,effectually,unprovoked,apocryphal,pallid,sulphuric,antipathy,atone,douce,storeroom,theodora,paler,lhe,wereld,offing,infest,dampier,hardens,frisk,alister,expelling,obliges,pertained,beneficent,luxuriant,mulatto,plausibly,concubine,complimenting,courtly,dampness,zusammen,platitudes,pois,porphyry,deviating,taunted,ernestine,bubbled,tienes,korte,mortified,upturned,cordage,hobbled,loath,gagner,nibbling,unsophisticated,vexing,longa,digression,astonish,dynastic,cognizance,piquet,loveliest,nearness,vif,procurator,plaintive,exult,claps,disreputable,seraph,dressmaker,fehler,publican,hoar,movimiento,kreuz,rebuffs,reichstag,woche,handmaid,oir,chemises,consuelo,impostor,nomen,ponderous,maisons,scrupulously,plaisir,intruding,baptize,fatigues,asaph,princesse,franche,plucky,dessins,eusebius,untidy,loggia,tribesmen,subsist,tuin,augen,beholding,scarfs,leve,shallows,ersten,unjustifiable,growls,sported,quaking,refraining,commingled,coasting,logement,kindern,conciliatory,stiffen,showman,officiated,distemper,subterfuge,jede,aspired,mathilde,pues,lazaro,mouvement,beispiel,penitent,toyed,anglaise,lamentation,tunc,extol,patrimony,belgians,knave,functionaries,croup,broadcloth,disuse,reeled,quire,goeth,fascinate,garish,baronet,bombastic,francie,scoffed,thieving,minde,thinke,snarled,unearthly,predestination,verbindung,regulus,vidi,trouve,rapides,reviled,coverlet,lustig,bringen,fearfully,musketeer,fiddles,furlongs,fens,ancienne,arraigned,liquide,tanz,whitewashed,gilding,twining,explication,violette,humanely,jungfrau,verdad,perrine,gaiety,alten,uttermost,aristophanes,letitia,overthrew,lave,frowns,fabricius,sheepish,diferentes,antic,abed,edifying,dreadfully,aun,sadder,ravage,contemptible,unfailing,fowls,untoward,gloster,venu,clergymen,fiel,endeavouring,dislodged,casse,obviate,juster,genom,ueber,primero,saluting,beguiling,bayonets,trompe,flavius,gie,playfulness,confluent,orde,deel,lernen,husks,beckon,raved,herren,anfang,jewelled,reaps,fatto,traum,premonition,recut,sureties,montre,grunting,baubles,personages,actes,exigencies,marveled,peloponnesian,gotha,tasso,waffen,cultivator,nihil,quintus,crucify,unsaid,fonctions,untie,instigator,girt,annul,lanky,illa,blushes,shewed,outdo,sycamores,truant,shrieked,ermine,corroboration,juge,circe,capitulation,aspirant,germinal,vindicate,repelling,gesucht,fallible,pantheism,strutting,incalculable,tijd,soliloquy,mammy,beaks,caresses,quello,indolent,ursus,banns,thistles,idiosyncrasies,inducements,ennui,abetted,expending,ista,sweltering,purer,hedgerows,narrowest,disapproving,meses,interrogative,squealing,feverishly,sneaked,obras,drowns,nostri,persuasively,walloon,squalor,panelled,ossian,chaplet,narrate,peleus,ebon,hesiod,maman,bleat,glorifying,gleamed,valiantly,steeds,elli,infallibility,voll,altes,franciscans,comport,malheur,overdo,ragusa,sette,radishes,deeming,flaccid,eum,putrid,unguarded,prodded,fasts,sterner,tras,womanly,surmised,northwards,tiu,mayest,judiciously,worshipper,diderot,ruts,regretting,scolding,bosphorus,dimpled,massing,offen,leathery,hjem,caballos,grimace,bribing,unbecoming,bridles,rinaldo,dejected,vosges,comely,prow,sprig,apulia,squander,swarmed,wields,dragoons,brune,landholders,cradled,dreads,spurring,sollte,plaything,pander,stamm,abominations,viene,reestablished,strangling,cultivators,insignificance,deceiver,helle,sputtered,faites,merrier,simples,ruggles,miel,subsides,nobler,michaelmas,bildung,howled,blanched,allemand,unequalled,cicely,temperamental,dally,malays,nauseous,brandishing,wags,chronicler,allem,fais,disproved,justinian,lutte,dobbin,riz,coquette,menge,remarking,cobweb,punctually,unwillingly,cadeau,undoubted,formless,shipmates,englische,plaats,shorn,doubtfully,typhus,reticent,welter,lande,exertions,insel,sprachen,eins,retentive,gerda,plodding,deserter,rending,gaillard,consign,mantles,neatness,adornments,britannic,becher,unbeliever,parading,gamin,confederated,lume,overwhelms,embankments,quanto,speculator,madmen,listless,wheaten,deprecating,faggots,ducal,downcast,tedium,seamanship,gascoigne,pomegranates,sooth,knie,sportive,hewson,aout,turan,undeserved,principalities,aider,excelling,misadventure,meiner,rond,dramatists,servile,rickety,enchantments,fuori,secondo,figura,prosaic,diadem,pani,outa,bedeutung,sincerest,sagen,tittle,imprudent,keer,trou,nannie,laat,deliberated,snubbed,suffocate,applauding,epithets,toch,floundering,preserver,revolts,espy,deren,hallow,wharves,kunde,canvassed,chastisement,unmitigated,whined,sashes,assail,flirtation,unterhaltung,courtiers,carboniferous,brillant,equanimity,agitators,venerated,curs,neer,assimilating,proudest,subjunctive,harun,perishing,inaugurate,slavs,libres,noiseless,cayley,worshipful,geh,spurned,selim,chastised,zich,forethought,viscera,excitability,madder,exterminated,mette,bronzed,grimy,lascivious,ille,dispassionate,bonheur,charmingly,glimpsed,partaking,firebrand,deprecation,intimation,chequered,glimmering,alphonso,falla,disbelieve,brevet,darf,troyes,exterminating,revolted,bunched,besoin,scrutinised,allez,herded,athanasius,gemacht,deliberating,humaines,londoner,aeschylus,plantagenet,episcopalian,zwar,soldat,nisi,thucydides,tapa,repudiate,advisability,lope,festering,relinquishing,dessa,mercia,furies,piqued,jinks,biddy,compris,theophilus,crony,sambo,stellen,professes,wherewithal,shrieks,taas,ominously,caer,ablution,demure,athene,jist,ipse,parasols,munition,veered,jonge,serfdom,gossips,rawlinson,scuffle,uncritical,infatuated,rhythmically,gaat,riotous,tenga,embittered,unleavened,veces,stockade,parece,bushmen,babylonia,tempts,tempel,uur,devolve,satyr,fearlessly,ajar,pampas,altra,suppers,fluttered,untrustworthy,exhorted,ravines,yokes,howitzer,interjection,stocky,bazaars,himmel,greate,strenuously,wildness,compensations,laxity,deathly,unloved,balked,fairyland,balaam,hamar,rekindled,drams,entreat,brainless,souci,cessing,cocking,railed,abounding,fount,poacher,invisibly,lithe,intercede,tusks,hatten,ayrton,courtier,blotted,impetuous,grammes,shrouds,ambergris,hellen,clearness,embroider,hubbub,robed,unchangeable,wunsch,haya,magisterial,boor,recites,anguished,ailleurs,meteoric,jacopo,equalled,palabra,arithmetical,royally,molle,plantes,dishonorable,thwarting,venise,scurrying,subverted,urbino,effets,broadsword,blankly,auras,bonfires,allt,cloudless,conflagration,xenophon,bevis,dethroned,chapitre,vestige,courrier,cheerfulness,egoism,cataclysm,harried,transshipment,cuore,fatherless,puedo,groen,seers,cretan,roumania,blubber,appeased,coaxed,pageantry,disparage,triste,chimed,phraseology,verdienen,memoire,morass,intimes,righting,moder,tasse,dessus,striding,panelling,braving,prayerful,raad,transfixed,balle,leaven,lout,tucking,unwary,herrings,cubit,begets,groundless,prancing,amelioration,wark,beeld,bezahlen,mightier,enthroned,overburdened,dwindle,lindau,beter,sujets,acquiesce,alacrity,drawbridge,gude,overhauling,girle,pulverized,holier,mauer,everard,uncivil,nondescript,employes,temperaments,consulter,simpleton,brutes,howsoever,unsympathetic,jermyn,dico,rejoinder,condescension,dilate,rasch,tiber,bekanntschaft,feuer,secours,skilfully,abolitionists,flustered,compactly,lasses,fus,corsage,hym,laboured,enumerates,decir,relinquishment,ohg,sall,cession,liken,forfeits,heeding,fata,revenu,helder,verder,caesarea,naturelle,wordless,sleepily,prowling,harmonie,eludes,revelry,deface,propensities,mimicked,mete,algunas,uninjured,rivage,populaire,lief,toddy,disheartened,ruinous,spoor,upanishads,eigene,bewitching,mihi,individu,accusers,sunshade,cuir,hals,furrows,throngs,sarcophagus,dozing,siete,chink,likenesses,pervading,caxton,soames,fermenting,beiden,blithe,paralyze,kazi,tilling,hereunto,daad,languish,feathery,reasoner,adorning,gaily,weib,samt,jubilation,tels,storks,accoutrements,abeyance,ciudades,enfin,suivi,iniquities,nadie,purring,squinting,strolls,encuentra,gradations,conocer,vsed,molest,appetizing,encamped,trifles,sammlung,langage,importantes,suiting,hesitates,paralytic,eastwards,parsimonious,pinafore,alwyn,albertine,disposer,politische,foreknowledge,galleys,sunning,farcical,weel,toiled,incited,rhythmical,rippled,tresses,agitating,oriana,frankness,castilian,bunsen,buenas,susa,sulle,fuera,outlived,anny,repulse,basaltic,hinter,middling,minstrels,personae,wain,englander,gascoyne,knighted,torchlight,teniendo,emanated,southerner,persevered,hounded,butted,longings,galilean,ayant,dominicans,helmsman,meditated,shuddering,homesteads,abrogation,justicia,jutting,deliverer,knecht,aeneid,vehemence,befell,ette,klar,neige,sneered,chattels,brambles,disembark,secede,unmixed,grieves,prises,tumbles,sogenannten,parnassus,debarred,dandelions,abyssinian,maler,bulgarians,coaxing,marshy,terres,inne,preying,grasps,subsisting,freunde,bladders,avions,junto,bloemen,latium,shuttered,alchemists,morose,poore,regretfully,abbeys,dutchmen,agitate,vien,abdication,discontents,botanists,bohemians,blir,foreheads,narrating,gering,pedant,stubbornness,distantly,humaine,averting,pyre,faubourg,wooed,chalky,teamster,beached,fringing,glans,thousandth,sacrilege,demagogue,demean,changement,stipulating,propping,straighter,weirdly,broods,rejoices,limber,hablar,mahomet,telegraphy,lehre,doeth,verschiedenen,chrysostom,blackfeet,waistcoats,chalked,mightiest,marvelously,apse,bailiffs,infirmities,illum,aboot,jolted,manne,jacobite,viendo,freckled,plenipotentiary,philistine,gambled,chaleur,unimaginative,joyeux,gratify,meuse,certainties,zie,fittingly,gelatine,undid,quelque,publick,electioneering,nette,ressource,betel,moisten,demoralized,peopled,suffi,swooped,doctored,soured,quieted,albumen,encircle,carmelite,anges,exhort,voyagers,tendrils,thal,nullification,ostensible,malarial,exasperation,stumpy,jeden,whereon,entente,nala,mainsail,inom,promptness,retraite,excommunicated,scalding,storekeeper,muskets,uglier,witchery,predilection,wavered,climes,firelight,contrivance,anoint,scatters,wallowing,hindrances,braver,repartee,boggy,vragen,termes,chiming,modulations,philanthropists,urteil,retaliated,founds,poplars,knightly,debater,tarde,millinery,appian,irresistibly,endeavoring,comically,substratum,porpoises,snel,persuades,rapports,foreshadowed,meekness,audibly,dewy,obliquely,uneasily,meted,liveth,outre,agin,phoenicia,boven,jaunty,balthazar,squeamish,tono,parmi,eccentricities,pasar,potentialities,anthea,letzten,airships,presuppose,hetty,affectation,abdicate,creak,archdeacon,haciendo,pretension,descents,vicissitudes,dupes,larks,tormentor,tagen,postilion,weal,grudges,perversity,convulsive,inflame,zien,eclat,doric,pathetically,bluster,witching,depreciate,bellum,gendarme,dionysius,imperceptible,fattest,atolls,tibi,parley,jessamine,palatial,prelate,flippant,libations,convivial,trat,adorns,kamer,grubbing,commoners,cultivates,thankfulness,nich,unturned,workroom,zukunft,phoebus,censured,sache,relished,boers,toils,salles,enorme,instigation,veuve,indefatigable,overthrowing,maudlin,excusable,craggy,gushed,extricate,provocations,deplore,defrauded,laut,aplomb,centum,cabbages,epee,truism,employe,fervour,babylonians,fabius,despondent,ostia,cunningly,bathers,turbid,sceptics,pollyanna,bort,privateers,knowe,preoccupations,ludovico,besonders,villainy,feuilles,diverses,maladie,hurtling,squabble,ravin,seest,omnes,methodism,mente,luego,overtakes,predominates,phillis,startlingly,couplet,falta,inimical,imperious,townsmen,sondern,revoir,handfuls,gratia,formant,gongs,eigenen,larga,pentateuch,immobility,purifies,sparkled,interchanged,lulled,disrepute,rechten,implacable,sert,employments,carinthia,attired,uncalled,repels,zat,aika,pliant,reappearance,urbain,avocat,emaciated,gern,vassal,cantos,manse,pining,unknowing,blithely,moderns,fashionably,virginal,augur,colonizing,bodleian,bicameral,chapeau,dramatized,bringeth,paquet,regle,broomstick,suffocated,voulez,marauding,cynically,assuage,estrangement,versicherung,limped,yearned,fondest,parce,frightens,incontinent,amante,perpetrate,nombres,mientras,fiercest,coining,invective,sueur,depose,pacify,sunder,excommunication,grizzled,lade,caballo,loathed,florid,fatalism,despises,chanter,quacks,arme,wend,blackest,reihe,roubles,relented,meinung,tarred,beget,mooi,stenographer,nipped,disguising,invulnerable,flickered,quiere,kummer,hideously,motherly,modele,vexatious,coachmen,girlish,reddening,foremen,shamefully,herculean,tormenting,pleura,bragged,pester,deputation,oppressing,domineering,obtrusive,wrinkling,wiry,labyrinths,jealously,beare,welches,footman,pense,chafe,tapis,schoolboys,alexandrian,sinless,manche,nobly,absolutism,hause,grosser,gudrun,sharer,confidences,wakefulness,monopolize,gehen,consoled,mayores,contrition,diener,resound,unsuspected,archbishops,tarpaulin,abajo,mustapha,cherokees,peaceably,exacted,oddest,purposed,evince,hyenas,schoolmates,luogo,breathlessly,hoarded,naturalness,flings,irritably,gorgeously,helt,noonday,courteously,sinuous,availing,meekly,briefer,serfs,vives,homburg,wailed,ippolito,thunderbolts,tule,hustling,milanese,foran,bloomed,hortense,scrawl,manana,sprechen,foamed,refectory,yearns,unaccustomed,platoons,unbelieving,luminary,quitter,purser,pratiques,furtive,renouncing,accosted,conning,tiempos,incantations,enchantress,parallelogram,wonderment,pasado,groped,warder,morbidly,palfrey,persecuting,feign,swooping,jackals,niceties,outlive,dereliction,exactness,barbarossa,dray,silurian,detaching,sunburned,spasmodic,interlacing,elegante,corne,quietude,roundly,monarchies,trost,rhododendrons,flirted,vraiment,royalist,untroubled,aspirants,sheepishly,denk,haft,parisienne,russie,warily,cadmus,telle,aflame,gits,aright,windlass,studious,fineness,estan,setzen,pharisee,devenir,cercle,urania,amicably,tureen,nuptials,greif,flints,satirist,visiter,pone,camillo,hade,extort,staaten,gleeful,sprightly,grindstone,speaketh,sacredness,menton,petticoats,proffer,haply,pronounces,fussing,stragglers,scowl,tinder,omniscience,vot,leaden,advantageously,kinderen,pounced,statt,wollte,bayeux,tertullian,pompe,fastidious,ensconced,cyprian,sagacity,nipping,fogs,ausbildung,protestations,trickled,lungo,erde,fondled,poids,wistfully,abounded,heureux,disloyal,paralyzing,staggers,contorted,polemical,neighborly,dabbled,villes,piteous,olen,perfunctory,pervaded,doorsteps,falsetto,tatters,whan,puissance,tunics,lepers,gloating,dismembered,hierro,perfidy,minne,meaner,propounded,valois,insubordination,impious,absolved,dishonored,vivir,bathsheba,klara,stilted,hastening,dines,capon,stiffly,folgenden,cacher,festivity,grk,thessaly,folgende,ayre,afire,sowed,proprio,brahmins,gloat,entanglements,clawing,wrangle,autour,immensity,squabbling,acquiesced,rosamund,deinen,consecrate,pursuers,predestined,gneiss,gevonden,rhin,disobeyed,firme,dishonour,lavished,courtesan,unkempt,bassin,zeichen,jeder,interjected,humorously,victoriously,ascents,hingegen,retarding,indiscretion,undertone,adot,decease,stigmatized,tactful,friable,palatinate,liegen,fawning,decoction,resents,orientals,squeaking,tinkling,drie,nostrum,masterly,dunce,fera,butchery,wresting,treacle,frankrijk,foolhardy,bristling,boreas,cherubim,nightcap,massy,consoling,nues,characterises,antiochus,cutlets,hoofs,drawl,veux,manoeuvring,lances,helfen,rivier,imogene,impute,dainties,leghorn,directness,glutton,laquelle,unnaturally,disquiet,deerskin,meest,sufficed,extolling,wearied,barbe,pitied,hame,sibyl,lignes,victoire,erring,geschiedenis,acclamation,ypres,gigante,solamente,berenice,cisterns,kist,panoply,credulity,coiling,capuchin,verkehr,sympathise,piti,sist,noirs,pitying,twitched,clefs,actuel,vem,panted,midshipman,juda,gondolas,swiftness,necessaries,nullity,tuli,tenemos,relishing,unsuited,gurgling,imaginings,hvis,boatswain,hearthstone,fondle,cuddled,superintendence,regeln,betters,joab,corruptions,persevering,transversely,abelard,illusive,octavius,disquieting,ripeness,veering,alguna,tiere,junker,vapid,hohe,pieds,unremitting,rechnung,clenching,cordials,bandaged,evanescent,fevered,indignity,pinches,aglow,midden,sieg,notamment,bullocks,peinture,moyenne,valerius,chucked,ransacked,bugbear,wreaked,hogshead,masques,halfpenny,fetes,kneels,reticence,iambic,lisbeth,deplored,icke,unfashionable,jacobean,loveth,sceptic,vociferous,eunuchs,comed,salz,languished,sneering,coitus,churchman,lisette,cocoons,deserters,ainda,verre,smallness,esas,remotest,retorts,housekeepers,farewells,conscript,redder,cria,troupes,tiptoe,sociability,idealists,xlv,crowing,celles,thankless,avers,hochzeit,schuld,quale,sublimity,birches,crunched,ratifications,ringleader,thundered,fumed,feste,thereunto,compatriot,discontented,droning,yawned,scuttled,wochen,inoffensive,erudition,bedsteads,perrot,strictness,welke,entretien,frivolity,gulped,subtler,vestidos,inviolable,toten,riflemen,insufferable,clasping,landen,interjections,usurpation,brimmed,subjugated,unlearned,prostrated,kaffee,excusing,rejoining,subir,etiam,slanting,maisie,detested,overal,dauntless,pulsations,frugality,apprenticed,reflexion,vomited,loth,undisciplined,signalized,lunged,alii,vergil,wiens,verts,opere,pouting,watling,daher,vrij,creer,cranny,springy,perplex,lamentable,signes,besuchen,rebelling,destitution,rummaging,broached,puckered,squalid,shunning,erhalten,cinders,interrogatory,syndic,cleaving,semicircular,montant,trow,overwork,kirche,farben,roches,pommel,intermixed,logik,rerum,freemen,mellan,linnet,heightening,goede,laddie,bellowed,tante,sair,questi,entier,timbered,sxi,unrighteousness,shrilly,catullus,dulled,nuestras,interlocutor,kingly,chided,turbans,acquit,tota,choisir,hvor,singe,stunden,harping,etwa,akimbo,beeches,seule,augmenter,hieroglyphic,aryans,banishing,unicameral,clamour,sopra,alvar,punkt,dunkel,erle,unadorned,prefaced,wijn,gleichen,verband,majesties,endearment,fealty,disputation,leicht,whoso,thracian,forerunners,exhalation,investiture,animates,ruffian,turkestan,balthasar,ourself,invariable,inclines,southey,patronising,deciphered,shudders,voie,gerne,ardently,granitic,untried,luise,narada,intruded,marmaduke,coppice,autocracy,backwardness,undiminished,caput,connaissance,discomforts,clammy,indisputably,rifled,meglio,pomerania,fane,latterly,flogged,disadvantageous,philological,enamoured,unpalatable,shrugging,disse,persistency,conscripts,chimeras,befits,instants,denunciations,pervade,entrapped,suerte,apaches,archduke,myriads,physiologists,egotism,motherless,cien,tiberias,chaldean,comedie,reciprocated,squabbles,buffoon,tilled,rumbled,mittel,ambos,disobeying,drusilla,sidon,acrid,dijo,trespasses,conversed,ingeniously,howitt,counterbalanced,undertakers,pricked,coppers,reddened,exhortations,wohnung,againe,hijos,poulet,degenerates,demeanour,broadsides,closeted,unceremoniously,genuineness,bungay,poissons,volte,suoi,wirklich,iho,crannies,prospering,dearer,familles,minutely,seditious,trotz,inarticulate,turba,brust,rameau,silvered,youse,seno,poche,neuem,fromage,gunboat,drippings,voici,alida,messager,asceticism,reconciles,disentangle,bestowing,belie,ostend,divining,balustrade,fortieth,adulterous,slyly,shied,plantains,eveline,deferential,enlivened,coterie,magnanimous,plait,guttural,prided,anciens,capsized,breslau,unreality,weiteren,murs,lath,encampments,hindenburg,whiten,derniers,entendre,cuidado,reynard,remarque,katrine,perused,refrains,furrowed,tabernacles,virile,poignancy,detestable,pouce,certaines,sombra,narbonne,voisin,jilted,centurions,poring,quivers,flaunting,peeped,kiu,ellas,quer,wails,gild,debonair,indignantly,invigorated,bucolic,disaffection,grappled,executioners,belial,harde,blessedness,courtesies,misericordia,apotheosis,jette,bettering,tigress,geworden,occhi,chante,bleating,stratagem,squatted,dagon,hugues,atalanta,partage,authoritatively,unpleasantness,bettered,imbecile,gravest,defilement,butting,gobbled,hispaniola,conceives,townsfolk,afflicts,thinness,counteracting,marilla,ramshackle,dullness,syllogism,wrenched,giovane,usurping,arouses,augustinian,scald,rois,rodolphe,heliotrope,aquiline,reapers,uncouth,allein,whimpering,eleazar,portent,fatten,crossly,hadst,fier,admonish,battlements,transgress,leant,lank,governorship,tolled,zealously,aen,dowager,werken,squealed,convents,romane,vertrag,usurper,recitations,inculcate,olla,encumber,blut,golfe,wier,unimpaired,liue,heedless,rancor,trots,providential,freiheit,daresay,kapitel,liberality,principes,semaines,stort,indulges,unthinking,tutta,marcelle,flossie,inestimable,whiles,henne,distrusted,prie,mohawks,ignoble,frankish,jeroboam,timidly,lurked,greyish,imitative,igual,pagodas,ganze,hobble,maan,roten,kannst,tills,repentant,comite,meanness,wege,biding,unassailable,sidan,mutters,singhalese,mammon,cavour,discoverable,letty,tombe,beltane,whir,afflicting,posto,biographers,escrito,hyacinths,demandes,freeholders,ventre,facetious,tinkle,wormed,histoires,weiber,approche,civilly,unhurt,incredulity,yawns,croker,liisa,proscription,foretell,hoards,boccaccio,whimpered,businesslike,egypte,juba,frill,landward,cripples,amusingly,cornices,ostentatious,vrai,pocketing,bereits,shylock,deseo,paymaster,canaanites,carnac,gnarled,doce,gnashing,preuve,plod,damals,covetousness,dammed,piebald,unawares,scornful,crosswise,tuneful,hache,girolamo,quienes,humdrum,distended,faun,parler,folgen,fatness,summe,lente,dangled,fixedly,feebly,objekt,vexation,bastions,bailly,threadbare,emissaries,weh,vertue,subsiding,hebe,purred,lieve,contingents,squirmed,haren,sangue,cringing,saal,kleinen,hys,outstrip,demerits,highwayman,contes,hussars,fatherly,jehu,southwards,swerved,unas,recurred,roams,fuhr,hemos,terrify,licentiate,periode,innerhalb,inflammable,freundin,disowned,parlement,surmount,hellenes,unheeded,siecle,nicholl,magis,wolle,apprendre,habitations,warf,cowering,overhear,tawdry,doublets,saintes,buona,gaspard,skall,canonized,solicitous,findet,vorbei,hulking,realidad,seconde,carcase,caballeros,unwound,whiche,progres,reveille,garrisons,professeur,shames,schicken,predominated,wilden,pittance,gironde,gosse,escutcheon,winging,alcibiades,schatten,curds,sinfulness,recapitulation,trudged,junger,hummed,convalescence,verite,spada,priam,unceasing,disdainful,cackling,blancs,freres,aimer,parsnips,trembles,davon,dryly,ingratitude,postes,godt,largesse,humped,mooie,rowboat,perfections,restive,hackneyed,canticle,peine,naivete,circuitous,frieden,imploring,erebus,abridge,picardy,glisten,clubbed,turnings,unblemished,trenchant,lilla,volleys,hommage,girlhood,freshening,rill,andar,lodgment,clumsiness,witless,regale,crus,siya,amuses,pallor,unwholesome,parsifal,copra,journeymen,filipinas,hippolyte,marsa,galling,vei,quitted,tomba,musta,brawny,quella,fueron,prattle,partakers,climat,ilium,livy,incorruptible,puritanism,carthaginian,assiduously,nibbled,appeasing,piquant,grond,magno,leute,unreservedly,tattle,baste,manier,willst,inseparably,anthers,buttonhole,uncivilized,insensible,seasick,redouble,theodosius,liberte,rostrum,ejaculated,eux,sables,pian,admonitions,shewing,suelo,cower,erfahren,inferiors,singed,gird,territoire,pierces,jugend,kleidung,erfahrungen,solicitude,pawnbroker,reverently,deign,eher,hominy,doting,fuerza,blistered,glittered,hanseatic,pestered,preeminence,billows,biens,etten,carted,despots,gnaw,bandied,liegt,vinden,rijk,perversely,bors,transfigured,dauer,quizzical,couper,informers,resentments,bartered,sugared,spittle,circumspect,demerit,shouldst,roundness,acrimonious,pulpits,warding,unbuttoned,brot,feit,frolics,groat,matins,formes,bellowing,platon,abhorrence,verbo,osten,blackish,emme,aphorism,emanation,miscreants,unction,redan,seguir,noblemen,barque,deride,kirke,houseman,sedges,pitiless,zwarte,portly,jangle,jarl,beauteous,veld,contrive,huguenots,estimable,scowled,ministration,willet,wriggle,impudent,xlii,petted,meist,prude,heroically,phoenicians,enjoining,willen,hustled,jinny,surreptitious,petulant,unfurled,sauf,lits,chinaman,nonchalant,disloyalty,laconic,westwards,nase,paha,askance,misma,binnen,baronial,charrette,denouement,belied,obliquity,satiric,quivered,sche,sanctimonious,natt,ebbs,obed,ezek,heet,stammering,waked,logis,foolscap,sorte,oases,brach,limites,calma,unmeasured,statuettes,nubes,unga,gegeben,satz,twinge,cultus,trudging,narcisse,feasted,rebukes,colquhoun,quadrille,inconnu,lucretius,sprach,ihres,docteur,meubles,whome,repressing,embroideries,booke,ingenio,intellects,brawling,veut,tient,gelatinous,meilleures,figur,gentlemanly,underbrush,bemoan,norsemen,forsaking,souvent,bobbed,diversities,gouden,pontus,unintelligent,holies,annexing,vriend,amas,asylums,satires,coffer,costliest,ravaging,rarefied,nebel,gleichzeitig,leyes,deprecate,lvi,serait,esos,chivalrous,overruling,gendarmerie,konnte,groene,obstinacy,caked,delude,similes,seeme,puertas,recedes,wroth,emetic,gestellt,holde,capitale,steamboats,naturelles,towered,fastness,gautama,alsatian,unrighteous,torpor,leser,desecrated,transgressed,publiques,rawdon,endeared,arsene,pecked,colonne,dozed,outstripped,chaldeans,perdu,repast,annee,majestically,shapeless,heen,contrite,pursed,principio,entreated,heliopolis,chel,righteously,marvelled,seductions,taga,propitious,domesticity,dashwood,veta,chastise,inveterate,peacefulness,extolled,absently,promis,breit,copse,espada,highwaymen,orators,incorrigible,abating,sonore,feigning,passant,liveliest,sixtieth,reproof,filets,baiser,credulous,inflections,lintel,allora,stak,hereupon,clod,alaric,beneficence,impregnable,poca,dessen,penmanship,dese,girded,bessy,inscribe,adelante,serenely,nosing,crowed,vnto,cooped,overwrought,vivacity,incontrovertible,forenoon,clotted,jolyon,certitude,marshalled,approvingly,waif,ruder,suffused,fanden,altijd,artless,morne,cowed,longueur,deeps,forger,busied,venir,kith,vrouwen,valenciennes,komt,noblesse,jostling,satiety,tolerably,consanguinity,wint,convulsion,slumbering,heraclitus,semicircle,vient,squinted,exaggerations,editorship,rapturous,unobtrusively,sabes,choicest,tempestuous,vaillant,bamboos,noticia,signora,flitting,laboriously,inmost,jehan,vorhanden,poesie,snuffed,cannot,vache,sere,slighted,keinen,maner,stammer,inordinately,fidget,borst,comprehends,gleams,sieges,magnifique,pollux,sieben,muzzles,peleg,punic,oser,saman,epirus,fantastique,tilbage,astern,pelted,stoutly,insinuating,auge,leib,unequally,profligate,sated,acht,apprise,bothe,goda,beady,oberst,abdicated,reveries,hauteur,unerring,arter,euer,denizen,elegiac,bivouac,owain,doggedly,hermano,ladyship,kneeled,longe,rire,marcha,problematical,tanden,drapeau,crackled,defenceless,pricking,invalids,eiland,harbouring,droite,fastens,igen,paysage,fleshly,striven,lurched,blotches,persoon,herre,pistil,legen,northumbrian,apprehending,werde,insinuate,deadening,froid,angele,dolt,propria,schreef,agreeably,scouted,intime,splendors,capstan,feint,muscovite,pursuer,letto,wrappings,daunted,candido,ske,aurore,couplets,socialistic,narrowness,dwelleth,mogelijk,moustaches,manzoni,brushwood,arrogantly,traurig,lieux,barricaded,pillaging,vingt,tief,perles,bungling,impel,schlecht,expectantly,perching,solum,broiling,gangway,tantalus,rapacious,uniquement,debased,concubines,jogged,sentido,entangle,steepness,franchi,puritanical,capacious,prefects,clew,biscay,unrolled,tambour,watchword,drummed,verging,interdict,geplaatst,scamper,devoutly,transmigration,deshalb,redoubt,meus,kerk,revenant,instil,boastful,bilious,orsini,despondency,disheveled,exclamations,allegories,entonces,trudge,mincing,scurried,setzt,homesickness,metamorphosed,hussy,stoicism,congregated,covetous,ewer,grootste,doux,directe,hysterics,procures,stimme,aceite,concerne,devours,waists,judaea,leden,quidam,potentate,barbarity,extirpated,charlatan,slouching,susceptibilities,plaited,floe,surtout,agonies,misjudged,writhed,beine,housemaid,eurydice,undeserving,untruth,directement,preyed,relent,zillah,verba,horsehair,seinem,handelt,gien,mandarins,sforza,indifferently,nevil,shuns,teile,retinue,hulda,impostors,stehen,brawls,derangement,mesmo,hinaus,epictetus,impertinent,ouvrir,buffeted,physiognomy,hecuba,oiseau,behooves,misshapen,scrubby,jedoch,unpolished,vales,steadiness,ceaselessly,irishmen,charmes,succor,branche,efecto,ague,sodden,helpe,changements,unavailing,vagabonds,irreverence,ditt,chaises,statesmanship,papst,popolo,saner,tendre,halla,demoralizing,prest,disillusion,frocks,poner,thronged,iets,beseeching,irksome,burgesses,abbess,minuit,uncounted,schoolroom,varus,terrasse,teufel,teaspoonful,rambled,bertin,monta,kneaded,fertilised,rosse,emanations,veiling,squandering,wahrheit,quiescence,gilet,widowhood,eut,swarthy,abyssinia,populaires,poetically,durance,farnese,chid,menaces,desir,ambling,perilously,numbed,acteurs,regel,bathes,drover,wees,dogmatism,chasseur,grudging,reciprocally,effusions,snared,brogue,passeth,gret,namn,squeaked,seance,stilled,bygones,assez,mentre,contentedly,roughest,entreaties,ridiculing,alternations,penitence,discours,avails,velvets,completer,streit,recevoir,tactfully,speake,gericht,borde,drunkards,danton,hurries,smolensk,terreno,tweede,ouvert,duchesse,mingles,strafe,corrals,rectitude,semble,engen,erreichen,encircles,garratt,jorden,uncleanness,viens,pried,supplications,onely,deportment,marchandises,invidious,weten,seraphic,gedanken,malevolence,wetten,alcalde,judicature,vigueur,einzelne,exhorting,libation,facit,soient,duas,rechts,bagatelle,chaine,nonchalantly,drenching,verhaal,subi,chiens,prance,lapsing,suivre,edifices,gruel,fing,exasperating,grievously,hauts,partout,hesitancy,courte,chafed,kennen,interposition,callings,satisfactions,distrustful,incredulously,zij,obsequious,moyens,dissolute,briefest,lamplight,sharpshooters,druggist,absolu,unprincipled,sweated,lieth,flinched,zeer,pacification,nitrogenous,sackcloth,enraptured,indique,boeuf,fidgety,disown,sophistry,illumined,thir,agonized,pickpocket,warbling,shriveled,conformable,imprisoning,incongruity,uselessly,gallantly,bended,drang,poignantly,untiring,hostelry,slumbers,forfeiting,fertig,humphry,numberless,intemperance,definiteness,reproved,privation,westen,peevish,tapio,pedagogue,soothsayer,facings,multiform,peuple,herculaneum,carthaginians,micheline,indelibly,ashy,cependant,cruelties,unseren,cadences,slavish,bawling,awestruck,bluer,felicitous,caravel,calles,plaudits,schooners,mycket,chacun,demander,weniger,eltern,adepts,clefts,kapital,underhand,sophist,heimat,idolatrous,secundum,smouldering,tradespeople,untersuchung,polytheism,varias,revellers,rebuff,appellations,draughtsman,boulet,verandas,pwh,pindar,iscariot,bombast,soyez,bateaux,impulsively,cuarto,seeth,milch,depredations,dews,kalt,temerity,mlle,eluding,adventitious,interdit,corked,deluged,fleecy,antelopes,daub,unanswerable,darkens,excellencies,strahl,isak,gedicht,atque,untainted,eigenschaften,slays,crees,whirring,miserly,troth,contemptuously,frequenting,mannes,celerity,grottoes,marthe,milliner,komma,blase,hoose,exonerate,righted,sayd,travailler,imperishable,degen,spurn,famished,romping,oozed,cuanto,contient,devrait,bidden,tuileries,samen,contraire,vasili,monopolized,abstruse,stripling,overshadowing,succour,whizzing,headman,saat,mellowed,ebenso,contiguity,morts,retracing,similitude,servent,verdure,sward,exclusiveness,anwendung,forse,deines,tira,reclined,throbbed,divines,prostration,wretchedness,admis,festooned,barest,steadfastness,boog,digressions,diocletian,fellers,begrudge,xliii,coxswain,schriften,counselled,sentries,reproaches,pediment,hayti,geef,cassio,meinem,wanneer,baleful,swifter,timotheus,hulp,gelten,miroir,promesse,apenas,hillock,fearlessness,neben,waggon,unalterable,beelzebub,inexpressible,indios,cherishing,crooning,bref,wist,eius,disavow,peals,mariette,backsliding,ziehen,whisking,wantonly,samovar,zweifel,oppresses,footstep,stewing,schnee,acrimony,bristly,soever,ruefully,unfavorably,slothful,sitt,diep,exhorts,moloch,epigram,wafted,keepe,expends,golde,reassuringly,thwarts,sitz,staats,jedenfalls,abhorred,zeigt,sollten,mene,worketh,phosphorescent,sauntered,foundling,illiberal,deserting,onlooker,deathless,assurer,scandinavians,legate,dissuaded,paled,ascribes,hearths,duller,discoverers,furled,denken,caminos,esdras,typify,ganzen,commissariat,seele,abydos,cornfields,ebbing,evelina,resta,portents,venetians,unnerved,demain,participles,harmlessly,purty,possessors,mephistopheles,pologne,seene,fortes,liveliness,godson,passa,peur,conserver,paling,deur,bisher,schwester,autocrat,shouldering,hovel,gauls,conforme,honneur,stirrings,decider,lusitania,rustled,unquenchable,foreseeing,indolence,profundity,lawe,paru,vostro,turgid,exigency,exige,necesario,reined,prend,unenviable,genau,unfeeling,cooing,haine,bishopric,espoir,severest,lesse,beautifying,glistened,encroached,corriente,suppleness,irascible,eigenes,canute,vibrated,denuded,rendre,subjugate,commissaire,gulden,naturaleza,niobe,incorporeal,orderlies,thrushes,dient,ferried,wriggling,crape,mouldy,amant,merest,wordes,perpendicularly,expounding,nutzen,gestern,swaddling,benighted,hysteric,robespierre,tillbaka,exultation,fand,blanke,selfsame,overcoats,calvinists,grovel,soberly,therfore,mellem,gayest,vais,fetid,boatmen,vespasian,singleness,kette,yearnings,remise,unquiet,einzige,herbage,adduce,twaddle,unitarians,unutterable,outshine,parisians,stellt,patronized,aldus,pommes,inelegant,clambered,histrionic,subsists,degenerating,recommande,sergius,taciturn,sways,bristled,flecked,mustering,allemande,sophy,paramaribo,betrothal,boorish,posa,queste,sinon,devoir,hunde,adjoined,soumis,pire,vilest,niin,vassals,throttled,fonder,entrancing,elope,seid,nehmen,welshman,beguiled,besoins,violetta,stillen,sinew,mordant,clotilde,ascribing,zahl,compter,germanicus,declension,fawns,damaris,anodyne,dearie,verum,voller,lequel,enigmas,kinde,bezoek,humored,befalls,endlich,yli,primeros,chere,fussed,anabaptists,xliv,disembarked,burgundian,telles,pente,thumped,superbe,conjectural,tendance,idlers,eigentlich,hoog,contortions,effusive,heilig,cloistered,redoubled,choristers,bosoms,flapped,supernumerary,aqueducts,ngon,reprobate,despues,indiscretions,riper,forsook,hittites,tatler,prelates,unserem,ensigns,sauve,miei,spendthrift,antipodes,chers,grossest,shanties,ploughs,lashings,noemi,loue,persecutors,averred,valueless,imperceptibly,jaren,uden,dise,crevasse,hastens,huizen,davantage,brilliancy,gushes,marechal,surer,frae,traitorous,hacen,levite,quieting,candour,pacified,drin,gored,remunerative,intricacy,coralie,pendulous,eare,mourner,enfold,wirst,troubadours,amours,reentered,paupers,bludgeon,welled,naturae,inconsiderable,cotyledons,cackle,sallow,gemaakt,montagnes,reformatory,demeure,ostentation,ninguna,cherishes,souper,wrathful,thuis,partook,ehe,familiars,blacken,zorg,possibles,vannes,schemer,lika,actuellement,deiner,writhe,friendless,proboscis,fitful,sicut,genii,intrust,illi,dishonoured,unquestioning,desultory,fabrique,pitifully,egen,menacingly,emmeline,linken,disinclined,lackeys,codicil,puerile,kleber,journaux,worthlessness,oblation,franziska,caracalla,civilizing,conseiller,corneille,merken,dorp,palaver,gorgias,tribu,unvarnished,overran,folies,wretches,hoarsely,bonhomme,hellenism,statecraft,familien,propia,flout,studiously,reveled,confounds,pitiable,countrie,reiteration,corsairs,indiscreet,duelling,pedantry,lugged,debilitated,blazon,gars,looseness,neglectful,gamla,pillaged,voces,reasonings,vestido,agathe,niemand,tost,worthily,passy,verfahren,insomuch,anneke,scruple,steadied,coolie,honeyed,recoiled,comprendre,disliking,chinks,unripe,shipmate,convulsed,noce,cleanness,unmolested,insistently,fording,linie,telegraphs,coverts,transgressors,redolent,impudence,ananias,vied,eulogies,weakling,griefs,yoked,steeples,tares,detto,tottering,grossen,scalps,despaired,quails,satiated,plupart,principaux,lightnings,repenting,souldiers,manliness,churchmen,parthian,knowen,chirped,facta,himselfe,derisive,imbibed,hanoverian,samma,warton,equipage,prophesying,abodes,kring,spouted,clanging,windpipe,veronese,guiltless,burnings,caractere,estaba,distresses,retaken,heere,intermingling,foundered,mandat,blinde,dispensations,irretrievably,thralls,crise,connivance,miscreant,bitterest,uncertainly,resenting,kingdome,familiarly,reviens,scowling,swaggering,grandly,publicans,graciousness,footlights,smarting,pueda,hatreds,imperil,salamis,supplie,zweite,censer,surfeit,schneller,obeisance,whelp,fantaisie,monnaie,ignominious,entschieden,sulking,keenest,ungainly,darstellung,bauble,circlet,rouses,dormir,consolations,enslaving,medes,deale,odorous,indefinable,faits,kenne,ironical,sympathized,uncultivated,functionary,suppositions,jehoshaphat,chevaux,elegies,carbines,richt,kaffir,livelier,gervase,grenadiers,bruit,acacias,magnanimity,aleck,propio,fiesole,gallops,dexterous,connaissances,hebt,beaute,hoor,modernes,undignified,stesso,conocimiento,mord,endear,effigies,folge,counteracted,planking,blockhouse,confiance,urbanity,lawgiver,totter,rumpled,scalded,importations,laughingly,prefaces,tenue,idolaters,seducer,haire,tenaciously,moonbeams,inculcated,monate,verschiedene,wohin,generall,reposed,cicerone,mustaches,hasard,leddy,mildest,restlessly,uselessness,lezen,doet,oaken,endroit,harlots,conduite,rouges,humours,humain,voltaic,derriere,xlviii,flot,cudgel,aurait,multifarious,runneth,tenu,llegar,abhors,minarets,wrack,bleiben,vividness,beatitude,husbandman,procureur,stuk,douleur,heaves,xlvii,sagt,passi,subaltern,appui,bharata,longingly,apud,bandes,roseate,ruffians,servir,contralto,tenter,rues,dote,valdemar,curtly,resuscitated,exemples,confidante,rashly,athen,leering,soudan,clearings,pleasantries,louer,uomini,atoning,insinuated,xlvi,warble,prodigies,herbes,phrygia,overige,dardanelles,familiarized,fakir,rato,divinities,ostracism,magasins,buttresses,drovers,obelisks,vierge,doggerel,existences,farre,extravagantly,hauptmann,builded,volle,slandered,demagogues,cephas,flighty,opposer,ejus,gabled,convient,ofta,enrage,sinews,flemings,glanz,serjeant,shadrach,shallowness,ensnared,loyally,sneezed,darkling,subservience,nightingales,gaped,subduing,apoplexy,poorhouse,sunbeams,kaan,brigand,jahrhundert,chasms,jealousies,ditties,dignitary,wenches,dite,gesicht,improbability,shrewdly,sneers,bloodhounds,meed,impish,menaced,seneschal,deafened,hooting,cyrene,dejection,economize,prophetess,hatchets,witz,spoonfuls,unten,ebene,funereal,wrested,deceives,plaint,imperio,demesne,briny,nimbly,supped,calumny,sigismund,herrn,verger,ludicrously,portend,reves,spattered,couloir,straggling,cochon,berthe,acadians,comtesse,jailers,chaud,disastrously,intimations,arzt,xlix,heterodox,manque,codfish,debility,shirking,rustlers,demas,zaken,aloes,obliterating,victuals,certo,dully,leonore,exalting,chide,entrap,indignities,nombreux,rhymed,whirls,compassionately,hussar,scow,voorbeeld,beide,honora,remorseful,obstinately,zei,peste,aggrandizement,jotted,unpopularity,deluding,boileau,naast,charta,royalists,lachen,hennes,nej,achaeans,cravat,genug,pinions,mindre,praetor,peche,sunburnt,superficie,grotesquely,mown,soms,vagrants,transept,patois,atlee,seuil,petrograd,aveva,bulged,bated,seines,thereat,aise,recours,cloven,apollyon,intemperate,confiding,fleisch,eares,compunction,bonum,unceasingly,herdsman,haat,frightfully,reprises,fierceness,remodelled,unpleasantly,szene,bouches,aggressions,spectacled,telegraphed,resounded,mickle,sagacious,moralists,abimelech,gehe,valise,prompter,provincials,distaff,imbibe,hisses,garcon,doel,freude,gnawed,sieht,oog,clattering,traite,bleus,tente,reverberating,incomparably,bearskin,ripens,darunter,benares,recitative,factotum,zoon,screeched,quare,anticipations,determinedly,calamitous,pria,hughie,egli,mopped,sacrilegious,fatuous,elocution,cilicia,retraced,palliation,kunne,misanthropy,protruded,hanse,incompetency,mebbe,plainer,chambermaid,sapping,perfidious,voyaging,humiliations,umbrage,fatiguing,awaking,presencia,portmanteau,moralist,farbe,legere,tormentors,distinctness,expiation,insinuation,indem,alehouse,practicability,swindler,standen,inquisitors,dreamily,frobisher,digo,motivo,gibbet,exactitude,promenades,grise,epitaphs,jostled,mannen,globules,herdsmen,conmigo,reprove,heareth,ipsi,inviolate,zoroaster,orations,vistula,laten,examina,erster,autant,schrift,resemblances,termina,cuales,lordly,complexions,despising,assiduous,verstehen,epigrams,dagny,thenceforth,girths,swerving,surpris,frappe,pobre,lebens,muerto,enfance,gesetz,portentous,conjurer,dramatis,receiued,sergent,hurls,habt,couronne,dullest,erschienen,venal,gebe,grete,lauter,gourmand,wearisome,sortir,exaggerates,gurgle,antislavery,laertes,apologetically,clime,poultice,ministrations,gendarmes,telemachus,sommet,remonstrance,capitulated,karna,prettily,reeking,cheapside,citie,zuerst,persuader,epistolary,flutters,elemente,maitresse,reappearing,dudgeon,pilasters,theban,kennis,unwisely,grammarian,figlio,peruvians,