repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
YihaoLu/statsmodels
statsmodels/sandbox/stats/stats_mstats_short.py
34
14910
'''get versions of mstats percentile functions that also work with non-masked arrays uses dispatch to mstats version for difficult cases: - data is masked array - data requires nan handling (masknan=True) - data should be trimmed (limit is non-empty) handle simple cases directly, which doesn't require apply_along_axis changes compared to mstats: plotting_positions for n-dim with axis argument addition: plotting_positions_w1d: with weights, 1d ndarray only TODO: consistency with scipy.stats versions not checked docstrings from mstats not updated yet code duplication, better solutions (?) convert examples to tests rename alphap, betap for consistency timing question: one additional argsort versus apply_along_axis weighted plotting_positions - I haven't figured out nd version of weighted plotting_positions - add weighted quantiles ''' from __future__ import print_function import numpy as np from numpy import ma from scipy import stats #from numpy.ma import nomask #####-------------------------------------------------------------------------- #---- --- Percentiles --- #####-------------------------------------------------------------------------- def quantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=(), masknan=False): """ Computes empirical quantiles for a data array. Samples quantile are defined by :math:`Q(p) = (1-g).x[i] +g.x[i+1]`, where :math:`x[j]` is the *j*th order statistic, and `i = (floor(n*p+m))`, `m=alpha+p*(1-alpha-beta)` and `g = n*p + m - i`. Typical values of (alpha,beta) are: - (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4) - (.5,.5) : *p(k) = (k+1/2.)/n* : piecewise linear function (R, type 5) - (0,0) : *p(k) = k/(n+1)* : (R type 6) - (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])]. That's R default (R type 7) - (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8) - (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM ?? JP - (0.35, 0.65): PWM ?? JP p(k) = (k-0.35)/n Parameters ---------- a : array-like Input data, as a sequence or array of dimension at most 2. prob : array-like, optional List of quantiles to compute. alpha : float, optional Plotting positions parameter, default is 0.4. beta : float, optional Plotting positions parameter, default is 0.4. axis : int, optional Axis along which to perform the trimming. If None (default), the input array is first flattened. limit : tuple Tuple of (lower, upper) values. Values of `a` outside this closed interval are ignored. Returns ------- quants : MaskedArray An array containing the calculated quantiles. Examples -------- >>> from scipy.stats.mstats import mquantiles >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.]) >>> mquantiles(a) array([ 19.2, 40. , 42.8]) Using a 2D array, specifying axis and limit. >>> data = np.array([[ 6., 7., 1.], [ 47., 15., 2.], [ 49., 36., 3.], [ 15., 39., 4.], [ 42., 40., -999.], [ 41., 41., -999.], [ 7., -999., -999.], [ 39., -999., -999.], [ 43., -999., -999.], [ 40., -999., -999.], [ 36., -999., -999.]]) >>> mquantiles(data, axis=0, limit=(0, 50)) array([[ 19.2 , 14.6 , 1.45], [ 40. , 37.5 , 2.5 ], [ 42.8 , 40.05, 3.55]]) >>> data[:, 2] = -999. >>> mquantiles(data, axis=0, limit=(0, 50)) masked_array(data = [[19.2 14.6 --] [40.0 37.5 --] [42.8 40.05 --]], mask = [[False False True] [False False True] [False False True]], fill_value = 1e+20) """ if isinstance(a, np.ma.MaskedArray): return stats.mstats.mquantiles(a, prob=prob, alphap=alphap, betap=alphap, axis=axis, limit=limit) if limit: marr = stats.mstats.mquantiles(a, prob=prob, alphap=alphap, betap=alphap, axis=axis, limit=limit) return ma.filled(marr, fill_value=np.nan) if masknan: nanmask = np.isnan(a) if nanmask.any(): marr = ma.array(a, mask=nanmask) marr = stats.mstats.mquantiles(marr, prob=prob, alphap=alphap, betap=alphap, axis=axis, limit=limit) return ma.filled(marr, fill_value=np.nan) # Initialization & checks --------- data = np.asarray(a) p = np.array(prob, copy=False, ndmin=1) m = alphap + p*(1.-alphap-betap) isrolled = False #from _quantiles1d if (axis is None): data = data.ravel() #reshape(-1,1) axis = 0 else: axis = np.arange(data.ndim)[axis] data = np.rollaxis(data, axis) isrolled = True # keep track, maybe can be removed x = np.sort(data, axis=0) n = x.shape[0] returnshape = list(data.shape) returnshape[axis] = p #TODO: check these if n == 0: return np.empty(len(p), dtype=float) elif n == 1: return np.resize(x, p.shape) aleph = (n*p + m) k = np.floor(aleph.clip(1, n-1)).astype(int) ind = [None]*x.ndim ind[0] = slice(None) gamma = (aleph-k).clip(0,1)[ind] q = (1.-gamma)*x[k-1] + gamma*x[k] if isrolled: return np.rollaxis(q, 0, axis+1) else: return q def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4, axis=0, masknan=None): """Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median. This function is a shortcut to mquantile """ per = np.asarray(per, float) if (per < 0).any() or (per > 100.).any(): raise ValueError("The percentile should be between 0. and 100. !"\ " (got %s)" % per) return quantiles(data, prob=[per/100.], alphap=alphap, betap=betap, limit=limit, axis=axis, masknan=masknan).squeeze() def plotting_positions(data, alpha=0.4, beta=0.4, axis=0, masknan=False): """Returns the plotting positions (or empirical percentile points) for the data. Plotting positions are defined as (i-alpha)/(n+1-alpha-beta), where: - i is the rank order statistics (starting at 1) - n is the number of unmasked values along the given axis - alpha and beta are two parameters. Typical values for alpha and beta are: - (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4) - (.5,.5) : *p(k) = (k-1/2.)/n* : piecewise linear function (R, type 5) (Bliss 1967: "Rankit") - (0,0) : *p(k) = k/(n+1)* : Weibull (R type 6), (Van der Waerden 1952) - (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])]. That's R default (R type 7) - (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8), (Tukey 1962) - (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) (Blom 1958) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM Parameters ---------- x : sequence Input data, as a sequence or array of dimension at most 2. prob : sequence List of quantiles to compute. alpha : {0.4, float} optional Plotting positions parameter. beta : {0.4, float} optional Plotting positions parameter. Notes ----- I think the adjustments assume that there are no ties in order to be a reasonable approximation to a continuous density function. TODO: check this References ---------- unknown, dates to original papers from Beasley, Erickson, Allison 2009 Behav Genet """ if isinstance(data, np.ma.MaskedArray): if axis is None or data.ndim == 1: return stats.mstats.plotting_positions(data, alpha=alpha, beta=beta) else: return ma.apply_along_axis(stats.mstats.plotting_positions, axis, data, alpha=alpha, beta=beta) if masknan: nanmask = np.isnan(data) if nanmask.any(): marr = ma.array(data, mask=nanmask) #code duplication: if axis is None or data.ndim == 1: marr = stats.mstats.plotting_positions(marr, alpha=alpha, beta=beta) else: marr = ma.apply_along_axis(stats.mstats.plotting_positions, axis, marr, alpha=alpha, beta=beta) return ma.filled(marr, fill_value=np.nan) data = np.asarray(data) if data.size == 1: # use helper function instead data = np.atleast_1d(data) axis = 0 if axis is None: data = data.ravel() axis = 0 n = data.shape[axis] if data.ndim == 1: plpos = np.empty(data.shape, dtype=float) plpos[data.argsort()] = (np.arange(1,n+1) - alpha)/(n+1.-alpha-beta) else: #nd assignment instead of second argsort doesn't look easy plpos = (data.argsort(axis).argsort(axis) + 1. - alpha)/(n+1.-alpha-beta) return plpos meppf = plotting_positions def plotting_positions_w1d(data, weights=None, alpha=0.4, beta=0.4, method='notnormed'): '''Weighted plotting positions (or empirical percentile points) for the data. observations are weighted and the plotting positions are defined as (ws-alpha)/(n-alpha-beta), where: - ws is the weighted rank order statistics or cumulative weighted sum, normalized to n if method is "normed" - n is the number of values along the given axis if method is "normed" and total weight otherwise - alpha and beta are two parameters. wtd.quantile in R package Hmisc seems to use the "notnormed" version. notnormed coincides with unweighted segment in example, drop "normed" version ? See Also -------- plotting_positions : unweighted version that works also with more than one dimension and has other options ''' x = np.atleast_1d(data) if x.ndim > 1: raise ValueError('currently implemented only for 1d') if weights is None: weights = np.ones(x.shape) else: weights = np.array(weights, float, copy=False, ndmin=1) #atleast_1d(weights) if weights.shape != x.shape: raise ValueError('if weights is given, it needs to be the same' 'shape as data') n = len(x) xargsort = x.argsort() ws = weights[xargsort].cumsum() res = np.empty(x.shape) if method == 'normed': res[xargsort] = (1.*ws/ws[-1]*n-alpha)/(n+1.-alpha-beta) else: res[xargsort] = (1.*ws-alpha)/(ws[-1]+1.-alpha-beta) return res def edf_normal_inverse_transformed(x, alpha=3./8, beta=3./8, axis=0): '''rank based normal inverse transformed cdf ''' from scipy import stats ranks = plotting_positions(data, alpha=alpha, beta=alpha, axis=0, masknan=False) ranks_transf = stats.norm.ppf(ranks) return ranks_transf if __name__ == '__main__': x = np.arange(5) print(plotting_positions(x)) x = np.arange(10).reshape(-1,2) print(plotting_positions(x)) print(quantiles(x, axis=0)) print(quantiles(x, axis=None)) print(quantiles(x, axis=1)) xm = ma.array(x) x2 = x.astype(float) x2[1,0] = np.nan print(plotting_positions(xm, axis=0)) # test 0d, 1d for sl1 in [slice(None), 0]: print((plotting_positions(xm[sl1,0]) == plotting_positions(x[sl1,0])).all()) print((quantiles(xm[sl1,0]) == quantiles(x[sl1,0])).all()) print((stats.mstats.mquantiles(ma.fix_invalid(x2[sl1,0])) == quantiles(x2[sl1,0], masknan=1)).all()) #test 2d for ax in [0, 1, None, -1]: print((plotting_positions(xm, axis=ax) == plotting_positions(x, axis=ax)).all()) print((quantiles(xm, axis=ax) == quantiles(x, axis=ax)).all()) print((stats.mstats.mquantiles(ma.fix_invalid(x2), axis=ax) == quantiles(x2, axis=ax, masknan=1)).all()) #stats version doesn't have axis print((stats.mstats.plotting_positions(ma.fix_invalid(x2)) == plotting_positions(x2, axis=None, masknan=1)).all()) #test 3d x3 = np.dstack((x,x)).T for ax in [1,2]: print((plotting_positions(x3, axis=ax)[0] == plotting_positions(x.T, axis=ax-1)).all()) np.testing.assert_equal(plotting_positions(np.arange(10), alpha=0.35, beta=1-0.35), (1+np.arange(10)-0.35)/10) np.testing.assert_equal(plotting_positions(np.arange(10), alpha=0.4, beta=0.4), (1+np.arange(10)-0.4)/(10+0.2)) np.testing.assert_equal(plotting_positions(np.arange(10)), (1+np.arange(10)-0.4)/(10+0.2)) print('') print(scoreatpercentile(x, [10,90])) print(plotting_positions_w1d(x[:,0])) print((plotting_positions_w1d(x[:,0]) == plotting_positions(x[:,0])).all()) #weights versus replicating multiple occurencies of same x value w1 = [1, 1, 2, 1, 1] plotexample = 1 if plotexample: import matplotlib.pyplot as plt plt.figure() plt.title('ppf, cdf values on horizontal axis') plt.step(plotting_positions_w1d(x[:,0], weights=w1, method='0'), x[:,0], where='post') plt.step(stats.mstats.plotting_positions(np.repeat(x[:,0],w1,axis=0)),np.repeat(x[:,0],w1,axis=0),where='post') plt.plot(plotting_positions_w1d(x[:,0], weights=w1, method='0'), x[:,0], '-o') plt.plot(stats.mstats.plotting_positions(np.repeat(x[:,0],w1,axis=0)),np.repeat(x[:,0],w1,axis=0), '-o') plt.figure() plt.title('cdf, cdf values on vertical axis') plt.step(x[:,0], plotting_positions_w1d(x[:,0], weights=w1, method='0'),where='post') plt.step(np.repeat(x[:,0],w1,axis=0), stats.mstats.plotting_positions(np.repeat(x[:,0],w1,axis=0)),where='post') plt.plot(x[:,0], plotting_positions_w1d(x[:,0], weights=w1, method='0'), '-o') plt.plot(np.repeat(x[:,0],w1,axis=0), stats.mstats.plotting_positions(np.repeat(x[:,0],w1,axis=0)), '-o') plt.show()
bsd-3-clause
vandegu/umich
eckert_iv_plot.py
1
2413
# This script will produce: # # 1. Colorfill of desired oceanic data in Eckert IV projection (Equal-Area, but with some distortion; easy to look at, however). # 2. Masked land, so only ocean data shows up. # from mpl_toolkits.basemap import Basemap,shiftgrid,interp import numpy as np import matplotlib.pyplot as plt import netCDF4 from scipy.interpolate import griddata as griddata2 import numpy.ma as ma # Which file and what vertical level do you wish to plot from? lvl = 55 file = '../data/onexone/mini/MAA_B1850C4CN_f19_g16_cret_4x_sewall.pop.h.0500.nc.1x1.nc' f = netCDF4.Dataset(file) #print(f.variables) u = f.variables['UVEL'][0,lvl,:,:] v = f.variables['VVEL'][0,lvl,:,:] w = f.variables['WVEL'][0,lvl,:,:] pt = f.variables['TEMP'][0,lvl,:,:] s = f.variables['SALT'][:][0,lvl,:,:] pd = f.variables['PD'][:] iage = f.variables['IAGE'][0,lvl,:,:] print(u.shape) lat = f.variables['lat'][:] lon = f.variables['lon'][:] z_t = f.variables['z_t'][:] x,y = np.meshgrid(lon,lat) print(z_t[lvl]/100.0) # To display depth level in m fig = plt.figure(figsize=[18,12]) ax = fig.add_subplot(111) #m = Basemap(projection='mbtfpq',lon_0=0,resolution=None) m = Basemap(projection='eck4',lon_0=0,resolution='c') xxold,yyold = m(x,y) # generate a grid that is equally spaced in a plot with the current pojection lons,lats,xxnew,yynew = m.makegrid(500,500,returnxy=True) #print(lon.shape) #print(xx.flatten().shape,yy.flatten().shape,u.flatten().shape) # project the data onto the new grid iagenew = griddata2((xxold.ravel(),yyold.ravel()),pt.ravel(),(xxnew,yynew), method = 'linear') iagenew = ma.masked_where((iagenew > 100000), iagenew) unew = griddata2((xxold.ravel(),yyold.ravel()),u.ravel(),(xxnew,yynew), method = 'linear') unew = ma.masked_where((unew > 100000), unew) vnew = griddata2((xxold.ravel(),yyold.ravel()),v.ravel(),(xxnew,yynew), method = 'linear') vnew = ma.masked_where((vnew > 100000), vnew) sc1 = m.scatter(xxnew,yynew,c=iagenew,edgecolor='None',s=5,cmap='jet') #m.streamplot(xxnew,yynew,unew,vnew,density=3,arrowsize=2,arrowstyle='-|>',color='black') m.drawmeridians(np.arange(0,360,30)) m.drawparallels(np.arange(-90,90,30)) layer = '%3.0fm'%(z_t[lvl]/100) cb = plt.colorbar(orientation='horizontal',extend='both') cb.set_label('$Potential\/\/Temperature\/\/(K)$',size=20) cb.ax.tick_params(labelsize=16) ax.set_title('$MAA\/\/4x\/\/PI\/\/CO_2:\/\/\/\/%s$'%layer,size=24) plt.show()
mit
JoeBartelmo/PyDetect
gui/VisualConstants.py
2
4134
import matplotlib.pyplot as plt import matplotlib.patches as patches class MARS_PRIMARY(object): """ 1) RunClock,SystemVoltage 2) RunCLock,BatteryRemaining 3) RunClock,TotalDisplacement 4) IBeam,TotalDisplacement 5) SetSpeed,RPM 6) RPM,Speed """ def __init__(self, figureNum, valueColor = 'blue',theoColor='red'): self._shape = (3,2) self._figureNum = figureNum self._theoColor = theoColor self._valueColor = valueColor self._patch = [patches.Patch(color=theoColor,label='Predicted Values')] #creating dictionary of lists #each of which contains independent and dependent values self._rc = str(self._shape[0]) + str(self._shape[1]) self._subplotIDs = {"RunClock:SystemVoltage":int(self._rc+"1"), "RunClock:BatteryRemaining":int(self._rc+"2"), "RunClock:TotalDisplacement":int(self._rc+"3"), "IBeam:TotalDisplacement":int(self._rc+"4"), "SetSpeed:RPM":int(self._rc+"4"), "RPM:Speed":int(self._rc+"5") } self._values = {"RunClock:SystemVoltage":[ [],[] ], "RunClock:BatteryRemaining":[ [],[] ], "RunClock:TotalDisplacement":[ [],[] ], "IBeam:TotalDisplacement":[ [],[] ], "SetSpeed:RPM":[ [],[] ], "RPM:Speed":[ [],[] ] } self._theoreticals = {"RunClock:SystemVoltage":[ [],[] ], "RunClock:BatteryRemainingg":[ [],[] ], "IBeam:TotalDisplacement":[ [],[] ], "SetSpeed:RPM":[ [],[] ], "RPM:Speed":[ [],[] ] } self._numPlots = len(self._values) self._plt = self.setup_plot() self._fig = self._plt.gcf() def set_subplot(self, _id, title, xlabel, ylabel): plt.subplot(_id) plt.title(title, fontsize = 12) plt.xlabel(xlabel, fontsize=10) plt.ylabel(ylabel, fontsize=10) plt.legend(handles=self._patch) def setup_plot(self): plt.figure(self._figureNum) spID = self._subplotIDs # 1) RunClock,SysVoltage self.set_subplot(spID["RunClock:SystemVoltage"], "Voltage over time", "Run Time [sec]", "System Voltage [Volts]") # 2) RunClock,BatteryRemaing self.set_subplot(spID["RunClock:BatteryRemaining"], "Battery over time", "Run Time [sec]", "Battery Remaining [%]") # 3) RunClock,TotalDisplacement self.set_subplot(spID["RunClock:TotalDisplacement"], "Distance Down Tube", "Run Time [sec]", "Displacement [meters]") # 4) IBeam, TotalDisplacement self.set_subplot(spID["IBeam:TotalDisplacement"], "Distance (IBeams)", "IBeam [count]", "Displacement [meters]") # 5) SetSpeed, RPM self.set_subplot(spID["SetSpeed:RPM"], "Real Speed vs Set Speed", "Programmed Speed [rpm]", "Set Speed [rpm]") # 6) RPM, Speed self.set_subplot(spID["RPM:Speed"], "RPM vs Linear Speed", "RPM [rpm]", "Real Speed [m/s]") plt.tight_layout() return plt def graph(self,key,x,y): self._values[key][0].append(x) self._values[key][1].append(y) xReal = self._values[key][0] yReal = self._values[key][1] self._plt.subplot(self._subplotIDs[key]) self._plt.cla() self._plt.plot( self._values[key], color = self._valueColor ) if key in self._theoreticals: theo = self.calc_theoretical(key,x) self._theoreticals[key][0].append(x) self._theoreticals[key][1].append(theo) return self._plt def clear(): self._fig.clear() def calc_theoretical(self,key,x): """ ALL THEORETICAL VALUES MUST BE REGRESSED OR CALCULATED ONCE DAQ IS COMPLETE FOR NOW PLACEHOLDER IS USED """ return 2 * x
mit
sangwook236/general-development-and-testing
sw_dev/python/rnd/test/statistics/statsmodels/statsmodels_quantile_regression.py
2
3038
#!/usr/bin/env python # -*- coding: UTF-8 -*- import pandas as pd import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf import sklearn.linear_model import matplotlib.pyplot as plt # REF [site] >> https://github.com/groverpr/Machine-Learning/blob/master/notebooks/09_Quantile_Regression.ipynb def simple_quantile_regression_example(): y = np.arange(1, 25, 0.25) # Linear relationship with contant variance of residual. x1 = y.copy() + np.random.randn(96) # Non-contant variance with residuals . x2 = y.copy() y2 = x2 + np.concatenate((np.random.randn(20) * 0.5, np.random.randn(20) * 1, np.random.randn(20) * 4, np.random.randn(20) * 6, np.random.randn(16) * 8), axis=0) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5.5)) ax1.plot(x1, y, 'o') ax1.set_xlabel('X1') ax1.set_ylabel('Y') ax1.set_title('Contant variance of residuals') ax2.plot(x2, y2, 'o') ax2.set_xlabel('X2') ax2.set_ylabel('Y') ax2.set_title('Non contant variance of residuals') fig.tight_layout() plt.show() #-------------------- # Linear regression lr = sklearn.linear_model.LinearRegression() lr.fit(x1.reshape(-1, 1), y.reshape(-1, 1)) lr2 = sklearn.linear_model.LinearRegression() lr2.fit(x2.reshape(-1, 1), y.reshape(-1, 1)) fig, (ax1,ax2) = plt.subplots(1, 2, figsize = (12, 5.5) ) ax1.plot(x1, y, 'o') ax1.set_xlabel('X1') ax1.set_ylabel('Y') ax1.set_title('Contant variance of residuals') ax1.plot(x1, lr.predict(x1.reshape(-1, 1))) ax2.plot(x2, y2, 'o') ax2.set_xlabel('X2') ax2.set_ylabel('Y') ax2.set_title('Non contant variance of residuals') ax2.plot(x2, lr2.predict(x2.reshape(-1, 1))) fig.tight_layout() plt.show() #-------------------- # Quantile regression. data = pd.DataFrame(data={'X': x2, 'Y': y2}) mod = smf.quantreg('Y ~ X', data) res = mod.fit(q=0.5) def fit_model(q): res = mod.fit(q=q) return [q, res.params['Intercept'], res.params['X']] + res.conf_int().loc['X'].tolist() quantiles = (0.05, 0.95) models = [fit_model(x) for x in quantiles] models = pd.DataFrame(models, columns=['q', 'a', 'b', 'lb', 'ub']) ols = smf.ols('Y ~ X', data).fit() ols_ci = ols.conf_int().loc['X'].tolist() ols = dict(a = ols.params['Intercept'], b = ols.params['X'], lb = ols_ci[0], ub = ols_ci[1]) print(models) print(ols) xn = np.arange(data.X.min(), data.X.max(), 2) get_y = lambda a, b: a + b * xn fig, ax = plt.subplots(figsize=(8, 6)) for i in range(models.shape[0]): yn = get_y(models.a[i], models.b[i]) ax.plot(xn, yn, linestyle='dotted', color='grey') yn = get_y(ols['a'], ols['b']) ax.plot(xn, yn, color='red', label='OLS') ax.scatter(data.X, data.Y, alpha=0.2) legend = ax.legend() ax.set_xlabel('X', fontsize=16) ax.set_ylabel('Y', fontsize=16) ax.set_title('Quantile regression with 0.05 and 0.95 quantiles') fig.tight_layout() plt.show() def main(): simple_quantile_regression_example() #-------------------------------------------------------------------- if '__main__' == __name__: main()
gpl-2.0
gcarq/freqtrade
tests/optimize/test_backtesting.py
1
36022
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument import random from pathlib import Path from unittest.mock import MagicMock, PropertyMock import numpy as np import pandas as pd import pytest from arrow import Arrow from freqtrade import constants from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_backtesting from freqtrade.configuration import TimeRange from freqtrade.data import history from freqtrade.data.btanalysis import BT_DATA_COLUMNS, evaluate_result_multi from freqtrade.data.converter import clean_ohlcv_dataframe from freqtrade.data.dataprovider import DataProvider from freqtrade.data.history import get_timerange from freqtrade.exceptions import DependencyException, OperationalException from freqtrade.optimize.backtesting import Backtesting from freqtrade.resolvers import StrategyResolver from freqtrade.state import RunMode from freqtrade.strategy.interface import SellType from tests.conftest import (get_args, log_has, log_has_re, patch_exchange, patched_configuration_load_config_file) ORDER_TYPES = [ { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': False }, { 'buy': 'limit', 'sell': 'limit', 'stoploss': 'limit', 'stoploss_on_exchange': True }] def trim_dictlist(dict_list, num): new = {} for pair, pair_data in dict_list.items(): new[pair] = pair_data[num:].reset_index() return new def load_data_test(what, testdatadir): timerange = TimeRange.parse_timerange('1510694220-1510700340') data = history.load_pair_history(pair='UNITTEST/BTC', datadir=testdatadir, timeframe='1m', timerange=timerange, drop_incomplete=False, fill_up_missing=False) base = 0.001 if what == 'raise': data.loc[:, 'open'] = data.index * base data.loc[:, 'high'] = data.index * base + 0.0001 data.loc[:, 'low'] = data.index * base - 0.0001 data.loc[:, 'close'] = data.index * base if what == 'lower': data.loc[:, 'open'] = 1 - data.index * base data.loc[:, 'high'] = 1 - data.index * base + 0.0001 data.loc[:, 'low'] = 1 - data.index * base - 0.0001 data.loc[:, 'close'] = 1 - data.index * base if what == 'sine': hz = 0.1 # frequency data.loc[:, 'open'] = np.sin(data.index * hz) / 1000 + base data.loc[:, 'high'] = np.sin(data.index * hz) / 1000 + base + 0.0001 data.loc[:, 'low'] = np.sin(data.index * hz) / 1000 + base - 0.0001 data.loc[:, 'close'] = np.sin(data.index * hz) / 1000 + base return {'UNITTEST/BTC': clean_ohlcv_dataframe(data, timeframe='1m', pair='UNITTEST/BTC', fill_missing=True)} def simple_backtest(config, contour, mocker, testdatadir) -> None: patch_exchange(mocker) config['timeframe'] = '1m' backtesting = Backtesting(config) data = load_data_test(contour, testdatadir) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) assert isinstance(processed, dict) results = backtesting.backtest( processed=processed, stake_amount=config['stake_amount'], start_date=min_date, end_date=max_date, max_open_trades=1, position_stacking=False, enable_protections=config.get('enable_protections', False), ) # results :: <class 'pandas.core.frame.DataFrame'> return results # FIX: fixturize this? def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'): data = history.load_data(datadir=datadir, timeframe='1m', pairs=[pair]) data = trim_dictlist(data, -201) patch_exchange(mocker) backtesting = Backtesting(conf) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) return { 'processed': processed, 'stake_amount': conf['stake_amount'], 'start_date': min_date, 'end_date': max_date, 'max_open_trades': 10, 'position_stacking': False, } def _trend(signals, buy_value, sell_value): n = len(signals['low']) buy = np.zeros(n) sell = np.zeros(n) for i in range(0, len(signals['buy'])): if random.random() > 0.5: # Both buy and sell signals at same timeframe buy[i] = buy_value sell[i] = sell_value signals['buy'] = buy signals['sell'] = sell return signals def _trend_alternate(dataframe=None, metadata=None): signals = dataframe low = signals['low'] n = len(low) buy = np.zeros(n) sell = np.zeros(n) for i in range(0, len(buy)): if i % 2 == 0: buy[i] = 1 else: sell[i] = 1 signals['buy'] = buy signals['sell'] = sell return dataframe # Unit tests def test_setup_optimize_configuration_without_arguments(mocker, default_conf, caplog) -> None: patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST) assert 'max_open_trades' in config assert 'stake_currency' in config assert 'stake_amount' in config assert 'exchange' in config assert 'pair_whitelist' in config['exchange'] assert 'datadir' in config assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog) assert 'timeframe' in config assert not log_has_re('Parameter -i/--ticker-interval detected .*', caplog) assert 'position_stacking' not in config assert not log_has('Parameter --enable-position-stacking detected ...', caplog) assert 'timerange' not in config assert 'export' not in config assert 'runmode' in config assert config['runmode'] == RunMode.BACKTEST def test_setup_bt_configuration_with_arguments(mocker, default_conf, caplog) -> None: patched_configuration_load_config_file(mocker, default_conf) mocker.patch( 'freqtrade.configuration.configuration.create_datadir', lambda c, x: x ) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', '--datadir', '/foo/bar', '--timeframe', '1m', '--enable-position-stacking', '--disable-max-market-positions', '--timerange', ':100', '--export', '/bar/foo', '--export-filename', 'foo_bar.json', '--fee', '0', ] config = setup_optimize_configuration(get_args(args), RunMode.BACKTEST) assert 'max_open_trades' in config assert 'stake_currency' in config assert 'stake_amount' in config assert 'exchange' in config assert 'pair_whitelist' in config['exchange'] assert 'datadir' in config assert config['runmode'] == RunMode.BACKTEST assert log_has('Using data directory: {} ...'.format(config['datadir']), caplog) assert 'timeframe' in config assert log_has('Parameter -i/--timeframe detected ... Using timeframe: 1m ...', caplog) assert 'position_stacking' in config assert log_has('Parameter --enable-position-stacking detected ...', caplog) assert 'use_max_market_positions' in config assert log_has('Parameter --disable-max-market-positions detected ...', caplog) assert log_has('max_open_trades set to unlimited ...', caplog) assert 'timerange' in config assert log_has('Parameter --timerange detected: {} ...'.format(config['timerange']), caplog) assert 'export' in config assert log_has('Parameter --export detected: {} ...'.format(config['export']), caplog) assert 'exportfilename' in config assert isinstance(config['exportfilename'], Path) assert log_has('Storing backtest results to {} ...'.format(config['exportfilename']), caplog) assert 'fee' in config assert log_has('Parameter --fee detected, setting fee to: {} ...'.format(config['fee']), caplog) def test_setup_optimize_configuration_unlimited_stake_amount(mocker, default_conf, caplog) -> None: default_conf['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] with pytest.raises(DependencyException, match=r'.`stake_amount`.*'): setup_optimize_configuration(get_args(args), RunMode.BACKTEST) def test_start(mocker, fee, default_conf, caplog) -> None: start_mock = MagicMock() mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.start', start_mock) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', ] pargs = get_args(args) start_backtesting(pargs) assert log_has('Starting freqtrade in Backtesting mode', caplog) assert start_mock.call_count == 1 @pytest.mark.parametrize("order_types", ORDER_TYPES) def test_backtesting_init(mocker, default_conf, order_types) -> None: """ Check that stoploss_on_exchange is set to False while backtesting since backtesting assumes a perfect stoploss anyway. """ default_conf["order_types"] = order_types patch_exchange(mocker) get_fee = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) backtesting = Backtesting(default_conf) assert backtesting.config == default_conf assert backtesting.timeframe == '5m' assert callable(backtesting.strategy.ohlcvdata_to_dataframe) assert callable(backtesting.strategy.advise_buy) assert callable(backtesting.strategy.advise_sell) assert isinstance(backtesting.strategy.dp, DataProvider) get_fee.assert_called() assert backtesting.fee == 0.5 assert not backtesting.strategy.order_types["stoploss_on_exchange"] def test_backtesting_init_no_timeframe(mocker, default_conf, caplog) -> None: patch_exchange(mocker) del default_conf['timeframe'] default_conf['strategy_list'] = ['DefaultStrategy', 'SampleStrategy'] mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) with pytest.raises(OperationalException): Backtesting(default_conf) log_has("Ticker-interval needs to be set in either configuration " "or as cli argument `--ticker-interval 5m`", caplog) def test_data_with_fee(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) default_conf['fee'] = 0.1234 fee_mock = mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.5)) backtesting = Backtesting(default_conf) assert backtesting.fee == 0.1234 assert fee_mock.call_count == 0 default_conf['fee'] = 0.0 backtesting = Backtesting(default_conf) assert backtesting.fee == 0.0 assert fee_mock.call_count == 0 def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) timerange = TimeRange.parse_timerange('1510694220-1510700340') data = history.load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange, fill_up_missing=True) backtesting = Backtesting(default_conf) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) assert len(processed['UNITTEST/BTC']) == 102 # Load strategy to compare the result between Backtesting function and strategy are the same default_conf.update({'strategy': 'DefaultStrategy'}) strategy = StrategyResolver.load_strategy(default_conf) processed2 = strategy.ohlcvdata_to_dataframe(data) assert processed['UNITTEST/BTC'].equals(processed2['UNITTEST/BTC']) def test_backtesting_start(default_conf, mocker, testdatadir, caplog) -> None: def get_timerange(input1): return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats') mocker.patch('freqtrade.optimize.backtesting.show_backtest_results') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) default_conf['timeframe'] = '1m' default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '-1510694220' backtesting = Backtesting(default_conf) backtesting.start() # check the logs, that will contain the backtest result exists = [ 'Using stake_currency: BTC ...', 'Using stake_amount: 0.001 ...', 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:59:00 (0 days)..' ] for line in exists: assert log_has(line, caplog) assert backtesting.strategy.dp._pairlists is not None def test_backtesting_start_no_data(default_conf, mocker, caplog, testdatadir) -> None: def get_timerange(input1): return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59) mocker.patch('freqtrade.data.history.history_utils.load_pair_history', MagicMock(return_value=pd.DataFrame())) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) default_conf['timeframe'] = "1m" default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '20180101-20180102' backtesting = Backtesting(default_conf) with pytest.raises(OperationalException, match='No data found. Terminating.'): backtesting.start() def test_backtesting_no_pair_left(default_conf, mocker, caplog, testdatadir) -> None: mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True)) mocker.patch('freqtrade.data.history.history_utils.load_pair_history', MagicMock(return_value=pd.DataFrame())) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=[])) default_conf['timeframe'] = "1m" default_conf['datadir'] = testdatadir default_conf['export'] = None default_conf['timerange'] = '20180101-20180102' with pytest.raises(OperationalException, match='No pair in whitelist.'): Backtesting(default_conf) default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}] with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'): Backtesting(default_conf) def test_backtesting_pairlist_list(default_conf, mocker, caplog, testdatadir, tickers) -> None: mocker.patch('freqtrade.exchange.Exchange.exchange_has', MagicMock(return_value=True)) mocker.patch('freqtrade.exchange.Exchange.get_tickers', tickers) mocker.patch('freqtrade.exchange.Exchange.price_to_precision', lambda s, x, y: y) mocker.patch('freqtrade.data.history.get_timerange', get_timerange) patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['XRP/BTC'])) mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.refresh_pairlist') default_conf['ticker_interval'] = "1m" default_conf['datadir'] = testdatadir default_conf['export'] = None # Use stoploss from strategy del default_conf['stoploss'] default_conf['timerange'] = '20180101-20180102' default_conf['pairlists'] = [{"method": "VolumePairList", "number_assets": 5}] with pytest.raises(OperationalException, match='VolumePairList not allowed for backtesting.'): Backtesting(default_conf) default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PerformanceFilter"}] with pytest.raises(OperationalException, match='PerformanceFilter not allowed for backtesting.'): Backtesting(default_conf) default_conf['pairlists'] = [{"method": "StaticPairList"}, {"method": "PrecisionFilter"}, ] Backtesting(default_conf) # Multiple strategies default_conf['strategy_list'] = ['DefaultStrategy', 'TestStrategyLegacy'] with pytest.raises(OperationalException, match='PrecisionFilter not allowed for backtesting multiple strategies.'): Backtesting(default_conf) def test_backtest(default_conf, fee, mocker, testdatadir) -> None: default_conf['ask_strategy']['use_sell_signal'] = False mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) backtesting = Backtesting(default_conf) pair = 'UNITTEST/BTC' timerange = TimeRange('date', None, 1517227800, 0) data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'], timerange=timerange) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) results = backtesting.backtest( processed=processed, stake_amount=default_conf['stake_amount'], start_date=min_date, end_date=max_date, max_open_trades=10, position_stacking=False, ) assert not results.empty assert len(results) == 2 expected = pd.DataFrame( {'pair': [pair, pair], 'profit_percent': [0.0, 0.0], 'profit_abs': [0.0, 0.0], 'open_date': pd.to_datetime([Arrow(2018, 1, 29, 18, 40, 0).datetime, Arrow(2018, 1, 30, 3, 30, 0).datetime], utc=True ), 'open_rate': [0.104445, 0.10302485], 'open_fee': [0.0025, 0.0025], 'close_date': pd.to_datetime([Arrow(2018, 1, 29, 22, 35, 0).datetime, Arrow(2018, 1, 30, 4, 10, 0).datetime], utc=True), 'close_rate': [0.104969, 0.103541], 'close_fee': [0.0025, 0.0025], 'amount': [0.00957442, 0.0097064], 'trade_duration': [235, 40], 'open_at_end': [False, False], 'sell_reason': [SellType.ROI, SellType.ROI] }) pd.testing.assert_frame_equal(results, expected) data_pair = processed[pair] for _, t in results.iterrows(): ln = data_pair.loc[data_pair["date"] == t["open_date"]] # Check open trade rate alignes to open rate assert ln is not None assert round(ln.iloc[0]["open"], 6) == round(t["open_rate"], 6) # check close trade rate alignes to close rate or is between high and low ln = data_pair.loc[data_pair["date"] == t["close_date"]] assert (round(ln.iloc[0]["open"], 6) == round(t["close_rate"], 6) or round(ln.iloc[0]["low"], 6) < round( t["close_rate"], 6) < round(ln.iloc[0]["high"], 6)) def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None: default_conf['ask_strategy']['use_sell_signal'] = False mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) backtesting = Backtesting(default_conf) # Run a backtesting for an exiting 1min timeframe timerange = TimeRange.parse_timerange('1510688220-1510700340') data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'], timerange=timerange) processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) results = backtesting.backtest( processed=processed, stake_amount=default_conf['stake_amount'], start_date=min_date, end_date=max_date, max_open_trades=1, position_stacking=False, ) assert not results.empty assert len(results) == 1 def test_processed(default_conf, mocker, testdatadir) -> None: patch_exchange(mocker) backtesting = Backtesting(default_conf) dict_of_tickerrows = load_data_test('raise', testdatadir) dataframes = backtesting.strategy.ohlcvdata_to_dataframe(dict_of_tickerrows) dataframe = dataframes['UNITTEST/BTC'] cols = dataframe.columns # assert the dataframe got some of the indicator columns for col in ['close', 'high', 'low', 'open', 'date', 'ema10', 'rsi', 'fastd', 'plus_di']: assert col in cols def test_backtest_pricecontours_protections(default_conf, fee, mocker, testdatadir) -> None: # While this test IS a copy of test_backtest_pricecontours, it's needed to ensure # results do not carry-over to the next run, which is not given by using parametrize. default_conf['protections'] = [ { "method": "CooldownPeriod", "stop_duration": 3, }] default_conf['enable_protections'] = True mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) tests = [ ['sine', 9], ['raise', 10], ['lower', 0], ['sine', 9], ['raise', 10], ] # While buy-signals are unrealistic, running backtesting # over and over again should not cause different results for [contour, numres] in tests: assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == numres @pytest.mark.parametrize('protections,contour,expected', [ (None, 'sine', 35), (None, 'raise', 19), (None, 'lower', 0), (None, 'sine', 35), (None, 'raise', 19), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'lower', 0), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'sine', 9), ([{"method": "CooldownPeriod", "stop_duration": 3}], 'raise', 10), ]) def test_backtest_pricecontours(default_conf, fee, mocker, testdatadir, protections, contour, expected) -> None: if protections: default_conf['protections'] = protections default_conf['enable_protections'] = True mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) # While buy-signals are unrealistic, running backtesting # over and over again should not cause different results assert len(simple_backtest(default_conf, contour, mocker, testdatadir)) == expected def test_backtest_clash_buy_sell(mocker, default_conf, testdatadir): # Override the default buy trend function in our default_strategy def fun(dataframe=None, pair=None): buy_value = 1 sell_value = 1 return _trend(dataframe, buy_value, sell_value) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir) backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = fun # Override backtesting.strategy.advise_sell = fun # Override results = backtesting.backtest(**backtest_conf) assert results.empty def test_backtest_only_sell(mocker, default_conf, testdatadir): # Override the default buy trend function in our default_strategy def fun(dataframe=None, pair=None): buy_value = 0 sell_value = 1 return _trend(dataframe, buy_value, sell_value) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, datadir=testdatadir) backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = fun # Override backtesting.strategy.advise_sell = fun # Override results = backtesting.backtest(**backtest_conf) assert results.empty def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir): mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC', datadir=testdatadir) default_conf['timeframe'] = '1m' backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = _trend_alternate # Override backtesting.strategy.advise_sell = _trend_alternate # Override results = backtesting.backtest(**backtest_conf) # 200 candles in backtest data # won't buy on first (shifted by 1) # 100 buys signals assert len(results) == 100 # One trade was force-closed at the end assert len(results.loc[results.open_at_end]) == 0 @pytest.mark.parametrize("pair", ['ADA/BTC', 'LTC/BTC']) @pytest.mark.parametrize("tres", [0, 20, 30]) def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir): def _trend_alternate_hold(dataframe=None, metadata=None): """ Buy every xth candle - sell every other xth -2 (hold on to pairs a bit) """ if metadata['pair'] in ('ETH/BTC', 'LTC/BTC'): multi = 20 else: multi = 18 dataframe['buy'] = np.where(dataframe.index % multi == 0, 1, 0) dataframe['sell'] = np.where((dataframe.index + multi - 2) % multi == 0, 1, 0) return dataframe mocker.patch('freqtrade.exchange.Exchange.get_fee', fee) patch_exchange(mocker) pairs = ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC', 'NXT/BTC'] data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=pairs) # Only use 500 lines to increase performance data = trim_dictlist(data, -500) # Remove data for one pair from the beginning of the data data[pair] = data[pair][tres:].reset_index() default_conf['timeframe'] = '5m' backtesting = Backtesting(default_conf) backtesting.strategy.advise_buy = _trend_alternate_hold # Override backtesting.strategy.advise_sell = _trend_alternate_hold # Override processed = backtesting.strategy.ohlcvdata_to_dataframe(data) min_date, max_date = get_timerange(processed) backtest_conf = { 'processed': processed, 'stake_amount': default_conf['stake_amount'], 'start_date': min_date, 'end_date': max_date, 'max_open_trades': 3, 'position_stacking': False, } results = backtesting.backtest(**backtest_conf) # Make sure we have parallel trades assert len(evaluate_result_multi(results, '5m', 2)) > 0 # make sure we don't have trades with more than configured max_open_trades assert len(evaluate_result_multi(results, '5m', 3)) == 0 backtest_conf = { 'processed': processed, 'stake_amount': default_conf['stake_amount'], 'start_date': min_date, 'end_date': max_date, 'max_open_trades': 1, 'position_stacking': False, } results = backtesting.backtest(**backtest_conf) assert len(evaluate_result_multi(results, '5m', 1)) == 0 def test_backtest_start_timerange(default_conf, mocker, caplog, testdatadir): patch_exchange(mocker) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest') mocker.patch('freqtrade.optimize.backtesting.generate_backtest_stats') mocker.patch('freqtrade.optimize.backtesting.show_backtest_results') mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--strategy', 'DefaultStrategy', '--datadir', str(testdatadir), '--timeframe', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions' ] args = get_args(args) start_backtesting(args) # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--timeframe detected ... Using timeframe: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Using stake_currency: BTC ...', 'Using stake_amount: 0.001 ...', 'Loading data from 2017-11-14 20:57:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Parameter --enable-position-stacking detected ...' ] for line in exists: assert log_has(line, caplog) @pytest.mark.filterwarnings("ignore:deprecated") def test_backtest_start_multi_strat(default_conf, mocker, caplog, testdatadir): patch_exchange(mocker) backtestmock = MagicMock(return_value=pd.DataFrame(columns=BT_DATA_COLUMNS + ['profit_abs'])) mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock) text_table_mock = MagicMock() sell_reason_mock = MagicMock() strattable_mock = MagicMock() strat_summary = MagicMock() mocker.patch.multiple('freqtrade.optimize.optimize_reports', text_table_bt_results=text_table_mock, text_table_strategy=strattable_mock, generate_pair_metrics=MagicMock(), generate_sell_reason_stats=sell_reason_mock, generate_strategy_metrics=strat_summary, generate_daily_stats=MagicMock(), ) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--datadir', str(testdatadir), '--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'), '--timeframe', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions', '--strategy-list', 'DefaultStrategy', 'TestStrategyLegacy', ] args = get_args(args) start_backtesting(args) # 2 backtests, 4 tables assert backtestmock.call_count == 2 assert text_table_mock.call_count == 4 assert strattable_mock.call_count == 1 assert sell_reason_mock.call_count == 2 assert strat_summary.call_count == 1 # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--timeframe detected ... Using timeframe: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Using stake_currency: BTC ...', 'Using stake_amount: 0.001 ...', 'Loading data from 2017-11-14 20:57:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Parameter --enable-position-stacking detected ...', 'Running backtesting for Strategy DefaultStrategy', 'Running backtesting for Strategy TestStrategyLegacy', ] for line in exists: assert log_has(line, caplog) @pytest.mark.filterwarnings("ignore:deprecated") def test_backtest_start_multi_strat_nomock(default_conf, mocker, caplog, testdatadir, capsys): patch_exchange(mocker) backtestmock = MagicMock(side_effect=[ pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC'], 'profit_percent': [0.0, 0.0], 'profit_abs': [0.0, 0.0], 'open_date': pd.to_datetime(['2018-01-29 18:40:00', '2018-01-30 03:30:00', ], utc=True ), 'close_date': pd.to_datetime(['2018-01-29 20:45:00', '2018-01-30 05:35:00', ], utc=True), 'trade_duration': [235, 40], 'open_at_end': [False, False], 'open_rate': [0.104445, 0.10302485], 'close_rate': [0.104969, 0.103541], 'sell_reason': [SellType.ROI, SellType.ROI] }), pd.DataFrame({'pair': ['XRP/BTC', 'LTC/BTC', 'ETH/BTC'], 'profit_percent': [0.03, 0.01, 0.1], 'profit_abs': [0.01, 0.02, 0.2], 'open_date': pd.to_datetime(['2018-01-29 18:40:00', '2018-01-30 03:30:00', '2018-01-30 05:30:00'], utc=True ), 'close_date': pd.to_datetime(['2018-01-29 20:45:00', '2018-01-30 05:35:00', '2018-01-30 08:30:00'], utc=True), 'trade_duration': [47, 40, 20], 'open_at_end': [False, False, False], 'open_rate': [0.104445, 0.10302485, 0.122541], 'close_rate': [0.104969, 0.103541, 0.123541], 'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS] }), ]) mocker.patch('freqtrade.plugins.pairlistmanager.PairListManager.whitelist', PropertyMock(return_value=['UNITTEST/BTC'])) mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', backtestmock) patched_configuration_load_config_file(mocker, default_conf) args = [ 'backtesting', '--config', 'config.json', '--datadir', str(testdatadir), '--strategy-path', str(Path(__file__).parents[1] / 'strategy/strats'), '--timeframe', '1m', '--timerange', '1510694220-1510700340', '--enable-position-stacking', '--disable-max-market-positions', '--strategy-list', 'DefaultStrategy', 'TestStrategyLegacy', ] args = get_args(args) start_backtesting(args) # check the logs, that will contain the backtest result exists = [ 'Parameter -i/--timeframe detected ... Using timeframe: 1m ...', 'Ignoring max_open_trades (--disable-max-market-positions was used) ...', 'Parameter --timerange detected: 1510694220-1510700340 ...', f'Using data directory: {testdatadir} ...', 'Using stake_currency: BTC ...', 'Using stake_amount: 0.001 ...', 'Loading data from 2017-11-14 20:57:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Backtesting with data from 2017-11-14 21:17:00 ' 'up to 2017-11-14 22:58:00 (0 days)..', 'Parameter --enable-position-stacking detected ...', 'Running backtesting for Strategy DefaultStrategy', 'Running backtesting for Strategy TestStrategyLegacy', ] for line in exists: assert log_has(line, caplog) captured = capsys.readouterr() assert 'BACKTESTING REPORT' in captured.out assert 'SELL REASON STATS' in captured.out assert 'LEFT OPEN TRADES REPORT' in captured.out assert 'STRATEGY SUMMARY' in captured.out
gpl-3.0
zakkum42/Bosch
src/04-model/merge_and_compress.py
1
1867
import pandas as pd import numpy as np import pickle import os import math import glob from include.dataset_fnames import generate_station_data_fname, generate_data_fname, generate_response_data_fname, train_categorical_onehot_filename from random import shuffle from datetime import datetime def load_and_compress_data(dirname, use_categoric_features=False): fname = generate_data_fname(sample_type='train', data_type='numeric') numeric_columns = pd.read_csv(fname, nrows=2).columns numeric_fnames = sorted(glob.glob1(dirname, "train_numeric_*")) if use_categoric_features: fname = train_categorical_onehot_filename categoric_columns = pd.read_csv(fname, nrows=2).columns categoric_fnames = sorted(glob.glob1(dirname, "train_categorical_*")) for list_index in range(len(numeric_fnames)): numeric_fname = os.path.join(dirname, numeric_fnames[list_index]) numeric_df = pd.read_csv(numeric_fname, names=numeric_columns, index_col='Id') del numeric_df['Response'] zfname = "train_numeric_0_" + str(list_index).zfill(3) + ".npz" # print numeric_fname # print zfname if use_categoric_features: categoric_fname = os.path.join(dirname, categoric_fnames[list_index]) categoric_df = pd.read_csv(categoric_fname, names=categoric_columns, index_col='Id') numeric_df = numeric_df.join(categoric_df, how='inner') del categoric_df zfname = "train_numeric+categoric_0_" + str(list_index).zfill(3) + ".npz" # print categoric_fname # print zfname print "Saving:", zfname np.savez_compressed(zfname, data=numeric_df.values) del numeric_df if __name__ == '__main__': load_and_compress_data('bs60000', use_categoric_features=True)
apache-2.0
SCIP-Interfaces/PySCIPOpt
examples/unfinished/kcenter_binary_search.py
2
4857
""" kcenter_binary_search.py: use bisection for solving the k-center problem bisects the interval [0, max facility-customer distance] until finding a distance such that all customers are covered, but decreasing that distance by a small amount delta would leave some uncovered. Copyright (c) by Joao Pedro PEDROSO and Mikio KUBO, 2012 """ from pyscipopt import Model, quicksum, multidict def kcover(I,J,c,k): """kcover -- minimize the number of uncovered customers from k facilities. Parameters: - I: set of customers - J: set of potential facilities - c[i,j]: cost of servicing customer i from facility j - k: number of facilities to be used Returns a model, ready to be solved. """ model = Model("k-center") z,y,x = {},{},{} for i in I: z[i] = model.addVar(vtype="B", name="z(%s)"%i, obj=1) for j in J: y[j] = model.addVar(vtype="B", name="y(%s)"%j) for i in I: x[i,j] = model.addVar(vtype="B", name="x(%s,%s)"%(i,j)) for i in I: model.addCons(quicksum(x[i,j] for j in J) + z[i] == 1, "Assign(%s)"%i) for j in J: model.addCons(x[i,j] <= y[j], "Strong(%s,%s)"%(i,j)) model.addCons(sum(y[j] for j in J) == k, "k_center") model.data = x,y,z return model def solve_kcenter(I,J,c,k,delta): """solve_kcenter -- locate k facilities minimizing distance of most distant customer. Parameters: I - set of customers J - set of potential facilities c[i,j] - cost of servicing customer i from facility j k - number of facilities to be used delta - tolerance for terminating bisection Returns: - list of facilities to be used - edges linking them to customers """ model = kcover(I,J,c,k) x,y,z = model.data facilities,edges = [],[] LB = 0 UB = max(c[i,j] for (i,j) in c) model.setObjlimit(0.1) while UB-LB > delta: theta = (UB+LB) / 2. # print "\n\ncurrent theta:", theta for j in J: for i in I: if c[i,j]>theta: model.chgVarUb(x[i,j], 0.0) else: model.chgVarUb(x[i,j], 1.0) # model.Params.OutputFlag = 0 # silent mode model.setObjlimit(.1) model.optimize() if model.getStatus == "optimal": # infeasibility = sum([z[i].X for i in I]) # print "infeasibility=",infeasibility UB = theta facilities = [j for j in y if model.getVal(y[j]) > .5] edges = [(i,j) for (i,j) in x if model.getVal(x[i,j]) > .5] # print "updated solution:" # print "facilities",facilities # print "edges",edges else: # infeasibility > 0: LB = theta return facilities,edges import math import random def distance(x1,y1,x2,y2): return math.sqrt((x2-x1)**2 + (y2-y1)**2) def make_data(n,m,same=True): if same == True: I = range(n) J = range(m) x = [random.random() for i in range(max(m,n))] # positions of the points in the plane y = [random.random() for i in range(max(m,n))] else: I = range(n) J = range(n,n+m) x = [random.random() for i in range(n+m)] # positions of the points in the plane y = [random.random() for i in range(n+m)] c = {} for i in I: for j in J: c[i,j] = distance(x[i],y[i],x[j],y[j]) return I,J,c,x,y if __name__ == "__main__": random.seed(67) n = 200 m = n I,J,c,x_pos,y_pos = make_data(n,m,same=True) k = 20 delta = 1.e-4 facilities,edges = solve_kcenter(I,J,c,k,delta) print("Selected facilities:", facilities) print("Edges:", edges) print("Max distance from a facility to a customer: ", max([c[i,j] for (i,j) in edges])) try: # plot the result using networkx and matplotlib import networkx as NX import matplotlib.pyplot as P P.clf() G = NX.Graph() facilities = set(facilities) unused = set(j for j in J if j not in facilities) client = set(i for i in I if i not in facilities and i not in unused) G.add_nodes_from(facilities) G.add_nodes_from(client) G.add_nodes_from(unused) for (i,j) in edges: G.add_edge(i,j) position = {} for i in range(len(x_pos)): position[i] = (x_pos[i],y_pos[i]) NX.draw(G,position,with_labels=False,node_color="w",nodelist=facilities) NX.draw(G,position,with_labels=False,node_color="c",nodelist=unused,node_size=50) NX.draw(G,position,with_labels=False,node_color="g",nodelist=client,node_size=50) P.show() except ImportError: print("install 'networkx' and 'matplotlib' for plotting")
mit
arbuz001/sms-tools
lectures/06-Harmonic-model/plots-code/sines-partials-harmonics.py
24
2020
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/sine-440-490.wav') w = np.hamming(3529) N = 32768 hN = N/2 t = -20 pin = 4850 x1 = x[pin:pin+w.size] mX1, pX1 = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX1, t) pmag = mX1[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX1, pX1, ploc) plt.figure(1, figsize=(9, 6)) plt.subplot(311) plt.plot(fs*np.arange(mX1.size)/float(N), mX1-max(mX1), 'r', lw=1.5) plt.plot(fs * iploc/N, ipmag-max(mX1), marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([200, 1000, -80, 4]) plt.title('mX + peaks (sine-440-490.wav)') (fs, x) = UF.wavread('../../../sounds/vibraphone-C6.wav') w = np.blackman(401) N = 1024 hN = N/2 t = -80 pin = 200 x2 = x[pin:pin+w.size] mX2, pX2 = DFT.dftAnal(x2, w, N) ploc = UF.peakDetection(mX2, t) pmag = mX2[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX2, pX2, ploc) plt.subplot(3,1,2) plt.plot(fs*np.arange(mX2.size)/float(N), mX2-max(mX2), 'r', lw=1.5) plt.plot(fs * iploc/N, ipmag-max(mX2), marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([500,10000,-100,4]) plt.title('mX + peaks (vibraphone-C6.wav)') (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') w = np.blackman(651) N = 2048 hN = N/2 t = -80 pin = 10000 x3 = x[pin:pin+w.size] mX3, pX3 = DFT.dftAnal(x3, w, N) ploc = UF.peakDetection(mX3, t) pmag = mX3[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX3, pX3, ploc) plt.subplot(3,1,3) plt.plot(fs*np.arange(mX3.size)/float(N), mX3-max(mX3), 'r', lw=1.5) plt.plot(fs * iploc/N, ipmag-max(mX3), marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([0,6000,-70,2]) plt.title('mX + peaks (oboe-A4.wav)') plt.tight_layout() plt.savefig('sines-partials-harmonics.png') plt.show()
agpl-3.0
larsmans/scikit-learn
sklearn/utils/testing.py
3
21336
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import re import platform import scipy as sp import scipy.io from functools import wraps try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import sklearn from sklearn.base import BaseEstimator # Conveniently import all assertions in one place. from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_false from nose.tools import assert_raises from nose.tools import raises from nose import SkipTest from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal"] try: from nose.tools import assert_in, assert_not_in except ImportError: # Nose < 1.0.0 def assert_in(x, container): assert_true(x in container, msg="%r in %r" % (x, container)) def assert_not_in(x, container): assert_false(x in container, msg="%r in %r" % (x, container)) try: from nose.tools import assert_raises_regexp except ImportError: # for Py 2.6 def assert_raises_regexp(expected_exception, expected_regexp, callable_obj=None, *args, **kwargs): """Helper function to check for message patterns in exceptions""" not_raised = False try: callable_obj(*args, **kwargs) not_raised = True except Exception as e: error_message = str(e) if not re.compile(expected_regexp).match(error_message): raise AssertionError("Error message should match pattern " "%r. %r does not." % (expected_regexp, error_message)) if not_raised: raise AssertionError("Should have raised %r" % expected_exception(expected_regexp)) def _assert_less(a, b, msg=None): message = "%r is not lower than %r" % (a, b) if msg is not None: message += ": " + msg assert a < b, message def _assert_greater(a, b, msg=None): message = "%r is not greater than %r" % (a, b) if msg is not None: message += ": " + msg assert a > b, message def assert_less_equal(a, b, msg=None): message = "%r is not lower than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a <= b, message def assert_greater_equal(a, b, msg=None): message = "%r is not greater than or equal to %r" % (a, b) if msg is not None: message += ": " + msg assert a >= b, message def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if not e.category is np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not w[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, w[0])) # substring will match, the entire message with typo won't msg = w[0].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if not check_in_message(msg): raise AssertionError("The message received ('%s') for <%s> is " "not the one you expected ('%s')" % (msg, func.__name__, message )) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if not e.category is np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: %s" % (func.__name__, w)) return result def ignore_warnings(obj=None): """ Context manager and decorator to ignore warnings Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _ignore_warnings(obj) else: return _IgnoreWarnings() def _ignore_warnings(fn): """Decorator to catch and hide warnings without visual nesting""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') return fn(*args, **kwargs) w[:] = [] return wrapper class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager Copied from Python 2.7.5 and modified as required. """ def __init__(self): """ Parameters ========== category : warning class The category to filter. Defaults to Warning. If None, all categories will be muted. """ self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter('always') if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: self.log = [] def showwarning(*args, **kwargs): self.log.append(warnings.WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return self.log else: return None def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos try: from nose.tools import assert_less except ImportError: assert_less = _assert_less try: from nose.tools import assert_greater except ImportError: assert_greater = _assert_greater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exception, message, function, *args, **kwargs): """Helper function to test error messages in exceptions""" try: function(*args, **kwargs) raise AssertionError("Should have raised %r" % exception(message)) except exception as e: error_message = str(e) assert_in(message, error_message) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict: contains data as columns_dict[column_name] = array of data dataname: name of data set matfile: file-like object or file name ordering: list of column_names, determines the ordering in the data set Note: this function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if ".tests." in modname: continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter == 'classifier': estimators = [est for est in estimators if issubclass(est[1], ClassifierMixin)] elif type_filter == 'regressor': estimators = [est for est in estimators if issubclass(est[1], RegressorMixin)] elif type_filter == 'transformer': estimators = [est for est in estimators if issubclass(est[1], TransformerMixin)] elif type_filter == 'cluster': estimators = [est for est in estimators if issubclass(est[1], ClusterMixin)] elif type_filter is not None: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or None, got" " %s." % repr(type_filter)) # We sort in order to have reproducible test failures return sorted(estimators) def set_random_state(estimator, random_state=0): if "random_state" in estimator.get_params().keys(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed. """ @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified matplotlib.pylab.figure() except: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def if_not_mac_os(versions=('10.7', '10.8', '10.9'), message='Multi-process bug in Mac OS X >= 10.7 ' '(see issue #636)'): """Test decorator that skips test if OS is Mac OS X and its major version is one of ``versions``. """ mac_version, _, _ = platform.mac_ver() skip = '.'.join(mac_version.split('.')[:2]) in versions def decorator(func): if skip: @wraps(func) def func(*args, **kwargs): raise SkipTest(message) return func return decorator def clean_warning_registry(): """Safe way to reset warnings """ warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis)
bsd-3-clause
couchbase/ns_server
scripts/jq/master-events/plot-bucket-rebalance.py
1
1570
#!/usr/bin/env python3 """ Copyright 2019-Present Couchbase, Inc. Use of this software is governed by the Business Source License included in the file licenses/BSL-Couchbase.txt. As of the Change Date specified in that file, in accordance with the Business Source License, use of this software will be governed by the Apache License, Version 2.0, included in the file licenses/APL2.txt. """ import json import sys import matplotlib.pyplot as plot payload = json.load(sys.stdin) bucket = payload['bucket'] vbuckets = [] active_moves = [] replica_moves = [] backfills = [] for i, move in enumerate(payload['moves']): vbucket = move['vbucket'] x = move['start'] width = move['duration'] backfill_width = move['backfillDuration'] vbuckets.append(vbucket) move_tuple = (i, x, width) if move['type'] == 'active': active_moves.append(move_tuple) else: replica_moves.append(move_tuple) backfills.append((i, x, backfill_width)) plot.rcdefaults() fig, ax = plot.subplots() charts = [(active_moves, 'active moves', {'color': 'green'}), (replica_moves, 'replica moves', {'color': 'orange'}), (backfills, 'backfill phase', {'color': 'white', 'alpha': 0.5})] for data, label, style in charts: if len(data) > 0: pos, lefts, widths = zip(*data) ax.barh(pos, left=lefts, width=widths, label=label, **style) ax.set_yticks(range(len(vbuckets))) ax.set_yticklabels(vbuckets) ax.invert_yaxis() ax.set_ylabel('VBucket') ax.set_xlabel('Time') ax.set_title(bucket) ax.legend() plot.show()
apache-2.0
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/types/api.py
7
1720
# flake8: noqa import numpy as np from .common import (pandas_dtype, is_dtype_equal, is_extension_type, # categorical is_categorical, is_categorical_dtype, # datetimelike is_datetimetz, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime64_any_dtype, is_datetime64_ns_dtype, is_timedelta64_dtype, is_timedelta64_ns_dtype, is_period, is_period_dtype, # string-like is_string_dtype, is_object_dtype, # sparse is_sparse, # numeric types is_scalar, is_sparse, is_bool, is_integer, is_float, is_complex, is_number, is_any_int_dtype, is_integer_dtype, is_int64_dtype, is_numeric_dtype, is_float_dtype, is_floating_dtype, is_bool_dtype, is_complex_dtype, # like is_re, is_re_compilable, is_dict_like, is_iterator, is_list_like, is_hashable, is_named_tuple, is_sequence)
apache-2.0
mne-tools/mne-tools.github.io
0.18/_downloads/820eb94c79d8a609d2b389a5808a87a4/plot_shift_evoked.py
29
1245
""" ================================== Shifting time-scale in evoked data ================================== """ # Author: Mainak Jas <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.viz import tight_layout from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading evoked data condition = 'Left Auditory' evoked = mne.read_evokeds(fname, condition=condition, baseline=(None, 0), proj=True) ch_names = evoked.info['ch_names'] picks = mne.pick_channels(ch_names=ch_names, include=["MEG 2332"]) # Create subplots f, (ax1, ax2, ax3) = plt.subplots(3) evoked.plot(exclude=[], picks=picks, axes=ax1, titles=dict(grad='Before time shifting'), time_unit='s') # Apply relative time-shift of 500 ms evoked.shift_time(0.5, relative=True) evoked.plot(exclude=[], picks=picks, axes=ax2, titles=dict(grad='Relative shift: 500 ms'), time_unit='s') # Apply absolute time-shift of 500 ms evoked.shift_time(0.5, relative=False) evoked.plot(exclude=[], picks=picks, axes=ax3, titles=dict(grad='Absolute shift: 500 ms'), time_unit='s') tight_layout()
bsd-3-clause
MTgeophysics/mtpy
mtpy/modeling/ws3dinv.py
1
280366
# -*- coding: utf-8 -*- """ =============== ws3dinv =============== * Deals with input and output files for ws3dinv written by: Siripunvaraporn, W.; Egbert, G.; Lenbury, Y. & Uyeshima, M. Three-dimensional magnetotelluric inversion: data-space method Physics of The Earth and Planetary Interiors, 2005, 150, 3-14 * Dependencies: matplotlib 1.3.x, numpy 1.7.x, scipy 0.13 and evtk if vtk files want to be written. The intended use or workflow is something like this for getting started: :Making input files: :: >>> import mtpy.modeling.ws3dinv as ws >>> import os >>> #1) make a list of all .edi files that will be inverted for >>> edi_path = r"/home/EDI_Files" >>> edi_list = [os.path.join(edi_path, edi) for edi in edi_path >>> ... if edi.find('.edi') > 0] >>> #2) make a grid from the stations themselves with 200m cell spacing >>> wsmesh = ws.WSMesh(edi_list=edi_list, cell_size_east=200, >>> ... cell_size_north=200) >>> wsmesh.make_mesh() >>> # check to see if the mesh is what you think it should be >>> wsmesh.plot_mesh() >>> # all is good write the mesh file >>> wsmesh.write_initial_file(save_path=r"/home/ws3dinv/Inv1") >>> # note this will write a file with relative station locations >>> #change the starting model to be different than a halfspace >>> mm = ws.WS3DModelManipulator(initial_fn=wsmesh.initial_fn) >>> # an interactive gui will pop up to change the resistivity model >>> #once finished write a new initial file >>> mm.rewrite_initial_file() >>> #3) write data file >>> wsdata = ws.WSData(edi_list=edi_list, station_fn=wsmesh.station_fn) >>> wsdata.write_data_file() >>> #4) plot mt response to make sure everything looks ok >>> rp = ws.PlotResponse(data_fn=wsdata.data_fn) >>> #5) make startup file >>> sws = ws.WSStartup(data_fn=wsdata.data_fn, initial_fn=mm.new_initial_fn) :checking the model and response: :: >>> mfn = r"/home/ws3dinv/Inv1/test_model.01" >>> dfn = r"/home/ws3dinv/Inv1/WSDataFile.dat" >>> rfn = r"/home/ws3dinv/Inv1/test_resp.01" >>> sfn = r"/home/ws3dinv/Inv1/WS_Sation_Locations.txt" >>> # plot the data vs. model response >>> rp = ws.PlotResponse(data_fn=dfn, resp_fn=rfn, station_fn=sfn) >>> # plot model slices where you can interactively step through >>> ds = ws.PlotSlices(model_fn=mfn, station_fn=sfn) >>> # plot phase tensor ellipses on top of depth slices >>> ptm = ws.PlotPTMaps(data_fn=dfn, resp_fn=rfn, model_fn=mfn) >>> #write files for 3D visualization in Paraview or Mayavi >>> ws.write_vtk_files(mfn, sfn, r"/home/ParaviewFiles") Created on Sun Aug 25 18:41:15 2013 @author: jpeacock-pr """ #============================================================================== import os import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator from matplotlib.patches import Ellipse from matplotlib.colors import Normalize import matplotlib.colorbar as mcb import matplotlib.gridspec as gridspec import mtpy.core.z as mtz import mtpy.core.mt as mt import mtpy.imaging.mtplottools as mtplottools import matplotlib.widgets as widgets import matplotlib.colors as colors import matplotlib.cm as cm import mtpy.modeling.winglink as wl import mtpy.utils.exceptions as mtex import mtpy.analysis.pt as mtpt import mtpy.imaging.mtcolors as mtcl try: from evtk.hl import gridToVTK, pointsToVTK except ImportError: print ('If you want to write a vtk file for 3d viewing, you need download ' 'and install evtk from https://bitbucket.org/pauloh/pyevtk') print ('Note: if you are using Windows you should build evtk first with' 'either MinGW or cygwin using the command: \n' ' python setup.py build -compiler=mingw32 or \n' ' python setup.py build -compiler=cygwin') #============================================================================== #============================================================================== # Data class #============================================================================== class WSData(object): """ Includes tools for reading and writing data files intended to be used with ws3dinv. :Example: :: >>> import mtpy.modeling.ws3dinv as ws >>> import os >>> edi_path = r"/home/EDI_Files" >>> edi_list = [os.path.join(edi_path, edi) for edi in edi_path >>> ... if edi.find('.edi') > 0] >>> # create an evenly space period list in log space >>> p_list = np.logspace(np.log10(.001), np.log10(1000), 12) >>> wsdata = ws.WSData(edi_list=edi_list, period_list=p_list, >>> ... station_fn=r"/home/stations.txt") >>> wsdata.write_data_file() ====================== ==================================================== Attributes Description ====================== ==================================================== data numpy structured array with keys: * *station* --> station name * *east* --> relative eastern location in grid * *north* --> relative northern location in grid * *z_data* --> impedance tensor array with shape (n_stations, n_freq, 4, dtype=complex) * *z_data_err--> impedance tensor error without error map applied * *z_err_map --> error map from data file data_fn full path to data file edi_list list of edi files used to make data file n_z [ 4 | 8 ] number of impedance tensor elements *default* is 8 ncol number of columns in out file from winglink *default* is 5 period_list list of periods to invert for ptol if periods in edi files don't match period_list then program looks for periods within ptol *defualt* is .15 or 15 percent rotation_angle Angle to rotate the data relative to north. Here the angle is measure clockwise from North, Assuming North is 0 and East is 90. Rotating data, and grid to align with regional geoelectric strike can improve the inversion. *default* is None save_path path to save the data file station_fn full path to station file written by WSStation station_locations numpy structured array for station locations keys: * *station* --> station name * *east* --> relative eastern location in grid * *north* --> relative northern location in grid if input a station file is written station_east relative locations of station in east direction station_north relative locations of station in north direction station_names names of stations units [ 'mv' | 'else' ] units of Z, needs to be mv for ws3dinv. *default* is 'mv' wl_out_fn Winglink .out file which describes a 3D grid wl_site_fn Wingling .sites file which gives station locations z_data impedance tensors of data with shape: (n_station, n_periods, 2, 2) z_data_err error of data impedance tensors with error map applied, shape (n_stations, n_periods, 2, 2) z_err [ float | 'data' ] 'data' to set errors as data errors or give a percent error to impedance tensor elements *default* is .05 or 5% if given as percent, ie. 5% then it is converted to .05. z_err_floor percent error floor, anything below this error will be set to z_err_floor. *default* is None z_err_map [zxx, zxy, zyx, zyy] for n_z = 8 [zxy, zyx] for n_z = 4 Value in percent to multiply the error by, which give the user power to down weight bad data, so the resulting error will be z_err_map*z_err ====================== ==================================================== ====================== ==================================================== Methods Description ====================== ==================================================== build_data builds the data from .edi files write_data_file writes a data file from attribute data. This way you can read in a data file, change some parameters and rewrite. read_data_file reads in a ws3dinv data file ====================== ==================================================== """ def __init__(self, **kwargs): self.save_path = kwargs.pop('save_path', None) self.data_basename = kwargs.pop('data_basename', 'WSDataFile.dat') self.units = kwargs.pop('units', 'mv') self.ncol = kwargs.pop('ncols', 5) self.ptol = kwargs.pop('ptol', 0.15) self.z_err = kwargs.pop('z_err', 0.05) self.z_err_floor = kwargs.pop('z_err_floor', None) self.z_err_map = kwargs.pop('z_err_map', [10,1,1,10]) self.n_z = kwargs.pop('n_z', 8) self.period_list = kwargs.pop('period_list', None) self.edi_list = kwargs.pop('edi_list', None) self.station_locations = kwargs.pop('station_locations', None) self.rotation_angle = kwargs.pop('roatation_angle', None) self.station_east = None self.station_north = None self.station_names = None self.z_data = None self.z_data_err = None self.wl_site_fn = kwargs.pop('wl_site_fn', None) self.wl_out_fn = kwargs.pop('wl_out_fn', None) self.data_fn = kwargs.pop('data_fn', None) self.station_fn = kwargs.pop('station_fn', None) self.data = None # make sure the error given is a decimal percent if type(self.z_err) is not str and self.z_err > 1: self.z_err /= 100. # make sure the error floor given is a decimal percent if self.z_err_floor is not None and self.z_err_floor > 1: self.z_err_floor /= 100. def build_data(self): """ Builds the data from .edi files to be written into a data file Need to call this if any parameters have been reset to write a correct data file. """ if self.edi_list is None: raise WSInputError('Need to input a list of .edi files to build ' 'the data') if self.period_list is None: raise WSInputError('Need to input a list of periods to extract ' 'from the .edi files.' ) #get units correctly if self.units == 'mv': zconv = 1./796. self.period_list = np.array(self.period_list) #define some lengths n_stations = len(self.edi_list) n_periods = len(self.period_list) #make a structured array to keep things in for convenience z_shape = (n_periods, 2, 2) data_dtype = [('station', '|S10'), ('east', np.float), ('north', np.float), ('z_data', (np.complex, z_shape)), ('z_data_err', (np.complex, z_shape)), ('z_err_map', (np.complex, z_shape))] self.data = np.zeros(n_stations, dtype=data_dtype) #------get station locations------------------------------------------- if self.wl_site_fn != None: if self.wl_out_fn is None: raise IOError('Need to input an .out file to get station' 'locations, this should be output by Winglink') #get x and y locations on a relative grid east_list, north_list, station_list = \ wl.get_station_locations(self.wl_site_fn, self.wl_out_fn, ncol=self.ncol) self.data['station'] = station_list self.data['east'] = east_list self.data['north'] = north_list #if a station location file is input if self.station_fn != None: stations = WSStation(self.station_fn) stations.read_station_file() self.data['station'] = stations.names self.data['east'] = stations.east self.data['north'] = stations.north #if the user made a grid in python or some other fashion if self.station_locations != None: try: for dd, sd in enumerate(self.station_locations): self.data['east'][dd] = sd['east_c'] self.data['north'][dd] = sd['north_c'] self.data['station'][dd] = sd['station'] stations = WSStation() stations.station_fn = os.path.join(self.save_path, 'WS_Station_locations.txt') stations.east = self.data['east'] stations.north = self.data['north'] stations.names = self.data['station'] stations.write_station_file() except (KeyError, ValueError): self.data['east'] = self.station_locations[:, 0] self.data['north']= self.station_locations[:, 1] #--------find frequencies---------------------------------------------- for ss, edi in enumerate(self.edi_list): if not os.path.isfile(edi): raise IOError('Could not find '+edi) mt_obj = mt.MT(edi) if self.rotation_angle is not None: mt_obj.rotation_angle = self.rotation_angle print('{0}{1}{0}'.format('-'*20, mt_obj.station)) # get only those periods that are within the station data interp_periods = self.period_list[np.where( (self.period_list >= 1./mt_obj.Z.freq.max()) & (self.period_list <= 1./mt_obj.Z.freq.min()))] #interpolate over those periods interp_z, interp_t = mt_obj.interpolate(1./interp_periods) for kk, ff in enumerate(interp_periods): jj = np.where(self.period_list == ff)[0][0] print(' {0:.6g} (s)'.format(ff)) self.data[ss]['z_data'][jj, :] = interp_z.z[kk, :, :]*zconv self.data[ss]['z_data_err'][jj, :] = interp_z.z_err[kk, :, :]*zconv def compute_errors(self): """ compute the errors from the given attributes """ for d_arr in self.data: if self.z_err == 'data': pass elif self.z_err_floor is None and type(self.z_err) is float: d_arr['z_data_err'][:] = d_arr['z_data'][:]*self.z_err elif self.z_err_floor is not None: ef_idx = np.where(d_arr['z_data_err'] < self.z_err_floor) d_arr['z_data_err'][ef_idx] = d_arr['z_data'][ef_idx]*self.z_err_floor d_arr['z_err_map'] = np.reshape(len(self.period_list)*self.z_err_map, (len(self.period_list), 2, 2)) def write_data_file(self, **kwargs): """ Writes a data file based on the attribute data Key Word Arguments: --------------------- **data_fn** : string full path to data file name **save_path** : string directory path to save data file, will be written as save_path/data_basename **data_basename** : string basename of data file to be saved as save_path/data_basename *default* is WSDataFile.dat .. note:: if any of the data attributes have been reset, be sure to call build_data() before write_data_file. """ if self.data is None: self.build_data() # compute errors, this helps when rewriting a data file self.compute_errors() for key in ['data_fn', 'save_path', 'data_basename']: try: setattr(self, key, kwargs[key]) except KeyError: pass #create the output filename if self.save_path == None: if self.wl_out_fn is not None: self.save_path = os.path.dirname(self.wl_site_fn) else: self.save_path = os.getcwd() self.data_fn = os.path.join(self.save_path, self.data_basename) elif os.path.isdir(self.save_path) == True: self.data_fn = os.path.join(self.save_path, self.data_basename) else: self.data_fn = self.save_path #-----Write data file-------------------------------------------------- n_stations = len(self.data) n_periods = self.data[0]['z_data'].shape[0] ofid = file(self.data_fn, 'w') ofid.write('{0:d} {1:d} {2:d}\n'.format(n_stations, n_periods, self.n_z)) #write N-S locations ofid.write('Station_Location: N-S \n') for ii in range(n_stations/self.n_z+1): for ll in range(self.n_z): index = ii*self.n_z+ll try: ofid.write('{0:+.4e} '.format(self.data['north'][index])) except IndexError: pass ofid.write('\n') #write E-W locations ofid.write('Station_Location: E-W \n') for ii in range(n_stations/self.n_z+1): for ll in range(self.n_z): index = ii*self.n_z+ll try: ofid.write('{0:+.4e} '.format(self.data['east'][index])) except IndexError: pass ofid.write('\n') #write impedance tensor components for ii, p1 in enumerate(self.period_list): ofid.write('DATA_Period: {0:3.6f}\n'.format(p1)) for ss in range(n_stations): zline = self.data[ss]['z_data'][ii].reshape(4,) for jj in range(self.n_z/2): ofid.write('{0:+.4e} '.format(zline[jj].real)) ofid.write('{0:+.4e} '.format(-zline[jj].imag)) ofid.write('\n') #write error as a percentage of Z for ii, p1 in enumerate(self.period_list): ofid.write('ERROR_Period: {0:3.6f}\n'.format(p1)) for ss in range(n_stations): zline = self.data[ss]['z_data_err'][ii].reshape(4,) for jj in range(self.n_z/2): ofid.write('{0:+.4e} '.format(zline[jj].real)) ofid.write('{0:+.4e} '.format(zline[jj].imag)) ofid.write('\n') #write error maps for ii, p1 in enumerate(self.period_list): ofid.write('ERMAP_Period: {0:3.6f}\n'.format(p1)) for ss in range(n_stations): zline = self.data[ss]['z_err_map'][ii].reshape(4,) for jj in range(self.n_z/2): ofid.write('{0:.5e} '.format(self.z_err_map[jj])) ofid.write('{0:.5e} '.format(self.z_err_map[jj])) ofid.write('\n') ofid.close() print('Wrote file to: {0}'.format(self.data_fn)) self.station_east = self.data['east'] self.station_north = self.data['north'] self.station_names = self.data['station'] self.z_data = self.data['z_data'] self.z_data_err = self.data['z_data_err']*self.data['z_err_map'] def read_data_file(self, data_fn=None, wl_sites_fn=None, station_fn=None): """ read in data file Arguments: ----------- **data_fn** : string full path to data file **wl_sites_fn** : string full path to sites file output by winglink. This is to match the station name with station number. **station_fn** : string full path to station location file written by WSStation Fills Attributes: ------------------ **data** : structure np.ndarray fills the attribute WSData.data with values **period_list** : np.ndarray() fills the period list with values. """ if self.units == 'mv': zconv = 796. else: zconv = 1 if data_fn is not None: self.data_fn = data_fn if self.data_fn is None: raise WSInputError('Need to input a data file') if os.path.isfile(self.data_fn) is False: raise WSInputError('Could not find {0}, check path'.format( self.data_fn)) self.save_path = os.path.dirname(self.data_fn) dfid = file(self.data_fn, 'r') dlines = dfid.readlines() #get size number of stations, number of frequencies, # number of Z components n_stations, n_periods, nz = np.array(dlines[0].strip().split(), dtype='int') nsstart = 2 self.n_z = nz #make a structured array to keep things in for convenience z_shape = (n_periods, 2, 2) data_dtype = [('station', '|S10'), ('east', np.float), ('north', np.float), ('z_data', (np.complex, z_shape)), ('z_data_err', (np.complex, z_shape)), ('z_err_map', (np.complex, z_shape))] self.data = np.zeros(n_stations, dtype=data_dtype) findlist = [] for ii, dline in enumerate(dlines[1:50], 1): if dline.find('Station_Location: N-S') == 0: findlist.append(ii) elif dline.find('Station_Location: E-W') == 0: findlist.append(ii) elif dline.find('DATA_Period:') == 0: findlist.append(ii) ncol = len(dlines[nsstart].strip().split()) #get site names if entered a sites file if wl_sites_fn != None: self.wl_site_fn = wl_sites_fn slist, station_list = wl.read_sites_file(self.wl_sites_fn) self.data['station'] = station_list elif station_fn != None: self.station_fn = station_fn stations = WSStation(self.station_fn) stations.read_station_file() self.data['station'] = stations.names else: self.data['station'] = np.arange(n_stations) #get N-S locations for ii, dline in enumerate(dlines[findlist[0]+1:findlist[1]],0): dline = dline.strip().split() for jj in range(ncol): try: self.data['north'][ii*ncol+jj] = float(dline[jj]) except IndexError: pass except ValueError: break #get E-W locations for ii, dline in enumerate(dlines[findlist[1]+1:findlist[2]],0): dline = dline.strip().split() for jj in range(self.n_z): try: self.data['east'][ii*ncol+jj] = float(dline[jj]) except IndexError: pass except ValueError: break #make some empty array to put stuff into self.period_list = np.zeros(n_periods) #get data per = 0 error_find = False errmap_find = False for ii, dl in enumerate(dlines[findlist[2]:]): if dl.lower().find('period') > 0: st = 0 if dl.lower().find('data') == 0: dkey = 'z_data' self.period_list[per] = float(dl.strip().split()[1]) elif dl.lower().find('error') == 0: dkey = 'z_data_err' if not error_find: error_find = True per = 0 elif dl.lower().find('ermap') == 0: dkey = 'z_err_map' if not errmap_find: errmap_find = True per = 0 #print '-'*20+dkey+'-'*20 per += 1 else: if dkey == 'z_err_map': zline = np.array(dl.strip().split(), dtype=np.float) self.data[st][dkey][per-1,:] = np.array([[zline[0]-1j*zline[1], zline[2]-1j*zline[3]], [zline[4]-1j*zline[5], zline[6]-1j*zline[7]]]) else: zline = np.array(dl.strip().split(), dtype=np.float)*zconv self.data[st][dkey][per-1,:] = np.array([[zline[0]-1j*zline[1], zline[2]-1j*zline[3]], [zline[4]-1j*zline[5], zline[6]-1j*zline[7]]]) st += 1 self.station_east = self.data['east'] self.station_north = self.data['north'] self.station_names = self.data['station'] self.z_data = self.data['z_data'] #need to be careful when multiplying complex numbers self.z_data_err = \ self.data['z_data_err'].real*self.data['z_err_map'].real+1j*\ self.data['z_data_err'].imag*self.data['z_err_map'].imag #make station_locations structure array self.station_locations = np.zeros(len(self.station_east), dtype=[('station','|S10'), ('east', np.float), ('north', np.float), ('east_c', np.float), ('north_c', np.float)]) self.station_locations['east'] = self.data['east'] self.station_locations['north'] = self.data['north'] self.station_locations['station'] = self.data['station'] #============================================================================== # stations #============================================================================== class WSStation(object): """ read and write a station file where the locations are relative to the 3D mesh. ==================== ====================================================== Attributes Description ==================== ====================================================== east array of relative locations in east direction elev array of elevations for each station names array of station names north array of relative locations in north direction station_fn full path to station file save_path path to save file to ==================== ====================================================== ==================== ====================================================== Methods Description ==================== ====================================================== read_station_file reads in a station file write_station_file writes a station file write_vtk_file writes a vtk points file for station locations ==================== ====================================================== """ def __init__(self, station_fn=None, **kwargs): self.station_fn = station_fn self.east = kwargs.pop('east', None) self.north = kwargs.pop('north', None) self.elev = kwargs.pop('elev', None) self.names = kwargs.pop('names', None) self.save_path = kwargs.pop('save_path', None) def write_station_file(self, east=None, north=None, station_list=None, save_path=None, elev=None): """ write a station file to go with the data file. the locations are on a relative grid where (0, 0, 0) is the center of the grid. Also, the stations are assumed to be in the center of the cell. Arguments: ----------- **east** : np.ndarray(n_stations) relative station locations in east direction **north** : np.ndarray(n_stations) relative station locations in north direction **elev** : np.ndarray(n_stations) relative station locations in vertical direction **station_list** : list or np.ndarray(n_stations) name of stations **save_path** : string directory or full path to save station file to if a directory the file will be saved as save_path/WS_Station_Locations.txt if save_path is none the current working directory is used as save_path Outputs: --------- **station_fn** : full path to station file """ if east is not None: self.east = east if north is not None: self.north = north if station_list is not None: self.names = station_list if elev is not None: self.elev = elev else: if self.north is not None: self.elev = np.zeros_like(self.north) if save_path is not None: self.save_path = save_path if os.path.isdir(self.save_path): self.station_fn = os.path.join(self.save_path, 'WS_Station_Locations.txt') else: self.station_fn = save_path elif self.save_path is None: self.save_path = os.getcwd() self.station_fn = os.path.join(self.save_path, 'WS_Station_Locations.txt') elif os.path.isdir(self.save_path): self.station_fn = os.path.join(self.save_path, 'WS_Station_Locations.txt') sfid = file(self.station_fn, 'w') sfid.write('{0:<14}{1:^14}{2:^14}{3:^14}\n'.format('station', 'east', 'north', 'elev')) for ee, nn, zz, ss in zip(self.east, self.north, self.elev, self.names): ee = '{0:+.4e}'.format(ee) nn = '{0:+.4e}'.format(nn) zz = '{0:+.4e}'.format(zz) sfid.write('{0:<14}{1:^14}{2:^14}{3:^14}\n'.format(ss, ee, nn, zz)) sfid.close() print('Wrote station locations to {0}'.format(self.station_fn)) def read_station_file(self, station_fn=None): """ read in station file written by write_station_file Arguments: ---------- **station_fn** : string full path to station file Outputs: --------- **east** : np.ndarray(n_stations) relative station locations in east direction **north** : np.ndarray(n_stations) relative station locations in north direction **elev** : np.ndarray(n_stations) relative station locations in vertical direction **station_list** : list or np.ndarray(n_stations) name of stations """ if station_fn is not None: self.station_fn = station_fn self.save_path = os.path.dirname(self.station_fn) self.station_locations = np.loadtxt(self.station_fn, skiprows=1, dtype=[('station', '|S10'), ('east_c', np.float), ('north_c', np.float), ('elev', np.float)]) self.east = self.station_locations['east_c'] self.north = self.station_locations['north_c'] self.names = self.station_locations['station'] self.elev = self.station_locations['elev'] def write_vtk_file(self, save_path, vtk_basename='VTKStations'): """ write a vtk file to plot stations Arguments: ------------ **save_path** : string directory to save file to. Will save as save_path/vtk_basename **vtk_basename** : string base file name for vtk file, extension is automatically added. """ if os.path.isdir(save_path) == True: save_fn = os.path.join(save_path, vtk_basename) if self.elev is None: self.elev = np.zeros_like(self.north) pointsToVTK(save_fn, self.north, self.east, self.elev, data={'value':np.ones_like(self.north)}) return save_fn def from_wl_write_station_file(self, sites_file, out_file, ncol=5): """ write a ws station file from the outputs of winglink Arguments: ----------- **sites_fn** : string full path to sites file output from winglink **out_fn** : string full path to .out file output from winglink **ncol** : int number of columns the data is in *default* is 5 """ wl_east, wl_north, wl_station_list = wl.get_station_locations( sites_file, out_file, ncol=ncol) self.write_station_file(east=wl_east, north=wl_north, station_list=wl_station_list) #============================================================================== # mesh class #============================================================================== class WSMesh(object): """ make and read a FE mesh grid The mesh assumes the coordinate system where: x == North y == East z == + down All dimensions are in meters. :Example: :: >>> import mtpy.modeling.ws3dinv as ws >>> import os >>> #1) make a list of all .edi files that will be inverted for >>> edi_path = r"/home/EDI_Files" >>> edi_list = [os.path.join(edi_path, edi) for edi in edi_path >>> ... if edi.find('.edi') > 0] >>> #2) make a grid from the stations themselves with 200m cell spacing >>> wsmesh = ws.WSMesh(edi_list=edi_list, cell_size_east=200, >>> ... cell_size_north=200) >>> wsmesh.make_mesh() >>> # check to see if the mesh is what you think it should be >>> wsmesh.plot_mesh() >>> # all is good write the mesh file >>> wsmesh.write_initial_file(save_path=r"/home/ws3dinv/Inv1") ==================== ====================================================== Attributes Description ==================== ====================================================== cell_size_east mesh block width in east direction *default* is 500 cell_size_north mesh block width in north direction *default* is 500 edi_list list of .edi files to invert for grid_east overall distance of grid nodes in east direction grid_north overall distance of grid nodes in north direction grid_z overall distance of grid nodes in z direction initial_fn full path to initial file name n_layers total number of vertical layers in model nodes_east relative distance between nodes in east direction nodes_north relative distance between nodes in north direction nodes_z relative distance between nodes in east direction pad_east number of cells for padding on E and W sides *default* is 5 pad_north number of cells for padding on S and N sides *default* is 5 pad_root_east padding cells E & W will be pad_root_east**(x) pad_root_north padding cells N & S will be pad_root_north**(x) pad_z number of cells for padding at bottom *default* is 5 res_list list of resistivity values for starting model res_model starting resistivity model rotation_angle Angle to rotate the grid to. Angle is measured positve clockwise assuming North is 0 and east is 90. *default* is None save_path path to save file to station_fn full path to station file station_locations location of stations title title in initial file z1_layer first layer thickness z_bottom absolute bottom of the model *default* is 300,000 z_target_depth Depth of deepest target, *default* is 50,000 ==================== ====================================================== ==================== ====================================================== Methods Description ==================== ====================================================== make_mesh makes a mesh from the given specifications plot_mesh plots mesh to make sure everything is good write_initial_file writes an initial model file that includes the mesh ==================== ====================================================== """ def __init__(self, edi_list=None, **kwargs): self.edi_list = edi_list # size of cells within station area in meters self.cell_size_east = kwargs.pop('cell_size_east', 500) self.cell_size_north = kwargs.pop('cell_size_north', 500) #padding cells on either side self.pad_east = kwargs.pop('pad_east', 5) self.pad_north = kwargs.pop('pad_north', 5) self.pad_z = kwargs.pop('pad_z', 5) #root of padding cells self.pad_root_east = kwargs.pop('pad_root_east', 5) self.pad_root_north = kwargs.pop('pad_root_north', 5) self.z1_layer = kwargs.pop('z1_layer', 10) self.z_target_depth = kwargs.pop('z_target_depth', 50000) self.z_bottom = kwargs.pop('z_bottom', 300000) #number of vertical layers self.n_layers = kwargs.pop('n_layers', 30) #--> attributes to be calculated #station information self.station_locations = kwargs.pop('station_locations', None) #grid nodes self.nodes_east = None self.nodes_north = None self.nodes_z = None #grid locations self.grid_east = None self.grid_north = None self.grid_z = None #resistivity model self.res_model = None self.res_list = None self.res_model_int = None #rotation angle self.rotation_angle = kwargs.pop('rotation_angle', 0.0) #inital file stuff self.initial_fn = None self.station_fn = None self.save_path = kwargs.pop('save_path', None) self.title = 'Inital Model File made in MTpy' def make_mesh(self): """ create finite element mesh according to parameters set. The mesh is built by first finding the center of the station area. Then cells are added in the north and east direction with width cell_size_east and cell_size_north to the extremeties of the station area. Padding cells are then added to extend the model to reduce edge effects. The number of cells are pad_east and pad_north and the increase in size is by pad_root_east and pad_root_north. The station locations are then computed as the center of the nearest cell as required by the code. The vertical cells are built to increase in size exponentially with depth. The first cell depth is first_layer_thickness and should be about 1/10th the shortest skin depth. The layers then increase on a log scale to z_target_depth. Then the model is padded with pad_z number of cells to extend the depth of the model. padding = np.round(cell_size_east*pad_root_east**np.arange(start=.5, stop=3, step=3./pad_east))+west """ #if station locations are not input read from the edi files if self.station_locations is None: if self.edi_list is None: raise AttributeError('edi_list is None, need to input a list of ' 'edi files to read in.') n_stations = len(self.edi_list) #make a structured array to put station location information into self.station_locations = np.zeros(n_stations, dtype=[('station','|S10'), ('east', np.float), ('north', np.float), ('east_c', np.float), ('north_c', np.float), ('elev', np.float)]) #get station locations in meters for ii, edi in enumerate(self.edi_list): mt_obj = mt.MT(edi) self.station_locations[ii]['station'] = mt_obj.station self.station_locations[ii]['east'] = mt_obj.east self.station_locations[ii]['north'] = mt_obj.north self.station_locations[ii]['elev'] = mt_obj.elev #--> rotate grid if necessary #to do this rotate the station locations because ModEM assumes the #input mesh is a lateral grid. #needs to be 90 - because North is assumed to be 0 but the rotation #matrix assumes that E is 0. if self.rotation_angle != 0: cos_ang = np.cos(np.deg2rad(self.rotation_angle)) sin_ang = np.sin(np.deg2rad(self.rotation_angle)) rot_matrix = np.matrix(np.array([[cos_ang, sin_ang], [-sin_ang, cos_ang]])) coords = np.array([self.station_locations['east'], self.station_locations['north']]) #rotate the relative station locations new_coords = np.array(np.dot(rot_matrix, coords)) self.station_locations['east'][:] = new_coords[0, :] self.station_locations['north'][:] = new_coords[1, :] print('Rotated stations by {0:.1f} deg clockwise from N'.format( self.rotation_angle)) #remove the average distance to get coordinates in a relative space self.station_locations['east'] -= self.station_locations['east'].mean() self.station_locations['north'] -= self.station_locations['north'].mean() #translate the stations so they are relative to 0,0 east_center = (self.station_locations['east'].max()- np.abs(self.station_locations['east'].min()))/2 north_center = (self.station_locations['north'].max()- np.abs(self.station_locations['north'].min()))/2 #remove the average distance to get coordinates in a relative space self.station_locations['east'] -= east_center self.station_locations['north'] -= north_center #pickout the furtherst south and west locations #and put that station as the bottom left corner of the main grid west = self.station_locations['east'].min()-(1.5*self.cell_size_east) east = self.station_locations['east'].max()+(1.5*self.cell_size_east) south = self.station_locations['north'].min()-(1.5*self.cell_size_north) north = self.station_locations['north'].max()+(1.5*self.cell_size_north) #make sure the variable n_stations is initialized try: n_stations except NameError: n_stations = self.station_locations.shape[0] #-------make a grid around the stations from the parameters above------ #--> make grid in east-west direction #cells within station area midxgrid = np.arange(start=west, stop=east+self.cell_size_east, step=self.cell_size_east) #padding cells on the west side pad_west = np.round(-self.cell_size_east*\ self.pad_root_east**np.arange(start=.5, stop=3, step=3./self.pad_east))+west #padding cells on east side pad_east = np.round(self.cell_size_east*\ self.pad_root_east**np.arange(start=.5, stop=3, step=3./self.pad_east))+east #make the cells going west go in reverse order and append them to the #cells going east east_gridr = np.append(np.append(pad_west[::-1], midxgrid), pad_east) #--> make grid in north-south direction #N-S cells with in station area midygrid = np.arange(start=south, stop=north+self.cell_size_north, step=self.cell_size_north) #padding cells on south side south_pad = np.round(-self.cell_size_north* self.pad_root_north**np.arange(start=.5, stop=3, step=3./self.pad_north))+south #padding cells on north side north_pad = np.round(self.cell_size_north* self.pad_root_north**np.arange(start=.5, stop=3, step=3./self.pad_north))+north #make the cells going west go in reverse order and append them to the #cells going east north_gridr = np.append(np.append(south_pad[::-1], midygrid), north_pad) #--> make depth grid log_z = np.logspace(np.log10(self.z1_layer), np.log10(self.z_target_depth-np.logspace(np.log10(self.z1_layer), np.log10(self.z_target_depth), num=self.n_layers)[-2]), num=self.n_layers-self.pad_z) ztarget = np.array([zz-zz%10**np.floor(np.log10(zz)) for zz in log_z]) log_zpad = np.logspace(np.log10(self.z_target_depth), np.log10(self.z_bottom-np.logspace(np.log10(self.z_target_depth), np.log10(self.z_bottom), num=self.pad_z)[-2]), num=self.pad_z) zpadding = np.array([zz-zz%10**np.floor(np.log10(zz)) for zz in log_zpad]) z_nodes = np.append(ztarget, zpadding) z_grid = np.array([z_nodes[:ii+1].sum() for ii in range(z_nodes.shape[0])]) #---Need to make an array of the individual cell dimensions for # wsinv3d east_nodes = east_gridr.copy() nx = east_gridr.shape[0] east_nodes[:nx/2] = np.array([abs(east_gridr[ii]-east_gridr[ii+1]) for ii in range(int(nx/2))]) east_nodes[nx/2:] = np.array([abs(east_gridr[ii]-east_gridr[ii+1]) for ii in range(int(nx/2)-1, nx-1)]) north_nodes = north_gridr.copy() ny = north_gridr.shape[0] north_nodes[:ny/2] = np.array([abs(north_gridr[ii]-north_gridr[ii+1]) for ii in range(int(ny/2))]) north_nodes[ny/2:] = np.array([abs(north_gridr[ii]-north_gridr[ii+1]) for ii in range(int(ny/2)-1, ny-1)]) #--put the grids into coordinates relative to the center of the grid east_grid = east_nodes.copy() east_grid[:int(nx/2)] = -np.array([east_nodes[ii:int(nx/2)].sum() for ii in range(int(nx/2))]) east_grid[int(nx/2):] = np.array([east_nodes[int(nx/2):ii+1].sum() for ii in range(int(nx/2), nx)])-\ east_nodes[int(nx/2)] north_grid = north_nodes.copy() north_grid[:int(ny/2)] = -np.array([north_nodes[ii:int(ny/2)].sum() for ii in range(int(ny/2))]) north_grid[int(ny/2):] = np.array([north_nodes[int(ny/2):ii+1].sum() for ii in range(int(ny/2),ny)])-\ north_nodes[int(ny/2)] #make nodes attributes self.nodes_east = east_nodes self.nodes_north = north_nodes self.nodes_z = z_nodes self.grid_east = east_grid self.grid_north = north_grid self.grid_z = z_grid #make sure that the stations are in the center of the cell as requested #by the code. for ii in range(n_stations): #look for the closest grid line xx = [nn for nn, xf in enumerate(east_grid) if xf>(self.station_locations[ii]['east']-self.cell_size_east) and xf<(self.station_locations[ii]['east']+self.cell_size_east)] #shift the station to the center in the east-west direction if east_grid[xx[0]] < self.station_locations[ii]['east']: self.station_locations[ii]['east_c'] = \ east_grid[xx[0]]+self.cell_size_east/2 elif east_grid[xx[0]] > self.station_locations[ii]['east']: self.station_locations[ii]['east_c'] = \ east_grid[xx[0]]-self.cell_size_east/2 #look for closest grid line yy = [mm for mm, yf in enumerate(north_grid) if yf>(self.station_locations[ii]['north']-self.cell_size_north) and yf<(self.station_locations[ii]['north']+self.cell_size_north)] #shift station to center of cell in north-south direction if north_grid[yy[0]] < self.station_locations[ii]['north']: self.station_locations[ii]['north_c'] = \ north_grid[yy[0]]+self.cell_size_north/2 elif north_grid[yy[0]] > self.station_locations[ii]['north']: self.station_locations[ii]['north_c'] = \ north_grid[yy[0]]-self.cell_size_north/2 #--> print out useful information print('-'*15) print(' Number of stations = {0}'.format(len(self.station_locations))) print(' Dimensions: ') print(' e-w = {0}'.format(east_grid.shape[0])) print(' n-s = {0}'.format(north_grid.shape[0])) print(' z = {0} (without 7 air layers)'.format(z_grid.shape[0])) print(' Extensions: ') print(' e-w = {0:.1f} (m)'.format(east_nodes.__abs__().sum())) print(' n-s = {0:.1f} (m)'.format(north_nodes.__abs__().sum())) print(' 0-z = {0:.1f} (m)'.format(self.nodes_z.__abs__().sum())) print('-'*15) #write a station location file for later stations = WSStation() stations.write_station_file(east=self.station_locations['east_c'], north=self.station_locations['north_c'], elev=self.station_locations['elev'], station_list=self.station_locations['station'], save_path=self.save_path) self.station_fn = stations.station_fn def plot_mesh(self, east_limits=None, north_limits=None, z_limits=None, **kwargs): """ Arguments: ---------- **east_limits** : tuple (xmin,xmax) plot min and max distances in meters for the E-W direction. If None, the east_limits will be set to furthest stations east and west. *default* is None **north_limits** : tuple (ymin,ymax) plot min and max distances in meters for the N-S direction. If None, the north_limits will be set to furthest stations north and south. *default* is None **z_limits** : tuple (zmin,zmax) plot min and max distances in meters for the vertical direction. If None, the z_limits is set to the number of layers. Z is positive down *default* is None """ fig_size = kwargs.pop('fig_size', [6, 6]) fig_dpi = kwargs.pop('fig_dpi', 300) fig_num = kwargs.pop('fig_num', 1) station_marker = kwargs.pop('station_marker', 'v') marker_color = kwargs.pop('station_color', 'b') marker_size = kwargs.pop('marker_size', 2) line_color = kwargs.pop('line_color', 'k') line_width = kwargs.pop('line_width', .5) plt.rcParams['figure.subplot.hspace'] = .3 plt.rcParams['figure.subplot.wspace'] = .3 plt.rcParams['figure.subplot.left'] = .08 plt.rcParams['font.size'] = 7 fig = plt.figure(fig_num, figsize=fig_size, dpi=fig_dpi) plt.clf() #---plot map view ax1 = fig.add_subplot(1, 2, 1, aspect='equal') #make sure the station is in the center of the cell ax1.scatter(self.station_locations['east_c'], self.station_locations['north_c'], marker=station_marker, c=marker_color, s=marker_size) #plot the grid if desired east_line_xlist = [] east_line_ylist = [] for xx in self.grid_east: east_line_xlist.extend([xx, xx]) east_line_xlist.append(None) east_line_ylist.extend([self.grid_north.min(), self.grid_north.max()]) east_line_ylist.append(None) ax1.plot(east_line_xlist, east_line_ylist, lw=line_width, color=line_color) north_line_xlist = [] north_line_ylist = [] for yy in self.grid_north: north_line_xlist.extend([self.grid_east.min(), self.grid_east.max()]) north_line_xlist.append(None) north_line_ylist.extend([yy, yy]) north_line_ylist.append(None) ax1.plot(north_line_xlist, north_line_ylist, lw=line_width, color=line_color) if east_limits == None: ax1.set_xlim(self.station_locations['east'].min()-\ 10*self.cell_size_east, self.station_locations['east'].max()+\ 10*self.cell_size_east) else: ax1.set_xlim(east_limits) if north_limits == None: ax1.set_ylim(self.station_locations['north'].min()-\ 10*self.cell_size_north, self.station_locations['north'].max()+\ 10*self.cell_size_east) else: ax1.set_ylim(north_limits) ax1.set_ylabel('Northing (m)', fontdict={'size':9,'weight':'bold'}) ax1.set_xlabel('Easting (m)', fontdict={'size':9,'weight':'bold'}) ##----plot depth view ax2 = fig.add_subplot(1, 2, 2, aspect='auto', sharex=ax1) #plot the grid if desired east_line_xlist = [] east_line_ylist = [] for xx in self.grid_east: east_line_xlist.extend([xx, xx]) east_line_xlist.append(None) east_line_ylist.extend([0, self.grid_z.max()]) east_line_ylist.append(None) ax2.plot(east_line_xlist, east_line_ylist, lw=line_width, color=line_color) z_line_xlist = [] z_line_ylist = [] for zz in self.grid_z: z_line_xlist.extend([self.grid_east.min(), self.grid_east.max()]) z_line_xlist.append(None) z_line_ylist.extend([zz, zz]) z_line_ylist.append(None) ax2.plot(z_line_xlist, z_line_ylist, lw=line_width, color=line_color) #--> plot stations ax2.scatter(self.station_locations['east_c'], [0]*self.station_locations.shape[0], marker=station_marker, c=marker_color, s=marker_size) if z_limits == None: ax2.set_ylim(self.z_target_depth, -200) else: ax2.set_ylim(z_limits) if east_limits == None: ax1.set_xlim(self.station_locations['east'].min()-\ 10*self.cell_size_east, self.station_locations['east'].max()+\ 10*self.cell_size_east) else: ax1.set_xlim(east_limits) ax2.set_ylabel('Depth (m)', fontdict={'size':9, 'weight':'bold'}) ax2.set_xlabel('Easting (m)', fontdict={'size':9, 'weight':'bold'}) plt.show() def convert_model_to_int(self): """ convert the resistivity model that is in ohm-m to integer values corresponding to res_list """ self.res_model_int = np.ones_like(self.res_model) #make a dictionary of values to write to file. self.res_dict = dict([(res, ii) for ii, res in enumerate(sorted(self.res_list), 1)]) for ii, res in enumerate(self.res_list): indexes = np.where(self.res_model == res) self.res_model_int[indexes] = self.res_dict[res] if ii == 0: indexes = np.where(self.res_model <= res) self.res_model_int[indexes] = self.res_dict[res] elif ii == len(self.res_list)-1: indexes = np.where(self.res_model >= res) self.res_model_int[indexes] = self.res_dict[res] else: l_index = max([0, ii-1]) h_index = min([len(self.res_list)-1, ii+1]) indexes = np.where((self.res_model > self.res_list[l_index]) & (self.res_model < self.res_list[h_index])) self.res_model_int[indexes] = self.res_dict[res] print('Converted resistivity model to integers.') def write_initial_file(self, **kwargs): """ will write an initial file for wsinv3d. Note that x is assumed to be S --> N, y is assumed to be W --> E and z is positive downwards. This means that index [0, 0, 0] is the southwest corner of the first layer. Therefore if you build a model by hand the layer block will look as it should in map view. Also, the xgrid, ygrid and zgrid are assumed to be the relative distance between neighboring nodes. This is needed because wsinv3d builds the model from the bottom SW corner assuming the cell width from the init file. Key Word Arguments: ---------------------- **nodes_north** : np.array(nx) block dimensions (m) in the N-S direction. **Note** that the code reads the grid assuming that index=0 is the southern most point. **nodes_east** : np.array(ny) block dimensions (m) in the E-W direction. **Note** that the code reads in the grid assuming that index=0 is the western most point. **nodes_z** : np.array(nz) block dimensions (m) in the vertical direction. This is positive downwards. **save_path** : string Path to where the initial file will be saved to savepath/init3d **res_list** : float or list The start resistivity as a float or a list of resistivities that coorespond to the starting resistivity model **res_model_int**. This must be input if you input **res_model_int** If res_list is None, then Nr = 0 and the real resistivity values are used from **res_model**. *default* is 100 **title** : string Title that goes into the first line of savepath/init3d **res_model** : np.array((nx,ny,nz)) Starting resistivity model. Each cell is allocated an integer value that cooresponds to the index value of **res_list**. .. note:: again that the modeling code assumes that the first row it reads in is the southern most row and the first column it reads in is the western most column. Similarly, the first plane it reads in is the Earth's surface. **res_model_int** : np.array((nx,ny,nz)) Starting resistivity model. Each cell is allocated an linear resistivity value. .. note:: again that the modeling code assumes that the first row it reads in is the southern most row and the first column it reads in is the western most column. Similarly, the first plane it reads in is the Earth's surface. """ keys = ['nodes_east', 'nodes_north', 'nodes_z', 'title', 'res_list', 'res_model', 'res_model_int', 'save_path', 'initial_fn'] for key in keys: try: setattr(self, key, kwargs[key]) except KeyError: if self.__dict__[key] is None: pass if self.initial_fn is None: if self.save_path is None: self.save_path = os.getcwd() self.initial_fn = os.path.join(self.save_path, "WSInitialModel") elif os.path.isdir(self.save_path) == True: self.initial_fn = os.path.join(self.save_path, "WSInitialModel") else: self.save_path = os.path.dirname(self.save_path) self.initial_fn= self.save_path #check to see what resistivity in input if self.res_list is None: nr = 0 elif type(self.res_list) is not list and \ type(self.res_list) is not np.ndarray: self.res_list = [self.res_list] nr = len(self.res_list) else: nr = len(self.res_list) #--> write file ifid = file(self.initial_fn, 'w') ifid.write('# {0}\n'.format(self.title.upper())) ifid.write('{0} {1} {2} {3}\n'.format(self.nodes_north.shape[0], self.nodes_east.shape[0], self.nodes_z.shape[0], nr)) #write S --> N node block for ii, nnode in enumerate(self.nodes_north): ifid.write('{0:>12.1f}'.format(abs(nnode))) if ii != 0 and np.remainder(ii+1, 5) == 0: ifid.write('\n') elif ii == self.nodes_north.shape[0]-1: ifid.write('\n') #write W --> E node block for jj, enode in enumerate(self.nodes_east): ifid.write('{0:>12.1f}'.format(abs(enode))) if jj != 0 and np.remainder(jj+1, 5) == 0: ifid.write('\n') elif jj == self.nodes_east.shape[0]-1: ifid.write('\n') #write top --> bottom node block for kk, zz in enumerate(self.nodes_z): ifid.write('{0:>12.1f}'.format(abs(zz))) if kk != 0 and np.remainder(kk+1, 5) == 0: ifid.write('\n') elif kk == self.nodes_z.shape[0]-1: ifid.write('\n') #write the resistivity list if nr > 0: for ff in self.res_list: ifid.write('{0:.1f} '.format(ff)) ifid.write('\n') else: pass if self.res_model == None: ifid.close() else: if nr > 0: if self.res_model_int is None: self.convert_model_to_int() #need to flip the array such that the 1st index written is the #northern most value write_res_model = self.res_model_int[::-1, :, :] #get similar layers else: write_res_model = self.res_model[::-1, :, :] l1 = 0 layers = [] for zz in range(self.nodes_z.shape[0]-1): if (write_res_model[:, :, zz] == write_res_model[:, :, zz+1]).all() == False: layers.append((l1, zz)) l1 = zz+1 #need to add on the bottom layers layers.append((l1, self.nodes_z.shape[0]-1)) #write out the layers from resmodel for ll in layers: ifid.write('{0} {1}\n'.format(ll[0]+1, ll[1]+1)) for nn in range(self.nodes_north.shape[0]): for ee in range(self.nodes_east.shape[0]): if nr > 0: ifid.write('{0:>3.0f}'.format( write_res_model[nn, ee, ll[0]])) else: ifid.write('{0:>8.1f}'.format( write_res_model[nn, ee, ll[0]])) ifid.write('\n') ifid.close() print('Wrote file to: {0}'.format(self.initial_fn)) def read_initial_file(self, initial_fn): """ read an initial file and return the pertinent information including grid positions in coordinates relative to the center point (0,0) and starting model. Arguments: ---------- **initial_fn** : full path to initializing file. Outputs: -------- **nodes_north** : np.array(nx) array of nodes in S --> N direction **nodes_east** : np.array(ny) array of nodes in the W --> E direction **nodes_z** : np.array(nz) array of nodes in vertical direction positive downwards **res_model** : dictionary dictionary of the starting model with keys as layers **res_list** : list list of resistivity values in the model **title** : string title string """ self.initial_fn = initial_fn ifid = file(self.initial_fn, 'r') ilines = ifid.readlines() ifid.close() self.title = ilines[0].strip() #get size of dimensions, remembering that x is N-S, y is E-W, z is + down nsize = ilines[1].strip().split() n_north = int(nsize[0]) n_east = int(nsize[1]) n_z = int(nsize[2]) #initialize empy arrays to put things into self.nodes_north = np.zeros(n_north) self.nodes_east = np.zeros(n_east) self.nodes_z = np.zeros(n_z) self.res_model_int = np.zeros((n_north, n_east, n_z)) self.res_model = np.zeros((n_north, n_east, n_z)) #get the grid line locations line_index = 2 #line number in file count_n = 0 #number of north nodes found while count_n < n_north: iline = ilines[line_index].strip().split() for north_node in iline: self.nodes_north[count_n] = float(north_node) count_n += 1 line_index += 1 count_e = 0 #number of east nodes found while count_e < n_east: iline = ilines[line_index].strip().split() for east_node in iline: self.nodes_east[count_e] = float(east_node) count_e += 1 line_index += 1 count_z = 0 #number of vertical nodes while count_z < n_z: iline = ilines[line_index].strip().split() for z_node in iline: self.nodes_z[count_z] = float(z_node) count_z += 1 line_index += 1 #put the grids into coordinates relative to the center of the grid self.grid_north = self.nodes_north.copy() self.grid_north[:int(n_north/2)] =\ -np.array([self.nodes_north[ii:int(n_north/2)].sum() for ii in range(int(n_north/2))]) self.grid_north[int(n_north/2):] = \ np.array([self.nodes_north[int(n_north/2):ii+1].sum() for ii in range(int(n_north/2), n_north)])-\ self.nodes_north[int(n_north/2)] self.grid_east = self.nodes_east.copy() self.grid_east[:int(n_east/2)] = \ -np.array([self.nodes_east[ii:int(n_east/2)].sum() for ii in range(int(n_east/2))]) self.grid_east[int(n_east/2):] = \ np.array([self.nodes_east[int(n_east/2):ii+1].sum() for ii in range(int(n_east/2),n_east)])-\ self.nodes_east[int(n_east/2)] self.grid_z = np.array([self.nodes_z[:ii+1].sum() for ii in range(n_z)]) #get the resistivity values self.res_list = [float(rr) for rr in ilines[line_index].strip().split()] line_index += 1 #get model try: iline = ilines[line_index].strip().split() except IndexError: self.res_model[:, :, :] = self.res_list[0] self.res_model[:, :, :] = 1 return if len(iline) == 0 or len(iline) == 1: self.res_model[:, :, :] = self.res_list[0] self.res_model_int[:, :, :] = 1 return else: while line_index < len(ilines): iline = ilines[line_index].strip().split() if len(iline) == 2: l1 = int(iline[0])-1 l2 = int(iline[1]) if l1 == l2: l2 += 1 line_index += 1 count_n = 0 elif len(iline) == 0: break else: count_e = 0 while count_e < n_east: #be sure the indes of res list starts at 0 not 1 as #in ws3dinv self.res_model[count_n, count_e, l1:l2] =\ self.res_list[int(iline[count_e])-1] self.res_model_int[count_n, count_e, l1:l2] =\ int(iline[count_e]) count_e += 1 count_n += 1 line_index += 1 # Need to be sure that the resistivity array matches # with the grids, such that the first index is the # furthest south, even though ws3dinv outputs as first # index as furthest north. self.res_model = self.res_model[::-1, :, :] self.res_model_int = self.res_model_int[::-1, :, :] #============================================================================== # model class #============================================================================== class WSModel(object): """ Reads in model file and fills necessary attributes. :Example: :: >>> mfn = r"/home/ws3dinv/test_model.00" >>> wsmodel = ws.WSModel(mfn) >>> wsmodel.write_vtk_file(r"/home/ParaviewFiles") ======================= =================================================== Attributes Description ======================= =================================================== grid_east overall distance of grid nodes in east direction grid_north overall distance of grid nodes in north direction grid_z overall distance of grid nodes in z direction iteration_number iteration number of the inversion lagrange lagrange multiplier model_fn full path to model file nodes_east relative distance between nodes in east direction nodes_north relative distance between nodes in north direction nodes_z relative distance between nodes in east direction res_model starting resistivity model rms root mean squared error of data and model ======================= =================================================== ======================= =================================================== Methods Description ======================= =================================================== read_model_file read model file and fill attributes write_vtk_file write a vtk structured grid file for resistivity model ======================= =================================================== """ def __init__(self, model_fn=None): self.model_fn = model_fn self.iteration_number = None self.rms = None self.lagrange = None self.res_model = None self.nodes_north = None self.nodes_east = None self.nodes_z = None self.grid_north = None self.grid_east = None self.grid_z = None if self.model_fn is not None and os.path.isfile(self.model_fn) == True: self.read_model_file() def read_model_file(self): """ read in a model file as x-north, y-east, z-positive down """ mfid = file(self.model_fn, 'r') mlines = mfid.readlines() mfid.close() #get info at the beggining of file info = mlines[0].strip().split() self.iteration_number = int(info[2]) self.rms = float(info[5]) try: self.lagrange = float(info[8]) except IndexError: print('Did not get Lagrange Multiplier') #get lengths of things n_north, n_east, n_z, n_res = np.array(mlines[1].strip().split(), dtype=np.int) #make empty arrays to put stuff into self.nodes_north = np.zeros(n_north) self.nodes_east = np.zeros(n_east) self.nodes_z = np.zeros(n_z) self.res_model = np.zeros((n_north, n_east, n_z)) #get the grid line locations line_index = 2 #line number in file count_n = 0 #number of north nodes found while count_n < n_north: mline = mlines[line_index].strip().split() for north_node in mline: self.nodes_north[count_n] = float(north_node) count_n += 1 line_index += 1 count_e = 0 #number of east nodes found while count_e < n_east: mline = mlines[line_index].strip().split() for east_node in mline: self.nodes_east[count_e] = float(east_node) count_e += 1 line_index += 1 count_z = 0 #number of vertical nodes while count_z < n_z: mline = mlines[line_index].strip().split() for z_node in mline: self.nodes_z[count_z] = float(z_node) count_z += 1 line_index += 1 #put the grids into coordinates relative to the center of the grid self.grid_north = self.nodes_north.copy() self.grid_north[:int(n_north/2)] =\ -np.array([self.nodes_north[ii:int(n_north/2)].sum() for ii in range(int(n_north/2))]) self.grid_north[int(n_north/2):] = \ np.array([self.nodes_north[int(n_north/2):ii+1].sum() for ii in range(int(n_north/2), n_north)])-\ self.nodes_north[int(n_north/2)] self.grid_east = self.nodes_east.copy() self.grid_east[:int(n_east/2)] = \ -np.array([self.nodes_east[ii:int(n_east/2)].sum() for ii in range(int(n_east/2))]) self.grid_east[int(n_east/2):] = \ np.array([self.nodes_east[int(n_east/2):ii+1].sum() for ii in range(int(n_east/2),n_east)])-\ self.nodes_east[int(n_east/2)] self.grid_z = np.array([self.nodes_z[:ii+1].sum() for ii in range(n_z)]) #--> get resistivity values #need to read in the north backwards so that the first index is #southern most point for kk in range(n_z): for jj in range(n_east): for ii in range(n_north): self.res_model[(n_north-1)-ii, jj, kk] = \ float(mlines[line_index].strip()) line_index += 1 def write_vtk_file(self, save_fn): """ """ if os.path.isdir(save_fn) == True: save_fn = os.path.join(save_fn, 'VTKResistivity_Model') save_fn = gridToVTK(save_fn, self.grid_north, self.grid_east, self.grid_z, cellData={'resistivity':self.res_model}) print('Wrote vtk file to {0}'.format(save_fn)) #============================================================================== # Manipulate the model #============================================================================== class WSModelManipulator(object): """ will plot a model from wsinv3d or init file so the user can manipulate the resistivity values relatively easily. At the moment only plotted in map view. :Example: :: >>> import mtpy.modeling.ws3dinv as ws >>> initial_fn = r"/home/MT/ws3dinv/Inv1/WSInitialFile" >>> mm = ws.WSModelManipulator(initial_fn=initial_fn) =================== ======================================================= Buttons Description =================== ======================================================= '=' increase depth to next vertical node (deeper) '-' decrease depth to next vertical node (shallower) 'q' quit the plot, rewrites initial file when pressed 'a' copies the above horizontal layer to the present layer 'b' copies the below horizonal layer to present layer 'u' undo previous change =================== ======================================================= =================== ======================================================= Attributes Description =================== ======================================================= ax1 matplotlib.axes instance for mesh plot of the model ax2 matplotlib.axes instance of colorbar cb matplotlib.colorbar instance for colorbar cid_depth matplotlib.canvas.connect for depth cmap matplotlib.colormap instance cmax maximum value of resistivity for colorbar. (linear) cmin minimum value of resistivity for colorbar (linear) data_fn full path fo data file depth_index integer value of depth slice for plotting dpi resolution of figure in dots-per-inch dscale depth scaling, computed internally east_line_xlist list of east mesh lines for faster plotting east_line_ylist list of east mesh lines for faster plotting fdict dictionary of font properties fig matplotlib.figure instance fig_num number of figure instance fig_size size of figure in inches font_size size of font in points grid_east location of east nodes in relative coordinates grid_north location of north nodes in relative coordinates grid_z location of vertical nodes in relative coordinates initial_fn full path to initial file m_height mean height of horizontal cells m_width mean width of horizontal cells map_scale [ 'm' | 'km' ] scale of map mesh_east np.meshgrid of east, north mesh_north np.meshgrid of east, north mesh_plot matplotlib.axes.pcolormesh instance model_fn full path to model file new_initial_fn full path to new initial file nodes_east spacing between east nodes nodes_north spacing between north nodes nodes_z spacing between vertical nodes north_line_xlist list of coordinates of north nodes for faster plotting north_line_ylist list of coordinates of north nodes for faster plotting plot_yn [ 'y' | 'n' ] plot on instantiation radio_res matplotlib.widget.radio instance for change resistivity rect_selector matplotlib.widget.rect_selector res np.ndarray(nx, ny, nz) for model in linear resistivity res_copy copy of res for undo res_dict dictionary of segmented resistivity values res_list list of resistivity values for model linear scale res_model np.ndarray(nx, ny, nz) of resistivity values from res_list (linear scale) res_model_int np.ndarray(nx, ny, nz) of integer values corresponding to res_list for initial model res_value current resistivty value of radio_res save_path path to save initial file to station_east station locations in east direction station_north station locations in north direction xlimits limits of plot in e-w direction ylimits limits of plot in n-s direction =================== ======================================================= """ def __init__(self, model_fn=None, initial_fn=None, data_fn=None, **kwargs): self.model_fn = model_fn self.initial_fn = initial_fn self.data_fn = data_fn self.new_initial_fn = None self.initial_fn_basename = kwargs.pop('initial_fn_basename', 'WSInitialModel_mm') if self.model_fn is not None: self.save_path = os.path.dirname(self.model_fn) elif self.initial_fn is not None: self.save_path = os.path.dirname(self.initial_fn) elif self.data_fn is not None: self.save_path = os.path.dirname(self.data_fn) else: self.save_path = None #grid nodes self.nodes_east = None self.nodes_north = None self.nodes_z = None #grid locations self.grid_east = None self.grid_north = None self.grid_z = None #resistivity model self.res_model_int = None #model in ints self.res_model = None #model in floats self.res = None #station locations in relative coordinates read from data file self.station_east = None self.station_north = None #--> set map scale self.map_scale = kwargs.pop('map_scale', 'km') self.m_width = 100 self.m_height = 100 #--> scale the map coordinates if self.map_scale=='km': self.dscale = 1000. if self.map_scale=='m': self.dscale = 1. #figure attributes self.fig = None self.ax1 = None self.ax2 = None self.cb = None self.east_line_xlist = None self.east_line_ylist = None self.north_line_xlist = None self.north_line_ylist = None #make a default resistivity list to change values self.res_dict = None self.res_list = kwargs.pop('res_list', None) if self.res_list is None: self.set_res_list(np.array([.3, 1, 10, 50, 100, 500, 1000, 5000], dtype=np.float)) else: try: if len(self.res_list) > 10: print ('!! Warning -- ws3dinv can only deal with 10 ' 'resistivity values for the initial model') except TypeError: self.res_list = [self.res_list] self.set_res_list(self.res_list) #read in model or initial file self.read_file() #set initial resistivity value self.res_value = self.res_list[0] #--> set map limits self.xlimits = kwargs.pop('xlimits', None) self.ylimits = kwargs.pop('ylimits', None) self.font_size = kwargs.pop('font_size', 7) self.fig_dpi = kwargs.pop('fig_dpi', 300) self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.cmap = kwargs.pop('cmap', cm.jet_r) self.depth_index = kwargs.pop('depth_index', 0) self.fdict = {'size':self.font_size+2, 'weight':'bold'} #plot on initialization self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_yn=='y': self.plot() def set_res_list(self, res_list): """ on setting res_list also set the res_dict to correspond """ self.res_list = res_list #make a dictionary of values to write to file. self.res_dict = dict([(res, ii) for ii, res in enumerate(self.res_list,1)]) if self.fig is not None: plt.close() self.plot() #---read files------------------------------------------------------------- def read_file(self): """ reads in initial file or model file and set attributes: -resmodel -northrid -eastrid -zgrid -res_list if initial file """ att_names = ['nodes_north', 'nodes_east', 'nodes_z', 'grid_east', 'grid_north', 'grid_z', 'res_model', 'res_list'] #--> read model file if self.model_fn is not None and self.initial_fn is None: wsmodel = WSModel(self.model_fn) wsmodel.read_model_file() for name in att_names: if hasattr(wsmodel, name): value = getattr(wsmodel, name) setattr(self, name, value) #--> scale the resistivity values from the model into # a segmented scale that cooresponds to res_list self.convert_res_to_model(self.res_model.copy()) #--> read initial file elif self.initial_fn is not None and self.model_fn is None: wsmesh = WSMesh() wsmesh.read_initial_file(self.initial_fn) for name in att_names: if hasattr(wsmesh, name): value = getattr(wsmesh, name) setattr(self, name, value) self.res_model_int = wsmesh.res_model if len(wsmesh.res_list) == 1: self.set_res_list([.3, 1, 10, 100, 1000]) else: self.set_res_list(wsmesh.res_list) #need to convert index values to resistivity values rdict = dict([(ii,res) for ii,res in enumerate(self.res_list,1)]) for ii in range(len(self.res_list)): self.res_model[np.where(self.res_model_int==ii+1)] = rdict[ii+1] elif self.initial_fn is None and self.model_fn is None: print('Need to input either an initial file or model file to plot') else: print('Input just initial file or model file not