lateran,sente,reverberated,plenitude,faim,unpardonable,robarts,volgens,bowmen,blundering,dishevelled,exorcise,scurrilous,squalls,parla,vaste,jedes,shewn,hiki,vasudeva,objetos,briefe,valets,corruptible,pedlar,impassive,abasement,faints,vicomte,pillory,dieux,inquirers,orte,brahmana,toren,prostituted,quartering,amorites,disavowed,undulations,redressed,waifs,cuyo,siegmund,steg,harangue,liefde,yeomanry,lepanto,matilde,passepartout,gentil,ablest,faveur,dicho,whitest,bastante,handmaiden,humors,sollen,cooed,knabe,gunboats,comradeship,inopportune,exhaling,lurching,plumed,poesy,cheapness,scythian,proche,backe,sapped,starched,tasche,insieme,undistinguished,unes,gayer,seceded,belligerents,baser,ribald,coursed,habitants,brusque,officious,hert,gorka,flannels,contrivances,capitulate,wayfaring,kammer,dejar,disfavor,staden,umgebung,liveries,sieur,devez,anatomist,laundress,bugles,manie,swindlers,clandestinely,sitte,avere,fichte,coolies,edra,briars,tarentum,chaude,unfitness,annihilating,swathed,extorted,tanta,avaricious,entfernt,waft,popish,darning,pasos,crois,fidgeting,resinous,granit,flayed,paramour,enunciation,josue,frailties,haunches,morea,chastened,dropsy,impositions,wriggled,displease,agit,moneyed,halten,peligro,armee,langsam,toutefois,cloche,neatest,howitzers,mantelpiece,proclivities,rache,falkenberg,imitator,agonising,maximilien,tuer,meerschaum,impiety,loiter,actuelle,schwer,begot,suddenness,baneful,templo,wenden,twirled,furtively,betrayer,jingling,arrowroot,welcher,readjusted,assails,priestesses,jostle,admonishing,avocations,allons,humblest,haec,mohammedan,solitudes,insurrections,lodgers,kunna,cacique,exalts,grec,cajole,mhw,swooning,wincing,unswerving,enjoyments,thirsting,savants,kentuckians,monarchical,celebes,divans,immodest,perquisites,flatters,gedichte,herzen,beurre,meni,sayest,lutter,heissen,voeux,juges,papists,jeer,premeditation,waken,tearfully,sagged,pugnacious,companie,bedecked,finalmente,soin,oftener,motioning,saunter,universelle,firmin,llamado,versant,flaxen,pseud,soie,tempter,miscarried,rivulets,corde,appertaining,nostre,prochaine,lohn,partridges,qualche,nooit,swum,dunkle,staan,brakeman,regretful,coasted,democritus,yawl,endast,permettre,drooped,mehrere,exacts,licentious,antiguo,fermer,deadlier,doest,romanus,agog,ponts,liii,yeomen,lothario,maal,charybdis,wazir,habituated,doff,fede,jests,brandished,jeremias,raisons,gouty,twined,comprend,resister,stoics,soldiering,viso,tyrannies,natuur,greenbacks,puesto,sullied,calvinistic,abridgment,frequents,faite,hoffnung,leipsic,bekommen,fiercer,entreaty,creaked,disconcerted,roule,interpose,saan,neveu,hearkened,mournfully,surprize,tenanted,kerchief,marvellously,allerdings,unenforceability,moralizing,phantasmagoria,glutinous,pretexts,recollecting,omdat,jemand,hundredweight,hags,severities,sobered,fournir,coiffure,forasmuch,lige,aliment,moeten,salir,caprices,laufen,blockaded,ignominy,tempests,scythia,recriminations,olim,geeft,dismally,insinuations,smiting,hapsburg,bevor,zeiten,lulls,pompeius,peux,misrule,unasked,illo,kuka,copiously,freien,wildernesses,perpetration,transmuted,abideth,blaspheme,blacking,quelled,threescore,sitteth,keenness,quickens,scornfully,puerperal,multis,worldliness,croaking,ignoramus,howbeit,sisterly,briers,ouvrage,faible,avidity,gascon,bergs,accustom,consiste,venez,prouder,pleaseth,cottonwoods,dienste,superintending,spectres,poetess,moluccas,leguminous,brigands,quarrelsome,moine,damnable,etruscans,poeta,tottered,theil,disdained,shrivel,ouvrages,avaient,firstfruits,sinne,daran,untying,slights,throbs,whitened,genoese,inclosed,couche,dismounting,procede,fattened,planche,vasari,freier,enkel,jupe,heaths,enjoins,terrestre,insuperable,recapitulate,vois,drays,rester,enceinte,starlit,wohnen,inauspicious,prescience,capitaine,magnates,predilections,picketed,knaves,sware,scampered,imposible,academical,krank,ploughman,heilige,mettez,conscientiousness,basilio,morceau,splendide,arabes,cire,acceptation,schlug,novitiate,humoured,idolized,rivulet,seethed,geest,etruria,geboren,senti,allayed,pored,perceval,wagen,antiquary,muscovy,shoemakers,zullen,diggings,legte,emancipate,achter,burghers,ignorantly,ancor,erlaubt,diviner,laisser,bleibt,discoloured,gooseberries,jahres,wolde,quarreling,enterprize,augustan,fruitfulness,slanders,quelli,embalmed,uprightness,stephanus,apposite,milles,slaveholders,kansan,parlez,nimi,arbres,kloster,zulus,limpid,bridled,forecastle,statuesque,polyphemus,knowed,encouragingly,harboured,foole,misschien,dolorous,benefice,unenlightened,sagte,croaked,symbolical,magistracy,alighting,schritte,foretaste,porthos,incoherently,ladylike,iphigenia,pleine,allured,jahrhunderts,lucilla,constitue,sogar,palpably,weder,improbably,expressionless,bowstring,sickens,jolting,soundless,hadde,freest,unspeakably,gestalten,unconquerable,contemplations,foretells,empor,pasteboard,mangy,artaxerxes,misapprehension,perche,reverential,sledges,schoolmate,utiles,denke,befinden,infallibly,unbidden,callousness,bloss,tooke,prefatory,herakles,extirpation,pantaloons,noiselessly,adventuress,fluch,commodious,pincers,freshened,artificer,animo,entangling,quarrelling,blackening,appeareth,partakes,regaled,disputants,freundlich,junks,ingenuous,floundered,entrer,jeered,strabo,assignation,kleider,mismos,sheeted,beefsteak,undervalue,pensar,reden,particuliers,oratorical,sacerdotal,baying,dikke,dieren,fief,poate,repents,cleverer,scheiden,recommandation,nimmer,goaded,ecke,mislaid,rotund,zenobia,pickaxe,babbled,gentlest,sibi,besiege,blandly,hobbling,myn,miletus,scythians,mainspring,dinge,slake,drame,dirent,jedem,speared,attaque,galleons,sensorial,legation,strutted,leafless,deigned,slaver,iseult,recommence,giue,aventures,hellespont,anciennes,dalliance,youthfulness,privations,trouvez,monstrosities,assai,goest,bonbons,chroniclers,vitam,erregt,dignities,livings,ferryman,mockingly,caisses,devolves,perder,chemins,hoeing,debauched,doute,parlons,loquacious,vore,saada,annat,displeasing,intrusted,prudish,pelting,drizzling,soothingly,wayfarers,englanders,flouted,worthies,courtesans,heavenward,theodoric,meget,charmian,bezit,ustedes,exhilarated,ansicht,clanking,repugnance,joyless,execrable,lucrezia,loftier,stolid,unacquainted,simonides,pawing,balcon,visigoths,titter,otranto,defraying,mondes,charlot,deified,grecians,princeps,sumptuously,unemotional,coarseness,universel,enormes,piedi,flamme,selber,flitted,toen,gants,disproportion,counterpane,gulfs,gewalt,surnamed,logique,deare,venerate,tomahawks,scoffs,unsavoury,zephyrs,exemplification,waarom,pleader,lieben,bawl,casque,cleverest,convolutions,siendo,verloren,foretelling,munched,vrienden,receiveth,jene,ostler,waddling,pencilled,escalier,drachm,colline,plebeian,eintritt,ionians,bekannt,grammarians,pflanzen,undefiled,furred,segun,overhearing,puissant,donnez,blundered,meines,congealed,pierres,pouvoirs,maister,yit,blasphemies,covenanted,disparagement,anstatt,minut,teint,sachen,pretences,unimpeachable,meditates,cheerily,faintness,effaced,meself,beguile,revenus,dagar,rearguard,saide,inextricable,rameses,popery,trustful,lewdness,sanat,satiate,sorge,stupefied,treu,caire,brasses,lethe,secondes,tepee,euphemia,joue,measureless,scandalized,jerkin,stunde,aforetime,reflectively,trackless,patroness,impossibilities,inconsolable,shouldest,explicable,plucks,wreathed,criminel,alexius,marksmen,enthusiasms,slaven,standeth,geven,lesbia,quellen,worte,drave,blowed,vare,canting,propitiation,sinewy,gamekeeper,dulcie,agir,maakt,uproarious,gebruikt,penitential,glinting,seeketh,condescend,terrifies,humbler,expence,cavaliere,pettiness,slackened,heur,hija,predominating,auftrag,endureth,unapproachable,boons,vouchsafed,lunga,gamle,philibert,cordiality,billow,relativement,inconstant,effete,storehouses,carcases,crestfallen,iemand,gloomily,pouted,lunching,wakened,eerst,sidled,tartars,ebbed,steckte,issachar,astir,reasserted,trente,hardi,reeked,dispirited,insidiously,divined,revelling,mazzini,befahl,lovelier,odium,fettered,hustings,rasping,besotted,charioteer,papered,primum,clamber,adroitly,ferne,descente,holte,alders,tache,unformed,ducats,watchfulness,gottes,kleines,steamships,hvad,cime,sundered,irretrievable,roguish,tenir,maand,ovat,rapacity,sicken,elopement,ardente,worke,folles,besuch,rummaged,peons,incontestable,languor,israels,frivolities,mantilla,instante,slovenly,ambled,celebre,clementina,necesidad,hesitations,protagoras,curtained,purloined,lounged,rustics,purposeless,visites,skirmishers,flinching,certaine,trumpeters,disbelieved,anderes,tableland,plaatsen,infini,revile,unselfishness,burrowed,prussians,buttercups,footfall,cocoanut,cajoled,sublimely,tribunes,kraal,meilen,whizzed,dritte,multitudinous,javelins,grenzen,beatific,bigness,artificiality,jeering,maltreated,chaperon,consorts,stimmen,priester,muckle,vergeten,causer,respecter,bornes,propter,churlish,treasonable,stowing,twinkled,schal,existenz,swindled,vasta,ridicules,deres,wechsel,gracchus,undine,timorous,soeur,rende,ensnare,spurted,quarrelled,beggarly,mutineers,schwert,inseln,monter,keiner,fascinations,suum,unhesitatingly,vivere,prieur,treacherously,repas,fyra,disengaging,propres,moping,obviated,roue,kracht,merveilles,fuerzas,lunettes,pirandello,blare,historiques,comest,sullenly,kurze,oppressions,steadier,miedo,trebled,demurred,conciliate,contenant,ransomed,donnant,bedchamber,chevaliers,aufs,calme,roughs,drawled,niets,ruhe,florins,einheit,sechs,tagus,lydian,pointes,ehren,remis,vele,imputing,endowing,spangles,peterkin,armer,simplement,brillante,servia,disunion,shepherdess,sextus,linge,lucht,rueful,sterk,unbending,ideen,anderer,beispiele,equinoctial,constante,varuna,jugement,inheritor,ginevra,tarried,remorseless,disputations,querido,apennines,gesehen,wirkung,redoubtable,interessant,antechamber,seasonable,clarisse,moche,platina,anden,viande,ravish,dubiously,battlement,gamester,byword,warded,stygian,referable,rigueur,jangling,parfois,doleful,baize,debasement,besieging,shrewdness,interstices,mayst,parried,demanda,principios,elbowed,zahlung,landschaft,furze,neighbourly,nahe,haast,sensitiveness,gelesen,gascony,pawned,outen,mendicant,exigences,keepeth,beginnen,vindt,giddiness,gebruiken,warders,senat,retributive,pyrrhus,vont,flagon,traduit,innere,geste,barefooted,chattered,overhung,demoralization,pebbly,stellan,abashed,samme,aurelian,sacristy,charitably,joka,boutons,folle,brooded,sylvanus,guter,dandies,oracular,undefended,lecteurs,kleid,hizo,humorists,unities,papiers,rakish,effervescence,enthalten,unworthiness,isaias,moraines,dorrit,unflagging,wur,corroborative,komme,ruffling,voet,hardihood,bougie,calleth,greenness,recrimination,basked,embarrassments,aureole,disgusts,nombreuses,tiden,sledging,igitur,footmen,recoils,quadrupeds,tahi,bewailed,morceaux,roughened,gewoon,thinketh,thoughtlessly,depute,besteht,returne,savours,edes,bulwarks,clods,maoris,mantled,encouragements,unfaithfulness,fenian,boten,eateth,bedraggled,chiffres,readier,ineradicable,floes,steadying,cowered,monseigneur,grotte,verschillende,pluie,dispassionately,mirar,holen,slacken,disgorge,warre,avantages,clamouring,attainder,followeth,communing,mischievously,communistic,jongens,thys,zweiten,chastising,mouvements,derisively,lopped,spoliation,pleasantness,meilleure,montrer,phosphorescence,daba,lustily,avantage,antediluvian,irreligious,vindicating,objeto,ascetics,creuse,scorns,laggard,vues,jadis,blockheads,saddening,llena,malcontents,gentes,nane,satins,danser,unmindful,indescribably,unruffled,inclining,aquellos,drapeaux,animosities,inured,pardoning,weshalb,somit,conoce,giorgione,enfranchisement,rebuking,perceptibly,cierto,vitiated,wizened,wintered,comique,sympathizing,beziehungen,townsman,continuer,gorged,mildness,luckless,maecenas,caracteres,gunwale,indigestible,jowl,prinzessin,unclosed,warten,causas,inclosure,voluptuousness,solide,paroxysm,merchandize,construire,meester,whetted,seraglio,scourges,corroding,lejos,leadeth,soupe,jongen,guiltily,teaspoonfuls,acquainting,parapets,twittering,augurs,admiringly,illumine,selten,awfulness,encamp,henceforward,scalped,huddling,erfolg,combated,evinces,gewinnen,deputed,clambering,surplice,factitious,fitfully,vrede,ascanio,perishes,oncle,laisse,blanches,vieilles,skulking,demur,monstrously,imposts,diaphanous,theodosia,wagged,aske,vilka,peradventure,surmounting,satyrs,grandsire,evasions,lumbered,cortege,rapidement,countenances,beholds,contradistinction,scampering,easie,tourna,sainted,inglorious,contrario,whereat,discuter,defrayed,kirchen,kaum,trouverez,repudiating,insupportable,undisguised,discerns,tantum,juden,deaden,victime,unalloyed,venial,widger,griselda,hansom,nonchalance,frapper,regarde,amoureux,cypresses,phrygian,lamed,workingman,scoffing,hulks,sauvages,breede,ruminating,honorius,abjured,jacobin,communiquer,nere,insincerity,persecutor,dichter,cloches,crevasses,singen,burgher,ferner,unstained,unflinchingly,subsisted,notaire,tamen,entro,songer,surprized,rehoboam,fromme,deputations,ringlets,retourne,scourged,survivals,mollify,commonwealths,blockading,shakspeare,triumphing,ecstasies,rends,nahm,bilden,bedclothes,impertinence,commissaries,languidly,sedulously,venne,grimaces,neger,loftiest,decembre,recommenced,stuhl,pochi,depopulated,upraised,formen,whereunto,fuit,vorst,unfruitful,conceits,shrivelled,geschenk,jesting,begriff,erfahrung,tendril,quoque,dayes,entendu,ercole,indes,beareth,sleighs,pensiero,licentiousness,uren,unshaken,englishwoman,limply,hereward,ahasuerus,pythian,compassed,hablando,unsettle,proconsul,coarsest,jenseits,woord,gentility,assizes,devons,serue,quadruped,honourably,insbesondere,chivalric,helgi,womankind,streng,penknife,copyist,eadem,entwickelt,solemnized,palpitation,haughtily,valentinian,kindreds,counterfeited,sweetmeats,tousled,unfastened,venire,courser,flaunted,canopied,dethrone,vouchsafe,hereabouts,blackguard,unitarianism,gegenwart,garrulous,eftersom,controverted,serviette,venga,amiably,schreibt,sowohl,nappe,fulsome,terribles,gauzy,verie,cornes,noires,echter,mangel,marcher,beetje,vostra,patrie,lvii,dilatory,unco,jagd,debase,hoher,alltid,wollten,distil,cinna,splendours,fronte,abreve,clinking,apposition,maddened,vaster,florentin,slouched,remonter,aguinaldo,sorrowing,revenir,hohenzollern,neere,devient,moeder,exultant,pilfering,trousseau,frisson,kaikki,unconquered,farces,connu,perjured,seeke,eloped,corpuscles,obscurely,dreamless,dadurch,lamely,curdled,haie,schoon,wonted,gallants,dasein,respectably,fixity,zehn,yelping,vaine,croesus,obdurate,ofte,tuuli,absolue,christabel,ransack,belisarius,schlag,taler,piously,quaintly,rationalistic,usque,partis,seras,schritt,disinclination,eingang,aloofness,arminius,dilating,parthia,felucca,premisses,glibly,putrefaction,unfortunates,pottage,ligger,tubercles,herzlich,manservant,unluckily,plumped,disinherited,resounds,crut,anciently,tiens,remaineth,ratione,begetting,gurgled,scheint,hopefulness,poil,voiles,hez,citer,dehors,vindictiveness,potest,lolling,aboue,extorting,adventured,elkaar,clattered,pouvant,oure,unsteadily,sufferance,muu,charmant,mede,raptures,dinna,barrenness,placidly,bawled,enkele,protoplasm,dyspeptic,gaue,diffident,affianced,communs,zeker,guileless,ebbe,wery,opprobrium,geheime,imputations,marchioness,pferd,capriciously,ganske,superintend,bantering,indorsement,perspiring,dissensions,baseness,blotched,implores,gewesen,digne,hillocks,jalousie,straat,nogle,solche,fretful,geheimnis,dresse,inquisitorial,circumspection,unsullied,spirituous,garrisoned,supercilious,soldiery,skirmishing,profaned,ordinaire,prochain,ebullition,avowedly,notwendig,remoter,reflexions,clamorous,sois,scullery,seemeth,etait,blasphemed,disconsolate,einde,antiquaries,quibus,whimsically,spinsters,hohen,fahren,exactions,cupful,lugger,bestimmt,patricians,atoned,tourbillon,causeth,unpromising,geluid,caissons,surcharged,stoff,quarreled,suckled,soort,pulpy,militaires,partaker,pigmy,censures,morir,digged,fust,confessors,kleur,braut,lacerated,promptings,vouched,obligingly,puo,yerself,jael,tragen,spinifex,unexpressed,lunched,scourging,haroun,manfully,vidare,revolutionist,kennt,tracery,ebers,surmises,torno,bedingungen,falle,seemly,catched,saura,habet,preso,naughtiness,derecha,fastidiousness,demoniac,penury,wainscot,supernal,impelling,cellule,einzelnen,modeste,flits,vacillating,jocular,galop,jacobins,forsyte,fathomless,chiding,savoured,algun,marvelling,plentifully,wakeful,conter,dicen,homelike,swooned,unsociable,puisque,allgemeinen,fatta,drear,erreurs,buffoonery,rashness,pensamiento,impels,dissembling,consistence,intimating,dieth,missis,appeler,possa,aemilius,slunk,deswegen,coadjutor,footfalls,lombards,jego,jewess,endued,sorrowfully,iniquitous,tramped,ecclesiastic,agriculturist,hanc,hildegarde,waylaid,blustering,blauwe,uniforme,granaries,ombres,dolch,estaban,deras,dishonourable,bespeaks,smilingly,avow,whar,certa,assize,ducat,suuri,schrijven,nachdem,hundredfold,poing,knickerbockers,hechos,fiers,betook,caressingly,hooted,gjort,instanced,shet,corpulent,jacobites,stumm,veldt,springen,moros,tierras,mystification,eorum,recoiling,pshaw,erscheint,ruban,apoplectic,lingvo,basest,fitly,marchands,flirtations,conocido,unctuous,enlivening,sentir,mauvaise,beaumarchais,plaints,entfernung,startles,colonnades,theatricals,hoogte,intimacies,remonstrated,leichter,braying,nuages,lassitude,leibnitz,moonless,changeless,sagely,unfavourably,valorous,endurable,leid,prolix,trespassed,shews,longtemps,sidelong,principalement,clamored,einigen,scheldt,perte,idiosyncrasy,clucking,glaube,cualquiera,donjon,messieurs,goutte,workingmen,paleness,festen,alack,trivialities,tristesse,discourteous,dimness,besetting,daunt,boue,vorm,indisposed,rente,drog,strategical,thermopylae,ivanovna,landet,skola,amidships,meete,garder,buiten,beeves,nemen,alwayes,looke,preternatural,versuch,conduce,sien,centimes,feare,retourner,neder,earldom,indubitable,juifs,handsomest,decorous,chagrined,gemeinde,imbecility,ouverte,goud,buffeting,doorkeeper,absolument,schwarzenberg,bushrangers,bounteous,steine,lulling,toucher,steeled,patronised,whisperings,detests,haughtiness,ilka,defiling,frenchwoman,betide,estime,emolument,rivalled,prithee,wisse,expedients,beautified,precipices,llevar,walketh,mutta,diffidence,tablespoonful,meum,bestowal,tingled,hangen,conduire,unrelieved,morgon,ariosto,swindling,saragossa,gladiatorial,parthians,parer,reichen,bacchanal,perplexities,ablutions,arten,innan,vallen,tulla,unkindly,lovest,stratagems,carousing,envies,condescended,freighted,gange,compagnies,slackening,pardner,wondrously,dingen,teilen,shimmered,tror,anteroom,agriculturists,marins,slechts,watermen,citoyens,sorti,megara,mayenne,beardless,cheerless,tenido,goot,tuch,wacht,moistening,unprejudiced,explications,dissimulation,restes,pined,inculcating,combien,pensando,oorlog,plaits,fleuve,agrippina,neen,erit,satt,budded,liest,plaintively,devenu,threateningly,profligacy,gwendolen,subtil,meshach,videre,armie,hoffe,hungered,pecho,bluntness,kuin,lebe,gesticulating,pourraient,athwart,hermana,shambling,tenderest,ordains,propound,immoderate,acuteness,hewed,kindnesses,douze,unaccountably,neun,plainest,boire,sech,pesar,gavest,subtlest,racines,partaken,gruffly,etes,welkin,breviary,lineaments,unburied,insatiate,intolerably,discomfiture,puso,mirando,threepence,ebenfalls,libanus,unmercifully,milord,behandlung,velours,tochter,itse,noces,lampes,chary,quas,danach,wouldest,primroses,manumission,mortifying,gondoliers,krijgen,ministres,garbed,adelheid,memnon,nuo,desperadoes,nuage,sesterces,coucher,freunden,civilize,phial,faute,arrant,offrir,appealingly,multe,declamation,miscarry,complacently,unmerited,insubordinate,feux,assuaged,dukedom,efface,dazzlingly,peintre,looketh,whalebone,minutest,ungovernable,wellnigh,meuble,ziet,wittily,schmerz,foolery,exulting,habitant,craned,ennobled,profundo,arbeid,apuleius,pourtant,wantonness,scenting,beziehung,fik,flinty,comanches,ordnung,ceremoniously,gloire,wobei,hollowness,zeggen,jardinier,serai,plw,desierto,fancying,protuberance,largeur,divin,portait,tersely,deploring,sallies,frontiersmen,contraries,armful,envers,extricated,dissemble,bouteille,impost,countenanced,essayed,findeth,gesagt,zustand,pandavas,vaguest,fenetre,passen,feebleness,plodded,lesquels,excellente,gik,nieder,brise,facilement,inflaming,prete,augury,diabolus,revelled,mayhap,humbles,poetes,metier,personnages,demoiselle,unhampered,matelas,puisse,indissoluble,netta,nicety,tablespoonfuls,witticisms,enfeebled,surveiller,revolutionists,cozen,middel,penitents,imprudence,tiptoed,reicher,magyars,civilities,trussed,dulcet,sirrah,rapporter,festal,couteau,baronne,heartrending,devotedly,plancher,amies,steeps,salubrious,spearmen,houden,marriageable,imposture,mutinous,jabbering,tyrian,pourra,peremptorily,whirlwinds,despoiled,lugubrious,ringleaders,begriffe,listlessly,affronted,debout,probablement,daintily,pikemen,deinem,partager,exaction,unlighted,washstand,overspread,losse,piteously,politischen,tager,largess,weightier,plenipotentiaries,muka,insensibly,snart,contento,parchments,uusi,scotchman,repousse,ingratiating,bairn,poisoner,prodigiously,unerringly,qualm,aquel,marseillaise,uncharitable,bestimmung,shiftless,visages,subjoined,pierrette,befindet,daubed,ostentatiously,unvarying,choisi,whereto,cottagers,voluble,ingratiate,helpmate,ligt,soldats,gloaming,adamantine,weinig,kansa,rudest,forcer,einfluss,brunnen,oreilles,varit,braucht,gutes,irresolute,mogen,aarde,smartness,burthen,attente,bekend,lleva,unsparing,bewegung,paard,alcide,espied,effrontery,vacuity,pillared,queerest,impolitic,defiles,byles,indubitably,mottoes,molti,questioningly,generalship,debasing,victimes,demurely,talar,donker,peuples,humains,comun,prettiness,usurpations,plebeians,habia,meurs,philosophique,sloops,regierung,savez,gesang,gick,saturnine,trinken,hungering,unreasoning,morto,thoughtlessness,pobres,rasped,celestials,florrie,turneth,childishness,glauben,revenged,radiantly,gefahr,prohibitory,destine,forestalled,converses,commonplaces,waggons,interet,duenna,outwitted,summat,bespeak,pocos,waarde,wheresoever,compromis,wyth,obwohl,partei,meddlesome,bustled,neckerchief,brahmanas,misgiving,farthings,gebiet,disfigure,rancorous,forsakes,torpid,doctrina,atem,canne,intendant,bereit,fiere,swiftest,confidants,unwonted,astonishes,joues,recondite,sightless,blunderbuss,besondere,chiselled,unconsidered,hottentot,tarda,fausta,beholders,quelles,vertes,invitingly,gloated,wearying,straitened,disdainfully,romish,servitor,ingrate,unvisited,officier,bairns,bedeutet,sorgen,autrement,quinze,entreating,longues,voisine,insensibility,washerwoman,ufer,caldron,offert,summum,reiche,irreproachable,quels,penser,sentimentalist,tenia,avea,sublimate,mitad,deutlich,encima,bowsprit,antrag,childishly,envying,austerities,largeness,hemlocks,chiffre,sadden,passionless,haunch,signifie,thronging,plainness,wolfish,breakfasted,quidem,semblant,ressort,intrepidity,pferde,affectations,filthiness,rayons,sommeil,hateth,spitze,fomented,opfer,dietro,iesus,conjuncture,vivante,docility,moravians,wretchedly,preciso,nosegay,fidgeted,trooped,deadened,brimful,antwoord,mistrusted,florentines,circonstances,bedarf,commencer,fevrier,vyasa,assailing,unseasonable,blod,minstrelsy,voies,paunch,sobriquet,horatius,serapis,soeurs,chaffing,wahr,unlettered,prowled,uninviting,buttoning,agesilaus,entender,jaunes,tragical,charakter,vesture,spricht,richtung,salver,milliers,profoundest,reproachful,petulance,grovelling,companionable,kindliness,convulsively,laudanum,residuum,tombeau,servility,strew,dites,unendurable,ennen,cassock,khasi,aufgabe,excommunicate,erwarten,zaal,arabesques,avowal,interposing,retirer,pathless,revers,juist,trooping,rencontrer,marteau,stanch,perspicacity,pawed,swains,hinzu,undulation,versuchen,highroad,wesen,gondolier,douleurs,ascendency,sammen,hasted,sehnsucht,stupefying,pealed,stets,citoyen,requite,larges,omnibuses,windless,hinc,sanguinary,mohammedans,tyburn,souhaite,firmest,neus,dumbly,allemands,inquisitiveness,fourni,erkennen,bethought,debajo,lebt,slipshod,rundt,produire,heeds,tevens,doted,overmuch,chastening,waxen,cadaverous,stroom,spielt,croire,contriving,waddled,circassian,especie,whin,greediness,preferment,geschreven,ziele,remounted,ontvangen,strewed,artifices,assenting,anaxagoras,unge,cousine,presentiment,sturdily,falleth,quitte,censorious,ouvre,mekka,noontide,ewigkeit,tausend,pranced,augenblick,pudo,glowering,suppliants,heare,personnelle,gezien,schemed,disentangled,qualite,husbandmen,fruitlessly,guerrier,huntsmen,photoplay,dritten,duchies,cuirass,flotte,hireling,overweening,joies,abruptness,sieh,moed,warred,nourriture,niver,conducteur,regicide,dedans,roved,remplacer,ajoute,auquel,siller,touchingly,hisself,bliver,industriously,confusedly,eying,befit,edified,profondeur,portier,malignity,revient,sibylla,karakter,becometh,poort,halloo,pasturage,loisir,puits,voort,soixante,voglia,pandu,geval,pouvait,smarted,paroxysms,coquin,mirthful,vergangenheit,coeval,pharao,ceinture,galvanometer,finna,graceless,slinking,enlever,brocades,ennobling,prevenir,harten,pleasanter,hindoo,falseness,drap,betimes,natuurlijk,procurer,malefactors,lysias,handmaids,gefallen,gaar,straten,dommage,bewail,rhenish,twitter,erano,schar,irreverently,misjudge,revengeful,interdicted,suppliant,monotonously,benignly,certes,averil,sauntering,zusammenhang,gebracht,inexpedient,confiscations,heartiest,untutored,forbears,exulted,uninfluenced,gallies,omne,taches,tourner,marcius,pealing,campagnes,quoniam,leathern,ecclesiastics,interceded,nimmt,intelligibly,craftily,chaplets,abends,englischen,bestaat,makest,nerved,braccio,philosophe,couvert,musketry,caribs,enfranchised,maer,casements,eatable,dets,meanly,profonde,theyr,aspecto,disinterestedness,soumettre,plebe,nier,jeta,blaspheming,benutzt,pantheistic,slumbered,hostler,fous,quartette,hoed,stettin,brusquely,rankled,nonconformists,intonations,scandalously,sirup,exercer,reproachfully,pauvre,rivalling,obtenu,eeuw,howat,existencia,delusive,sepulchral,sarebbe,fuor,pareil,remplir,fourscore,teacheth,guld,droned,balles,traiter,rapporte,wellen,abler,wallowed,recompensed,quil,chamberlains,disgracefully,brung,manches,quei,atteindre,asuras,lamentably,achaean,loups,lowliest,braggart,somersetshire,indisposition,mithridates,reconnu,nutriment,unkindness,tranquille,froh,gardes,talo,rascally,gardien,sanoi,strumpet,zigzags,discoursed,erreicht,haare,accost,manoeuvred,libels,blighting,vileness,blessures,soldados,abase,outcries,stampeded,bithynia,cupidity,soundest,consentement,risings,fervid,truculent,illimitable,gayly,forbearing,kvar,despatching,potentates,putteth,impetuosity,jutted,encomium,decke,behoves,querulous,mener,manchus,pemmican,discomfited,dienen,sidste,steden,mollified,sulphurous,entierement,parterre,subtile,ziemlich,quon,enfolded,gedacht,belongeth,parian,emot,nowise,vaan,verdient,detestation,theophrastus,indiens,sallied,infinitude,unchristian,nachbar,hubo,quaff,scuffling,commotions,belang,numidia,craning,indistinctly,aldrig,zes,houdt,chiefest,casuistry,siis,manchmal,purposing,justness,hundert,simpering,soothsayers,charwoman,mittag,facere,aquella,chasseurs,countersign,frem,cambric,thron,spluttered,leetle,quos,glinted,facon,coupable,lowliness,lesquelles,turc,trundled,desolated,kindles,shineth,woning,falchion,asperity,pousse,dran,secretaire,effulgence,banisters,extricating,valt,hesitatingly,affray,pensively,meretricious,promiscuously,overset,chuse,ruido,undefinable,scorning,multa,lacedaemonians,aristoteles,friede,censers,aufgenommen,tandis,talke,trifled,intelligente,delightedly,chimerical,kanske,importunate,disgraces,zeg,agitations,piratical,indigence,acquirement,mutely,billowy,querelle,suzerainty,imperturbable,milliners,pensa,fecit,gleiche,vacillation,innocente,toilers,snored,heathenism,rancour,apercu,facetiously,riband,pecado,slaine,vaut,disdains,gedaan,hvem,amain,cavil,kohta,huskily,unwarrantable,glowered,curates,anent,wenigen,konnten,worthier,vooral,leered,palmy,religieux,truncheon,hovels,milliards,unlovely,abjure,plenteous,piedmontese,debauch,holocausts,imperatively,philadelphus,darky,ravening,kentuckian,methought,fagot,foulest,rills,gaven,treize,leise,dragoman,micht,affrighted,unsocial,loger,dejectedly,tamely,reposing,ausdruck,phlegmatic,mightest,dispossess,cataloguers,gibe,drily,languorous,paire,tode,foulness,zelfs,calumnies,scythes,shirked,disapprobation,propitiate,hilft,usurpers,lagen,estis,inspirer,gainsay,ambrosial,atteinte,intanto,conciencia,provender,schulter,navire,matronly,andern,sourire,ungracious,overawed,mukaan,relenting,bijna,angesehen,coude,dickon,vapeur,maintenir,sluices,geweest,erziehung,zitten,importe,raisonnable,canot,grundlage,hessians,undreamed,equable,oppressively,chacune,zaak,pourront,indorsed,kasteel,indulgently,takaisin,superfluity,pantalon,gossiped,generalissimo,coquettish,zegt,konung,accepter,expiate,commiseration,voudrais,counterpoise,sawest,inquiringly,betes,romanism,northmen,folgt,cuya,schicksal,travaille,thae,leitung,unfeigned,impalpable,murmurings,conjointly,excitements,zambesi,vilken,comeliness,verra,hambre,indiquer,grossness,cuivre,noget,countrey,carefulness,blijft,douceur,vaporous,oarsmen,seigneurs,toilsome,proprieties,listlessness,waarin,pities,tredje,mortify,gipsies,neapel,unhallowed,injudicious,gesetze,remonstrances,uninterruptedly,revanche,suam,ither,unmanly,mazy,forebodings,fickleness,tuvo,gelukkig,geschlecht,unsheathed,freilich,heiligen,palest,impulsion,empirische,vano,sitten,illis,votaries,factious,braw,verdadero,shabbily,hollande,camarades,slighter,yere,homewards,trous,achten,rapine,materie,snuffing,schwarzen,sterben,bezig,abnegation,yeare,vostre,kerl,widerstand,betrachten,erinnern,betake,arbeiter,klaar,outspread,thim,sendeth,winde,lichaam,zetten,whirr,alarum,doigt,daarom,liten,declara,gebrauch,jambe,paie,unmerciful,apporter,demoiselles,reprobation,lache,burgomaster,camest,sonder,extravagances,esset,fellah,verlassen,gewinn,wakening,vacantly,discoursing,cablegram,tourne,attendre,schlechte,lauf,injuriously,spluttering,felsen,gloried,argives,paarden,japhet,cabane,hende,zacht,promontories,mignonette,supplicate,joindre,freundschaft,pattering,unromantic,sophistical,frescoed,sauver,nobleness,sealskin,bewilder,gwine,zeven,consulship,aminta,brauchen,fuite,unclouded,affability,affright,recantation,threshed,malen,gladdened,weisen,fausse,ruses,expostulation,faisait,heraus,paille,delawares,devait,tirer,reines,galled,esel,verres,atteint,slaveholder,fuisse,meddled,soldaten,protestation,cambyses,enmities,becalmed,genou,verbunden,hver,muut,leprous,lambent,wolken,sacristan,lavishing,wending,disquieted,solchen,benedictions,niggardly,herte,teki,ankunft,solides,gesetzt,dangereux,evincing,vraie,fauteuil,naturels,eue,buckboard,noisome,veinte,malades,impassible,oblations,worten,intoxicate,prenant,graue,entweder,exasperate,curtsey,bestimmten,exclusivement,babyhood,sojourned,censuring,disrespectfully,mesmeric,apprehensively,roofless,despoil,direst,razones,inroad,terminer,vainglorious,wenige,benevolently,archbishopric,hatchway,eigenschaft,pinnace,slighting,vorher,falsch,maintien,ellinor,sepulchres,extirpate,adrianople,imposer,schlimmer,wies,imperiously,kuu,rhetorician,totta,portefeuille,unconcern,toucheth,requited,geburt,suffit,peloponnesus,postern,irremediable,hamilcar,quavering,unperceived,leonine,botte,wonderingly,haversack,liet,ennemi,handen,dawdling,spiritless,thorwald,rejoindre,inutile,signally,loitered,benefices,hewing,abysses,beginnt,mouldering,schmerzen,everlastingly,descried,aquellas,vosotros,miten,froward,elend,audaciously,indelicate,einrichtung,umfang,chinamen,prostrating,ceremonious,slaveholding,unworldly,ideality,fece,fathomed,boord,waan,plafond,erzeugt,gekommen,tranquilly,delectation,honoria,couldst,prattling,suivent,terram,prate,submissively,whithersoever,parcourir,assise,soutenir,girdled,abased,versucht,niemals,antient,semblables,despairingly,alguno,munificence,throwed,gervaise,habitude,impetuously,providentially,veulent,coom,harangued,provincias,wahren,glorying,cockade,unfrequently,inconstancy,betrifft,ninguno,doun,gratifications,impenitent,gayety,arriver,sagesse,kwam,foule,turm,bildet,blijven,sternness,vede,lames,gunst,complot,knapsacks,engross,tristes,appelle,gracefulness,communed,calmest,glutted,largement,dallying,witticism,fatted,blauen,hottentots,penances,brengen,glimmered,bretons,servitors,refus,fehlt,cxar,ewig,airily,gegeven,schluss,maudit,autoridad,kinsfolk,erinnerung,essayer,distrusting,tartary,genoeg,fremde,droops,blandishments,individus,remonstrate,improvident,handsomer,blazoned,vatten,plainte,damps,machten,bonhomie,adverted,soweit,sacerdote,productiveness,gestes,druse,quaver,trouw,ausgang,versuche,wrapt,draweth,prit,tampoco,versification,sojourning,acclamations,aimez,unfaltering,loftiness,emendation,behandelt,clownish,criado,tellement,fordi,remettre,redound,auront,objektive,moodily,discords,outworn,honeycombed,gedanke,venant,anspruch,drauf,trouvent,allers,superannuated,schauen,viands,amiability,kaisers,victualling,religieuse,wirklichkeit,envoie,dicha,strenge,unwearied,punctilious,turne,entscheidung,egotist,jouissance,falsche,schier,ursprung,importunity,distractedly,zele,vexations,seraient,piastres,boche,bewitch,allures,frisking,rottenness,rufen,sentimentalism,clanged,jupes,rechter,privily,ungenerous,asketh,eigenlijk,absented,euboea,fiefs,honom,sympathised,upbraided,thermidor,ignominiously,mischiefs,appertain,joko,perd,enviously,wahrscheinlich,joyed,gegner,einfache,bhishma,clairement,eate,maddest,adresser,cabalistic,conventionality,italiens,aliquid,lidt,whiffs,lleno,manufactories,twelvemonth,undimmed,gjorde,heah,parvenir,faithlessness,vilain,contrives,wistfulness,genannt,geleden,munificent,fortement,glaive,maggior,convoked,veste,malefactor,gelangen,dotage,palliate,oxus,pedants,quaked,malade,affronts,explique,reproaching,excellences,venturesome,roues,severer,fremd,fusillade,muita,feareth,endroits,maanden,bareheaded,girding,anzi,taire,kopje,illud,ilman,maxence,wrings,ferma,hummocks,detraction,dicht,perdre,charbon,foure,subserve,cherubims,toilettes,liebhaber,lenity,songe,respecte,sabots,podia,insolently,blik,dimpling,quiconque,ehre,littleness,homines,gammal,highnesses,awaked,upbraid,unsubstantial,muren,dezelfde,proselyte,authoress,fabel,grandee,pleasantry,setteth,chaldea,pensioned,yeardley,tiefe,considerately,gattung,denkt,poursuite,teuton,pestilent,sofern,bountifully,desisted,senecas,jollity,enrica,inexpressibly,sunshiny,dicitur,handeln,begint,oeufs,amanuensis,dreariness,animi,comprenant,smites,schlacht,schauspieler,bezeichnet,orisons,reposes,vart,hauses,geduld,fieri,mischance,koska,hospitably,metaphysician,vulgarly,construit,invectives,poitrine,perdus,blive,voulu,pompously,discourtesy,hazarded,curtsy,palpitating,marido,plaisirs,ennoble,dira,unsought,palsied,sartin,panegyric,profanation,unfitted,halfe,drinken,imprecations,virtuously,inconceivably,vouloir,assiduity,entstehen,abschied,asiatics,artificers,ohren,murderess,pouvons,radicle,volontaires,villany,forded,superintended,abominably,zweck,familier,enervating,tumults,philippus,pouces,forswear,astuteness,heiter,liebes,kenntnis,gehn,molte,lediglich,musst,hauberk,domestique,geluk,unspotted,altname,legt,bounden,declaimed,unexampled,todes,tearless,basely,vorstellung,labios,vond,hubiera,speakest,teemed,killeth,preternaturally,genommen,pauvres,negress,seien,haranguing,quaintness,verser,stoical,tyd,aptness,retrouve,mehreren,malediction,givest,discreditable,brilliants,unseeing,connived,connais,mourir,reicht,crabbed,obsequies,perverseness,latticed,pleadingly,besiegers,busying,brazo,cudgels,heisst,paroisse,befehl,machte,soldierly,musste,richten,exhalations,rapturously,forelock,luy,esteems,agonised,hirelings,hoogste,jauntily,erscheinen,declivity,vivants,reviling,sixe,altid,retrouver,ailed,garlanded,abjectly,vernunft,churl,vrijheid,guds,rendue,erden,erant,telegraphing,archly,statesmanlike,souverain,yeares,duft,gezegd,kust,woorden,quelconque,dunghill,declaim,bucklers,stouter,seuls,unpractical,sehe,reverenced,derfor,hominum,voeten,liveried,disfavour,genially,gezeigt,modish,plomb,gennem,prier,vorn,deigns,careering,thenceforward,trug,hasdrubal,kanssa,hempen,miltiades,growed,decrepitude,thinkest,effluvia,ordres,figurer,grimness,repassed,meditatively,sinecure,mettent,stopt,riseth,kanzler,invloed,verlust,figger,underrate,laune,jederzeit,pardonable,vnder,choleric,inclose,bided,beggary,desto,boeotia,pleasantest,deil,gashed,exordium,tocsin,alcun,spitefully,gehalten,tonnerre,abbia,brocaded,forwardness,drawling,testily,gebunden,ruhig,unfasten,tyran,precocity,resistless,wangen,spasmodically,mesdames,resignedly,festoons,aboute,varlet,viennent,threatenings,erkenntnis,prevision,dacht,squaws,cesse,mahomed,plunderers,navires,tremblement,comfortless,incautious,luxuriance,petto,creditably,jolies,impressiveness,cheyennes,finit,needeth,superabundance,precipitately,unceremonious,sidewise,anacreon,lisping,sonna,delante,rideaux,prig,gezicht,parfaite,vituperation,manifeste,cabman,fawned,oever,untaught,juley,einiger,voorkomen,gelijk,forsworn,imperilled,sichtbar,promptitude,indiaman,cantered,allurements,bataillon,lasst,omkring,juicio,noin,distressful,justifier,bestimmungen,verbinden,bestimmte,foremast,bestaan,stimmung,meeste,accorder,thirsted,irruption,professedly,geschwind,groweth,stupefaction,lanterne,larmes,harangues,remorselessly,appartient,naturall,stupide,dexterously,extempore,viscid,abaft,auraient,reproving,ottilie,waer,scandale,turnus,helpen,begonnen,pestilential,schaffen,merchantmen,flammen,atter,ensi,circumlocution,queenly,livest,grandees,devenue,adjure,allant,obstreperous,gnaden,olet,heedlessly,soif,lolled,flatterer,stube,sentimentally,gowned,tutelary,hindmost,furent,faibles,monkish,zouaves,ineffectually,contraste,duidelijk,turbaned,guillotined,conformably,meane,zugleich,disdaining,solcher,ouvrier,zieht,lowness,annoncer,unpleasing,disgracing,disant,begon,heartiness,recompence,petulantly,prinzip,casteth,rhetoricians,sulkily,minuteness,solemnities,vexes,tomando,impecunious,avond,menschlichen,loob,aliis,snaky,confessedly,slecht,wheedle,hushing,gxi,corpore,ungraceful,queerly,schwere,parfaitement,holdeth,straggled,picturesquely,mainmast,disquisition,tiefer,vorgestellt,dulness,pistoles,unexceptionable,finnes,soumission,liebt,maie,centaines,havde,mutinied,terwijl,palanquin,contenir,milesian,poursuivre,lacedaemonian,volgen,respire,gehad,untrammelled,stentorian,flatterers,tomber,cantering,minces,foible,questionings,choeur,kehrt,manacled,haud,thereabout,contenta,soone,hauptstadt,daheim,heedlessness,coquetry,wended,getan,leggen,onkel,barbadoes,wifely,tantas,cuius,rouler,expliquer,mortel,worthiest,pusillanimous,personnage,swaggered,accepte,forbore,gravelled,publikum,opportunely,odoriferous,insensate,showeth,causeless,partem,dennoch,imprudently,drollery,makt,uncongenial,feront,noght,philosophes,sententious,reconnoitre,doigts,eatables,intorno,quiera,sabines,catholiques,housetops,rostro,descry,zouden,dachte,drona,complaisance,tinkled,rappelle,bewailing,entrenchments,llegado,stilte,sternest,vijf,vaches,befitted,preeminently,enervated,profiter,ceremonials,sedately,choisis,trone,gabble,searchingly,somewheres,patriotes,tyrannous,wigwams,paysan,blevet,ooit,suffisamment,monosyllables,sluggard,gelegen,dissembled,verlieren,ieder,impudently,jotka,contrariety,unprovided,prinzen,ruhm,cerveau,inclosing,osaa,supping,anteil,diplomatist,barefaced,plighted,faudrait,unterschied,fermes,verborgen,ofttimes,neemt,steersman,caitiff,thebans,keek,aient,seyn,brumaire,embroil,pennon,athirst,gnashed,neighing,durchaus,glaces,magnanimously,compagnon,anchorite,boisterously,chancing,dagegen,tantos,prenez,momente,sterke,provinz,withall,lippen,donnent,consorted,miry,hollanders,perh,exactement,exacte,entend,gewonnen,moindre,humeur,souple,proserpina,fluss,conclure,dotter,effectivement,feelingly,noised,bondmen,unseres,bashfulness,vaunt,wollt,greatcoat,unmeaning,turcs,untrodden,nerveless,insurrectionary,ruisseau,refuser,quondam,zimmern,raillery,faciles,accordant,mixt,ruft,humide,sensibles,prudente,indissolubly,teils,treten,geschlossen,extenuation,favori,compagnons,merriest,loftily,pourrez,placidity,hicieron,gueule,regne,doffed,herodes,quatorze,tegenwoordig,usurer,voluntad,geniality,twopence,froide,rampe,hearkening,flippancy,breastworks,ruleth,pellucid,couvre,frighted,hearest,evadne,kreise,oublier,idees,irreligion,bruits,waarschijnlijk,prodigality,bessere,vuol,enveloppe,freshet,stoutest,takest,livelong,joyeuse,serez,citadelle,appeare,schaden,sublimes,verfassung,opprobrious,cnut,propitiatory,voyez,acquirements,drearily,grenze,estuvo,violences,hideousness,drawed,bewegen,satte,appartenant,paquets,synes,parecer,mechlin,diciendo,collines,cabals,scherz,disait,atli,superscription,lieue,filched,suffrages,darkies,maitres,swineherd,unworthily,disturber,foresaid,redoubts,boding,ouvriers,benumbed,wenigstens,carouse,habere,composedly,paleis,nilus,eenvoudig,heiresses,schien,pistolet,ambuscade,repine,thinges,geheel,amants,jingled,autrefois,breakfasting,noeud,regardez,zufall,drowsily,religieuses,voisins,verfasser,nogen,engraven,nahrung,gaoler,bancs,waarop,jolis,evasively,draps,weisheit,habitantes,brouillard,resentfully,acquaintanceship,declamatory,elate,juif,halb,geister,quiso,gleicher,supplicating,schlaf,zahlreichen,trembler,wickedest,bekannten,adroitness,bestir,helst,multitud,wachten,auxquels,dropt,schoolmistress,obloquy,profitless,mourant,wijze,saidst,flucht,unconcealed,mettant,coursers,disent,mohammedanism,finir,abstemious,krankheit,cannonade,otti,brume,grandmamma,fahrt,moeite,tediousness,verdadera,ongeveer,horreur,licet,ouvertes,warbled,genomen,vuestra,clamors,complaisant,votary,hesper,flossy,zufrieden,geloof,luxuriantly,loopt,haled,grizel,certainement,duquel,inharmonious,amatory,todavia,hindoos,warme,officiers,meaneth,videtur,knavery,dije,blivit,prennent,harrowed,appris,podido,stod,mussulman,unhesitating,sybarite,montrent,leaue,fulco,irresolution,geschickt,schlagen,proverbially,waywardness,maturer,nennen,treiben,servius,bepaald,daraus,faudra,caresse,bijzonder,benignant,appartiennent,domestiques,trifft,arraign,khoja,cawing,fragt,gilds,bottes,antipathies,afeard,bishoprics,marier,bewegt,teutons,whelps,bestehen,victual,healths,heutigen,kertaa,benignity,whitsuntide,gesund,coxcomb,shrewdest,couverts,hecha,jener,undistinguishable,satrap,haen,stateliness,copses,richesse,poursuit,adown,brokenly,coffre,gilberte,eddying,couvent,hawser,circumstanced,werry,muratori,heartlessness,foully,boors,quailed,esquimaux,peint,helas,broils,contenting,troublous,nulle,kinswoman,puissent,bunten,silencieux,gegend,quaffed,fervency,schuldig,sortes,courbe,bethink,eind,comen,serried,careworn,abstractedly,besitzen,unbent,frolicsome,foudre,overrate,directoire,jambes,betweene,stolidly,gerechtigkeit,throned,feind,gnade,saisir,farine,affably,lendemain,aristocracies,hexameter,volontaire,pracht,cravate,aikana,irgendwo,fanns,parricide,strewing,prosperously,allurement,curtsied,mither,recreant,expiated,bedienen,roula,blott,allait,reihen,tournant,entgegen,bareness,shamefaced,bords,perspicuity,gegenstand,visitant,mulle,organes,kriege,connue,annos,enow,jocund,unutterably,entdeckt,winna,brahmanism,appius,inextinguishable,batavian,remarquable,knaben,betokened,griechischen,braccia,merchantman,habited,betrachtet,sympathising,hvide,rejoicings,draga,entreats,conciliated,foeman,confute,voulait,unexpectedness,indispensably,gevoel,endearments,interj,wheedling,touchant,aliud,coyness,quarante,zuvor,tirant,teilnahme,dirige,mantling,extenuate,interessen,battre,quartiers,bracht,vormen,disinherit,restent,aufenthalt,calomel,ouverts,entsteht,disquietude,naething,enormities,kerchiefs,helft,remercie,beruht,genoux,artillerymen,hoeren,flatteries,unfading,gehabt,dight,jouir,waylay,benefactions,angenommen,pitilessly,pattered,varandra,assister,daies,cacha,moest,uncomplaining,tulee,pillowed,courtes,sayde,saisi,linien,temor,imploringly,unsuspicious,picturesqueness,kende,unresisting,besitzt,yez,tronc,begann,musingly,blieb,protract,connus,disconcert,argive,profond,choler,pinioned,tarrying,hatless,baith,epigrammatic,ilmarinen,usurers,boded,dallied,seekest,couverte,dettes,schoot,messire,vorschlag,semblent,geschehen,seelen,traversa,vassalage,offenen,manasses,zuster,breake,auxquelles,designedly,whensoever,conciliating,frucht,discouragements,gingen,semblable,gegensatz,inundations,gelegenheit,scandalised,cinquante,pudiera,algonquins,comported,bange,fasse,servian,stond,unterschiede,propitiated,hogsheads,contumely,ollut,connaitre,provoquer,herrschaft,erinnert,clamoured,lacedaemon,peines,meint,bourgeoise,nerfs,aiment,begge,possit,nomme,plis,piquancy,unpremeditated,desirest,declaiming,bestimmen,marchesa,dizzily,pauperism,samnites,schlief,livrer,sobald,nettled,allerede,odeur,comprends,peroration,preuves,dahin,verbergen,aandacht,vertreter,daarna,lourd,wilfulness,betrekking,grunde,retenir,esteeming,fallait,ressemble,klage,hauing,prolixity,sonner,subterfuges,stof,zahlreiche,harer,expostulated,barbarities,prudery,bivouacked,fusil,langt,passagers,firesides,vicissitude,salido,allerlei,joyousness,vorsicht,behoved,porticoes,gebirge,tragedian,fastnesses,nebst,waarvan,ruminated,reprend,commonalty,lapset,guerres,indorse,suffisante,curst,flounces,upbraiding,revenging,feebler,venger,miteinander,chaffed,overstrained,consolatory,houre,einzigen,spreken,contemporains,heut,augured,verran,sanscrit,halfpence,cutlasses,cupfuls,tremulously,quavered,puir,governesses,besluit,hetzelfde,veracious,wesentlich,readiest,disconsolately,squally,captaine,demandez,inzwischen,seules,cumbrous,palings,satisfait,geschikt,devoirs,rappeler,croit,orten,habent,didna,demoniacal,voraus,distempers,execration,drest,colonnes,tabooed,retenue,guicciardini,gaed,vuestro,cierta,einfachen,hundra,belike,saltpetre,forborne,cuyas,tardily,satisfaire,dicere,verbrechen,zichzelf,superabundant,vilja,versteht,brengt,scudding,verschieden,destinee,deprecatory,larboard,keinem,manuscrit,shrubberies,volkes,pertinacity,amabel,parme,herrlich,hunc,flurried,avevano,deferentially,souviens,mazarine,infiniment,overborne,rempli,goeden,reinen,engager,jocose,shawnees,vaterland,blessure,restant,maist,ursache,oublie,eminences,obscur,afstand,kepe,cailloux,enemigo,toits,weite,pm,video,info,ebay,dvd,website,photos,forums,yahoo,server,pc,feedback,blog,options,audio,fax,rss,porn,faq,sep,powered,electronics,database,microsoft,url,update,downloads,apr,hosting,videos,tech,linux,jun,listings,sony,google,environmental,pics,sponsored,eur,pdf,usr,homepage,lesbian,logo,airport,phones,cnet,hp,eg,ip,cameras,ratings,paypal,thu,rentals,worldwide,anti,nokia,tx,anal,interface,technologies,gmt,xml,input,sexy,mb,multi,graphics,prev,ads,mini,usb,php,trademarks,phentermine,keywords,msn,programming,isbn,az,updates,desktop,pst,fucking,blogs,evaluation,implementation,angeles,networking,australian,kb,connect,dev,vegas,module,pricing,dvds,documentation,coverage,automotive,developing,milf,ringtones,xbox,www,settings,monitoring,nc,llc,hardcore,provider,techniques,rd,websites,servers,keyword,username,fuck,paperback,classifieds,providers,upgrade,auctions,therapy,samsung,affiliate,admin,designated,integrated,cds,ipod,porno,motorola,strategies,affiliates,multimedia,xp,tits,interactive,developer,sitemap,lab,cvs,gamma,weekend,lcd,dj,parking,ct,hentai,laser,icon,basketball,stats,hawaii,nj,clips,rw,vhs,criteria,pubmed,logged,laptop,checkout,tripadvisor,zoom,anime,spam,bytes,gb,bc,consulting,aa,lingerie,shemale,parameters,jazz,profiles,mom,singles,amounts,usd,mg,pharmacy,constitutes,collectibles,infrastructure,intel,soccer,math,healthcare,preview,devel,rs,voyeur,cisco,certification,bookmark,specials,bbc,avg,panasonic,permalink,viagra,src,faqs,trackback,revised,broadband,pda,dsl,webmaster,dna,diff,sql,specs,ss,yeah,sexo,javascript,gps,acc,euro,encyclopedia,interracial,tn,suppliers,playstation,annotation,gnu,lesbians,aol,modules,backup,personals,kevin,perl,bike,utc,albums,verzeichnis,hosted,developers,kits,variables,agenda,template,investor,wildlife,elementary,sponsors,unlimited,printable,hardcover,setup,booking,ericsson,supplier,bluetooth,tm,upcoming,scores,weblog,nh,alerts,mysql,offline,lifestyle,converter,blowjob,safari,pdt,parameter,adapter,processor,node,hockey,micro,laptops,regulatory,db,ph,epinions,affordable,databases,psp,ds,discounts,boobs,jennifer,demo,lg,gourmet,nfl,avatar,dildo,featuring,misc,calculator,holdem,awareness,spyware,packaging,wallpaper,biggest,alumni,hollywood,wikipedia,diabetes,ml,wow,mapping,indexed,grid,plasma,voip,consultants,implemented,sf,blogger,kg,textbooks,seminar,latina,nasa,sexcam,accessibility,templates,tab,router,concrete,folder,womens,css,upload,milfhunter,mc,metro,toshiba,qty,airline,uniprotkb,beastiality,lp,consultant,researchers,unsubscribe,bio,upskirt,exam,logos,milfs,sustainable,pcs,honda,cinema,ag,blowjobs,deluxe,monitors,sci,edt,pmid,recruitment,siemens,expertise,medline,innovative,tampa,ks,python,tutorial,cruises,moderator,tutorials,collectables,scripts,abc,stereo,operational,airlines,livecam,hobbies,telecommunications,bestiality,biz,voltage,nintendo,vinyl,highlights,designers,ongoing,imaging,blackjack,analyst,reliability,gcc,ringtone,oriented,desktops,semester,cumshot,applies,casinos,filters,nv,notebooks,algorithm,semi,proteins,exp,debian,epson,terrorism,cpu,allocated,anytime,nr,layout,initiatives,lol,mp,optimization,genetic,modem,mph,evaluate,toyota,nationwide,vector,limousines,destinations,pipeline,ethernet,postposted,nba,busty,coordinator,epa,coupons,cialis,bb,ron,modeling,memorabilia,alberta,org,okay,workplace,wallpapers,firefox,eligibility,clinic,involvement,placement,vbulletin,funded,motorcycle,presentations,wiki,radar,citysearch,nsw,pci,guestbook,pizza,rc,bmw,mpeg,shoppers,cst,ceo,twiki,counseling,medication,shareware,dicke,configure,institutional,metabolism,rm,pdas,outcomes,sri,thumbnail,api,acrobat,thermal,config,urw,regardless,wishlist,sms,shit,trailers,syndrome,iraqi,foto,tabs,gm,rt,shopper,nikon,customize,sensor,telecom,indicators,thai,emissions,dd,boost,spanking,supplements,icons,tranny,catering,aud,camcorder,implementing,labs,dynamics,crm,rf,cumshots,bukkake,shorts,td,amp,sm,usc,environments,trembl,blvd,amd,emails,wv,insider,seminars,ns,vitamin,processed,functionality,intermediate,billing,diesel,bs,promotional,chevrolet,compaq,authentication,showtimes,sectors,bandwidth,img,schedules,cached,rpm,florist,webcam,nutten,automated,pee,nipples,tvs,manga,mhz,orientation,analog,packard,payday,deadline,robot,assess,gnome,gadgets,automation,impacts,cl,ieee,corp,personalized,gt,conditioning,teenage,nyc,partnerships,slots,toolbar,basically,genes,firewall,scanner,occupational,hs,integer,treatments,camcorders,basics,rv,struct,genetics,punk,enrollment,interfaces,advertisers,deleted,rica,inkjet,peripherals,brochure,bestsellers,eminem,antenna,bikini,decor,lookup,harvard,podcast,interactions,nike,pissing,plugin,latinas,customized,dealtime,temp,intro,zus,fisting,tramadol,jeans,fonts,quiz,mx,sigma,xhtml,recordings,ext,minimal,polyphonic,outsourcing,adjustable,allocation,michelle,ts,demonstrated,handheld,florists,installing,ncaa,phd,blogging,cycling,messaging,pentium,aka,sampling,refinance,cookie,goto,calendars,compatibility,netscape,rankings,measuring,tcp,dv,israeli,medicare,skiing,hewlett,flickr,priorities,bookstore,timing,parenting,fotos,britney,freeware,fucked,pharmaceutical,workforce,nodes,ghz,targeted,organizational,skype,gamecube,rr,titten,excerpt,halloween,methodology,housewares,resistant,recycling,gbp,coding,slideshow,tracker,hiking,jelsoft,headset,distributor,archived,photoshop,jp,bt,diagnostic,rfc,downloaded,sl,seo,isp,nissan,acoustic,cassette,initially,hb,jpg,tc,sunglasses,planner,stadium,mins,sequences,coupon,ssl,gangbang,opt,flu,mlb,tagged,bikes,gp,submissions,oem,lycos,zdnet,broadcasting,artwork,cosmetic,terrorist,informational,ecommerce,dildos,coordination,connector,brad,combo,activation,mitsubishi,constraints,dimensional,mozilla,toner,latex,anymore,oclc,locator,pantyhose,plc,msg,nylon,palestinian,trim,pixels,hispanic,cv,cb,procurement,espn,untitled,totals,marriott,starring,referral,nhl,optimal,protocols,highlight,reuters,fc,gel,omega,evaluated,assignments,fw,doug,saver,grill,gs,aaa,wanna,macintosh,projector,std,herbal,retailer,vitamins,vid,panties,connectivity,algorithms,bbw,collaborative,fda,turbo,thats,hdtv,asin,spotlight,reset,expansys,connecting,logistics,kodak,danish,scenario,fs,approx,symposium,nn,weekends,screenshots,deviant,adapters,macro,mandatory,syndication,gym,kde,viewer,signup,cams,receptor,piss,autos,deployment,proc,directive,fx,dl,starter,upgrades,tapes,governing,retailers,ls,cbs,spec,realty,instructional,phpbb,permissions,biotechnology,outreach,lopez,upskirts,debug,boob,exclude,peeing,equations,bingo,spatial,respondents,lt,ceramic,scanners,atm,xanax,eq,unavailable,assessments,cms,footwear,beijing,utils,phys,sensitivity,calgary,dialog,wellness,antivirus,previews,pickup,nascar,mega,moms,addiction,chrome,ecology,botswana,nav,cyber,verizon,enhancement,clone,dicks,lambda,baseline,silicon,beatles,soundtrack,lc,cnn,lil,participant,scholarships,recreational,electron,motel,sys,solaris,icq,yamaha,medications,homework,advertiser,encryption,downloadable,scsi,focuses,toxic,dns,thumbnails,pty,ws,bizrate,sox,gamespot,wordpress,vulnerability,accountability,celebrate,zoophilia,univ,scheduling,therapeutic,travesti,relocation,np,competitions,tft,jvc,vibrator,cosmetics,concentrations,vibrators,estonia,dt,cgi,showcase,pixel,focusing,viruses,gc,stickers,leasing,lauren,macromedia,additionally,nano,copyrights,mastercard,updating,kijiji,conjunction,cfr,validation,cholesterol,slovenia,folders,routers,starsmerchant,arthritis,bios,pmc,myspace,theorem,nb,stylus,topless,structured,jeep,mba,reload,distributors,levitra,mono,particles,coordinate,widescreen,squirting,rx,apps,gsm,rebate,meetup,ddr,rec,forecasts,sluts,ciao,ampland,chem,shopzilla,payroll,cookbook,uploaded,americas,connectors,twinks,techno,elvis,latvia,jd,gpl,irc,dm,bangkok,photographers,infections,brisbane,configured,amino,clinics,mls,saddam,threesome,handjob,transexuales,technician,inline,executives,audi,staffing,cognitive,closure,ppc,volt,div,playlist,registrar,jc,cancellation,plugins,sensors,freebsd,acer,prostores,reseller,dist,intake,relevance,tucson,swingers,headers,geek,xnxx,hormone,childrens,thumbzilla,avi,pichunter,thehun,columnists,bdsm,ide,valium,rpg,cordless,pd,prot,trivia,adidas,tgp,retro,livesex,statewide,semiconductor,boolean,diy,interact,olympics,identifier,worldsex,jpeg,startup,suzuki,ati,calculators,abs,slovakia,flip,rna,chrysler,plumbing,nuke,projectors,pharmacies,ln,introducing,nicole,latino,uc,asthma,developmental,zope,regulated,gmbh,buf,ld,webshots,sprint,inputs,genome,documented,paperbacks,keyboards,eco,indie,detector,notifications,msgid,transexual,mainstream,evaluating,subcommittee,suse,mf,motels,msgstr,volleyball,mw,adipex,toolbox,ict,browsers,dp,surfing,creativity,oops,nipple,behavioral,bathrooms,sku,ht,insights,midwest,karaoke,nonprofit,hereby,containers,integrate,mobiles,screenshot,kelkoo,consortium,pts,seafood,rh,rrp,playboy,fg,mazda,roster,symantec,wichita,nasdaq,ooo,hz,timer,highs,ipaq,alignment,masturbating,comm,nhs,aye,visibility,reprints,accessing,midlands,analysts,dx,sk,locale,biol,oc,fujitsu,exams,aj,medicaid,treo,infrared,tex,cia,sublimedirectory,poly,dod,wp,naturals,neo,motivation,lenders,pharmacology,bloggers,powerpoint,surplus,sonic,obituaries,belarus,zoning,guitars,lightweight,tp,jm,dpi,scripting,gis,snapshot,caring,expo,dominant,specifics,itunes,cn,newbie,bali,sponsorship,headphones,volkswagen,marker,strengths,emirates,terrorists,airfare,distributions,vaccine,crap,viewpicture,volvo,bookings,minolta,gui,rn,abstracts,pharmaceuticals,andale,remix,thesaurus,ecological,cg,appraisal,maritime,href,benz,wifi,fwd,homeland,championships,disco,endif,lexmark,cleaners,hwy,cashiers,guam,preventing,compliant,hotmail,refurbished,activated,conferencing,trackbacks,marilyn,findlaw,programmer,vocals,yrs,foo,gba,bm,nightlife,footage,howto,entrepreneur,freelance,screensaver,metallica,headline,str,bahrain,academics,pubs,shemales,screensavers,vip,clicks,mardi,sustainability,formatting,nutritional,weblogs,timeline,rj,affiliation,nudist,ensures,sync,telephony,realtors,graphical,aerospace,meaningful,shortcuts,voyeurweb,specifies,logitech,briefing,belkin,accreditation,wav,modular,microphone,moderators,memo,kazakhstan,standings,gratuit,fbi,qatar,porsche,cayman,rp,tba,usgs,kathy,graphs,surround,lows,controllers,consultancy,hc,italiano,rca,fp,sticker,stakeholders,hydrocodone,gst,cornell,mailto,promo,jj,schema,catalogs,quizzes,obj,myanmar,metadata,floppy,handbags,ev,incurred,questionnaire,dept,euros,makeup,troubleshooting,uzbekistan,indexes,pac,rl,erp,gl,ui,dh,fragrances,vpn,fcc,markers,assessing,eds,roommate,webcams,webmasters,df,computational,acdbentity,handhelds,reggae,whats,rides,rehab,allergy,enzyme,zshops,condo,pokemon,amplifier,ambien,worldcat,titanium,contacted,cdt,recorders,casio,postings,postcards,dude,transsexual,pf,informative,girlfriend,bloomberg,beats,scuba,checklist,bangbus,lauderdale,scenarios,gazette,hitachi,divx,batman,hearings,calibration,eval,anaheim,ping,prerequisite,sao,pontiac,regression,trainers,muze,enhancements,renewable,passwords,celebs,gmc,hh,adsl,advisors,finals,fd,acrylic,tuner,asn,toddler,acne,listprice,libs,cadillac,malawi,pk,sagem,knowledgestorm,ppm,referenced,gays,exec,warcraft,catalyst,vcr,prepaid,electro,vietnamese,lexus,maui,handjobs,squirt,plastics,postcard,tsunami,internationally,psi,buses,expedia,pct,wb,smilies,vids,shakira,qld,dk,findarticles,routines,issn,podcasts,sas,ferrari,outputs,insulin,mysimon,ambient,oecd,prostate,adaptor,hyundai,xerox,merger,softball,referrals,quad,firewire,mods,nextel,rwanda,integrating,vsnet,msie,wn,liz,ccd,sv,burlington,researcher,kruger,viral,aruba,realtor,chassis,dubai,llp,pediatric,boc,dg,asus,techrepublic,vg,filme,craps,fuji,brochures,tmp,alot,benchmark,highlighted,antibody,wiring,ul,js,webpage,hostels,pn,wendy,diffs,mumbai,ozone,disciplines,nvidia,pasta,serum,motherboard,runtime,inbox,focal,bibliographic,incl,hq,propecia,nbc,samba,inspections,manually,wt,flex,mv,mpg,retrieval,cindy,lolita,carb,importantly,rb,upc,dui,mh,discrete,sexuality,polyester,kinase,televisions,specializing,pvc,blah,mime,motorcycles,thinkpad,cunt,feof,bunny,chevy,longest,tions,dentists,usda,workstation,flyer,dosage,urls,customise,marijuana,adaptive,enb,gg,fairfield,invision,emacs,jackie,cardiovascular,ww,sparc,cardiac,learners,gd,configuring,guru,convergence,numeric,kinda,malpractice,dylan,rebates,pix,mic,basename,kyle,obesity,vertex,bw,hepatitis,nationally,andorra,mj,waiver,specialties,cingular,bacterial,lf,ata,bufing,pam,dryer,nato,funky,secretariat,scary,mpegs,brunei,slovak,mixer,wc,sbjct,demographic,washer,springer,evaluations,helicopter,hk,powerseller,ratios,maximize,cj,workout,mtv,optimize,leu,namespace,align,peripheral,confidentiality,changelog,orgasm,condos,greensboro,tulsa,fridge,qc,simpsons,upgrading,pgp,frontpage,trauma,flashers,subaru,tf,programmers,pj,monitored,installations,spank,cw,motivated,wr,fioricet,rg,bl,vc,wx,figured,currencies,positioning,heater,promoted,moldova,paxil,temporarily,ntsc,thriller,apnic,frequencies,mariah,usps,bg,planners,intranet,psychiatry,conf,wma,aquarium,cir,looksmart,modems,paintball,prozac,acm,glucose,norm,playback,supervisors,ips,dsc,neural,hometown,transcripts,collectible,handmade,entrepreneurs,robots,keno,gtk,mailman,sanyo,nested,biodiversity,movers,workflow,voyuer,subsidiaries,tamil,garmin,ru,fuzzy,indonesian,therapist,mrna,budgets,toolkit,erotica,dts,qt,airplane,istanbul,sega,viewers,cdna,harassment,barbie,soa,smtp,replication,receptors,optimum,neon,interventions,internship,snowboard,beastality,webcast,evanescence,coordinated,maldives,firmware,lm,canberra,mambo,bool,cho,jumping,antibodies,polymer,immunology,wiley,bbs,spas,convicted,indices,roommates,adware,intl,zoloft,activists,ultram,cursor,stuffed,restructuring,simulations,cz,cleanup,crossword,conceptual,hl,bhutan,liechtenstein,redhead,tractor,unwrap,telecharger,safer,instrumentation,ids,groundwater,gzip,ricky,ctrl,theta,lightbox,swaziland,mediawiki,configurations,ethnicity,lesotho,rfid,retailing,oscommerce,nonfiction,homeowners,racism,vaio,gamers,slr,licensee,bisexual,rel,ign,installer,powershot,bestselling,insure,packaged,behaviors,clarify,activate,tg,pv,sandisk,vitro,cosponsors,hyatt,burundi,demos,btw,psychiatric,tittens,teenagers,grading,valentines,vonage,wetlands,quicktime,underwater,pbs,vanuatu,erotik,supportive,vw,targeting,preschool,dw,hm,jl,hg,megapixel,booklet,cancun,reimbursement,turnover,cheryl,radeon,italicized,chromosome,optimized,ffl,upgraded,colorful,popup,mk,garnet,ppp,oceania,formulation,fresno,handbag,bypass,ies,logout,boyfriend,hogtied,wl,clipart,detectors,newsgroups,spectra,mailbox,athlon,iq,landscaping,mol,korn,directv,viable,deviantart,qa,hunks,appellant,xsl,lithium,ctr,planting,alphabetically,facials,calories,airways,refill,reagan,kazaa,einstein,pornstar,vcd,jumper,majors,headsets,toxicity,sz,denim,greenville,scat,neighborhoods,buick,slipknot,mst,residual,bf,bash,ngos,storesshop,postgraduate,daytona,wastewater,constructor,technicians,debbie,issuance,sj,mbps,nationals,ij,alito,waterfront,diagnosed,biotech,turkmenistan,woodland,iranian,unsecured,kyoto,cis,eb,barcode,xd,regulator,txt,postcode,makefile,ansi,vicodin,shawn,suv,lacrosse,crafted,eritrea,bbq,wh,debit,dmx,edits,unwanted,xr,bn,noaa,lemma,kyrgyzstan,sensing,postgresql,kbps,trac,dolby,ecosystem,pkg,dashboard,nikki,technorati,esl,alzheimer,jk,wk,handler,semantic,globalization,atv,vga,atari,sch,reebok,mfg,jb,blogthis,inspirational,wilmington,faso,sdram,motherboards,blk,inherent,jw,tailored,vodafone,romanian,xt,ucla,celeb,assoc,palo,usability,backyard,novell,refunds,newsroom,tina,kia,taxpayer,fb,cola,boise,bsd,saab,refinancing,cert,buffy,doctoral,backpack,npr,identities,tajikistan,sheraton,snacks,booster,taxable,imc,ufo,linksys,dentistry,renal,fedora,nyse,guideline,freezer,pcr,bnet,binoculars,demographics,enroll,daemon,buddies,kc,crashes,outlines,steroids,pogo,konica,hotline,amps,accountants,coefficient,transvestite,upstream,digg,ladyboy,hussein,biochemistry,duplication,scottsdale,ninja,tj,avalon,voucher,tw,wheelchair,gw,epidemiology,pentagon,diabetic,stressed,libdevel,dvi,biomedical,gameboy,subset,gucci,https,websphere,cheney,zombie,recycled,followup,nih,hdd,bidders,simulator,exporters,ninth,mutant,ssh,authoring,specializes,irvine,olds,ramp,jakarta,tl,pgsql,malls,jensen,impairment,scooter,wap,mcgraw,lr,cheerleader,edu,lotion,substrate,mmc,ashanti,homemade,ukrainian,freshwater,topical,rms,isdn,coded,alcatel,suriname,parkway,femdom,palau,duff,ck,bonuses,scam,biking,microsystems,timeout,aerosmith,resellers,portfolios,ops,semantics,scarface,beige,auditing,rolex,amplifiers,coli,executable,pentax,restart,overstock,eps,hmm,explores,torque,memberships,renting,icann,ticketmaster,cdc,meridia,hsn,oncology,nf,woven,bloglines,audioslave,wikimedia,lipitor,remodeling,redhat,enom,haha,coordinating,holistic,salsa,encarta,childcare,dvr,cdn,soundtracks,napster,wong,debugging,rechargeable,engineered,jerseys,pw,superstore,hex,wg,blogroll,evite,micronesia,dreamweaver,diets,sauna,multiplayer,crt,caicos,qaeda,shareholder,kitts,tivo,deletion,ptr,macau,mudvayne,ceramics,freestyle,organizers,smartphone,cmd,hypertension,searchable,aguilera,servicing,counselling,ecards,acura,clit,cops,fedex,snowboarding,laserjet,cooker,lego,microbiology,internships,sgh,vectors,craigslist,hamas,shane,heaters,rdf,bj,visualization,newswire,hf,spermshack,brokerage,overtime,staind,wd,sourcing,filings,boeing,sizing,exceeded,presley,godsmack,labeling,whois,paradigm,msc,linguistics,snmp,standardized,liu,gta,nutrients,kosovo,barbuda,napa,abt,nickelback,lj,nazi,jenna,arrays,syllabus,rgb,rodriguez,animations,activism,fargo,chairperson,reged,leverage,sgt,anguilla,radisson,apc,hitler,handset,vulnerabilities,pga,activist,palestinians,ldap,prerequisites,maintainer,benq,lx,bv,knoxville,mentoring,pak,mos,didnt,classrooms,residency,deadlines,tk,bookshop,nonetheless,hifi,gf,forex,diagnostics,ew,dreamcast,tumors,vm,kyocera,nudes,rationale,hubs,pasadena,bissau,subway,hpa,fgets,citrus,cameltoe,reuse,sightseeing,therapies,widget,renault,comoros,suede,selector,gop,diaper,hotwire,ngo,pvt,atp,subtotal,coefficients,duplex,mvp,jh,analyzer,charset,clin,nutrient,zhang,underway,govt,cbc,excerpts,formatted,gorillaz,inhibitors,uu,prestigious,deploy,gameplay,autism,taxpayers,martinez,bombing,wwe,metrics,winxp,inability,goo,coronary,bldg,mediated,prom,scans,vaginal,isps,rookie,theatrical,interdisciplinary,kerala,enzymes,analytics,jacuzzi,lesbianas,parser,razr,jt,styling,snack,weezer,randomly,semiconductors,coca,acs,peugeot,bollywood,mentally,horoscopes,noun,xmas,silicone,cpa,dn,scoreboard,proliferation,squid,hw,customised,trilogy,hike,imdb,clic,ars,pharmacist,marley,typepad,xs,deliveries,recruiters,screaming,cygwin,gprs,png,pornography,robotics,chopped,contexts,init,svn,oslo,foreclosures,audits,pesticides,fave,residues,ashlee,viet,orbitz,invasive,helsinki,hardback,vuitton,nextag,inconsistent,narnia,alfa,twp,geoff,rename,atx,markup,breakthrough,ietf,beneficiaries,copier,uncategorized,xm,geforce,defaults,foreclosure,clarification,espresso,hendrix,homeowner,mib,tees,glu,winnt,tec,hydro,nonlinear,spokane,playa,gh,csi,radioactive,desserts,doi,socio,pcmcia,grooming,validate,nederlands,bst,filmography,outerwear,parse,dsp,implementations,attendees,toc,downstream,webcasts,accelerator,masterbating,flyers,tacoma,radiology,locals,mms,tungsten,typed,desc,datasheet,shutdown,xenical,computerworld,tattoos,peptide,sweatshirt,hassle,regents,gn,docket,dll,elsevier,nordic,privat,geometric,taxonomy,deli,intern,nsf,sata,xxxx,megan,allergies,bangalore,clutter,predator,xlibs,belgian,adolescents,djs,coventry,clamp,pricegrabber,cloning,args,madden,smugmug,visually,alright,laguna,limo,aligned,pesticide,transformers,avid,outpatient,lam,encrypted,wholesalers,coldfusion,dcr,shooter,switchboard,vince,fluorescent,cookware,lavigne,param,environmentally,gradient,ncbi,inserts,kvm,programmable,bibtex,chemotherapy,vr,dysfunction,livejournal,diazepam,rodeo,sampler,jovi,timetable,corrosion,positioned,checker,workstations,cathy,darren,cmp,udp,sts,milfseeker,sbc,midland,synchronization,informatics,oakley,rants,tarot,didrex,brenda,purdue,figurines,footer,maternal,jedi,seamless,ghetto,thr,panty,subunit,aires,commercials,regulators,influential,carlson,yy,benchmarks,ug,emi,retrieving,reactor,kiribati,telnet,biker,parked,financials,peanut,converters,nauru,dishwasher,rcs,neurons,ios,feminist,yds,ive,ecosystems,gadget,cctv,leukemia,deco,ticker,habitats,remover,incorporates,brasil,unicode,prod,spreadsheet,lowering,discography,encoded,researching,pediatrics,sushi,asap,onsite,mapquest,deleting,compilations,therapists,appealing,lifestyles,dst,swimwear,applet,pricetool,threesomes,quinn,daewoo,antigen,ultrasound,mgmt,procedural,cern,macros,msa,aussie,advisories,lendingtree,belmont,acad,bilingual,barbecue,localization,customization,gigs,indexing,lori,spacecraft,ivoire,montserrat,telecommunication,coatings,eureka,pcb,sdk,preparedness,systemic,playoffs,adaptors,forecasting,specialize,drm,enya,masterbation,tubing,bloomington,conditioner,plaintiffs,vanessa,nucleotide,bronx,listmania,middot,netgear,panda,crc,symbian,emailed,chf,constants,clr,isuzu,webring,redirect,interoperability,msrp,tuvalu,shampoo,neoplasms,artifacts,vac,pseudo,dinar,carat,microphones,nobel,galaxies,verlag,scrapbook,dummies,magnesium,pagina,kenwood,roundup,imac,faxes,plump,uss,wwii,methyl,campuses,ramada,tesco,dba,architectures,acdbline,getty,cdr,msi,prog,firewalls,tester,polling,fifa,bins,consumables,highbeam,msdn,statistically,mps,agp,cont,adverts,programmed,lohan,unclear,aromatherapy,nederland,stockton,clearwater,trustpass,topology,airborne,antennas,sundance,lifecycle,dhcp,trucking,iraqis,shortcut,racist,profitability,unc,fairmont,globally,aaliyah,reboot,newsgroup,audiovox,phuket,jf,metabolic,sarasota,billed,lim,toons,danielle,exc,relied,mesothelioma,trafficking,eff,bizjournals,michele,kk,cutie,creampie,seoul,printf,columnist,transplantation,jerome,nwt,rammstein,scrapbooking,sequential,uniquely,goodies,auth,gina,sugababes,rsa,rcw,whistler,airfares,huntsville,ths,layouts,servicemagic,herpes,newsgator,contractual,akron,bh,rebounds,compressor,samantha,khz,webmail,carcinoma,taipei,stance,aps,kumar,gemini,kinky,supervisory,ostg,kl,chiropractic,throughput,netbsd,misplace,serviced,opener,vaccines,jigsaw,jumbo,unspecified,jsp,turbine,percentages,lett,maths,probes,frustration,americana,complexes,varsity,insurer,croatian,multicast,certifications,pradesh,px,proton,allegedly,kaplan,linens,roast,testers,debuginfo,complainant,inhibitor,knowledgeable,jimi,hummer,telefonsex,putative,hyperlink,presario,motorsports,getaway,robbins,kimberly,unsure,dinosaur,tac,ashland,dlp,royce,sophomore,antibiotics,landfill,warehousing,filesize,celebrex,verisign,registrations,wavelength,slashdot,transvestites,cheerleaders,friedman,coolpix,blocker,tawnee,hud,mov,entrepreneurship,percentile,linkage,lh,ripper,afp,kd,accomodation,mcafee,counselors,competitiveness,burger,microscopy,hyper,madthumbs,linkin,gmail,utf,scooters,reserveamerica,organisational,ezine,reactive,clipboard,gamer,alexa,pollutants,directorate,savvy,uploads,terri,norms,implants,alibaba,hormones,hype,addr,nfs,urinary,institut,condoms,directives,zelda,fetal,dong,reportedly,edi,kudoz,replay,flavors,ig,quickcheck,ziff,placebo,lotto,textures,pid,dep,seagate,nanotechnology,toggle,emc,spacing,frameworks,mergers,filtration,gpa,cpus,incremental,corr,sbin,scalable,ji,intra,wetland,olson,methodologies,fremont,someday,sha,exporter,mri,hum,ifdef,killers,multicultural,lasers,dataset,savers,powerpc,steelers,enhances,fucks,relational,graffiti,cassettes,pussies,doesnt,tiff,cnc,refrigeration,houghton,countdown,decker,natl,extern,enron,codec,broadcasts,checksum,directional,breeders,lethal,decals,macs,archival,seismic,baccarat,mommy,teenager,smokers,declining,lineup,hotspot,bellevue,hj,req,gigabit,worksheet,allocate,aftermath,roach,continuum,feng,pep,nylons,chipset,msnbc,hillary,factual,carisoprodol,tutoring,spectroscopy,gemstone,psc,phonephone,unregistered,moto,gonzalez,dior,pops,osha,goldberg,preteen,bonding,insurers,prototypes,proactive,issuer,sponsoring,malaysian,easton,sentencing,bulldogs,worthwhile,ideology,cervical,tallahassee,userpic,attribution,acta,yep,iec,differs,starters,uml,bur,kris,sizeof,spi,regs,shinedown,standby,arin,unisex,wallets,identifiable,ethanol,cannabis,rsvp,dynamically,grenadines,constr,subtitle,librarians,manson,autocad,powerbook,swinger,infiniti,ppl,williamsburg,supp,snyder,budgeting,backpacks,resale,mikes,scalar,unresolved,hep,seiko,electromagnetic,arial,tos,zoofilia,hcl,validated,sco,annotate,joomla,helix,sx,env,biomass,phs,hierarchical,lesions,financed,surnames,reconditioned,allergic,rk,abn,eliminates,addict,matte,melanie,secunia,metering,genetically,zebra,runway,admits,chennai,ions,asshole,faroe,glendale,speedway,sweatshirts,yay,activex,logon,recruiter,popcorn,espanol,disadvantaged,trong,niue,ux,supermarket,mfr,boo,hmmm,genomic,helpdesk,refuses,afb,adhd,avian,exe,visas,matrices,anyways,xtreme,etiology,tcl,mellon,webmd,personalised,hospice,zerodegrees,qos,exhibitor,sportswear,recap,toddlers,astro,chanel,jabber,hgh,hx,rotate,fema,subwoofer,amortization,neurology,ack,radiator,competencies,hotspots,trainee,nielsen,podcasting,centennial,tuna,bluegrass,wipe,acronyms,autographed,loader,latency,themed,messy,dmc,ments,empowerment,replacements,subtitles,gcse,acupuncture,workload,highlighting,grassroots,gentoo,redevelopment,cellphone,sax,triggered,frontgate,routinely,asc,uploading,managerial,nsu,celine,finepix,wks,tonnes,hypermail,thunderbird,investigative,letras,bylaws,wmv,lao,facesitting,breastfeeding,mccartney,anglo,kathryn,randomized,motivational,gratuite,gerry,kappa,neuroscience,blender,blaster,remediation,decoder,genocide,heathrow,indy,pantera,sidebar,authored,snoop,winery,rbi,photon,overlay,rusty,pharma,fayetteville,champaign,fyi,xc,pakistani,ics,apa,bitches,urbana,diagnose,secsg,franco,announcing,trivium,amature,showroom,cx,swarovski,liter,akon,brendan,condosaver,amex,classicvacations,blackpool,fh,inuyasha,nominees,cuz,viewsonic,dryers,fujifilm,ams,hallmark,counterparts,paced,engl,asians,seether,milestones,parkinson,mclean,checkboxes,lobbying,mgm,cinemas,islander,encoder,importers,impressum,phe,maroon,kontakt,ers,kawasaki,licences,bose,fountains,clones,crossover,situ,specificity,runoff,osteoporosis,approvals,bea,jukebox,nexus,cancers,tango,melting,garner,aba,karate,qb,optimizing,switchfoot,coldplay,vioxx,tty,bsc,celexa,guitarist,symmetric,kuala,bbb,geeks,jg,repec,insightful,unrated,diva,adsense,exemptions,integrates,csa,bookstores,cimel,hvac,leica,agendas,nws,busch,armani,bipolar,menopause,inbound,shortlist,gainesville,tiava,eclectic,headphone,regimes,readme,binder,xemacs,helicopters,ngc,intercontinental,workspace,customizable,softcover,realtime,electrons,subsystem,appl,kinetic,caffeine,xf,nib,httpd,slac,calorie,graphite,stroller,bowel,sweaters,mafia,futuna,predictable,susceptible,insest,skyline,sulfur,scams,lipid,tao,quot,ritz,networked,localhost,cabling,stills,perimeter,biased,cardiology,playoff,sti,chiang,payload,merrill,oldsmobile,grilled,misty,conserved,searchsearch,rewrite,vending,keygen,janeiro,heh,transexuals,prentice,cumbria,diaz,vegan,congressman,recombinant,ubuntu,superstar,closeout,corel,kayaking,synergy,eta,backpacking,accidentally,bonded,sticking,dudley,osama,oprah,inflatable,beers,glassware,amc,kos,coursework,kayak,mayotte,repetitive,gears,orbital,musicals,lithuanian,amatuer,profiling,reps,hn,sequencing,panoramic,deskjet,rhino,polynomial,tau,nsa,stakeholder,signifies,stochastic,psu,santana,kidding,swansea,airmail,problematic,roadmap,ogg,lesbo,farrell,acknowledgements,tnt,skincare,heroin,mandated,workbook,xslt,hogan,omg,sulfate,timeshare,oldies,complaining,debra,cdrom,cle,thrillers,fortran,timeless,spouses,vv,ninety,tyr,cues,bioinformatics,chung,subpart,scheduler,hypnosis,kat,cornerstone,recycle,sos,lsu,gao,applicability,volatility,uid,hoteles,fav,disneyland,umd,gdb,bro,offs,listserv,fab,cond,tokelau,conformance,diecast,bittorrent,frankie,oa,iu,vf,alprazolam,collaborate,positives,hunk,allocations,lymphoma,rpc,freebies,frontline,thb,tele,imap,winamp,stoke,idg,polymers,grills,phat,zz,escrow,lumpur,dds,infospace,surfers,kauai,licensors,cpc,stresses,webhosting,peoria,peek,alr,ipsec,bournemouth,sudoku,undef,campground,sars,cme,predictive,vlan,aquaculture,sendmail,redesign,nitro,jackpot,cortex,entitlement,secs,mixers,accountancy,policing,michaels,ecc,kj,similarities,kv,hipaa,neutron,duluth,dogg,folklore,dimm,acoustics,pensacola,crs,condominium,wildcats,exhibitors,ssi,redwood,invoices,tyres,westwood,gly,estonian,bomber,songwriter,shania,coaster,typedef,strippers,macmillan,aac,woodworking,cbd,pricerunner,afl,catalytic,bethesda,privatization,sourceforge,sanford,membranes,testosterone,nunavut,biochemical,lennon,suitability,lara,kx,invitational,handcrafted,aftermarket,fellowships,freeway,digitally,hatchback,rfp,coa,subclass,rutgers,sampled,deploying,interacting,roanoke,treadmill,fiberglass,osaka,personalize,broncos,jorge,classifications,diggs,rafting,sle,jv,safaris,contaminants,scr,mitch,mailer,liners,asheville,quinta,kristin,bistro,lw,voodoo,caching,volts,excalibur,bots,sinatra,interpersonal,traumatic,ringer,zipper,meds,briefings,siblings,adversely,pitcairn,pdb,onboard,nucleic,telecoms,hehe,celeron,lynne,invariant,challenger,redistributed,uptake,newsweek,geared,svc,prada,tycoon,maxtor,plone,dcp,biochem,pte,ors,compactflash,antibiotic,vanderbilt,cps,overweight,metasearch,taliban,maureen,trekking,coordinators,digi,shoreline,westin,middleware,mips,roundtable,dementia,levine,ripencc,shoppy,filesystem,pow,docking,guidebook,atreyu,kylie,pilates,backstreet,packers,localized,lic,docume,xy,fte,stl,yd,archiving,disconnect,multilingual,gsa,immunization,ciara,cumming,interviewing,categorized,cmos,transmissions,receivable,ronnie,implant,playlists,thematic,brentwood,correctional,katz,jojo,buffers,talkback,servings,kobe,baylor,otc,frustrating,ssa,zeta,dinnerware,sclerosis,emotionally,carbohydrate,estrogen,odbc,ipods,openbsd,federated,shui,rockford,staging,statistic,torino,schizophrenia,predators,mpi,adhesives,inventories,uf,brokeback,dumping,ow,econ,footjob,warez,magenta,tagging,overly,triggers,constructs,impedance,dragonfly,underoath,refundable,hbo,billboard,huang,sportsbook,layered,neurological,subs,watchdog,starbucks,ibook,viability,kh,filler,smiley,genomics,yi,yum,researched,copiers,ovarian,airplanes,cello,wlan,sweepstakes,antigens,midtown,stabilization,kinetics,cocos,impacted,rumsfeld,beanie,thurs,spaced,freq,segmentation,soaps,courthouse,entrepreneurial,lebanese,psycho,maharashtra,ricoh,nrc,chavez,asst,overload,vikings,kanye,bootstrap,wtf,humane,scm,travelocity,fno,twink,nortel,koh,affiliations,pussycat,appropriated,escherichia,mallorca,reversible,spd,oj,unclassified,bookshelf,htdocs,fps,initialization,expat,raider,farmington,timers,enrolment,glibc,lawmakers,larson,photosmart,centrally,acl,luv,dealership,eyewear,bakersfield,decal,addictive,clarinet,fiona,vn,gigabyte,dbz,rainforest,federally,macos,multinational,pornstars,nope,evo,aspirin,spoilers,machining,malibu,gatwick,shaun,redundancy,emo,detox,skateboard,automate,drosophila,branson,ortho,appraisals,flashes,lakewood,drupal,prac,carers,kramer,usaid,idc,keypad,richland,microbial,adc,caregivers,quark,zyban,electronica,mitochondrial,grinder,angie,octet,wj,cre,dinosaurs,mccoy,vibe,snapshots,ubc,meth,trendy,inpatient,filming,fread,backend,cartier,ageing,containment,keynes,protections,aliases,maximizing,handsfree,tomcat,walmart,interestingly,jules,ernie,elem,organisers,pissed,nite,mckenzie,lenox,darussalam,genital,mcse,cajun,csu,algebraic,astm,kristen,fsa,sgd,chromatography,overdose,nad,gallagher,mueller,cao,ladyboys,orgasms,plantronics,ftd,freezers,ibiza,reese,digimon,gastrointestinal,inspiron,pagerank,asm,smb,contrib,blu,matlab,netware,bse,megapixels,retriever,svalbard,pixar,dhtml,winme,func,gamespy,standalone,antitrust,equine,bros,proto,jared,tehran,dal,anesthesia,filemaker,libtool,wrongful,signage,psy,encode,admins,moc,dau,alvin,accolades,raton,stefani,infertility,servlet,collage,aces,depeche,benchmarking,xxl,teleflora,bankruptcies,gauges,blueprint,mccain,spiderman,bridging,flick,datum,canceled,empowering,ymca,facilitator,bos,macworld,wwf,galveston,rockville,banff,smc,lq,serv,ipo,tek,ipc,timestamp,musica,bib,stevie,rivera,dermatology,sandbox,mdt,pinkworld,cambridgeshire,premiership,luton,conftest,recursive,registerregister,fluorescence,kosher,additives,marketed,mandrake,camper,cpr,liquidity,lasik,galactic,merchandising,ombudsman,registrant,firefighters,placements,ih,elec,levin,academia,amiga,descriptor,pimp,gimp,cyclic,swimsuit,morphology,versace,printprinter,condom,westerns,dodgers,litre,correlations,textual,handsets,gandhi,inks,diarrhea,seahawks,mondays,insertions,itk,kms,couture,ativan,summarize,savesave,laminated,citrix,backups,turismo,animalsex,mayhem,washers,grep,xeon,polymerase,optimisation,easyshare,cvsroot,joplin,dialup,nx,thn,afro,biosynthesis,prosecutors,alloys,getaways,miquelon,wonderland,zine,conn,truman,jin,asynchronous,carla,messageslog,clearinghouse,dwi,facilitates,specialised,ramones,everquest,bernstein,skis,calc,marketers,itc,lipstick,brennan,kpx,saturation,stamford,alamo,comcast,hyderabad,attn,spaghetti,tues,boogie,abramoff,ean,fla,utilizes,lesbos,fasteners,sakai,lk,rajasthan,committing,inlog,laminate,earring,aggregator,datatype,postnuke,ergonomic,dma,sme,kp,refills,ibis,yyyy,unidentified,atl,ims,tractors,vx,spp,coed,audiobooks,sheikh,gk,hernandez,kiwi,ohm,truste,acreage,mfc,fingerprint,sorority,audition,mca,plano,nmr,lortab,leveraging,psychotherapy,mso,htm,stokes,lakers,ats,saxophone,cocktails,steroid,communicator,horticulture,dhs,resets,util,ordinator,bono,acronym,veritas,breathtaking,streamline,crowne,brunch,pundit,figurine,mutants,cyberspace,expiry,exif,goldman,msu,inning,fries,initialize,tlc,sybase,foundry,toxicology,mpls,bodybuilding,fta,nostalgia,acetate,pls,bmx,saratoga,terminator,badminton,cyan,cory,stacey,serif,portability,fsb,yearbook,lubricants,cns,hv,alameda,aerosol,mlm,clemson,goin,philly,coolers,multilateral,costello,audited,galore,aloha,dehydrogenase,aq,gx,postfix,fj,altavista,exponential,shi,gev,secretarial,todays,toaster,cater,omb,bac,kart,cpl,sbs,putin,questionnaires,profileprofile,serials,equivalence,vaughn,aviv,condominiums,schematic,liposuction,swf,apoptosis,pneumatic,sniper,vertices,additive,professionalism,libertarian,rus,washable,normalized,uninstall,scopes,fundraiser,troll,teamwork,auditions,refrigerators,redirected,middletown,widgets,ontology,timberland,mags,videogames,concluding,vallarta,chopper,pinball,pharmacists,surcharge,tbd,ipb,latvian,asu,installs,malware,tsn,nguyen,horsepower,algae,sarbanes,alcoholism,bdd,csc,maximal,prenatal,documenting,scooby,moby,leds,mcbride,scorecard,gln,beirut,conditioners,culturally,ilug,janitorial,propane,appendices,collagen,gj,nigerian,ect,sto,makeover,esc,dragonball,chow,stp,cookbooks,spoiler,ari,avr,lamborghini,polarized,baroque,ppt,jihad,sharepoint,cts,abit,abnormalities,qtr,blogshares,motorsport,septic,citroen,gz,predicts,palmone,expedited,curricula,wmd,pms,raped,configurable,denon,sloan,flawed,cfs,checkpoint,rosenberg,ffi,iriver,callaway,tcm,dorm,lakeside,marquette,interconnection,gilmore,prc,taxis,hates,gamefaqs,cookers,ultraviolet,afc,haitian,dialing,unicef,identifiers,mentors,steiner,licensure,tammy,tz,dcs,soybean,affirmed,posix,brewers,mci,retractable,quickbooks,townhouse,stormwater,sgi,coco,pipelines,rudy,tia,congrats,msds,arafat,srl,splitter,wai,standardization,lakeland,thiscategory,classy,acxiom,triathlon,kbytes,thx,textured,doppler,entropy,snooker,unleashed,lux,nairobi,importer,isl,orioles,rotor,theres,ttl,dreamy,backstage,qq,lubbock,suvs,bmp,gasket,firearm,dss,bam,closures,participatory,micron,budgetary,pcos,ssk,pantie,bombers,spongebob,markus,ideological,wellbutrin,rheumatoid,swindon,cabernet,sek,dsm,understandable,shea,doctorate,binaries,slovenian,showdown,simone,spc,potentials,tempe,hklm,cores,borrowers,osx,bouvet,multifunction,nifty,unveils,skeletal,dems,oahu,rollover,infos,lds,thanx,anthrax,shockwave,westlife,bpm,tamiflu,touchdown,planar,adequacy,iomega,xa,fetisch,eastman,franchising,coppermine,ged,ecard,ue,kn,ferries,faqfaq,muller,fudge,extractor,usergroupsusergroups,svenska,pcg,myocardial,everytime,callback,encompasses,sander,conductivity,atc,vicki,danville,sedona,skateboarding,lexisnexis,deepthroat,outback,reiki,biopsy,peptides,awakenings,pim,sediments,appraiser,smp,gaussian,hustler,tensions,linkages,separator,schultz,adr,concordia,recon,fileplanet,royals,globalisation,borland,pastel,nottinghamshire,strollers,uninsured,picasso,mcgill,discriminatory,headquartered,travelodge,empower,hurley,pedals,teak,bitmap,migraine,sli,enum,lamar,aes,methane,pager,snp,aclu,westchester,nimh,quilting,campgrounds,adm,densities,isd,tional,turnaround,navigational,stargate,saskatoon,cen,minh,fingertips,sba,rockwell,vl,pepsi,rea,oversized,snr,sibling,ecs,burberry,nrs,cfa,inhibit,pps,screenplay,unabridged,ntp,endpoint,labelling,synchronous,heartland,cafeteria,outfitters,opp,homelessness,opengl,efficiencies,blowout,tickboxes,oversee,thresholds,isnt,waveform,deficits,flair,applegate,whitewater,tableware,bernie,workgroup,clement,cli,robotic,mana,mississauga,dialysis,filmed,staten,carole,schwarzenegger,summarizes,sludge,crypto,christensen,heavyweight,lps,zach,pdp,phantomnode,comptroller,scalability,creatine,embl,minimizing,gpo,dq,relativity,mojo,econo,shapiro,rituals,pq,ub,epoxy,watercolor,uncensored,trainees,tori,effluent,infousa,storytelling,polarization,bombings,smes,ionamin,fuckin,charlottesville,xu,aniston,barred,equities,feeders,jboss,mobil,scrolling,diode,kaufman,aloe,buckinghamshire,medford,underlined,whores,gemstones,bmi,viewpoints,exim,appalachian,dealings,phillies,ramblings,janis,centric,optionally,nightclub,geophysical,fictional,golfing,rubin,handlers,topeka,openoffice,bugzilla,linus,taco,mcsg,humboldt,scarves,mla,repertoire,emeritus,macroeconomic,gundam,adaptec,tailed,voyer,hostname,excl,bx,arr,typo,merchantability,autodesk,jn,winged,attacker,catcher,haynes,siyabona,inverter,abi,motivate,mackay,bridgeport,assessor,fullerton,cpp,blockbuster,dz,amarillo,pixmania,pathfinder,bonsai,windshield,tomtom,spf,croydon,convection,jdbc,debugger,boing,ancillary,pointless,alibris,factoring,gyms,inhalation,faucet,bitpipe,arguably,techs,electives,walkman,midget,quan,commissioning,experimentation,saltwater,cpi,nis,wacky,sgml,anemia,biting,reits,savanna,crn,travestis,mmf,cancellations,paging,coe,nudists,fac,asean,airsoft,bontril,proliant,keeling,zh,accesses,jive,bullshit,casper,libstdc,xpress,datasets,webdesign,nicotine,comeback,gannett,curricular,downtime,takeover,lolitas,thessalonians,upto,joaquin,transistor,spotting,wagering,everest,disregard,hanger,outkast,pitbull,rtf,fairview,hires,alienware,mainframe,indo,compilers,guinness,heartbeat,blazer,timezone,merck,tanya,bmc,eia,colleen,bbbonline,participates,syndicated,lexicon,integers,zirconia,shortages,plumbers,jfk,raf,igor,hama,patton,pei,surfer,diapers,eas,waco,physiol,adp,outbound,breakout,fakes,stderr,kev,fomit,injections,remortgage,yogurt,complies,workaround,polytechnic,uber,shoppe,berlios,csr,penthouse,synthase,pistons,emule,sauvignon,bayer,carrera,dvb,cation,scientology,cdma,maxi,msm,rac,feminism,topps,webinar,dewalt,turnout,bruins,clamps,firefly,tabletop,monoclonal,wholesaler,typekey,partnering,mage,sqrt,israelis,cdp,headlights,monophonic,proquest,sergio,swapping,mev,particulate,bedfordshire,rockport,nist,negotiable,subcategories,quarterback,sudbury,hectares,upscale,scrabble,sdn,mta,docbook,kiosk,firstgov,hoodie,hoodia,payout,clinically,metacritic,obligated,decoding,presenters,teal,epstein,weblogic,ity,covington,esd,interconnect,chinatown,mindless,purifier,kz,greedy,rodgers,gloryhole,suppl,hotjobs,downing,gnd,libc,societal,astros,halogen,wyndham,osu,tuesdays,utp,superpages,coaxial,jpy,liam,sesso,arabidopsis,argv,hanoi,ccm,faucets,ballistic,payouts,rockin,supermarkets,bmg,nacional,csv,telstra,contraception,polaroid,underage,cardio,timeshares,atk,qi,logger,kool,oki,birding,detainees,indi,lymph,barrie,pollutant,closeouts,tolkien,undp,jbl,weekday,homecoming,increments,kurdish,chromium,mccormick,pcm,confrontation,shreveport,grower,frederic,unpredictable,dtd,capacitor,burnett,hilfiger,mda,litres,moroccan,nightwish,hess,wheaton,motorized,subgroup,chevelle,vets,assays,ramon,longhorn,backdrop,aerobic,vgroup,thursdays,dansk,tenerife,mayen,oldmedline,dunlop,caa,modernization,xe,fourier,businessman,watersports,lucent,commuter,orthopedic,hhs,tyrosine,shenzhen,initiating,grabs,erickson,marlin,casserole,canoeing,cca,ophthalmology,geile,clubhouse,licensees,evaluates,svg,protesters,fernandez,mvc,sleazydream,patti,mz,sennheiser,sheehan,maven,commute,staged,transgender,customizing,subroutine,pong,hertz,myr,bridgewater,firefighter,propulsion,westfield,catastrophic,fuckers,blower,tata,giclee,groovy,reusable,actuarial,helpline,erectile,timeliness,obstetrics,chaired,agri,repay,prognosis,colombian,pandemic,mpc,fob,dimage,fetus,determinants,durango,noncommercial,opteron,superannuation,ifs,haas,wimbledon,documentaries,mpa,rao,remake,arp,braille,physiopathology,seperate,econpapers,arxiv,pax,kalamazoo,taj,sinus,maverick,anabolic,allegra,lexar,videotape,educ,amplification,larsen,huron,snippets,conserv,dustin,wsop,composites,wolverhampton,banning,cpt,gauteng,ftc,watertown,pathogens,mft,uefa,jacking,radiohead,ooh,subsections,definately,bod,yin,tiki,homepages,handouts,cpm,marvelous,bop,asnblock,stretches,biloxi,indymedia,clapton,beyonce,smf,nabble,intracellular,infoworld,boyz,waltham,geisha,dblp,briefcase,mcmahon,cq,mcgregor,modal,marlboro,grafton,phishing,addendum,foia,kirsten,yorker,memberlistmemberlist,gam,intravenous,ashcroft,loren,newsfeed,carbs,yakima,realtones,xtc,vdata,interpro,engadget,tracey,wac,darfur,fragmentation,behavioural,kiev,paranormal,glossaries,sonyericsson,dex,emoticons,carbohydrates,hms,norwood,appetizers,webmin,stylesheet,goldstein,wnba,englewood,asf,hottie,stripper,pfc,adrenaline,mammalian,opted,meteorology,analyzes,pioneering,ctx,spreadsheets,regain,resize,medically,tweak,mmm,alicante,graders,shrek,universidad,tuners,slider,cymru,fprintf,irq,dads,sdl,ebusiness,hays,cyrus,courtroom,baht,relocating,synth,filthy,subchapter,ttf,optimizations,infocus,bellsouth,sweeney,aca,fpo,layup,laundering,fre,nazis,cumfiesta,newbies,mds,piles,vaginas,bezel,avatars,twiztid,facilitation,ncr,xb,voc,rts,applets,pdfs,cac,teh,undercover,substrates,evansville,joystick,knowledgebase,forrester,xoops,rican,uptime,dooyoo,spammers,nuclei,gupta,tummy,axial,aest,topographic,westport,majordomo,wednesdays,burgers,rai,watchlist,campers,phenotype,countrywide,affirm,directx,resistor,bhd,audubon,commentsblog,snowmobile,publ,cpg,subparagraph,weighting,rectal,mckinney,hershey,embryos,garages,sds,urology,aforementioned,rihanna,tackling,obese,melvin,collaborations,isolates,velcro,worksheets,avaya,srs,wigan,hua,abba,qd,orig,huskies,frey,iz,loyola,gartner,xda,strapon,chaser,astra,expasy,overdrive,ripley,phosphorylation,cfo,depletion,neonatal,qr,mclaren,rowling,vhf,flatbed,golfers,lira,technics,damien,clippers,spirited,gv,staa,recharge,openid,sassy,demux,ribosomal,tdk,filmmakers,transnational,paralegal,spokesperson,fha,teamed,preset,iptables,pocketpc,nox,jams,pancreatic,tran,manicures,sca,tls,prweb,holloway,cdrw,plz,nadu,underwriting,rulemaking,valentino,prolyte,millenium,collectable,stephan,aries,ramps,tackles,dsa,walden,catchment,targus,tactic,ess,partitioning,voicemail,acct,shimano,lingere,parentheses,contextual,qwest,jira,cerevisiae,dyson,toxins,camaro,cryptography,signalling,daycare,murakami,merriam,scorpio,attr,emp,ultrasonic,ashford,intergovernmental,paranoid,dino,xvid,dmoz,ivtools,barron,snorkeling,chilean,avs,suny,gifs,qualifier,hannover,fungal,ligand,aust,peoplesoft,freelists,coastline,omit,flamingo,deformation,orf,pfizer,assembler,renovations,genbank,broadcasters,employability,noodles,retardation,supervising,freeport,lyme,corning,prov,dishnetwork,amg,claremont,moo,cpe,childs,bizkit,blogosphere,endocrine,resp,carlsbad,ammo,bling,chars,mcguire,utilisation,rulings,sst,geophysics,slater,broccoli,foreach,oakwood,mcgee,kissimmee,linker,tetris,tds,synchronized,hsbc,shellfish,astoria,trajectory,epsilon,knowles,astrophysics,hansard,lai,authorisation,vampires,relocate,nerd,dac,glazing,provisioning,mnt,expandable,maserati,bender,reliably,fas,sendo,hasbro,corba,polski,multidisciplinary,ventricular,petersen,bans,macquarie,pta,poy,mao,transferable,yummy,momma,lehigh,concordance,greenberg,trish,electrodes,svcd,cron,darth,cramer,yup,ching,melanoma,thug,yugoslav,occ,cpan,bizjournalshire,tco,shaver,grammy,fibrosis,opel,hummingbird,ported,eeo,polyethylene,parametric,awarding,dkk,superbowl,sse,haskell,flatware,skid,eyeglasses,fenton,polaris,formulations,bgp,parenthood,latinos,artworks,doherty,dnc,bci,allegheny,arenas,aaaa,compressors,exclusives,lounges,consultative,lst,ais,conveyor,normative,surg,rst,longtime,ecm,mckay,spe,solver,ani,lacie,solvents,kudos,jens,creams,poo,handbooks,agm,shawnee,crowley,butalbital,artifact,mdot,coldwell,qs,depts,veterinarian,merseyside,cso,krona,disseminate,puget,coasters,geologic,fleetwood,feldman,endocrinology,replicas,polygon,mcg,kwazulu,servo,riparian,guelph,tenuate,curator,jaime,mower,gamestats,lvl,faxing,meyers,testsuite,stressful,extranet,remastered,teac,neg,rma,eastwood,handspring,gerber,duran,aquarius,stencil,srp,scifi,redirection,showcases,hmv,refinery,abort,drs,schroeder,indent,chardonnay,removals,antrim,accelerating,guesthouse,bz,insiders,duvet,decode,looney,brigham,mts,jewelers,juneau,dilution,veterinarians,colourful,grids,sightings,binutils,spacer,microprocessor,deloitte,claiborne,clie,cdm,spills,assistive,chronograph,refunded,sunnyvale,spamcop,lovin,embracing,minimise,salinity,nbsp,specialising,handout,routledge,ramirez,haiku,paisley,telemarketing,cutoff,visuals,ccs,breads,seg,martina,mclaughlin,headlight,kemp,sla,pipermail,sonneries,clinicians,entertainers,tripp,peterthoeny,blockers,stash,jamaican,semen,endogenous,memorex,showtime,narcotics,oceanfront,flange,realplayer,mcc,mpaa,gogh,allentown,romero,bnwt,predefined,buzznet,melodic,isi,naics,transgenic,axim,brookfield,endorsements,viscosity,cve,bengals,estimator,cls,concurrently,leafs,electrician,mayfield,ftse,samui,bleach,unauthorised,wolverine,individualized,ecn,raffle,shredder,embedding,hydrology,mascot,lube,launcher,mech,primers,caregiver,lupus,sachs,qtek,oy,twn,keane,gator,memberlist,utd,nordstrom,roseville,dishwashers,walla,remixes,cozumel,replicate,taped,mcgrath,biometric,incubation,aggregates,wrangler,asymmetric,cytochrome,xfm,sps,shure,mcs,donating,antec,giveaway,cmc,alyssa,cnt,renter,vmware,patel,honeywell,nightclubs,barrington,luxor,caterers,capacitors,rockefeller,checkbox,itineraries,reagents,christoph,walkers,eek,ensembl,weekdays,computations,wineries,vdc,booker,mattel,diversification,wsdl,matic,xyz,antioxidant,esrb,archos,semesters,naruto,storyline,melrose,streamlined,analysing,airway,iconv,commas,vicky,helvetica,ssp,submitter,cambria,icp,manifestation,subsets,blazers,jupitermedia,merritt,triad,webpages,yp,clinique,fitch,charting,ugm,fixation,bsa,lenovo,alamos,leach,gravitational,cyrillic,prevacid,designee,sunni,netflix,monoxide,groupee,hardin,colorectal,outage,chunky,raptor,ima,coulter,iain,mtn,pbx,quantify,dmesg,elfwood,substitutions,lancome,galleria,inv,hillsborough,booklets,pln,cin,msp,gluten,spanked,orthopaedic,medi,nrt,obispo,minogue,turbines,notepad,crappy,golfer,afs,receivables,scripps,livermore,cirque,ost,marxism,escondido,diffraction,aha,outlining,subtract,bosnian,hydration,havent,preferential,dre,interns,quotas,methodological,aarp,gettysburg,iseries,menlo,walkthrough,bikinis,aopen,bookcrossing,addicts,epithelial,drastically,clarks,groupware,matchmaking,dict,descriptors,aeronautics,radiography,norsk,nps,afr,expr,ejb,refereed,afi,toxin,poynter,filmmaker,grounding,smartphones,calvert,fiduciary,bayesian,saccharomyces,cfp,humps,osi,zimmerman,javier,romantics,trimmer,bookkeeping,hmo,hikes,kickoff,magick,hillsboro,blm,fractal,mtg,guildford,twill,therapeutics,disruptive,kicker,protease,abrams,moreno,newsforge,timex,duffy,racers,cma,pairing,kirkland,gujarat,dkny,catfish,doubletree,brink,transex,tdd,hotpoint,anthologies,retirees,dcc,btu,investigates,chelmsford,anonymity,gotham,lyle,pinot,responsiveness,gazetteer,jacobson,kda,imitrex,monash,binghamton,connolly,homology,rpms,psychedelic,gyn,rhinestone,ely,quadratic,philharmonic,dynamical,cantonese,quran,turnovr,keychain,shakers,inhibited,lexical,openssl,ugg,mathematica,karachi,missoula,abilene,fdid,snes,swat,pune,trashy,expended,webct,pvr,handycam,zn,strategically,dms,anus,dnr,deputies,emergent,erika,authenticate,aligning,nautilus,doulton,rtp,dracula,umm,modding,eap,shaman,letra,mandriva,seti,extracellular,jaipur,stockport,eiffel,plywood,dnp,morbidity,wimax,effexor,binders,custodial,combi,integrator,sonnerie,teri,sectoral,trombone,postsecondary,rbd,ambulatory,lookin,xff,camouflage,beckham,dispensers,firebird,qu,showbiz,hbox,waikiki,lng,pds,antiqua,boxers,asics,barbeque,workouts,ini,mrc,seamlessly,ncc,girlfriends,songbook,hepatic,copeland,swanson,aquifer,ldl,pgs,xga,svensk,stereotypes,marlins,shelly,exiting,saginaw,polyurethane,seks,textus,johansson,spraying,hamburger,reactivity,lieberman,windchill,storefront,eof,codeine,tetex,cheerleading,wellbeing,pkwy,hairdryer,punitive,exon,outsource,thier,siebel,captions,kf,chromosomes,emailing,manic,novotel,ndp,transmitters,nicola,minidv,collaborating,tuxedo,receptus,michelin,bicycling,itt,blueberry,schumacher,socioeconomic,hamster,bushnell,ergonomics,finalize,lumens,sudanese,softpedia,iff,faceplate,packer,ibs,broward,globus,pir,reco,softcore,referencing,typ,guangzhou,nader,militants,resins,cougar,montrose,surreal,irradiation,redesigned,raster,credential,checklists,quirky,oscillator,finalists,encrypt,mgt,sneakers,incontinence,pajamas,murdoch,dali,lubricant,quests,mgr,outsourced,jody,plasmid,schiavo,unbeatable,upstate,lymphocytes,repayments,transsexuals,fueled,mex,xanga,sverige,extrait,pelvic,monochrome,activating,antioxidants,gynecology,mythtv,probabilistic,cooperating,calibrated,phased,godzilla,eweek,airbus,simplex,webhome,aerobics,sabrina,condor,gated,gaap,sasha,ebayer,hmc,bitrate,karnataka,amish,ffm,duh,hyperlinks,clitoris,hse,cribs,reliant,subcontractor,fendi,giveaways,wah,psych,hydrochloride,magnification,twelfth,proponents,priceline,ecco,backpackers,kohler,irb,initialized,ava,silverado,amr,ecu,psychiatrist,lauder,soldering,phono,crd,daryl,trp,lehman,daihatsu,grantee,enhancer,anglers,rottweiler,filefront,visualize,psd,adb,hoses,bidpay,ias,turntable,screenings,pivotal,pai,heuer,fic,nix,lineno,fdi,provo,checkins,plating,lycra,planck,yugioh,reactors,npc,kingsley,careerbuilder,gillette,fluoride,stacking,cochran,suomi,sissy,trang,calculates,thunderstorms,cip,transcriptional,finalized,referees,deerfield,lsc,cochrane,eldorado,esmtp,conservancy,otrs,omim,dielectric,anand,electrophoresis,sprinkler,imbalance,cine,scarlett,xen,novak,backcountry,artistdirect,outboard,pitches,scc,lockheed,raj,iana,elmo,unmatched,scranton,ixus,pinpoint,gabbana,neumann,outta,dieting,andhra,ralf,appraisers,xenon,hybridization,anh,abercrombie,trax,otherosfs,ssc,danbury,nofx,sharma,rockers,palliative,recieve,cufflinks,queues,relisted,beep,dunedin,remanufactured,staffed,lightspeed,grilling,stalin,kaye,bps,camo,shoutbox,toms,homeschool,ccg,lifehouse,windsurfing,pattaya,relocated,untreated,mkdir,riaa,divisional,chihuahua,mcconnell,resell,chandigarh,centrino,osbourne,burnout,classpath,designations,spl,microwaves,coliseum,ephedra,spawning,endothelial,citrate,eduardo,snowman,edmonds,potty,microbiol,shooters,norwalk,bacillus,fk,cla,spooky,belleville,venezuelan,cbr,colby,pab,hom,subpoena,hons,interpretive,bareback,extender,glucosamine,proj,modesto,designjet,typhoon,launchcast,referrer,zhejiang,ricci,superhero,tooling,tomography,berman,vocalist,tidbits,cystic,pacifica,kostenlos,anniversaries,infrastructures,littleton,commenters,cali,fairway,postdoctoral,prs,fairchild,ssb,spinner,evanston,homeopathic,ordinarily,hines,cpd,braking,ece,platelet,messageboard,setback,recipezaar,installers,subcategory,markov,factbook,tuple,fibromyalgia,rootsweb,culver,bratz,bucharest,ntl,lacoste,renters,timberlake,zack,markham,gels,iframes,thinkgeek,nafta,advertisment,mountaineering,screwdriver,hutch,beckett,homeschooling,dealerships,sakura,byu,jupiterweb,phosphatase,mahal,killings,robyn,adirondack,casablanca,sdp,pulaski,mantra,sourced,carousel,mpumalanga,thermostat,infarction,polypropylene,mailboxes,southend,maxell,tundra,vars,youngstown,farmland,skater,iep,imho,disrupt,rampage,fink,jurassic,gpg,gnupg,aliasing,comix,solves,hiroshima,jiang,oscars,boosting,knownsite,macarthur,powerhouse,deodorant,youre,compulsive,perky,reinforcing,extensible,mtb,catheter,practicum,photocopy,zipcode,mcpherson,saharan,pixma,hubbell,lesbienne,timeframe,disarmament,aed,actin,interviewer,vms,wno,dbi,waikato,syslog,orr,gastroenterology,travelmate,composting,mackie,choi,uva,fga,oceanography,vastly,stardust,radiological,commando,bathtub,urdu,aedst,greer,motorway,repositories,freaky,guangdong,merlot,civ,spielberg,lesley,thom,phoneid,salinas,legged,unilateral,dsn,shri,aegis,colloquium,matrox,vk,springsteen,uhf,fatalities,supplementation,embodied,altec,mohammad,verbose,marbella,sth,iterator,recieved,slc,cfl,deterministic,nci,predictor,salmonella,nga,nantucket,viewable,subnet,maximise,lotr,isn,chalets,reimbursed,lau,watermark,totes,mohamed,dyslexia,hubble,thugs,organics,dearborn,feds,yiddish,dopamine,multiplier,winzip,sacd,payoff,spv,sonar,monticello,flasher,subcontractors,evangelism,abortions,lesion,akira,progesterone,ethyl,earthlink,caramel,immunodeficiency,washburn,xtra,capitalized,ceos,maint,pancreas,octopus,xena,neuro,ara,receptionist,cessna,tru,zombies,cambodian,interagency,activision,synchronize,jenn,juegos,titties,tay,hornets,crossfire,ankara,spandex,hdmi,tamara,ctc,capcom,cato,peachtree,handyman,aeg,ethic,harlan,taxon,lcs,indefinite,slackware,cougars,earch,ambience,genet,photopost,uo,infor,neuronal,carrollton,checkers,torrance,yuma,spokeswoman,baccalaureate,tripods,logistic,middlesbrough,personalization,enema,easement,goalie,darkroom,hydrocarbons,gpm,hoh,hla,donaldson,tiscover,recor,mori,adi,rockland,uniqueness,hfs,cascading,metros,hangers,broadcaster,musculus,degraded,topo,viewcvs,eisenhower,flashlights,myyahoo,rosenthal,affordability,latham,jailed,depp,grapefruit,trna,motorbikes,verdana,bonita,nippon,decorators,dwl,jizz,pendleton,psoriasis,mavericks,dianne,earnhardt,amtrak,resid,tostring,lessee,goodyear,utica,overclocking,kitchenaid,cbt,peacekeeping,oti,interferon,aas,selectable,chechnya,rory,woodbridge,jas,intersections,sma,capitalization,epi,responder,qv,thoracic,phaser,forensics,infiltration,serine,bing,schemas,orthogonal,ohms,boosts,stabilized,wordperfect,msgs,zhou,selenium,grinders,mpn,cse,assn,punches,masturbate,parachute,glider,chesney,taos,tong,lotions,adrenal,sixties,booting,cunts,dri,ozzy,elearning,zx,valuations,kidman,jpn,postoperative,cytology,nye,biennial,ifndef,bq,circuitry,cdw,robb,kinja,tweaks,readership,northstar,dif,worthington,groundbreaking,transducer,serotonin,complements,isc,params,radiators,beagle,cadmium,bodoni,speedo,detachable,simplifies,sleeveless,motorists,tbsp,waivers,forsyth,ricerca,agilent,plumper,uterine,apartheid,bnc,businessweek,morphological,windham,ellington,ria,cdi,polio,clp,sharm,alvarez,regatta,chatroom,polarity,overrides,riff,widths,dest,attenuation,kluwer,martins,italiana,telford,shuman,grapevine,russo,daunting,topples,futuristic,autofocus,chai,obsessive,transplants,referrers,junkie,admitting,alsa,galactica,wkh,rotational,withdrawals,pageviews,hartman,finalist,pornographic,armageddon,smallville,selectively,albans,fallout,brownsville,galeria,stalker,kathmandu,nyu,kristina,dps,icmp,sophistication,wrt,messed,oceanside,foxpro,taiwanese,officejet,helens,ppg,sym,combos,cloned,fulham,dahl,pla,nfc,mathews,bestseller,enrique,minidisc,downside,malvinas,honcode,reissue,striker,memos,tensor,whitehead,whoa,brookings,accomodations,integra,laredo,nntp,logiciel,jaguars,mga,tracer,frist,lsd,synthesizer,ejaculating,biodiesel,mcleod,waldorf,microfilm,lear,subsidized,simons,optimizer,zire,pituitary,sow,repeater,teamxbox,bytecode,mccall,wiz,autopsy,joltsearch,ym,itv,colo,ying,bce,inode,glenwood,allstate,horticultural,hahaha,spamming,ssn,wartime,mou,hpv,jain,geriatric,mayan,navman,futon,grannies,hairstyles,nays,webspace,rds,mellitus,multiples,cryptographic,disparate,boardwalk,ineligible,homeopathy,entrants,rallies,simplification,abb,insolvency,roleplaying,affective,wilma,compusa,histogram,wheelchairs,usaf,pennington,lesbiana,liberalization,insensitive,greenpeace,genotype,contaminant,informa,collaborators,malvern,proxies,rewind,issuers,sinh,kerberos,schoolgirls,hilo,stratton,idx,astronaut,instituto,lowry,constipation,aec,sheryl,nashua,ikea,oswego,gbr,koi,sues,cba,mckenna,eudora,candida,sildenafil,adjusts,sqft,pickups,squaretrade,chandra,cheesecake,oth,porting,lubrication,shootout,racine,webserver,vnu,fragmented,chevron,reinsurance,slated,tera,guantanamo,reina,energizer,clarksville,vandalism,acpi,acetaminophen,wolfram,ofthe,contraceptive,necrosis,iva,bonanza,lumbar,disparities,umass,flamenco,osprey,flammable,biometrics,buspar,wasnt,nds,softwares,dbm,alchemist,marr,ssw,mcdonalds,hormonal,vh,calender,distro,virgo,rink,jesolo,unrealistic,rhonda,pov,pings,pcp,inxs,desy,teaser,impairments,courageous,rho,promos,transceiver,warhammer,iterative,catered,callahan,neuron,xlibmesa,pulsar,enewsletter,dav,pedagogy,bcc,afrikaans,ecb,cinematic,ugh,malik,tshirts,fellowes,illus,telefon,maguire,nlm,numeracy,caviar,popups,sleepwear,quads,grady,kelsey,enforceable,bouncy,vcrs,retinal,sponsorships,textrm,screenwriter,vendio,otago,ducati,allele,sylvania,optio,purifiers,commuting,hiphop,kato,kama,bcs,keating,eczema,northland,icu,veg,roadster,confetti,fv,raptors,irda,veggie,dharma,chameleon,hooper,luciano,grp,abrasive,henti,koruna,edp,ensembles,backpacker,bainbridge,scs,comfy,assuring,gettext,registries,eradication,herefordshire,ectaco,doh,jodi,quintet,groupwise,ambiance,chun,damian,bakeries,dmr,fucker,polka,wiper,wrappers,giochi,iterations,svs,ntfs,namespaces,mismatch,fdic,icd,vj,oxides,qualifiers,battered,wellesley,smokey,passwd,vacuums,falun,precip,lagos,rapper,hooters,calligraphy,advantageous,mustek,monique,fearless,ortiz,pref,morningstar,recessed,fmt,palladium,totaled,levitt,vd,shipper,darryl,hobo,nys,merrell,cra,sly,reductase,raul,shenandoah,harnesses,wtc,loma,oshkosh,multivariate,geil,kitchenware,unigene,lans,immunoglobulin,silverstone,uniden,telechargement,remstats,unitary,getnetwise,hospitalization,clubbing,microelectronics,observational,waverly,crashers,schwab,deregulation,vba,carpentry,steinberg,sweetie,mideast,hispanics,podium,paranoia,faceted,sito,gecko,fullscreen,interchangeable,rollins,scp,hst,starship,miele,seeded,cyclists,fey,cmt,nurturing,enzymology,amadeus,usm,galapagos,uconn,picker,xls,mulder,lesbicas,dialer,mooney,syntactic,envision,jetta,downey,codex,lsb,userid,cosmology,noodle,gromit,sargent,bangle,humping,donnie,privatisation,tofu,rq,unhcr,battlestar,intuit,adoptive,cda,minimized,partnered,twat,filibuster,glamorgan,adwords,tulane,usp,facet,behaviours,redneck,imax,xpath,synthesized,encapsulation,samsonite,accordion,rooney,minimally,webpreferences,skoda,matchups,ucc,mailings,ono,beachfront,cem,crosswords,pubchem,integrative,kelowna,embed,gurus,allotted,shutterfly,gerhard,watersheds,trimester,clickable,spyder,electricians,nexium,capricorn,dipped,perm,rte,spectrometry,snippet,pha,permeability,waukesha,igg,scart,wsu,normalization,skillet,neoprene,vlc,offeror,thermo,huber,jarrett,farechase,maintainers,maarten,ginseng,blackout,detergent,rosetta,grenade,occured,karin,lana,fontana,kang,crafting,ivillage,mowers,bratislava,policymakers,sienna,watford,misco,givenchy,reimburse,esperanto,modalities,pcc,lighters,shutting,endemic,spr,carly,hydrologic,stansted,nep,huddersfield,aimee,davey,csp,helpsearchmemberscalendar,ait,transduction,silverman,clarifying,aortic,drc,hoa,starcraft,martens,ficken,structuring,konami,lipids,jurisdictional,desi,cellphones,cordoba,xj,sheppard,dpkg,folsom,triggering,mapa,aip,rackmount,binocular,eda,specialise,rar,remortgages,mckinley,hanks,dosing,strobe,waffle,detectable,pmi,arrowhead,nigga,mcfarlane,paycheck,sweeper,freelancers,seinfeld,tdm,shen,responders,keepsake,birthdate,gettin,upbeat,ayes,amenity,donuts,salty,interacial,cuisinart,nautica,estradiol,hanes,noticias,gmp,schaefer,prototyping,mth,zeros,sporty,tumour,fpic,pdc,atpase,pooled,bora,shu,stabilize,subwoofers,tcs,clueless,sofitel,woodruff,southport,walkthroughs,radiotherapy,minifig,transfusion,sams,zend,newtown,mcmillan,csf,lyn,witt,mcd,unep,newsflash,recombination,messing,budgeted,slogans,flashback,photometry,sutter,inr,knicks,ingestion,mindset,banda,adulthood,inject,prolog,dunk,goofy,mcintyre,aga,guilford,raglan,photonics,cdf,celtics,heterosexual,mappings,jel,snip,fascism,galerias,audiovisual,diagnosing,neutrino,wouldnt,mq,codecs,certifying,dvp,traduzca,csb,subj,asymptotic,isotope,moblog,locales,preventative,brampton,temperate,lott,srv,meier,crore,deserving,banco,diagnoses,thermaltake,ultracet,cortical,itchy,glaucoma,homosexuals,mhc,estee,wysiwyg,oversees,odp,categorised,thelist,diss,cta,diamondbacks,nzd,subtype,psx,thessaloniki,dmv,leafstaff,literate,ayp,bikers,harcourt,bubba,mutt,orwell,mietwagen,bakeware,cleanser,lonsdale,velocities,renewals,tsx,dnl,mtu,salford,ephedrine,longview,closeup,venous,hereunder,ouch,teflon,cys,debadmin,cleans,fpga,everton,rosters,herbicide,marlene,futura,smd,cheddar,ql,tucows,regex,bukake,chs,mcclellan,gopher,distal,zar,frommer,joss,shortfall,harmonica,geothermal,texmf,atlases,kohl,lorazepam,hosp,lewiston,stowe,fluke,khi,estes,hdr,caches,stomp,acidic,anc,doin,tld,gangster,deliverables,censored,fascist,lido,matchbox,trl,businessmen,bpo,incubator,experiential,eraser,jordanian,jiwire,libra,rtl,iea,uniprot,statystyki,pkgsrc,nonprofits,desnudos,czk,ethylene,slows,opm,inhibits,exploratory,spectrometer,outsole,lista,tmc,inset,polynomials,elegans,openers,shasta,dob,inet,cov,fallon,sidekick,tcb,dmca,rewriting,bahama,idl,loretta,lingvosoft,dax,allocating,newell,juveniles,gamermetrics,lcds,ortholog,tasmanian,hydrocarbon,lobbyist,kelvin,secondhand,xo,cheatscodesguides,mdl,clientele,technica,gratuito,hts,arkon,hort,bureaucratic,cooperatives,raceway,sopranos,hotties,gq,terrell,yc,closings,registrars,strlen,faye,cto,lakeview,ospf,tunneling,methamphetamine,murals,bangs,asic,knockout,radon,avantgo,asl,obi,timelines,roget,cristina,visio,autoimmune,coder,replicated,pom,timetables,kline,anorexia,errno,workplaces,harpercollins,clk,heartburn,empathy,ica,motivating,clockwise,frisco,mitzvah,chong,bashing,boosters,cyl,grupo,mikhail,denominator,changeset,cec,jovencitas,texttt,islamabad,freestanding,resilient,eyewitness,spartanburg,hippo,trung,tenancy,offsite,realaudio,clements,dogsex,ticketing,heterogeneity,bodied,dudes,maytag,norco,altos,sleeved,overs,watercraft,scully,cellulose,cathode,monographs,nra,digitized,rotated,gaia,motown,pryor,sato,greeley,ccr,agro,ramos,quizilla,citibank,scotty,pvp,meridien,taxa,brunettes,bic,irl,mfa,endo,unhelpful,microorganisms,twister,krakow,sequoia,emt,activator,incredibles,familial,marquee,resilience,thermodynamics,seton,makita,subgroups,catchy,aia,tig,synaptic,bobcats,zappa,eec,chicas,swahili,nlp,dzwonki,enrolling,commercialization,smt,cataloging,snowboards,sami,tesla,elan,csd,ingrid,longman,unleaded,mesquite,kroner,frm,javadoc,hotbot,denali,inhibitory,phonics,dbs,refs,smh,thaliana,meningitis,motivations,rees,asteroid,donegal,endings,mwf,unlisted,philippians,conductive,sooo,echostar,microscopes,kenmore,reagent,achievable,dla,glamorous,interacts,litchfield,lavoro,hobbynutten,chomsky,venezia,yamamoto,zhu,interleukin,flashcards,homologene,interception,voltages,assignee,kip,bla,algarve,valance,stc,pisces,cpanel,orc,hemingway,gti,hdl,rendition,danmark,yun,sourcebook,hui,matador,smut,nac,dang,bradenton,meetups,bilbao,ewan,cwa,akai,deletes,adjudication,autoconf,rasmussen,bibliographies,milne,fsc,unplugged,ttc,currie,torvalds,neff,tailgate,hollis,lanier,overseeing,escalation,polymorphism,semitism,sevenfold,colocation,woodbury,tshirt,epidemiological,medic,grail,espana,horne,nostalgic,aldrich,tabled,farsi,excelsior,rial,greenspan,dhabi,chobe,tafe,pz,andrei,frazier,criminology,jeanette,constel,talkin,dup,syd,permittee,hangover,capitalize,fsu,motocross,boomers,wedgwood,mcdermott,youngs,lep,grossman,pecan,freshmeat,fnal,benzene,mcp,topper,ittoolbox,manny,arse,osteoarthritis,westlake,czechoslovakia,addictions,taxonomic,judo,mizuno,palmetto,telco,ltc,microarray,electrolux,elephantlist,sparked,qualcomm,whitaker,opc,connelly,conner,hospitalized,fec,opml,cana,ation,entitlements,wingate,healey,jabra,qmail,soybeans,awd,electrostatic,topological,coz,oversize,westinghouse,unk,reb,rios,craftsmanship,cic,pyle,seuss,cheetah,ldp,competed,fridges,hatchery,judgements,msr,zr,corbett,asx,curr,fingerprints,conv,cheesy,ahmedabad,dimlist,winfield,pinto,gallerys,jana,martindale,webstatistics,dhl,mays,risc,hcv,oboe,tzu,hurd,geotrack,kolkata,imation,hematology,expressway,steelhead,ahh,turntables,lindholm,clooney,facilitators,mcnamara,shiva,toners,kenyan,wynn,hsa,motorbike,niles,zippo,sergei,upfront,battlefront,gosh,fansite,colossians,addicting,gerd,copa,gtp,zlib,whitespace,tektronix,doesn,mccullough,cnr,microfiber,mdc,tsa,deployments,stearns,insurgency,boyer,behringer,akg,ttm,perceptual,fz,midlothian,follando,instr,ott,bsn,rambler,drywall,suzy,dekalb,sumo,topsites,hsc,tse,refurbishment,pfam,tdi,grassland,jeffery,councilman,swaps,unbranded,astronauts,lockers,lookups,attackers,actuator,reston,sftp,reinstall,lander,coby,methanol,miscellany,simplifying,slowdown,bridesmaid,transistors,marys,colgate,lousy,pharm,foreseeable,nutritionists,techweb,berkley,resistors,blondie,drwxr,cfc,isu,stm,villanova,iw,tif,cbi,cesar,heuristic,archivist,gallup,valtrex,usn,antimicrobial,biologist,cobol,homolog,fruity,stratus,fips,urea,bumpers,lumix,wildcard,rvs,desnudas,plextor,oxidative,brits,healy,pliers,kayaks,ibanez,marxist,couldnt,naperville,diplomas,fieldwork,damping,immunol,regan,wwwroot,bootleg,intellectuals,winslow,minis,rhs,leftist,tequila,limoges,wildwood,oop,germantown,bergman,gmac,pulitzer,tapered,mollige,toothbrush,delegations,plutonium,factsheet,squarepants,subsurface,guadalupe,halliburton,underscore,borg,glutamine,slutty,mcphee,doa,herbicides,usgenweb,inscribed,chainsaw,tablature,fertilization,glitch,gearbox,stang,alejandro,tensile,varchar,intercom,ase,osg,mckee,envisaged,splice,splicing,campfire,cardbus,hubby,graphing,biologists,improv,hempstead,exilim,xlr,debuts,esi,diskette,ubs,commend,contender,southland,spie,globals,diaspora,anu,moratorium,safes,goodnight,alcoholics,asme,gatlinburg,cai,pharmacol,swe,xorg,newsquest,wavelengths,unclaimed,racquet,cout,cytoplasmic,qaida,kpmg,lanarkshire,steakhouse,stubs,solarium,sedo,fillmore,shox,greenhouses,spotlights,perks,harlow,morrissey,igp,lutz,capacitance,birthstone,primitives,bong,lingual,unframed,iter,vibes,tmdl,programa,republication,zap,veneto,zhao,hippie,acyclovir,benoit,organizes,unaudited,rz,summertime,airbag,lal,sweetwater,bjc,cfm,internationale,krystal,expansions,gms,correlate,linkout,poc,pittsburg,bylaw,kenyon,trims,epiphany,pny,devin,viewfinder,homewood,mcrae,hind,renaming,plainfield,maxon,sprintf,armagh,livechat,pdr,bhp,lyman,notfound,pho,pathogen,zagreb,gayle,ust,overwrite,revitalization,camry,postmodern,jayne,hci,kuhn,typos,glutamate,melton,oneworld,realtone,mikey,telephoto,pooling,jy,drury,ctw,tbs,sct,custer,borderline,surgeries,lobbyists,sfo,zionist,gaskets,photoblog,cushing,nonstop,hummel,corgi,ellie,citigroup,seasonally,uci,bizwomen,dti,malkin,adbrite,psychosocial,butthole,ellsworth,cline,backlog,thema,filmmaking,wwi,townhomes,usf,instapundit,mcmaster,bayside,thinkcentre,cea,biophys,hodgkin,vhosts,laughlin,congresses,electrically,ophthalmic,yz,prong,unreleased,ipa,chaplin,dfw,histology,gilman,klamath,atrial,equalizer,vbscript,helmut,lynda,vax,yak,silt,councilmember,endorses,expos,cherish,aap,undead,pto,critters,blob,kurds,ela,ical,macleod,devry,rahman,fundamentalist,subtraction,superstars,chmod,leveling,piggy,stadiums,playable,uz,sunos,lancia,perf,interconnected,tunning,whitepaper,platt,lexis,virology,csm,purcell,vidal,svcs,subsystems,oxfam,johnstown,beading,robustness,ifn,interplay,ayurveda,mainline,folic,vallejo,ratchet,cee,yl,yee,wicca,cygnus,depiction,jpl,tiered,optima,seward,photons,transactional,lhc,doggy,anodized,exxon,hurdle,donnelly,metastatic,encyclopaedia,errata,divas,ong,trey,thankyou,alerting,insofar,smileys,surrogate,breathable,differed,dickies,gonzo,programmatic,trs,teammates,barrymore,ddd,barracuda,accesskey,appellants,usergroups,initiates,pwd,mation,aiwa,whiting,grizzlies,okidata,methadone,offsets,tryin,jodie,jdk,tallinn,descarga,monterrey,harrogate,lotteries,bozeman,coauthor,cybershot,airflow,thur,oper,stn,unattached,maher,karlsruhe,yuri,cheung,honeymooners,cheaptickets,howie,dieter,centerpiece,mplayer,unwind,outings,crotch,wavelet,nothin,pathogenesis,diodes,realestate,reinstatement,botox,nge,dipole,cleo,norge,kata,tangled,giga,walsall,burnaby,lilo,adf,majorca,agribusiness,validator,jax,pixie,proofing,clits,keyring,vehicular,workbench,deph,landscaped,aziz,lula,nucl,farber,impala,commenter,celsius,flicks,hardwear,prefixes,racquetball,endl,flavours,pundits,unset,murano,optimised,bariatric,hitchhiker,isotopes,entrez,erich,conduction,grabber,orch,peridot,produc,skechers,pacers,salvatore,nts,rbc,neurosci,parton,apec,centerville,mcl,ebuyer,dermatitis,roxio,nagoya,sfc,snowfall,sss,fundraisers,fecal,vorbis,hazzard,lbp,gorman,validating,healthday,newsstand,dossier,psion,tcc,corbin,songwriting,ecg,hinton,nighttime,fluxes,kombat,finders,dictated,darlene,westcott,dca,lua,lpg,opti,proximal,canciones,irix,qp,peroxide,bryn,erm,rfi,outages,complemented,finley,thanh,backlash,gallo,agence,zs,kjv,jonny,biblio,qm,opacity,userland,townsville,turing,veggies,centenary,barclays,eid,drexel,pedagogical,lockhart,fishnet,combinatorial,unintended,raman,rochdale,prnewswire,sthn,smog,ucl,poa,mics,punjabi,prem,katalog,kettering,hayek,brookline,montpelier,titty,ntt,fart,oxidase,qw,caterer,pregnancies,fiori,dateline,stdout,unassigned,adriana,lyndon,groupings,mems,midterm,campsite,dropdown,marketer,huntingdon,jcpenney,gelatin,qvc,adenosine,milliseconds,swatch,redefine,backdoor,jazeera,envisioned,pws,extrem,automating,sempron,cursors,divert,phnom,tbc,kanji,vod,recreate,smackdown,dropout,jrst,fallujah,lockout,moron,tnf,townhouses,horrific,abacus,lifeline,gto,torquay,dao,conjugate,winch,elektra,webtrends,shes,sabotage,blueprints,limos,fraunhofer,warhol,suppressor,dogpile,birt,rensselaer,jocks,unzip,floss,sarge,endnote,leland,telugu,midwifery,huff,pornos,primates,rmi,tangerine,amoxicillin,graz,basingstoke,crawler,angled,comin,longhorns,doha,ebsco,lynchburg,overriding,wilshire,ard,wachovia,groff,ects,lok,invicta,dongle,ecumenical,tanaka,internacional,kwan,cdl,archiv,placid,lenin,marsha,gradients,ritalin,retrieves,ferrous,dhaka,zillion,chino,ltr,caveat,gangbangs,toiletries,bedrock,clio,zines,multipart,forklift,repurchase,orthopedics,wsw,vnc,nfpa,dnf,badgers,chp,kinh,appetizer,disbursement,weblinks,telemetry,consumable,winn,depressive,stabilizer,ovary,rune,accrual,creatively,amateure,abd,interfaith,cay,automata,northwood,payers,gritty,dewitt,rect,ipx,sebring,reborn,bia,lagrange,treadmills,bebop,streamlining,trainings,seeding,ulysses,industrialized,botanic,bronco,moodle,chased,cti,intermediaries,tei,rotations,knoppix,montessori,biomed,murine,entomology,rodent,paradigms,lms,putter,fonda,recursion,flops,initiator,hsu,pobox,zeiss,ferc,tanf,sunscreen,llvm,antidepressants,decentralized,freaking,whittier,elmira,bassist,oakville,skaters,luminosity,emulators,toefl,keychains,karat,modis,ginny,egan,posh,bangles,stereos,submittal,bnib,moh,mink,simulators,nagar,zorro,ecran,ealing,ozark,pfeiffer,miers,vickers,interactivity,corso,constructors,doj,ipm,rnd,jama,lsi,malfunction,magma,smithfield,gtr,canucks,hammersmith,sdi,cricos,blum,parkland,pcbs,werewolf,wnw,midwestern,ezboard,charisma,chilli,iac,suspensions,nss,smi,malnutrition,logcheck,layton,gaines,inbred,intercultural,skateboards,mainboard,goshen,functionally,rabies,catalysts,datetime,readability,dakar,dspace,cappuccino,modulus,krause,cuisines,maclean,tuscaloosa,boosted,sprayed,gearing,glutathione,adoptions,tweaking,angina,geeky,rnb,coupler,lexapro,aig,paisapay,zanussi,minimizes,hillsdale,balboa,penh,wainwright,agc,guadalajara,pinellas,umts,zappos,daimler,spo,tadalafil,everglades,chipping,montage,geelong,ionization,broome,biases,sprawl,marantz,alfredo,haunt,hedging,insulating,mcclure,vbr,qed,waterfowl,adress,reacting,virtualization,itat,collide,syst,mankato,segregated,ests,avengers,technologist,pigments,impacting,lamont,aquariums,rigs,arginine,moot,pleasanton,televised,giftshealth,acd,simplistic,hepa,amphibians,encapsulated,injector,kessler,gardenjewelrykids,leung,edo,impl,grained,relatos,newsday,gmat,dani,announcer,barnsley,cyclobenzaprine,polycarbonate,dvm,marlow,thq,osce,hackett,divider,cortez,associative,cmo,rsync,minivan,victorinox,chimp,flashcoders,giraffe,pia,stroud,lefty,cmg,westside,heres,azimuth,logistical,firenze,okavango,jansen,tween,payback,hydraulics,endpoints,perrin,quantification,coolant,nanaimo,yahooligans,prilosec,hutchison,parsed,shamrock,schmitt,korg,warmers,newt,frontend,itanium,alleles,weiner,ola,halftime,frye,albright,wmf,clemente,handwritten,whsle,launceston,wembley,sandman,mejores,scoops,dwg,truetype,eigenvalues,airbrush,ppb,comms,regexp,quickstart,beaverton,trucker,willamette,chiropractors,tyco,mirroring,massively,aeronautical,lasalle,pwr,wordlet,hanford,plac,exhibitionism,riser,redux,gaim,audiobook,compensatory,couplings,jeezy,monsanto,cleric,rfq,contactos,esri,equiv,macrophages,yao,npt,computes,pickett,oid,charismatic,lda,teleconference,mma,whitepapers,polycom,tux,asymmetry,xpass,cfd,barbour,tijuana,niv,hamiltonian,cdg,algebras,quotient,wildcat,inlay,peta,paco,avocado,octets,dubuque,evaluator,gid,jumpers,edmunds,lerner,manifolds,awg,napoli,kristy,variances,pki,objectivity,sistema,massager,incubated,feedster,federer,turnovers,bev,eai,changers,frs,hereto,osc,clinician,alltel,gss,curacao,rapporteur,arcserve,gump,powerline,aspell,avp,safeguarding,paxton,herbie,yabb,chromosomal,hickman,runescape,salesperson,superfamily,tupac,cassini,tobin,zoos,activates,hibernate,ning,extremists,montego,rohs,cyclical,cytokines,improvisation,mmorpg,toured,tpc,flatts,cmf,archiver,rainer,rsc,covariance,bobble,vargas,gulfport,airfield,flipping,disrupted,restocking,lgbt,extremetech,citrine,neoplasm,rethinking,xfn,orientations,calumet,pellet,doggie,inflow,msw,lymphocyte,weinberg,saigon,whiteboard,wic,brody,invertebrates,elliptic,ffa,agonist,hyperion,partypoker,rockingham,sandler,schweiz,grundig,rethink,musculoskeletal,aggies,prereq,nikita,aetna,truckers,giro,laserdisc,kaspersky,dor,determinant,morpheus,ayers,junkies,ccna,jacquard,assesses,okinawa,autoscan,quantified,pnp,uppsala,distortions,subclasses,glo,condolences,hitter,livelihoods,psf,cala,telluride,apnea,mkt,floodplain,valera,wenger,crusader,backlinks,alphabetic,delonghi,tailoring,shavers,mcdonnell,aborted,blenders,symphonic,asker,huffman,alistair,navarro,modernity,wep,uab,olp,booties,cancels,newsblog,gangsta,mgp,foodservice,teton,newline,prioritize,clashes,crohn,bao,quicklinks,ethos,hauppauge,solenoid,stis,underdog,fredericton,tep,bextra,copywriting,technol,mdr,asteroids,continous,hplc,ovulation,doggystyle,quasar,euthanasia,schulz,okanagan,liters,tarrant,blacklist,clermont,rooftop,ebert,goldfish,witherspoon,slimline,animator,barbra,irreversible,flanagan,encyclopedias,csiro,downtempo,campsites,graco,lighthouses,xg,adt,hemoglobin,tung,svga,postpartum,condi,yoda,jst,dalai,xn,nytimes,kenzo,alden,trampoline,zi,restricts,gees,intakes,dogfart,swearing,ith,montel,ubbcode,yw,ninemsn,lgpl,jsf,psychotic,allyn,higgs,pulsed,ignite,hornet,atypical,contraceptives,slimming,dispatcher,devoid,jms,maricopa,mbs,northfield,idf,elites,fifo,correlates,casters,heisse,easygals,mandalay,haircare,climbers,atty,madera,calibex,mailbag,smartmedia,vilnius,dbl,doping,postwar,strat,bsp,barebone,thrombosis,smarty,whitley,lse,windermere,curtin,dilemmas,cci,gwynedd,edwardian,hppa,saunas,horowitz,cna,undergrad,mocha,escada,knockers,jitter,supernova,loughborough,directtv,feminization,extremist,tuttle,aoc,medway,hobbit,hetatm,multipurpose,dword,herbalife,ocala,cohesive,bjorn,dutton,eich,tonne,lifebook,caster,critiquer,glycol,manicure,medial,neopets,accesories,faxed,bloomsbury,mccabe,ennis,colossal,karting,mcdaniel,aci,brio,baskerville,syndromes,kinney,northridge,acr,emea,trimble,webinars,triples,boutiques,freeview,gro,screener,janine,hanukkah,caf,adsorption,sro,underwriters,foxx,ppi,noc,brunton,mendocino,pima,actuators,internationalization,wht,pixies,pancake,transmembrane,photostream,guerrero,firth,hathaway,emf,beatty,andersson,lunchtime,miro,slams,looping,crates,undated,takahashi,ramadan,lowercase,technologically,anaerobic,satelite,pioneered,tabloid,pred,solubility,troubleshoot,etf,hatcher,coders,insecticides,electrolyte,watanabe,firestone,writeshield,sph,descargar,letterhead,polypeptide,velour,bachelorette,nurs,geospatial,zoned,pubic,pizzeria,mirc,henning,acf,bae,nitrous,airspace,santorini,vdr,tms,convertor,brahms,genomes,workable,ordinate,seminal,rodents,ytd,xin,precursors,relevancy,koala,discus,giftware,realistically,hol,polska,loci,nanotech,subunits,awsome,hula,laramie,toothpaste,maxine,mennonite,subtitled,qms,maidstone,abr,sda,jcb,wpa,fastener,ctf,foxy,sexiest,jupiterimages,categorization,inclusions,fosters,conc,transsexuel,limbaugh,cassie,altman,lethbridge,peng,fillers,symposia,nia,templeton,stds,hav,typography,ebitda,eliminator,accu,saf,gardenjewelrykidsmore,gazebo,preprint,htc,naxos,bobbi,cocker,steph,protonix,systemax,retry,radford,implantation,telex,humberside,globalspec,gsi,kofi,musharraf,detoxification,ree,mcnally,pma,aureus,informationweek,chm,bonneville,hpc,beltway,epicor,arrl,iscsi,grosse,dfi,penang,zippered,simi,brownies,lessor,kinases,panelists,charlene,autistic,riu,equalization,corvallis,reused,volokh,vari,fordham,hydroxy,technologists,snd,dempsey,httpdocs,speakerphone,reissues,shalom,khmer,recordable,dlt,dredging,dtv,extrusion,rtn,preggo,defamation,theron,proteomics,spawned,cep,phendimetrazine,wiener,theorems,samplers,rfa,pasco,hilbert,tamworth,itmj,msd,etfs,cde,praha,zona,landry,crackdown,lifespan,maybach,cysteine,responsibly,slideshows,aceh,techtarget,geotechnical,fantasia,camisole,atoll,shredders,gags,rips,futurama,hari,ironman,ducts,marmot,remand,hawkes,spoof,spammer,presets,separations,penicillin,amman,davos,maturation,internals,bungalows,beckinsale,refractive,grader,ecd,transducers,ctxt,doxygen,rtd,akc,cgc,intercollegiate,zithromax,onkyo,niosh,rainier,furman,newsfeeds,larkin,biztalk,snapper,hefty,ipr,valdosta,ulead,delaney,hairless,lactation,innsbruck,offbeat,teenie,protons,machined,holman,eviction,dic,pio,regionally,thurman,canaria,showcasing,afa,certifies,primes,renton,lambeth,frappr,liturgical,easements,aida,openafs,assword,rving,exogenous,sram,sault,trolls,flor,rfe,oleg,smo,analyzers,scorer,swami,oilers,nik,mandela,listers,ordinated,arlene,dividers,recoverable,gators,intraday,cruces,hollister,enews,lactose,gifford,competitively,rockstar,hampstead,chrono,nahum,raja,nextlast,xinhua,ltl,lofts,feral,neurosurgery,ringgit,ukranian,parmesan,kiosks,pnt,hooking,wip,rawlings,physiotherapy,wrexham,billabong,prepayment,jonesboro,bangers,handgun,miscategorized,itp,desoto,innovator,mitochondria,mewn,sername,usmc,amicus,vijay,redirecting,gma,shih,cervix,biblia,cosby,lufthansa,msnshopping,sewerage,ele,mantis,alerted,lsp,intron,bri,remodel,carpal,natalia,cjk,specialises,condiments,adventist,eggplant,coun,ctv,wycombe,monaghan,blogarama,undocumented,esb,vaccinations,gutierrez,bernd,needham,inuit,wordnet,wedi,keyes,photocopying,tca,avn,dressage,cafepress,phylogenetic,kurtz,morbid,inno,refresher,freakonomics,impreza,cheeky,arco,proponent,brasileiro,kar,rojo,perscription,aic,streisand,eastside,bioethics,redo,piranha,rps,cmu,uncompressed,vps,pseudomonas,sotheby,avionics,minimization,ascot,linearly,dolan,titleist,genesee,grays,fdc,psychiatrists,bom,multiplex,srt,bradbury,babysitting,asd,beehive,aeon,livin,leblanc,shorty,injecting,discontinuity,littlewoods,enquirer,downturn,fission,modulator,spybot,hrc,worldview,choreography,sfx,nth,buffering,denison,killarney,scoping,srm,mammography,epc,nepalese,communicable,enzymatic,melanogaster,extravaganza,kamloops,spss,tftp,rotherham,underestimate,hana,mycareer,pra,cooley,gratuitement,eriksson,schaumburg,exponentially,chechen,carribean,bunnies,choppers,psyc,pedersen,earphones,outflow,scarab,toasters,skiers,eax,jamal,raunchy,biologically,nbr,ptc,qe,zyrtec,riyadh,pell,quicksearch,coates,octane,mtl,krabi,funders,apj,kal,fai,ccp,environmentalists,fatah,ifa,ackerman,gbc,soooo,soapbox,newberry,deanna,bestellen,elongation,webcrawler,wanking,ofsted,yb,dortmund,boardroom,nico,taping,mro,atleast,somatic,fcs,niki,malloc,lanzarote,slump,nerds,laude,mec,simulating,enrol,bts,cflags,xps,datafieldname,wycliffe,dda,apts,aikido,slo,batches,dap,ssr,kournikova,moshe,fsbo,shippers,mtc,cav,rrr,wildflowers,polygons,delimited,noncompliance,upi,sna,vidsvidsvids,herts,bellagio,webapp,haryana,eeg,dlls,babysitter,linotype,produkte,lesbica,pes,mediators,hone,riggs,jockeys,seater,brightstor,deliverable,sanding,buffered,orton,indesign,lakeshore,ctl,aland,clarins,pelham,huf,ronin,comps,mgi,greco,kontakte,edema,leaderboard,mce,hsv,geocities,argc,palos,ori,carotid,citi,squish,cny,gorham,calphalon,blasen,midwives,nara,nab,netbeans,cyclones,tapety,snowflake,blackhawk,weinstein,sterilization,assessors,chenille,dehydration,haircut,fhwa,misconceptions,alternet,undeclared,bari,songwriters,tolerances,incarceration,hierarchies,redondo,lactating,aquamarine,yg,edm,sedimentation,optometry,mobilize,attendee,bmd,dialogs,rpt,viktor,trajectories,federico,openvms,ppo,pag,precio,leapfrog,thermoplastic,sexchat,kingman,deterrent,ghraib,duplicating,tuba,encodes,garamond,cirrus,alanis,kilometer,ballarat,wacom,nsta,actionscript,ivf,modifiers,hijack,thomasville,accorded,fryer,namco,xmms,dammit,produkter,motorhome,ade,mfrs,editable,greats,milosevic,marcy,boron,creighton,wolfenstein,bolivian,rowbox,pauls,phobia,superfund,vcc,sadler,piercings,riffs,briana,geronimo,tetra,freakin,alb,retrofit,cytokine,stylesheets,coalitions,tactile,cinematography,vivitar,wannabe,blogwise,amador,skier,storyteller,bpa,pelicula,ischemia,fms,comput,wristbands,livecams,hibiscus,rheumatology,edn,somers,cray,iol,waterbury,selectivity,carlow,maxx,haggai,demonstrators,raiser,sanger,mullen,periphery,predictors,woodwind,snl,modblog,repo,burnley,antispyware,sumter,rcd,woodside,tylenol,megabytes,backlight,naturist,zephaniah,airbags,plethora,cabriolet,yh,retiree,atol,sonet,anthropological,mikasa,iverson,cae,buckeye,dollhouse,stereotype,uship,ubisoft,escalade,breakaway,produkt,sealants,montclair,dinghy,gnus,melia,feedbacks,concurrency,healthgrades,hoya,revista,lrc,flied,tvr,joliet,ped,chappell,wollongong,peo,blowers,doubleday,guidant,remodeled,eea,bcp,situational,nasd,chakra,dfa,jammu,wetsuits,edc,birkenstock,vivendi,emulsion,fielder,sorta,courseware,biosphere,skb,plumpers,muschi,qcd,ollie,gurgaon,rwxr,federalism,gizmodo,laminating,coltrane,colitis,unincorporated,liang,blogged,cryogenic,antispam,homologous,hassles,symptomatic,rtc,trademanager,bipartisan,rhodium,exchanger,preseason,januar,bumble,intimidating,randi,placenta,abbotsford,upn,dulles,brainstorming,wea,dougherty,sarcoma,sniffer,rotorua,bahasa,iona,bioscience,tricia,residuals,gforge,copd,homie,leesburg,afm,xref,flashpoint,mobygames,cortland,mailers,tented,nicholls,skew,mahoney,infoplease,budd,acn,hollands,muni,modernism,elizabethtown,dunhill,eee,didn,guidebooks,scotts,wye,wsj,biosciences,macgregor,atms,habakkuk,depaul,binge,cyst,hexadecimal,scissor,progra,smyth,mott,jazzy,headboard,diflucan,bronson,standardised,cations,cics,ecole,centos,hysterectomy,housings,wrc,movado,mcdonough,krista,pharmacokinetics,chantal,morristown,riverview,loopback,torsion,ultrastructure,lucida,leftover,sykes,anecdotal,rheims,integrators,unlv,arboretum,sharealike,lowepro,erc,ischemic,illustrators,plugging,macbook,bjp,arent,vignette,qf,homebrew,altoona,pheromone,fireball,decorator,franken,netpbm,antalya,harmonious,nne,recordkeeping,modernisation,myx,sdr,muskegon,daley,modality,liberalisation,utilise,arturo,appellee,granules,multidimensional,rollout,homegrown,datamonitor,reinforces,dirham,leahy,myc,esophageal,kira,approximations,forzieri,intermediates,kgs,albumin,grantees,loveland,maloney,sativa,paramedic,trademarked,edgewood,stressing,potable,limpopo,intensities,oncogene,antidepressant,ballpark,powys,orca,mascara,proline,molina,nema,wipers,snoopy,informationen,esf,riverdale,unleash,juelz,bls,noarch,koss,captioned,paq,summarizing,ucsd,gleason,baritone,independant,chlamydia,relativistic,rotors,driscoll,andalucia,mulher,bagels,subliminal,insecticide,segal,spline,undisclosed,noni,letterman,almeria,bryson,wtb,towson,htaccess,malayalam,crue,loo,pinoy,pallets,uplink,sheboygan,terrence,ghc,gateshead,probationary,abducted,warlock,breakup,fiche,juror,bowden,goggle,metabolites,brainstorm,smu,ahl,bateman,egcs,chirac,museo,coffeehouse,scitech,gcn,trolling,elmore,grads,lz,andi,localpref,kayla,ccl,smeg,donut,libido,fuselage,diabetics,ballerina,crp,morgantown,paseo,ptsd,redheads,curran,diam,ragnarok,hkd,summarised,jx,caitlin,conscientious,bandai,hobs,eft,endometriosis,cushioning,mcneil,belvedere,nar,acetyl,boomer,perinatal,idm,automake,multichannel,petr,daredevil,corcoran,mrp,holliday,daimlerchrysler,bowes,mcgowan,agfa,mep,goss,mulch,jvm,harwood,ranma,marinas,mobipocket,streptococcus,murcia,landfills,mcknight,edd,baud,mcfarland,designline,undies,prepay,kodiak,printout,nonresident,marysville,curso,palmos,dorsey,roo,soulful,websearch,infotrac,mpgs,fouls,openssh,bravenet,etsi,serendipity,tq,sequentially,yogi,landslide,howtos,skool,evolves,iberia,anakin,duffel,goodrich,subfamily,perennials,ary,matchmaker,sagittarius,locates,dysfunctional,maastricht,bulletproof,mcr,uga,stenosis,chg,recentchanges,abrasion,eindhoven,opportunistic,pcl,analogs,bba,hillcrest,cantor,econometric,trafford,opie,cro,elkhart,ringers,diced,fairgrounds,cuyahoga,plt,cartons,mustangs,enc,addons,wstrict,gow,pharmacological,headwear,paediatric,genitals,hendricks,ivr,telemedicine,judi,icom,academically,chilton,cbo,amaya,flickrblog,fulbright,foaf,cllr,xh,fulltext,centrum,tecra,kinks,unisys,preschools,mcallen,contoured,aberdeenshire,icm,schenectady,schematics,dojo,eserver,nin,interfacing,borrowings,hrt,heparin,universiteit,hardcopy,connective,nihon,oso,adkins,dunlap,nsc,irr,clonazepam,wikiname,gaithersburg,biophysics,chromatin,mathis,bulova,roxanne,fca,drg,refurb,wasteland,plotter,findlay,cymraeg,alc,meek,phonebook,doodle,arb,wabash,chronologically,wms,whitfield,mchenry,eide,assy,dusseldorf,mmol,shabbat,nclb,accommodates,cmi,stacker,msf,touchdowns,plasmas,barbell,awk,bibs,sneaky,smarts,lankan,synthetase,lightwave,alignments,coached,jac,framingham,opensource,restroom,videography,lcr,spatially,doanh,preprocessor,cohn,aon,marginally,ocs,bak,cavalli,ddc,grunge,invoicing,bigtits,carney,braintree,southside,vca,flipped,cabrera,mindy,surfaced,glam,cowgirl,loginlogin,mtr,nakamura,layoffs,matures,cty,apm,iggy,margarine,sneaker,glycoprotein,gcs,queued,sab,hydroxide,hanley,cellulite,hwang,mtd,mcqueen,passat,fluff,shifter,cartography,firstprevious,vito,predicates,bcl,douay,zeitgeist,nickelodeon,dru,apar,tending,hernia,preisvergleich,britton,stabilizing,socom,wsis,anil,midsize,pullover,lpn,hoodwinked,photoes,beastie,yucca,harvester,emmett,shay,obstructive,pacman,retroactive,briefed,bebe,krusell,clickz,kermit,gizmo,atherosclerosis,demography,migraines,wallingford,newborns,ljubljana,restarted,rnc,meow,thayer,kilograms,packager,populate,pembrokeshire,arcane,impractical,tcg,decentralization,honeymoons,authoritarian,alu,judaica,tropicana,tyan,cardholder,peavey,gothenburg,geocaching,ident,fluoxetine,tipton,teva,lsa,effortlessly,failover,cysts,primetime,kenosha,kokomo,penney,snorkel,amin,iridium,dwyer,conserving,toppers,cfg,tvc,alternator,nysgrc,underwriter,springhill,panhandle,joann,isoform,borden,bombed,elt,halton,guaranteeing,fasta,gonzaga,boobies,nadine,breitling,nutr,ingersoll,sandia,pacs,azur,helms,beos,srcdir,sherpa,tuff,ligands,smalltalk,sorghum,nucleotides,mmv,ebi,sbd,lmao,enhancers,collaborated,produ,lila,slotted,nnw,fila,decking,boz,accelerators,howstuffworks,neighbourhoods,michal,rab,hideaway,dwayne,coda,cyanide,kostenlose,grotesk,marek,interlibrary,provenance,sra,sog,zinkle,fanfare,mapper,boyce,mlk,dystrophy,infomation,footballs,emailemail,bathurst,fof,duracell,feinstein,magnavox,evra,servlets,tss,neill,epithelium,thc,webbing,bef,jaya,mame,ppe,emusic,tso,epp,glencoe,untested,overviews,affleck,flinders,informationhide,hearst,verifies,reverb,kays,commuters,rcp,welivetogether,crit,sdm,durbin,riken,canceling,brookhaven,gauss,artistry,phpnuke,falkirk,pitts,dtp,kwon,rubric,headlamp,operand,kristi,yasmin,gnl,acdbvertex,illini,macho,ningbo,staphylococcus,busting,foss,gfp,yhoo,sloane,wooster,delong,mdi,nilsson,substring,gac,smelly,gallatin,hangar,ephemera,heli,choo,testicular,miramar,wearable,carling,buildup,weaponry,swann,lian,landline,entrees,corpora,priv,geeklog,antiviral,profiler,lodi,minimalist,wolverines,bbcode,protagonist,rata,freephone,plm,raytheon,refseq,kingfisher,numark,moline,esac,takers,gts,amana,worldcom,hiroyuki,procter,pragma,winkler,walleye,icf,bagel,asbury,alpharetta,syncmaster,wists,xfx,wicklow,tsr,baer,yf,cmr,chil,leftfield,lettings,walkway,coos,petrochemical,fia,chula,zalman,carer,humankind,cmms,hawley,inverters,mccormack,pdu,faceplates,yeats,motorhomes,cie,icts,mcmurray,zucchini,lanai,pwc,chiral,fermi,newsreader,multiculturalism,cuddly,listinfo,shp,primedia,chl,estrada,pricey,shekel,apn,diocesan,readout,clarifies,klm,dimes,revlon,dtr,cranky,paparazzi,zheng,merida,bambi,interceptor,rox,jamster,noritake,banding,nonstick,origami,marketwatch,yeti,arf,umbilical,linz,donates,foursome,lawrenceville,azul,springdale,moisturizing,loeb,isr,huston,gatos,disqualification,suunto,angiotensin,spitfire,wfp,realnetworks,summation,plame,querying,gpc,autonomic,fq,pathname,novartis,ufos,manatee,qh,restructure,larval,zeu,socal,resettlement,mistakenly,radiative,drapes,intimately,koreans,realy,womans,groin,greenway,spamassassin,mata,gigagalleries,algerian,frat,egullet,electrics,joni,stencils,reinventing,reqs,latte,shaolin,shopped,beattie,hrm,hypnotherapy,muppet,abp,checkpoints,tpa,derechos,pieter,timesselect,viacom,strcmp,kardon,sideshow,classifier,westbrook,repro,moser,studi,sdf,colonialism,supermicro,scorers,sitcom,pastries,aldo,azim,authorizations,holsters,neuropathy,backorder,humphreys,metroid,vcs,nikkor,mcf,jacobsen,conjugated,lcc,unethical,vacances,whos,asr,alphanumeric,grumpy,fixedhf,holm,sirens,lfs,benelux,caters,slp,prasad,kirkpatrick,jamahiriya,tol,coagulation,girly,bnp,archdiocese,orbiter,edgewater,lem,keyless,repatriation,tortilla,dissociation,industrie,watercolour,ucb,waite,madsen,mnh,opticians,nop,newmap,mse,bottleneck,regressions,linton,sio,buckeyes,bodywork,applique,jewell,gef,hornby,redefined,empowers,informix,tots,goalkeeper,startseite,blurb,feedburner,dominatrix,norcross,compiles,bancorp,encoders,pmp,boomerang,temecula,ghg,structurally,caveats,homeownership,birdie,disseminating,lanyard,horst,interlock,pagers,esophagus,ocz,sexshow,jackpots,optometrists,zak,krueger,hickey,erode,unlicensed,termite,ibuprofen,drugstore,audiology,gannon,integrals,fremantle,lysine,sizzling,macroeconomics,tors,thule,gtx,eeprom,kaleidoscope,dmitry,thawte,busters,officemax,absorber,nessus,imager,cebu,kannada,sailboat,hectare,netball,furl,holographic,defra,salaam,respirator,countertop,gla,installments,hogg,partying,weatherford,sav,exited,crispy,coffees,knowhere,sequin,bendigo,unis,bandwagon,janssen,myst,polymerization,byval,nozzles,labview,snitz,rpi,hcc,unbelievably,pasting,butyl,ppd,forested,unrivaled,roadways,varna,maidenhead,almanacs,gfx,randomness,middlebury,muon,ringo,svr,caliper,lmb,woolf,innovators,anode,microprocessors,tps,stk,siting,misinformation,aneurysm,closeups,kinsey,prp,cnbc,eroded,tris,lonnie,hartlepool,bol,alastair,agr,fafsa,javac,uclibc,fodor,afrikaanse,colognes,contestant,snell,prescreened,believable,anesthesiology,elmhurst,misha,melatonin,bongo,rmb,mdf,terr,xw,bloke,avc,oxnard,cess,cedex,electrochemical,brevard,brw,brenner,slalom,waterhouse,calif,acces,aquatics,cari,lurker,buffett,chews,hoodies,phony,vila,fsf,gmake,nikko,grasslands,monolithic,polifoniczne,bugtraq,cpage,engr,subcontract,prophylaxis,texinfo,ings,cotswold,guillermo,unstructured,boop,hitman,tla,mercier,restated,nukes,duplicator,mehta,macomb,fundamentalism,australasian,isk,rerun,moda,segmented,cranberries,leas,pleated,handshake,digests,innovate,goode,erisa,jeb,dismantling,ferrell,hellometro,leavenworth,snowmobiling,fora,fdr,gaba,vfs,dlc,byers,codon,webnotify,sfr,pylori,loomis,acidity,gershwin,formaldehyde,welder,cyp,kendra,switcher,ocaml,goldie,mab,gooshing,mockingbird,ponte,xlt,hogwarts,juicer,lloyds,echelon,gabba,arranger,umbro,metallurgy,baa,neq,liteon,queuing,vsize,shiite,valuing,argon,coheed,hooray,flightplan,carefree,souza,kershaw,millar,biotin,salter,testicles,morph,econometrics,remo,msec,marconi,ote,receiverdvb,expatriate,tantra,codified,ncs,overlays,thingy,comforters,conservatories,ruskin,dpf,cyndi,germination,lipoprotein,ayurvedic,planetarium,tribeca,bihar,keenan,discos,eastbourne,robles,gianni,dxf,homebuyers,nogroup,freescale,wiccan,sess,merrimack,groton,billboards,searcher,uttar,mailinglist,metacrawler,priser,osceola,bioterrorism,tourmaline,leatherman,microns,unifying,anaesthesia,videogame,aws,dtc,chc,intranets,escalating,bluebird,iucn,gls,mahjong,interstellar,kenton,underestimated,groupsex,loudspeakers,flexi,vst,junctions,redman,transferase,bvlgari,hampden,nls,selby,wausau,stoppers,snowshoeing,uppercase,cirrhosis,publib,metrology,connexion,stoneware,moncton,traci,krumble,pathogenic,rasmus,raritan,riverfront,humanist,usefull,pompano,skewed,cleary,nepa,ludacris,sequenced,xiao,teaming,flatshare,aromas,positional,alesis,glycine,vee,breakthroughs,cashback,throwback,charlestown,nexrad,gestation,powering,magee,osnews,logins,sadism,emb,muncie,panoramas,plenum,ato,aotearoa,foro,hydrolysis,flac,labia,immunizations,existential,umc,sweaty,segond,addis,beasley,breached,rounder,rectum,nha,perched,jah,dsr,lta,videoconferencing,cytoplasm,makin,sedimentary,laurier,aachen,wnd,olney,massimo,chlorophyll,scop,shipyard,centering,manley,sunroof,dvorak,etch,answerer,briefcases,gwent,bogart,amit,kaufen,untranslated,raffles,reconnect,teeny,benthic,mcmanus,infotech,carlin,lithograph,ure,stoner,repost,iras,resurfacing,kelli,spitzer,jae,dunne,hyperbolic,pstn,bisque,anzeigen,standoff,westbury,solano,kailua,acoustical,photovoltaic,orchestras,redline,reggaeton,qstring,declan,tama,wank,virol,iy,solvers,linuxworld,canadiens,rockabilly,smokin,tumours,loudspeaker,handicapping,tatu,evangelion,excretion,breakage,negra,horsham,jing,petro,notations,midgets,comprar,homemaker,neverwinter,ddt,categorize,geophys,loa,tga,foreskin,jornada,inetpub,premierguide,reflexology,sophos,helphelp,foundries,registrants,sweats,atvs,capstone,adecco,sensei,publicized,transessuale,federalist,objectweb,portrays,postgres,fesseln,hidalgo,prosthetic,kristine,microfiche,dce,watergate,setbacks,karan,cdata,kfc,grandview,amerisuites,aural,gatekeeper,heinemann,decommissioning,nq,gestion,thermodynamic,patrice,profiled,disambiguation,mmmm,bittersweet,mul,gustavo,isolating,xine,bigfoot,nrw,mycobacterium,yamada,coldwater,whitehouse,cultivars,santorum,mugabe,margo,rundown,carbondale,gizmos,effingham,beastility,agus,ucd,dowling,mitac,steels,oakdale,nda,mystique,cortislim,oes,disp,loaders,trouser,oai,hoboken,sepia,differentials,sabi,dancehall,sarajevo,brava,underscores,roadshow,fbo,sabah,russel,nephrology,squamous,mvn,wz,malden,mita,orissa,ise,vfr,chianti,minsk,coffey,domestically,qantas,brandi,artefacts,solihull,tation,tchaikovsky,refineries,ronan,pricewaterhousecoopers,swimsuits,automates,wylie,whomever,sidelines,shaffer,toolbars,preservatives,wagga,kenai,bobs,mortensen,unplanned,characterisation,ppa,mip,peering,fopen,vgn,wmissing,csn,rudd,bourke,pelvis,goodmans,potluck,ioffer,cial,davidoff,creamer,tsc,gfs,contax,columbine,portables,fledged,aquinas,kidz,edonkey,hourglass,pagetop,paloma,gunmen,disables,ssangyong,antiretroviral,moschino,hoyt,okc,lockport,pittsfield,pollack,hoyle,arousal,inhibiting,reo,mammary,trampolines,hillman,trimmers,bridgestone,muvo,wcities,boi,diddy,conveyancing,apl,echinacea,rok,phish,frigidaire,oxo,hah,halibut,penrith,brno,silverware,teoma,rcra,mlo,ideologies,feminists,fff,sculpted,uq,rta,embo,rollin,contraindications,einai,ssrn,oup,rebuttal,underside,alumnus,archeology,preise,ontologies,fenders,frisbee,hmmmm,tipo,hyperactivity,seagull,nanotubes,polos,bonaire,hehehe,fim,reece,elsif,spinners,annealing,maximizes,pld,ctp,eurasia,dickey,ako,carpeting,yorkers,ltte,eukaryotic,bexley,sions,bremer,marisa,frustrations,delgado,resection,dioxin,islamist,brant,hss,kubrick,fft,touchscreen,layoff,facelift,decoded,gry,shitty,dodger,ihs,lessig,zaf,revell,sched,rpgs,euphoria,acuity,popper,lockdown,nsp,transmittal,heatsink,assholes,hayman,novi,equilibria,requester,allrecipes,serialized,hangzhou,bjork,stringer,nanjing,milligrams,jab,snohomish,strathclyde,yoko,intramural,curated,finalised,tania,cdd,gund,tascam,noam,hardstyle,arun,cga,waistband,fibroblasts,leandro,metastasis,userpics,greenbelt,leuven,printk,reachable,pss,radioactivity,caine,gyfer,boch,howdy,cocksucking,marlon,timmy,liga,gregorian,reorder,aerosols,archeological,logarithmic,sexape,robby,completions,yearning,transporters,sandalwood,megs,idp,rapidshare,tsb,omnibook,gamepro,bca,decontamination,tamiya,euclidean,salina,woodford,formalism,aching,nbs,audigy,libexec,eyepiece,bibl,bobcat,freehand,guo,ltsn,itil,nugent,esr,sce,killeen,jamming,applicator,icrc,mezzanine,meghan,cupertino,logfile,zed,humidifier,padilla,susanne,collapses,yung,longwood,krw,mainstay,descr,dtm,atcc,tasman,accessoires,mucosa,dachshund,zf,syringes,breakpoint,telus,stoney,nepali,regimens,wok,canola,slicing,reproducible,experi,skydiving,sof,bogota,discogs,datagram,videographers,cag,nicks,platelets,trannies,pamper,nineties,bracknell,disinfection,perfusion,postseason,tigerdirect,smoothie,punisher,tabbed,tcu,alene,lismore,coquitlam,auctioneers,somethin,daniela,dials,enhydra,kyrgyz,iia,bianchi,iata,zim,buscador,roadrunner,blackhawks,jsr,misfits,quiksilver,nwn,sqlite,siu,tarantino,addi,jkt,buyout,replays,wcs,adrenergic,bottling,caldera,baseman,botanicals,techie,farr,vtech,donde,beyer,versiontracker,pse,hashcode,tradeshow,lewisville,aster,transparencies,bloomingdale,northrop,revo,overkill,nlrb,lazio,enr,diag,chiapas,freedict,disponible,morissette,effortless,hydroelectric,cranial,hindsight,orientated,abrasives,fpc,brl,vpns,feingold,thunderbirds,dha,wot,geog,harrah,wxga,nmfs,boynton,cashing,spousal,abusers,twinlab,vick,aml,sodimm,copley,mallard,twikipreferences,airman,configurator,clc,neurobiology,diamante,dreamworks,corsets,dowd,escrituras,bureaucrats,songtext,wham,phpgroupware,cyclin,conyers,youll,kowloon,fairytale,pickens,bybel,mln,wres,barm,amplitudes,nmap,nvq,ocd,ryu,microcontroller,premiered,institutionalized,hamm,gyno,bhopal,circulatory,centerline,chairmen,guerlain,pedo,hussain,portlet,proscar,histone,opioid,totalling,pyobject,translational,lehmann,keaton,elkins,jamison,interstitial,inest,tanzanite,helical,redlands,sagradas,fondue,windscreen,adderall,othello,supersonic,pocatello,maniacs,sysadmin,foothill,earmarked,highspeed,uncheck,rapes,vlad,cif,photosynthesis,junit,remotes,epo,mcm,ucf,nacl,sfa,empirically,dfes,addon,pon,feelin,callmanager,deteriorating,statenvertaling,cypriot,entert,fascia,woburn,jalan,fryers,cally,layering,geriatrics,picky,conley,boces,barth,lvm,mooring,mcdonell,expats,bizarr,loadavg,perla,micheal,bok,friendster,endoscopy,msx,buzzwords,lumen,airwaves,jagger,setups,inman,schindler,limewire,drawstring,midrange,frodo,superpower,recliner,trisha,trium,utm,grimsby,wyeth,urs,kds,adjuster,impeccable,shari,marketplaces,tefl,sudo,technische,characterizing,gawker,gagging,cyclist,atg,generics,richey,magneto,crunchy,teletext,drwxrwxr,crabtree,underfull,hemscott,webmasterworld,objc,musicmatch,sealant,timberwolves,harriers,shangri,robo,roto,mnem,nnn,aidan,fidel,executables,concertos,vob,extracurricular,haverhill,squirters,hbp,tonal,atr,ashtray,gpu,payton,psychoanalysis,hesitant,poco,nedstat,rcmp,microchip,eroticos,fea,kors,susquehanna,userinfo,modulo,antler,bangladeshi,desking,nikolai,nuys,ludhiana,rdr,spankings,chatrooms,pretreatment,brittney,jer,tianjin,qj,winnebago,mcfadden,notecards,tix,murfreesboro,quaternary,subtracted,tropez,mcgovern,olivetti,hikers,vivaldi,cuties,lnb,gilchrist,preheat,bernadette,microdrive,rookies,overton,potpourri,neiman,seb,sigs,jarhead,momo,uzbek,ttt,dubya,signatory,cim,energized,brite,shs,minimums,needlepoint,deng,camargo,oems,bolle,webrings,ehrlich,azz,firefighting,icalendar,disallow,exch,mclachlan,zaragoza,brixton,efi,kilo,tcmseq,moisturizer,suonerie,remanded,empresa,shoebox,disagrees,lowdown,trove,filer,apologetics,englisch,texarkana,threonine,metart,siti,encephalitis,tomatometer,arias,kenner,anamorphic,subspace,cleats,ifp,circ,pressured,peppermill,sml,clarifications,zionism,pti,retin,klicken,disjoint,ema,openldap,koenig,carats,hijacked,tch,burlingame,checkbook,candice,coworkers,eno,karla,cus,gio,statm,haifa,reincarnation,budweiser,heuristics,tunisian,hologram,macular,eral,refinishing,chia,celestron,leyland,reloading,hombre,munch,basf,rolleyes,bidirectional,ahhh,chica,starfish,kurdistan,boro,heartbreak,preps,irina,mylar,congestive,dmd,schilling,twikivariables,battleground,tectonic,equate,corbis,inflatables,naacp,pathologist,minnetonka,langston,memoriam,underserved,rectifi,elmwood,fukuoka,glbt,rsi,parr,pob,ods,welles,gujarati,sportsline,leno,healthwise,vrml,sida,azres,sapporo,jscript,predictability,pajama,paddlesports,adenocarcinoma,toning,gestational,kravitz,ptcldy,snowball,adl,travelogues,crl,zocor,ecotourism,leadtek,hkcu,morehead,niro,fueling,orthopaedics,crayons,tikes,revamped,olap,curfew,hamlin,brandeis,bree,stylistic,corneal,beckman,crusher,riva,prefs,militaria,marshfield,elo,swank,matisse,villeroy,proactively,mccarty,zas,acdbcircle,horney,modeler,progressives,grosvenor,linger,creationism,dork,claritin,psychosis,fei,firsthand,gigi,cranston,hayley,ags,muted,turbidity,mountable,kiki,vz,avondale,oceanographic,zzz,tsg,epl,nonzero,iwork,scavenger,touted,candace,kava,kronos,adjuvant,tyneside,travolta,sari,preventable,bumpy,aleph,lga,conroy,mastermind,vaccinated,coburn,rawk,acceptability,stryker,surcharges,noticeboard,chapin,permutation,colpo,ucsc,mulligan,fod,ketchup,alimony,tng,viscous,skk,cmm,unambiguous,emphysema,epistemology,grantham,avila,solana,toolkits,soloist,rejuvenation,chn,jse,anaconda,bsnl,carfax,leveraged,wega,scanjet,ibc,meng,burley,efa,freesex,plasmids,steffen,xz,woofer,lada,hinckley,millimeter,snape,rollercoaster,tdc,connery,newswatch,roundups,keylogger,parka,scouse,unists,timo,hea,spock,ffs,bmj,farrar,decompression,draco,mika,galena,msft,inactivation,metafilter,mbna,lymphatic,ofc,gian,berks,hdv,wirral,boxset,ashrae,ilford,allman,kroon,gmo,sdc,builtin,lisboa,coc,rollback,westgate,thd,bobo,crockpot,weaning,snowshoe,hijackthis,backside,fetchmail,candlewood,angelfire,ucsf,painkiller,nutty,fenway,restrooms,myeloma,scallops,osteopathic,vividly,rmit,countermeasures,ofertas,gwinnett,dirs,duvall,wildflower,stackable,greensburg,barebones,merino,stooges,chatsworth,jello,mtime,barium,toric,looting,kiefer,agg,mauro,shearer,decca,hydrophobic,unsw,millard,btn,terraserver,returnable,ohs,resuscitation,cancelling,rns,nrg,stratification,oliveira,cahill,grumman,webdav,adagio,sunburst,ayumi,sev,zt,bela,swt,startups,ranting,udaipur,tonya,erupted,ghostscript,meltdown,rainwater,gellar,alm,vy,cnrs,redefining,shar,vesicles,piccolo,scalia,resizing,showrooms,verifiable,lobo,nunn,boyds,havens,bacterium,zb,sideline,bushing,ligament,penpals,translocation,costco,serialization,wst,playgrounds,universidade,fong,hbs,zips,ntot,eigenvalue,conductance,albemarle,mudd,dvs,niels,explodes,lindy,coimbatore,panzer,audioscrobbler,keri,soviets,tweeter,poncho,sids,faerie,oooh,oceana,ayn,wakeboarding,stinger,yuba,chipsets,anastacia,collapsing,yaoi,gwyneth,kuwaiti,jalbum,storageworks,duplicators,cubicle,rana,winfrey,avanti,iop,blige,papaya,auger,macclesfield,mongoose,crossfade,instrumentals,iconic,sulfide,dawg,mahler,maurer,auschwitz,gambit,accom,stb,uxbridge,baan,baumatic,slt,landis,fredrick,jogger,occlusion,jz,charlize,covent,reinvestment,ssdasdas,chatterbox,neutrons,fss,silo,polystyrene,amon,jodhpur,intelligencer,dundas,netmag,molokai,pluralism,kobayashi,tetanus,bcd,neuromuscular,fkq,caribe,iit,nphase,multifamily,timres,nrcs,farnham,coors,execs,hauser,citeseer,hiker,manuf,strategist,electroclash,outlays,ktm,zloty,osmosis,mojave,renova,hsp,soothe,mariposa,bir,advancements,franck,bock,fsm,leary,slurry,ker,dte,soulmates,marissa,sga,beretta,chiropractor,vibrational,sandusky,obsidian,dressers,winger,endeavours,argonne,runnin,bfi,gaye,colfax,logics,camedia,ctd,optimise,ernesto,voeg,adamson,coeds,subdirectories,asain,guilder,comparator,sealer,sleazy,onstage,todas,waterproofing,devlin,riel,pinky,lewisham,mints,wdm,avocent,invertebrate,brea,rebellious,carnitine,trib,webex,pairings,guesthouses,yikes,exorcism,grilles,mim,cultivar,orson,teammate,idn,hrvatska,sequencer,grandparent,demonic,wonka,prezzo,opto,collaboratively,oberlin,nrl,gorda,newburgh,alcoa,mums,facs,lossless,mmp,beasteality,imbalances,andean,superconducting,spectroscopic,armpit,dect,mew,worsening,symp,igf,metalworking,groundhog,clomid,ginkgo,decedent,dimethyl,retval,openurl,baku,telescopic,vespa,phasing,lactate,poughkeepsie,dodson,monorail,bookworm,enero,sabbatical,ced,skeptic,backlit,smr,kentech,lamette,gita,itm,ath,hennepin,foucault,onshore,acls,pwm,florals,millimeters,krauss,asca,wicks,pathologists,fanfiction,pathol,toxics,ipcc,kinesiology,potions,tern,squirts,delmar,storybook,grenades,rls,etrex,contrasted,opting,hauled,taupe,renta,grd,odeo,jiangsu,osd,hookup,myron,atb,ctg,doreen,altima,keepsakes,seawater,ecko,zarqawi,contenders,conveyors,accenture,iagora,haier,crutchfield,fulfills,rota,kelso,petaluma,ifrs,servicios,printmaking,miata,julianne,dotnet,reconstructive,metcalf,vicksburg,gri,bookshelves,supermodels,glycerol,wiseman,sliders,carhartt,redford,itemized,rsp,defamatory,eir,matheson,amalfi,currentversion,renminbi,yap,mangas,bottlenecks,pyrex,huffington,sculpting,sedans,dpt,hoobastank,launchers,finishers,psychologically,ssm,schaeffer,northside,interdependence,microfinance,droplets,inducted,fos,uninitialized,conor,repercussions,woking,longmont,medion,monika,hydrological,runes,hobbyhuren,ents,ortega,breweries,landon,burrell,forecaster,quickie,stephane,parabolic,boreal,bankroll,bioassay,martinsville,ldem,interventional,teensex,tabulation,joop,creampies,trier,arbitrage,dogwood,convergent,enviar,hutt,majoring,techwr,glitches,dugg,qwerty,equivalency,rela,sedation,quik,rosemont,xk,harmonics,devi,highschool,orvis,centimeters,lavatory,destructor,accelerates,opts,relocations,wilco,tricare,beckley,ryde,januari,kee,blacksburg,anova,midfielder,tornadoes,nand,ladd,docklands,mgs,tanzanian,padi,msl,clamav,megastore,xander,eon,winelands,syllabi,elif,lorne,noida,visalia,mykonos,wcc,krieger,safeway,sheri,prosite,wikis,mozzarella,glenda,uta,dqg,waterville,yonkers,republish,endoscopic,dilbert,vfd,transen,konqueror,feliz,biscayne,sexocean,debconf,disproportionately,taskbar,libero,synchrotron,tet,memorize,marquez,williston,muppets,volumetric,umpires,shuttles,jumpstart,motogp,hyperplasia,nber,donahue,parodies,prado,legit,humax,scrapped,ingo,dillard,orphanage,disruptions,erasure,preamp,pde,mcallister,ziegler,loewe,dowload,msb,iptv,bondi,freelancer,felton,dpp,umax,radars,dmg,materiel,megadeth,cooperstown,sdh,staffers,mawr,daw,comptia,teddies,upsilon,sizable,coenzyme,enzo,afterlife,mather,ncurses,harddrive,cml,counterpoint,batesville,skywalker,franke,takashi,wristband,jimenez,esque,chiller,barra,ales,worthing,zna,jonathon,psr,sump,breadcrumb,sucrose,amro,portege,neogeo,renewables,filipina,sgs,mbas,ihop,cortisol,banshee,supersedes,bullseye,prezzi,rbs,pacino,cajon,downloader,seabrook,leif,jrr,iwc,taranaki,chronically,merkel,megaman,setq,preschoolers,vcl,unenforceable,lto,busi,noone,rotc,fisheye,oaxaca,gerontology,microsano,predation,gaas,kilimanjaro,exacerbated,emr,infestation,yarra,volker,linearity,huey,aerials,stylist,porosity,schofield,alam,sprayer,tirol,sfu,gliders,corby,wenatchee,prognostic,unregulated,mult,pittman,bbl,hadith,ots,kdelibs,jayhawks,teesside,rav,lobos,reportable,dickerson,carotene,filesystems,enrollees,cena,sanjay,compaction,juicers,gemm,methionine,lala,toplist,holyoke,dewpoint,rdiff,osp,delimiter,forsaken,richfield,hangout,striptease,jhi,amf,sonicwall,burgeoning,unicast,amnesia,cipro,cherie,klip,libxt,menswear,inthevip,wrenches,actuate,capote,cvd,flexeril,molar,databank,montevideo,sunglass,lhs,kassel,followings,shipley,accretion,asha,bullpen,mamas,schreiber,gnc,dysplasia,freeroll,efl,igs,utopian,kota,iden,dil,wia,sosa,negril,hyped,epidermal,autopilot,garza,decrypt,batik,crain,subd,utilising,dsu,fermanagh,idr,interoperable,mam,delano,sonja,plex,compat,replaceable,forint,nudism,netcom,formulary,irvin,galery,hounslow,fosamax,striping,excavating,recoveries,mrsa,mainstreaming,awt,hola,hoody,dci,geri,seasonings,marcelo,pantech,fcp,scaricare,roxbury,clamping,whiplash,dildoes,takeoff,wiggle,truely,henna,cartesian,gamezone,yank,llewellyn,shag,asymmetrical,universitat,williamstown,trolleys,interlocking,doped,headband,internetweek,outperform,ncp,harmonization,hamid,differentiating,hitters,konrad,wickets,restarting,bcm,xilinx,wideband,tmobile,rocha,pbox,aea,stevenage,moorhead,directorio,restructured,aerodynamic,hopewell,evaluative,zuma,annuaire,subtracting,bram,kuna,logbook,xor,louth,pict,truetones,gabor,rotates,ezcontentobjecttreenode,leanne,bgcolor,rescues,wim,corsa,causality,tiling,ethnographic,waffles,doubly,fandango,powermac,catalysis,annexes,lisle,pushj,naylor,wrongdoing,paducah,gunter,iranians,aat,commandos,abcd,repeatable,deh,epiphone,scf,weekender,milner,schott,welders,semifinals,quantization,surfacing,vegetarians,hagerstown,polyclonal,transponder,gottlieb,withdrawl,geneid,tierney,glock,guatemalan,iguana,glaring,cifras,salman,choker,ecologically,scoreboards,mohr,dpa,spaceship,digimax,moremi,btc,technologie,tunica,powerbuilder,aorta,unconfirmed,dimitri,degenerative,delve,torrey,celica,beloit,nir,substr,lowrance,ballantine,crimp,bss,mousepad,umbria,oregano,rashid,microtek,geary,boaters,soyo,visualisation,brianna,handlebars,weightloss,interconnects,playtime,enrollments,gyllenhaal,criticality,geoscience,mhonarc,golive,deville,meh,moseley,spacers,unido,deferral,hersh,hilliard,vlsi,keegan,feces,uy,bute,activewear,transcriptions,metered,bugfixes,cami,interna,quintessential,babycenter,gardena,cultura,stockpile,psychics,pediatr,williamsport,westlaw,hetero,meteorite,extruded,lakh,starware,phage,laszlo,hernando,vogt,wolfpack,lags,eldridge,wray,hajj,edirectory,longstanding,knitwear,apocalyptic,fatties,darmstadt,mco,ucsb,fillings,marti,aberystwyth,infineon,fdd,inflows,tmpl,estuarine,lita,nubuck,socialization,estock,mbit,valign,caving,vec,alkyl,artichoke,leasehold,directgov,ubiquitin,fuerteventura,hairdressing,dhhs,fecha,nio,wsi,quigley,yellowpages,pretec,biomechanics,microcomputer,discipleship,hella,womack,magnifier,acdbtext,pitney,esters,haan,ofcom,ablation,nutcracker,dosages,prn,zm,dfs,multiplexing,indentation,hazmat,eac,dalhousie,ahem,retardant,shankar,overheads,southfield,iee,gnustep,spm,azkaban,dermal,metar,sizeable,aftershave,lahaina,earners,tenderloin,dji,ipp,chee,hamburgers,oliva,gaultier,cios,margie,nms,wandsworth,caltech,stapleton,gsc,francophone,sqm,xoxo,coord,mocking,nri,serengeti,raccoon,shrinkage,prd,uris,hamsters,codphentermine,thrashers,calibrate,gilmour,rambo,cleburne,serrano,niacin,strawberrynet,wesson,ormond,oxycontin,bibliographical,wynne,glyph,nagios,marinated,marko,sfas,genotypes,conde,alford,madurai,evacuees,urbanization,kilgore,unwired,elseif,pneumoniae,skyscraper,ebags,gnn,tooled,intermec,charlottetown,submersible,condensate,matchup,undefeated,krs,movin,kino,vidio,photographing,pocono,footjobs,trackers,kinkade,unify,dissident,sperry,iframe,tur,commu,xterm,swapped,stent,vermillion,angiography,areaconnect,brockton,daz,abcdefghijklmnopqrstuvwxyz,dunst,livonia,specialisation,nsi,walgreens,plasticity,crux,nhra,armband,leamington,mosley,iga,stemmed,appleby,grayscale,labonte,lek,cartoonist,flotation,geol,deterrence,cardin,aardvark,cosmological,dothan,isotopic,hadleionov,langford,ssg,understated,obit,unt,randomised,amphetamine,shia,grout,reba,wrx,rsgi,bharat,sls,slg,kilometre,tristar,gippsland,pastels,stallions,paramedics,fishbase,rolla,curie,bootable,skit,sourcewatch,decimals,boe,catania,countertops,paola,elwood,hocking,prerelease,seqtype,femoral,anz,visceral,fructose,edta,silverstein,broderick,zooming,hamasaki,keswick,extinguisher,subpoenas,spiele,rincon,pll,donny,vitale,fledgling,boinc,traversal,bagder,erick,kcal,midfield,hypersensitivity,redshift,glaser,sado,cusco,imagemagick,uic,fernandes,prosthesis,jsc,omron,alberghi,electricals,kelp,taker,placeholder,moulton,yall,npdes,massages,catalist,metarating,tupelo,syriana,batt,dbms,asb,videotapes,backseat,kauffman,manipulations,accomodate,tioga,aylesbury,submenu,kwacha,chondroitin,sandpiper,vamp,overarching,janes,selectors,condoleezza,internationals,estuaries,schulze,osti,paleontology,emporio,stepper,reykjavik,waterskiing,renfrewshire,superheroes,marg,leftovers,mariano,bangboat,guestrooms,urethane,stoughton,paphos,sprinklers,accum,bms,datsun,sainsbury,chefmoz,helo,yvette,procmail,midsole,ayuda,geochemistry,reflectivity,moog,anth,durand,linea,butterworth,datagrid,metetra,rodrigues,apprenticeships,oncol,dop,asymptomatic,retails,offroad,simpletech,gandalf,minot,evidentiary,kpa,whelan,synthesize,doan,localisation,laparoscopic,pem,hotelguide,bayview,overridden,sorensen,hinds,managment,racially,stinky,riverton,expertly,mgc,langkawi,ftpd,colloidal,guarantor,imperialist,suc,veneers,reaffirmed,zambezi,tibia,raquel,wpt,kiddie,tulare,venturi,sundries,linebacker,danzig,neurol,beanies,irreducible,trixie,ridgeway,henckels,srb,