both.') #--> read in data file if given if self.data_fn is not None: wsdata = WSData() wsdata.read_data_file(self.data_fn) #get station locations self.station_east = wsdata.data['east'] self.station_north = wsdata.data['north'] #get cell block sizes self.m_height = np.median(self.nodes_north[5:-5])/self.dscale self.m_width = np.median(self.nodes_east[5:-5])/self.dscale #make a copy of original in case there are unwanted changes self.res_copy = self.res_model.copy() #---plot model------------------------------------------------------------- def plot(self): """ plots the model with: -a radio dial for depth slice -radio dial for resistivity value """ self.cmin = np.floor(np.log10(min(self.res_list))) self.cmax = np.ceil(np.log10(max(self.res_list))) #-->Plot properties plt.rcParams['font.size'] = self.font_size #need to add an extra row and column to east and north to make sure #all is plotted see pcolor for details. plot_east = np.append(self.grid_east, self.grid_east[-1]*1.25)/self.dscale plot_north = np.append(self.grid_north, self.grid_north[-1]*1.25)/self.dscale #make a mesh grid for plotting #the 'ij' makes sure the resulting grid is in east, north self.mesh_east, self.mesh_north = np.meshgrid(plot_east, plot_north, indexing='ij') self.fig = plt.figure(self.fig_num, self.fig_size, dpi=self.fig_dpi) plt.clf() self.ax1 = self.fig.add_subplot(1, 1, 1, aspect='equal') #transpose to make x--east and y--north plot_res = np.log10(self.res_model[:,:,self.depth_index].T) self.mesh_plot = self.ax1.pcolormesh(self.mesh_east, self.mesh_north, plot_res, cmap=self.cmap, vmin=self.cmin, vmax=self.cmax) #on plus or minus change depth slice self.cid_depth = \ self.mesh_plot.figure.canvas.mpl_connect('key_press_event', self._on_key_callback) #plot the stations if self.station_east is not None: for ee, nn in zip(self.station_east, self.station_north): self.ax1.text(ee/self.dscale, nn/self.dscale, '*', verticalalignment='center', horizontalalignment='center', fontdict={'size':self.font_size-2, 'weight':'bold'}) #set axis properties if self.xlimits is not None: self.ax1.set_xlim(self.xlimits) else: self.ax1.set_xlim(xmin=self.grid_east.min()/self.dscale, xmax=self.grid_east.max()/self.dscale) if self.ylimits is not None: self.ax1.set_ylim(self.ylimits) else: self.ax1.set_ylim(ymin=self.grid_north.min()/self.dscale, ymax=self.grid_north.max()/self.dscale) #self.ax1.xaxis.set_minor_locator(MultipleLocator(100*1./dscale)) #self.ax1.yaxis.set_minor_locator(MultipleLocator(100*1./dscale)) self.ax1.set_ylabel('Northing ('+self.map_scale+')', fontdict=self.fdict) self.ax1.set_xlabel('Easting ('+self.map_scale+')', fontdict=self.fdict) depth_title = self.grid_z[self.depth_index]/self.dscale self.ax1.set_title('Depth = {:.3f} '.format(depth_title)+\ '('+self.map_scale+')', fontdict=self.fdict) #plot the grid if desired self.east_line_xlist = [] self.east_line_ylist = [] for xx in self.grid_east: self.east_line_xlist.extend([xx/self.dscale, xx/self.dscale]) self.east_line_xlist.append(None) self.east_line_ylist.extend([self.grid_north.min()/self.dscale, self.grid_north.max()/self.dscale]) self.east_line_ylist.append(None) self.ax1.plot(self.east_line_xlist, self.east_line_ylist, lw=.25, color='k') self.north_line_xlist = [] self.north_line_ylist = [] for yy in self.grid_north: self.north_line_xlist.extend([self.grid_east.min()/self.dscale, self.grid_east.max()/self.dscale]) self.north_line_xlist.append(None) self.north_line_ylist.extend([yy/self.dscale, yy/self.dscale]) self.north_line_ylist.append(None) self.ax1.plot(self.north_line_xlist, self.north_line_ylist, lw=.25, color='k') #plot the colorbar self.ax2 = mcb.make_axes(self.ax1, orientation='vertical', shrink=.35) seg_cmap = cmap_discretize(self.cmap, len(self.res_list)) self.cb = mcb.ColorbarBase(self.ax2[0],cmap=seg_cmap, norm=colors.Normalize(vmin=self.cmin, vmax=self.cmax)) self.cb.set_label('Resistivity ($\Omega \cdot$m)', fontdict={'size':self.font_size}) self.cb.set_ticks(np.arange(self.cmin, self.cmax+1)) self.cb.set_ticklabels([mtplottools.labeldict[cc] for cc in np.arange(self.cmin, self.cmax+1)]) #make a resistivity radio button resrb = self.fig.add_axes([.85,.1,.1,.2]) reslabels = ['{0:.4g}'.format(res) for res in self.res_list] self.radio_res = widgets.RadioButtons(resrb, reslabels, active=self.res_dict[self.res_value]) #make a rectangular selector self.rect_selector = widgets.RectangleSelector(self.ax1, self.rect_onselect, drawtype='box', useblit=True) plt.show() #needs to go after show() self.radio_res.on_clicked(self.set_res_value) def redraw_plot(self): """ redraws the plot """ current_xlimits = self.ax1.get_xlim() current_ylimits = self.ax1.get_ylim() self.ax1.cla() plot_res = np.log10(self.res_model[:,:,self.depth_index].T) self.mesh_plot = self.ax1.pcolormesh(self.mesh_east, self.mesh_north, plot_res, cmap=self.cmap, vmin=self.cmin, vmax=self.cmax) #plot the stations if self.station_east is not None: for ee,nn in zip(self.station_east, self.station_north): self.ax1.text(ee/self.dscale, nn/self.dscale, '*', verticalalignment='center', horizontalalignment='center', fontdict={'size':self.font_size-2, 'weight':'bold'}) #set axis properties if self.xlimits is not None: self.ax1.set_xlim(self.xlimits) else: self.ax1.set_xlim(current_xlimits) if self.ylimits is not None: self.ax1.set_ylim(self.ylimits) else: self.ax1.set_ylim(current_ylimits) self.ax1.set_ylabel('Northing ('+self.map_scale+')', fontdict=self.fdict) self.ax1.set_xlabel('Easting ('+self.map_scale+')', fontdict=self.fdict) depth_title = self.grid_z[self.depth_index]/self.dscale self.ax1.set_title('Depth = {:.3f} '.format(depth_title)+\ '('+self.map_scale+')', fontdict=self.fdict) #plot finite element mesh self.ax1.plot(self.east_line_xlist, self.east_line_ylist, lw=.25, color='k') self.ax1.plot(self.north_line_xlist, self.north_line_ylist, lw=.25, color='k') #be sure to redraw the canvas self.fig.canvas.draw() def set_res_value(self, label): self.res_value = float(label) print('set resistivity to ', label) print(self.res_value) def _on_key_callback(self,event): """ on pressing a key do something """ self.event_change_depth = event #go down a layer on push of +/= keys if self.event_change_depth.key == '=': self.depth_index += 1 if self.depth_index>len(self.grid_z)-1: self.depth_index = len(self.grid_z)-1 print('already at deepest depth') print('Plotting Depth {0:.3f}'.format(self.grid_z[self.depth_index]/\ self.dscale)+'('+self.map_scale+')') self.redraw_plot() #go up a layer on push of - key elif self.event_change_depth.key == '-': self.depth_index -= 1 if self.depth_index < 0: self.depth_index = 0 print('Plotting Depth {0:.3f} '.format(self.grid_z[self.depth_index]/\ self.dscale)+'('+self.map_scale+')') self.redraw_plot() #exit plot on press of q elif self.event_change_depth.key == 'q': self.event_change_depth.canvas.mpl_disconnect(self.cid_depth) plt.close(self.event_change_depth.canvas.figure) self.rewrite_initial_file() #copy the layer above elif self.event_change_depth.key == 'a': try: if self.depth_index == 0: print('No layers above') else: self.res_model[:, :, self.depth_index] = \ self.res_model[:, :, self.depth_index-1] except IndexError: print('No layers above') self.redraw_plot() #copy the layer below elif self.event_change_depth.key == 'b': try: self.res_model[:, :, self.depth_index] = \ self.res_model[:, :, self.depth_index+1] except IndexError: print('No more layers below') self.redraw_plot() #undo elif self.event_change_depth.key == 'u': if type(self.xchange) is int and type(self.ychange) is int: self.res_model[self.ychange, self.xchange, self.depth_index] =\ self.res_copy[self.ychange, self.xchange, self.depth_index] else: for xx in self.xchange: for yy in self.ychange: self.res_model[yy, xx, self.depth_index] = \ self.res_copy[yy, xx, self.depth_index] self.redraw_plot() def change_model_res(self, xchange, ychange): """ change resistivity values of resistivity model """ if type(xchange) is int and type(ychange) is int: self.res_model[ychange, xchange, self.depth_index] = self.res_value else: for xx in xchange: for yy in ychange: self.res_model[yy, xx, self.depth_index] = self.res_value self.redraw_plot() def rect_onselect(self, eclick, erelease): """ on selecting a rectangle change the colors to the resistivity values """ x1, y1 = eclick.xdata, eclick.ydata x2, y2 = erelease.xdata, erelease.ydata self.xchange = self._get_east_index(x1, x2) self.ychange = self._get_north_index(y1, y2) #reset values of resistivity self.change_model_res(self.xchange, self.ychange) def _get_east_index(self, x1, x2): """ get the index value of the points to be changed """ if x1 < x2: xchange = np.where((self.grid_east/self.dscale >= x1) & \ (self.grid_east/self.dscale <= x2))[0] if len(xchange) == 0: xchange = np.where(self.grid_east/self.dscale >= x1)[0][0]-1 return [xchange] if x1 > x2: xchange = np.where((self.grid_east/self.dscale <= x1) & \ (self.grid_east/self.dscale >= x2))[0] if len(xchange) == 0: xchange = np.where(self.grid_east/self.dscale >= x2)[0][0]-1 return [xchange] #check the edges to see if the selection should include the square xchange = np.append(xchange, xchange[0]-1) xchange.sort() return xchange def _get_north_index(self, y1, y2): """ get the index value of the points to be changed in north direction need to flip the index because the plot is flipped """ if y1 < y2: ychange = np.where((self.grid_north/self.dscale > y1) & \ (self.grid_north/self.dscale < y2))[0] if len(ychange) == 0: ychange = np.where(self.grid_north/self.dscale >= y1)[0][0]-1 return [ychange] elif y1 > y2: ychange = np.where((self.grid_north/self.dscale < y1) & \ (self.grid_north/self.dscale > y2))[0] if len(ychange) == 0: ychange = np.where(self.grid_north/self.dscale >= y2)[0][0]-1 return [ychange] ychange -= 1 ychange = np.append(ychange, ychange[-1]+1) return ychange def convert_model_to_int(self): """ convert the resistivity model that is in ohm-m to integer values corresponding to res_list """ self.res_model_int = np.ones_like(self.res_model) for ii, res in enumerate(self.res_list): indexes = np.where(self.res_model == res) self.res_model_int[indexes] = self.res_dict[res] if ii == 0: indexes = np.where(self.res_model <= res) self.res_model_int[indexes] = self.res_dict[res] elif ii == len(self.res_list)-1: indexes = np.where(self.res_model >= res) self.res_model_int[indexes] = self.res_dict[res] else: l_index = max([0, ii-1]) h_index = min([len(self.res_list)-1, ii+1]) indexes = np.where((self.res_model > self.res_list[l_index]) & (self.res_model < self.res_list[h_index])) self.res_model_int[indexes] = self.res_dict[res] def convert_res_to_model(self, res_array): """ converts an output model into an array of segmented valued according to res_list. output is an array of segemented resistivity values in ohm-m (linear) """ #make values in model resistivity array a value in res_list self.res_model = np.zeros_like(res_array) for ii, res in enumerate(self.res_list): indexes = np.where(res_array == res) self.res_model[indexes] = res if ii == 0: indexes = np.where(res_array <= res) self.res_model[indexes] = res elif ii == len(self.res_list)-1: indexes = np.where(res_array >= res) self.res_model[indexes] = res else: l_index = max([0, ii-1]) h_index = min([len(self.res_list)-1, ii+1]) indexes = np.where((res_array > self.res_list[l_index]) & (res_array < self.res_list[h_index])) self.res_model[indexes] = res def rewrite_initial_file(self, save_path=None): """ write an initial file for wsinv3d from the model created. """ #need to flip the resistivity model so that the first index is the #northern most block in N-S #self.res_model = self.res_model[::-1, :, :] if save_path is not None: self.save_path = save_path self.new_initial_fn = os.path.join(self.save_path, self.initial_fn_basename) wsmesh = WSMesh() #pass attribute to wsmesh att_names = ['nodes_north', 'nodes_east', 'nodes_z', 'grid_east', 'grid_north', 'grid_z', 'res_model', 'res_list', 'res_dict', 'res_model' ] for name in att_names: if hasattr(self, name): value = getattr(self, name) setattr(wsmesh, name, value) wsmesh.write_initial_file(initial_fn=self.new_initial_fn) def cmap_discretize(cmap, N): """Return a discrete colormap from the continuous colormap cmap. cmap: colormap instance, eg. cm.jet. N: number of colors. Example x = resize(arange(100), (5,100)) djet = cmap_discretize(cm.jet, 5) imshow(x, cmap=djet) """ colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.))) colors_rgba = cmap(colors_i) indices = np.linspace(0, 1., N+1) cdict = {} for ki,key in enumerate(('red','green','blue')): cdict[key] = [(indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in range(N+1)] # Return colormap object. return colors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024) #============================================================================== # response #============================================================================== class WSResponse(object): """ class to deal with .resp file output by ws3dinv ====================== ==================================================== Attributes Description ====================== ==================================================== n_z number of vertical layers period_list list of periods inverted for resp np.ndarray structured with keys: * *station* --> station name * *east* --> relative eastern location in grid * *north* --> relative northern location in grid * *z_resp* --> impedance tensor array of response with shape (n_stations, n_freq, 4, dtype=complex) * *z_resp_err--> response impedance tensor error resp_fn full path to response file station_east location of stations in east direction station_fn full path to station file written by WSStation station_names names of stations station_north location of stations in north direction units [ 'mv' | 'other' ] units of impedance tensor wl_sites_fn full path to .sites file from Winglink z_resp impedance tensors of response with shape (n_stations, n_periods, 2, 2) z_resp_err impedance tensors errors of response with shape (n_stations, n_periods, 2, 2) (zeros) ====================== ==================================================== ====================== ==================================================== Methods Description ====================== ==================================================== read_resp_file read response file and fill attributes ====================== ==================================================== """ def __init__(self, resp_fn=None, station_fn=None, wl_station_fn=None): self.resp_fn = resp_fn self.station_fn = station_fn self.wl_sites_fn = wl_station_fn self.period_list = None self.resp = None self.n_z = None self.station_east = None self.station_north = None self.station_name = None self.z_resp = None self.z_resp_err = None self.units = 'mv' self._zconv = 796. if self.resp_fn is not None: self.read_resp_file() def read_resp_file(self, resp_fn=None, wl_sites_fn=None, station_fn=None): """ read in data file Arguments: ----------- **resp_fn** : string full path to data file **sites_fn** : string full path to sites file output by winglink. This is to match the station name with station number. **station_fn** : string full path to station location file Outputs: -------- **resp** : structure np.ndarray fills the attribute WSData.data with values **period_list** : np.ndarray() fills the period list with values. """ if resp_fn is not None: self.resp_fn = resp_fn if wl_sites_fn is not None: self.wl_sites_fn = wl_sites_fn if station_fn is not None: self.station_fn = station_fn if not os.path.isfile(self.resp_fn): raise WSInputError('Cannot find {0}, check path'.format(self.resp_fn)) dfid = file(self.resp_fn, 'r') dlines = dfid.readlines() #get size number of stations, number of frequencies, # number of Z components n_stations, n_periods, nz = np.array(dlines[0].strip().split(), dtype='int') nsstart = 2 self.n_z = nz #make a structured array to keep things in for convenience z_shape = (n_periods, 2, 2) resp_dtype = [('station', '|S10'), ('east', np.float), ('north', np.float), ('z_resp', (np.complex, z_shape)), ('z_resp_err', (np.complex, z_shape))] self.resp = np.zeros(n_stations, dtype=resp_dtype) findlist = [] for ii, dline in enumerate(dlines[1:50], 1): if dline.find('Station_Location: N-S') == 0: findlist.append(ii) elif dline.find('Station_Location: E-W') == 0: findlist.append(ii) elif dline.find('DATA_Period:') == 0: findlist.append(ii) ncol = len(dlines[nsstart].strip().split()) #get site names if entered a sites file if self.wl_sites_fn != None: slist, station_list = wl.read_sites_file(self.wl_sites_fn) self.resp['station'] = station_list elif self.station_fn != None: stations = WSStation(self.station_fn) stations.read_station_file() self.resp['station'] = stations.names else: self.resp['station'] = np.arange(n_stations) #get N-S locations for ii, dline in enumerate(dlines[findlist[0]+1:findlist[1]],0): dline = dline.strip().split() for jj in range(ncol): try: self.resp['north'][ii*ncol+jj] = float(dline[jj]) except IndexError: pass except ValueError: break #get E-W locations for ii, dline in enumerate(dlines[findlist[1]+1:findlist[2]],0): dline = dline.strip().split() for jj in range(self.n_z): try: self.resp['east'][ii*ncol+jj] = float(dline[jj]) except IndexError: pass except ValueError: break #make some empty array to put stuff into self.period_list = np.zeros(n_periods) #get resp per = 0 for ii, dl in enumerate(dlines[findlist[2]:]): if dl.lower().find('period') > 0: st = 0 if dl.lower().find('data') == 0: dkey = 'z_resp' self.period_list[per] = float(dl.strip().split()[1]) per += 1 elif dl.lower().find('#iteration') >= 0: break else: zline = np.array(dl.strip().split(),dtype=np.float)*self._zconv self.resp[st][dkey][per-1,:] = np.array([[zline[0]-1j*zline[1], zline[2]-1j*zline[3]], [zline[4]-1j*zline[5], zline[6]-1j*zline[7]]]) st += 1 self.station_east = self.resp['east'] self.station_north = self.resp['north'] self.station_name = self.resp['station'] self.z_resp = self.resp['z_resp'] self.z_resp_err = np.zeros_like(self.z_resp) #============================================================================== # WSError #============================================================================== class WSInputError(Exception): pass #============================================================================== # plot response #============================================================================== class PlotResponse(object): """ plot data and response :Example: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> rfn = r"/home/MT/ws3dinv/Inv1/Test_resp.00" >>> sfn = r"/home/MT/ws3dinv/Inv1/WSStationLocations.txt" >>> wsrp = ws.PlotResponse(data_fn=dfn, resp_fn=rfn, station_fn=sfn) >>> # plot only the TE and TM modes >>> wsrp.plot_component = 2 >>> wsrp.redraw_plot() ======================== ================================================== Attributes Description ======================== ================================================== color_mode [ 'color' | 'bw' ] color or black and white plots cted color for data TE mode ctem color for data TM mode ctmd color for model TE mode ctmm color for model TM mode data_fn full path to data file data_object WSResponse instance e_capsize cap size of error bars in points (*default* is .5) e_capthick cap thickness of error bars in points (*default* is 1) fig_dpi resolution of figure in dots-per-inch (300) fig_list list of matplotlib.figure instances for plots fig_size size of figure in inches (*default* is [6, 6]) font_size size of font for tick labels, axes labels are font_size+2 (*default* is 7) legend_border_axes_pad padding between legend box and axes legend_border_pad padding between border of legend and symbols legend_handle_text_pad padding between text labels and symbols of legend legend_label_spacing padding between labels legend_loc location of legend legend_marker_scale scale of symbols in legend lw line width response curves (*default* is .5) ms size of markers (*default* is 1.5) mted marker for data TE mode mtem marker for data TM mode mtmd marker for model TE mode mtmm marker for model TM mode phase_limits limits of phase plot_component [ 2 | 4 ] 2 for TE and TM or 4 for all components plot_style [ 1 | 2 ] 1 to plot each mode in a seperate subplot and 2 to plot xx, xy and yx, yy in same plots plot_type [ '1' | list of station name ] '1' to plot all stations in data file or input a list of station names to plot if station_fn is input, otherwise input a list of integers associated with the index with in the data file, ie 2 for 2nd station plot_z [ True | False ] *default* is True to plot impedance, False for plotting resistivity and phase plot_yn [ 'n' | 'y' ] to plot on instantiation res_limits limits of resistivity in linear scale resp_fn full path to response file resp_object WSResponse object for resp_fn, or list of WSResponse objects if resp_fn is a list of response files station_fn full path to station file written by WSStation subplot_bottom space between axes and bottom of figure subplot_hspace space between subplots in vertical direction subplot_left space between axes and left of figure subplot_right space between axes and right of figure subplot_top space between axes and top of figure subplot_wspace space between subplots in horizontal direction ======================== ================================================== """ def __init__(self, data_fn=None, resp_fn=None, station_fn=None, **kwargs): self.data_fn = data_fn self.resp_fn = resp_fn self.station_fn = station_fn self.data_object = None self.resp_object = [] self.color_mode = kwargs.pop('color_mode', 'color') self.ms = kwargs.pop('ms', 1.5) self.lw = kwargs.pop('lw', .5) self.e_capthick = kwargs.pop('e_capthick', .5) self.e_capsize = kwargs.pop('e_capsize', 2) #color mode if self.color_mode == 'color': #color for data self.cted = kwargs.pop('cted', (0, 0, 1)) self.ctmd = kwargs.pop('ctmd', (1, 0, 0)) self.mted = kwargs.pop('mted', 's') self.mtmd = kwargs.pop('mtmd', 'o') #color for occam2d model self.ctem = kwargs.pop('ctem', (0, .6, .3)) self.ctmm = kwargs.pop('ctmm', (.9, 0, .8)) self.mtem = kwargs.pop('mtem', '+') self.mtmm = kwargs.pop('mtmm', '+') #black and white mode elif self.color_mode == 'bw': #color for data self.cted = kwargs.pop('cted', (0, 0, 0)) self.ctmd = kwargs.pop('ctmd', (0, 0, 0)) self.mted = kwargs.pop('mted', '*') self.mtmd = kwargs.pop('mtmd', 'v') #color for occam2d model self.ctem = kwargs.pop('ctem', (0.6, 0.6, 0.6)) self.ctmm = kwargs.pop('ctmm', (0.6, 0.6, 0.6)) self.mtem = kwargs.pop('mtem', '+') self.mtmm = kwargs.pop('mtmm', 'x') self.phase_limits = kwargs.pop('phase_limits', None) self.res_limits = kwargs.pop('res_limits', None) self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.subplot_wspace = .2 self.subplot_hspace = .0 self.subplot_right = .98 self.subplot_left = .08 self.subplot_top = .93 self.subplot_bottom = .1 self.legend_loc = 'upper left' self.legend_marker_scale = 1 self.legend_border_axes_pad = .01 self.legend_label_spacing = 0.07 self.legend_handle_text_pad = .2 self.legend_border_pad = .15 self.font_size = kwargs.pop('font_size', 6) self.plot_type = kwargs.pop('plot_type', '1') self.plot_style = kwargs.pop('plot_style', 1) self.plot_component = kwargs.pop('plot_component', 4) self.plot_yn = kwargs.pop('plot_yn', 'y') self.plot_z = kwargs.pop('plot_z', True) self.ylabel_pad = kwargs.pop('ylabel_pad', 1.25) self.fig_list = [] if self.plot_yn == 'y': self.plot() def plot_errorbar(self, ax, period, data, error, color, marker): """ convinience function to make an error bar instance """ errorbar_object = ax.errorbar(period, data, marker=marker, ms=self.ms, mfc='None', mec=color, ls=':', yerr=error, ecolor=color, color=color, picker=2, lw=self.lw, elinewidth=self.lw, capsize=self.e_capsize, capthick=self.e_capthick) return errorbar_object def plot(self): """ plot """ self.data_object = WSData() self.data_object.read_data_file(self.data_fn, station_fn=self.station_fn) #get shape of impedance tensors ns = self.data_object.data['station'].shape[0] nf = len(self.data_object.period_list) #read in response files if self.resp_fn != None: self.resp_object = [] if type(self.resp_fn) is not list: self.resp_object = [WSResponse(self.resp_fn, station_fn=self.station_fn)] else: for rfile in self.resp_fn: self.resp_object.append(WSResponse(rfile, station_fn=self.station_fn)) #get number of response files nr = len(self.resp_object) if type(self.plot_type) is list: ns = len(self.plot_type) #--> set default font size plt.rcParams['font.size'] = self.font_size fontdict = {'size':self.font_size+2, 'weight':'bold'} if self.plot_z == True: h_ratio = [1,1] elif self.plot_z == False: h_ratio = [2, 1.5] gs = gridspec.GridSpec(2, 2, height_ratios=h_ratio, hspace=.1) ax_list = [] line_list = [] label_list = [] if self.plot_type != '1': pstation_list = [] if type(self.plot_type) is not list: self.plot_type = [self.plot_type] for ii, station in enumerate(self.data_object.data['station']): if type(station) is not int: for pstation in self.plot_type: if station.find(str(pstation)) >= 0: pstation_list.append(ii) else: for pstation in self.plot_type: if station == int(pstation): pstation_list.append(ii) else: pstation_list = np.arange(ns) for jj in pstation_list: data_z = self.data_object.z_data[jj] data_z_err = self.data_object.z_data_err[jj] period = self.data_object.period_list station = self.data_object.station_names[jj] print('Plotting: {0}'.format(station)) #check for masked points data_z[np.where(data_z == 7.95204E5-7.95204E5j)] = 0.0+0.0j data_z_err[np.where(data_z_err == 7.95204E5-7.95204E5j)] =\ 1.0+1.0j #convert to apparent resistivity and phase z_object = mtz.Z(z_array=data_z, z_err_array=data_z_err, freq=1./period) rp = mtplottools.ResPhase(z_object) #find locations where points have been masked nzxx = np.where(rp.resxx!=0)[0] nzxy = np.where(rp.resxy!=0)[0] nzyx = np.where(rp.resyx!=0)[0] nzyy = np.where(rp.resyy!=0)[0] if self.resp_fn != None: plotr = True else: plotr = False #make figure fig = plt.figure(station, self.fig_size, dpi=self.fig_dpi) plt.clf() fig.suptitle(str(station), fontdict=fontdict) #set the grid of subplots gs = gridspec.GridSpec(2, 4, wspace=self.subplot_wspace, left=self.subplot_left, top=self.subplot_top, bottom=self.subplot_bottom, right=self.subplot_right, hspace=self.subplot_hspace, height_ratios=h_ratio) #---------plot the apparent resistivity----------------------------------- #plot each component in its own subplot if self.plot_style == 1: if self.plot_component == 2: axrxy = fig.add_subplot(gs[0, 0:2]) axryx = fig.add_subplot(gs[0, 2:], sharex=axrxy) axpxy = fig.add_subplot(gs[1, 0:2]) axpyx = fig.add_subplot(gs[1, 2:], sharex=axrxy) if self.plot_z == False: #plot resistivity erxy = self.plot_errorbar(axrxy, period[nzxy], rp.resxy[nzxy], rp.resxy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axryx, period[nzyx], rp.resyx[nzyx], rp.resyx_err[nzyx], self.ctmd, self.mtmd) #plot phase erxy = self.plot_errorbar(axpxy, period[nzxy], rp.phasexy[nzxy], rp.phasexy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axpyx, period[nzyx], rp.phaseyx[nzyx], rp.phaseyx_err[nzyx], self.ctmd, self.mtmd) elif self.plot_z == True: #plot real erxy = self.plot_errorbar(axrxy, period[nzxy], z_object.z[nzxy,0,1].real, z_object.z_err[nzxy,0,1].real, self.cted, self.mted) eryx = self.plot_errorbar(axryx, period[nzyx], z_object.z[nzyx,1,0].real, z_object.z_err[nzyx,1,0].real, self.ctmd, self.mtmd) #plot phase erxy = self.plot_errorbar(axpxy, period[nzxy], z_object.z[nzxy,0,1].imag, z_object.z_err[nzxy,0,1].imag, self.cted, self.mted) eryx = self.plot_errorbar(axpyx, period[nzyx], z_object.z[nzyx,1,0].imag, z_object.z_err[nzyx,1,0].imag, self.ctmd, self.mtmd) ax_list = [axrxy, axryx, axpxy, axpyx] line_list = [[erxy[0]], [eryx[0]]] label_list = [['$Z_{xy}$'], ['$Z_{yx}$']] elif self.plot_component == 4: axrxx = fig.add_subplot(gs[0, 0]) axrxy = fig.add_subplot(gs[0, 1], sharex=axrxx) axryx = fig.add_subplot(gs[0, 2], sharex=axrxx) axryy = fig.add_subplot(gs[0, 3], sharex=axrxx) axpxx = fig.add_subplot(gs[1, 0]) axpxy = fig.add_subplot(gs[1, 1], sharex=axrxx) axpyx = fig.add_subplot(gs[1, 2], sharex=axrxx) axpyy = fig.add_subplot(gs[1, 3], sharex=axrxx) if self.plot_z == False: #plot resistivity erxx= self.plot_errorbar(axrxx, period[nzxx], rp.resxx[nzxx], rp.resxx_err[nzxx], self.cted, self.mted) erxy = self.plot_errorbar(axrxy, period[nzxy], rp.resxy[nzxy], rp.resxy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axryx, period[nzyx], rp.resyx[nzyx], rp.resyx_err[nzyx], self.ctmd, self.mtmd) eryy = self.plot_errorbar(axryy, period[nzyy], rp.resyy[nzyy], rp.resyy_err[nzyy], self.ctmd, self.mtmd) #plot phase erxx= self.plot_errorbar(axpxx, period[nzxx], rp.phasexx[nzxx], rp.phasexx_err[nzxx], self.cted, self.mted) erxy = self.plot_errorbar(axpxy, period[nzxy], rp.phasexy[nzxy], rp.phasexy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axpyx, period[nzyx], rp.phaseyx[nzyx], rp.phaseyx_err[nzyx], self.ctmd, self.mtmd) eryy = self.plot_errorbar(axpyy, period[nzyy], rp.phaseyy[nzyy], rp.phaseyy_err[nzyy], self.ctmd, self.mtmd) elif self.plot_z == True: #plot real erxx = self.plot_errorbar(axrxx, period[nzxx], z_object.z[nzxx,0,0].real, z_object.z_err[nzxx,0,0].real, self.cted, self.mted) erxy = self.plot_errorbar(axrxy, period[nzxy], z_object.z[nzxy,0,1].real, z_object.z_err[nzxy,0,1].real, self.cted, self.mted) eryx = self.plot_errorbar(axryx, period[nzyx], z_object.z[nzyx,1,0].real, z_object.z_err[nzyx,1,0].real, self.ctmd, self.mtmd) eryy = self.plot_errorbar(axryy, period[nzyy], z_object.z[nzyy,1,1].real, z_object.z_err[nzyy,1,1].real, self.ctmd, self.mtmd) #plot phase erxx = self.plot_errorbar(axpxx, period[nzxx], z_object.z[nzxx,0,0].imag, z_object.z_err[nzxx,0,0].imag, self.cted, self.mted) erxy = self.plot_errorbar(axpxy, period[nzxy], z_object.z[nzxy,0,1].imag, z_object.z_err[nzxy,0,1].imag, self.cted, self.mted) eryx = self.plot_errorbar(axpyx, period[nzyx], z_object.z[nzyx,1,0].imag, z_object.z_err[nzyx,1,0].imag, self.ctmd, self.mtmd) eryy = self.plot_errorbar(axpyy, period[nzyy], z_object.z[nzyy,1,1].imag, z_object.z_err[nzyy,1,1].imag, self.ctmd, self.mtmd) ax_list = [axrxx, axrxy, axryx, axryy, axpxx, axpxy, axpyx, axpyy] line_list = [[erxx[0]], [erxy[0]], [eryx[0]], [eryy[0]]] label_list = [['$Z_{xx}$'], ['$Z_{xy}$'], ['$Z_{yx}$'], ['$Z_{yy}$']] #set axis properties for aa, ax in enumerate(ax_list): ax.tick_params(axis='y', pad=self.ylabel_pad) if len(ax_list) == 4: if aa < 2: plt.setp(ax.get_xticklabels(), visible=False) if self.plot_z == False: ax.set_yscale('log', nonposy='clip') if self.res_limits is not None: ax.set_ylim(self.res_limits) else: ax.set_ylim(self.phase_limits) ax.set_xlabel('Period (s)', fontdict=fontdict) #set axes labels if aa == 0: if self.plot_z == False: ax.set_ylabel('App. Res. ($\mathbf{\Omega \cdot m}$)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Re[Z (m/s)]', fontdict=fontdict) elif aa == 2: if self.plot_z == False: ax.set_ylabel('Phase (deg)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Im[Z (m/s)]', fontdict=fontdict) # else: # plt.setp(ax.yaxis.get_ticklabels(), visible=False) elif len(ax_list) == 8: if aa < 4: plt.setp(ax.get_xticklabels(), visible=False) if self.plot_z == False: ax.set_yscale('log', nonposy='clip') if self.res_limits is not None: ax.set_ylim(self.res_limits) else: ax.set_ylim(self.phase_limits) ax.set_xlabel('Period (s)', fontdict=fontdict) #set axes labels if aa == 0: if self.plot_z == False: ax.set_ylabel('App. Res. ($\mathbf{\Omega \cdot m}$)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Re[Z (m/s)]', fontdict=fontdict) elif aa == 4: if self.plot_z == False: ax.set_ylabel('Phase (deg)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Im[Z (m/s)]', fontdict=fontdict) # else: # plt.setp(ax.yaxis.get_ticklabels(), visible=False) ax.set_xscale('log', nonposx='clip') ax.set_xlim(xmin=10**(np.floor(np.log10(period[0]))) * 1.01, xmax=10**(np.ceil(np.log10(period[-1]))) * .99) ax.grid(True, alpha=.25) # plot xy and yx together and xx, yy together elif self.plot_style == 2: if self.plot_component == 2: axrxy = fig.add_subplot(gs[0, 0:]) axpxy = fig.add_subplot(gs[1, 0:], sharex=axrxy) if self.plot_z == False: #plot resistivity erxy = self.plot_errorbar(axrxy, period[nzxy], rp.resxy[nzxy], rp.resxy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axrxy, period[nzyx], rp.resyx[nzyx], rp.resyx_err[nzyx], self.ctmd, self.mtmd) #plot phase erxy = self.plot_errorbar(axpxy, period[nzxy], rp.phasexy[nzxy], rp.phasexy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axpxy, period[nzyx], rp.phaseyx[nzyx], rp.phaseyx_err[nzyx], self.ctmd, self.mtmd) elif self.plot_z == True: #plot real erxy = self.plot_errorbar(axrxy, period[nzxy], z_object.z[nzxy,0,1].real, z_object.z_err[nzxy,0,1].real, self.cted, self.mted) eryx = self.plot_errorbar(axrxy, period[nzxy], z_object.z[nzxy,1,0].real, z_object.z_err[nzxy,1,0].real, self.ctmd, self.mtmd) #plot phase erxy = self.plot_errorbar(axpxy, period[nzxy], z_object.z[nzxy,0,1].imag, z_object.z_err[nzxy,0,1].imag, self.cted, self.mted) eryx = self.plot_errorbar(axpxy, period[nzyx], z_object.z[nzyx,1,0].imag, z_object.z_err[nzyx,1,0].imag, self.ctmd, self.mtmd) ax_list = [axrxy, axpxy] line_list = [erxy[0], eryx[0]] label_list = ['$Z_{xy}$', '$Z_{yx}$'] elif self.plot_component == 4: axrxy = fig.add_subplot(gs[0, 0:2]) axpxy = fig.add_subplot(gs[1, 0:2], sharex=axrxy) axrxx = fig.add_subplot(gs[0, 2:], sharex=axrxy) axpxx = fig.add_subplot(gs[1, 2:], sharex=axrxy) if self.plot_z == False: #plot resistivity erxx= self.plot_errorbar(axrxx, period[nzxx], rp.resxx[nzxx], rp.resxx_err[nzxx], self.cted, self.mted) erxy = self.plot_errorbar(axrxy, period[nzxy], rp.resxy[nzxy], rp.resxy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axrxy, period[nzyx], rp.resyx[nzyx], rp.resyx_err[nzyx], self.ctmd, self.mtmd) eryy = self.plot_errorbar(axrxx, period[nzyy], rp.resyy[nzyy], rp.resyy_err[nzyy], self.ctmd, self.mtmd) #plot phase erxx= self.plot_errorbar(axpxx, period[nzxx], rp.phasexx[nzxx], rp.phasexx_err[nzxx], self.cted, self.mted) erxy = self.plot_errorbar(axpxy, period[nzxy], rp.phasexy[nzxy], rp.phasexy_err[nzxy], self.cted, self.mted) eryx = self.plot_errorbar(axpxy, period[nzyx], rp.phaseyx[nzyx], rp.phaseyx_err[nzyx], self.ctmd, self.mtmd) eryy = self.plot_errorbar(axpxx, period[nzyy], rp.phaseyy[nzyy], rp.phaseyy_err[nzyy], self.ctmd, self.mtmd) elif self.plot_z == True: #plot real erxx = self.plot_errorbar(axrxx, period[nzxx], z_object.z[nzxx,0,0].real, z_object.z_err[nzxx,0,0].real, self.cted, self.mted) erxy = self.plot_errorbar(axrxy, period[nzxy], z_object.z[nzxy,0,1].real, z_object.z_err[nzxy,0,1].real, self.cted, self.mted) eryx = self.plot_errorbar(axrxy, period[nzyx], z_object.z[nzyx,1,0].real, z_object.z_err[nzyx,1,0].real, self.ctmd, self.mtmd) eryy = self.plot_errorbar(axrxx, period[nzyy], z_object.z[nzyy,1,1].real, z_object.z_err[nzyy,1,1].real, self.ctmd, self.mtmd) #plot phase erxx = self.plot_errorbar(axpxx, period[nzxx], z_object.z[nzxx,0,0].imag, z_object.z_err[nzxx,0,0].imag, self.cted, self.mted) erxy = self.plot_errorbar(axpxy, period[nzxy], z_object.z[nzxy,0,1].imag, z_object.z_err[nzxy,0,1].imag, self.cted, self.mted) eryx = self.plot_errorbar(axpxy, period[nzyx], z_object.z[nzyx,1,0].imag, z_object.z_err[nzyx,1,0].imag, self.ctmd, self.mtmd) eryy = self.plot_errorbar(axpxx, period[nzyy], z_object.z[nzyy,1,1].imag, z_object.z_err[nzyy,1,1].imag, self.ctmd, self.mtmd) ax_list = [axrxy, axrxx, axpxy, axpxx] line_list = [[erxy[0], eryx[0]], [erxx[0], eryy[0]]] label_list = [['$Z_{xy}$', '$Z_{yx}$'], ['$Z_{xx}$', '$Z_{yy}$']] #set axis properties for aa, ax in enumerate(ax_list): ax.tick_params(axis='y', pad=self.ylabel_pad) if len(ax_list) == 2: ax.set_xlabel('Period (s)', fontdict=fontdict) if aa == 0: plt.setp(ax.get_xticklabels(), visible=False) if self.plot_z == False: ax.set_yscale('log', nonposy='clip') ax.set_ylabel('App. Res. ($\mathbf{\Omega \cdot m}$)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Re[Impedance (m/s)]', fontdict=fontdict) if self.res_limits is not None: ax.set_ylim(self.res_limits) else: ax.set_ylim(self.phase_limits) if self.plot_z == False: ax.set_ylabel('Phase (deg)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Im[Impedance (m/s)]', fontdict=fontdict) elif len(ax_list) == 4: if aa < 2: plt.setp(ax.get_xticklabels(), visible=False) if self.plot_z == False: ax.set_yscale('log', nonposy='clip') if self.res_limits is not None: ax.set_ylim(self.res_limits) else: ax.set_ylim(self.phase_limits) ax.set_xlabel('Period (s)', fontdict=fontdict) if aa == 0: if self.plot_z == False: ax.set_ylabel('App. Res. ($\mathbf{\Omega \cdot m}$)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Re[Impedance (m/s)]', fontdict=fontdict) elif aa == 2: if self.plot_z == False: ax.set_ylabel('Phase (deg)', fontdict=fontdict) elif self.plot_z == True: ax.set_ylabel('Im[Impedance (m/s)]', fontdict=fontdict) # else: # plt.setp(ax.yaxis.get_ticklabels(), visible=False) ax.set_xscale('log', nonposx='clip') ax.set_xlim(xmin=10**(np.floor(np.log10(period[0]))) * 1.01, xmax=10**(np.ceil(np.log10(period[-1]))) * .99) ax.grid(True, alpha=.25) if plotr == True: for rr in range(nr): if self.color_mode == 'color': cxy = (0,.4+float(rr)/(3*nr),0) cyx = (.7+float(rr)/(4*nr),.13,.63-float(rr)/(4*nr)) elif self.color_mode == 'bw': cxy = (1-1.25/(rr+2.),1-1.25/(rr+2.),1-1.25/(rr+2.)) cyx = (1-1.25/(rr+2.),1-1.25/(rr+2.),1-1.25/(rr+2.)) resp_z = self.resp_object[rr].z_resp[jj] resp_z_err = (data_z-resp_z)/(data_z_err) resp_z_object = mtz.Z(z_array=resp_z, z_err_array=resp_z_err, freq=1./period) rrp = mtplottools.ResPhase(resp_z_object) rms = resp_z_err.std() rms_xx = resp_z_err[:, 0, 0].std() rms_xy = resp_z_err[:, 0, 1].std() rms_yx = resp_z_err[:, 1, 0].std() rms_yy = resp_z_err[:, 1, 1].std() print(' --- response {0} ---'.format(rr)) print(' RMS = {:.2f}'.format(rms)) print(' RMS_xx = {:.2f}'.format(rms_xx)) print(' RMS_xy = {:.2f}'.format(rms_xy)) print(' RMS_yx = {:.2f}'.format(rms_yx)) print(' RMS_yy = {:.2f}'.format(rms_yy)) if self.plot_style == 1: if self.plot_component == 2: if self.plot_z == False: #plot resistivity rerxy = self.plot_errorbar(axrxy, period[nzxy], rrp.resxy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axryx, period[nzyx], rrp.resyx[nzyx], None, cyx, self.mtmd) #plot phase rerxy = self.plot_errorbar(axpxy, period[nzxy], rrp.phasexy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axpyx, period[nzyx], rrp.phaseyx[nzyx], None, cyx, self.mtmd) elif self.plot_z == True: #plot real rerxy = self.plot_errorbar(axrxy, period[nzxy], resp_z[nzxy,0,1].real, None, cxy, self.mted) reryx = self.plot_errorbar(axryx, period[nzyx], resp_z[nzyx,1,0].real, None, cyx, self.mtmd) #plot phase rerxy = self.plot_errorbar(axpxy, period[nzxy], resp_z[nzxy,0,1].imag, None, cxy, self.mted) reryx = self.plot_errorbar(axpyx, period[nzyx], resp_z[nzyx,1,0].imag, None, cyx, self.mtmd) line_list[0] += [rerxy[0]] line_list[1] += [reryx[0]] label_list[0] += ['$Z^m_{xy}$ '+ 'rms={0:.2f}'.format(rms_xy)] label_list[1] += ['$Z^m_{yx}$ '+ 'rms={0:.2f}'.format(rms_yx)] elif self.plot_component == 4: if self.plot_z == False: #plot resistivity rerxx= self.plot_errorbar(axrxx, period[nzxx], rrp.resxx[nzxx], None, cxy, self.mted) rerxy = self.plot_errorbar(axrxy, period[nzxy], rrp.resxy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axryx, period[nzyx], rrp.resyx[nzyx], None, cyx, self.mtmd) reryy = self.plot_errorbar(axryy, period[nzyy], rrp.resyy[nzyy], None, cyx, self.mtmd) #plot phase rerxx= self.plot_errorbar(axpxx, period[nzxx], rrp.phasexx[nzxx], None, cxy, self.mted) rerxy = self.plot_errorbar(axpxy, period[nzxy], rrp.phasexy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axpyx, period[nzyx], rrp.phaseyx[nzyx], None, cyx, self.mtmd) reryy = self.plot_errorbar(axpyy, period[nzyy], rrp.phaseyy[nzyy], None, cyx, self.mtmd) elif self.plot_z == True: #plot real rerxx = self.plot_errorbar(axrxx, period[nzxx], resp_z[nzxx,0,0].real, None, cxy, self.mted) rerxy = self.plot_errorbar(axrxy, period[nzxy], resp_z[nzxy,0,1].real, None, cxy, self.mted) reryx = self.plot_errorbar(axryx, period[nzyx], resp_z[nzyx,1,0].real, None, cyx, self.mtmd) reryy = self.plot_errorbar(axryy, period[nzyy], resp_z[nzyy,1,1].real, None, cyx, self.mtmd) #plot phase rerxx = self.plot_errorbar(axpxx, period[nzxx], resp_z[nzxx,0,0].imag, None, cxy, self.mted) rerxy = self.plot_errorbar(axpxy, period[nzxy], resp_z[nzxy,0,1].imag, None, cxy, self.mted) reryx = self.plot_errorbar(axpyx, period[nzyx], resp_z[nzyx,1,0].imag, None, cyx, self.mtmd) reryy = self.plot_errorbar(axpyy, period[nzyy], resp_z[nzyy,1,1].imag, None, cyx, self.mtmd) line_list[0] += [rerxx[0]] line_list[1] += [rerxy[0]] line_list[2] += [reryx[0]] line_list[3] += [reryy[0]] label_list[0] += ['$Z^m_{xx}$ '+ 'rms={0:.2f}'.format(rms_xx)] label_list[1] += ['$Z^m_{xy}$ '+ 'rms={0:.2f}'.format(rms_xy)] label_list[2] += ['$Z^m_{yx}$ '+ 'rms={0:.2f}'.format(rms_yx)] label_list[3] += ['$Z^m_{yy}$ '+ 'rms={0:.2f}'.format(rms_yy)] elif self.plot_style == 2: if self.plot_component == 2: if self.plot_z == False: #plot resistivity rerxy = self.plot_errorbar(axrxy, period[nzxy], rrp.resxy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axrxy, period[nzyx], rrp.resyx[nzyx], None, cyx, self.mtmd) #plot phase rerxy = self.plot_errorbar(axpxy, period[nzxy], rrp.phasexy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axpxy, period[nzyx], rrp.phaseyx[nzyx], None, cyx, self.mtmd) elif self.plot_z == True: #plot real rerxy = self.plot_errorbar(axrxy, period[nzxy], resp_z[nzxy,0,1].real, None, cxy, self.mted) reryx = self.plot_errorbar(axrxy, period[nzyx], resp_z[nzyx,1,0].real, None, cyx, self.mtmd) #plot phase rerxy = self.plot_errorbar(axpxy, period[nzxy], resp_z[nzxy,0,1].imag, None, cyx, self.mted) reryx = self.plot_errorbar(axpxy, period[nzyx], resp_z[nzyx,1,0].imag, None, cyx, self.mtmd) line_list += [rerxy[0], reryx[0]] label_list += ['$Z^m_{xy}$ '+ 'rms={0:.2f}'.format(rms_xy), '$Z^m_{yx}$ '+ 'rms={0:.2f}'.format(rms_yx)] elif self.plot_component == 4: if self.plot_z == False: #plot resistivity rerxx= self.plot_errorbar(axrxx, period[nzxx], rrp.resxx[nzxx], None, cxy, self.mted) rerxy = self.plot_errorbar(axrxy, period[nzxy], rrp.resxy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axrxy, period[nzyx], rrp.resyx[nzyx], None, cyx, self.mtmd) reryy = self.plot_errorbar(axrxx, period[nzyy], rrp.resyy[nzyy], None, cyx, self.mtmd) #plot phase rerxx= self.plot_errorbar(axpxx, period[nzxx], rrp.phasexx[nzxx], None, cxy, self.mted) rerxy = self.plot_errorbar(axpxy, period[nzxy], rrp.phasexy[nzxy], None, cxy, self.mted) reryx = self.plot_errorbar(axpxy, period[nzyx], rrp.phaseyx[nzyx], None, cyx, self.mtmd) reryy = self.plot_errorbar(axpxx, period[nzyy], rrp.phaseyy[nzyy], None, cyx, self.mtmd) elif self.plot_z == True: #plot real rerxx = self.plot_errorbar(axrxx, period[nzxx], resp_z[nzxx,0,0].real, None, cxy, self.mted) rerxy = self.plot_errorbar(axrxy, period[nzxy], resp_z[nzxy,0,1].real, None, cxy, self.mted) reryx = self.plot_errorbar(axrxy, period[nzyx], resp_z[nzyx,1,0].real, None, cyx, self.mtmd) reryy = self.plot_errorbar(axrxx, period[nzyy], resp_z[nzyy,1,1].real, None, cyx, self.mtmd) #plot phase rerxx = self.plot_errorbar(axpxx, period[nzxx], resp_z[nzxx,0,0].imag, None, cxy, self.mted) rerxy = self.plot_errorbar(axpxy, period[nzxy], resp_z[nzxy,0,1].imag, None, cxy, self.mted) reryx = self.plot_errorbar(axpxy, period[nzyx], resp_z[nzyx,1,0].imag, None, cyx, self.mtmd) reryy = self.plot_errorbar(axpxx, period[nzyy], resp_z[nzyy,1,1].imag, None, cyx, self.mtmd) line_list[0] += [rerxy[0], reryx[0]] line_list[1] += [rerxx[0], reryy[0]] label_list[0] += ['$Z^m_{xy}$ '+ 'rms={0:.2f}'.format(rms_xy), '$Z^m_{yx}$ '+ 'rms={0:.2f}'.format(rms_yx)] label_list[1] += ['$Z^m_{xx}$ '+ 'rms={0:.2f}'.format(rms_xx), '$Z^m_{yy}$ '+ 'rms={0:.2f}'.format(rms_yy)] #make legends if self.plot_style == 1: for aa, ax in enumerate(ax_list[0:self.plot_component]): ax.legend(line_list[aa], label_list[aa], loc=self.legend_loc, markerscale=self.legend_marker_scale, borderaxespad=self.legend_border_axes_pad, labelspacing=self.legend_label_spacing, handletextpad=self.legend_handle_text_pad, borderpad=self.legend_border_pad, prop={'size':max([self.font_size/nr, 5])}) if self.plot_style == 2: if self.plot_component == 2: axrxy.legend(line_list, label_list, loc=self.legend_loc, markerscale=self.legend_marker_scale, borderaxespad=self.legend_border_axes_pad, labelspacing=self.legend_label_spacing, handletextpad=self.legend_handle_text_pad, borderpad=self.legend_border_pad, prop={'size':max([self.font_size/nr, 5])}) else: for aa, ax in enumerate(ax_list[0:self.plot_component/2]): ax.legend(line_list[aa], label_list[aa], loc=self.legend_loc, markerscale=self.legend_marker_scale, borderaxespad=self.legend_border_axes_pad, labelspacing=self.legend_label_spacing, handletextpad=self.legend_handle_text_pad, borderpad=self.legend_border_pad, prop={'size':max([self.font_size/nr, 5])}) def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ for fig in self.fig_list: plt.close(fig) self.plot() def save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_fig='y'): """ save_plot will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi == None: fig_dpi = self.fig_dpi if os.path.isdir(save_fn) == False: file_format = save_fn[-3:] self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') else: save_fn = os.path.join(save_fn, '_L2.'+ file_format) self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_fig == 'y': plt.clf() plt.close(self.fig) else: pass self.fig_fn = save_fn print('Saved figure to: '+self.fig_fn) def update_plot(self): """ update any parameters that where changed using the built-in draw from canvas. Use this if you change an of the .fig or axes properties :Example: :: >>> # to change the grid lines to only be on the major ticks >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotAllResponses() >>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]] >>> ps1.update_plot() """ self.fig.canvas.draw() def __str__(self): """ rewrite the string builtin to give a useful message """ return ("Plots data vs model response computed by WS3DINV") #============================================================================== # plot depth slices #============================================================================== class PlotDepthSlice(object): """ Plots depth slices of resistivity model :Example: :: >>> import mtpy.modeling.ws3dinv as ws >>> mfn = r"/home/MT/ws3dinv/Inv1/Test_model.00" >>> sfn = r"/home/MT/ws3dinv/Inv1/WSStationLocations.txt" >>> # plot just first layer to check the formating >>> pds = ws.PlotDepthSlice(model_fn=mfn, station_fn=sfn, >>> ... depth_index=0, save_plots='n') >>> #move color bar up >>> pds.cb_location >>> (0.64500000000000002, 0.14999999999999997, 0.3, 0.025) >>> pds.cb_location = (.645, .175, .3, .025) >>> pds.redraw_plot() >>> #looks good now plot all depth slices and save them to a folder >>> pds.save_path = r"/home/MT/ws3dinv/Inv1/DepthSlices" >>> pds.depth_index = None >>> pds.save_plots = 'y' >>> pds.redraw_plot() ======================= =================================================== Attributes Description ======================= =================================================== cb_location location of color bar (x, y, width, height) *default* is None, automatically locates cb_orientation [ 'vertical' | 'horizontal' ] *default* is horizontal cb_pad padding between axes and colorbar *default* is None cb_shrink percentage to shrink colorbar by *default* is None climits (min, max) of resistivity color on log scale *default* is (0, 4) cmap name of color map *default* is 'jet_r' data_fn full path to data file depth_index integer value of depth slice index, shallowest layer is 0 dscale scaling parameter depending on map_scale ew_limits (min, max) plot limits in e-w direction in map_scale units. *default* is None, sets viewing area to the station area fig_aspect aspect ratio of plot. *default* is 1 fig_dpi resolution of figure in dots-per-inch. *default* is 300 fig_list list of matplotlib.figure instances for each depth slice fig_size [width, height] in inches of figure size *default* is [6, 6] font_size size of ticklabel font in points, labels are font_size+2. *default* is 7 grid_east relative location of grid nodes in e-w direction in map_scale units grid_north relative location of grid nodes in n-s direction in map_scale units grid_z relative location of grid nodes in z direction in map_scale units initial_fn full path to initial file map_scale [ 'km' | 'm' ] distance units of map. *default* is km mesh_east np.meshgrid(grid_east, grid_north, indexing='ij') mesh_north np.meshgrid(grid_east, grid_north, indexing='ij') model_fn full path to model file nodes_east relative distance betwen nodes in e-w direction in map_scale units nodes_north relative distance betwen nodes in n-s direction in map_scale units nodes_z relative distance betwen nodes in z direction in map_scale units ns_limits (min, max) plot limits in n-s direction in map_scale units. *default* is None, sets viewing area to the station area plot_grid [ 'y' | 'n' ] 'y' to plot mesh grid lines. *default* is 'n' plot_yn [ 'y' | 'n' ] 'y' to plot on instantiation res_model np.ndarray(n_north, n_east, n_vertical) of model resistivity values in linear scale save_path path to save figures to save_plots [ 'y' | 'n' ] 'y' to save depth slices to save_path station_east location of stations in east direction in map_scale units station_fn full path to station locations file station_names station names station_north location of station in north direction in map_scale units subplot_bottom distance between axes and bottom of figure window subplot_left distance between axes and left of figure window subplot_right distance between axes and right of figure window subplot_top distance between axes and top of figure window title titiel of plot *default* is depth of slice xminorticks location of xminorticks yminorticks location of yminorticks ======================= =================================================== """ def __init__(self, model_fn=None, data_fn=None, station_fn=None, initial_fn=None, **kwargs): self.model_fn = model_fn self.data_fn = data_fn self.station_fn = station_fn self.initial_fn = initial_fn self.save_path = kwargs.pop('save_path', None) if self.model_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.model_fn) elif self.initial_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.initial_fn) if self.save_path is not None: if not os.path.exists(self.save_path): os.mkdir(self.save_path) self.save_plots = kwargs.pop('save_plots', 'y') self.depth_index = kwargs.pop('depth_index', None) self.map_scale = kwargs.pop('map_scale', 'km') #make map scale if self.map_scale=='km': self.dscale=1000. elif self.map_scale=='m': self.dscale=1. self.ew_limits = kwargs.pop('ew_limits', None) self.ns_limits = kwargs.pop('ns_limits', None) self.plot_grid = kwargs.pop('plot_grid', 'n') self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.fig_aspect = kwargs.pop('fig_aspect', 1) self.title = kwargs.pop('title', 'on') self.fig_list = [] self.xminorticks = kwargs.pop('xminorticks', 1000) self.yminorticks = kwargs.pop('yminorticks', 1000) self.climits = kwargs.pop('climits', (0,4)) self.cmap = kwargs.pop('cmap', 'jet_r') self.font_size = kwargs.pop('font_size', 8) self.cb_shrink = kwargs.pop('cb_shrink', .8) self.cb_pad = kwargs.pop('cb_pad', .01) self.cb_orientation = kwargs.pop('cb_orientation', 'horizontal') self.cb_location = kwargs.pop('cb_location', None) self.subplot_right = .99 self.subplot_left = .085 self.subplot_top = .92 self.subplot_bottom = .1 self.res_model = None self.grid_east = None self.grid_north = None self.grid_z = None self.nodes_east = None self.nodes_north = None self.nodes_z = None self.mesh_east = None self.mesh_north = None self.station_east = None self.station_north = None self.station_names = None self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_yn == 'y': self.plot() def read_files(self): """ read in the files to get appropriate information """ #--> read in model file if self.model_fn is not None: if os.path.isfile(self.model_fn) == True: wsmodel = WSModel(self.model_fn) self.res_model = wsmodel.res_model self.grid_east = wsmodel.grid_east/self.dscale self.grid_north = wsmodel.grid_north/self.dscale self.grid_z = wsmodel.grid_z/self.dscale self.nodes_east = wsmodel.nodes_east/self.dscale self.nodes_north = wsmodel.nodes_north/self.dscale self.nodes_z = wsmodel.nodes_z/self.dscale else: raise mtex.MTpyError_file_handling( '{0} does not exist, check path'.format(self.model_fn)) #--> read in data file to get station locations if self.data_fn is not None: if os.path.isfile(self.data_fn) == True: wsdata = WSData() wsdata.read_data_file(self.data_fn) self.station_east = wsdata.data['east']/self.dscale self.station_north = wsdata.data['north']/self.dscale self.station_names = wsdata.data['station'] else: print('Could not find data file {0}'.format(self.data_fn)) #--> read in station file if self.station_fn is not None: if os.path.isfile(self.station_fn) == True: wsstations = WSStation(self.station_fn) wsstations.read_station_file() self.station_east = wsstations.east/self.dscale self.station_north = wsstations.north/self.dscale self.station_names = wsstations.names else: print('Could not find station file {0}'.format(self.station_fn)) #--> read in initial file if self.initial_fn is not None: if os.path.isfile(self.initial_fn) == True: wsmesh = WSMesh() wsmesh.read_initial_file(self.initial_fn) self.grid_east = wsmesh.grid_east/self.dscale self.grid_north = wsmesh.grid_north/self.dscale self.grid_z = wsmesh.grid_z/self.dscale self.nodes_east = wsmesh.nodes_east/self.dscale self.nodes_north = wsmesh.nodes_north/self.dscale self.nodes_z = wsmesh.nodes_z/self.dscale #need to convert index values to resistivity values rdict = dict([(ii,res) for ii,res in enumerate(wsmesh.res_list,1)]) for ii in range(len(wsmesh.res_list)): self.res_model[np.where(wsmesh.res_model==ii+1)] = \ rdict[ii+1] else: raise mtex.MTpyError_file_handling( '{0} does not exist, check path'.format(self.initial_fn)) if self.initial_fn is None and self.model_fn is None: raise mtex.MTpyError_inputarguments('Need to input either a model' ' file or initial file.') def plot(self): """ plot depth slices """ #--> get information from files self.read_files() fdict = {'size':self.font_size+2, 'weight':'bold'} cblabeldict={-2:'$10^{-3}$',-1:'$10^{-1}$',0:'$10^{0}$',1:'$10^{1}$', 2:'$10^{2}$',3:'$10^{3}$',4:'$10^{4}$',5:'$10^{5}$', 6:'$10^{6}$',7:'$10^{7}$',8:'$10^{8}$'} #create an list of depth slices to plot if self.depth_index == None: zrange = list(range(self.grid_z.shape[0])) elif type(self.depth_index) is int: zrange = [self.depth_index] elif type(self.depth_index) is list or \ type(self.depth_index) is np.ndarray: zrange = self.depth_index #set the limits of the plot if self.ew_limits == None: if self.station_east is not None: xlimits = (np.floor(self.station_east.min()), np.ceil(self.station_east.max())) else: xlimits = (self.grid_east[5], self.grid_east[-5]) else: xlimits = self.ew_limits if self.ns_limits == None: if self.station_north is not None: ylimits = (np.floor(self.station_north.min()), np.ceil(self.station_north.max())) else: ylimits = (self.grid_north[5], self.grid_north[-5]) else: ylimits = self.ns_limits #make a mesh grid of north and east self.mesh_east, self.mesh_north = np.meshgrid(self.grid_east, self.grid_north, indexing='ij') plt.rcParams['font.size'] = self.font_size #--> plot depths into individual figures for ii in zrange: depth = '{0:.3f} ({1})'.format(self.grid_z[ii], self.map_scale) fig = plt.figure(depth, figsize=self.fig_size, dpi=self.fig_dpi) plt.clf() ax1 = fig.add_subplot(1, 1, 1, aspect=self.fig_aspect) plot_res = np.log10(self.res_model[:, :, ii].T) mesh_plot = ax1.pcolormesh(self.mesh_east, self.mesh_north, plot_res, cmap=self.cmap, vmin=self.climits[0], vmax=self.climits[1]) #plot the stations if self.station_east is not None: for ee, nn in zip(self.station_east, self.station_north): ax1.text(ee, nn, '*', verticalalignment='center', horizontalalignment='center', fontdict={'size':5, 'weight':'bold'}) #set axis properties ax1.set_xlim(xlimits) ax1.set_ylim(ylimits) ax1.xaxis.set_minor_locator(MultipleLocator(self.xminorticks/self.dscale)) ax1.yaxis.set_minor_locator(MultipleLocator(self.yminorticks/self.dscale)) ax1.set_ylabel('Northing ('+self.map_scale+')',fontdict=fdict) ax1.set_xlabel('Easting ('+self.map_scale+')',fontdict=fdict) ax1.set_title('Depth = {0}'.format(depth), fontdict=fdict) #plot the grid if desired if self.plot_grid == 'y': east_line_xlist = [] east_line_ylist = [] for xx in self.grid_east: east_line_xlist.extend([xx, xx]) east_line_xlist.append(None) east_line_ylist.extend([self.grid_north.min(), self.grid_north.max()]) east_line_ylist.append(None) ax1.plot(east_line_xlist, east_line_ylist, lw=.25, color='k') north_line_xlist = [] north_line_ylist = [] for yy in self.grid_north: north_line_xlist.extend([self.grid_east.min(), self.grid_east.max()]) north_line_xlist.append(None) north_line_ylist.extend([yy, yy]) north_line_ylist.append(None) ax1.plot(north_line_xlist, north_line_ylist, lw=.25, color='k') #plot the colorbar if self.cb_location is None: if self.cb_orientation == 'horizontal': self.cb_location = (ax1.axes.figbox.bounds[3]-.225, ax1.axes.figbox.bounds[1]+.05,.3,.025) elif self.cb_orientation == 'vertical': self.cb_location = ((ax1.axes.figbox.bounds[2]-.15, ax1.axes.figbox.bounds[3]-.21,.025,.3)) ax2 = fig.add_axes(self.cb_location) cb = mcb.ColorbarBase(ax2, cmap=self.cmap, norm=Normalize(vmin=self.climits[0], vmax=self.climits[1]), orientation=self.cb_orientation) if self.cb_orientation == 'horizontal': cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5,1.3) elif self.cb_orientation == 'vertical': cb.ax.yaxis.set_label_position('right') cb.ax.yaxis.set_label_coords(1.25,.5) cb.ax.yaxis.tick_left() cb.ax.tick_params(axis='y',direction='in') cb.set_label('Resistivity ($\Omega \cdot$m)', fontdict={'size':self.font_size+1}) cb.set_ticks(np.arange(self.climits[0],self.climits[1]+1)) cb.set_ticklabels([cblabeldict[cc] for cc in np.arange(self.climits[0], self.climits[1]+1)]) self.fig_list.append(fig) #--> save plots to a common folder if self.save_plots == 'y': fig.savefig(os.path.join(self.save_path, "Depth_{}_{:.4f}.png".format(ii, self.grid_z[ii])), dpi=self.fig_dpi, bbox_inches='tight') fig.clear() plt.close() else: pass def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ for fig in self.fig_list: plt.close(fig) self.plot() def update_plot(self, fig): """ update any parameters that where changed using the built-in draw from canvas. Use this if you change an of the .fig or axes properties :Example: :: >>> # to change the grid lines to only be on the major ticks >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotAllResponses() >>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]] >>> ps1.update_plot() """ fig.canvas.draw() def __str__(self): """ rewrite the string builtin to give a useful message """ return ("Plots depth slices of model from WS3DINV") #============================================================================== # plot phase tensors #============================================================================== class PlotPTMaps(mtplottools.MTEllipse): """ Plot phase tensor maps including residual pt if response file is input. :Plot only data for one period: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> ptm = ws.PlotPTMaps(data_fn=dfn, plot_period_list=[0]) :Plot data and model response: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> rfn = r"/home/MT/ws3dinv/Inv1/Test_resp.00" >>> mfn = r"/home/MT/ws3dinv/Inv1/Test_model.00" >>> ptm = ws.PlotPTMaps(data_fn=dfn, resp_fn=rfn, model_fn=mfn, >>> ... plot_period_list=[0]) >>> # adjust colorbar >>> ptm.cb_res_pad = 1.25 >>> ptm.redraw_plot() ========================== ================================================ Attributes Description ========================== ================================================ cb_pt_pad percentage from top of axes to place pt color bar. *default* is .90 cb_res_pad percentage from bottom of axes to place resistivity color bar. *default* is 1.2 cb_residual_tick_step tick step for residual pt. *default* is 3 cb_tick_step tick step for phase tensor color bar, *default* is 45 data np.ndarray(n_station, n_periods, 2, 2) impedance tensors for station data data_fn full path to data fle dscale scaling parameter depending on map_scale ellipse_cmap color map for pt ellipses. *default* is mt_bl2gr2rd ellipse_colorby [ 'skew' | 'skew_seg' | 'phimin' | 'phimax'| 'phidet' | 'ellipticity' ] parameter to color ellipses by. *default* is 'phimin' ellipse_range (min, max, step) min and max of colormap, need to input step if plotting skew_seg ellipse_size relative size of ellipses in map_scale ew_limits limits of plot in e-w direction in map_scale units. *default* is None, scales to station area fig_aspect aspect of figure. *default* is 1 fig_dpi resolution in dots-per-inch. *default* is 300 fig_list list of matplotlib.figure instances for each figure plotted. fig_size [width, height] in inches of figure window *default* is [6, 6] font_size font size of ticklabels, axes labels are font_size+2. *default* is 7 grid_east relative location of grid nodes in e-w direction in map_scale units grid_north relative location of grid nodes in n-s direction in map_scale units grid_z relative location of grid nodes in z direction in map_scale units initial_fn full path to initial file map_scale [ 'km' | 'm' ] distance units of map. *default* is km mesh_east np.meshgrid(grid_east, grid_north, indexing='ij') mesh_north np.meshgrid(grid_east, grid_north, indexing='ij') model_fn full path to model file nodes_east relative distance betwen nodes in e-w direction in map_scale units nodes_north relative distance betwen nodes in n-s direction in map_scale units nodes_z relative distance betwen nodes in z direction in map_scale units ns_limits (min, max) limits of plot in n-s direction *default* is None, viewing area is station area pad_east padding from extreme stations in east direction pad_north padding from extreme stations in north direction period_list list of periods from data plot_grid [ 'y' | 'n' ] 'y' to plot grid lines *default* is 'n' plot_period_list list of period index values to plot *default* is None plot_yn ['y' | 'n' ] 'y' to plot on instantiation *default* is 'y' res_cmap colormap for resisitivity values. *default* is 'jet_r' res_limits (min, max) resistivity limits in log scale *default* is (0, 4) res_model np.ndarray(n_north, n_east, n_vertical) of model resistivity values in linear scale residual_cmap color map for pt residuals. *default* is 'mt_wh2or' resp np.ndarray(n_stations, n_periods, 2, 2) impedance tensors for model response resp_fn full path to response file save_path directory to save figures to save_plots [ 'y' | 'n' ] 'y' to save plots to save_path station_east location of stations in east direction in map_scale units station_fn full path to station locations file station_names station names station_north location of station in north direction in map_scale units subplot_bottom distance between axes and bottom of figure window subplot_left distance between axes and left of figure window subplot_right distance between axes and right of figure window subplot_top distance between axes and top of figure window title titiel of plot *default* is depth of slice xminorticks location of xminorticks yminorticks location of yminorticks ========================== ================================================ """ def __init__(self, data_fn=None, resp_fn=None, station_fn=None, model_fn=None, initial_fn=None, **kwargs): self.model_fn = model_fn self.data_fn = data_fn self.station_fn = station_fn self.resp_fn = resp_fn self.initial_fn = initial_fn self.save_path = kwargs.pop('save_path', None) if self.model_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.model_fn) elif self.initial_fn is not None and self.save_path is None: self.save_path = os.path.dirname(self.initial_fn) if self.save_path is not None: if not os.path.exists(self.save_path): os.mkdir(self.save_path) self.save_plots = kwargs.pop('save_plots', 'y') self.plot_period_list = kwargs.pop('plot_period_list', None) self.map_scale = kwargs.pop('map_scale', 'km') #make map scale if self.map_scale=='km': self.dscale=1000. elif self.map_scale=='m': self.dscale=1. self.ew_limits = kwargs.pop('ew_limits', None) self.ns_limits = kwargs.pop('ns_limits', None) self.pad_east = kwargs.pop('pad_east', 2) self.pad_north = kwargs.pop('pad_north', 2) self.plot_grid = kwargs.pop('plot_grid', 'n') self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.fig_aspect = kwargs.pop('fig_aspect', 1) self.title = kwargs.pop('title', 'on') self.fig_list = [] self.xminorticks = kwargs.pop('xminorticks', 1000) self.yminorticks = kwargs.pop('yminorticks', 1000) self.residual_cmap = kwargs.pop('residual_cmap', 'mt_wh2or') self.font_size = kwargs.pop('font_size', 7) self.cb_tick_step = kwargs.pop('cb_tick_step', 45) self.cb_residual_tick_step = kwargs.pop('cb_residual_tick_step', 3) self.cb_pt_pad = kwargs.pop('cb_pt_pad', .90) self.cb_res_pad = kwargs.pop('cb_res_pad', 1.22) self.res_limits = kwargs.pop('res_limits', (0,4)) self.res_cmap = kwargs.pop('res_cmap', 'jet_r') #--> set the ellipse properties ------------------- self._ellipse_dict = kwargs.pop('ellipse_dict', {}) self._read_ellipse_dict() self.subplot_right = .99 self.subplot_left = .085 self.subplot_top = .92 self.subplot_bottom = .1 self.subplot_hspace = .2 self.subplot_wspace = .05 self.res_model = None self.grid_east = None self.grid_north = None self.grid_z = None self.nodes_east = None self.nodes_north = None self.nodes_z = None self.mesh_east = None self.mesh_north = None self.station_east = None self.station_north = None self.station_names = None self.data = None self.resp = None self.period_list = None self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_yn == 'y': self.plot() def _get_pt(self): """ get phase tensors """ #--> read in data file if self.data_fn is None: raise mtex.MTpyError_inputarguments('Need to input a data file') wsdata = WSData() wsdata.read_data_file(self.data_fn, station_fn=self.station_fn) self.data = wsdata.z_data self.period_list = wsdata.period_list self.station_east = wsdata.station_east/self.dscale self.station_north = wsdata.station_north/self.dscale self.station_names = wsdata.station_names if self.plot_period_list is None: self.plot_period_list = self.period_list else: if type(self.plot_period_list) is list: #check if entries are index values or actual periods if type(self.plot_period_list[0]) is int: self.plot_period_list = [self.period_list[ii] for ii in self.plot_period_list] else: pass elif type(self.plot_period_list) is int: self.plot_period_list = self.period_list[self.plot_period_list] #--> read model file if self.model_fn is not None: wsmodel = WSModel(self.model_fn) self.res_model = wsmodel.res_model self.grid_east = wsmodel.grid_east/self.dscale self.grid_north = wsmodel.grid_north/self.dscale self.grid_z = wsmodel.grid_z/self.dscale self.mesh_east, self.mesh_north = np.meshgrid(self.grid_east, self.grid_north, indexing='ij') #--> read response file if self.resp_fn is not None: wsresp = WSResponse(self.resp_fn) self.resp = wsresp.z_resp def plot(self): """ plot phase tensor maps for data and or response, each figure is of a different period. If response is input a third column is added which is the residual phase tensor showing where the model is not fitting the data well. The data is plotted in km in units of ohm-m. Inputs: data_fn = full path to data file resp_fn = full path to response file, if none just plots data sites_fn = full path to sites file periodlst = indicies of periods you want to plot esize = size of ellipses as: 0 = phase tensor ellipse 1 = phase tensor residual 2 = resistivity tensor ellipse 3 = resistivity tensor residual ecolor = 'phimin' for coloring with phimin or 'beta' for beta coloring colormm = list of min and max coloring for plot, list as follows: 0 = phase tensor min and max for ecolor in degrees 1 = phase tensor residual min and max [0,1] 2 = resistivity tensor coloring as resistivity on log scale 3 = resistivity tensor residual coloring as resistivity on linear scale xpad = padding of map from stations at extremities (km) units = 'mv' to convert to Ohm-m dpi = dots per inch of figure """ self._get_pt() plt.rcParams['font.size'] = self.font_size plt.rcParams['figure.subplot.left'] = self.subplot_left plt.rcParams['figure.subplot.right'] = self.subplot_right plt.rcParams['figure.subplot.bottom'] = self.subplot_bottom plt.rcParams['figure.subplot.top'] = self.subplot_top gs = gridspec.GridSpec(1, 3, hspace=self.subplot_hspace, wspace=self.subplot_wspace) font_dict = {'size':self.font_size+2, 'weight':'bold'} n_stations = self.data.shape[0] #set some local parameters ckmin = float(self.ellipse_range[0]) ckmax = float(self.ellipse_range[1]) try: ckstep = float(self.ellipse_range[2]) except IndexError: if self.ellipse_cmap == 'mt_seg_bl2wh2rd': raise ValueError('Need to input range as (min, max, step)') else: ckstep = 3 nseg = float((ckmax-ckmin)/(2*ckstep)) if self.ew_limits == None: if self.station_east is not None: self.ew_limits = (np.floor(self.station_east.min())- self.pad_east, np.ceil(self.station_east.max())+ self.pad_east) else: self.ew_limits = (self.grid_east[5], self.grid_east[-5]) if self.ns_limits == None: if self.station_north is not None: self.ns_limits = (np.floor(self.station_north.min())- self.pad_north, np.ceil(self.station_north.max())+ self.pad_north) else: self.ns_limits = (self.grid_north[5], self.grid_north[-5]) for ff, per in enumerate(self.plot_period_list): print('Plotting Period: {0:.5g}'.format(per)) fig = plt.figure('{0:.5g}'.format(per), figsize=self.fig_size, dpi=self.fig_dpi) fig.clf() if self.resp_fn is not None: axd = fig.add_subplot(gs[0, 0], aspect='equal') axm = fig.add_subplot(gs[0, 1], aspect='equal') axr = fig.add_subplot(gs[0, 2], aspect='equal') ax_list = [axd, axm, axr] else: axd = fig.add_subplot(gs[0, :], aspect='equal') ax_list = [axd] #plot model below the phase tensors if self.model_fn is not None: approx_depth, d_index = estimate_skin_depth(self.res_model, self.grid_z, per, dscale=self.dscale) for ax in ax_list: plot_res = np.log10(self.res_model[:, :, d_index].T) ax.pcolormesh(self.mesh_east, self.mesh_north, plot_res, cmap=self.res_cmap, vmin=self.res_limits[0], vmax=self.res_limits[1]) #--> get phase tensors pt = mtpt.PhaseTensor(z_array=self.data[:, ff], freq=np.repeat(per, n_stations)) if self.resp is not None: mpt = mtpt.PhaseTensor(z_array=self.resp[:, ff], freq=np.repeat(per, n_stations)) rpt = mtpt.ResidualPhaseTensor(pt_object1=pt, pt_object2=mpt) rpt = rpt.residual_pt rcarray = np.sqrt(abs(rpt.phimin[0]*rpt.phimax[0])) rcmin = np.floor(rcarray.min()) rcmax = np.floor(rcarray.max()) #--> get color array if self.ellipse_cmap == 'mt_seg_bl2wh2rd': bounds = np.arange(ckmin, ckmax+ckstep, ckstep) nseg = float((ckmax-ckmin)/(2*ckstep)) #get the properties to color the ellipses by if self.ellipse_colorby == 'phiminang' or \ self.ellipse_colorby == 'phimin': colorarray = pt.phimin[0] if self.resp is not None: mcarray = mpt.phimin[0] elif self.ellipse_colorby == 'phidet': colorarray = np.sqrt(abs(pt.det[0]))*(180/np.pi) if self.resp is not None: mcarray = np.sqrt(abs(mpt.det[0]))*(180/np.pi) elif self.ellipse_colorby == 'skew' or\ self.ellipse_colorby == 'skew_seg': colorarray = pt.beta[0] if self.resp is not None: mcarray = mpt.beta[0] elif self.ellipse_colorby == 'ellipticity': colorarray = pt.ellipticity[0] if self.resp is not None: mcarray = mpt.ellipticity[0] else: raise NameError(self.ellipse_colorby+' is not supported') #--> plot phase tensor ellipses for each stations for jj in range(n_stations): #-----------plot data phase tensors--------------- eheight = pt.phimin[0][jj]/pt.phimax[0].max()*self.ellipse_size ewidth = pt.phimax[0][jj]/pt.phimax[0].max()*self.ellipse_size ellipse = Ellipse((self.station_east[jj], self.station_north[jj]), width=ewidth, height=eheight, angle=90-pt.azimuth[0][jj]) #get ellipse color if self.ellipse_cmap.find('seg')>0: ellipse.set_facecolor(mtcl.get_plot_color(colorarray[jj], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax, bounds=bounds)) else: ellipse.set_facecolor(mtcl.get_plot_color(colorarray[jj], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax)) axd.add_artist(ellipse) if self.resp is not None: #-----------plot response phase tensors--------------- eheight = mpt.phimin[0][jj]/mpt.phimax[0].max()*\ self.ellipse_size ewidth = mpt.phimax[0][jj]/mpt.phimax[0].max()*\ self.ellipse_size ellipsem = Ellipse((self.station_east[jj], self.station_north[jj]), width=ewidth, height=eheight, angle=90-mpt.azimuth[0][jj]) #get ellipse color if self.ellipse_cmap.find('seg')>0: ellipsem.set_facecolor(mtcl.get_plot_color(mcarray[jj], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax, bounds=bounds)) else: ellipsem.set_facecolor(mtcl.get_plot_color(mcarray[jj], self.ellipse_colorby, self.ellipse_cmap, ckmin, ckmax)) axm.add_artist(ellipsem) #-----------plot residual phase tensors--------------- eheight = rpt.phimin[0][jj]/rpt.phimax[0].max()*\ self.ellipse_size ewidth = rpt.phimax[0][jj]/rpt.phimax[0].max()*\ self.ellipse_size ellipser = Ellipse((self.station_east[jj], self.station_north[jj]), width=ewidth, height=eheight, angle=rpt.azimuth[0][jj]) #get ellipse color if self.ellipse_cmap.find('seg')>0: ellipser.set_facecolor(mtcl.get_plot_color(rcarray[jj], self.ellipse_colorby, self.residual_cmap, rcmin, rcmax, bounds=bounds)) else: ellipser.set_facecolor(mtcl.get_plot_color(rcarray[jj], self.ellipse_colorby, self.residual_cmap, rcmin, rcmax)) axr.add_artist(ellipser) #--> set axes properties # data axd.set_xlim(self.ew_limits) axd.set_ylim(self.ns_limits) axd.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=font_dict) axd.set_ylabel('Northing ({0})'.format(self.map_scale), fontdict=font_dict) #make a colorbar for phase tensors #bb = axd.axes.get_position().bounds bb = axd.get_position().bounds y1 = .25*(2+(self.ns_limits[1]-self.ns_limits[0])/ (self.ew_limits[1]-self.ew_limits[0])) cb_location = (3.35*bb[2]/5+bb[0], y1*self.cb_pt_pad, .295*bb[2], .02) cbaxd = fig.add_axes(cb_location) cbd = mcb.ColorbarBase(cbaxd, cmap=mtcl.cmapdict[self.ellipse_cmap], norm=Normalize(vmin=ckmin, vmax=ckmax), orientation='horizontal') cbd.ax.xaxis.set_label_position('top') cbd.ax.xaxis.set_label_coords(.5, 1.75) cbd.set_label(mtplottools.ckdict[self.ellipse_colorby]) cbd.set_ticks(np.arange(ckmin, ckmax+self.cb_tick_step, self.cb_tick_step)) axd.text(self.ew_limits[0]*.95, self.ns_limits[1]*.95, 'Data', horizontalalignment='left', verticalalignment='top', bbox={'facecolor':'white'}, fontdict={'size':self.font_size+1}) #Model and residual if self.resp is not None: for aa, ax in enumerate([axm, axr]): ax.set_xlim(self.ew_limits) ax.set_ylim(self.ns_limits) ax.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=font_dict) plt.setp(ax.yaxis.get_ticklabels(), visible=False) #make a colorbar ontop of axis bb = ax.axes.get_position().bounds y1 = .25*(2+(self.ns_limits[1]-self.ns_limits[0])/ (self.ew_limits[1]-self.ew_limits[0])) cb_location = (3.35*bb[2]/5+bb[0], y1*self.cb_pt_pad, .295*bb[2], .02) cbax = fig.add_axes(cb_location) if aa == 0: cb = mcb.ColorbarBase(cbax, cmap=mtcl.cmapdict[self.ellipse_cmap], norm=Normalize(vmin=ckmin, vmax=ckmax), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.75) cb.set_label(mtplottools.ckdict[self.ellipse_colorby]) cb.set_ticks(np.arange(ckmin, ckmax+self.cb_tick_step, self.cb_tick_step)) ax.text(self.ew_limits[0]*.95, self.ns_limits[1]*.95, 'Model', horizontalalignment='left', verticalalignment='top', bbox={'facecolor':'white'}, fontdict={'size':self.font_size+1}) else: cb = mcb.ColorbarBase(cbax, cmap=mtcl.cmapdict[self.residual_cmap], norm=Normalize(vmin=rcmin, vmax=rcmax), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.75) cb.set_label(r"$\sqrt{\Phi_{min} \Phi_{max}}$") cb_ticks = np.arange(rcmin, rcmax+self.cb_residual_tick_step, self.cb_residual_tick_step) cb.set_ticks(cb_ticks) ax.text(self.ew_limits[0]*.95, self.ns_limits[1]*.95, 'Residual', horizontalalignment='left', verticalalignment='top', bbox={'facecolor':'white'}, fontdict={'size':self.font_size+1}) if self.model_fn is not None: for ax in ax_list: ax.tick_params(direction='out') bb = ax.axes.get_position().bounds y1 = .25*(2-(self.ns_limits[1]-self.ns_limits[0])/ (self.ew_limits[1]-self.ew_limits[0])) cb_position = (3.0*bb[2]/5+bb[0], y1*self.cb_res_pad, .35*bb[2], .02) cbax = fig.add_axes(cb_position) cb = mcb.ColorbarBase(cbax, cmap=self.res_cmap, norm=Normalize(vmin=self.res_limits[0], vmax=self.res_limits[1]), orientation='horizontal') cb.ax.xaxis.set_label_position('top') cb.ax.xaxis.set_label_coords(.5, 1.5) cb.set_label('Resistivity ($\Omega \cdot$m)') cb_ticks = np.arange(np.floor(self.res_limits[0]), np.ceil(self.res_limits[1]+1), 1) cb.set_ticks(cb_ticks) cb.set_ticklabels([mtplottools.labeldict[ctk] for ctk in cb_ticks]) plt.show() self.fig_list.append(fig) def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ for fig in self.fig_list: plt.close(fig) self.plot() def save_figure(self, save_path=None, fig_dpi=None, file_format='pdf', orientation='landscape', close_fig='y'): """ save_figure will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi == None: fig_dpi = self.fig_dpi if os.path.isdir(save_path) == False: try: os.mkdir(save_path) except: raise IOError('Need to input a correct directory path') for fig in self.fig_list: per = fig.canvas.get_window_title() save_fn = os.path.join(save_path, 'PT_DepthSlice_{0}s.{1}'.format( per, file_format)) fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_fig == 'y': plt.close(fig) else: pass self.fig_fn = save_fn print('Saved figure to: '+self.fig_fn) #============================================================================== # ESTIMATE SKIN DEPTH FOR MODEL #============================================================================== def estimate_skin_depth(res_model, grid_z, period, dscale=1000): """ estimate the skin depth from the resistivity model assuming that delta_skin ~ 500 * sqrt(rho_a*T) Arguments: ----------- **resmodel** : np.ndarray (n_north, n_east, n_z) array of resistivity values for model grid **grid_z** : np.ndarray (n_z) array of depth layers in m or km, be sure to change dscale accordingly **period** : float period in seconds to estimate a skin depth for **dscale** : [1000 | 1] scaling value to scale depth estimation to meters (1) or kilometers (1000) Outputs: --------- **depth** : float estimated skin depth in units according to dscale **depth_index** : int index value of grid_z that corresponds to the estimated skin depth. """ if dscale == 1000: ms = 'km' ds = .5 if dscale == 1: ms = 'm' ds = 500. #find the apparent resisitivity of each depth slice within the station area apparent_res_xy = np.array([res_model[6:-6, 6:-6, 0:ii+1].mean() for ii in range(grid_z.shape[0])]) #calculate the period for each skin depth skin_depth_period = np.array([(zz/ds)**2*(1/rho_a) for zz, rho_a in zip(grid_z, apparent_res_xy)]) #match the period try: period_index = np.where(skin_depth_period >= period)[0][0] except IndexError: period_index = len(skin_depth_period)-1 #get the depth slice depth = grid_z[period_index] print('-'*60) print(' input period {0:.6g} (s)'.format(period)) print(' estimated skin depth period {0:.6g} (s)'.format( skin_depth_period[period_index])) print(' estimate apparent resisitivity {0:.0f} (Ohm-m)'.format( apparent_res_xy[period_index].mean())) print(' estimated depth {0:.6g} ({1})'.format(depth, ms)) print(' index {0}'.format(period_index)) print('-'*60) return depth, period_index #============================================================================== # plot slices #============================================================================== class PlotSlices(object): """ plot all slices and be able to scroll through the model :Example: :: >>> import mtpy.modeling.ws3dinv as ws >>> mfn = r"/home/MT/ws3dinv/Inv1/Test_model.00" >>> sfn = r"/home/MT/ws3dinv/Inv1/WSStationLocations.txt" >>> # plot just first layer to check the formating >>> pds = ws.PlotSlices(model_fn=mfn, station_fn=sfn) ======================= =================================================== Buttons Description ======================= =================================================== 'e' moves n-s slice east by one model block 'w' moves n-s slice west by one model block 'n' moves e-w slice north by one model block 'm' moves e-w slice south by one model block 'd' moves depth slice down by one model block 'u' moves depth slice up by one model block ======================= =================================================== ======================= =================================================== Attributes Description ======================= =================================================== ax_en matplotlib.axes instance for depth slice map view ax_ez matplotlib.axes instance for e-w slice ax_map matplotlib.axes instance for location map ax_nz matplotlib.axes instance for n-s slice climits (min , max) color limits on resistivity in log scale. *default* is (0, 4) cmap name of color map for resisitiviy. *default* is 'jet_r' data_fn full path to data file name dscale scaling parameter depending on map_scale east_line_xlist list of line nodes of east grid for faster plotting east_line_ylist list of line nodes of east grid for faster plotting ew_limits (min, max) limits of e-w in map_scale units *default* is None and scales to station area fig matplotlib.figure instance for figure fig_aspect aspect ratio of plots. *default* is 1 fig_dpi resolution of figure in dots-per-inch *default* is 300 fig_num figure instance number fig_size [width, height] of figure window. *default* is [6,6] font_dict dictionary of font keywords, internally created font_size size of ticklables in points, axes labes are font_size+2. *default* is 7 grid_east relative location of grid nodes in e-w direction in map_scale units grid_north relative location of grid nodes in n-s direction in map_scale units grid_z relative location of grid nodes in z direction in map_scale units index_east index value of grid_east being plotted index_north index value of grid_north being plotted index_vertical index value of grid_z being plotted initial_fn full path to initial file key_press matplotlib.canvas.connect instance map_scale [ 'm' | 'km' ] scale of map. *default* is km mesh_east np.meshgrid(grid_east, grid_north)[0] mesh_en_east np.meshgrid(grid_east, grid_north)[0] mesh_en_north np.meshgrid(grid_east, grid_north)[1] mesh_ez_east np.meshgrid(grid_east, grid_z)[0] mesh_ez_vertical np.meshgrid(grid_east, grid_z)[1] mesh_north np.meshgrid(grid_east, grid_north)[1] mesh_nz_north np.meshgrid(grid_north, grid_z)[0] mesh_nz_vertical np.meshgrid(grid_north, grid_z)[1] model_fn full path to model file ms size of station markers in points. *default* is 2 nodes_east relative distance betwen nodes in e-w direction in map_scale units nodes_north relative distance betwen nodes in n-s direction in map_scale units nodes_z relative distance betwen nodes in z direction in map_scale units north_line_xlist list of line nodes north grid for faster plotting north_line_ylist list of line nodes north grid for faster plotting ns_limits (min, max) limits of plots in n-s direction *default* is None, set veiwing area to station area plot_yn [ 'y' | 'n' ] 'y' to plot on instantiation *default* is 'y' res_model np.ndarray(n_north, n_east, n_vertical) of model resistivity values in linear scale station_color color of station marker. *default* is black station_dict_east location of stations for each east grid row station_dict_north location of stations for each north grid row station_east location of stations in east direction station_fn full path to station file station_font_color color of station label station_font_pad padding between station marker and label station_font_rotation angle of station label station_font_size font size of station label station_font_weight weight of font for station label station_id [min, max] index values for station labels station_marker station marker station_names name of stations station_north location of stations in north direction subplot_bottom distance between axes and bottom of figure window subplot_hspace distance between subplots in vertical direction subplot_left distance between axes and left of figure window subplot_right distance between axes and right of figure window subplot_top distance between axes and top of figure window subplot_wspace distance between subplots in horizontal direction title title of plot z_limits (min, max) limits in vertical direction, ======================= =================================================== """ def __init__(self, model_fn, data_fn=None, station_fn=None, initial_fn=None, **kwargs): self.model_fn = model_fn self.data_fn = data_fn self.station_fn = station_fn self.initial_fn = initial_fn self.fig_num = kwargs.pop('fig_num', 1) self.fig_size = kwargs.pop('fig_size', [6, 6]) self.fig_dpi = kwargs.pop('dpi', 300) self.fig_aspect = kwargs.pop('fig_aspect', 1) self.title = kwargs.pop('title', 'on') self.font_size = kwargs.pop('font_size', 7) self.subplot_wspace = .20 self.subplot_hspace = .30 self.subplot_right = .98 self.subplot_left = .08 self.subplot_top = .97 self.subplot_bottom = .1 self.index_vertical = kwargs.pop('index_vertical', 0) self.index_east = kwargs.pop('index_east', 0) self.index_north = kwargs.pop('index_north', 0) self.cmap = kwargs.pop('cmap', 'jet_r') self.climits = kwargs.pop('climits', (0, 4)) self.map_scale = kwargs.pop('map_scale', 'km') #make map scale if self.map_scale=='km': self.dscale=1000. elif self.map_scale=='m': self.dscale=1. self.ew_limits = kwargs.pop('ew_limits', None) self.ns_limits = kwargs.pop('ns_limits', None) self.z_limits = kwargs.pop('z_limits', None) self.res_model = None self.grid_east = None self.grid_north = None self.grid_z = None self.nodes_east = None self.nodes_north = None self.nodes_z = None self.mesh_east = None self.mesh_north = None self.station_east = None self.station_north = None self.station_names = None self.station_id = kwargs.pop('station_id', None) self.station_font_size = kwargs.pop('station_font_size', 8) self.station_font_pad = kwargs.pop('station_font_pad', 1.0) self.station_font_weight = kwargs.pop('station_font_weight', 'bold') self.station_font_rotation = kwargs.pop('station_font_rotation', 60) self.station_font_color = kwargs.pop('station_font_color', 'k') self.station_marker = kwargs.pop('station_marker', r"$\blacktriangledown$") self.station_color = kwargs.pop('station_color', 'k') self.ms = kwargs.pop('ms', 10) self.plot_yn = kwargs.pop('plot_yn', 'y') if self.plot_yn == 'y': self.plot() def read_files(self): """ read in the files to get appropriate information """ #--> read in model file if self.model_fn is not None: if os.path.isfile(self.model_fn) == True: wsmodel = WSModel(self.model_fn) self.res_model = wsmodel.res_model self.grid_east = wsmodel.grid_east/self.dscale self.grid_north = wsmodel.grid_north/self.dscale self.grid_z = wsmodel.grid_z/self.dscale self.nodes_east = wsmodel.nodes_east/self.dscale self.nodes_north = wsmodel.nodes_north/self.dscale self.nodes_z = wsmodel.nodes_z/self.dscale else: raise mtex.MTpyError_file_handling( '{0} does not exist, check path'.format(self.model_fn)) #--> read in data file to get station locations if self.data_fn is not None: if os.path.isfile(self.data_fn) == True: wsdata = WSData() wsdata.read_data_file(self.data_fn) self.station_east = wsdata.data['east']/self.dscale self.station_north = wsdata.data['north']/self.dscale self.station_names = wsdata.data['station'] else: print('Could not find data file {0}'.format(self.data_fn)) #--> read in station file if self.station_fn is not None: if os.path.isfile(self.station_fn) == True: wsstations = WSStation(self.station_fn) wsstations.read_station_file() self.station_east = wsstations.east/self.dscale self.station_north = wsstations.north/self.dscale self.station_names = wsstations.names else: print('Could not find station file {0}'.format(self.station_fn)) #--> read in initial file if self.initial_fn is not None: if os.path.isfile(self.initial_fn) == True: wsmesh = WSMesh() wsmesh.read_initial_file(self.initial_fn) self.grid_east = wsmesh.grid_east/self.dscale self.grid_north = wsmesh.grid_north/self.dscale self.grid_z = wsmesh.grid_z/self.dscale self.nodes_east = wsmesh.nodes_east/self.dscale self.nodes_north = wsmesh.nodes_north/self.dscale self.nodes_z = wsmesh.nodes_z/self.dscale #need to convert index values to resistivity values rdict = dict([(ii,res) for ii,res in enumerate(wsmesh.res_list,1)]) for ii in range(len(wsmesh.res_list)): self.res_model[np.where(wsmesh.res_model==ii+1)] = \ rdict[ii+1] else: raise mtex.MTpyError_file_handling( '{0} does not exist, check path'.format(self.initial_fn)) if self.initial_fn is None and self.model_fn is None: raise mtex.MTpyError_inputarguments('Need to input either a model' ' file or initial file.') def plot(self): """ plot: east vs. vertical, north vs. vertical, east vs. north """ self.read_files() self.get_station_grid_locations() self.font_dict = {'size':self.font_size+2, 'weight':'bold'} #set the limits of the plot if self.ew_limits == None: if self.station_east is not None: self.ew_limits = (np.floor(self.station_east.min()), np.ceil(self.station_east.max())) else: self.ew_limits = (self.grid_east[5], self.grid_east[-5]) if self.ns_limits == None: if self.station_north is not None: self.ns_limits = (np.floor(self.station_north.min()), np.ceil(self.station_north.max())) else: self.ns_limits = (self.grid_north[5], self.grid_north[-5]) if self.z_limits == None: self.z_limits = (self.grid_z[0]-5000/self.dscale, self.grid_z[-5]) self.fig = plt.figure(self.fig_num, figsize=self.fig_size, dpi=self.fig_dpi) plt.clf() gs = gridspec.GridSpec(2, 2, wspace=self.subplot_wspace, left=self.subplot_left, top=self.subplot_top, bottom=self.subplot_bottom, right=self.subplot_right, hspace=self.subplot_hspace) #make subplots self.ax_ez = self.fig.add_subplot(gs[0, 0], aspect=self.fig_aspect) self.ax_nz = self.fig.add_subplot(gs[1, 1], aspect=self.fig_aspect) self.ax_en = self.fig.add_subplot(gs[1, 0], aspect=self.fig_aspect) self.ax_map = self.fig.add_subplot(gs[0, 1]) #make grid meshes being sure the indexing is correct self.mesh_ez_east, self.mesh_ez_vertical = np.meshgrid(self.grid_east, self.grid_z, indexing='ij') self.mesh_nz_north, self.mesh_nz_vertical = np.meshgrid(self.grid_north, self.grid_z, indexing='ij') self.mesh_en_east, self.mesh_en_north = np.meshgrid(self.grid_east, self.grid_north, indexing='ij') #--> plot east vs vertical self._update_ax_ez() #--> plot north vs vertical self._update_ax_nz() #--> plot east vs north self._update_ax_en() #--> plot the grid as a map view self._update_map() #plot color bar cbx = mcb.make_axes(self.ax_map, fraction=.15, shrink=.75, pad = .1) cb = mcb.ColorbarBase(cbx[0], cmap=self.cmap, norm=Normalize(vmin=self.climits[0], vmax=self.climits[1])) cb.ax.yaxis.set_label_position('right') cb.ax.yaxis.set_label_coords(1.25,.5) cb.ax.yaxis.tick_left() cb.ax.tick_params(axis='y',direction='in') cb.set_label('Resistivity ($\Omega \cdot$m)', fontdict={'size':self.font_size+1}) cb.set_ticks(np.arange(np.ceil(self.climits[0]), np.floor(self.climits[1]+1))) cblabeldict={-2:'$10^{-3}$',-1:'$10^{-1}$',0:'$10^{0}$',1:'$10^{1}$', 2:'$10^{2}$',3:'$10^{3}$',4:'$10^{4}$',5:'$10^{5}$', 6:'$10^{6}$',7:'$10^{7}$',8:'$10^{8}$'} cb.set_ticklabels([cblabeldict[cc] for cc in np.arange(np.ceil(self.climits[0]), np.floor(self.climits[1]+1))]) plt.show() self.key_press = self.fig.canvas.mpl_connect('key_press_event', self.on_key_press) def on_key_press(self, event): """ on a key press change the slices """ key_press = event.key if key_press == 'n': if self.index_north == self.grid_north.shape[0]: print('Already at northern most grid cell') else: self.index_north += 1 if self.index_north > self.grid_north.shape[0]: self.index_north = self.grid_north.shape[0] self._update_ax_ez() self._update_map() if key_press == 'm': if self.index_north == 0: print('Already at southern most grid cell') else: self.index_north -= 1 if self.index_north < 0: self.index_north = 0 self._update_ax_ez() self._update_map() if key_press == 'e': if self.index_east == self.grid_east.shape[0]: print('Already at eastern most grid cell') else: self.index_east += 1 if self.index_east > self.grid_east.shape[0]: self.index_east = self.grid_east.shape[0] self._update_ax_nz() self._update_map() if key_press == 'w': if self.index_east == 0: print('Already at western most grid cell') else: self.index_east -= 1 if self.index_east < 0: self.index_east = 0 self._update_ax_nz() self._update_map() if key_press == 'd': if self.index_vertical == self.grid_z.shape[0]: print('Already at deepest grid cell') else: self.index_vertical += 1 if self.index_vertical > self.grid_z.shape[0]: self.index_vertical = self.grid_z.shape[0] self._update_ax_en() print('Depth = {0:.5g} ({1})'.format(self.grid_z[self.index_vertical], self.map_scale)) if key_press == 'u': if self.index_vertical == 0: print('Already at surface grid cell') else: self.index_vertical -= 1 if self.index_vertical < 0: self.index_vertical = 0 self._update_ax_en() print('Depth = {0:.5gf} ({1})'.format(self.grid_z[self.index_vertical], self.map_scale)) def _update_ax_ez(self): """ update east vs vertical plot """ self.ax_ez.cla() plot_ez = np.log10(self.res_model[self.index_north, :, :]) self.ax_ez.pcolormesh(self.mesh_ez_east, self.mesh_ez_vertical, plot_ez, cmap=self.cmap, vmin=self.climits[0], vmax=self.climits[1]) #plot stations for sx in self.station_dict_north[self.grid_north[self.index_north]]: self.ax_ez.text(sx, 0, self.station_marker, horizontalalignment='center', verticalalignment='baseline', fontdict={'size':self.ms, 'color':self.station_color}) self.ax_ez.set_xlim(self.ew_limits) self.ax_ez.set_ylim(self.z_limits[1], self.z_limits[0]) self.ax_ez.set_ylabel('Depth ({0})'.format(self.map_scale), fontdict=self.font_dict) self.ax_ez.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=self.font_dict) self.fig.canvas.draw() self._update_map() def _update_ax_nz(self): """ update east vs vertical plot """ self.ax_nz.cla() plot_nz = np.log10(self.res_model[:, self.index_east, :]) self.ax_nz.pcolormesh(self.mesh_nz_north, self.mesh_nz_vertical, plot_nz, cmap=self.cmap, vmin=self.climits[0], vmax=self.climits[1]) #plot stations for sy in self.station_dict_east[self.grid_east[self.index_east]]: self.ax_nz.text(sy, 0, self.station_marker, horizontalalignment='center', verticalalignment='baseline', fontdict={'size':self.ms, 'color':self.station_color}) self.ax_nz.set_xlim(self.ns_limits) self.ax_nz.set_ylim(self.z_limits[1], self.z_limits[0]) self.ax_nz.set_xlabel('Northing ({0})'.format(self.map_scale), fontdict=self.font_dict) self.ax_nz.set_ylabel('Depth ({0})'.format(self.map_scale), fontdict=self.font_dict) self.fig.canvas.draw() self._update_map() def _update_ax_en(self): """ update east vs vertical plot """ self.ax_en.cla() plot_en = np.log10(self.res_model[:, :, self.index_vertical].T) self.ax_en.pcolormesh(self.mesh_en_east, self.mesh_en_north, plot_en, cmap=self.cmap, vmin=self.climits[0], vmax=self.climits[1]) self.ax_en.set_xlim(self.ew_limits) self.ax_en.set_ylim(self.ns_limits) self.ax_en.set_ylabel('Northing ({0})'.format(self.map_scale), fontdict=self.font_dict) self.ax_en.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=self.font_dict) #--> plot the stations if self.station_east is not None: for ee, nn in zip(self.station_east, self.station_north): self.ax_en.text(ee, nn, '*', verticalalignment='center', horizontalalignment='center', fontdict={'size':5, 'weight':'bold'}) self.fig.canvas.draw() self._update_map() def _update_map(self): self.ax_map.cla() self.east_line_xlist = [] self.east_line_ylist = [] for xx in self.grid_east: self.east_line_xlist.extend([xx, xx]) self.east_line_xlist.append(None) self.east_line_ylist.extend([self.grid_north.min(), self.grid_north.max()]) self.east_line_ylist.append(None) self.ax_map.plot(self.east_line_xlist, self.east_line_ylist, lw=.25, color='k') self.north_line_xlist = [] self.north_line_ylist = [] for yy in self.grid_north: self.north_line_xlist.extend([self.grid_east.min(), self.grid_east.max()]) self.north_line_xlist.append(None) self.north_line_ylist.extend([yy, yy]) self.north_line_ylist.append(None) self.ax_map.plot(self.north_line_xlist, self.north_line_ylist, lw=.25, color='k') #--> e-w indication line self.ax_map.plot([self.grid_east.min(), self.grid_east.max()], [self.grid_north[self.index_north], self.grid_north[self.index_north]], lw=1, color='g') #--> e-w indication line self.ax_map.plot([self.grid_east[self.index_east], self.grid_east[self.index_east]], [self.grid_north.min(), self.grid_north.max()], lw=1, color='b') #--> plot the stations if self.station_east is not None: for ee, nn in zip(self.station_east, self.station_north): self.ax_map.text(ee, nn, '*', verticalalignment='center', horizontalalignment='center', fontdict={'size':5, 'weight':'bold'}) self.ax_map.set_xlim(self.ew_limits) self.ax_map.set_ylim(self.ns_limits) self.ax_map.set_ylabel('Northing ({0})'.format(self.map_scale), fontdict=self.font_dict) self.ax_map.set_xlabel('Easting ({0})'.format(self.map_scale), fontdict=self.font_dict) #plot stations self.ax_map.text(self.ew_limits[0]*.95, self.ns_limits[1]*.95, '{0:.5g} ({1})'.format(self.grid_z[self.index_vertical], self.map_scale), horizontalalignment='left', verticalalignment='top', bbox={'facecolor': 'white'}, fontdict=self.font_dict) self.fig.canvas.draw() def get_station_grid_locations(self): """ get the grid line on which a station resides for plotting """ self.station_dict_east = dict([(gx, []) for gx in self.grid_east]) self.station_dict_north = dict([(gy, []) for gy in self.grid_north]) if self.station_east is not None: for ss, sx in enumerate(self.station_east): gx = np.where(self.grid_east <= sx)[0][-1] self.station_dict_east[self.grid_east[gx]].append(self.station_north[ss]) for ss, sy in enumerate(self.station_north): gy = np.where(self.grid_north <= sy)[0][-1] self.station_dict_north[self.grid_north[gy]].append(self.station_east[ss]) else: return def redraw_plot(self): """ redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot. :Example: :: >>> # change the color and marker of the xy components >>> import mtpy.modeling.occam2d as occam2d >>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat") >>> p1 = ocd.plotAllResponses() >>> #change line width >>> p1.lw = 2 >>> p1.redraw_plot() """ plt.close(self.fig) self.plot() def save_figure(self, save_fn=None, fig_dpi=None, file_format='pdf', orientation='landscape', close_fig='y'): """ save_figure will save the figure to save_fn. Arguments: ----------- **save_fn** : string full path to save figure to, can be input as * directory path -> the directory path to save to in which the file will be saved as save_fn/station_name_PhaseTensor.file_format * full path -> file will be save to the given path. If you use this option then the format will be assumed to be provided by the path **file_format** : [ pdf | eps | jpg | png | svg ] file type of saved figure pdf,svg,eps... **orientation** : [ landscape | portrait ] orientation in which the file will be saved *default* is portrait **fig_dpi** : int The resolution in dots-per-inch the file will be saved. If None then the dpi will be that at which the figure was made. I don't think that it can be larger than dpi of the figure. **close_plot** : [ y | n ] * 'y' will close the plot after saving. * 'n' will leave plot open :Example: :: >>> # to save plot as jpg >>> import mtpy.modeling.occam2d as occam2d >>> dfn = r"/home/occam2d/Inv1/data.dat" >>> ocd = occam2d.Occam2DData(dfn) >>> ps1 = ocd.plotPseudoSection() >>> ps1.save_plot(r'/home/MT/figures', file_format='jpg') """ if fig_dpi == None: fig_dpi = self.fig_dpi if os.path.isdir(save_fn) == False: file_format = save_fn[-3:] self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') else: save_fn = os.path.join(save_fn, '_E{0}_N{1}_Z{2}.{3}'.format( self.index_east, self.index_north, self.index_vertical, file_format)) self.fig.savefig(save_fn, dpi=fig_dpi, format=file_format, orientation=orientation, bbox_inches='tight') if close_fig == 'y': plt.clf() plt.close(self.fig) else: pass self.fig_fn = save_fn print('Saved figure to: '+self.fig_fn) #============================================================================== # STARTUP FILES #============================================================================== class WSStartup(object): """ read and write startup files :Example: :: >>> import mtpy.modeling.ws3dinv as ws >>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat" >>> ifn = r"/home/MT/ws3dinv/Inv1/init3d" >>> sws = ws.WSStartup(data_fn=dfn, initial_fn=ifn) =================== ======================================================= Attributes Description =================== ======================================================= apriori_fn full path to *a priori* model file *default* is 'default' control_fn full path to model index control file *default* is 'default' data_fn full path to data file error_tol error tolerance level *default* is 'default' initial_fn full path to initial model file lagrange starting lagrange multiplier *default* is 'default' max_iter max number of iterations *default* is 10 model_ls model length scale *default* is 5 0.3 0.3 0.3 output_stem output file name stem *default* is 'ws3dinv' save_path directory to save file to startup_fn full path to startup file static_fn full path to statics file *default* is 'default' target_rms target rms *default* is 1.0 =================== ======================================================= """ def __init__(self, data_fn=None, initial_fn=None, **kwargs): self.data_fn = data_fn self.initial_fn = initial_fn self.output_stem = kwargs.pop('output_stem', 'ws3dinv') self.apriori_fn = kwargs.pop('apriori_fn', 'default') self.model_ls = kwargs.pop('model_ls', [5, 0.3, 0.3, 0.3]) self.target_rms = kwargs.pop('target_rms', 1.0) self.control_fn = kwargs.pop('control_fn', 'default') self.max_iter = kwargs.pop('max_iter', 10) self.error_tol = kwargs.pop('error_tol', 'default') self.static_fn = kwargs.pop('static_fn', 'default') self.lagrange = kwargs.pop('lagrange', 'default') self.save_path = kwargs.pop('save_path', None) self.startup_fn = kwargs.pop('startup_fn', None) self._startup_keys = ['data_file', 'output_file', 'initial_model_file', 'prior_model_file', 'control_model_index', 'target_rms', 'max_no_iteration', 'model_length_scale', 'lagrange_info', 'error_tol_level', 'static_file'] def write_startup_file(self): """ makes a startup file for WSINV3D. """ if self.data_fn is None: raise IOError('Need to input data file name') if self.initial_fn is None: raise IOError('Need to input initial model file name') #create the output filename if self.save_path == None and self.data_fn != None: self.startup_fn = os.path.join(os.path.dirname(self.data_fn), 'startup') elif os.path.isdir(self.save_path) == True: self.startup_fn = os.path.join(self.save_path, 'startup') else: self.startup_fn = self.save_path slines = [] if os.path.dirname(self.startup_fn) == os.path.dirname(self.data_fn): slines.append('{0:<20}{1}\n'.format('DATA_FILE', os.path.basename(self.data_fn))) if len(os.path.basename(self.data_fn)) > 70: print('Data file is too long, going to get an error at runtime') else: slines.append('{0:<20}{1}\n'.format('DATA_FILE',self.data_fn)) if len(self.data_fn) > 70: print('Data file is too long, going to get an error at runtime') slines.append('{0:<20}{1}\n'.format('OUTPUT_FILE', self.output_stem)) if os.path.dirname(self.startup_fn) == os.path.dirname(self.initial_fn): slines.append('{0:<20}{1}\n'.format('INITIAL_MODEL_FILE', os.path.basename(self.initial_fn))) else: slines.append('{0:<20}{1}\n'.format('INITIAL_MODEL_FILE', self.initial_fn)) slines.append('{0:<20}{1}\n'.format('PRIOR_MODEL_FILE', self.apriori_fn)) slines.append('{0:<20}{1}\n'.format('CONTROL_MODEL_INDEX ', self.control_fn)) slines.append('{0:<20}{1}\n'.format('TARGET_RMS', self.target_rms)) slines.append('{0:<20}{1}\n'.format('MAX_NO_ITERATION', self.max_iter)) slines.append('{0:<20}{1:.0f} {2:.1f} {3:.1f} {4:.1f}\n'.format( 'MODEL_LENGTH_SCALE', self.model_ls[0], self.model_ls[1], self.model_ls[2], self.model_ls[3])) slines.append('{0:<20}{1} \n'.format('LAGRANGE_INFO', self.lagrange)) slines.append('{0:<20}{1} \n'.format('ERROR_TOL_LEVEL', self.error_tol)) slines.append('{0:<20}{1} \n'.format('STATIC_FILE', self.static_fn)) sfid = file(self.startup_fn, 'w') sfid.write(''.join(slines)) sfid.close() print('Wrote startup file to: {0}'.format(self.startup_fn)) def read_startup_file(self, startup_fn=None): """ read startup file fills attributes """ if startup_fn is not None: self.startup_fn = startup_fn if self.startup_fn is None: raise IOError('Need to input startup file name') self.save_path = os.path.dirname(self.startup_fn) sfid = file(self.startup_fn, 'r') slines = sfid.readlines() sfid.close() slines = [ss.strip().split()[1:] for ss in slines] self.data_fn = slines[0][0].strip() if self.data_fn.find(os.path.sep) == -1: self.data_fn = os.path.join(self.save_path, self.data_fn) self.output_stem = slines[1][0].strip() self.initial_fn = slines[2][0].strip() if self.initial_fn.find(os.path.sep) == -1: self.initial_fn = os.path.join(self.save_path, self.initial_fn) self.apriori_fn = slines[3][0].strip() self.control_fn = slines[4][0].strip() self.target_rms = float(slines[5][0].strip()) self.max_iter = int(slines[6][0].strip()) try: self.model_ls = [int(slines[7][0]), float(slines[7][1]), float(slines[7][2]), float(slines[7][3])] except ValueError: self.model_ls = slines[7][0] self.lagrange = slines[8][0].strip() self.error_tol = slines[9][0].strip() try: self.static_fn = slines[10][0].strip() except IndexError: print('Did not find static_fn') #============================================================================== # WRITE A VTK FILE TO IMAGE IN PARAVIEW OR MAYAVI #============================================================================== def write_vtk_res_model(res_model, grid_north, grid_east, grid_z, save_fn): """ Write a vtk file for resistivity as a structured grid to be read into paraview or mayavi **Doesn't work properly under windows** adds extension automatically """ if os.path.isdir(save_fn) == True: save_fn = os.path.join(save_fn, 'VTKResistivity_Model') save_fn = gridToVTK(save_fn, grid_north, grid_east, grid_z, cellData={'resistivity':res_model}) return save_fn def write_vtk_stations(station_north, station_east, save_fn, station_z=None): """ Write a vtk file as points to be read into paraview or mayavi **Doesn't work properly under windows** adds extension automatically """ if os.path.isdir(save_fn) == True: save_fn = os.path.join(save_fn, 'VTKStations') if station_z is None: station_z = np.zeros_like(station_north) pointsToVTK(save_fn, station_north, station_east, station_z, cellData={'value':np.ones_like(station_north)}) return save_fn def write_vtk_files(model_fn, station_fn, save_path): """ writes vtk files """ wsstation = WSStation(station_fn=station_fn) wsstation.read_station_file() wsstation.write_vtk_file(save_path) wsmodel = WSModel(model_fn) wsmodel.write_vtk_file(save_path) def computeMemoryUsage(nx, ny, nz, n_stations, n_zelements, n_period): """ compute the memory usage of a model Arguments: ---------- **nx** : int number of cells in N-S direction **ny** : int number of cells in E-W direction **nz** : int number of cells in vertical direction including air layers (7) **n_stations** : int number of stations **n_zelements** : int number of impedence tensor elements either 4 or 8 **n_period** : int number of periods to invert for Returns: -------- **mem_req** : float approximate memory useage in GB """ mem_req = 1.2*(8*(n_stations*n_period*n_zelements)**2+ 8*(nx*ny*nz*n_stations*n_period*n_zelements)) return mem_req*1E-9
gpl-3.0
krez13/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
alfonsokim/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/finance.py
69
20558
""" A collection of modules for collecting, analyzing and plotting financial data. User contributions welcome! """ #from __future__ import division import os, time, warnings from urllib import urlopen try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 try: import datetime except ImportError: raise ImportError('The finance module requires datetime support (python2.3)') import numpy as np from matplotlib import verbose, get_configdir from dates import date2num from matplotlib.cbook import Bunch from matplotlib.collections import LineCollection, PolyCollection from matplotlib.colors import colorConverter from lines import Line2D, TICKLEFT, TICKRIGHT from patches import Rectangle from matplotlib.transforms import Affine2D configdir = get_configdir() cachedir = os.path.join(configdir, 'finance.cache') def parse_yahoo_historical(fh, asobject=False, adjusted=True): """ Parse the historical data in file handle fh from yahoo finance and return results as a list of d, open, close, high, low, volume where d is a floating poing representation of date, as returned by date2num if adjust=True, use adjusted prices """ results = [] lines = fh.readlines() datefmt = None for line in lines[1:]: vals = line.split(',') if len(vals)!=7: continue datestr = vals[0] if datefmt is None: try: datefmt = '%Y-%m-%d' dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) except ValueError: datefmt = '%d-%b-%y' # Old Yahoo--cached file? dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) d = date2num(dt) open, high, low, close = [float(val) for val in vals[1:5]] volume = int(vals[5]) if adjusted: aclose = float(vals[6]) m = aclose/close open *= m high *= m low *= m close = aclose results.append((d, open, close, high, low, volume)) results.reverse() if asobject: if len(results)==0: return None else: date, open, close, high, low, volume = map(np.asarray, zip(*results)) return Bunch(date=date, open=open, close=close, high=high, low=low, volume=volume) else: return results def fetch_historical_yahoo(ticker, date1, date2, cachename=None): """ Fetch historical data for ticker between date1 and date2. date1 and date2 are datetime instances Ex: fh = fetch_historical_yahoo('^GSPC', d1, d2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) a file handle is returned """ ticker = ticker.upper() d1 = (date1.month-1, date1.day, date1.year) d2 = (date2.month-1, date2.day, date2.year) urlFmt = 'http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=d&ignore=.csv' url = urlFmt % (d1[0], d1[1], d1[2], d2[0], d2[1], d2[2], ticker) if cachename is None: cachename = os.path.join(cachedir, md5(url).hexdigest()) if os.path.exists(cachename): fh = file(cachename) verbose.report('Using cachefile %s for %s'%(cachename, ticker)) else: if not os.path.isdir(cachedir): os.mkdir(cachedir) fh = file(cachename, 'w') fh.write(urlopen(url).read()) fh.close() verbose.report('Saved %s data to cache file %s'%(ticker, cachename)) fh = file(cachename, 'r') return fh def quotes_historical_yahoo(ticker, date1, date2, asobject=False, adjusted=True, cachename=None): """ Get historical data for ticker between date1 and date2. date1 and date2 are datetime instances results are a list of tuples (d, open, close, high, low, volume) where d is a floating poing representation of date, as returned by date2num if asobject is True, the return val is an object with attrs date, open, close, high, low, volume, which are equal length arrays if adjust=True, use adjusted prices Ex: sp = f.quotes_historical_yahoo('^GSPC', d1, d2, asobject=True, adjusted=True) returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] [n,bins,patches] = hist(returns, 100) mu = mean(returns) sigma = std(returns) x = normpdf(bins, mu, sigma) plot(bins, x, color='red', lw=2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) """ fh = fetch_historical_yahoo(ticker, date1, date2, cachename) try: ret = parse_yahoo_historical(fh, asobject, adjusted) except IOError, exc: warnings.warn('urlopen() failure\n' + url + '\n' + exc.strerror[1]) return None return ret def plot_day_summary(ax, quotes, ticksize=3, colorup='k', colordown='r', ): """ quotes is a list of (time, open, close, high, low, ...) tuples Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. time must be in float date format - see date2num ax : an Axes instance to plot to ticksize : open/close tick marker in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ lines = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup else : color = colordown vline = Line2D( xdata=(t, t), ydata=(low, high), color=color, antialiased=False, # no need to antialias vert lines ) oline = Line2D( xdata=(t, t), ydata=(open, open), color=color, antialiased=False, marker=TICKLEFT, markersize=ticksize, ) cline = Line2D( xdata=(t, t), ydata=(close, close), color=color, antialiased=False, markersize=ticksize, marker=TICKRIGHT) lines.extend((vline, oline, cline)) ax.add_line(vline) ax.add_line(oline) ax.add_line(cline) ax.autoscale_view() return lines def candlestick(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0): """ quotes is a list of (time, open, close, high, low, ...) tuples. As long as the first 5 elements of the tuples are these values, the tuple can be as long as you want (eg it may store volume). time must be in float days format - see date2num Plot the time, open, close, high, low as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown ax : an Axes instance to plot to width : fraction of a day for the rectangle width colorup : the color of the rectangle where close >= open colordown : the color of the rectangle where close < open alpha : the rectangle alpha level return value is lines, patches where lines is a list of lines added and patches is a list of the rectangle patches added """ OFFSET = width/2.0 lines = [] patches = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup lower = open height = close-open else : color = colordown lower = close height = open-close vline = Line2D( xdata=(t, t), ydata=(low, high), color='k', linewidth=0.5, antialiased=True, ) rect = Rectangle( xy = (t-OFFSET, lower), width = width, height = height, facecolor = color, edgecolor = color, ) rect.set_alpha(alpha) lines.append(vline) patches.append(rect) ax.add_line(vline) ax.add_patch(rect) ax.autoscale_view() return lines, patches def plot_day_summary2(ax, opens, closes, highs, lows, ticksize=4, colorup='k', colordown='r', ): """ Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. ax : an Axes instance to plot to ticksize : size of open and close ticks in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ # note this code assumes if any value open, close, low, high is # missing they all are missing rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] # the ticks will be from ticksize to 0 in points at the origin and # we'll translate these to the i, close location openSegments = [ ((-ticksize, 0), (0, 0)) ] # the ticks will be from 0 to ticksize in points at the origin and # we'll translate these to the i, close location closeSegments = [ ((0, 0), (ticksize, 0)) ] offsetsOpen = [ (i, open) for i, open in zip(xrange(len(opens)), opens) if open != -1 ] offsetsClose = [ (i, close) for i, close in zip(xrange(len(closes)), closes) if close != -1 ] scale = ax.figure.dpi * (1.0/72.0) tickTransform = Affine2D().scale(scale, 0.0) r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,1 r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,1 colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(rangeSegments)==len(offsetsOpen)) assert(len(offsetsOpen)==len(offsetsClose)) assert(len(offsetsClose)==len(colors)) useAA = 0, # use tuple here lw = 1, # and here rangeCollection = LineCollection(rangeSegments, colors = colors, linewidths = lw, antialiaseds = useAA, ) openCollection = LineCollection(openSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsOpen, transOffset = ax.transData, ) openCollection.set_transform(tickTransform) closeCollection = LineCollection(closeSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsClose, transOffset = ax.transData, ) closeCollection.set_transform(tickTransform) minpy, maxx = (0, len(rangeSegments)) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(rangeCollection) ax.add_collection(openCollection) ax.add_collection(closeCollection) return rangeCollection, openCollection, closeCollection def candlestick2(ax, opens, closes, highs, lows, width=4, colorup='k', colordown='r', alpha=0.75, ): """ Represent the open, close as a bar line and high low range as a vertical line. ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency return value is lineCollection, barCollection """ # note this code assumes if any value open, close, low, high is # missing they all are missing delta = width/2. barVerts = [ ( (i-delta, open), (i-delta, close), (i+delta, close), (i+delta, open) ) for i, open, close in zip(xrange(len(opens)), opens, closes) if open != -1 and close!=-1 ] rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(barVerts)==len(rangeSegments)) useAA = 0, # use tuple here lw = 0.5, # and here rangeCollection = LineCollection(rangeSegments, colors = ( (0,0,0,1), ), linewidths = lw, antialiaseds = useAA, ) barCollection = PolyCollection(barVerts, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, ) minx, maxx = 0, len(rangeSegments) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) ax.add_collection(rangeCollection) return rangeCollection, barCollection def volume_overlay(ax, opens, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The opens and closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] delta = width/2. bars = [ ( (i-delta, 0), (i-delta, v), (i+delta, v), (i+delta, 0)) for i, v in enumerate(volumes) if v != -1 ] barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = (0,), linewidths = (0.5,), ) corners = (0, 0), (len(bars), max(volumes)) ax.update_datalim(corners) ax.autoscale_view() # add these last return barCollection def volume_overlay2(ax, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency nb: first point is not displayed - it is used only for choosing the right color """ return volume_overlay(ax,closes[:-1],closes[1:],volumes[1:],colorup,colordown,width,alpha) def volume_overlay3(ax, quotes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. quotes is a list of (d, open, close, high, low, volume) and close-open is used to determine the color of the bar kwarg width : the bar width in points colorup : the color of the lines where close1 >= close0 colordown : the color of the lines where close1 < close0 alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } dates, opens, closes, highs, lows, volumes = zip(*quotes) colors = [colord[close1>=close0] for close0, close1 in zip(closes[:-1], closes[1:]) if close0!=-1 and close1 !=-1] colors.insert(0,colord[closes[0]>=opens[0]]) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, volume), (right, volume), (right, 0)) for d, open, close, high, low, volume in quotes] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) dates = [d for d, open, close, high, low, volume in quotes] offsetsBars = [(d, 0) for d in dates] useAA = 0, # use tuple here lw = 0.5, # and here barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (min(dates), max(dates)) miny = 0 maxy = max([volume for d, open, close, high, low, volume in quotes]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) #print 'datalim', ax.dataLim.get_bounds() #print 'viewlim', ax.viewLim.get_bounds() ax.add_collection(barCollection) ax.autoscale_view() return barCollection def index_bar(ax, vals, facecolor='b', edgecolor='l', width=4, alpha=1.0, ): """ Add a bar collection graph with height vals (-1 is missing). ax : an Axes instance to plot to width : the bar width in points alpha : bar transparency """ facecolors = (colorConverter.to_rgba(facecolor, alpha),) edgecolors = (colorConverter.to_rgba(edgecolor, alpha),) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ] barCollection = PolyCollection(bars, facecolors = facecolors, edgecolors = edgecolors, antialiaseds = (0,), linewidths = (0.5,), offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (0, len(offsetsBars)) miny = 0 maxy = max([v for v in vals if v!=-1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) return barCollection
agpl-3.0
WaltXon/pytroleum
pytroleum/pricing.py
1
5608
from collections import OrderedDict import datetime import calendar import pandas as pd from functions import adjust_date_to_EOM from config import config def pricing(price_type="strip", output_excel_file=""): date_series = pd.date_range( config["production_start_date"], periods=config["max_life_months"], freq="M" ) df_time_series = pd.DataFrame(index=date_series) df_time_series["date"] = df_time_series.index.format() if price_type == "flat": prices = pd.DataFrame( index=df_time_series.index, columns=["price_oil", "price_gas", "price_ngl"] ) prices["price_oil"] = config["price_oil_flat"] prices["price_gas"] = config["price_gas_flat"] prices["price_ngl"] = config["price_ngl_flat"] elif price_type == "strip": working_oil = [] for k, v in config["price_oil_strip"].iteritems(): working_oil.append((adjust_date_to_EOM(k), v)) working_gas = [] for k, v in config["price_gas_strip"].iteritems(): working_gas.append((adjust_date_to_EOM(k), v)) working_ngl = [] for k, v in config["price_ngl_strip"].iteritems(): working_ngl.append((adjust_date_to_EOM(k), v)) df_oil = pd.DataFrame( [x[1] for x in working_oil], index=[x[0] for x in working_oil], columns=["price_oil"], ) df_gas = pd.DataFrame( [x[1] for x in working_gas], index=[x[0] for x in working_gas], columns=["price_gas"], ) df_ngl = pd.DataFrame( [x[1] for x in working_ngl], index=[x[0] for x in working_ngl], columns=["price_ngl"], ) if df_ngl.empty == False: prices = pd.concat([df_oil, df_gas, df_ngl, df_time_series], axis=1) else: prices = pd.concat([df_oil, df_gas, df_time_series], axis=1) prices["price_ngl"] = 0.0 idx_last_oil_price = prices["price_oil"][ pd.notnull(prices["price_oil"]) ].idxmax() last_oil_price = prices.ix[idx_last_oil_price, "price_oil"] idx_last_gas_price = prices["price_gas"][ pd.notnull(prices["price_gas"]) ].idxmax() last_gas_price = prices.ix[idx_last_gas_price, "price_gas"] idx_last_ngl_price = prices["price_ngl"][ pd.notnull(prices["price_ngl"]) ].idxmax() last_ngl_price = prices.ix[idx_last_ngl_price, "price_ngl"] prices = prices.fillna(0) last_oil = [ last_oil_price, ] last_gas = [ last_gas_price, ] last_ngl = [ last_ngl_price, ] for idx, row in prices.iterrows(): if row["price_oil"] == 0.0: new_oil_price = last_oil[-1] * config["after_strip_escalator_oil"] if new_oil_price >= config["price_oil_max"]: prices.ix[idx, "price_oil"] = config["price_oil_max"] last_oil.append(config["price_oil_max"]) else: prices.ix[idx, "price_oil"] = new_oil_price last_oil.append(new_oil_price) if row["price_gas"] == 0.0: new_gas_price = last_gas[-1] * config["after_strip_escalator_gas"] if new_gas_price >= config["price_gas_max"]: prices.ix[idx, "price_gas"] = config["price_gas_max"] last_gas.append(config["price_gas_max"]) else: prices.ix[idx, "price_gas"] = new_gas_price last_gas.append(new_gas_price) if row["price_ngl"] == 0.0: new_ngl_price = last_gas[-1] * config["after_strip_escalator_ngl"] if new_ngl_price >= config["price_ngl_max"]: prices.ix[idx, "price_ngl"] = config["price_ngl_max"] last_ngl.append(config["price_ngl_max"]) else: prices.ix[idx, "price_ngl"] = new_ngl_price last_ngl.append(new_ngl_price) else: print("pricing module, price_type unknown") prices.to_excel(output_excel_file) return prices def dump_prices(oil_file, gas_file): oil = pd.DataFrame( [x[1] for x in config["price_oil"].items()], index=[x[0] for x in config["price_oil"].items()], ) oil.to_excel(oil_file) oil = pd.DataFrame( [x[1] for x in config["price_gas"].items()], index=[x[0] for x in config["price_gas"].items()], ) oil.to_excel(gas_file) def update_oil_prices(oil_file, gas_file): oil = pd.read_excel(oil_file) oil_working = oil.to_dict() oil_new = {} for k, v in oil_working[0].iteritems(): if type(k) == datetime.datetime: oil_new[datetime.datetime.strftime(k, "%m/%d/%Y")] = round(v, 2) elif type(k) == unicode: oil_new[str(k)] = round(v, 2) else: oil_new[k] = round(v, 2) # config['price_oil']=oil_new def update_gas_prices(oil_file, gas_file): gas = pd.read_excel(gas_file) gas_working = oil.to_dict() gas_new = {} for k, v in gas_working[0].iteritems(): if type(k) == datetime.datetime: gas_new[datetime.datetime.strftime(k, "%m/%d/%Y")] = round(v, 2) elif type(k) == unicode: gas_new[str(k)] = round(v, 2) else: gas_new[k] = round(v, 2) # config['price_gas']=new_gas def update_prices(): update_oil_prices() update_gas_prices()
mit
MPIBGC-TEE/CompartmentalSystems
prototypes/newOdeInterface/test.py
1
3815
from concurrencytest import ConcurrentTestSuite, fork_for_tests import sys import unittest import plotly.graph_objs as go from plotly.offline import plot import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! import matplotlib.pyplot as plt import numpy as np from sympy import Symbol,Matrix, symbols, sin, Piecewise, DiracDelta, Function from CompartmentalSystems.helpers_reservoir import factor_out_from_matrix, parse_input_function, melt, MH_sampling, stride, is_compartmental, func_subs, numerical_function_from_expression,pe from CompartmentalSystems.start_distributions import \ start_age_moments_from_empty_spinup, \ start_age_moments_from_steady_state, \ start_age_moments_from_zero_initial_content, \ compute_fixedpoint_numerically, \ start_age_distributions_from_steady_state, \ start_age_distributions_from_empty_spinup, \ start_age_distributions_from_zero_initial_content from CompartmentalSystems.smooth_reservoir_model import SmoothReservoirModel from CompartmentalSystems.smooth_model_run import SmoothModelRun from testinfrastructure.InDirTest import InDirTest C_0, C_1 = symbols('C_0 C_1') state_vector = [C_0, C_1] t = Symbol('t') f_expr = Function('f')(t) input_fluxes = {0: C_0*f_expr+2, 1: 2} output_fluxes = {0: C_0, 1: C_1} internal_fluxes = {(0,1):0.5*C_0**3} srm = SmoothReservoirModel(state_vector, t, input_fluxes, output_fluxes, internal_fluxes) parameter_set={} def f_func( t_val): return np.sin(t_val)+1.0 func_set = {f_expr: f_func} t_min = 0 t_max = 2*np.pi n_steps=11 times = np.linspace(t_min,t_max,n_steps) # create a model run that starts with all pools empty smr = SmoothModelRun(srm, parameter_set=parameter_set, start_values=np.zeros(srm.nr_pools), times=times,func_set=func_set) # choose a t_0 somewhere in the times t0_index = int(n_steps/2) t0 = times[t0_index] a_dens_func_t0,pool_contents=start_age_distributions_from_empty_spinup(srm,t_max=t0,parameter_set=parameter_set,func_set=func_set) pe('pool_contents',locals()) # construct a function p that takes an age array "ages" as argument # and gives back a three-dimensional ndarray (ages x times x pools) # from the a array-valued function representing the start age density p=smr.pool_age_densities_func(start_age_distributions_from_zero_initial_content(srm)) # for this particular example we are only interrested in ages that are smaller than t_max # the particular choice ages=times means that t_0_ind is the same in both arrays ages=times t0_age_index=t0_index pool_dens_data=p(ages) n =0 fig=smr.plot_3d_density_plotly("pool {0}".format(n),pool_dens_data[:,:,n],ages) # plot the computed start age density for t0 on top trace_on_surface = go.Scatter3d( x=np.array([-t0 for a in ages]), y=np.array([a for a in ages]), z=np.array([a_dens_func_t0(a)[n] for a in ages]), mode = 'lines', line=dict( color='#FF0000', width=15 ) #, #showlegend = legend_on_surface ) #smr.add_equilibrium_surface_plotly(fig) fig.add_scatter3d( x=np.array([-t0 for a in ages]), y=np.array([a for a in ages]), z=np.array([a_dens_func_t0(a)[n] for a in ages]), mode = 'lines', line=dict( color='#FF0000', width=15 ) ) #plot(fig,filename="test_{0}.html".format(n),auto_open=False) plot(fig,filename="test_{0}.html".format(n)) # make sure that the values for the model run at t0 conince with the values computed by the # function returned by the function under test res_data=np.array([a_dens_func_t0(a)[n] for a in ages]) ref_data=pool_dens_data[:,t0_index,n] self.assertTrue(np.allclose(res_data,ref_data,rtol=1e-3)) # make sure that the density is zero for all values of age bigger than t0 self.assertTrue(np.all(res_data[t0_age_index:]==0))
mit
rrohan/scikit-learn
sklearn/utils/tests/test_seq_dataset.py
93
2471
# Author: Tom Dupre la Tour <[email protected]> # # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.seq_dataset import ArrayDataset, CSRDataset from sklearn.datasets import load_iris from numpy.testing import assert_array_equal from nose.tools import assert_equal iris = load_iris() X = iris.data.astype(np.float64) y = iris.target.astype(np.float64) X_csr = sp.csr_matrix(X) sample_weight = np.arange(y.size, dtype=np.float64) def test_seq_dataset(): dataset1 = ArrayDataset(X, y, sample_weight, seed=42) dataset2 = CSRDataset(X_csr.data, X_csr.indptr, X_csr.indices, y, sample_weight, seed=42) for dataset in (dataset1, dataset2): for i in range(5): # next sample xi_, yi, swi, idx = dataset._next_py() xi = sp.csr_matrix((xi_), shape=(1, X.shape[1])) assert_array_equal(xi.data, X_csr[idx].data) assert_array_equal(xi.indices, X_csr[idx].indices) assert_array_equal(xi.indptr, X_csr[idx].indptr) assert_equal(yi, y[idx]) assert_equal(swi, sample_weight[idx]) # random sample xi_, yi, swi, idx = dataset._random_py() xi = sp.csr_matrix((xi_), shape=(1, X.shape[1])) assert_array_equal(xi.data, X_csr[idx].data) assert_array_equal(xi.indices, X_csr[idx].indices) assert_array_equal(xi.indptr, X_csr[idx].indptr) assert_equal(yi, y[idx]) assert_equal(swi, sample_weight[idx]) def test_seq_dataset_shuffle(): dataset1 = ArrayDataset(X, y, sample_weight, seed=42) dataset2 = CSRDataset(X_csr.data, X_csr.indptr, X_csr.indices, y, sample_weight, seed=42) # not shuffled for i in range(5): _, _, _, idx1 = dataset1._next_py() _, _, _, idx2 = dataset2._next_py() assert_equal(idx1, i) assert_equal(idx2, i) for i in range(5): _, _, _, idx1 = dataset1._random_py() _, _, _, idx2 = dataset2._random_py() assert_equal(idx1, idx2) seed = 77 dataset1._shuffle_py(seed) dataset2._shuffle_py(seed) for i in range(5): _, _, _, idx1 = dataset1._next_py() _, _, _, idx2 = dataset2._next_py() assert_equal(idx1, idx2) _, _, _, idx1 = dataset1._random_py() _, _, _, idx2 = dataset2._random_py() assert_equal(idx1, idx2)
bsd-3-clause