verifier,dimensionname,eurasian,galbraith,pesky,underwire,salvia,aep,radioshack,sportstar,alana,upd,duma,osh,ddbj,stah,scripted,ated,mutagenesis,posada,vocalists,tiburon,lpc,geiger,cmyk,everlast,obits,jekyll,sportsbooks,andaman,hallam,spoofing,rockhampton,reauthorization,poolside,xiamen,trc,pita,chopard,skeptics,nast,motorist,kwik,peritoneal,jaffe,freebie,harare,tunbridge,spycam,lowes,lineto,ncaab,publicize,neohapsis,sanibel,bulimia,newquay,intros,ladybug,analyser,armando,conwy,algorithmic,rectifier,banknotes,aem,bookshot,bassoon,scrapbooks,hydropower,clearances,denominational,dominguez,meas,tamron,dfid,vlans,spreader,deu,otolaryngology,ezines,vbseo,snowmobiles,oca,phen,educa,lagrangian,dubrovnik,idt,eases,hippocampus,crim,repeaters,longoria,matsushita,reimbursements,kotor,encodings,yuen,eqs,eca,actionable,gangbangsquad,cornea,overfull,southgate,minibar,kitchenette,ols,liberian,tuc,hth,repairers,liczniki,rcc,numerology,armitage,brac,barware,corsi,normalize,gsp,bcr,krt,buffs,tamoxifen,phenotypes,kinross,kieran,informatie,mccallum,triplet,geosciences,sonics,timmins,django,pllc,lotta,upg,nhtsa,swissprot,archaeologists,voss,pussys,moveto,tentacle,stx,iaudio,prednisone,salespeople,motility,dengue,gaiman,incineration,dumont,shanks,bissell,organza,centralised,unbreakable,supersized,depictions,wml,sexcams,kaffe,karim,aww,gtc,pbl,cael,separators,informatique,resetting,indepth,funnies,cumin,chicagoland,keystrokes,setters,inertial,payless,ona,pec,payee,cinematographer,preorder,oig,teenies,ppv,ventilator,annonces,camelbak,klear,micrograms,pediatrician,cymbal,convective,haymarket,nosed,bre,shogun,rescheduled,bala,sidestep,readline,preemption,microbiological,corticosteroids,pseudoephedrine,stockholder,engnet,quanta,sturgis,synapse,cwd,innostream,airplay,uppers,sib,pitman,bodrum,leathers,embossing,redirects,fuzz,roscommon,meryl,izmir,meticulous,multiplexer,menorca,dendritic,minima,wstnsand,naproxen,operands,mikael,conceptually,crichton,cct,nics,hardwoods,clarita,xfs,capping,parisian,humanism,hiroshi,hipster,accel,annualized,sandi,npa,becca,basildon,khoa,testis,uclinux,unusable,tigger,approximated,dhea,consulates,wonkette,versioning,breakdowns,dbh,periodontal,macmall,iphoto,uncredited,recordi,lacroix,rupiah,bullish,hippy,klik,northerner,xsd,mackintosh,kenney,fabricators,mutated,layne,moonstone,scilly,sheng,fsp,yk,strep,offical,hps,tampere,testo,synergies,fundamentalists,amyloid,emachines,understandably,icarus,appletalk,goff,dialed,geoxtrack,bemidji,harcore,intermodal,spx,catalunya,baymont,niall,mitts,rik,nappy,diario,khalid,fuchsia,chowhound,muscat,ffff,kmart,handover,knott,butterfield,hialeah,finney,salamander,driveways,ummm,ayres,lukas,cavan,aswell,skippy,marginalized,sooners,cityguide,maritimes,permanente,texaco,bookmakers,speci,hgtv,contacto,mbc,marston,newsline,coverages,bap,specialities,loca,systematics,renderer,matsui,rework,snowmass,deq,rosh,coffs,cleansers,acu,webby,footbed,inicio,moretrade,apogee,allergens,worsen,mlc,applica,tankers,whopping,issey,rtr,bes,cust,brookes,anim,tull,informatica,computeractive,finline,permissionrole,quickcam,shunt,rodeway,scrollbar,breen,voyuerweb,mbe,kenshin,dpm,clackamas,synch,patten,leppard,allis,estimators,functionalities,rmt,downes,koffice,evidences,mux,dbx,fetishes,isaacs,outrigger,enclave,fibrillation,licorice,statically,ipl,dixons,goldmine,lhasa,developmentally,ziggy,ingles,senders,steamy,atf,madhya,marinade,passwort,extinguishers,stratosphere,tbilisi,updater,geico,fld,cabos,companys,tinputimage,ggg,nicaraguan,icn,wanganui,sconces,insulator,endometrial,mohan,hegemony,focussing,gallerie,bioperl,eprint,tennant,ebp,tryptophan,checkin,gilroy,extensibility,aei,qg,mcculloch,thang,lorem,seng,bianco,salma,consortia,asimov,renato,bungee,murdock,hokkaido,alternates,brdrs,configures,multilevel,mvs,pce,albertson,renoir,getclass,perthshire,mucus,suspenders,realtek,morons,dismantle,pharos,obp,zovirax,twikiguest,reimplemented,eavesdropping,orgs,numerator,gds,nme,resurgence,metastases,gino,timings,mecha,carburetor,merges,lightboxes,icra,jeopardize,ltp,loews,fanlisting,flet,bds,hyland,experian,screenwriting,svp,keyrings,hca,hdc,hydrolase,koa,mobilized,accutane,zonealarm,sexkontakte,canaveral,flagler,someplace,vcard,antibacterial,rund,extremism,edgy,fluctuate,tasked,nagpur,funroll,tema,flips,petsmart,libuclibc,chaney,aventis,macrophage,palmas,useable,ferndale,saipan,councilor,tcr,myinfo,jellyfish,newington,reissued,mpv,noa,airconditioning,wiggles,bho,synths,kennesaw,rubbermaid,spector,medica,ayer,incumbents,ashok,vern,writable,usepa,reflectance,mobo,bunn,chiba,uint,tgb,yj,coliform,selena,olmsted,broomfield,darpa,nonpoint,realignment,undermines,ferreira,sasl,defibrillators,kraus,certs,nwa,jstor,aarhus,supercomputer,bouncer,phenol,jigs,loudoun,lifetimes,grundy,histamine,byline,mbox,mustafa,bedlam,ioexception,abdel,bothell,synergistic,aur,lippincott,maplewood,tillman,maints,rhp,handball,shandong,cch,stylized,folate,lenoir,manitou,cytometry,goofs,wokingham,connors,musc,ripon,nypd,plexus,systolic,hyman,unreachable,deepak,desarrollo,tian,jisc,merc,covina,noonan,ufc,modernist,waring,janie,fams,yasser,weathering,totalitarian,putters,waypoint,prx,interrelated,delray,lifedrive,santander,southbound,solidworks,cronin,averatec,huren,patios,firebox,synopses,venta,sadr,tuples,brdrnone,diarrhoea,sonatas,barbecues,walther,deadwood,mancini,rpmlib,milpitas,commonsense,bsi,piii,romford,emporia,digidesign,violators,phrasebook,reconfiguration,sledding,lakefront,excision,traceability,yangon,booktitle,lemony,recursively,ney,kilda,auctioned,hennessy,basset,antwerpen,paltrow,rda,limiter,imtoo,jmp,cornwell,dah,blueberries,notting,comprehensively,amar,deftones,apg,zyxel,kno,limelight,schmid,alg,bme,solis,cdx,mju,hoosiers,criss,glynn,aerotek,unmet,toa,competes,olathe,ciw,compositional,sez,trig,taylormade,catawba,mbytes,ordinal,tth,inglewood,gila,magnitudes,downed,firstname,metairie,polluting,wellcome,pedicure,duplexes,edgewall,webchanges,backplane,daschle,transceivers,disrupting,biodegradable,spore,meps,phpmyadmin,bloodrayne,tessa,unrealized,hei,artistas,roomate,acetone,alanine,elko,dvdrw,spt,ries,inthe,blitzkrieg,nickels,banbury,igm,snf,optra,choctaw,issaquah,interactively,fredrik,aventura,ewa,dpic,mufflers,quarks,refactoring,monrovia,forman,marrakech,optoma,walkways,heineken,shelbyville,oxidized,bugfix,sharif,bloodstream,yx,underpinning,resistivity,hollinger,conformal,racquets,sherri,dbd,nevermind,moa,tenchi,potters,detergents,cheri,bombardier,subsp,cytotoxic,frag,eseminars,colophon,morin,ico,tatum,unforgiven,thesauri,gaffney,harrell,toowoomba,friendfinder,uts,bootsnall,relais,allocates,freecom,yoo,kabbalah,dgs,punks,chorley,ivanov,unannotated,endian,dari,patchy,haters,mutex,worldnow,giuliani,hina,millennia,pathophysiology,frith,pao,doran,remixed,hypoxia,newyork,penile,hemi,positron,metallurgical,ordinating,caregiving,molybdenum,easley,plo,psn,hexagonal,throated,contravention,bacteriol,healers,superbike,biosafety,binomial,engels,staybridge,mullet,canfield,hardball,orem,scholl,renovate,dvdr,phenterminebuy,metformin,actuary,addressbook,xquery,csl,purdy,rattus,xian,latches,ardmore,cosmetology,emitter,wif,grils,yom,ralston,estados,begining,apartamentos,sassoon,tna,hotlog,duquesne,oclug,formatter,rhinestones,shootings,splitters,gdm,pizzas,contig,whittaker,trafic,winders,walkie,adorama,uucp,postmarked,devolution,avion,innes,reunification,izumi,caenorhabditis,moderating,gadsden,cthulhu,eurostar,dooley,diebold,unsaturated,hotsync,ryerson,bfd,nonexistent,liquidated,decoders,validates,dae,jackman,biophysical,mendes,lasagna,landers,belton,qing,docu,tapas,calla,curriculums,supermodel,rezoning,schumer,exclusivity,motivates,debuted,lifeguard,chrissy,havasu,kei,danforth,kilmarnock,bignaturals,hendersonville,poweredge,sequels,licensor,pantone,granby,laboratoire,headteacher,viajes,etosha,ndc,coexistence,leona,dpr,brownfield,aguilar,supervises,orthologs,pataki,redistricting,jil,amritsar,lpi,pram,acqua,mekong,anesthetic,dsi,maduras,pfi,paperless,perc,fansites,sherbrooke,egyptienne,hyn,anisotropy,heaton,rennie,sno,redox,cladding,seaworld,hotlist,trumbull,retransmission,luau,tiscali,overlaps,meticulously,sitka,ucs,lsr,hellboy,jakub,hanselman,rangemaster,interceptions,rrc,dyna,appt,nonviolent,evangelicals,cunny,goddamn,wolfowitz,epping,accra,bimbo,jamboree,multicolor,tritium,ptfe,leaching,sauer,cricinfo,isomorphism,lsat,estab,stockbridge,invariants,jillian,islip,egp,didier,capistrano,yardage,neve,enviro,gte,bodybuilders,ranchers,bremerton,wbc,radii,schwinn,expander,regt,referer,electrolysis,signatories,wetsuit,flatrate,vendita,nazionale,peroxidase,folkestone,angkor,delcampe,taylors,rahul,mmr,zp,vserver,neurologic,chd,opac,cmv,macabre,neurontin,popeye,gruber,excerpted,spotter,pyongyang,hmos,beltonen,chamonix,recycler,declarative,semaphore,dprk,carmarthenshire,tristate,standardize,recyclable,knickers,overloading,angioplasty,fanboy,sharapova,moen,irin,deseret,eastbay,bfa,androgen,parkes,kilogram,pacemaker,duarte,evaluators,tarball,nears,kapoor,pah,allard,mog,tures,standout,lll,holley,ogs,ptt,sfs,transamerica,bdrm,comparability,buckhead,industrialization,cabana,mbr,yoshi,skokie,catwalk,homesite,pecos,stinson,blurry,etrust,minibus,coty,denby,openbook,unfunded,jobsite,dls,levinson,kasey,disbursed,cristian,ballooning,nats,antineoplastic,amplify,shitting,coden,congressmen,dft,xsp,strapless,qualitatively,struc,whitefish,flourished,ejection,puyallup,bonham,miu,cosplay,gazduire,dodgy,parasitology,thymus,handlebar,sanborn,beale,lesbianism,locators,belive,mnogosearch,aoa,childress,pppoe,phytoplankton,wireline,handpainted,suprise,neath,casseroles,generational,coppola,burrito,sandton,spylog,biltmore,coriander,edtv,chopra,streamflow,montoya,lesbien,manipulative,hypnotize,liaisons,backers,evocative,mcclelland,centerfold,burch,chesterton,warlord,guage,powerball,snider,creuset,wildland,oster,conti,sichuan,wrigley,bollinger,sensitivities,offshoring,uiq,bayes,vipix,amphibian,substation,optically,ceasefire,haag,alj,swartz,nanoparticles,affine,sitios,woot,obo,uname,employmentnew,sepa,asrock,hijacking,blurbs,downsizing,subcutaneous,creatinine,factorization,netbios,fleshlight,reliever,ender,indenture,arlen,trailblazer,coney,avenida,ern,shocker,barnstable,ioctl,bronte,refrigerant,caterham,bajar,movei,barkley,datacenter,presidio,transfection,fung,legg,moyer,roux,rectangles,caseload,catharines,pdx,wget,collaborator,cruzer,eeoc,tnc,cnw,sausalito,clas,xenopus,reflectors,endorsing,qingdao,kiwanis,onlinephentermine,replicator,assertive,aldershot,weirdness,oblast,townhall,sunnyside,datos,pham,glycogen,tain,selangor,detainee,brd,hoosier,balearic,toluene,jini,tubal,longford,johansen,photocopies,haccp,narconon,dyno,blakely,klonopin,photonic,kyiv,tami,hijackers,buell,informazioni,mccracken,ultrasonography,cale,alyson,taupo,possum,milligan,rosacea,transgendered,thos,toxicological,mackey,ristorante,obama,dvc,jermaine,platypus,breakbeat,karina,jang,thereunder,kink,winton,holla,multilayer,strcpy,xzibit,mohair,chore,agb,prt,abm,kgb,preemptive,guzman,subcontracting,counterterrorism,communicators,embodiments,sociedad,taskforce,gatineau,pertussis,concentrator,astrophysical,apap,pairwise,nagy,hofstra,kbs,filmstrip,shortcake,hsm,chilliwack,bidorbuy,tetracycline,lovett,motorhead,salam,hofmann,paramilitary,flipper,eyeball,outfitter,rsl,minden,hardwick,immunological,wifes,phenyl,telefax,giao,famously,hattiesburg,telematics,tsai,maier,lca,bossier,franchisees,falco,armin,ique,controllable,surfactant,telecommuting,culvert,prescriptive,wcag,hott,spanner,mchugh,firehouse,currys,diadora,laporte,wgbh,telekom,puri,factsheets,karts,orthodontic,visors,leste,lithography,bonobo,hamptons,proofreading,rmx,evokes,jdm,dehydrated,whyte,interop,initializing,manfrotto,waveguide,pnc,aussies,murtha,reinhard,permaculture,suburbia,kamal,catwoman,optimally,darko,windstar,polymorphisms,sexist,mdm,embryology,styrene,alumnae,inducible,riesling,triage,ees,krugman,mrt,mazatlan,silencer,foreclosed,chernobyl,rigby,allergen,crystallography,frosting,gallbladder,photogallery,nightwear,sconce,vgc,drivetrain,skelton,ovaries,mamob,phenterminecheap,daddies,impressionist,tourisme,hpi,clif,fairways,watercolors,klipsch,tekken,lactic,bydd,katana,ameriquest,boson,culo,milled,mcarthur,analgesic,mya,btec,geez,crocheted,acetylcholine,modblogs,pud,firsts,ferrets,enlight,wop,twas,menzies,agonists,eisner,staroffice,acg,photometric,fokus,ntc,buzzer,tok,trams,vickie,tinnitus,vectra,benidorm,gerrard,marketworks,libertarians,downers,kevlar,sequestration,yoshida,inositol,praia,follicle,itemsshow,brunner,indore,inspectorate,ultralight,toutputimage,saudis,octal,debilitating,twd,keypress,notifyall,hdf,corrs,turku,centrifuge,curators,multipoint,quang,marla,mths,caffe,projective,fandom,cws,kao,debacle,argh,tts,plantings,landmines,kes,sdd,khaled,kimmel,famc,tva,arbitrators,deakin,instock,gilligan,unh,unpossible,waldron,kihei,daq,bronchial,emg,nanoscale,hmong,brownfields,emmylou,antcn,unilaterally,hypoglycemia,sodomy,bukakke,bigpond,famosas,nsync,zd,revaluation,conditionally,moira,tenured,padd,amato,debentures,rfcs,acyl,rehoboth,lmc,dht,drucker,lmi,tham,cigna,dlr,nifl,sealy,axa,carrey,ige,dde,foy,evesham,mcneill,manitowoc,baguette,haves,erections,overpriced,grantor,sux,orbiting,soares,gsl,ihep,resubmit,bader,gymboree,kyo,yunnan,miyake,rah,saggy,subtypes,moultrie,vasquez,iogear,merch,uplinked,cognos,northbound,cardigans,ket,rasa,taglines,usernames,gpsmap,ngn,midweek,pirelli,rialto,tvw,durations,bustle,trawl,shredding,reiner,risers,taekwondo,ebxml,unedited,inhaler,granularity,albatross,pez,formalized,retraining,naa,nervosa,jit,catv,certificated,spicer,karsten,surfboard,scl,garfunkel,handguns,ideograph,papillon,dmn,citywide,stingray,bmo,toscana,analsex,larsson,franchisee,puente,epr,twikiusers,tustin,physik,savute,slinky,cubase,weatherproof,parkplatz,roadsidethoughts,oxy,pthread,postmenopausal,mixtape,tuxedos,fujian,batters,gogo,nca,minivans,yerevan,duffle,scraper,posner,bwv,technet,sdsu,decl,lombardi,musi,unger,gophers,brando,ksc,multifunctional,noes,relist,webjay,vtr,haworth,transfected,dockers,swg,screwdrivers,tir,guitarists,manta,christa,sff,moffat,surfboards,deteriorate,compo,roos,eesti,caulfield,midpoint,orland,malagasy,shoplocal,standardisation,matlock,nair,polymorphic,emd,phenomenology,substantiated,slk,phong,bandera,cred,lorry,recaps,fet,resolver,kagan,chiu,anthropologist,opcode,jugg,revamp,herbarium,grb,readonly,arista,barcelo,unknowns,kean,coq,cpo,brosnan,chamomile,tgf,mobilizing,anya,allo,geddes,wayland,cerro,methylation,ecol,clanlib,jayson,prostatic,uj,metcalfe,oppenheimer,mcclintock,android,primaries,converges,lation,anisotropic,voorraad,ucr,mxn,ambrosia,springboard,rubella,eisenberg,bif,constitutive,vesa,signoff,guggenheim,sapphic,killington,otr,intec,xem,instawares,kearns,showcased,summerfield,cooperatively,oshawa,targa,triplets,hec,billionaire,leucine,jobless,slingshot,cutout,disgruntled,coker,selinux,crosslinks,resurrected,skyscrapers,spamalot,sfp,noob,crb,moviefone,beecher,goog,mdgs,democratization,biostatistics,sakaiproject,cilantro,equ,xilisoft,zc,terracotta,garvey,harford,pcie,dartford,dicaprio,rosso,onlinebuy,gilliam,certiorari,walkin,contributory,applescript,esol,giggles,suture,jacobi,fark,autoblog,glaxosmithkline,dof,sextoys,tice,accor,buford,uspto,balfour,calipers,penalized,pyruvate,loggers,envi,kissinger,rmc,whew,orchestrated,conformational,choreographer,mcsa,impressionism,bucknell,martino,cranbrook,taz,ocp,subdomain,precios,simcoe,abnormality,varicose,newtonian,genova,libor,infomatics,hyannis,howland,federations,syed,urination,bewertung,broadcom,cautionary,escalate,spotters,kucinich,noosa,sider,mitral,dafa,verdes,inproceedings,crestwood,takingitglobal,dmz,antisocial,baz,gangsters,daemons,foundational,probs,huntley,kanpur,uah,elven,isotropic,adodb,enlaces,edelman,rubinstein,flier,griswold,ome,carcinogenic,micr,rrna,goverment,mercado,lum,dekker,supercharged,magicyellow,primavera,timescale,fico,overwritten,marcinho,kor,erb,keanu,edina,perle,lebron,terminally,bundaberg,lbo,breyer,kochi,pirated,leavers,vpl,pubsulike,aquifers,nittany,dakine,rescuers,amsoil,revitalize,messageboards,lakeville,apotheon,eukaryota,permeable,rsm,lastname,pxi,faxless,napalm,annuncio,usmle,racetrack,atenolol,riveting,cbbc,absorbers,xseries,biweekly,parkside,rez,hows,posi,derailed,shoebuy,ashworth,keira,meadville,skynyrd,threechannel,fid,rua,monologues,subroutines,subspecies,penton,eoc,figleaves,bab,ketchikan,immagini,shafer,qca,broiler,ctn,lickers,akbar,cbl,skimpy,fisa,reflexive,drool,godin,exchangers,interbase,sepsis,appli,boxdata,laing,oscillators,choline,doolittle,trikes,pdm,joerg,removers,grisham,diffuser,indesit,rouble,kamasutra,camila,belo,zac,postnatal,koizumi,tallied,ikezoe,niggas,lorain,tko,keying,ballpoint,kq,lupin,eidos,computerised,maf,rsv,munson,ftm,munoz,hbv,jeffersonville,willfully,orienteering,eoe,cavs,humphries,puss,ngs,podiatry,truffle,taka,beal,kalahari,blockage,hallo,abo,recv,obstet,bulma,chicos,cliche,sadc,tolar,screenname,chlorinated,hypothesized,upbringing,fmc,newry,zonal,defun,unsustainable,maas,ghostbusters,interdependent,rockwood,dbe,asda,civics,literals,unanticipated,seminoles,plist,tabulated,workloads,chemo,vhdl,pretrial,fermilab,hotplug,rotator,krups,myosin,mtx,carpool,honky,matsumoto,armpits,clug,gasolina,caruso,fsh,joysticks,visualized,bosworth,soic,clitoral,bers,carsten,riverwalk,convertibles,literotica,pgm,ringetoner,tpm,floorplan,oscilloscope,getz,mgd,dictators,levees,annandale,hillel,jeffries,pacheco,slacker,miva,sns,gca,xchange,kraftwerk,bandana,pentecostal,extrapolation,fennel,telemark,spg,quy,datasheets,smit,flywheel,futons,interviewees,mosfet,maryville,oskar,ital,quarkxpress,nondiscrimination,republika,icici,fixings,leith,kickboxing,deming,deactivated,caliente,oligonucleotide,crtc,golgi,channeling,stopwatch,maroc,lemieux,subscript,starfleet,odi,substandard,phenterminephentermine,phoned,ncl,gmtime,convener,becuase,dailies,dansguardian,miramax,busta,maury,cng,jizzshot,moya,nackt,commercialisation,cunni,cardinality,machado,insurances,qn,tinting,epidemiologic,isset,burnie,bushings,radionuclide,typeface,changeover,jian,termites,dotnetnuke,decryption,etnies,subsec,cxx,grinnell,alexei,helly,protestors,signings,parnell,gretna,guida,abl,farscape,hdtvs,sde,cyborg,yanks,hematopoietic,clot,imprints,opensolaris,inflationary,elie,traceroute,fgm,cuddle,workbooks,fallback,permutations,downer,abelian,cabela,transferee,quantitatively,sheepdog,cameraman,pinochet,replicating,tci,slashes,streetpilot,renovating,paralympic,dwarves,cakewalk,pyro,phenterminediscount,tye,bna,uwa,stinks,trx,behav,blackfoot,kuo,schaffer,kemper,glycemic,plesk,slicer,joshi,realtytrac,sandburg,dnb,nwi,reza,operable,wargames,guerrillas,saito,tce,fullsize,auc,anzac,kulkarni,rabbis,mendelssohn,investigational,photojournalism,anaal,christiansen,centaur,rubio,transando,rapist,ert,pratchett,climatology,baise,labtec,prioritization,pinhole,hdpe,bioengineering,dirac,mcu,alveolar,westmeath,lewinsky,webx,acco,soya,moz,exorcist,biofeedback,atrios,honduran,seaview,douche,rsh,soundcard,resistive,sylvain,chubb,snooper,atn,dbase,katja,icr,firepower,agu,ges,cissp,mangalore,laois,ime,unmodified,keystroke,zell,parkersburg,yoon,gillmor,joyner,vinnie,ccf,grocers,simulates,flathead,castellano,sigia,vesting,misspelled,prono,headcount,panache,inu,hallelujah,joes,cayuga,nob,tpb,glug,zodb,gubernatorial,goran,bauhaus,sarawak,sparky,sebastien,wirelessly,wpi,sysop,factored,eula,ohh,bsb,polymeric,salivary,mfi,ftaa,async,dnd,kristian,circadian,analgesics,flintshire,prakash,productos,phenotypic,pelagic,agronomy,vss,aironet,weightlifting,yugo,audiophile,unidos,motorcycling,raine,testbed,pediatricians,fingerprinting,bunbury,tasking,gmd,emulated,tweaked,phonological,barco,gomes,osf,faridabad,aprs,snappy,opa,colonic,jeroen,qin,zircon,svt,dansko,caspase,encinitas,tuo,remoting,ploy,achat,freefind,spellings,canopus,dme,gaulle,maplin,dutchess,wattage,puke,distinfo,leia,expeditionary,amortized,truckee,albury,humanistic,travelogue,triglycerides,gstreamer,leavitt,shotguns,discounting,etoys,thirties,swipe,dionne,ebscohost,tns,geoquote,upkeep,truncation,gdi,bausch,pomeroy,harrods,downgrade,roomates,biliary,dumpster,universalist,acdbarc,ywca,oceanview,fazendo,shayne,tomy,resized,yorkie,qx,matteo,shanahan,japonica,froogle,rehnquist,megabyte,ginsberg,vivienne,penticton,inseam,csh,pressurized,sld,faves,edf,massagers,ente,timesheet,anniston,sigur,toughbook,histological,clays,pcx,suzie,honeycomb,denier,udo,etcetera,reopening,herrmann,ifr,quantifying,qigong,cbn,kurzweil,chanukah,programas,fumbles,jobseekers,nitrite,catchers,mouser,rrs,knysna,arti,andrey,textarea,weis,pesto,ilm,ponderosa,kroatien,transitioning,whoops,catamaran,preoperative,cbe,verilog,helios,qz,wheelbase,narayan,voyforums,csg,unctad,monomer,refueling,ilife,biennium,coho,pellepennan,quartile,anwar,infobank,hexagon,ceu,geodetic,anda,emporis,ahmadinejad,lubes,consensual,altimeter,nmi,psm,lawler,sharpener,stellenbosch,soundex,setenv,mpt,goldfinger,asahi,ascorbic,himachal,dichotomy,communigate,covalent,cantrell,tarpon,bluffton,radix,orthologous,taichi,borealis,nerf,rosedale,policyholders,nst,racecourse,extraterrestrial,kok,servicemen,starwood,asco,nui,phylogeny,jis,tiesto,ameri,plankton,pkt,seamus,sublets,unthreaded,microstrategy,cleanups,fitchburg,flowchart,tacky,sauk,supercomputing,antiwar,illawarra,benetton,menopausal,workgroups,relive,ketchum,nieuws,mirago,reproducibility,abalone,ashmore,ssx,eachother,gsx,juggs,ded,geometries,petzl,edie,quirks,sbe,bundy,pina,crayola,acceptor,iri,precondition,padova,indica,roddick,teasers,beveled,consumerism,flr,yeovil,boneless,intracranial,kbd,tatoo,gameday,solute,tupperware,ridgefield,gce,quadro,mumps,trucos,mopar,haggis,electromechanical,styli,whipple,fpm,arcata,perego,guwahati,loudon,legolas,rockaway,exhibitionist,woolley,msps,toolset,ferragamo,bott,godiva,nsn,vfw,masculinity,schrader,bld,lightfoot,capitalizing,rucker,browsed,hcg,freenet,bundling,cannondale,mcat,blt,mencken,commerical,dagenham,codename,nesgc,profess,rearrange,warfarin,stdin,rohan,overheating,condon,inflate,npd,gunnison,hhh,sfmt,devonport,copywriter,bodybuilder,poss,psigate,ecp,airforce,fleischer,atmel,rasta,ravel,jupiterresearch,flycatcher,cusack,jenni,gbps,bombshell,llbean,arnie,subdomains,kale,pcd,shemp,findtech,huck,vouyer,horrendous,complainants,addy,ehs,fabricating,mmo,verdate,cyberpunk,enotes,pecans,ababa,whitehorse,barak,juke,schnauzer,hairdressers,prioritized,rainforests,exo,rabin,workday,eared,earphone,passaic,vme,hypermedia,udb,jinx,illiteracy,carcinogens,offres,addressee,thefreedictionary,informants,tics,sublimation,harnessing,extenders,fishman,hmi,tsk,inj,wvu,zimmermann,dupage,belarusian,maia,lynyrd,messianic,mexicana,generalist,gastronomy,ugs,huckleberry,ridgewood,pii,dua,phan,lightsaber,vivanco,catheters,azerbaijani,whitmore,footy,joinery,wasatch,octagon,equates,sorenson,eames,tacos,misspellings,trivandrum,kingsville,magnetics,rce,halide,metabolite,clo,genders,headgear,gretzky,harming,insole,colvin,kano,thurrock,cardstock,journaling,univers,aragorn,principled,namibian,slacks,mcsd,wmp,fairmount,physica,subtropical,sager,trk,bowflex,subcommittees,jia,ramesh,sitepoint,prawn,phylum,mephisto,prf,mundial,waveforms,algal,schafer,riddell,gimmicks,reparations,injectable,sher,trondheim,mhs,libwww,phenix,tlv,rena,tcpdump,quinlan,ecampus,kaya,ethically,sity,fkk,freeradius,nmh,puffin,freeride,ahern,shaper,locksmiths,lichfield,cheater,tora,hsi,bootcamp,torus,mondeo,cotta,oac,evi,jre,vignettes,aculaser,waxman,raping,oryza,leashes,babydoll,srgb,practicality,winer,thon,battelle,inp,europcar,pancreatitis,americus,immunohistochemistry,woodlawn,filigree,forecasted,bypassing,chock,chocolat,messier,gravis,edson,nathalie,calendario,blenheim,clarksburg,trigonometry,virusscan,flanges,bowlers,tsi,ipos,harlingen,keypads,sosui,campanile,vassar,regress,ghosh,iab,hao,ntu,ivey,techdirt,pmt,minutemen,pias,celiac,hough,ingested,hypothyroidism,boyfriends,jeong,equifax,baroda,cybernetics,tissot,daf,prefered,rappers,discontinuation,mpe,elgar,cumulus,brltty,klan,goku,offsetting,airmen,halliwell,ionizing,angebote,morphy,bookmaker,curio,hookers,amalgam,notional,webactive,bechtel,zambian,reinhardt,bridgend,bendix,dists,magnetometer,populist,mimo,bsu,renfrew,hesperia,chautauqua,mnemonic,interviewers,garageband,invariance,meriden,aspartate,aramis,pleural,tsu,mediating,gabriele,resonator,provincetown,afx,surpluses,ertl,holger,castlevania,vaniqa,finisher,ead,quartets,heber,muschis,anthropogenic,thermos,macroscopic,torrington,gillingham,geopolitical,flaherty,varietal,assfucked,engle,gorillas,ihc,shatner,euc,juarez,helicobacter,epidural,luisa,teardrop,anion,glosspost,numeral,mdx,orthodontics,tabby,cyngor,onl,claddagh,abf,therm,myeloid,pugs,sprocket,roh,unilever,ctu,genomebrowser,sima,hants,maclaren,chairmans,yim,workflows,adn,ansel,dragostea,hrvatski,ayala,bfg,tonawanda,imovie,regionals,kami,jansport,fanfic,tasha,nikkei,snm,lynnwood,glucophage,bicentennial,arl,radiologic,kts,agosto,mineralogy,corsicana,harrier,sciencedirect,krugerpark,oireachtas,esposito,adjusters,olympiad,fname,iar,allende,ldc,sited,surry,strainer,paragliding,whitetail,pagemaker,astrid,tripled,gwar,atwater,overpayment,faeroe,wisenut,nagel,blatantly,chicano,chongqing,corporates,applicators,erasing,svetlana,fleer,bossa,deuces,fud,dalian,anycom,gunfire,mcnair,subtilis,hdi,percutaneous,cursos,cols,urth,northbrook,rmk,mgf,voli,leann,pixmaps,gigablast,metronome,blackman,fliers,rdbms,imprimir,grouper,negate,roessler,intrastate,manawatu,blass,ainsworth,denzel,tfl,moped,appointees,bunkers,refrigerate,ligase,otp,beleive,warlords,hatteras,symlink,almeida,blogcritics,cochlear,janelle,alphabets,atta,foldable,hydroponics,precast,univer,purest,fatboy,cei,westerners,camarillo,kelty,volunteerism,pdq,openacs,hor,newham,energie,radiographic,kinematics,errol,otabletest,isobaric,hba,gratuitos,innd,eads,personalise,tbl,fso,patenting,reciprocating,rto,subcellular,crosbie,harmonisation,dunfermline,janesville,egroupware,caritas,tsm,egf,roa,debhelper,nsaids,milt,burleson,pba,ragtime,adopters,impor,philo,backseatbangers,rushville,saitek,synthesizers,vulva,arapahoe,posey,minuteman,zinfandel,mayoral,fortis,medicina,gallary,honeys,pinus,interlink,greening,tesol,artnet,crw,bansko,brien,silvery,guevara,thinkin,sedu,automakers,igmp,overtake,semicolon,bubbly,edwardsville,ques,homebuyer,nodal,mpo,unbeaten,rawls,ocx,ork,sheeting,hallways,alzheimers,snooze,kestrel,nadh,americorps,prawns,nonpartisan,naps,domina,eldon,palomar,riedel,hoppers,onscreen,gdk,distillers,uploader,caltrans,tyra,cocksuckers,mtbe,hypertensive,xie,chinchilla,bucs,transformational,sailboats,heisman,grn,jct,exemplifies,arrhythmia,astrometric,workwear,tolstoy,asperger,koop,newydd,transpose,lpr,xray,ferrer,microeconomics,kafka,telly,grandstand,toyo,slurp,allocator,islas,ila,westland,instantiated,lewisburg,stylists,blackwater,vivi,hippies,pul,larkspur,kea,lesben,motherwell,ahs,cappella,neocon,getname,coyle,rudi,departamento,winrar,mussel,britax,diwali,raines,dso,wyse,geourl,etheridge,docomo,webindex,accrediting,stapler,pheromones,woodson,imm,volcom,telewest,lcp,bisexuals,ozzie,kitsap,oic,cutest,hoon,mpp,cte,dymo,yolo,quinton,jorgensen,printouts,tempt,credentialing,scalloped,sealey,galvin,etudes,gurney,bluefly,schweitzer,jawa,geochemical,allegany,aldridge,digitizing,aki,organically,chatboard,lomb,uddi,yng,roleplay,pavillion,barstow,patna,rootkit,spearhead,leonid,sunnis,reticulum,dulcimer,unl,kalman,npl,coronal,rendell,transparently,mfs,freeform,gianfranco,tantric,reif,woodhouse,lifter,seymore,ogle,sayin,cpas,videographer,gpe,stallone,uams,pula,trudeau,buss,ouest,korner,fatherhood,debussy,qsl,reflexes,hlth,wyman,kingsport,gauthier,vadim,magnetization,trd,aitken,millers,titted,clerics,busses,trai,underpin,ajc,dumbledore,vinny,delicately,webroot,yip,producti,teksty,pullout,dmi,yellowcard,sbi,dmt,nce,birdhouse,bnd,neko,chillicothe,peacekeepers,schmitz,rimming,solent,propylene,supercross,zsh,multnomah,foxconn,fuelled,biohazard,horrifying,parque,toffee,fpl,riemann,horsesex,mahatma,mubarak,bachmann,caswell,chiron,hailey,pippin,nbp,ramallah,isoforms,dictyostelium,tauranga,hawkeyes,maxxum,eire,knowit,topanga,geller,parliamentarians,inadvertent,utes,boardman,denham,rofl,homophobia,winches,uptodate,centralia,eschaton,hoaxes,hillingdon,buble,hairspray,acdsee,offerte,urb,intellicast,minn,frc,antisense,pelosi,shader,gisborne,grafts,hillbilly,intifada,carina,fon,ehow,vpi,brunel,rtx,roald,externalities,metzger,balsamic,classically,calorimeter,necked,idiopathic,lileks,tahoma,ogc,unidirectional,westbound,layla,galeries,cabinetry,suarez,stipulates,towertalk,optimizes,serializable,universite,ald,ringsurf,toques,rayleigh,dropouts,fws,gamecocks,gazprom,braden,amet,sinusitis,rusk,fractals,depressants,clec,tryouts,rushmore,shel,adapts,farlex,emac,phl,remax,wizbang,endnotes,rodman,dissidents,iterate,conair,ember,vsa,neolithic,mgx,acuvue,vetoed,uruguayan,corrigan,libxml,etronics,simian,atmos,msk,iib,multimode,teensforcash,annu,sunbury,girardeau,dbg,morrisville,netmeeting,asso,estore,universes,ganglia,ghanaian,resonances,subjectivity,microarrays,easypic,abbeville,newsre,cobble,flightgear,spode,berea,mckinnon,bucky,plunger,xing,siggraph,bookends,klingon,moreland,lowery,histograms,moll,floorplans,netherland,frasier,rossignol,polyline,laroche,cytosol,disposals,xforms,mosul,motu,amersham,chordata,crafters,kingsbury,yoox,hyphen,dermalogica,moreton,glycoproteins,aristide,unsorted,rambus,ptf,scorsese,patricks,microwarehouse,bch,blyth,grampian,livedaily,nces,alizee,detain,andrzej,optimus,alfie,immunisation,pfaltzgraff,eyelets,swordfish,legals,hendry,homogeneity,hartland,recreated,leaded,hunan,supersonics,amstrad,vinaigrette,scd,mch,nintendogs,dvx,unreadable,plattsburgh,balsa,aya,brasserie,gcl,salton,paulson,dvdplayer,silverton,enduro,peepshow,givens,bristow,pecuniary,vintages,ozarks,johor,zia,mucosal,prehistory,histidine,mti,drape,tectonics,lorentz,distributive,sharps,seguridad,ghd,gilberto,doomsday,otters,gervais,mews,scarring,daydream,gooding,snicket,bicarbonate,boggs,wps,dietitian,itf,harriman,paprika,haviland,novato,dyn,hornsby,biden,disallowed,zahn,jordi,correo,frida,chappelle,resourcing,methuen,zoneinfo,adelphi,orbison,geffen,informatik,novella,brie,galeon,silos,lrwxrwxrwx,shortstop,cua,dordrecht,permissive,creston,prec,nco,nehru,bromwich,disposables,estrogens,mulholland,rui,haz,eol,odometer,tooltip,ibb,mosby,druids,aggregators,herfirstbigcock,rti,arvada,fixme,rodger,tively,gizmondo,cucina,ivo,griddle,pricelist,juventus,conroe,multipliers,aparthotel,kitesurfing,couplers,aftershaves,rehabilitate,patina,scansoft,quadra,sousa,phonology,dunkin,deat,plasmodium,bums,undersea,aretha,lts,boxster,staf,bcg,overexpression,vanadium,wilkerson,riverboat,voa,kohn,bgl,jiu,ipi,contl,ottumwa,gynecologic,unstoppable,pedometer,shortfalls,ksa,bookmarking,ingham,yoder,esu,vbs,barbershop,drinkware,idiosyncratic,googlebot,floppies,tashkent,foxboro,allstar,hervey,fes,kilowatt,evga,nikos,tance,varian,mops,coughlin,commutative,lansdowne,bcbg,syrah,affx,angiogenesis,nicosia,nematode,kegg,pkr,enso,administratively,tma,capa,ronaldo,leverages,cco,cancerous,banderas,gmane,vq,gabriela,secretory,mmx,pinehurst,nro,reassessment,ippp,chillers,elbert,sunil,yuki,periodicity,trypsin,bursary,dependability,overdraft,deirdre,colonia,mycoplasma,lesbains,adelphia,scribner,aro,activites,uaw,frankel,cacti,bugaboo,palmdale,aeration,kita,muscletech,watersport,paf,nxt,uscg,yitp,gibb,gener,nak,unm,zhong,chowder,expatriates,centerpieces,freaked,curbs,tdp,gruppensex,triphosphate,acronis,wcw,prostaglandin,completo,darwinports,abiword,hippocampal,atlassian,technik,vineland,commentaires,ters,stuttering,forcefully,depo,edinburg,kwanzaa,kzsu,mascots,harrisonburg,cadbury,scoble,aor,conundrum,bullard,aiff,comedic,apical,synoptic,miyazaki,beryllium,disinfectant,sentra,joi,jokers,wci,piglet,wildcards,tresor,sketchbook,bbd,halliday,manolo,tifton,repre,hendrickson,windhoek,lomond,atapi,hbh,eccles,ofa,dcu,spatula,intergenerational,epub,cates,featurette,gotcha,kindersley,drifter,cvsnt,ogy,lagerfeld,lewin,youve,unaids,larue,stardom,assad,glenview,brantford,kelis,nola,lxr,toastmasters,appr,recs,ranchi,exotics,articulating,jiffy,goodall,gconf,verkaufen,scalextric,ryobi,qname,immerse,farris,joinwelcome,cce,wittenberg,capone,mtp,busines,rebounding,usborne,hirsute,prelim,prepress,rop,militias,ttd,commodores,ecnext,dbf,goldsboro,ashburn,roslyn,neverland,coolio,lindbergh,freeciv,indice,vertebral,ectopic,abcs,lge,bnl,coulomb,minton,oban,restatement,wakeboard,unscheduled,dbc,visser,clipland,thermocouple,masala,clt,drw,rosas,rdram,mcclain,maki,rosenbaum,eagan,slv,sunburn,pleistocene,nips,sfi,canisters,kas,waddell,solvency,lynette,plainview,fielded,blowfish,zyprexa,altrincham,workin,afton,topologies,touts,pino,xelibri,lora,mendez,undelete,samuels,rajesh,soros,unjustified,nfo,crf,digitale,sitcoms,analogues,leukaemia,ukulele,paperboard,fied,cobain,trillian,offaly,girlie,ilcs,friggin,wq,davinci,oxon,expressionengine,bains,rse,callbacks,cdv,hannity,replicates,sidewinder,queueing,slugger,humidifiers,desai,watermarks,hingis,vacanze,onenote,montebello,streetcar,stoker,fulcrum,sadistic,cassiopeia,corwin,qut,martingale,saucony,winslet,criticizes,baytown,synchronizing,reclassification,woohoo,htl,caithness,takeaway,timeouts,reit,dietz,devo,morgage,koo,ducky,bola,mdb,multimodal,recenter,hematite,hensley,asterix,hokies,blumenthal,multinationals,aag,debs,playin,emeril,mcalester,adria,shipman,burzi,incinerator,muenchen,convening,unorthodox,fibroblast,gloryholes,carrick,immersive,darmowe,catagory,glob,cisplatin,rpa,fertiliser,nuova,halstead,voids,vig,reinvent,pender,bellied,oilfield,afrique,ream,mila,roundtrip,mpl,kickin,hiatt,droid,addenda,restorations,boll,knightley,worksite,lcg,typename,aris,isv,doctype,balinese,sportster,dence,lesbi,saversoftware,bursaries,cuny,cardiopulmonary,biologic,wanadoo,shiatsu,homewares,dpc,qk,schizophrenic,unplug,albergo,pressroom,gingrich,basra,greenbrier,superoxide,porcine,oldfield,wxdxh,luder,shim,manx,understatement,geda,tormented,immanuel,whistleblower,hopi,idd,gol,bayswater,lyne,epox,kennewick,subtree,inshore,ibd,hepnames,benn,kettler,clots,reducer,naturists,lvd,flonase,sympa,hinsdale,trav,spina,meatballs,underrepresented,bpl,etb,brane,tightness,tracklisting,horizonte,rgd,concatenation,suffixes,kilmer,cloverdale,barbera,seascape,amdt,linings,horseradish,telepharmacy,itasca,varbusiness,paulsen,cortina,ides,hazelnut,ashfield,chaco,reintegration,pampering,boland,airtime,surrealism,imi,eit,clamshell,tonk,luminance,ixtapa,gryphon,ecos,cair,rochas,farnsworth,synchronisation,suresh,minnow,bloor,gumbo,faqforum,kunal,jossey,rci,upa,melamine,wonwinglo,episodic,xcel,jurys,descendents,ezmlm,twikiaccesscontrol,tonos,lated,montero,divisive,soci,guia,gastonia,inappropriately,valentina,lubricating,itworld,deca,branford,kody,accruals,epitope,jdj,crenshaw,perlman,medallions,rokr,usg,microtel,rsx,graff,jcsg,fds,cooney,whittle,gmthttp,rayburn,etat,suppressant,hecht,sportsnation,sso,ccnp,reworked,etl,catapult,vries,procurve,cbot,elitist,convoluted,iberian,optoelectronics,mailscanner,kazakh,stimulator,schoolchildren,commweb,thornhill,tweezers,lani,ouvir,filetype,bearcats,fanclub,boehringer,brasileira,webservices,kinematic,chemie,inoue,unsupervised,norvegicus,copycat,orrin,snooping,hashem,telesyn,mcb,imple,dorms,elist,laminates,ingalls,checksums,tandberg,iirc,mackinnon,roddy,margolis,erotaste,pimps,mcdougall,smg,mpx,fhm,travelzoo,thermally,teleconferencing,albino,cargill,hyd,visualizing,mothercare,sprinter,isomorphic,pepperdine,cvc,mahon,conjugation,macally,anklets,impasse,disinformation,beavis,delicatessens,intensively,echocardiography,pav,amok,riddick,sexism,ordinates,gallaries,baldur,elon,beasty,arty,leukocyte,chau,cotter,peptidase,fsi,postmodernism,osm,squeaky,silicate,alcohols,zydeco,testi,trujillo,predictably,weider,shareholding,giordano,cardiomyopathy,aprilia,mcnabb,lenz,homeencarta,disconnection,scada,spacetime,trb,awol,espa,bionic,batista,bookshops,feynman,captioning,sibelius,obstetric,marigold,ostsee,martel,hcfa,ino,ctm,whi,typesetting,ervin,chroma,steinbeck,pusy,biblioteca,neutrophils,dunbartonshire,lollipop,brash,avl,opi,declaratory,corus,elph,naf,htp,hydrate,ubb,littlefield,neutrinos,aso,bric,subways,tui,leominster,ncsa,snipsnap,negativity,arcview,picasa,tortillas,awww,dara,ragga,innova,doorbell,ebc,sgl,unsettling,snps,explicito,phila,bugger,persson,embolism,iip,silverplate,lats,ovc,roebuck,sbp,lipton,starling,coreldraw,haney,globemedia,adrenalin,murphys,nicklaus,yardley,afghani,tst,hrd,haulers,energize,prohibitive,sydd,nida,barcodes,dlink,includ,orgie,macnn,danni,imaged,sprayers,lindberg,filesharing,calibrations,atorvastatin,teague,vantec,lattices,cucamonga,warne,derwent,hospitls,flintstones,rotisserie,orcs,scallop,biostar,computationally,jobseeker,siem,sunbathing,ronda,npg,cerritos,kaz,chard,pershing,clotting,zhi,programm,singlet,morningside,simm,egr,hackensack,taf,kinshasa,availablity,lrd,lugs,kiddies,cpsc,hebert,asta,gato,cimarron,crowell,fanart,nagin,gfi,collapsible,helsing,haringey,phu,stes,prophylactic,rosenfeld,cityscape,tradeoff,sask,instill,ypsilanti,lifes,imate,firestorm,homestay,inept,peet,shiseido,steves,sascha,reconstructing,okt,droplet,dhe,lakota,revises,ipt,macrae,parlay,bdt,woodville,xlarge,proform,gothamist,coexist,advisement,fulltime,macosx,metra,cyg,turtleneck,aquos,hcs,tsar,isbl,gigabytes,triangulation,burleigh,anarchism,stabilizers,gbic,ciba,activa,cgt,terrance,smoothies,orsay,belling,bnsf,opps,representational,kagome,snark,woodard,malignancy,makati,cbm,bwi,farah,sitewide,newfound,collider,candi,lgf,boylston,swi,rizzo,wristwatch,owensboro,papas,subscribes,lah,wining,cies,ganesh,castleton,zippers,decaf,emphasises,cbp,crx,shakur,rso,euroffice,roush,caloric,plaintext,ofm,daniele,nucleoside,xsi,buttercup,oakes,searle,shuppan,lanyards,cushman,admissibility,courtenay,aspartame,sleuth,trudy,neem,magix,cosh,aurangabad,golding,ethnography,yamaguchi,bhs,bulkhead,kain,abta,herzegowina,minas,paradiso,cityscapes,oit,replenishment,autobytel,kroger,dexamethasone,strunk,yoghurt,nationalists,tfs,definable,bruin,psychoanalytic,reserva,nasser,simp,zmailer,birthing,collinsville,dimer,powells,abebooks,stemware,landsat,peebles,dewar,docked,burp,radioisotopes,obstetricians,vinson,efx,naia,idb,fahey,multisync,worley,oms,kerri,arith,democratically,datasource,mcelroy,cze,shopgenie,udev,nicol,camara,degas,benassi,prefabricated,gastro,accessor,meteorites,notts,lipoproteins,attleboro,parenteral,biosystems,cerebrovascular,fsn,bahraini,actuaries,delicatessen,rng,marianna,creatas,kidderminster,waukegan,antifungal,promulgate,mvr,socorro,maximized,bde,dlx,erythromycin,dtg,nady,leibniz,flix,cusp,homers,crandall,holcomb,beaulieu,tct,abington,pointy,hamradio,meso,monmouthshire,danvers,tpl,baptisms,backprevious,carnaval,recompile,mainboards,fclose,melodias,cliquez,doberman,installshield,fasb,estas,htpc,stover,cerruti,brainerd,oxycodone,istituto,revs,maha,compressive,wombat,antenne,patek,zippy,neteller,odeon,sbir,backslash,townhome,victorville,amityville,arpa,trannys,goers,chipper,gulfstream,modulate,xserver,infosec,agt,underwired,ambiguities,khai,norepinephrine,kundalini,elkton,carcassonne,saygrace,appending,marathi,songbooks,islamists,recursos,newcomb,stampa,newscast,vtp,stockwell,nederlandse,outtakes,boos,lavie,fina,retinopathy,deportes,tremont,barrio,buggies,zacks,exercisable,speedup,holl,efc,cibc,ontological,thinkstock,flashbacks,kennett,dentures,eckerd,xetra,stg,reimbursable,informit,cdbg,yeltsin,nitrates,aeruginosa,rpath,archaeologist,mitotic,generalised,outliers,sug,frac,cowon,semifinal,deactivate,studie,kazakstan,sva,citesummary,kubota,chroot,falciparum,shifters,undetected,mepis,caries,microstructure,ringwood,pleaser,compuserve,disassembly,miter,propositional,javaworld,ssd,writeups,hoskins,buytop,frome,talkie,loy,exxonmobil,emeryville,gamepad,metazoa,kml,maul,taoiseach,siskiyou,censuses,offseason,scienze,shelved,etd,carryover,fagan,jada,wholeheartedly,polyps,avast,northport,inelastic,puebla,idps,warrenton,traffickers,neckline,aerodynamics,eto,satcodx,leviathan,dfg,classico,harvmac,wrinkled,minimising,bifurcation,kimi,npcs,astrazeneca,poetics,jef,miniseries,yesterdays,dcm,issa,toxicol,libdir,angolan,waynesboro,relayed,fcst,ulcerative,bgs,airlift,downlink,endothelium,suppresses,weinberger,appointee,darcs,hashes,nuff,anza,borehole,flt,htdig,hain,nodules,bowdoin,tunable,memcpy,ucp,panelist,opr,transsexuelle,mailroom,nijmegen,medalist,ryman,gmos,recessive,putas,abou,encrypting,enola,rippers,steyn,redefinition,infield,reformat,atchison,yangtze,zw,peels,preterm,mindfulness,hwnd,stances,synapses,hashing,gere,lrg,unmounted,armoires,archetypes,behemoth,stereophonics,obsessions,piosenek,mhp,thrower,prana,trike,bmps,distillery,estudios,ceredigion,funnier,rickard,disengagement,gratuita,gifting,lpga,esse,maglite,iodide,bakker,hariri,digitization,fistula,campaigners,kel,acca,lauri,rockwall,kellysearch,crawfish,tigi,symbolizes,liverishome,thay,ecuadorian,injectors,natick,mornington,booklist,centrist,inria,torbay,femur,methotrexate,landslides,separatist,jelinek,darwen,aung,outlooks,matrimonials,busybox,openview,lifeboat,hara,tuskegee,aly,ciprofloxacin,gul,reconfigure,ahn,instantiation,trw,spambayes,shelburne,programma,lbl,escalated,lucasarts,eastbound,grits,apoptotic,pulldown,redditch,trendnet,iupui,nsr,treehouse,payson,jaz,hedrick,lineman,streamlines,reengineering,cleaver,prodotti,inflight,tracksuit,polyphonics,skidmore,catia,overuse,mge,newsprint,visakhapatnam,miko,hemorrhoids,haulage,torrie,usergroup,poms,mostrar,convolution,endtime,maura,hefce,abbie,mfp,galician,golem,conifer,phenylalanine,wareham,nonpublic,henk,inversely,beebe,dancefloor,eyelet,immunologic,chengdu,beeswax,lanham,crosswalk,lecken,kitsch,scand,sweeteners,farnborough,jalandhar,publi,visioneer,sprints,reinhold,emptive,compa,hrk,faked,manilow,burnsville,banyan,opinionated,quirk,hnl,caterina,blinks,fiore,rationing,tellers,jrnl,waterborne,astron,nity,gree,tradeoffs,goldeneye,occuring,calientes,recomend,functor,trowbridge,niu,mmvi,obe,gyro,technews,shampoos,unfiltered,sabha,bundesliga,enix,communique,cantina,cafta,polyamide,selectmen,lncs,luge,necromancer,carcinomas,subcontinent,dodds,seaton,transcriptase,balmoral,specifier,subsidize,icl,galaxie,ldflags,hiya,nappies,crippling,xul,nti,aspherical,misheard,ecw,sundial,odom,flaky,schlesinger,kryptonite,typology,hydrangea,preamps,aesthetically,vrs,alvaro,htg,heston,ghia,sophomores,binh,allrefer,dcf,scarica,chorale,ooc,fredonia,tiaras,sdio,distr,dscp,cogeneration,flite,harddisk,kennedys,telefono,saleen,bosco,cyclase,dreamcatcher,csw,braddock,ethnically,wbt,morro,smurf,yeager,gelding,blurring,deva,fom,mastectomy,cassell,sarnia,jaundice,lastest,asterisks,nympho,jeffers,hyun,cooktop,fddi,aspergillus,agric,kdc,medics,mwh,photosite,gip,affirmations,variational,socializing,crankshaft,isls,mensaje,tagline,airframe,beater,preowned,dietetic,storedge,redacted,rittenhouse,stereotypical,klass,fpa,treks,victimization,parallax,zante,splices,imagenes,rete,akita,nonresidential,hellman,durex,robison,tof,lpd,seri,freetype,nexis,ldv,collegefuckfest,aiu,molloy,carcinogen,brs,catalyzed,heatwave,yv,spindles,herron,sita,watchtower,fabrizio,unmanaged,gtg,preteens,heme,renumbered,omr,cowell,hyip,crossbow,speciation,tfc,whidbey,betta,imt,emmet,jewelery,lumina,statistician,symmetries,observatories,bupropion,telligent,fungicide,aiptek,crosstalk,mello,deepsand,litas,haart,worx,coyne,adenovirus,hakim,countywide,gnucash,puree,stott,sdg,mandeville,portugese,maurizio,tachycardia,aja,eaa,warrick,cosine,veb,patong,ballina,summarise,accrington,rnas,haddon,xpc,swath,azeri,wta,ulf,kleen,cvm,meehan,jenifer,infiltrate,mapinfo,knightsbridge,renounce,jesper,blairsville,copilot,koontz,fma,northgate,phobias,metaframe,nutritionist,effector,bumsen,rcm,hairstyle,nesbitt,diuretics,cemetary,iap,discards,basie,discontinuous,iqbal,uncorrected,stillman,chloro,bighorn,heartbreaking,xxxvogue,leitrim,prg,justifications,gimmick,brasilia,recordin,abra,trn,zg,acrylics,recensione,fouled,wiretap,dvrs,vocs,moniker,scholes,sharpeners,calida,nse,calloway,tpicd,prods,hfc,ltda,snk,waypoints,nrm,underscored,herrick,starwars,smbs,unreported,phelan,guarani,tampon,easels,sxga,webform,artista,elkhorn,ventana,sublet,chiltern,antares,peaking,stichting,forall,menuitem,marshmallow,hawai,nfa,cals,seltzer,utep,homeostasis,swp,akamai,goodie,milkshake,thrasher,switchers,brussel,hartwell,aup,electrolytes,machu,unshaved,gor,ilya,maneuvering,gaby,softwood,ajay,croupier,hausa,compacts,similiar,elev,egos,rhinitis,dreamhack,aop,beastialty,whedon,microcontrollers,dreamhost,overcrowding,retractions,pinging,catheterization,holton,smears,jmd,melo,exons,mariachi,igi,bday,reseal,compositing,oskaloosa,coopers,psone,versione,storys,escher,hotfix,rmp,gaynor,biota,dossiers,arpt,winsor,hairdryers,axon,morrowind,puter,chubbyland,deflation,pdo,dreyfus,worsened,darlin,treme,reconstituted,aveda,legge,kasper,mugler,yorks,ddi,badlands,deploys,pols,internets,backstroke,resultados,spooner,musicmoz,toothbrushes,bugatti,abrahams,comentarios,brandywine,callaghan,diskettes,resonate,intellivision,castelle,advertises,fives,titusville,plas,royston,nace,digitaladvisor,adesso,geekbuddy,lipoic,hazelwood,gravatar,outfield,carcinogenesis,gdr,phenolic,incrementally,pqi,lenght,acompanhante,orm,terrapins,daria,vander,ccie,mathml,legalization,allendale,modernize,orl,gert,restarts,juris,brookside,streamer,rollei,accumulator,picchu,abril,crocus,zl,citizenry,accountemps,swenson,unfpa,ewido,centreville,alisa,kingsway,erlangen,offtopic,laundromat,redeemable,maxillofacial,slutsfree,glp,baumann,revolutionaries,chillin,cardomain,creamed,tarp,schering,aten,bikaner,chimpanzee,petco,flurries,rau,miki,meson,parathyroid,cmb,analgesia,nqa,theyre,elp,altera,jeddah,nannies,pawtucket,bimonthly,senna,wardrobes,surgically,nongovernmental,inge,rmdir,miso,itx,hydrostatic,attrib,cheaters,hagan,canlii,leong,koehler,clostridium,nerdy,mcnulty,megastores,imperatives,bpd,archetype,kkk,oren,halsey,artic,techworld,vnd,shamanism,numara,csx,reiserfs,roussillon,cheadle,crea,alcorn,ences,bowser,fizz,rationalize,karoo,unearth,biopsies,inconclusive,hookups,herrin,thermostats,canoscan,moldovan,jamiroquai,xerces,subclause,classname,makefiles,bettie,sheesh,birdwatching,speakeasy,harpers,hayashi,epitopes,drivel,blandford,foci,toppings,cantilever,biloba,pth,tweety,initializes,keck,fisica,macromolecular,eic,skagit,kimura,baca,pareto,lymphoid,apacer,forklifts,pvs,refuges,jal,habana,stateless,virtua,cerebellum,vtk,breville,statehood,dct,palgrave,bledsoe,insanely,inglese,aidable,bubblegum,aphex,wroclaw,rajkot,taxidermy,esubscribe,cartagena,juergen,itravel,pashmina,gustafson,jacqui,salim,barnum,anthropologists,glues,undercut,eci,cstv,watsonville,roaster,redbridge,hypertrophy,raza,duron,xserve,wobble,fergie,bohr,boilermakers,counterstrike,hinterland,sufi,milfcruiser,afdc,niggaz,housewarming,regenerative,corre,liquidators,clegg,bagless,bleachers,deodorants,bacteriophage,sheena,prez,brasileiros,transect,thumbshots,soloists,borges,sinusoidal,manpage,lazer,babys,crossovers,parsers,lsl,chuan,hauler,cataloguing,oralsex,storia,fotosearch,usfs,leappad,interesdting,headroom,fortnightly,yerba,kuta,clearfield,huggins,washoe,srg,stabilisation,sayers,publis,intangibles,tameside,summerville,uvm,whalen,kusadasi,hcp,flak,ual,cubed,yuck,concacaf,textbox,erythrocytes,dinky,divo,injunctive,honed,coincidentally,kolb,kruse,microm,portugues,pil,tht,deathmatch,publica,mde,pollination,ews,synchro,etobicoke,midori,chutney,jrs,naturopathic,dermatologist,thumbnailpost,casein,chillout,stefanie,chewable,direc,quintana,normals,villeneuve,scrum,everyman,lopes,eastland,footballers,xviewg,metropole,swarthmore,multicenter,fett,sagebrush,convenor,pco,proteome,warheads,radiologist,liao,westview,optus,medicinenet,hitches,britten,palettes,vma,depauw,gunman,agassi,panoz,uwb,movi,scanlon,nutri,mitra,guilders,filmpje,indexer,ofdm,ullman,coachella,localised,recom,downgraded,ncep,lalique,weill,jeez,varadero,chicco,athabasca,redd,azusa,unbuffered,phoning,rtty,spacey,fmla,albatron,breakpoints,sperma,aran,ciencias,mortage,legato,agarose,avoca,reservados,russellville,oneonta,badass,cfi,pesca,carvalho,nass,mainpage,mccord,kellie,allstars,darwinism,tariq,workarounds,omia,flannery,rediff,lecithin,okmulgee,lates,recertification,phosphorylated,fusing,nerc,avermedia,abuser,sevens,mukherjee,anatomic,watercooler,gatsby,litho,mischa,bangla,menard,rattling,artes,vacaville,teo,enermax,hypo,hadron,gosford,legalize,millbrook,epinephrine,transom,liebherr,mwc,biel,vcu,mils,oreal,picayune,rabanne,gorbachev,norelco,playset,massacration,frontman,garvin,autologous,wiretaps,duggan,jrc,chantelle,liddell,enraged,gir,adrien,blotter,jq,menubar,gagnon,sitters,rdc,jod,meteo,cept,bih,programing,humpback,fournier,alquiler,reprocessing,chaz,bartending,sshd,opodo,patiala,jaques,glc,fantastico,schiffer,preclinical,sfn,conklin,wheelers,deductive,cunard,pygmy,jewett,environnement,biddle,basu,tachometer,bks,nonproliferation,cacharel,elysees,orchestration,adipose,usu,freeservers,potting,uncomplicated,piaa,progs,ues,tobey,sife,wenzel,debi,baez,tana,gedcom,uvc,puccini,seca,ligation,deconstruction,inductance,topicparent,zanaflex,medicus,dmitri,reallocation,kalispell,haight,teleport,skylights,rehabilitative,swab,latimer,boombox,prorated,bbr,pansy,reassignment,hydrodynamic,confirmations,postulated,unlabeled,tosca,brentford,integrin,ranlib,differentiates,skelaxin,velo,multiprocessor,tabla,celluloid,identically,saddlery,whiteside,eurail,endicott,dingo,sessional,pagination,webtopiclist,infopop,accc,iie,burl,truncate,hightower,polygraph,allianz,digress,overseen,scg,thotlib,bluetake,cowes,mailorder,fetuses,lowndes,shr,childbearing,aaj,crayfish,minotaur,heist,mayne,repaint,asq,contr,zool,spastic,suprised,illuminati,piezoelectric,rfps,cutouts,ilc,vinton,enw,meir,tanita,tpr,subsidised,arcsec,wrestlemania,fhs,getter,mimics,watermarking,aftercare,coombs,wolfson,sefton,compu,bonaventure,appz,ecl,gview,temperatura,diastolic,defaulted,cesarean,dialling,rescinded,chitika,tsvn,discoloration,chelan,morel,iles,kashmiri,stacie,collages,enabler,ogo,mowbray,schuler,finlay,gezondheid,ylang,lufkin,tenge,acosta,turbotax,herbals,moderates,piotr,chairmanship,covad,comunidad,moores,hurghada,malformed,mks,seatbelt,dumbbell,chasers,hamer,sherwin,redissemination,stine,mcmullen,skopje,gpx,supplementing,lowrider,liaise,citric,opentype,jpmorgan,nitride,achievers,unbonded,cowen,subdir,rehearing,balmain,crissy,nake,wtp,scn,mendota,makoto,alloc,ultradev,viaggio,cig,scipy,depositary,redhill,caveman,nunez,starfire,whitlock,pelletier,lanark,yada,sandro,jervis,placemats,pathologic,darden,bunnyteens,gordo,otitis,ordinators,bma,leningrad,harkin,eatery,peony,economia,cytosolic,glycerin,tailings,shirtless,darla,rayman,boardhost,frontera,crumpler,hargreaves,mkportal,nucleon,pkc,dov,ndt,hideout,lrs,calcite,fpu,fts,spud,mang,nology,luiz,belden,lense,hendrick,publicati,unverified,untapped,vario,pmsa,recensioni,xq,tev,batty,briscoe,dwr,fingernails,ocarina,camus,mackinac,itis,saks,hahahaha,romenesko,croc,ftes,keyspan,aoe,reposted,cgs,moduli,mra,ery,payoffs,tpi,maywood,buchan,roberson,defrost,ecr,coleraine,arianna,biomarkers,consecutively,bongs,loox,idrc,pretzels,anmelden,vdd,underdeveloped,mktg,yancey,feta,peres,assemblyman,enforcer,suk,customarily,cillin,jett,bility,mingw,ltv,sarees,aaas,bloopers,framemaker,piscataway,cytoskeleton,wuhan,maximising,hoists,fichier,amitriptyline,sgr,scrubber,gratuites,reentry,playtex,communi,buisness,freepics,kbit,marmaris,logarithm,granola,inefficiencies,monocular,kankakee,tandy,ferrite,formato,gaysex,dbus,autorun,nivel,ayatollah,undifferentiated,flowershop,evp,vazquez,reaffirm,dynix,pictur,collette,oooo,dian,doxycycline,weblogging,cluttered,sportsmanship,relievers,hwa,vikram,booktopia,lampoon,airtight,firming,mrtg,shoreham,annular,hallmarks,sparking,anale,ikon,lanl,gfdl,commandline,usfws,adic,nns,pmd,rfd,ized,rsd,guardianfilms,gryffindor,ror,blogspot,thao,obsolescence,linguists,blogads,xinjiang,recode,onus,heinlein,oks,kimble,reservists,blaupunkt,statins,descendancy,obsoleted,phim,betacam,mlp,rearrangement,disulfide,myer,bypassed,onefit,interp,neutralizing,tirana,occupiers,kingpin,bnm,relaying,bga,amilo,overlord,daffodil,ukiah,devotionals,figueroa,imd,warenkorb,dfo,habib,archivos,lymphocytic,kala,deering,undetectable,infact,vermeil,silage,ejaculate,smithers,gaeilge,swr,goudy,inkl,bilge,texto,satb,prolactin,bejeweled,bastrop,sunbelt,chewy,paginas,decimation,coen,hypotension,stateful,pypy,busby,gaither,tta,patterning,rdp,cheep,ldr,denbighshire,wittgenstein,preexisting,coffeemaker,braveheart,pbr,ctt,ginsburg,superconductivity,eurostat,kyi,amygdala,corrie,lonestar,dueling,challengers,reshape,photoset,electrolytic,hasegawa,gainers,calidad,tinkerbell,aldara,poway,physiologic,optimality,riyal,hwn,dremel,cerebellar,dth,dancin,summarises,choy,heartwarming,unwin,strider,eastlake,hyp,cannonball,mathcad,skipton,patently,bitmaps,biopharmaceutical,analytically,sll,aramaic,bogged,incremented,homem,valorem,publicist,acb,muzik,tempera,recyclers,pillsbury,seach,intermediation,lacing,aggregating,soundboard,teapots,rif,neb,archivo,smartdisk,boho,titration,tschechien,sef,boney,oxidoreductase,lino,lcm,skimmer,mccullagh,gats,extrinsic,erlbaum,sketchy,gooseneck,bof,tiffin,pacer,battersea,noname,gung,asv,sasaki,outboards,owings,xue,tbi,interlaken,kampala,jcc,tentec,kilpatrick,pixmap,bitty,pge,dtmf,prosser,ojai,stethoscope,monotonic,ebookmall,perot,medien,kahuna,washroom,jacoby,neurotransmitter,intercity,broadview,micros,straus,flack,amortisation,pfu,tonite,vonnegut,distros,teething,subsector,mechanistic,orbis,flawlessly,lidar,frp,whatnot,tripartite,studebaker,cartographic,rwd,preconditions,gardenia,adland,miembro,irland,linwood,biotic,kowalski,marymount,zathura,highgate,fudforum,takeshi,taro,mpd,crowder,socialize,scunthorpe,deepwater,clickbank,ruleset,viscose,perso,novica,manhunt,pavers,elks,aalborg,occupier,lunchbox,euchre,proporta,mitosis,paychecks,bellaire,suitcases,postel,mdg,tutu,paisa,wbs,slidell,psb,vocab,mmhg,clocking,sks,hemorrhagic,plein,hitchens,fone,crores,classifiers,novosibirsk,greenwald,rtt,copacabana,videorecording,kickstart,biggie,neutralization,pvm,ksu,kph,pdl,preprocessing,particulates,skylark,llandudno,squirrelmail,oviedo,pauly,bromsgrove,starsky,prion,simfree,pennywise,grier,apd,diphosphate,lbj,interscan,pipers,tronic,surfside,tsunamis,dordogne,hotlinks,neely,jeri,proteasome,transl,goulburn,vtkusers,energizing,butane,stf,bluebonnet,htf,stmt,inked,novatech,iid,elektronik,maturities,nameserver,tomlin,jigsaws,distorting,kamikaze,quaid,juggernaut,gordonii,latrobe,bboard,consultancies,handley,gramercy,ccb,derrida,mgb,bioavailability,ucas,tdr,nochex,lilith,foreplay,waas,mccaffrey,privatized,uncovers,gargoyle,stockists,ostream,lenmar,mamiya,mildura,insn,bodega,hardworking,dockets,dedham,ered,stomping,kottayam,carle,eest,pondicherry,mpr,fiddling,panamanian,buyitnow,bungie,goya,superclass,categoria,buyback,uhh,gigolo,tmj,vangelis,kingwood,arn,dorling,maximization,wls,absenteeism,quantifiable,pion,sliver,leptin,sxsw,bummer,isometric,retraction,amboy,dunning,grinch,okeechobee,shouldnt,teeniefiles,gcj,whatcom,bbe,unb,sws,hydrocortisone,cerebrospinal,susana,rumba,bouchard,yesteryear,orthotics,spunk,superdrive,jolene,jalapeno,propellant,touchpad,raisers,mdma,confocal,jochen,caddo,dcl,expatica,bitstream,igo,bartenders,refilling,modell,keighley,rangefinder,nostdinc,oficial,lanparty,monza,sportfishing,rlc,exacerbate,beckwith,anemone,equivalently,duxbury,zhen,cordele,ebel,ninjas,milla,incase,mva,zinn,comercial,segfault,wisden,maingate,costner,powerpuff,gsfc,lycoming,regula,lastminute,winbook,talladega,optiplex,syrups,chiles,estimations,jaxx,cercla,slb,absolutly,guesswork,tradeshows,javascripts,irritant,warcry,optura,combinatorics,graceland,encino,disconnects,castello,monolith,mct,geos,hls,intrusions,glories,prelims,kanawha,yglesias,squibb,memset,edirol,mandala,alexey,homecare,dugan,calmodulin,ameritech,umar,timepieces,nonfarm,anklet,wsp,byrnes,determinism,addams,moeller,normality,wiesbaden,deflect,taoism,ikeda,chakras,samara,unsung,gargoyles,massaging,ajmer,lossy,mitogen,hurwitz,gulliver,bul,aerodrome,darkside,intensification,raya,ruger,rba,gennaio,seaford,ungarn,vincenzo,warszawa,dillinger,bandon,odell,riddim,perforation,cida,annika,uart,tryout,proxima,fst,lladro,parameterized,assfucking,manageability,crystalspace,pandas,choiceshirts,taa,servertime,fmii,nepean,tracklist,indio,tino,bernal,hbr,homogenous,policyholder,distributional,tidewater,ngfl,erlang,starz,follicular,grupos,oq,gonorrhea,blaqboard,listeria,afaik,lawmaker,datatypes,arie,flavorful,apu,fyrom,refunding,subcontracts,moissanite,finchley,mediates,polyacrylamide,bizzare,standish,conus,competences,jtag,compatability,millville,coches,biathlon,mico,moxie,biff,paulette,chania,suu,backspace,aways,fugue,dissonance,medicated,initio,bestality,hypothermia,carman,timberline,defenselink,sunfire,mckean,smithville,mtf,rebooting,storytellers,lamisil,morphing,chua,sevenoaks,haplotypes,fiskars,speer,lathes,refillable,yearbooks,engin,kyushu,tricycle,penne,amphetamines,systemworks,keele,afficher,trillium,nena,bulfinch,transients,hil,concedes,swot,howarth,andante,farmingdale,bitching,overtly,rateitall,tubulin,gmx,bannister,omer,humanoid,infringements,stylebox,tiredness,branden,panning,wasabi,morecambe,hawkesbury,cocksucker,sak,kilobytes,breather,slu,adjudicated,methylene,wholeness,gnue,gynecol,uas,nacogdoches,simcity,hummingbirds,garnier,kath,cppflags,educause,cotswolds,heifers,sephora,joao,tremblay,gynaecology,vertebrata,blackcomb,ffxi,ottomans,rodin,ecac,actu,nde,lockable,dslr,evaporator,antihistamines,uninstaller,airliner,bibdate,unwrapped,dumbass,brc,arrhythmias,netweaver,sateen,rtos,eip,moteur,fotopage,uhm,birr,autosomal,protec,purim,rhododendron,canadienne,profes,pjm,ddl,underlay,granule,setfont,cookin,gillett,rocklin,welland,ageless,nuernberg,bleep,emedia,regensburg,gama,xfree,sills,berwyn,howler,hardtop,carded,lipo,zandt,reformatted,internment,dominick,mahmood,avent,swaying,igloo,ambler,voyeurism,bachman,referential,hydrating,adaware,dewpt,repressor,galego,neilson,scorecards,newlines,arcana,aau,transworld,nmc,discoideum,wairarapa,fogerty,beit,heidegger,backhoe,leftists,quinnipiac,mannequin,malloy,enviroment,mako,anl,noyes,eprom,trashed,ryanair,betsey,rath,lobbies,silvertone,cupcakes,artest,netfilter,voldemort,oldenburg,bazooka,gerbera,cient,psg,mittal,camellia,pronouncements,fonseca,rescind,asps,asheron,mance,viggo,qar,hepatocellular,styrofoam,malfunctions,lindner,linc,salida,dunwoody,dioxins,shaq,epmi,excavator,adolescente,redcar,urac,oncolink,cartoonstock,cwm,bibb,gymnast,inexpensively,isystem,evol,nmda,hazen,davide,forceps,motherfucker,ccw,mainframes,sapulpa,costas,searcy,labelle,adjoint,mclennan,killa,lipscomb,monocytes,requestor,cyn,splint,digitech,mrnas,llamas,multifaceted,gamez,voorhees,boas,solvay,thorsten,yeo,terk,privatevoyeur,coolmax,rebooted,toskana,unidiff,radionuclides,tilburg,decoys,pariah,offerors,wmi,darnell,meaty,gages,zapata,supt,bartleby,vermeer,pinstripe,hemodialysis,artis,tov,amateursex,dailey,egret,cornhuskers,fontconfig,jordans,guildhall,hasselblad,piney,unbundled,kusastro,onclick,functioned,toca,houseware,kdebase,ysgol,griggs,nicd,mdp,umi,fullmetal,pappas,aransas,tacacs,movem,abundances,oulu,fractionation,cdb,blitzer,ruc,karte,cashflow,retouching,brattleboro,eprops,cya,ubud,fmri,infosys,displacements,jerez,dhc,ielts,fellas,mno,picturemate,unicorns,playroom,dandruff,albers,discworld,leaved,existance,unionists,bloodlines,follett,irn,ramsar,woodburn,efs,auk,lockergnome,oocytes,armadillo,bsr,captiva,rinehart,brom,tlp,gensat,filers,lle,retrievers,pacifier,thurmond,stroudsburg,dominik,vivek,nla,inmarsat,unprofessional,hydrographic,mcadams,wailea,nforce,scones,paediatrics,nzdt,ilog,finkelstein,candylist,appalachia,marist,musgrave,vakantie,varanasi,yushchenko,relativism,jardine,schuylkill,ericson,schweizer,stravinsky,keds,ananda,nsx,jud,tripwire,aves,rediscovered,headstone,depleting,junkyard,perma,copthorne,multitasking,distrib,byob,tunstall,hager,spearheaded,nacho,underlining,heshe,jcr,catalogued,rawlins,springville,differentially,powwows,tsui,inductor,chalabi,encephalopathy,grote,ebs,raipur,custodians,guardia,jlo,khalil,overstated,webtv,insulators,kass,weds,servizi,quicklink,qso,dumbest,prowler,loadings,epos,sizzle,desalination,copolymer,duplo,lawnmower,skf,nontraditional,piet,ghaziabad,dredged,vct,marcasite,kamp,scoliosis,arwen,artie,fifths,austell,fernie,carport,dubbing,weblist,maximo,bax,searls,scuk,uiuc,crustaceans,yorkville,wayback,gcg,ural,calibur,girona,haig,perk,zander,samir,freee,avia,developement,pptp,beac,urbanized,trentino,marzo,dfl,lpa,jiri,mccollum,affymetrix,bevan,ichiro,dtt,cofe,loyalist,verma,daybed,rimes,quimby,barone,thomasnet,koeln,endocrinol,evaporative,gwybodaeth,preshrunk,hezbollah,naga,mmu,februar,finalizing,printhead,blanton,zellweger,manhole,eroding,emap,searchgals,typewriters,tabasco,cpb,coffman,lsm,rhodesia,halpern,purebred,netapp,masochism,millington,bergamot,shutout,willson,chown,prosthetics,proms,zk,karol,underlines,mosh,bakelite,kirkby,intermountain,holtz,prensa,vegf,galesburg,lba,klondike,webstat,reeder,neoplastic,applesauce,fibreglass,kenji,gluon,feisty,hynes,clogging,nonverbal,etoile,orangeburg,ladybird,concat,milliken,byproduct,specializations,chaintech,swa,porterville,kbyte,bizwiz,congruent,boehm,selva,rainey,aphis,rfs,tarantula,egovernment,udf,snuggle,shang,batten,inop,lough,vigrx,trios,bvi,unallocated,nau,condiciones,wss,modi,componentartscstamp,dyk,maldon,xantrex,dlg,edx,karzai,navi,brockport,cort,softgels,engravers,wether,hangin,handicaps,associazione,khu,nfb,dohc,clu,capps,vijayawada,griffon,biologics,bluescript,instantiate,paperweight,dilation,izzy,bedspread,knudsen,jabberwacky,kiowa,overtones,gsr,faithfull,quezon,pragmatism,rct,usi,wiretapping,fabricate,exabyte,pitty,kcl,pendragon,opment,kva,meeker,bootlegs,jimbo,jarrow,mullin,gridsphere,activesync,macwarehouse,vela,wikiusername,hessen,eyelash,gob,antifreeze,beamer,feedblitz,harvick,clicker,immobilized,dalmatian,hemodynamic,reshaping,contessa,elc,stagecoach,googling,maxpreps,jessup,faisal,ruddy,magazzino,jippii,academe,fjord,flybase,alpena,psl,junebug,grissom,shiki,knockoff,kommentar,westpac,gosling,novosti,mendel,adtran,wasserman,transexuais,aslan,hoge,fouling,macfarlane,hideshow,trailhead,edg,bayshore,preprints,grs,duction,anesthetics,nalgene,iaf,khao,berhad,savedrop,magnifiers,chitty,goldwater,lesbiens,jumpin,payables,victimized,tabu,inactivated,respirators,ataxia,mssql,storylines,camaraderie,carpark,internetworking,gawk,planing,termini,avaliable,scho,buysafe,hds,iad,pleasantville,fabrications,wtd,loh,jamshedpur,denture,gaudi,bluefield,telesales,vpc,ppr,jetsons,protagonists,fjd,anoka,boliviano,curtiss,wagoner,storyboard,trol,rajiv,xfce,axons,dmso,immunotherapy,namorada,neva,zakynthos,weitz,quercus,nhhs,amara,microcosm,raia,bizarro,mehmet,christos,categorically,autoresponder,aad,adolfo,welwyn,nzlug,vci,catnip,whittington,sorel,boned,vittorio,seta,tomasz,annes,tonka,nath,toth,tomaso,ascap,livedoor,schlampen,altamonte,scotweb,pillowcases,medlineplus,ambiente,masterson,nlc,fibonacci,bridgeton,wmds,tyrrell,junky,ballasts,jbuilder,cnf,nagano,hardman,roadmate,interleaved,peirce,pusher,egm,thetford,rtm,gnostic,coreutils,uninstalling,heft,ambivalent,startpage,difranco,mmi,typist,estudio,seiu,moisturizers,cardiol,lamination,bibi,mof,carpe,scottie,blackrock,pons,fistful,somethings,itl,staffer,rhiannon,linspire,cornucopia,newsfactor,countering,worldpay,catan,almaty,appraise,runny,braunfels,reorg,icg,javax,sema,albumlist,heraklion,stressors,shg,collocation,mccauley,vesicle,stuffers,prego,ichat,lubricated,sinha,pharmacia,aggiungi,shakin,cyr,vce,vigilante,gauging,lipase,constabulary,biochim,epcot,cricketer,defibrillator,rcn,drooling,stoll,staines,tnd,adversarial,tbn,softwa,pbc,ptp,demonstrator,boingo,voyeurs,aoki,banerjee,hondo,hysteresis,workspaces,campion,lugano,mobilisation,pruitt,foals,aciphex,sculpt,iskin,soledad,bagpipes,devaluation,beastyality,segway,mineralization,grc,trafficked,stedman,gurl,mcginnis,dvips,klee,garber,wizardry,fervent,headrest,dermatol,chaperone,huygens,eurythmics,transboundary,reclassified,delusional,tosh,pimpin,husqvarna,faxpress,tinkering,unneeded,babar,pago,hussey,officeconnect,mickelson,leukocytes,wesnoth,hydride,npp,zondervan,pele,opeth,kottke,hometwat,ogm,mauna,kilns,bpi,kst,harbin,assemblers,karst,wada,selfless,gynecologists,enewsletters,willi,bip,nami,guestbooks,sharjah,aguirre,krug,dongs,drv,schoolers,kidnappers,lemmon,ilan,gnutella,deutsches,liquidator,evers,uniross,grassley,stowaway,brainer,organiza,cellog,channeled,tastings,deccan,aiaa,neurosciences,factorial,librarianship,texmacs,vocabularies,blasters,livable,tifa,nant,libjava,ramblers,counterproductive,catskill,environmentalism,ufs,gwalior,ubl,kilts,balenciaga,alamitos,newsburst,septum,animators,signifi,neoclassical,mediaeval,piezo,escudo,pineville,botanica,petter,adenine,fren,lysis,pastas,helicase,dredd,efinancialcareers,diehl,kiley,kwd,ihousing,yoruba,malformations,embarassed,alexia,checkup,commited,nanotube,becta,trados,portofino,lifesaving,danh,sctp,tayside,rani,playmobil,tualatin,razorbacks,ionized,perodua,trg,subst,cpap,molex,vitara,fostex,zmk,placental,parses,saic,newsmakers,dshield,homocysteine,juego,metamorphic,cld,otcbb,moet,rado,watchguard,sugarland,singularities,trophic,ekg,dacia,reversi,insemination,houma,quetzal,shoshone,linder,homing,highbury,eizo,podiatrists,conch,crossref,hda,poppins,chaim,cytotoxicity,xugana,weevil,integrations,clarkston,ritek,morgue,unpatched,kickers,referers,kitt,servizio,biosecurity,leviton,twl,etx,electrification,peninsular,juggle,yeshiva,sociologist,wsc,sartre,finitely,spect,kathie,ards,corny,brazilians,lundy,histocompatibility,woolwich,irp,handango,cosgrove,sulfuric,renderings,msh,trt,ldcs,lect,kollam,edgerton,bulleted,acupressure,thotbool,hiawatha,nhfb,ahps,operon,ugandan,paton,suspends,categorie,stratigraphy,howes,surfed,steins,babu,andrade,agarwal,ncd,surefire,cori,planetside,snorkelling,waterworks,luk,headlamps,anaesthetic,isomerase,fdisk,dunstable,awb,hendon,accreditations,doral,nta,macadamia,takin,marriot,bfs,disqualify,ttp,sixt,beazley,rashes,najaf,hwg,bukit,antiaging,psychol,dfe,bedingfield,equated,swig,lightscribe,unionist,lytham,clocked,duced,complementing,keycode,pennants,camas,eamon,zaurus,qnx,srx,delux,uli,grrl,bookie,boggling,skewers,richman,photodisc,oto,uav,cnhi,umberto,bautista,zooms,newsdesk,roadblocks,klum,goh,goebel,pou,homophobic,diamondback,foosball,rept,spurgeon,lumberjack,marv,epidermis,mobley,oktoberfest,photoshoot,rhinoplasty,peptic,bauman,tannins,psychotropic,tilley,malaya,hypothalamus,shostakovich,scherer,tsh,manipulator,calabasas,coromandel,pliner,timestamps,pango,edexcel,snc,nim,gwaith,breaststroke,oroville,mitsumi,ichi,mobius,deductibles,nikola,berrien,peacemaker,ilia,bookmarked,letterbox,halal,agl,noor,noll,filenet,freeland,kirsch,roadhouse,charted,microtubule,cubicles,blau,ladysmith,gatti,ection,switchable,mcminnville,hcm,interactives,altus,phospholipase,transformative,samuelson,completly,anhydrous,germplasm,gradzone,gdansk,jenner,parkin,unmoderated,wagers,beliefnet,hotbar,canis,ravioli,enrolments,walling,marblehead,dvt,cameltoes,ribosome,carnivals,srf,speedman,instrume,moffett,augustana,topsoil,latifah,isomers,pettit,lemans,telescoping,gamedesire,koha,balancer,picton,underhill,dinghies,chooser,argentinian,ahrq,apparels,timescales,cef,athenian,mcewan,sexshop,zermatt,mha,geert,bugging,trento,lyndhurst,nex,wdc,symbiotic,wds,dyslexic,nomic,tecnica,mmap,wishbone,mcad,prm,bashir,licenced,larissa,collab,squirter,infecting,penetrations,protea,argento,polyvinyl,ganglion,ruud,bunt,solgar,lipper,chimpanzees,jdo,testcases,tda,hamza,meeks,athol,centimeter,excreted,paros,azzaro,nappa,sirna,sexvideos,nonprescription,lyd,firework,crlf,localize,tablatures,jndi,vigorish,dcd,schulte,gioco,chested,universit,thrivent,jie,hydrothermal,smalley,hoke,ramen,coleoptera,intensifying,copyleft,llb,outfitted,khtml,chatterjee,adoptee,augusto,resnick,intersects,grandmaster,nusa,deadball,cksum,historiography,amistad,bellacor,trcdsembl,campagnolo,downgrades,sexbilder,scrapping,pdoc,haskins,bullhead,rhett,mimosa,wildfires,ellyn,hryvnia,halved,cfml,vatu,ecademy,dolore,shauna,multilink,funchal,ximian,bergamo,quarterfinals,hobbyist,reardon,homozygous,glyn,popset,torsten,puller,mathworks,namm,dena,mdksa,dcom,danskin,bexar,dinning,pfd,misfit,hamden,hardie,redfield,scotus,quotable,cranfield,asides,beacuse,musicstrands,kla,unternehmen,teg,roseland,pgbuildfarm,volo,zirconium,noelle,httpwww,agement,guan,tcf,opencube,shao,mears,rectification,omc,duisburg,pows,hsphere,entertai,keeler,highpoint,stratospheric,newegg,preeminent,nonparametric,mistral,percocet,zeroes,kth,divisor,wanderlust,ugc,cleat,decentralisation,shite,verna,immediacy,trak,swingin,eckert,casco,olivet,resi,bergeron,felonies,gasification,vibrio,animale,leda,artesia,casebook,nhc,gruppo,fotokasten,yaw,searing,detonation,gse,approximating,hollingsworth,obasanjo,pinewood,tangential,ridgway,headhunter,ero,sharkey,clwyd,bretton,bustier,apologizes,manoj,muskogee,pismo,resortquest,diskeeper,lathrop,pala,glebe,xterra,pml,seahorse,geneve,wpointer,softener,breaching,maelstrom,prioritizing,jsa,annunci,modelos,seraphim,raymarine,dodgeball,munity,assfuck,alopecia,singaporean,nowak,keyboarding,beachside,sparco,robeson,navbar,fsr,contribs,lineages,sumitomo,dermatologists,marbled,probleme,irv,blackmore,bothersome,draconian,troup,approver,pcgs,saville,srinivasan,poldek,perfor,articular,gwynn,trackball,asis,mansell,unf,werewolves,magazin,sible,vla,autocorrelation,waltrip,mombasa,schroder,alachua,hks,duns,ornl,cabrio,guanine,bridgetown,rhsa,luka,cpf,roadstar,creditcard,frf,michaela,willett,brews,baskin,hamel,zoids,semantically,cagliari,eggert,valkyrie,airlie,salas,gnomemeeting,benji,nent,cashew,unproven,myocardium,kap,gini,prek,cypher,paraiso,nightline,cursive,organises,hydrated,csk,schwanz,martinsburg,liguria,hsieh,forties,pgc,sayre,photosynthetic,pips,tongued,lifetips,walcott,cname,unapproved,emm,nematodes,jaclyn,kell,gremlins,bolero,togethers,dicom,paroxetine,vivien,gpr,bru,ilt,lished,tortola,mav,powertrain,telkom,immunized,nuneaton,fica,trulia,ricochet,kurosawa,aberrant,nld,ukr,wyandotte,odpm,pgk,dumber,ruptured,insoles,starlet,earner,kem,radiologists,polydor,nutraceuticals,zoomed,groupie,brinkmann,thrombin,aco,laminar,immunoglobulins,jamnagar,camber,vxi,colliery,incubators,procimagem,sweeties,landfall,seanad,intramurals,kwok,borderless,methyltransferase,suwannee,lgs,cjd,hyperlinked,birkenhead,torrevieja,purposefully,gutted,serveur,grr,morrell,ouachita,imran,slat,freeways,multithreaded,newlyweds,documentum,ebm,xiang,burnin,reelection,hales,rutter,uunet,vitreous,noord,centrelink,lempicka,iru,countable,dolomite,salvaged,soyuz,frick,lwp,afterglow,ferent,maes,mandi,secunderabad,millwork,sampo,takedown,colostrum,cfnm,judeo,wisc,lata,sexi,homies,tarmac,customisation,conservator,pipettes,goon,artefact,expository,complementarity,cosco,mercosur,tfm,benzodiazepines,mii,netmask,stalling,molnar,hmso,huw,aliso,decors,oldman,nuevos,acis,somthing,zabasearch,steuben,minicom,hausfrau,goldfields,rickey,minichamps,usagi,bisexuales,rothman,shana,srivastava,oemig,beefy,senha,pica,pucci,skits,shenyang,mussolini,kootenay,ethnology,donohue,cyc,childers,mahjongg,davao,tajik,codemasters,mydd,charade,arnhem,bobbin,istudy,rugrats,dancewear,mechanized,ject,mayes,canmore,reassigned,nnnn,crema,bursa,cfu,svm,riccardo,realvideo,lites,krall,centrifugation,welds,braunschweig,coptic,securityfocus,reorganisation,conglomerates,dehumidifiers,dumper,hamill,halston,iau,wfc,spiny,arezzo,mbeki,invisionfree,dropkick,elastomer,wahoo,anagram,fogdog,finnegan,gof,newsworthy,defs,sensitization,hyperactive,sidi,antenatal,elektro,nordsee,yuna,pluggable,hemophilia,kola,revitalizing,seepage,alitalia,orale,wri,ory,bcf,wooten,nonviolence,baume,berkman,ashdown,diciembre,purports,fcuk,shillong,mondial,brushless,technicolor,narragansett,barenaked,pandagon,rehabilitated,outdoorliving,expendable,ponca,tigard,soulmate,kaine,maxis,poppers,allposters,commercio,dods,tsl,volusia,iic,thm,elibrary,datebook,rapists,ultrasparc,seabed,orly,complicating,suzi,texturing,correspondences,groomsmen,avo,latour,manipur,arnett,suzhou,headboards,cil,palomino,kol,pomeranian,diptera,gericom,steiff,cordis,erythrocyte,myelin,fragility,drucken,reso,hov,tsukuba,kustom,invoiced,hannigan,hangul,montauk,modulators,irvington,tsang,brownian,mousepads,saml,archivists,herringbone,bodom,harrahs,daiwa,juanes,nids,moorcock,ccu,eyeliner,totalled,syp,woken,aphids,cutthroat,coincidental,lepidoptera,buda,tarrytown,vaseline,bluewater,strontium,burdick,crustal,hackman,shopnbc,aicpa,psal,albicans,seduces,epps,kroll,unambiguously,staley,cutbacks,hemet,ariana,pch,cgmp,mcas,multimeter,anubis,htr,analyte,peseta,enh,glitz,kewl,bidi,winsock,lvs,moldings,peltier,iod,ior,trackmania,ballets,doylestown,spaceflight,quicklist,proportionality,overruns,yadav,sordid,qpf,mentorship,lyx,tained,oligonucleotides,bbci,spidey,videotaped,regnow,jukeboxes,xpdf,portishead,irt,splunk,kommentare,citywire,crud,nev,febs,adu,ird,ribeiro,abrahamsson,epidemiol,coms,vdo,outro,pneumococcal,tilton,brookstone,apic,avenge,alleviating,sportif,inservice,punts,tives,sora,tgs,daugherty,yarrow,wakeup,meatloaf,mumford,datafile,buchen,zzzz,objectclass,polices,dogging,cursus,plasminogen,kinsella,lindgren,asymptotically,duce,wonderwall,crick,pvd,enveloped,mnfrs,caseiro,instabilities,muskoka,jeni,thalia,apac,reforestation,paradoxically,dren,dubbo,inductors,opin,symlinks,gamestracker,secam,gatorade,irm,cava,rupp,wacker,lanta,cres,yue,oligo,chairpersons,incesto,spca,zapper,materialized,accolade,memorized,squidoo,interpretative,roping,rauch,oxymoron,reciever,maryann,pentagram,viv,infusions,slvr,choppy,robotech,spb,servic,saya,univeristy,bahamian,gos,fwy,nocd,stipends,stirlingshire,caerphilly,riboflavin,fiu,kalb,ubiquity,vandal,romper,bitumen,nolo,shimizu,postpost,rummy,paleo,unrhyw,pinscher,constructively,sufjan,christiane,spliced,finca,gpf,iaa,iesg,brecon,kiran,trekearth,repeatability,gunning,byblos,tadpole,mitsui,storytime,berserk,wellman,cardiologist,jammin,leis,hirst,fellatio,ggc,terran,breadcrumbs,lorena,remaster,tpg,cifrada,curvy,envisage,boneca,basements,sharpton,crucially,lfn,imao,antonin,soundgarden,carrara,bron,decoupling,monroeville,environmentalist,msha,eastenders,adultfriendfinder,bein,stef,fpgas,mistreatment,rbl,qlogic,shona,sutcliffe,previousprevious,infective,estrella,gans,shards,vcds,acadian,kahului,phonetics,comittment,blix,biocompare,whimsy,frameset,kot,nyack,lolo,carboxylic,pkgconfig,dipartimento,traceback,svlug,microdermabrasion,waterbody,jeeps,tiverton,wundef,spay,gilmer,ceqa,bodog,followups,internat,biarritz,gurps,bessemer,iceman,pegged,liberator,rediscover,lovecraft,wavefront,bhangra,zuni,epm,meningococcal,ketone,glazer,yashica,geodesic,congruence,tenkaichi,omani,tenuous,reuter,surfactants,cohomology,epicenter,toke,dwf,santas,kutcher,christo,lucio,phenomenological,debriefing,miniskirts,ansmann,mfps,lentil,kannur,backer,albedo,flsa,pauli,mcewen,danner,angora,redstone,lxwxh,informacion,phyto,libpam,blo,cocky,pitchfork,stratocaster,mohegan,brazzaville,broussard,beano,interconnections,willa,toiletry,sats,beko,exchangeable,colm,arabe,stretchy,starburst,dzd,neurologist,leonards,kitties,dottie,rspb,fwrite,homicides,forde,ipf,travelpro,haemophilus,ronny,hubris,bottomline,kosova,neuropsychological,genitalia,waiving,swirls,dampers,comhairle,cheech,eigenvectors,extrapolated,chaining,defected,yurasov,gakkai,justia,campylobacter,northumbria,seidel,kenseth,pmr,kare,dumbo,holocene,jwin,superconductors,yeung,polygram,egon,distillate,unweighted,gramm,safeco,bentonville,ishikawa,vuv,strachan,bayard,escalator,periwinkle,breakin,rsmo,publishi,darmowy,outfile,choreographed,obrazki,accross,yag,gravesend,lovemaking,boucheron,farrow,annulment,kwai,tubbs,bartow,tonbridge,lesbico,panerai,spate,belladonna,lexi,sobering,carcinogenicity,djf,semis,pcv,suppressors,leachate,dingle,mbendi,celina,hydroponic,hoyer,xia,kovacs,recalculate,maltreatment,hitchin,medtronic,meerut,whsmith,fontsize,relaxes,kis,halos,cracow,saco,webcomics,ife,sauder,dioceses,uct,postdoc,biceps,leela,hydrant,hamstring,darrow,tinderbox,sify,naw,ganguly,streetwise,imprinting,dandenong,colecovision,gnuplot,nucleation,werbung,prb,blr,croce,deviance,goldfrapp,tetrahedron,materialize,homeworld,foodborne,baixar,stagg,fondness,ellicott,merchandiser,ler,djia,eastleigh,blacklisted,freetext,wxhxd,multiplicative,metis,urethra,dalrymple,retroactively,hartnett,gcd,kilos,multivitamin,vientiane,koji,scran,bwp,emoticon,mercator,lyricist,macromolecules,fungicides,amines,karcher,cssa,freetown,beneficially,tugrik,monotype,ishii,kempinski,pigmented,mipsel,ridership,athenaeum,twikiweb,mpm,faking,clsid,kenobi,endoplasmic,motorised,lomax,geraldton,eck,cssrule,auerbach,metlife,apocalyptica,masa,risotto,follicles,ashtabula,sussman,exmouth,melua,cvss,pana,stimulators,gnf,uvic,asustek,dieta,famvir,conflicted,retirements,sixers,metab,gregoire,burris,creat,rajan,brainwashed,berenstain,crittenden,antoni,gbs,associ,yankovic,gnvq,rogaine,kek,gridlock,integrable,chalkboard,dopod,unranked,karlsson,anaemia,natur,permian,bartley,unaffiliated,slrs,montreux,partici,starbuck,infractions,karon,treviso,backdrops,turkmen,standups,sowell,aktuelle,gleeson,lss,globulin,woah,nte,midob,violator,boxcar,sagan,aviso,pounder,vieira,kronor,tocopherol,keiko,newsrx,lesbe,pharmacokinetic,intercepts,tirelessly,adsorbed,ksh,plunkett,guenther,penta,phospholipid,reiterates,wuc,oversaw,arraylist,qy,outsourcer,eyeshadow,pushbutton,doujinshi,catagories,pilar,paltz,viaduct,pugster,elastomers,evenflo,mmk,wadi,secularism,cellspacing,trekker,llm,pakistanis,glyphs,neuroblastoma,loftus,gigli,thorp,seeley,producten,glandular,aligns,rejuvenate,grt,northants,ifconfig,sherrill,wintasks,xenia,whangarei,hra,expres,nadir,recoup,rnai,fyr,franchised,batchelor,relocatable,warhead,backfill,fascists,kedar,adjacency,iberostar,mancha,gorton,insta,jni,cellpadding,larnaca,carmarthen,endgame,streamlight,golan,thomann,totten,curbside,samhsa,howrah,planer,hermaphrodite,gavel,bassinets,footjoy,fairtrade,gah,prestwick,paoli,alben,laconia,berkowitz,inputting,dimming,indiatimes,arcgis,goof,landmine,boracay,appro,notifier,wirth,valerian,bucher,wts,saad,weisz,enrollee,authenticating,wheatland,zildjian,revisor,faauto,profs,pheonix,seitz,administrivia,foams,leh,orbitals,hammerhead,dotcom,xof,klezmer,fosgate,walworth,niguel,quickfind,isakmp,facia,stalemate,multimediacard,motrin,glx,classifies,ischia,ankh,mohali,incurs,feist,ldb,netzero,rationalization,eef,brokering,viewport,isas,masterbate,geneseo,grammer,garantie,sanofi,malignancies,yaesu,jpegs,spitz,chea,limassol,lobbied,splat,nostradamus,gallium,mobb,mannered,dorada,nalin,sorbet,lunenburg,phc,tdma,bodycare,jobsearch,sharia,topiary,cataloged,camsex,avm,kimber,extendable,ager,pella,optometrist,tinh,bogey,kana,pipette,bln,coveralls,teng,stayz,isolator,wicking,cph,zany,umatilla,austral,applauds,taks,interferometer,barbican,ohana,rebs,cerf,criminally,mkv,adio,psychopathology,lkr,leyton,cartoonists,appellees,indira,redraw,pictbridge,mahesh,beng,ncar,gord,nanometer,faceless,moyers,oregonian,aftershock,gena,leggett,wsdot,classique,menon,spiro,whiteboards,strategists,dnv,loti,kaos,hydrotherapy,marionette,islay,myv,typeof,igt,nitty,ddb,quintile,freightliner,monkees,lindley,dehumidifier,industrials,bouncers,transfered,mages,dmb,roseanne,chk,trigraphs,rer,bettis,cyberlink,browsable,workhorse,iterated,mcfly,kyd,pooping,preferentially,fraternities,diuretic,octubre,castell,emerg,sampras,gephardt,zimbabwean,unexpired,westmorland,biscotti,mavica,everyones,shaikh,nampa,youngblood,plana,refractor,bouldering,flemington,dysphagia,redesigning,milken,xsel,zooplankton,gsd,philatelic,modularity,parkview,keto,marrone,wallmounting,tias,marengo,quiche,epoc,resales,maduro,murrieta,fairplay,ddp,woodinville,registro,transcriber,notarized,neocons,franchisor,diab,vying,morehouse,lauper,bedspreads,pooch,morphism,gripper,tavistock,negated,javabeans,nashik,atomki,musicianship,viaggi,bbn,cady,adios,purview,bosque,xxxl,dyfed,biomaterials,overpass,berners,goaltender,speedometer,ultrium,carteret,fatwa,bottomed,superscript,rwandan,proteinase,coolermaster,maca,haircuts,crewneck,discriminant,bayfield,mishra,morey,multiplexers,pcga,stade,carnivore,codingsequence,knowledgealert,egalitarian,pombe,yamato,jenson,mortgagee,middlefield,iiyama,schell,midler,nags,caplan,anyplace,haridwar,sternberg,ventilating,retreating,shopsafe,mohave,brion,immun,zapf,mingus,prolly,trichy,microform,olsson,jdc,dosimetry,smelter,rayovac,takeda,mbt,ied,dynamism,fileattachment,rabat,devs,mellor,manmade,somaliland,hashtable,sdb,conto,furtado,statics,saleh,puja,kamera,eport,killian,rucksack,janette,powerware,phenylephrine,cupcake,karp,bodum,celular,zamora,qian,dws,psig,polycystic,titts,krzysztof,parsippany,raggedy,eason,epg,bsg,payloads,alon,cebit,wedgewood,daten,pbi,annexe,cyclen,customizations,stunningly,hugger,junio,jtc,xcd,prequel,strathmore,champloo,billerica,talley,estoppel,ameritrade,torr,cytomegalovirus,bpel,domus,madigan,supercool,ysl,contaminate,rxlist,sailormoon,ubid,plovdiv,mcsweeney,govideo,bassinet,taillights,typhimurium,dez,fci,visionaries,salesmen,nicki,skagen,hibernation,ponders,rrsp,middleburg,innkeepers,mcauliffe,gardasee,pcn,asce,aromatics,interplanetary,landcare,towneplace,downloaden,discontinuing,bork,sealers,weybridge,wusthof,interbank,hullabaloo,erratum,contreras,sandwell,novgorod,earbud,jds,coastlines,echolist,guntur,lmp,trunking,foxtrot,rosanna,patchouli,inequities,testes,defaulting,alpert,securitization,nsfw,borer,originators,postid,phx,censoring,hashimoto,oriole,chipotle,slocum,ipeople,rdg,reusing,saeed,wetzel,mensa,shiner,chal,rhesus,streptomyces,datagrams,invalidated,shenanigans,mkii,sandford,lennart,pract,npi,travelguide,championed,biosolids,billable,givers,tmdls,cockroaches,testcase,faraway,cfengine,umbc,underwritten,biofuels,cyberhome,dinh,zegna,tarps,sociologists,ellesmere,ostomy,vso,sena,ingest,gazebos,sirloin,cyclophosphamide,bitdefender,catz,bpp,giancarlo,kategorie,arjan,valery,kmc,insp,recomended,dataport,pfaff,manuale,rog,niven,mahi,ghs,atsdr,rangeland,commonality,xid,midis,cwc,regrettably,navidad,yahoogroups,kaw,ston,ves,pulau,playbook,digipak,jetblue,kavanagh,exhibitionists,armidale,arquette,copland,namib,cne,cheapflights,wyvern,lucene,muffled,vincennes,inlays,lockets,whitey,brin,wharfedale,guyanese,laryngeal,outfielder,nonattainment,softimage,cellgroupdata,literatura,myoplex,yorba,bct,pva,slapstick,cottrell,dialers,subculture,cmx,modded,skids,roselle,klub,marathons,tgt,skeet,toucan,masterclass,nnp,calcio,oxidizing,alo,kennebec,zj,intergalactic,biomolecular,cii,powweb,mcwilliams,phosphorous,photocopiers,obligor,matcher,listbox,voigt,fdl,dawley,scribus,lessors,npn,luminaries,karats,bridger,slm,hadronic,fairport,piecewise,recharging,dmm,unionville,intermedia,goetz,urinal,joystiq,grosso,sobaka,payphone,rockfish,duodenal,uninstalled,leiter,coworker,escuela,cyclades,longterm,taber,screenplays,gpt,shiites,ntop,farcry,jitsu,lactobacillus,uniontown,cloner,otaku,hoyas,kandahar,kerrville,akers,neuropsychology,multimap,allston,femininity,trask,accuweather,deferment,wam,fmp,portlets,glsa,westmont,waders,cellulare,homehome,frogger,hass,rya,seqres,hellfire,havering,montfort,chokes,eharmony,knowsley,bordellchat,cvsweb,houdini,umr,canarias,babyshambles,bridgette,cinque,drezner,hsin,alcan,stas,outlier,naira,neverending,masson,khanna,systeme,hillsong,camshaft,exotica,milburn,bijou,destdir,innervation,gga,oqo,cunha,reefer,techspot,hibernia,alpina,iarc,constraining,nym,dard,estefan,fuser,lepton,pergamon,wiktionary,razer,poznan,netscreen,manda,npv,xmb,kingstown,topix,batsman,wavelets,cogs,bigtitsroundasses,barnhart,scofield,ebrd,desorption,bellflower,watertight,stevia,photocopier,haverford,talc,penises,gwendolyn,buynow,nairn,prolab,lundberg,backordered,coh,mononuclear,unocal,brunson,greenlee,emer,txdot,prichard,conferees,renata,ternary,footballer,sisyphus,directfb,foolproof,chastain,lakshmi,dsb,megane,cdo,someones,rebelde,morrigan,mymovies,tiananmen,immunosuppressive,mcveigh,stylin,brower,mpltext,aibo,pdd,depositor,ofcourse,ecdl,redenvelope,acidophilus,deci,defensively,analytica,cnd,hrp,tnr,tryon,forgo,barca,pahrump,foros,pickabook,hellraiser,lithographs,educates,ediets,gopal,signers,digext,netbackup,dimensionality,triax,rnase,aman,angell,bochum,eyepieces,earbuds,americablog,makeovers,unprocessed,pfa,widctlpar,clausen,punbb,centra,monson,infogrames,azt,xalan,hydroxyl,medpix,interacted,gpi,polishes,canoga,numismatic,avoidable,brantley,adenoma,aah,prostaglandins,powercolor,beaconsfield,lakhs,mhd,lesbisch,flammability,truancy,jharkhand,channelweb,givn,flatiron,midlife,guerin,indianola,unavailability,rooter,wanaka,lompoc,widener,cll,kmail,websense,vmi,residencies,cablevision,pye,disrupts,onetime,kenzie,gating,boingboing,sevier,eberhard,chek,edr,kharagpur,fotze,cvp,deflated,infestations,judgmental,meiji,antipsychotic,uwm,infn,slaughterhouse,stix,asg,bagging,brainwashing,dmp,disconnecting,thera,mclellan,rong,telcos,wilmer,sphincter,orgys,newsom,infill,fairhaven,etude,stereotyping,talib,dreamstime,rearranging,geographies,tipp,programmatically,handicapper,plantar,ogaming,xss,academie,quarrying,approachable,sweetener,braised,knut,tibco,fseek,vided,burk,spigot,skilling,hunterdon,nailer,roxette,hepatocytes,coupes,universitet,mauricio,lov,hnd,roseburg,berlusconi,chloroplast,charing,kansai,buzzword,nepad,pistachio,arv,lanvin,riverbank,lilypond,predominately,metalware,saugus,nmac,giza,lancs,culpepper,rohm,pretzel,warping,twc,raitt,iyer,connotations,iiia,wilber,yardstick,neutrophil,supernatant,solu,segmental,multitudes,imperium,radley,supercharger,imagen,thicknesses,brk,spew,vestibular,klausner,riba,witten,orth,calaveras,naep,deceleration,bcn,consignee,aldehyde,pronged,baring,jacked,bigalow,gyd,centerfolds,ortofon,cropland,wnt,nazism,kingswood,operationally,trix,testicle,rioja,bhi,technolo,lindstrom,pinter,minox,wofford,guaifenesin,hup,bifida,stratigraphic,dundalk,snipers,kshirsagar,ridgecrest,placerville,gosport,sjc,ircd,rubrics,kerouac,ebx,harken,foc,cooperated,nwo,cano,kearny,shopinfo,tlb,etp,obie,greaves,versity,amoco,inzest,msdos,gabby,dumbbells,ncaaf,ximage,homotopy,ironwood,adiabatic,pend,licznik,cck,sabian,saxton,patties,hopkinton,biotherm,ethno,videochat,cantwell,accelerometer,filip,whl,productio,milli,pdi,bedava,penobscot,grav,llcs,fmr,pimsleur,micky,setcl,johnathan,alisha,gambier,enterta,crosley,usace,byrds,sgm,darrel,isola,laminator,krazy,diaryland,bhubaneshwar,quadrature,summerland,alessandra,gsn,dentry,catskills,tablecloths,herder,gec,cinematical,outfall,unzipped,plcc,osb,interchangeably,concurs,wef,deformations,farting,nonspecific,mek,ohhh,atopic,harker,culling,limon,murata,zealot,arca,jmc,toot,rino,sisley,iveco,gooey,bielefeld,parrott,veillard,lisinopril,nprm,tookie,shanti,burkett,wemon,turmeric,carnelian,zea,geom,dorman,hmac,abstracting,parietal,glyphosate,underpants,appleseed,mandating,prequalification,macross,kondo,muzi,bidet,grubb,redif,oam,domenici,transdermal,abramson,recreating,snot,ductile,dimensionless,carex,contractually,kippur,fibroids,courtyards,calderon,dogster,flattening,sterilized,pkcs,unformatted,cvr,insulate,afd,tuolumne,cobblestone,showplace,stockpiles,mandir,autore,ashish,meijer,camberley,babson,fiennes,meteorologist,colonoscopy,lofi,tryp,duromine,alkaloids,quesnel,ake,initrd,centrality,pisses,campaigned,twinning,imag,taster,greenlight,musicbrainz,sourdough,warrantless,mzm,croat,arbors,canwest,homedics,anydvd,jnr,odm,dnn,ashtrays,punters,dropper,sarkar,szabo,wack,ecx,fette,axl,yoy,spyro,kendo,surinam,suze,xenophobia,krypton,heisenberg,dvcam,nary,ninn,csis,reconfigurable,smil,courchevel,kittie,lipman,doz,bsl,chucky,schlampe,webdev,doubleclick,bushman,pornofilm,ood,conexant,hydroxylase,rme,multipass,woodwinds,telefoon,ricotta,motorways,gandhinagar,nsg,edelweiss,frampton,humidor,vacationing,naturalizer,dinesh,techassist,airdrie,schiphol,bruner,tangy,cfe,gurnee,bogdan,farina,gant,cokin,tricity,cutaway,artsy,severability,transferor,cliches,nosferatu,indycar,klimt,onetouch,dooney,oconee,smartbargains,prl,sackville,camberwell,hotlines,hazelton,nlg,reaffirms,anleitung,webalizer,libboost,golds,pfs,imei,corante,recipesource,ranching,seguin,calderdale,anzeige,toothpick,volser,westcoast,forwarders,aab,likable,ashburton,natrol,sonstiges,shoestring,vsx,hosa,brads,winsite,whirling,doghouse,displaytime,bda,ranitidine,elit,grebe,standup,playgirl,flexion,ibex,geomagnetic,lowestoft,blobs,footers,reiss,lewistown,droppings,designator,causative,brt,woolrich,gwasanaethau,keefe,tfp,loveseat,diethylpropion,karyn,handedly,uncontested,fov,doxorubicin,nerja,cardiologists,militarily,fsus,inflating,sputnik,barometric,joburg,assertequals,gladwell,regrowth,lusaka,lampwork,adultos,cybersex,banca,doughnut,martz,cribbage,mela,rondo,tigr,personel,wcpo,activ,uiconstraints,typescript,inetd,scuola,piste,pppd,enos,ondemand,altamont,steubenville,rur,danielson,barfly,vegetarianism,extractors,dictaphone,callsign,martinis,envisions,flexibly,nakd,natwest,wilsons,ccn,reposition,msci,orginal,hobbyists,anat,fleshbot,weta,sindh,pcf,glick,obsoletes,mammogram,sani,webcasting,soggy,apha,ecologist,ararat,narrowband,bph,webstore,maus,reinstalling,gendered,relateddiagram,kingsland,ssid,rackets,litigants,shimon,ducted,ebsq,crisps,modelle,wristwatches,xenadrine,linac,identifications,dressy,authenticator,arash,cristobal,stewie,depositories,pcre,setpoint,rockdale,evita,ballmer,hemphill,taormina,plath,pickers,boardgamegeek,serbo,oci,noviembre,mappoint,surn,minisd,madmums,mosher,digitallife,grahame,forecasters,linoleum,shearling,stockster,firstcall,dorint,wmc,culverts,cuticle,codebase,rdfs,lter,pimples,hdb,shorted,loghi,spunky,razz,komatsu,bietet,madisonville,readies,jovenes,deuterium,totalitarianism,trigonometric,selmer,popcap,verbosity,aashto,pavarotti,syncing,vanden,majeure,beret,fallbrook,audiovideo,muay,longshot,rollaway,yor,nonstandard,tbr,manoa,laundries,whoo,tefal,tothe,crv,amx,falign,goleta,holst,ebola,redbook,rangel,consolidates,disaggregated,chromatographic,supersport,golly,flumotion,seagrass,congratulates,anais,grievant,reinstalled,entreprises,clemons,eurovision,airplus,panchkula,shahid,phospholipids,elsinore,opendocument,ankeny,canzoni,wakeman,moana,wobbly,seagulls,megawatts,denning,temas,illuminator,marylebone,symbolically,erotico,linx,randle,nhu,unsubstantiated,centroid,monogrammed,gambian,tailgating,colville,vpu,russische,sgp,soccernet,zing,downunder,snips,allawi,lockup,cholinergic,lhr,barthelemy,babymint,benning,implantable,ligo,haddad,univariate,katia,motorcross,sangha,shn,myfonts,usuarios,caml,resiliency,barossa,astrobiology,disinfectants,kawai,uktv,dreamtime,berkshires,inhumane,trobe,unlocks,auctex,pogues,panicked,developerworks,bullitt,toed,smartcard,kushner,hardcoresex,crump,gunderson,paramus,cepr,lma,politica,randomization,rinsing,reschedule,tob,hostal,preempt,resold,cyclo,phosphor,frontenac,wipeout,mambots,unscented,ipfw,ergonomically,roosters,homologues,loring,ionosphere,belvidere,trotsky,airworthiness,sistemas,devsource,retroviral,llnl,keyloggers,amgen,marci,willey,yau,groucho,foreshore,gusset,dissapointed,dtds,mibs,metalwork,refering,punting,triphasil,scab,bhavnagar,creedence,musee,wellstone,lleol,gpib,tidbit,allyson,teriyaki,impoundment,interrelationships,gres,coffeecup,maru,joon,josephus,ulong,maputo,chev,krispy,dogtown,abernathy,raz,fermion,weltweit,fluor,bergstrom,inoperable,esrc,asdf,gollum,ceus,macintyre,srd,cyclonic,cft,unsubscribing,shawna,pinyin,ipac,ramone,fethiye,multipath,hakusho,tein,treeview,atd,wonderswan,eugenics,dustjacket,emmanuelle,dlocaledir,molotov,sandpaper,hbc,fannin,interscope,eba,melayu,hardiness,liss,phew,furuno,moynihan,johnsons,heng,dro,carbonated,waives,wraparound,jfs,ejackulation,reboots,headliner,sqr,bustin,powernetworker,vul,superposition,supremes,insite,fanzine,laney,purportedly,antigenic,rurouni,dietetics,assembles,veracruz,hausfrauen,wsf,benzo,vietcong,chairwoman,petrochemicals,pata,cntr,nettime,techies,bentyxxo,xango,radish,gatto,checkmate,gantt,valli,tuv,starlets,plavix,roomba,aficionado,motivator,bijan,riv,storrs,tabula,reigate,emmons,sandstorm,laci,taoist,nameplate,axp,wcb,mothering,billard,chrysanthemum,reconstructions,innodb,sunspot,aisha,fluorine,healdsburg,retype,fishin,likud,cyberread,pme,rothwell,kmf,creationist,wth,setlist,scrollbars,bocelli,zuckerman,vtd,ampicillin,arcy,wasn,cowbell,rater,everson,angebot,cezanne,tamagotchi,earpiece,franca,thymidine,disa,gearlog,tranche,volum,prsp,openvpn,mcentire,londra,kaur,unconstrained,datadirect,souter,redfern,tulum,nyy,pagesize,osteopathy,stavanger,cated,autry,fip,rooftops,findpage,discourages,benitez,boater,shackleton,weirdo,congresswoman,dalek,tass,itrip,myob,helloween,reperfusion,fieldhouse,manukau,libname,eucharistic,mong,homeware,ckt,winmx,mobic,farts,rourke,lackawanna,villiers,comercio,huy,brooksville,falwell,gwb,donwload,wrth,attrs,knockoffs,esm,bionicle,hygienist,nichole,quidditch,dartmoor,rowlett,stapled,gardenweb,butternut,nummer,groban,asw,arora,yatsura,warr,hainan,esg,logoff,cockroach,xanadu,computable,occup,playgroup,tintin,ethnicities,webposition,crafter,roby,disassemble,boltzmann,caos,abidjan,anise,grainy,hospitalizations,notizie,zoek,sepultura,walkabout,pepperoni,optimising,cityreview,boathouse,katt,weissman,siri,herkimer,namecite,refreshingly,aph,ryland,sculptural,neurophysiology,gsk,hermanus,mocldy,ngage,annexure,ipchains,yosef,tlds,gozo,pso,helton,outflows,saas,asthmatic,guillemot,realizations,linguistically,jaco,mckinsey,dezember,hylafax,reconstitution,amateurwebcam,lumberton,interviewee,intereco,portola,hematologic,sgc,rebbe,pinup,transcendence,surah,brendon,farberware,statisticians,swatches,perioperative,maoist,henkel,lilangeni,trapeze,lemmings,extents,spams,omagh,workcentre,sunbird,cellophane,deland,blevins,sacha,cardholders,dddd,accessori,qo,araujo,mylist,pcu,kloczek,enet,seperated,clusty,rolfe,cuttack,provantage,dominio,hyperbaric,nannofossil,logansport,bulldozer,blacksonblondes,subprime,overpayments,sharpie,modutils,whitehaven,whaley,currier,taproot,topsite,delorme,rayner,aio,rossum,urbanism,colloquia,ewr,capillaries,mountainside,menthol,blackouts,starkey,eves,hpux,canby,dragonflies,montrail,findfont,aigner,urusei,soundblaster,beatle,webzine,propranolol,inescapable,swabs,absorbance,lbw,audiofile,simba,mohd,redgoldfish,cornbread,jcaho,appendixes,aod,crestview,keynotes,fotolia,subnets,cau,espanola,busnes,froggy,decarboxylase,elfman,throughs,prioritise,oreck,schottland,bagpipe,terns,erythematosus,ftrs,excitatory,mcevoy,fujita,niagra,yq,dribble,hardwired,hosta,grambling,exten,seeger,ringgold,sondheim,interconnecting,inkjets,ebv,underpinnings,lazar,laxatives,mythos,soname,colloid,hiked,defrag,zanesville,oxidant,umbra,poppin,trebuchet,pyrite,partido,drunks,submitters,branes,mahdi,agoura,manchesteronline,blunkett,lapd,kidder,hotkey,tirupur,parkville,crediting,tmo'
| mit |
google/gps_building_blocks | py/gps_building_blocks/ml/statistical_inference/data_preparation.py | 1 | 28872 | # Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Module containing the InferenceData class."""
import copy
import functools
import operator
from typing import Iterable, Iterator, List, Optional, Text, Tuple, Union
import warnings
import numpy as np
import pandas as pd
from sklearn import model_selection
from sklearn import preprocessing
from gps_building_blocks.ml.preprocessing import vif
class InferenceDataError(Exception):
pass
class InferenceDataWarning(Warning):
pass
class MissingValueError(InferenceDataError):
pass
class MissingValueWarning(InferenceDataWarning):
pass
class CategoricalCovariateError(InferenceDataError):
pass
class CategoricalCovariateWarning(InferenceDataWarning):
pass
class ControlVariableError(InferenceDataError):
pass
class ControlVariableWarning(InferenceDataWarning):
pass
class CollinearityError(InferenceDataError):
pass
class CollinearityWarning(InferenceDataWarning):
pass
class LowVarianceError(InferenceDataError):
pass
class LowVarianceWarning(InferenceDataWarning):
pass
# Force custom Warnings to emitted all the time, not only once.
warnings.simplefilter('always', InferenceDataWarning)
class InferenceData():
"""Data container to be used in a statistical inference analysis.
The InferenceData container breaks down the data prepartion for statistical
inference analysis into four parts. For any of these part, the InferenceData
container provides internal `checks` and `methods` to address these. These
parts are:
* Missing Values
Missing information should be addressed as most models will not work with
missing values.
* Identify categorical variables and one-hot encode
Check if categorical columns exist in the data. If they are meant to be
covariates in the model, these columns should be one-hot encoded into
dummies.
* Controlling for External Factors
These are elements that are adding noise to the signal, for example when
comparing two different ads performance, you want to control for the
different targeting. It’s not always possible to control for external
factors, as some of them may not be measurable or representable in the
data.
* Identify columns that carry little or no information (low-variance)
Features that carry little to no information. These should be flagged and
potentially remove before modelling phase.
* Addressing Collinearity
Highly correlated features may confund the result a statistical inference
analysis. These should be identified and potentially removed before the
modelling phase.
During the data preparation pipeline, if the above will not be addressed,
`InferenceDataError` will be risen or `InferenceDataWarning` if you choose to
ignore these messages.
These are the current available `methods` in the DataInference container to
address the above parts:
Missing Values
* impute_missing_value
Controlling for External Factors
* fixed_effect
Columns with Low Variance
* fix_low_variance
Checking and addressing collinearity with VIF
* address_collinearity_with_vif
# TODO(): Add list of current available methods for each part.
Typical usage example:
# Your experiment data
some_data = pd.DataFrame(
data=[[0.0, 1.0, 'a', 10.0],
[0.0, 1.0, 'b', 10.0],
[1.0, 1.0, 'c', 5.00],
[1.0, 0.0, 'd', 0.00]],
columns=['control', 'variable_1', 'variable_2', outcome'])
data = inference.InferenceData(
initial_data=some_data,
target_column='outcome')
data.encode_categorical_covariates(
covariate_columns_to_encode=['variable_2']
)
data.control_with_fixed_effect(
['control'], strategy='quick', min_frequency=2)
data.address_low_variance()
data.address_collinearity_with_vif()
data.data_check(raise_on_error=True)
Attributes:
initial_data: The initial DataFrame with control variables and features
provided when the object is initialized.
target_column: The name of the column in the `initial_data` to be used as
target in your analysis. This can be binary or boolean.
data: Latest version of the data after any transformation is applied. If no
transformation was applied, it will be exactly the same as `initial_data`.
"""
def __init__(
self,
initial_data: pd.DataFrame,
target_column: Optional[str] = None) -> None:
"""Initializes the Inference Data.
Args:
initial_data: The initial DataFrame with control variables and features
provided when the object is initialized.
target_column: The name of the column in the `initial_data` to be used as
target in your analysis. This can be binary or boolean.
Raises:
KeyError: if the target_column is missing from the initial_data provided.
"""
self.initial_data = initial_data
self.data = initial_data.copy()
self.target_column = target_column
self._has_control_factors = False
self._checked_low_variance = False
self._checked_collinearity = False
if target_column and target_column not in initial_data:
raise KeyError('Target "{target_column}" not in data.')
self._check_missing_values(raise_on_error=False)
def data_check(self, raise_on_error: bool = True) -> None:
"""Verify data integrity.
Will perform the data checks in the following order:
1) Check for missing values.
2) Check that external factors are included and accounted for.
3) Check for low-variance and constants.
4) Check that Collinearity has been verified addressed.
Args:
raise_on_error: Weather to raise an exception if a problem if found with
one of the above checks in the latest transformation of the data. If set
to False, the integrity checks may emit InferenceDataWarning warnings.
Raises:
MissingValueError: If the latest transformation of the data has columns
with missing values.
ControlVariableError: If the latest transformation of the data hasn't gone
thorugh a method to control for external factors.
"""
self._check_missing_values(raise_on_error)
self._check_control(raise_on_error)
self._check_low_variance(raise_on_error)
self._check_collinearity(raise_on_error)
def _check_missing_values(self, raise_on_error: bool = True) -> None:
"""Verifies if data have no missing values."""
missing_percentage = self.data.isnull().mean() * 100
missing_percentage = missing_percentage[missing_percentage != 0]
if not missing_percentage.empty:
missing = '; '.join(f'{name}: {percentage:.2f}%' for name, percentage
in missing_percentage.to_dict().items())
message = f'The data has the following missing values ({missing})'
if raise_on_error:
raise MissingValueError(message)
warnings.warn(MissingValueWarning(message))
def impute_missing_values(self, strategy: str = 'mean') -> pd.DataFrame:
"""Imputes any missing value with their mean or median.
Replaces the missing values with their `mean` or `median`. If more complex
operations are needed to impute missing values, these needs be executed in
the initial data before creating the InferenceData object.
Args:
strategy: If strategy is 'mean', will replace the missing values with
their means. For any other values, the 'median' will be used.
Returns:
Latest version of the data after missing value imputation is applied.
"""
if strategy == 'mean':
impute_values = self.data.mean()
else:
impute_values = self.data.median()
self.data = self.data.fillna(impute_values)
return self.data
def _check_categorical_covariates(self,
raise_on_error: bool = True) -> None:
"""Checks if data have any categorical covariates."""
covariates = self.data.drop(columns=self._control_columns)
categorical_columns = covariates.select_dtypes(
include='object').columns.to_list()
if categorical_columns:
categorical_columns = ' , '.join(categorical_columns)
message = (f'These are the categorical covariate columns in the data: '
f'[{categorical_columns}]. Use `encode_categorical_covariates`'
' to one-hot encode these columns before moving further.')
if raise_on_error:
raise CategoricalCovariateError(message)
else:
warnings.warn(CategoricalCovariateWarning(message))
def encode_categorical_covariates(
self, columns: List[Text]) -> pd.DataFrame:
"""One-hot encode model covariates that are categorical.
The control columns can be categorical because it will only be used for
demeaning and removed before model function is applied to data. Covariates
and Target columns must be all numeric for model function to work properly.
Args:
columns: List of covariate column names that will be
transformed using one-hot encoding.
Returns:
Latest version of the data after one-hot encoding applied.
"""
self.data = pd.get_dummies(
self.data, columns=columns, dtype=int)
return self.data
def discretize_numeric_covariate(
self,
covariate_name: str,
equal_sized_bins: bool = False,
bins: int = 4,
numeric: bool = False):
"""Transforms a continuous variable into a set bins.
This useful for segmenting continuous variables to a categorical variable.
For example when converting ages to groups of age ranges.
Args:
covariate_name: Name of the column to transform.
equal_sized_bins: Whether you want to create bins with equal number of
observations (when set to `True`) or segmenting in equal interval
looking at the values range (when set to `False`).
bins: Number of bins to create.
numeric: Whether the results of the transformation should be an integer or
a one-hot-encoding representation of the categorical variables
generated. Returning a numeric could be convenient as it would preserve
the "natural" ordering of the variable. For example for age ranges, with
"16-25" encoded as `1` and "26-35" encoded as `2` would preserve the
ordering which would be lost otherwise in a one-hot encoding.
Returns:
Latest version of the data the the selected covariate transformed.
"""
cut_kwargs = {'labels': False if numeric else None, 'duplicates': 'drop'}
if equal_sized_bins:
buckets = pd.qcut(self.data[covariate_name], q=bins, **cut_kwargs)
else:
buckets = pd.cut(self.data[covariate_name], bins=bins, **cut_kwargs)
self.data[covariate_name] = buckets
if not numeric:
self.data = pd.get_dummies(
self.data, columns=[covariate_name], prefix=covariate_name)
return self.data
def _check_control(self, raise_on_error: bool = True) -> None:
"""Verifies if data is controlling for external variables."""
if not self._has_control_factors:
message = ('The data is not controlling for external factors. Consider '
'using `fixed_effect` indicating the columns to use as control'
'for external factors.')
if raise_on_error:
raise ControlVariableError(message)
else:
warnings.warn(ControlVariableWarning(message))
def control_with_fixed_effect(
self,
control_columns: Iterable[str],
strategy: str = 'quick',
min_frequency: int = 2
) -> pd.DataFrame:
"""Control external categorical variables with Fixed Effect methodology.
Fixed effects mitigate the confounding factors and help restore the
underlying signal. Fixed Effects is widely used to estimate causal effects
using observational data. It is designed to control for differences across
individuals and/or time which could confound estimation of the variable of
interest on an outcome variable.
Originally, Fixed Effect model are implemented using Least Squares Dummy
Variable model (LSDV), which essentially uses a dummy variable for each
fixed effect. This option is available setting `strategy = 'dummy'`. When
the number of fixed effects is large it is easy to incur in memory issues
and some model may struggle to handle a very highly dimensional space. We
can transform the data de-meaning each fixed effect, subtracting the fixed
effect group mean and adding back the overall mean. Mundlak (1978)[1] has
shown that this efficient fixed effects implementation is equivalent to a
LSDV approach. You can use this efficient transformation setting the
parameter `strategy = 'quick'`.
To avoid overfitting and recover the underlying signals, rare or infrequent
fixed effect group should be removed from the study. You can choose the
minimum frequency a fixed effect group should have using the `min_frequency`
argument. Default value is set to `2`, meaning groups with only one
occurrence will be removed. Make sure your control variables are categorical
as any infrequent combination will be removed.
[1]
https://econpapers.repec.org/article/ecmemetrp/v_3a46_3ay_3a1978_3ai_3a1_3ap_3a69-85.htm
Args:
control_columns: List of columns you want to use as control for you
experiment.
strategy: Options between 'quick' or 'dummy' strategy to apply fixed
effect transformation to your data.
min_frequency: Minimum frequency for a fixed effect group to be retain in
the data. If `min_frequency=2`, every fixed effect group with only one
observation will be removed from the data.
Returns:
Latest version of the data after fixed effect has been applied. When
strategy is set to `quick`, the control columns will be appended to the
`data` index.
Raises:
NotImplementedError: Currently, only the 'quick' strategy is available.
Setting `strategy` to any other value will raise this exception.
"""
if strategy != 'quick':
raise NotImplementedError(
"Only 'quick' fixed effect is currently implemented.")
self._control_columns = control_columns
self._check_categorical_covariates()
self._fixed_effect_group_id = functools.reduce(
operator.add, self.data[control_columns].astype(str).values.T)
frequency_mask = pd.Series(self._fixed_effect_group_id)
frequency_mask = frequency_mask.groupby(
self._fixed_effect_group_id).transform('size').values
frequency_mask = frequency_mask >= min_frequency
self.data = self.data.loc[frequency_mask]
self._fixed_effect_group_id = self._fixed_effect_group_id[frequency_mask]
demean_columns = [
column for column in self.data if column not in control_columns]
self._demean_variable_mean = self.data[demean_columns].mean()
self._demean_group_mean = self.data[demean_columns].groupby(
self._fixed_effect_group_id).transform('mean')
self.data[demean_columns] -= self._demean_group_mean
self.data[demean_columns] += self._demean_variable_mean
self.data = self.data.set_index(self._control_columns, append=True)
self._has_control_factors = True
self._control_strategy = strategy
return self.data
def _check_low_variance(self, raise_on_error: bool = True) -> None:
"""Verifies if data contains columns with low variance."""
if not self._checked_low_variance:
message = ('The data may contain columns with low variance. Consider '
'using `address_low_variance` identifying the columns with low'
'variance and whether to drop those.')
if raise_on_error:
raise LowVarianceError(message)
else:
warnings.warn(LowVarianceWarning(message))
def address_low_variance(self,
threshold: float = 0,
drop: bool = True,
minmax_scaling: bool = False) -> pd.DataFrame:
"""Identifies low variances columns and option to drop it.
Features with a variance below the threshold are identified and dropped if
requested. The data is expected to be normalised to ensure variances can be
compared across features. The data can be normalised with MinMax scaling on
the fly setting minmax_scaling=True.
Args:
threshold: Threshold to use in VarianceThreshold where anything less than
this threshold is dropped or used for warning. If 0, drops constants.
The maximum variance possible is .25 if MinMax scaling is applied.
drop: Boolean to either drop columns with low variance or print message.
By default all columns with low variance is dropped.
minmax_scaling: If False (default) no scaling is applied to the data and
it is expected that the user has done the appropriate normalization
before. If True, MinMax scaling is applied to ensure variances can be
compared across features.
Returns:
Latest version of the data after low variance check has been applied.
"""
# TODO(): Address boolean and categorical columns
covariates = self.data
if self.target_column:
covariates = covariates.drop(columns=self.target_column)
if minmax_scaling:
covariates = pd.DataFrame(
preprocessing.minmax_scale(covariates), columns=covariates.columns)
if not 0 <= threshold <= .25:
message = (
'The threshold should be between 0 and .25, with .25 being the',
' maximum variance possible, leading to all columns being dropped.')
warnings.warn(LowVarianceWarning(message))
variances = covariates.var(ddof=0)
unique_variances = variances.unique()
if all(
np.isclose(variance, 0) or np.isclose(variance, 1)
for variance in unique_variances):
message = ('All features have a variance of 1 or 0. Please ensure you',
' do not z-score your data before running this step.')
warnings.warn(LowVarianceWarning(message))
column_var_bool = variances > threshold
columns_to_delete = column_var_bool[~column_var_bool].index.to_list()
if columns_to_delete:
if drop:
self.data = self.data.drop(columns=columns_to_delete)
else:
columns_to_delete = ' , '.join(columns_to_delete)
message = (f'Consider removing the following columns: '
f'{columns_to_delete}')
warnings.warn(LowVarianceWarning(message))
self._checked_low_variance = True
return self.data
def _check_collinearity(self, raise_on_error: bool = True) -> None:
"""Verifies if data has been checked for collinearity."""
if not self._checked_collinearity:
message = ('The data may contain collinearity between covariates. '
'Consider using `address_collinearity_with_vif` to identify '
'columns that are collinear and whether to drop them.')
if raise_on_error:
raise CollinearityError(message)
else:
warnings.warn(CollinearityWarning(message))
def _get_list_of_correlated_features(
self,
vif_data: pd.DataFrame,
corr_matrix: pd.DataFrame,
min_absolute_corr: float) -> List[List[str]]:
"""Generates list of features which are correlated to features in vif_data.
Args:
vif_data: Table of features and VIFs
corr_matrix: (Pearson) correlation matrix for all features in the original
dataset (can be more features than just the features in vif_data)
min_absolute_corr: Minimum value of absolute correlation; only display
features with absolute correlations above this value
Returns:
List of lists of features, along with their correlations.
"""
correlated_features = []
for feature in vif_data.features:
min_correlation_mask = abs(corr_matrix[feature]) > min_absolute_corr
correlated_features_info = corr_matrix.loc[min_correlation_mask]
correlated_features_info = correlated_features_info.drop(feature, axis=0)
correlated_features_info = correlated_features_info.sort_values(
feature, ascending=False)
correlated_features.append([
f'{feature_name}: {round(corr_coeff, 2)}' for feature_name, corr_coeff
in zip(correlated_features_info[feature].index,
correlated_features_info[feature].values)
])
return correlated_features
def address_collinearity_with_vif(
self,
vif_threshold: int = 10,
sequential: bool = True,
interactive: bool = False,
drop: bool = True,
min_absolute_corr: float = 0.4) -> pd.DataFrame:
"""Uses VIF to identify columns that are collinear and optionally drop them.
You can customize how collinearity will be resolved with `sequential` and
`interactive` parameters. By default, the VIF score will re-calculated every
time the column with the highest VIF score is dropped until the threshold is
met. If you wish to remove all the columns with VIF score higher than the
threshold, you can set `sequential=False`.
If you want to have a say on which column is going to removed, rather than
automatically pick the column with the highest VIF score, you can set
`interactive=True`. This will prompt for your input every time columns are
found with VIF score higher than your threshold, whether `sequential` is set
to True or False.
In interactive mode, to assist in choosing which features to drop, each
listed feature will also display the other features that correlate with that
feature, for all other features with a minimum absolute (positive or
negative) correlation of at least min_absolute_corr (default = 0.4).
Args:
vif_threshold: Threshold to identify which columns have high collinearity
and anything higher than this threshold is dropped or used for warning.
sequential: Whether you want to sequentially re-calculate VIF each time
after a set column(s) have been removed or only once.
interactive: Whether you want to manually specify which column(s) you want
to remove.
drop: Boolean to either drop columns with high VIF or print message,
default is set to True.
min_absolute_corr: Float, default = 0.4. Minimum absolute correlation
required to display a feature as "correlated" to another feature in
interactive mode. Only used when interactive=True. Should be between 0
and 1, though this is not currently enforced.
Returns:
Data after collinearity check with vif has been applied. When drop=True
columns with high collinearity will not be present in the returned data.
"""
covariates = self.data.drop(columns=self.target_column)
columns_to_drop = []
corr_matrix = covariates.corr()
while True:
tmp_data = covariates.drop(columns=columns_to_drop)
vif_data = vif.calculate_vif(tmp_data, sort=True).reset_index(drop=True)
if vif_data['VIF'][0] < vif_threshold:
break
if interactive:
correlated_features = self._get_list_of_correlated_features(
vif_data,
corr_matrix.drop(columns_to_drop, axis=1),
min_absolute_corr)
vif_data = vif_data.sort_index()
vif_data['correlated_features'] = correlated_features
selected_columns = _vif_interactive_input_and_validation(vif_data)
elif sequential:
selected_columns = [vif_data['features'][0]]
else:
vif_filter = vif_data['VIF'] >= vif_threshold
selected_columns = vif_data['features'][vif_filter].tolist()
columns_to_drop.extend(selected_columns)
if not sequential or not selected_columns:
break
if drop:
self.data = self.data.drop(columns=columns_to_drop)
else:
message = (
f'Consider removing the following columns due to collinearity: '
f'{columns_to_drop}')
warnings.warn(CollinearityWarning(message))
self._checked_collinearity = True
return self.data
def get_data_and_target(self) -> Tuple[pd.DataFrame, pd.Series]:
"""Returns the modelling data and the target."""
target = self.data[self.target_column]
data = self.data.drop(self.target_column, axis=1)
return data, target
def _copy_and_index_inference_data(self,
indices: np.ndarray) -> 'InferenceData':
"""Deep-Copies an InferenceData object on indices provided.
It does a deepcopy of the current object and indexes both self.data and
self.initial_data.
Args:
indices: List of indices to keep in the data.
Returns:
InferenceData with the data indicated by indices.
"""
subset_copy = copy.deepcopy(self)
subset_copy.initial_data = self.initial_data.take(indices)
subset_copy.data = self.data.take(indices)
return subset_copy
def split(
self,
cross_validation: Union[int,
model_selection.BaseCrossValidator,
model_selection.ShuffleSplit,
model_selection.StratifiedShuffleSplit],
groups: Optional[np.ndarray] = None,
) -> Iterator[Tuple['InferenceData', 'InferenceData']]:
"""Splits the data using the indicated cross validator.
Args:
cross_validation: Cross validation to be applied. If an int is passed
and groups is None a sklearn Kfold is used with cross_validation as
the number of splits. If an int is passed and groups is not None,
sklearn GroupKFold will be used. Whena a cross validator is passed it
is used directly.
groups: If cross validating for non overlaping groups, this array
indicates to which group each row belongs.
Yields:
A tuple with train and test InferenceDatas.
"""
if isinstance(cross_validation, int):
if groups is not None:
cross_validation = model_selection.GroupKFold(n_splits=cross_validation)
else:
cross_validation = model_selection.KFold(n_splits=cross_validation)
for train_index, test_index in cross_validation.split(self.data,
groups=groups):
train_inference_data = self._copy_and_index_inference_data(train_index)
test_inference_data = self._copy_and_index_inference_data(test_index)
yield train_inference_data, test_inference_data
def _input_mock(promp_message: str) -> str:
"""Allows 'input' to be mocked with nose test."""
# https://stackoverflow.com/questions/25878616/attributeerror-none-does-not-have-the-attribute-print
return input(promp_message)
def _print_mock(message: str) -> None:
"""Allows 'print' to be mocked with nose test."""
# https://stackoverflow.com/questions/25878616/attributeerror-none-does-not-have-the-attribute-print
with pd.option_context('display.max_colwidth', None):
print(message)
def _vif_interactive_input_and_validation(vif_data: pd.DataFrame,
max_features_to_display: int = 10
) -> List[str]:
"""Prompts and validates column selection for interactive sessions.
Args:
vif_data: DataFrame of VIF data to display.
max_features_to_display: Maximum number of features to display, in
descending order of VIF score.
Returns:
selected_columns: A list (can be empty) of column names to remove.
"""
while True:
_print_mock(vif_data.set_index('features').head(max_features_to_display))
selected_columns = _input_mock(
'Select one or more variables to remove separated by comma. '
'To end the interactive session press Enter.\n')
if not selected_columns:
return []
selected_columns = selected_columns.split(',')
valid_selection = True
valid_columns = vif_data['features'].tolist()
for column in selected_columns:
if column not in valid_columns:
_print_mock(f'Invalid column "{column}". '
f'Valid columns: {",".join(valid_columns)}')
valid_selection = False
if valid_selection:
return selected_columns
| apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.