dimroc/tensorflow-mnist-tutorial
lib/python3.6/site-packages/matplotlib/backend_bases.py
6
111196
""" Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as a matplotlib backend :class:`RendererBase` An abstract base class to handle drawing/rendering operations. :class:`FigureCanvasBase` The abstraction layer that separates the :class:`matplotlib.figure.Figure` from the backend specific details like a user interface drawing area :class:`GraphicsContextBase` An abstract base class that provides color, line styles, etc... :class:`Event` The base class for all of the matplotlib event handling. Derived classes such as :class:`KeyEvent` and :class:`MouseEvent` store the meta data like keys and buttons pressed, x and y locations in pixel and :class:`~matplotlib.axes.Axes` coordinates. :class:`ShowBase` The base class for the Show class of each interactive backend; the 'show' callable is then set to Show.__call__, inherited from ShowBase. :class:`ToolContainerBase` The base class for the Toolbar class of each interactive backend. :class:`StatusbarBase` The base class for the messaging area. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from contextlib import contextmanager import six from six.moves import xrange import os import sys import warnings import time import io import numpy as np import matplotlib.cbook as cbook import matplotlib.colors as colors import matplotlib.transforms as transforms import matplotlib.widgets as widgets #import matplotlib.path as path from matplotlib import rcParams from matplotlib import is_interactive from matplotlib import get_backend from matplotlib._pylab_helpers import Gcf from matplotlib import lines from matplotlib.transforms import Bbox, TransformedBbox, Affine2D import matplotlib.tight_bbox as tight_bbox import matplotlib.textpath as textpath from matplotlib.path import Path from matplotlib.cbook import mplDeprecation, warn_deprecated import matplotlib.backend_tools as tools try: from importlib import import_module except: # simple python 2.6 implementation (no relative imports) def import_module(name): __import__(name) return sys.modules[name] try: from PIL import Image _has_pil = True del Image except ImportError: _has_pil = False _default_filetypes = { 'ps': 'Postscript', 'eps': 'Encapsulated Postscript', 'pdf': 'Portable Document Format', 'pgf': 'PGF code for LaTeX', 'png': 'Portable Network Graphics', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics' } _default_backends = { 'ps': 'matplotlib.backends.backend_ps', 'eps': 'matplotlib.backends.backend_ps', 'pdf': 'matplotlib.backends.backend_pdf', 'pgf': 'matplotlib.backends.backend_pgf', 'png': 'matplotlib.backends.backend_agg', 'raw': 'matplotlib.backends.backend_agg', 'rgba': 'matplotlib.backends.backend_agg', 'svg': 'matplotlib.backends.backend_svg', 'svgz': 'matplotlib.backends.backend_svg', } def register_backend(format, backend, description=None): """ Register a backend for saving to a given file format. format : str File extention backend : module string or canvas class Backend for handling file output description : str, optional Description of the file type. Defaults to an empty string """ if description is None: description = '' _default_backends[format] = backend _default_filetypes[format] = description def get_registered_canvas_class(format): """ Return the registered default canvas for given file format. Handles deferred import of required backend. """ if format not in _default_backends: return None backend_class = _default_backends[format] if cbook.is_string_like(backend_class): backend_class = import_module(backend_class).FigureCanvas _default_backends[format] = backend_class return backend_class class ShowBase(object): """ Simple base class to generate a show() callable in backends. Subclass must override mainloop() method. """ def __call__(self, block=None): """ Show all figures. If *block* is not None, then it is a boolean that overrides all other factors determining whether show blocks by calling mainloop(). The other factors are: it does not block if run inside ipython's "%pylab" mode it does not block in interactive mode. """ managers = Gcf.get_all_fig_managers() if not managers: return for manager in managers: manager.show() if block is not None: if block: self.mainloop() return else: return # Hack: determine at runtime whether we are # inside ipython in pylab mode. from matplotlib import pyplot try: ipython_pylab = not pyplot.show._needmain # IPython versions >= 0.10 tack the _needmain # attribute onto pyplot.show, and always set # it to False, when in %pylab mode. ipython_pylab = ipython_pylab and get_backend() != 'WebAgg' # TODO: The above is a hack to get the WebAgg backend # working with ipython's `%pylab` mode until proper # integration is implemented. except AttributeError: ipython_pylab = False # Leave the following as a separate step in case we # want to control this behavior with an rcParam. if ipython_pylab: return if not is_interactive() or get_backend() == 'WebAgg': self.mainloop() def mainloop(self): pass class RendererBase(object): """An abstract base class to handle drawing/rendering operations. The following methods must be implemented in the backend for full functionality (though just implementing :meth:`draw_path` alone would give a highly capable backend): * :meth:`draw_path` * :meth:`draw_image` * :meth:`draw_gouraud_triangle` The following methods *should* be implemented in the backend for optimization reasons: * :meth:`draw_text` * :meth:`draw_markers` * :meth:`draw_path_collection` * :meth:`draw_quad_mesh` """ def __init__(self): self._texmanager = None self._text2path = textpath.TextToPath() def open_group(self, s, gid=None): """ Open a grouping element with label *s*. If *gid* is given, use *gid* as the id of the group. Is only currently used by :mod:`~matplotlib.backends.backend_svg`. """ pass def close_group(self, s): """ Close a grouping element with label *s* Is only currently used by :mod:`~matplotlib.backends.backend_svg` """ pass def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a :class:`~matplotlib.path.Path` instance using the given affine transform. """ raise NotImplementedError def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draws a marker at each of the vertices in path. This includes all vertices, including control points on curves. To avoid that behavior, those vertices should be removed before calling this function. *gc* the :class:`GraphicsContextBase` instance *marker_trans* is an affine transform applied to the marker. *trans* is an affine transform applied to the path. This provides a fallback implementation of draw_markers that makes multiple calls to :meth:`draw_path`. Some backends may want to override this method in order to draw the marker only once and reuse it multiple times. """ for vertices, codes in path.iter_segments(trans, simplify=False): if len(vertices): x, y = vertices[-2:] self.draw_path(gc, marker_path, marker_trans + transforms.Affine2D().translate(x, y), rgbFace) def draw_path_collection(self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): """ Draws a collection of paths selecting drawing properties from the lists *facecolors*, *edgecolors*, *linewidths*, *linestyles* and *antialiaseds*. *offsets* is a list of offsets to apply to each of the paths. The offsets in *offsets* are first transformed by *offsetTrans* before being applied. *offset_position* may be either "screen" or "data" depending on the space that the offsets are in. This provides a fallback implementation of :meth:`draw_path_collection` that makes multiple calls to :meth:`draw_path`. Some backends may want to override this in order to render each set of path data only once, and then reference that path multiple times with the different offsets, colors, styles etc. The generator methods :meth:`_iter_collection_raw_paths` and :meth:`_iter_collection` are provided to help with (and standardize) the implementation across backends. It is highly recommended to use those generators, so that changes to the behavior of :meth:`draw_path_collection` can be made globally. """ path_ids = [] for path, transform in self._iter_collection_raw_paths( master_transform, paths, all_transforms): path_ids.append((path, transforms.Affine2D(transform))) for xo, yo, path_id, gc0, rgbFace in self._iter_collection( gc, master_transform, all_transforms, path_ids, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): path, transform = path_id transform = transforms.Affine2D( transform.get_matrix()).translate(xo, yo) self.draw_path(gc0, path, transform, rgbFace) def draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased, edgecolors): """ This provides a fallback implementation of :meth:`draw_quad_mesh` that generates paths and then calls :meth:`draw_path_collection`. """ from matplotlib.collections import QuadMesh paths = QuadMesh.convert_mesh_to_paths( meshWidth, meshHeight, coordinates) if edgecolors is None: edgecolors = facecolors linewidths = np.array([gc.get_linewidth()], np.float_) return self.draw_path_collection( gc, master_transform, paths, [], offsets, offsetTrans, facecolors, edgecolors, linewidths, [], [antialiased], [None], 'screen') def draw_gouraud_triangle(self, gc, points, colors, transform): """ Draw a Gouraud-shaded triangle. *points* is a 3x2 array of (x, y) points for the triangle. *colors* is a 3x4 array of RGBA colors for each point of the triangle. *transform* is an affine transform to apply to the points. """ raise NotImplementedError def draw_gouraud_triangles(self, gc, triangles_array, colors_array, transform): """ Draws a series of Gouraud triangles. *points* is a Nx3x2 array of (x, y) points for the trianglex. *colors* is a Nx3x4 array of RGBA colors for each point of the triangles. *transform* is an affine transform to apply to the points. """ transform = transform.frozen() for tri, col in zip(triangles_array, colors_array): self.draw_gouraud_triangle(gc, tri, col, transform) def _iter_collection_raw_paths(self, master_transform, paths, all_transforms): """ This is a helper method (along with :meth:`_iter_collection`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the base path/transform combinations, given a master transform, a list of paths and list of transforms. The arguments should be exactly what is passed in to :meth:`draw_path_collection`. The backend should take each yielded path and transform and create an object that can be referenced (reused) later. """ Npaths = len(paths) Ntransforms = len(all_transforms) N = max(Npaths, Ntransforms) if Npaths == 0: return transform = transforms.IdentityTransform() for i in xrange(N): path = paths[i % Npaths] if Ntransforms: transform = Affine2D(all_transforms[i % Ntransforms]) yield path, transform + master_transform def _iter_collection_uses_per_path(self, paths, all_transforms, offsets, facecolors, edgecolors): """ Compute how many times each raw path object returned by _iter_collection_raw_paths would be used when calling _iter_collection. This is intended for the backend to decide on the tradeoff between using the paths in-line and storing them once and reusing. Rounds up in case the number of uses is not the same for every path. """ Npaths = len(paths) if Npaths == 0 or (len(facecolors) == 0 and len(edgecolors) == 0): return 0 Npath_ids = max(Npaths, len(all_transforms)) N = max(Npath_ids, len(offsets)) return (N + Npath_ids - 1) // Npath_ids def _iter_collection(self, gc, master_transform, all_transforms, path_ids, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): """ This is a helper method (along with :meth:`_iter_collection_raw_paths`) to make it easier to write a space-efficent :meth:`draw_path_collection` implementation in a backend. This method yields all of the path, offset and graphics context combinations to draw the path collection. The caller should already have looped over the results of :meth:`_iter_collection_raw_paths` to draw this collection. The arguments should be the same as that passed into :meth:`draw_path_collection`, with the exception of *path_ids*, which is a list of arbitrary objects that the backend will use to reference one of the paths created in the :meth:`_iter_collection_raw_paths` stage. Each yielded result is of the form:: xo, yo, path_id, gc, rgbFace where *xo*, *yo* is an offset; *path_id* is one of the elements of *path_ids*; *gc* is a graphics context and *rgbFace* is a color to use for filling the path. """ Ntransforms = len(all_transforms) Npaths = len(path_ids) Noffsets = len(offsets) N = max(Npaths, Noffsets) Nfacecolors = len(facecolors) Nedgecolors = len(edgecolors) Nlinewidths = len(linewidths) Nlinestyles = len(linestyles) Naa = len(antialiaseds) Nurls = len(urls) if (Nfacecolors == 0 and Nedgecolors == 0) or Npaths == 0: return if Noffsets: toffsets = offsetTrans.transform(offsets) gc0 = self.new_gc() gc0.copy_properties(gc) if Nfacecolors == 0: rgbFace = None if Nedgecolors == 0: gc0.set_linewidth(0.0) xo, yo = 0, 0 for i in xrange(N): path_id = path_ids[i % Npaths] if Noffsets: xo, yo = toffsets[i % Noffsets] if offset_position == 'data': if Ntransforms: transform = ( Affine2D(all_transforms[i % Ntransforms]) + master_transform) else: transform = master_transform xo, yo = transform.transform_point((xo, yo)) xp, yp = transform.transform_point((0, 0)) xo = -(xp - xo) yo = -(yp - yo) if not (np.isfinite(xo) and np.isfinite(yo)): continue if Nfacecolors: rgbFace = facecolors[i % Nfacecolors] if Nedgecolors: if Nlinewidths: gc0.set_linewidth(linewidths[i % Nlinewidths]) if Nlinestyles: gc0.set_dashes(*linestyles[i % Nlinestyles]) fg = edgecolors[i % Nedgecolors] if len(fg) == 4: if fg[3] == 0.0: gc0.set_linewidth(0) else: gc0.set_foreground(fg) else: gc0.set_foreground(fg) if rgbFace is not None and len(rgbFace) == 4: if rgbFace[3] == 0: rgbFace = None gc0.set_antialiased(antialiaseds[i % Naa]) if Nurls: gc0.set_url(urls[i % Nurls]) yield xo, yo, path_id, gc0, rgbFace gc0.restore() def get_image_magnification(self): """ Get the factor by which to magnify images passed to :meth:`draw_image`. Allows a backend to have images at a different resolution to other artists. """ return 1.0 def draw_image(self, gc, x, y, im, transform=None): """ Draw an RGBA image. *gc* a :class:`GraphicsContextBase` instance with clipping information. *x* the distance in physical units (i.e., dots or pixels) from the left hand side of the canvas. *y* the distance in physical units (i.e., dots or pixels) from the bottom side of the canvas. *im* An NxMx4 array of RGBA pixels (of dtype uint8). *transform* If and only if the concrete backend is written such that :meth:`option_scale_image` returns ``True``, an affine transformation *may* be passed to :meth:`draw_image`. It takes the form of a :class:`~matplotlib.transforms.Affine2DBase` instance. The translation vector of the transformation is given in physical units (i.e., dots or pixels). Note that the transformation does not override `x` and `y`, and has to be applied *before* translating the result by `x` and `y` (this can be accomplished by adding `x` and `y` to the translation vector defined by `transform`). """ raise NotImplementedError def option_image_nocomposite(self): """ override this method for renderers that do not necessarily always want to rescale and composite raster images. (like SVG, PDF, or PS) """ return False def option_scale_image(self): """ override this method for renderers that support arbitrary affine transformations in :meth:`draw_image` (most vector backends). """ return False def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): """ """ self._draw_text_as_path(gc, x, y, s, prop, angle, ismath="TeX") def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): """ Draw the text instance *gc* the :class:`GraphicsContextBase` instance *x* the x location of the text in display coords *y* the y location of the text baseline in display coords *s* the text string *prop* a :class:`matplotlib.font_manager.FontProperties` instance *angle* the rotation angle in degrees *mtext* a :class:`matplotlib.text.Text` instance **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py:: if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be plotted along with your text. """ self._draw_text_as_path(gc, x, y, s, prop, angle, ismath) def _get_text_path_transform(self, x, y, s, prop, angle, ismath): """ return the text path and transform *prop* font property *s* text to be converted *usetex* If True, use matplotlib usetex mode. *ismath* If True, use mathtext parser. If "TeX", use *usetex* mode. """ text2path = self._text2path fontsize = self.points_to_pixels(prop.get_size_in_points()) if ismath == "TeX": verts, codes = text2path.get_text_path(prop, s, ismath=False, usetex=True) else: verts, codes = text2path.get_text_path(prop, s, ismath=ismath, usetex=False) path = Path(verts, codes) angle = angle / 180. * 3.141592 if self.flipy(): transform = Affine2D().scale(fontsize / text2path.FONT_SCALE, fontsize / text2path.FONT_SCALE) transform = transform.rotate(angle).translate(x, self.height - y) else: transform = Affine2D().scale(fontsize / text2path.FONT_SCALE, fontsize / text2path.FONT_SCALE) transform = transform.rotate(angle).translate(x, y) return path, transform def _draw_text_as_path(self, gc, x, y, s, prop, angle, ismath): """ draw the text by converting them to paths using textpath module. *prop* font property *s* text to be converted *usetex* If True, use matplotlib usetex mode. *ismath* If True, use mathtext parser. If "TeX", use *usetex* mode. """ path, transform = self._get_text_path_transform( x, y, s, prop, angle, ismath) color = gc.get_rgb() gc.set_linewidth(0.0) self.draw_path(gc, path, transform, rgbFace=color) def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height, and the offset from the bottom to the baseline (descent), in display coords of the string s with :class:`~matplotlib.font_manager.FontProperties` prop """ if ismath == 'TeX': # todo: handle props size = prop.get_size_in_points() texmanager = self._text2path.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent(s, fontsize, renderer=self) return w, h, d dpi = self.points_to_pixels(72) if ismath: dims = self._text2path.mathtext_parser.parse(s, dpi, prop) return dims[0:3] # return width, height, descent flags = self._text2path._get_hinting_flag() font = self._text2path._get_font(prop) size = prop.get_size_in_points() font.set_size(size, dpi) # the width and height of unrotated string font.set_text(s, 0.0, flags=flags) w, h = font.get_width_height() d = font.get_descent() w /= 64.0 # convert from subpixels h /= 64.0 d /= 64.0 return w, h, d def flipy(self): """ Return true if y small numbers are top for renderer Is used for drawing text (:mod:`matplotlib.text`) and images (:mod:`matplotlib.image`) only """ return True def get_canvas_width_height(self): 'return the canvas width and height in display coords' return 1, 1 def get_texmanager(self): """ return the :class:`matplotlib.texmanager.TexManager` instance """ if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def new_gc(self): """ Return an instance of a :class:`GraphicsContextBase` """ return GraphicsContextBase() def points_to_pixels(self, points): """ Convert points to display units *points* a float or a numpy array of float return points converted to pixels You need to override this function (unless your backend doesn't have a dpi, e.g., postscript or svg). Some imaging systems assume some value for pixels per inch:: points to pixels = points * pixels_per_inch/72.0 * dpi/72.0 """ return points def strip_math(self, s): return cbook.strip_math(s) def start_rasterizing(self): """ Used in MixedModeRenderer. Switch to the raster renderer. """ pass def stop_rasterizing(self): """ Used in MixedModeRenderer. Switch back to the vector renderer and draw the contents of the raster renderer as an image on the vector renderer. """ pass def start_filter(self): """ Used in AggRenderer. Switch to a temporary renderer for image filtering effects. """ pass def stop_filter(self, filter_func): """ Used in AggRenderer. Switch back to the original renderer. The contents of the temporary renderer is processed with the *filter_func* and is drawn on the original renderer as an image. """ pass class GraphicsContextBase(object): """ An abstract base class that provides color, line styles, etc... """ def __init__(self): self._alpha = 1.0 self._forced_alpha = False # if True, _alpha overrides A from RGBA self._antialiased = 1 # use 0,1 not True, False for extension code self._capstyle = 'butt' self._cliprect = None self._clippath = None self._dashes = None, None self._joinstyle = 'round' self._linestyle = 'solid' self._linewidth = 1 self._rgb = (0.0, 0.0, 0.0, 1.0) self._hatch = None self._hatch_color = colors.to_rgba(rcParams['hatch.color']) self._hatch_linewidth = rcParams['hatch.linewidth'] self._url = None self._gid = None self._snap = None self._sketch = None def copy_properties(self, gc): 'Copy properties from gc to self' self._alpha = gc._alpha self._forced_alpha = gc._forced_alpha self._antialiased = gc._antialiased self._capstyle = gc._capstyle self._cliprect = gc._cliprect self._clippath = gc._clippath self._dashes = gc._dashes self._joinstyle = gc._joinstyle self._linestyle = gc._linestyle self._linewidth = gc._linewidth self._rgb = gc._rgb self._hatch = gc._hatch self._url = gc._url self._gid = gc._gid self._snap = gc._snap self._sketch = gc._sketch def restore(self): """ Restore the graphics context from the stack - needed only for backends that save graphics contexts on a stack """ pass def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends """ return self._alpha def get_antialiased(self): "Return true if the object should try to do antialiased rendering" return self._antialiased def get_capstyle(self): """ Return the capstyle as a string in ('butt', 'round', 'projecting') """ return self._capstyle def get_clip_rectangle(self): """ Return the clip rectangle as a :class:`~matplotlib.transforms.Bbox` instance """ return self._cliprect def get_clip_path(self): """ Return the clip path in the form (path, transform), where path is a :class:`~matplotlib.path.Path` instance, and transform is an affine transform to apply to the path before clipping. """ if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def get_dashes(self): """ Return the dash information as an offset dashlist tuple. The dash list is a even size list that gives the ink on, ink off in pixels. See p107 of to PostScript `BLUEBOOK <https://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF>`_ for more info. Default value is None """ return self._dashes def get_forced_alpha(self): """ Return whether the value given by get_alpha() should be used to override any other alpha-channel values. """ return self._forced_alpha def get_joinstyle(self): """ Return the line join style as one of ('miter', 'round', 'bevel') """ return self._joinstyle def get_linestyle(self, style): """ Return the linestyle: one of ('solid', 'dashed', 'dashdot', 'dotted'). """ return self._linestyle def get_linewidth(self): """ Return the line width in points as a scalar """ return self._linewidth def get_rgb(self): """ returns a tuple of three or four floats from 0-1. """ return self._rgb def get_url(self): """ returns a url if one is set, None otherwise """ return self._url def get_gid(self): """ Return the object identifier if one is set, None otherwise. """ return self._gid def get_snap(self): """ returns the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ return self._snap def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends. If ``alpha=None`` (the default), the alpha components of the foreground and fill colors will be used to set their respective transparencies (where applicable); otherwise, ``alpha`` will override them. """ if alpha is not None: self._alpha = alpha self._forced_alpha = True else: self._alpha = 1.0 self._forced_alpha = False self.set_foreground(self._rgb, isRGBA=True) def set_antialiased(self, b): """ True if object should be drawn with antialiased rendering """ # use 0, 1 to make life easier on extension code trying to read the gc if b: self._antialiased = 1 else: self._antialiased = 0 def set_capstyle(self, cs): """ Set the capstyle as a string in ('butt', 'round', 'projecting') """ if cs in ('butt', 'round', 'projecting'): self._capstyle = cs else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): """ Set the clip rectangle with sequence (left, bottom, width, height) """ self._cliprect = rectangle def set_clip_path(self, path): """ Set the clip path and transformation. Path should be a :class:`~matplotlib.transforms.TransformedPath` instance. """ if path is not None and not isinstance(path, transforms.TransformedPath): msg = ("Path should be a matplotlib.transforms.TransformedPath" "instance.") raise ValueError(msg) self._clippath = path def set_dashes(self, dash_offset, dash_list): """ Set the dash style for the gc. *dash_offset* is the offset (usually 0). *dash_list* specifies the on-off sequence as points. ``(None, None)`` specifies a solid line """ if dash_list is not None: dl = np.asarray(dash_list) if np.any(dl <= 0.0): raise ValueError("All values in the dash list must be positive") self._dashes = dash_offset, dash_list def set_foreground(self, fg, isRGBA=False): """ Set the foreground color. fg can be a MATLAB format string, a html hex color string, an rgb or rgba unit tuple, or a float between 0 and 1. In the latter case, grayscale is used. If you know fg is rgba, set ``isRGBA=True`` for efficiency. """ if self._forced_alpha and isRGBA: self._rgb = fg[:3] + (self._alpha,) elif self._forced_alpha: self._rgb = colors.to_rgba(fg, self._alpha) elif isRGBA: self._rgb = fg else: self._rgb = colors.to_rgba(fg) def set_graylevel(self, frac): """ Set the foreground color to be a gray level with *frac* """ # When removing, remember to remove all overrides in subclasses. msg = ("set_graylevel is deprecated for removal in 1.6; " "you can achieve the same result by using " "set_foreground((frac, frac, frac))") warnings.warn(msg, mplDeprecation) self._rgb = (frac, frac, frac, self._alpha) def set_joinstyle(self, js): """ Set the join style to be one of ('miter', 'round', 'bevel') """ if js in ('miter', 'round', 'bevel'): self._joinstyle = js else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): """ Set the linewidth in points """ self._linewidth = float(w) def set_linestyle(self, style): """ Set the linestyle to be one of ('solid', 'dashed', 'dashdot', 'dotted'). These are defined in the rcParams `lines.dashed_pattern`, `lines.dashdot_pattern` and `lines.dotted_pattern`. One may also specify customized dash styles by providing a tuple of (offset, dash pairs). """ self._linestyle = style def set_url(self, url): """ Sets the url for links in compatible backends """ self._url = url def set_gid(self, id): """ Sets the id. """ self._gid = id def set_snap(self, snap): """ Sets the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ self._snap = snap def set_hatch(self, hatch): """ Sets the hatch style for filling """ self._hatch = hatch def get_hatch(self): """ Gets the current hatch style """ return self._hatch def get_hatch_path(self, density=6.0): """ Returns a Path for the current hatch. """ if self._hatch is None: return None return Path.hatch(self._hatch, density) def get_hatch_color(self): """ Gets the color to use for hatching. """ return self._hatch_color def get_hatch_linewidth(self): """ Gets the linewidth to use for hatching. """ return self._hatch_linewidth def get_sketch_params(self): """ Returns the sketch parameters for the artist. Returns ------- sketch_params : tuple or `None` A 3-tuple with the following elements: * `scale`: The amplitude of the wiggle perpendicular to the source line. * `length`: The length of the wiggle along the line. * `randomness`: The scale factor by which the length is shrunken or expanded. May return `None` if no sketch parameters were set. """ return self._sketch def set_sketch_params(self, scale=None, length=None, randomness=None): """ Sets the sketch parameters. Parameters ---------- scale : float, optional The amplitude of the wiggle perpendicular to the source line, in pixels. If scale is `None`, or not provided, no sketch filter will be provided. length : float, optional The length of the wiggle along the line, in pixels (default 128.0) randomness : float, optional The scale factor by which the length is shrunken or expanded (default 16.0) """ if scale is None: self._sketch = None else: self._sketch = (scale, length or 128.0, randomness or 16.0) class TimerBase(object): ''' A base class for providing timer events, useful for things animations. Backends need to implement a few specific methods in order to use their own timing mechanisms so that the timer events are integrated into their event loops. Mandatory functions that must be implemented: * `_timer_start`: Contains backend-specific code for starting the timer * `_timer_stop`: Contains backend-specific code for stopping the timer Optional overrides: * `_timer_set_single_shot`: Code for setting the timer to single shot operating mode, if supported by the timer object. If not, the `Timer` class itself will store the flag and the `_on_timer` method should be overridden to support such behavior. * `_timer_set_interval`: Code for setting the interval on the timer, if there is a method for doing so on the timer object. * `_on_timer`: This is the internal function that any timer object should call, which will handle the task of running all callbacks that have been set. Attributes: * `interval`: The time between timer events in milliseconds. Default is 1000 ms. * `single_shot`: Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to `False`. * `callbacks`: Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions `add_callback` and `remove_callback` can be used. ''' def __init__(self, interval=None, callbacks=None): #Initialize empty callbacks list and setup default settings if necssary if callbacks is None: self.callbacks = [] else: self.callbacks = callbacks[:] # Create a copy if interval is None: self._interval = 1000 else: self._interval = interval self._single = False # Default attribute for holding the GUI-specific timer object self._timer = None def __del__(self): 'Need to stop timer and possibly disconnect timer.' self._timer_stop() def start(self, interval=None): ''' Start the timer object. `interval` is optional and will be used to reset the timer interval first if provided. ''' if interval is not None: self._set_interval(interval) self._timer_start() def stop(self): ''' Stop the timer. ''' self._timer_stop() def _timer_start(self): pass def _timer_stop(self): pass def _get_interval(self): return self._interval def _set_interval(self, interval): # Force to int since none of the backends actually support fractional # milliseconds, and some error or give warnings. interval = int(interval) self._interval = interval self._timer_set_interval() interval = property(_get_interval, _set_interval) def _get_single_shot(self): return self._single def _set_single_shot(self, ss=True): self._single = ss self._timer_set_single_shot() single_shot = property(_get_single_shot, _set_single_shot) def add_callback(self, func, *args, **kwargs): ''' Register `func` to be called by timer when the event fires. Any additional arguments provided will be passed to `func`. ''' self.callbacks.append((func, args, kwargs)) def remove_callback(self, func, *args, **kwargs): ''' Remove `func` from list of callbacks. `args` and `kwargs` are optional and used to distinguish between copies of the same function registered to be called with different arguments. ''' if args or kwargs: self.callbacks.remove((func, args, kwargs)) else: funcs = [c[0] for c in self.callbacks] if func in funcs: self.callbacks.pop(funcs.index(func)) def _timer_set_interval(self): 'Used to set interval on underlying timer object.' pass def _timer_set_single_shot(self): 'Used to set single shot on underlying timer object.' pass def _on_timer(self): ''' Runs all function that have been registered as callbacks. Functions can return False (or 0) if they should not be called any more. If there are no callbacks, the timer is automatically stopped. ''' for func, args, kwargs in self.callbacks: ret = func(*args, **kwargs) # docstring above explains why we use `if ret == False` here, # instead of `if not ret`. if ret == False: self.callbacks.remove((func, args, kwargs)) if len(self.callbacks) == 0: self.stop() class Event(object): """ A matplotlib event. Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. The following attributes are defined and shown with their default values *name* the event name *canvas* the FigureCanvas instance generating the event *guiEvent* the GUI event that triggered the matplotlib event """ def __init__(self, name, canvas, guiEvent=None): self.name = name self.canvas = canvas self.guiEvent = guiEvent class IdleEvent(Event): """ An event triggered by the GUI backend when it is idle -- useful for passive animation """ pass class DrawEvent(Event): """ An event triggered by a draw operation on the canvas In addition to the :class:`Event` attributes, the following event attributes are defined: *renderer* the :class:`RendererBase` instance for the draw event """ def __init__(self, name, canvas, renderer): Event.__init__(self, name, canvas) self.renderer = renderer class ResizeEvent(Event): """ An event triggered by a canvas resize In addition to the :class:`Event` attributes, the following event attributes are defined: *width* width of the canvas in pixels *height* height of the canvas in pixels """ def __init__(self, name, canvas): Event.__init__(self, name, canvas) self.width, self.height = canvas.get_width_height() class CloseEvent(Event): """ An event triggered by a figure being closed In addition to the :class:`Event` attributes, the following event attributes are defined: """ def __init__(self, name, canvas, guiEvent=None): Event.__init__(self, name, canvas, guiEvent) class LocationEvent(Event): """ An event that has a screen location The following additional attributes are defined and shown with their default values. In addition to the :class:`Event` attributes, the following event attributes are defined: *x* x position - pixels from left of canvas *y* y position - pixels from bottom of canvas *inaxes* the :class:`~matplotlib.axes.Axes` instance if mouse is over axes *xdata* x coord of mouse in data coords *ydata* y coord of mouse in data coords """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords # the last event that was triggered before this one lastevent = None def __init__(self, name, canvas, x, y, guiEvent=None): """ *x*, *y* in figure coords, 0,0 = bottom, left """ Event.__init__(self, name, canvas, guiEvent=guiEvent) self.x = x self.y = y if x is None or y is None: # cannot check if event was in axes if no x,y info self.inaxes = None self._update_enter_leave() return # Find all axes containing the mouse if self.canvas.mouse_grabber is None: axes_list = [a for a in self.canvas.figure.get_axes() if a.in_axes(self)] else: axes_list = [self.canvas.mouse_grabber] if len(axes_list) == 0: # None found self.inaxes = None self._update_enter_leave() return elif (len(axes_list) > 1): # Overlap, get the highest zorder axes_list.sort(key=lambda x: x.zorder) self.inaxes = axes_list[-1] # Use the highest zorder else: # Just found one hit self.inaxes = axes_list[0] try: trans = self.inaxes.transData.inverted() xdata, ydata = trans.transform_point((x, y)) except ValueError: self.xdata = None self.ydata = None else: self.xdata = xdata self.ydata = ydata self._update_enter_leave() def _update_enter_leave(self): 'process the figure/axes enter leave events' if LocationEvent.lastevent is not None: last = LocationEvent.lastevent if last.inaxes != self.inaxes: # process axes enter/leave events try: if last.inaxes is not None: last.canvas.callbacks.process('axes_leave_event', last) except: pass # See ticket 2901582. # I think this is a valid exception to the rule # against catching all exceptions; if anything goes # wrong, we simply want to move on and process the # current event. if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) else: # process a figure enter event if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) LocationEvent.lastevent = self class MouseEvent(LocationEvent): """ A mouse event ('button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event'). In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *button* button pressed None, 1, 2, 3, 'up', 'down' (up and down are used for scroll events). Note that in the nbagg backend, both the middle and right clicks return 3 since right clicking will bring up the context menu in some browsers. *key* the key depressed when the mouse event triggered (see :class:`KeyEvent`) *step* number of scroll steps (positive for 'up', negative for 'down') Example usage:: def on_press(event): print('you pressed', event.button, event.xdata, event.ydata) cid = fig.canvas.mpl_connect('button_press_event', on_press) """ x = None # x position - pixels from left of canvas y = None # y position - pixels from right of canvas button = None # button pressed None, 1, 2, 3 dblclick = None # whether or not the event is the result of a double click inaxes = None # the Axes instance if mouse us over axes xdata = None # x coord of mouse in data coords ydata = None # y coord of mouse in data coords step = None # scroll steps for scroll events def __init__(self, name, canvas, x, y, button=None, key=None, step=0, dblclick=False, guiEvent=None): """ x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, 'up', 'down' """ LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.button = button self.key = key self.step = step self.dblclick = dblclick def __str__(self): return ("MPL MouseEvent: xy=(%d,%d) xydata=(%s,%s) button=%s " + "dblclick=%s inaxes=%s") % (self.x, self.y, self.xdata, self.ydata, self.button, self.dblclick, self.inaxes) class PickEvent(Event): """ a pick event, fired when the user picks a location on the canvas sufficiently close to an artist. Attrs: all the :class:`Event` attributes plus *mouseevent* the :class:`MouseEvent` that generated the pick *artist* the :class:`~matplotlib.artist.Artist` picked other extra class dependent attrs -- e.g., a :class:`~matplotlib.lines.Line2D` pick may define different extra attributes than a :class:`~matplotlib.collections.PatchCollection` pick event Example usage:: ax.plot(np.rand(100), 'o', picker=5) # 5 points tolerance def on_pick(event): line = event.artist xdata, ydata = line.get_data() ind = event.ind print('on pick line:', np.array([xdata[ind], ydata[ind]]).T) cid = fig.canvas.mpl_connect('pick_event', on_pick) """ def __init__(self, name, canvas, mouseevent, artist, guiEvent=None, **kwargs): Event.__init__(self, name, canvas, guiEvent) self.mouseevent = mouseevent self.artist = artist self.__dict__.update(kwargs) class KeyEvent(LocationEvent): """ A key event (key press, key release). Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: *key* the key(s) pressed. Could be **None**, a single case sensitive ascii character ("g", "G", "#", etc.), a special key ("control", "shift", "f1", "up", etc.) or a combination of the above (e.g., "ctrl+alt+g", "ctrl+alt+G"). .. note:: Modifier keys will be prefixed to the pressed key and will be in the order "ctrl", "alt", "super". The exception to this rule is when the pressed key is itself a modifier key, therefore "ctrl+alt" and "alt+control" can both be valid key values. Example usage:: def on_key(event): print('you pressed', event.key, event.xdata, event.ydata) cid = fig.canvas.mpl_connect('key_press_event', on_key) """ def __init__(self, name, canvas, key, x=0, y=0, guiEvent=None): LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.key = key class FigureCanvasBase(object): """ The canvas the figure renders into. Public attributes *figure* A :class:`matplotlib.figure.Figure` instance """ events = [ 'resize_event', 'draw_event', 'key_press_event', 'key_release_event', 'button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event', 'pick_event', 'idle_event', 'figure_enter_event', 'figure_leave_event', 'axes_enter_event', 'axes_leave_event', 'close_event' ] supports_blit = True fixed_dpi = None filetypes = _default_filetypes if _has_pil: # JPEG support register_backend('jpg', 'matplotlib.backends.backend_agg', 'Joint Photographic Experts Group') register_backend('jpeg', 'matplotlib.backends.backend_agg', 'Joint Photographic Experts Group') # TIFF support register_backend('tif', 'matplotlib.backends.backend_agg', 'Tagged Image File Format') register_backend('tiff', 'matplotlib.backends.backend_agg', 'Tagged Image File Format') def __init__(self, figure): self._is_idle_drawing = True self._is_saving = False figure.set_canvas(self) self.figure = figure # a dictionary from event name to a dictionary that maps cid->func self.callbacks = cbook.CallbackRegistry() self.widgetlock = widgets.LockDraw() self._button = None # the button pressed self._key = None # the key pressed self._lastx, self._lasty = None, None self.button_pick_id = self.mpl_connect('button_press_event', self.pick) self.scroll_pick_id = self.mpl_connect('scroll_event', self.pick) self.mouse_grabber = None # the axes currently grabbing mouse self.toolbar = None # NavigationToolbar2 will set me self._is_idle_drawing = False @contextmanager def _idle_draw_cntx(self): self._is_idle_drawing = True yield self._is_idle_drawing = False def is_saving(self): """ Returns `True` when the renderer is in the process of saving to a file, rather than rendering for an on-screen buffer. """ return self._is_saving def onRemove(self, ev): """ Mouse event processor which removes the top artist under the cursor. Connect this to the 'mouse_press_event' using:: canvas.mpl_connect('mouse_press_event',canvas.onRemove) """ # Find the top artist under the cursor under = self.figure.hitlist(ev) under.sort(key=lambda x: x.zorder) h = None if under: h = under[-1] # Try deleting that artist, or its parent if you # can't delete the artist while h: if h.remove(): self.draw_idle() break parent = None for p in under: if h in p.get_children(): parent = p break h = parent def onHilite(self, ev): """ Mouse event processor which highlights the artists under the cursor. Connect this to the 'motion_notify_event' using:: canvas.mpl_connect('motion_notify_event',canvas.onHilite) """ msg = ("onHilite has been deprecated in 1.5 and will be removed " "in 1.6. This function has not been used internally by mpl " "since 2007.") warnings.warn(msg, mplDeprecation) if not hasattr(self, '_active'): self._active = dict() under = self.figure.hitlist(ev) enter = [a for a in under if a not in self._active] leave = [a for a in self._active if a not in under] # On leave restore the captured colour for a in leave: if hasattr(a, 'get_color'): a.set_color(self._active[a]) elif hasattr(a, 'get_edgecolor'): a.set_edgecolor(self._active[a][0]) a.set_facecolor(self._active[a][1]) del self._active[a] # On enter, capture the color and repaint the artist # with the highlight colour. Capturing colour has to # be done first in case the parent recolouring affects # the child. for a in enter: if hasattr(a, 'get_color'): self._active[a] = a.get_color() elif hasattr(a, 'get_edgecolor'): self._active[a] = (a.get_edgecolor(), a.get_facecolor()) else: self._active[a] = None for a in enter: if hasattr(a, 'get_color'): a.set_color('red') elif hasattr(a, 'get_edgecolor'): a.set_edgecolor('red') a.set_facecolor('lightblue') else: self._active[a] = None self.draw_idle() def pick(self, mouseevent): if not self.widgetlock.locked(): self.figure.pick(mouseevent) def blit(self, bbox=None): """ blit the canvas in bbox (default entire canvas) """ pass def resize(self, w, h): """ set the canvas size in pixels """ pass def draw_event(self, renderer): """ This method will be call all functions connected to the 'draw_event' with a :class:`DrawEvent` """ s = 'draw_event' event = DrawEvent(s, self, renderer) self.callbacks.process(s, event) def resize_event(self): """ This method will be call all functions connected to the 'resize_event' with a :class:`ResizeEvent` """ s = 'resize_event' event = ResizeEvent(s, self) self.callbacks.process(s, event) def close_event(self, guiEvent=None): """ This method will be called by all functions connected to the 'close_event' with a :class:`CloseEvent` """ s = 'close_event' try: event = CloseEvent(s, self, guiEvent=guiEvent) self.callbacks.process(s, event) except (TypeError, AttributeError): pass # Suppress the TypeError when the python session is being killed. # It may be that a better solution would be a mechanism to # disconnect all callbacks upon shutdown. # AttributeError occurs on OSX with qt4agg upon exiting # with an open window; 'callbacks' attribute no longer exists. def key_press_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_press_event' with a :class:`KeyEvent` """ self._key = key s = 'key_press_event' event = KeyEvent( s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) def key_release_event(self, key, guiEvent=None): """ This method will be call all functions connected to the 'key_release_event' with a :class:`KeyEvent` """ s = 'key_release_event' event = KeyEvent( s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) self._key = None def pick_event(self, mouseevent, artist, **kwargs): """ This method will be called by artists who are picked and will fire off :class:`PickEvent` callbacks registered listeners """ s = 'pick_event' event = PickEvent(s, self, mouseevent, artist, guiEvent=mouseevent.guiEvent, **kwargs) self.callbacks.process(s, event) def scroll_event(self, x, y, step, guiEvent=None): """ Backend derived classes should call this function on any scroll wheel event. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in MouseEvent. This method will be call all functions connected to the 'scroll_event' with a :class:`MouseEvent` instance. """ if step >= 0: self._button = 'up' else: self._button = 'down' s = 'scroll_event' mouseevent = MouseEvent(s, self, x, y, self._button, self._key, step=step, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_press_event(self, x, y, button, dblclick=False, guiEvent=None): """ Backend derived classes should call this function on any mouse button press. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in :class:`MouseEvent`. This method will be call all functions connected to the 'button_press_event' with a :class:`MouseEvent` instance. """ self._button = button s = 'button_press_event' mouseevent = MouseEvent(s, self, x, y, button, self._key, dblclick=dblclick, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_release_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button release. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'button_release_event' with a :class:`MouseEvent` instance. """ s = 'button_release_event' event = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) self._button = None def motion_notify_event(self, x, y, guiEvent=None): """ Backend derived classes should call this function on any motion-notify-event. *x* the canvas coordinates where 0=left *y* the canvas coordinates where 0=bottom *guiEvent* the native UI event that generated the mpl event This method will be call all functions connected to the 'motion_notify_event' with a :class:`MouseEvent` instance. """ self._lastx, self._lasty = x, y s = 'motion_notify_event' event = MouseEvent(s, self, x, y, self._button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) def leave_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when leaving canvas *guiEvent* the native UI event that generated the mpl event """ self.callbacks.process('figure_leave_event', LocationEvent.lastevent) LocationEvent.lastevent = None self._lastx, self._lasty = None, None def enter_notify_event(self, guiEvent=None, xy=None): """ Backend derived classes should call this function when entering canvas *guiEvent* the native UI event that generated the mpl event *xy* the coordinate location of the pointer when the canvas is entered """ if xy is not None: x, y = xy self._lastx, self._lasty = x, y event = Event('figure_enter_event', self, guiEvent) self.callbacks.process('figure_enter_event', event) def idle_event(self, guiEvent=None): """Called when GUI is idle.""" s = 'idle_event' event = IdleEvent(s, self, guiEvent=guiEvent) self.callbacks.process(s, event) def grab_mouse(self, ax): """ Set the child axes which are currently grabbing the mouse events. Usually called by the widgets themselves. It is an error to call this if the mouse is already grabbed by another axes. """ if self.mouse_grabber not in (None, ax): raise RuntimeError('two different attempted to grab mouse input') self.mouse_grabber = ax def release_mouse(self, ax): """ Release the mouse grab held by the axes, ax. Usually called by the widgets. It is ok to call this even if you ax doesn't have the mouse grab currently. """ if self.mouse_grabber is ax: self.mouse_grabber = None def draw(self, *args, **kwargs): """ Render the :class:`~matplotlib.figure.Figure` """ pass def draw_idle(self, *args, **kwargs): """ :meth:`draw` only if idle; defaults to draw but backends can overrride """ if not self._is_idle_drawing: with self._idle_draw_cntx(): self.draw(*args, **kwargs) def draw_cursor(self, event): """ Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if possible """ pass def get_width_height(self): """ Return the figure width and height in points or pixels (depending on the backend), truncated to integers """ return int(self.figure.bbox.width), int(self.figure.bbox.height) @classmethod def get_supported_filetypes(cls): """Return dict of savefig file formats supported by this backend""" return cls.filetypes @classmethod def get_supported_filetypes_grouped(cls): """Return a dict of savefig file formats supported by this backend, where the keys are a file type name, such as 'Joint Photographic Experts Group', and the values are a list of filename extensions used for that filetype, such as ['jpg', 'jpeg'].""" groupings = {} for ext, name in six.iteritems(cls.filetypes): groupings.setdefault(name, []).append(ext) groupings[name].sort() return groupings def _get_output_canvas(self, format): """Return a canvas that is suitable for saving figures to a specified file format. If necessary, this function will switch to a registered backend that supports the format. """ method_name = 'print_%s' % format # check if this canvas supports the requested format if hasattr(self, method_name): return self # check if there is a default canvas for the requested format canvas_class = get_registered_canvas_class(format) if canvas_class: return self.switch_backends(canvas_class) # else report error for unsupported format formats = sorted(self.get_supported_filetypes()) raise ValueError('Format "%s" is not supported.\n' 'Supported formats: ' '%s.' % (format, ', '.join(formats))) def print_figure(self, filename, dpi=None, facecolor=None, edgecolor=None, orientation='portrait', format=None, **kwargs): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy. Arguments are: *filename* can also be a file object on image backends *orientation* only currently applies to PostScript printing. *dpi* the dots per inch to save the figure in; if None, use savefig.dpi *facecolor* the facecolor of the figure; if None, defaults to savefig.facecolor *edgecolor* the edgecolor of the figure; if None, defaults to savefig.edgecolor *orientation* landscape' | 'portrait' (not supported on all backends) *format* when set, forcibly set the file format to save to *bbox_inches* Bbox in inches. Only the given portion of the figure is saved. If 'tight', try to figure out the tight bbox of the figure. If None, use savefig.bbox *pad_inches* Amount of padding around the figure when bbox_inches is 'tight'. If None, use savefig.pad_inches *bbox_extra_artists* A list of extra artists that will be considered when the tight bbox is calculated. """ self._is_saving = True if format is None: # get format from filename, or from backend's default filetype if cbook.is_string_like(filename): format = os.path.splitext(filename)[1][1:] if format is None or format == '': format = self.get_default_filetype() if cbook.is_string_like(filename): filename = filename.rstrip('.') + '.' + format format = format.lower() # get canvas object and print method for format canvas = self._get_output_canvas(format) print_method = getattr(canvas, 'print_%s' % format) if dpi is None: dpi = rcParams['savefig.dpi'] if dpi == 'figure': dpi = self.figure.dpi if facecolor is None: facecolor = rcParams['savefig.facecolor'] if edgecolor is None: edgecolor = rcParams['savefig.edgecolor'] origDPI = self.figure.dpi origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.dpi = dpi self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) bbox_inches = kwargs.pop("bbox_inches", None) if bbox_inches is None: bbox_inches = rcParams['savefig.bbox'] if bbox_inches: # call adjust_bbox to save only the given area if bbox_inches == "tight": # when bbox_inches == "tight", it saves the figure # twice. The first save command is just to estimate # the bounding box of the figure. A stringIO object is # used as a temporary file object, but it causes a # problem for some backends (ps backend with # usetex=True) if they expect a filename, not a # file-like object. As I think it is best to change # the backend to support file-like object, i'm going # to leave it as it is. However, a better solution # than stringIO seems to be needed. -JJL #result = getattr(self, method_name) result = print_method( io.BytesIO(), dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, dryrun=True, **kwargs) renderer = self.figure._cachedRenderer bbox_inches = self.figure.get_tightbbox(renderer) bbox_artists = kwargs.pop("bbox_extra_artists", None) if bbox_artists is None: bbox_artists = self.figure.get_default_bbox_extra_artists() bbox_filtered = [] for a in bbox_artists: bbox = a.get_window_extent(renderer) if a.get_clip_on(): clip_box = a.get_clip_box() if clip_box is not None: bbox = Bbox.intersection(bbox, clip_box) clip_path = a.get_clip_path() if clip_path is not None and bbox is not None: clip_path = clip_path.get_fully_transformed_path() bbox = Bbox.intersection(bbox, clip_path.get_extents()) if bbox is not None and (bbox.width != 0 or bbox.height != 0): bbox_filtered.append(bbox) if bbox_filtered: _bbox = Bbox.union(bbox_filtered) trans = Affine2D().scale(1.0 / self.figure.dpi) bbox_extra = TransformedBbox(_bbox, trans) bbox_inches = Bbox.union([bbox_inches, bbox_extra]) pad = kwargs.pop("pad_inches", None) if pad is None: pad = rcParams['savefig.pad_inches'] bbox_inches = bbox_inches.padded(pad) restore_bbox = tight_bbox.adjust_bbox(self.figure, bbox_inches, canvas.fixed_dpi) _bbox_inches_restore = (bbox_inches, restore_bbox) else: _bbox_inches_restore = None try: #result = getattr(self, method_name)( result = print_method( filename, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, bbox_inches_restore=_bbox_inches_restore, **kwargs) finally: if bbox_inches and restore_bbox: restore_bbox() self.figure.dpi = origDPI self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) self.figure.set_canvas(self) self._is_saving = False #self.figure.canvas.draw() ## seems superfluous return result @classmethod def get_default_filetype(cls): """ Get the default savefig file format as specified in rcParam ``savefig.format``. Returned string excludes period. Overridden in backends that only support a single file type. """ return rcParams['savefig.format'] def get_window_title(self): """ Get the title text of the window containing the figure. Return None if there is no window (e.g., a PS backend). """ if hasattr(self, "manager"): return self.manager.get_window_title() def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (e.g., a PS backend). """ if hasattr(self, "manager"): self.manager.set_window_title(title) def get_default_filename(self): """ Return a string, which includes extension, suitable for use as a default filename. """ default_basename = self.get_window_title() or 'image' default_basename = default_basename.lower().replace(' ', '_') default_filetype = self.get_default_filetype() default_filename = default_basename + '.' + default_filetype save_dir = os.path.expanduser(rcParams.get('savefig.directory', '')) # ensure non-existing filename in save dir i = 1 while os.path.isfile(os.path.join(save_dir, default_filename)): # attach numerical count to basename default_filename = '{0}-{1}.{2}'.format(default_basename, i, default_filetype) i += 1 return default_filename def switch_backends(self, FigureCanvasClass): """ Instantiate an instance of FigureCanvasClass This is used for backend switching, e.g., to instantiate a FigureCanvasPS from a FigureCanvasGTK. Note, deep copying is not done, so any changes to one of the instances (e.g., setting figure size or line props), will be reflected in the other """ newCanvas = FigureCanvasClass(self.figure) newCanvas._is_saving = self._is_saving return newCanvas def mpl_connect(self, s, func): """ Connect event with string *s* to *func*. The signature of *func* is:: def func(event) where event is a :class:`matplotlib.backend_bases.Event`. The following events are recognized - 'button_press_event' - 'button_release_event' - 'draw_event' - 'key_press_event' - 'key_release_event' - 'motion_notify_event' - 'pick_event' - 'resize_event' - 'scroll_event' - 'figure_enter_event', - 'figure_leave_event', - 'axes_enter_event', - 'axes_leave_event' - 'close_event' For the location events (button and key press/release), if the mouse is over the axes, the variable ``event.inaxes`` will be set to the :class:`~matplotlib.axes.Axes` the event occurs is over, and additionally, the variables ``event.xdata`` and ``event.ydata`` will be defined. This is the mouse location in data coords. See :class:`~matplotlib.backend_bases.KeyEvent` and :class:`~matplotlib.backend_bases.MouseEvent` for more info. Return value is a connection id that can be used with :meth:`~matplotlib.backend_bases.Event.mpl_disconnect`. Example usage:: def on_press(event): print('you pressed', event.button, event.xdata, event.ydata) cid = canvas.mpl_connect('button_press_event', on_press) """ if s == 'idle_event': warn_deprecated(1.5, "idle_event is only implemented for the wx backend, and will " "be removed in matplotlib 2.1. Use the animations module " "instead.") return self.callbacks.connect(s, func) def mpl_disconnect(self, cid): """ Disconnect callback id cid Example usage:: cid = canvas.mpl_connect('button_press_event', on_press) #...later canvas.mpl_disconnect(cid) """ return self.callbacks.disconnect(cid) def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. optional arguments: *interval* Timer interval in milliseconds *callbacks* Sequence of (func, args, kwargs) where func(*args, **kwargs) will be executed by the timer every *interval*. """ return TimerBase(*args, **kwargs) def flush_events(self): """ Flush the GUI events for the figure. Implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop(self, timeout): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This is implemented only for backends with GUIs. """ raise NotImplementedError def stop_event_loop(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This is implemented only for backends with GUIs. """ raise NotImplementedError def start_event_loop_default(self, timeout=0): """ Start an event loop. This is used to start a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. This should not be confused with the main GUI event loop, which is always running and has nothing to do with this. This function provides default event loop functionality based on time.sleep that is meant to be used until event loop functions for each of the GUI backends can be written. As such, it throws a deprecated warning. This call blocks until a callback function triggers stop_event_loop() or *timeout* is reached. If *timeout* is <=0, never timeout. """ str = "Using default event loop until function specific" str += " to this GUI is implemented" warnings.warn(str, mplDeprecation) if timeout <= 0: timeout = np.inf timestep = 0.01 counter = 0 self._looping = True while self._looping and counter * timestep < timeout: self.flush_events() time.sleep(timestep) counter += 1 def stop_event_loop_default(self): """ Stop an event loop. This is used to stop a blocking event loop so that interactive functions, such as ginput and waitforbuttonpress, can wait for events. """ self._looping = False def key_press_handler(event, canvas, toolbar=None): """ Implement the default mpl key bindings for the canvas and toolbar described at :ref:`key-event-handling` *event* a :class:`KeyEvent` instance *canvas* a :class:`FigureCanvasBase` instance *toolbar* a :class:`NavigationToolbar2` instance """ # these bindings happen whether you are over an axes or not if event.key is None: return # Load key-mappings from your matplotlibrc file. fullscreen_keys = rcParams['keymap.fullscreen'] home_keys = rcParams['keymap.home'] back_keys = rcParams['keymap.back'] forward_keys = rcParams['keymap.forward'] pan_keys = rcParams['keymap.pan'] zoom_keys = rcParams['keymap.zoom'] save_keys = rcParams['keymap.save'] quit_keys = rcParams['keymap.quit'] grid_keys = rcParams['keymap.grid'] toggle_yscale_keys = rcParams['keymap.yscale'] toggle_xscale_keys = rcParams['keymap.xscale'] all = rcParams['keymap.all_axes'] # toggle fullscreen mode ('f', 'ctrl + f') if event.key in fullscreen_keys: try: canvas.manager.full_screen_toggle() except AttributeError: pass # quit the figure (defaut key 'ctrl+w') if event.key in quit_keys: Gcf.destroy_fig(canvas.figure) if toolbar is not None: # home or reset mnemonic (default key 'h', 'home' and 'r') if event.key in home_keys: toolbar.home() # forward / backward keys to enable left handed quick navigation # (default key for backward: 'left', 'backspace' and 'c') elif event.key in back_keys: toolbar.back() # (default key for forward: 'right' and 'v') elif event.key in forward_keys: toolbar.forward() # pan mnemonic (default key 'p') elif event.key in pan_keys: toolbar.pan() toolbar._set_cursor(event) # zoom mnemonic (default key 'o') elif event.key in zoom_keys: toolbar.zoom() toolbar._set_cursor(event) # saving current figure (default key 's') elif event.key in save_keys: toolbar.save_figure() if event.inaxes is None: return # these bindings require the mouse to be over an axes to trigger # switching on/off a grid in current axes (default key 'g') if event.key in grid_keys: event.inaxes.grid() canvas.draw() # toggle scaling of y-axes between 'log and 'linear' (default key 'l') elif event.key in toggle_yscale_keys: ax = event.inaxes scale = ax.get_yscale() if scale == 'log': ax.set_yscale('linear') ax.figure.canvas.draw() elif scale == 'linear': try: ax.set_yscale('log') except ValueError as exc: warnings.warn(str(exc)) ax.set_yscale('linear') ax.figure.canvas.draw() # toggle scaling of x-axes between 'log and 'linear' (default key 'k') elif event.key in toggle_xscale_keys: ax = event.inaxes scalex = ax.get_xscale() if scalex == 'log': ax.set_xscale('linear') ax.figure.canvas.draw() elif scalex == 'linear': try: ax.set_xscale('log') except ValueError: warnings.warn(str(exc)) ax.set_xscale('linear') ax.figure.canvas.draw() elif (event.key.isdigit() and event.key != '0') or event.key in all: # keys in list 'all' enables all axes (default key 'a'), # otherwise if key is a number only enable this particular axes # if it was the axes, where the event was raised if not (event.key in all): n = int(event.key) - 1 for i, a in enumerate(canvas.figure.get_axes()): # consider axes, in which the event was raised # FIXME: Why only this axes? if event.x is not None and event.y is not None \ and a.in_axes(event): if event.key in all: a.set_navigate(True) else: a.set_navigate(i == n) class NonGuiException(Exception): pass class FigureManagerBase(object): """ Helper class for pyplot mode, wraps everything up into a neat bundle Public attibutes: *canvas* A :class:`FigureCanvasBase` instance *num* The figure number """ def __init__(self, canvas, num): self.canvas = canvas canvas.manager = self # store a pointer to parent self.num = num if rcParams['toolbar'] != 'toolmanager': self.key_press_handler_id = self.canvas.mpl_connect( 'key_press_event', self.key_press) else: self.key_press_handler_id = None """ The returned id from connecting the default key handler via :meth:`FigureCanvasBase.mpl_connnect`. To disable default key press handling:: manager, canvas = figure.canvas.manager, figure.canvas canvas.mpl_disconnect(manager.key_press_handler_id) """ def show(self): """ For GUI backends, show the figure window and redraw. For non-GUI backends, raise an exception to be caught by :meth:`~matplotlib.figure.Figure.show`, for an optional warning. """ raise NonGuiException() def destroy(self): pass def full_screen_toggle(self): pass def resize(self, w, h): """"For gui backends, resize the window (in pixels).""" pass def key_press(self, event): """ Implement the default mpl key bindings defined at :ref:`key-event-handling` """ if rcParams['toolbar'] != 'toolmanager': key_press_handler(event, self.canvas, self.canvas.toolbar) def show_popup(self, msg): """ Display message in a popup -- GUI only """ pass def get_window_title(self): """ Get the title text of the window containing the figure. Return None for non-GUI backends (e.g., a PS backend). """ return 'image' def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect for non-GUI backends (e.g., a PS backend). """ pass cursors = tools.cursors class NavigationToolbar2(object): """ Base class for the navigation cursor, version 2 backends must implement a canvas that handles connections for 'button_press_event' and 'button_release_event'. See :meth:`FigureCanvasBase.mpl_connect` for more information They must also define :meth:`save_figure` save the current figure :meth:`set_cursor` if you want the pointer icon to change :meth:`_init_toolbar` create your toolbar widget :meth:`draw_rubberband` (optional) draw the zoom to rect "rubberband" rectangle :meth:`press` (optional) whenever a mouse button is pressed, you'll be notified with the event :meth:`release` (optional) whenever a mouse button is released, you'll be notified with the event :meth:`dynamic_update` (optional) dynamically update the window while navigating :meth:`set_message` (optional) display message :meth:`set_history_buttons` (optional) you can change the history back / forward buttons to indicate disabled / enabled state. That's it, we'll do the rest! """ # list of toolitems to add to the toolbar, format is: # ( # text, # the text of the button (often not visible to users) # tooltip_text, # the tooltip shown on hover (where possible) # image_file, # name of the image for the button (without the extension) # name_of_method, # name of the method in NavigationToolbar2 to call # ) toolitems = ( ('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous view', 'back', 'back'), ('Forward', 'Forward to next view', 'forward', 'forward'), (None, None, None, None), ('Pan', 'Pan axes with left mouse, zoom with right', 'move', 'pan'), ('Zoom', 'Zoom to rectangle', 'zoom_to_rect', 'zoom'), ('Subplots', 'Configure subplots', 'subplots', 'configure_subplots'), (None, None, None, None), ('Save', 'Save the figure', 'filesave', 'save_figure'), ) def __init__(self, canvas): self.canvas = canvas canvas.toolbar = self # a dict from axes index to a list of view limits self._views = cbook.Stack() self._positions = cbook.Stack() # stack of subplot positions self._xypress = None # the location and axis info at the time # of the press self._idPress = None self._idRelease = None self._active = None self._lastCursor = None self._init_toolbar() self._idDrag = self.canvas.mpl_connect( 'motion_notify_event', self.mouse_move) self._ids_zoom = [] self._zoom_mode = None self._button_pressed = None # determined by the button pressed # at start self.mode = '' # a mode string for the status bar self.set_history_buttons() def set_message(self, s): """Display a message on toolbar or in status bar""" pass def back(self, *args): """move back up the view lim stack""" self._views.back() self._positions.back() self.set_history_buttons() self._update_view() def dynamic_update(self): pass def draw_rubberband(self, event, x0, y0, x1, y1): """Draw a rectangle rubberband to indicate zoom limits""" pass def remove_rubberband(self): """Remove the rubberband""" pass def forward(self, *args): """Move forward in the view lim stack""" self._views.forward() self._positions.forward() self.set_history_buttons() self._update_view() def home(self, *args): """Restore the original view""" self._views.home() self._positions.home() self.set_history_buttons() self._update_view() def _init_toolbar(self): """ This is where you actually build the GUI widgets (called by __init__). The icons ``home.xpm``, ``back.xpm``, ``forward.xpm``, ``hand.xpm``, ``zoom_to_rect.xpm`` and ``filesave.xpm`` are standard across backends (there are ppm versions in CVS also). You just need to set the callbacks home : self.home back : self.back forward : self.forward hand : self.pan zoom_to_rect : self.zoom filesave : self.save_figure You only need to define the last one - the others are in the base class implementation. """ raise NotImplementedError def _set_cursor(self, event): if not event.inaxes or not self._active: if self._lastCursor != cursors.POINTER: self.set_cursor(cursors.POINTER) self._lastCursor = cursors.POINTER else: if self._active == 'ZOOM': if self._lastCursor != cursors.SELECT_REGION: self.set_cursor(cursors.SELECT_REGION) self._lastCursor = cursors.SELECT_REGION elif (self._active == 'PAN' and self._lastCursor != cursors.MOVE): self.set_cursor(cursors.MOVE) self._lastCursor = cursors.MOVE def mouse_move(self, event): self._set_cursor(event) if event.inaxes and event.inaxes.get_navigate(): try: s = event.inaxes.format_coord(event.xdata, event.ydata) except (ValueError, OverflowError): pass else: artists = [a for a in event.inaxes.mouseover_set if a.contains(event) and a.get_visible()] if artists: a = max(artists, key=lambda x: x.zorder) if a is not event.inaxes.patch: data = a.get_cursor_data(event) if data is not None: s += ' [%s]' % a.format_cursor_data(data) if len(self.mode): self.set_message('%s, %s' % (self.mode, s)) else: self.set_message(s) else: self.set_message(self.mode) def pan(self, *args): """Activate the pan/zoom tool. pan with left button, zoom with right""" # set the pointer icon and button press funcs to the # appropriate callbacks if self._active == 'PAN': self._active = None else: self._active = 'PAN' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect( 'button_press_event', self.press_pan) self._idRelease = self.canvas.mpl_connect( 'button_release_event', self.release_pan) self.mode = 'pan/zoom' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def press(self, event): """Called whenver a mouse button is pressed.""" pass def press_pan(self, event): """the press mouse button in pan/zoom mode callback""" if event.button == 1: self._button_pressed = 1 elif event.button == 3: self._button_pressed = 3 else: self._button_pressed = None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress = [] for i, a in enumerate(self.canvas.figure.get_axes()): if (x is not None and y is not None and a.in_axes(event) and a.get_navigate() and a.can_pan()): a.start_pan(x, y, event.button) self._xypress.append((a, i)) self.canvas.mpl_disconnect(self._idDrag) self._idDrag = self.canvas.mpl_connect('motion_notify_event', self.drag_pan) self.press(event) def press_zoom(self, event): """the press mouse button in zoom to rect mode callback""" # If we're already in the middle of a zoom, pressing another # button works to "cancel" if self._ids_zoom != []: for zoom_id in self._ids_zoom: self.canvas.mpl_disconnect(zoom_id) self.release(event) self.draw() self._xypress = None self._button_pressed = None self._ids_zoom = [] return if event.button == 1: self._button_pressed = 1 elif event.button == 3: self._button_pressed = 3 else: self._button_pressed = None return x, y = event.x, event.y # push the current view to define home if stack is empty if self._views.empty(): self.push_current() self._xypress = [] for i, a in enumerate(self.canvas.figure.get_axes()): if (x is not None and y is not None and a.in_axes(event) and a.get_navigate() and a.can_zoom()): self._xypress.append((x, y, a, i, a._get_view())) id1 = self.canvas.mpl_connect('motion_notify_event', self.drag_zoom) id2 = self.canvas.mpl_connect('key_press_event', self._switch_on_zoom_mode) id3 = self.canvas.mpl_connect('key_release_event', self._switch_off_zoom_mode) self._ids_zoom = id1, id2, id3 self._zoom_mode = event.key self.press(event) def _switch_on_zoom_mode(self, event): self._zoom_mode = event.key self.mouse_move(event) def _switch_off_zoom_mode(self, event): self._zoom_mode = None self.mouse_move(event) def push_current(self): """push the current view limits and position onto the stack""" views = [] pos = [] for a in self.canvas.figure.get_axes(): views.append(a._get_view()) # Store both the original and modified positions pos.append(( a.get_position(True).frozen(), a.get_position().frozen())) self._views.push(views) self._positions.push(pos) self.set_history_buttons() def release(self, event): """this will be called whenever mouse button is released""" pass def release_pan(self, event): """the release mouse button callback in pan/zoom mode""" if self._button_pressed is None: return self.canvas.mpl_disconnect(self._idDrag) self._idDrag = self.canvas.mpl_connect( 'motion_notify_event', self.mouse_move) for a, ind in self._xypress: a.end_pan() if not self._xypress: return self._xypress = [] self._button_pressed = None self.push_current() self.release(event) self.draw() def drag_pan(self, event): """the drag callback in pan/zoom mode""" for a, ind in self._xypress: #safer to use the recorded button at the press than current button: #multiple button can get pressed during motion... a.drag_pan(self._button_pressed, event.key, event.x, event.y) self.dynamic_update() def drag_zoom(self, event): """the drag callback in zoom mode""" if self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, view = self._xypress[0] # adjust x, last, y, last x1, y1, x2, y2 = a.bbox.extents x, lastx = max(min(x, lastx), x1), min(max(x, lastx), x2) y, lasty = max(min(y, lasty), y1), min(max(y, lasty), y2) if self._zoom_mode == "x": x1, y1, x2, y2 = a.bbox.extents y, lasty = y1, y2 elif self._zoom_mode == "y": x1, y1, x2, y2 = a.bbox.extents x, lastx = x1, x2 self.draw_rubberband(event, x, y, lastx, lasty) def release_zoom(self, event): """the release mouse button callback in zoom to rect mode""" for zoom_id in self._ids_zoom: self.canvas.mpl_disconnect(zoom_id) self._ids_zoom = [] self.remove_rubberband() if not self._xypress: return last_a = [] for cur_xypress in self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, view = cur_xypress # ignore singular clicks - 5 pixels is a threshold # allows the user to "cancel" a zoom action # by zooming by less than 5 pixels if ((abs(x - lastx) < 5 and self._zoom_mode!="y") or (abs(y - lasty) < 5 and self._zoom_mode!="x")): self._xypress = None self.release(event) self.draw() return # detect twinx,y axes and avoid double zooming twinx, twiny = False, False if last_a: for la in last_a: if a.get_shared_x_axes().joined(a, la): twinx = True if a.get_shared_y_axes().joined(a, la): twiny = True last_a.append(a) if self._button_pressed == 1: direction = 'in' elif self._button_pressed == 3: direction = 'out' else: continue a._set_view_from_bbox((lastx, lasty, x, y), direction, self._zoom_mode, twinx, twiny) self.draw() self._xypress = None self._button_pressed = None self._zoom_mode = None self.push_current() self.release(event) def draw(self): """Redraw the canvases, update the locators""" for a in self.canvas.figure.get_axes(): xaxis = getattr(a, 'xaxis', None) yaxis = getattr(a, 'yaxis', None) locators = [] if xaxis is not None: locators.append(xaxis.get_major_locator()) locators.append(xaxis.get_minor_locator()) if yaxis is not None: locators.append(yaxis.get_major_locator()) locators.append(yaxis.get_minor_locator()) for loc in locators: loc.refresh() self.canvas.draw_idle() def _update_view(self): """Update the viewlim and position from the view and position stack for each axes """ views = self._views() if views is None: return pos = self._positions() if pos is None: return for i, a in enumerate(self.canvas.figure.get_axes()): a._set_view(views[i]) # Restore both the original and modified positions a.set_position(pos[i][0], 'original') a.set_position(pos[i][1], 'active') self.canvas.draw_idle() def save_figure(self, *args): """Save the current figure""" raise NotImplementedError def set_cursor(self, cursor): """ Set the current cursor to one of the :class:`Cursors` enums values """ pass def update(self): """Reset the axes stack""" self._views.clear() self._positions.clear() self.set_history_buttons() def zoom(self, *args): """Activate zoom to rect mode""" if self._active == 'ZOOM': self._active = None else: self._active = 'ZOOM' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect('button_press_event', self.press_zoom) self._idRelease = self.canvas.mpl_connect('button_release_event', self.release_zoom) self.mode = 'zoom rect' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def set_history_buttons(self): """Enable or disable back/forward button""" pass class ToolContainerBase(object): """ Base class for all tool containers, e.g. toolbars. Attributes ---------- toolmanager : `ToolManager` object that holds the tools that this `ToolContainer` wants to communicate with. """ def __init__(self, toolmanager): self.toolmanager = toolmanager self.toolmanager.toolmanager_connect('tool_removed_event', self._remove_tool_cbk) def _tool_toggled_cbk(self, event): """ Captures the 'tool_trigger_[name]' This only gets used for toggled tools """ self.toggle_toolitem(event.tool.name, event.tool.toggled) def add_tool(self, tool, group, position=-1): """ Adds a tool to this container Parameters ---------- tool : tool_like The tool to add, see `ToolManager.get_tool`. group : str The name of the group to add this tool to. position : int (optional) The position within the group to place this tool. Defaults to end. """ tool = self.toolmanager.get_tool(tool) image = self._get_image_filename(tool.image) toggle = getattr(tool, 'toggled', None) is not None self.add_toolitem(tool.name, group, position, image, tool.description, toggle) if toggle: self.toolmanager.toolmanager_connect('tool_trigger_%s' % tool.name, self._tool_toggled_cbk) def _remove_tool_cbk(self, event): """Captures the 'tool_removed_event' signal and removes the tool""" self.remove_toolitem(event.tool.name) def _get_image_filename(self, image): """Find the image based on its name""" # TODO: better search for images, they are not always in the # datapath basedir = os.path.join(rcParams['datapath'], 'images') if image is not None: fname = os.path.join(basedir, image) else: fname = None return fname def trigger_tool(self, name): """ Trigger the tool Parameters ---------- name : String Name(id) of the tool triggered from within the container """ self.toolmanager.trigger_tool(name, sender=self) def add_toolitem(self, name, group, position, image, description, toggle): """ Add a toolitem to the container This method must get implemented per backend The callback associated with the button click event, must be **EXACTLY** `self.trigger_tool(name)` Parameters ---------- name : string Name of the tool to add, this gets used as the tool's ID and as the default label of the buttons group : String Name of the group that this tool belongs to position : Int Position of the tool within its group, if -1 it goes at the End image_file : String Filename of the image for the button or `None` description : String Description of the tool, used for the tooltips toggle : Bool * `True` : The button is a toggle (change the pressed/unpressed state between consecutive clicks) * `False` : The button is a normal button (returns to unpressed state after release) """ raise NotImplementedError def toggle_toolitem(self, name, toggled): """ Toggle the toolitem without firing event Parameters ---------- name : String Id of the tool to toggle toggled : bool Whether to set this tool as toggled or not. """ raise NotImplementedError def remove_toolitem(self, name): """ Remove a toolitem from the `ToolContainer` This method must get implemented per backend Called when `ToolManager` emits a `tool_removed_event` Parameters ---------- name : string Name of the tool to remove """ raise NotImplementedError class StatusbarBase(object): """Base class for the statusbar""" def __init__(self, toolmanager): self.toolmanager = toolmanager self.toolmanager.toolmanager_connect('tool_message_event', self._message_cbk) def _message_cbk(self, event): """Captures the 'tool_message_event' and set the message""" self.set_message(event.message) def set_message(self, s): """ Display a message on toolbar or in status bar Parameters ---------- s : str Message text """ pass
apache-2.0
stevenzhang18/Indeed-Flask
lib/pandas/io/tests/test_cparser.py
9
12962
""" C/Cython ascii file parser tests """ from pandas.compat import StringIO, BytesIO, map from datetime import datetime from pandas import compat import csv import os import sys import re import nose from numpy import nan import numpy as np from pandas import DataFrame, Series, Index, isnull, MultiIndex import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextParser, TextFileReader) from pandas.util.testing import (assert_almost_equal, assert_frame_equal, assert_series_equal, network) import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp import pandas.util.testing as tm from pandas.parser import TextReader import pandas.parser as parser class TestCParser(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def test_file_handle(self): try: f = open(self.csv1, 'rb') reader = TextReader(f) result = reader.read() finally: f.close() def test_string_filename(self): reader = TextReader(self.csv1, header=None) result = reader.read() def test_file_handle_mmap(self): try: f = open(self.csv1, 'rb') reader = TextReader(f, memory_map=True, header=None) result = reader.read() finally: f.close() def test_StringIO(self): text = open(self.csv1, 'rb').read() src = BytesIO(text) reader = TextReader(src, header=None) result = reader.read() def test_string_factorize(self): # should this be optional? data = 'a\nb\na\nb\na' reader = TextReader(StringIO(data), header=None) result = reader.read() self.assertEqual(len(set(map(id, result[0]))), 2) def test_skipinitialspace(self): data = ('a, b\n' 'a, b\n' 'a, b\n' 'a, b') reader = TextReader(StringIO(data), skipinitialspace=True, header=None) result = reader.read() self.assert_numpy_array_equal(result[0], ['a', 'a', 'a', 'a']) self.assert_numpy_array_equal(result[1], ['b', 'b', 'b', 'b']) def test_parse_booleans(self): data = 'True\nFalse\nTrue\nTrue' reader = TextReader(StringIO(data), header=None) result = reader.read() self.assertEqual(result[0].dtype, np.bool_) def test_delimit_whitespace(self): data = 'a b\na\t\t "b"\n"a"\t \t b' reader = TextReader(StringIO(data), delim_whitespace=True, header=None) result = reader.read() self.assert_numpy_array_equal(result[0], ['a', 'a', 'a']) self.assert_numpy_array_equal(result[1], ['b', 'b', 'b']) def test_embedded_newline(self): data = 'a\n"hello\nthere"\nthis' reader = TextReader(StringIO(data), header=None) result = reader.read() expected = ['a', 'hello\nthere', 'this'] self.assert_numpy_array_equal(result[0], expected) def test_euro_decimal(self): data = '12345,67\n345,678' reader = TextReader(StringIO(data), delimiter=':', decimal=',', header=None) result = reader.read() expected = [12345.67, 345.678] tm.assert_almost_equal(result[0], expected) def test_integer_thousands(self): data = '123,456\n12,500' reader = TextReader(StringIO(data), delimiter=':', thousands=',', header=None) result = reader.read() expected = [123456, 12500] tm.assert_almost_equal(result[0], expected) def test_integer_thousands_alt(self): data = '123.456\n12.500' reader = TextFileReader(StringIO(data), delimiter=':', thousands='.', header=None) result = reader.read() expected = [123456, 12500] tm.assert_almost_equal(result[0], expected) def test_skip_bad_lines(self): # too many lines, see #2430 for why data = ('a:b:c\n' 'd:e:f\n' 'g:h:i\n' 'j:k:l:m\n' 'l:m:n\n' 'o:p:q:r') reader = TextReader(StringIO(data), delimiter=':', header=None) self.assertRaises(parser.CParserError, reader.read) reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=False) result = reader.read() expected = {0: ['a', 'd', 'g', 'l'], 1: ['b', 'e', 'h', 'm'], 2: ['c', 'f', 'i', 'n']} assert_array_dicts_equal(result, expected) stderr = sys.stderr sys.stderr = StringIO() try: reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=True) reader.read() val = sys.stderr.getvalue() self.assertTrue('Skipping line 4' in val) self.assertTrue('Skipping line 6' in val) finally: sys.stderr = stderr def test_header_not_enough_lines(self): data = ('skip this\n' 'skip this\n' 'a,b,c\n' '1,2,3\n' '4,5,6') reader = TextReader(StringIO(data), delimiter=',', header=2) header = reader.header expected = [['a', 'b', 'c']] self.assertEqual(header, expected) recs = reader.read() expected = {0 : [1, 4], 1 : [2, 5], 2 : [3, 6]} assert_array_dicts_equal(expected, recs) # not enough rows self.assertRaises(parser.CParserError, TextReader, StringIO(data), delimiter=',', header=5, as_recarray=True) def test_header_not_enough_lines_as_recarray(self): if compat.is_platform_windows(): raise nose.SkipTest("segfaults on win-64, only when all tests are run") data = ('skip this\n' 'skip this\n' 'a,b,c\n' '1,2,3\n' '4,5,6') reader = TextReader(StringIO(data), delimiter=',', header=2, as_recarray=True) header = reader.header expected = [['a', 'b', 'c']] self.assertEqual(header, expected) recs = reader.read() expected = {'a': [1, 4], 'b': [2, 5], 'c': [3, 6]} assert_array_dicts_equal(expected, recs) # not enough rows self.assertRaises(parser.CParserError, TextReader, StringIO(data), delimiter=',', header=5, as_recarray=True) def test_escapechar(self): data = ('\\"hello world\"\n' '\\"hello world\"\n' '\\"hello world\"') reader = TextReader(StringIO(data), delimiter=',', header=None, escapechar='\\') result = reader.read() expected = {0: ['"hello world"'] * 3} assert_array_dicts_equal(result, expected) def test_eof_has_eol(self): # handling of new line at EOF pass def test_na_substitution(self): pass def test_numpy_string_dtype(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', header=None, **kwds) reader = _make_reader(dtype='S5,i4') result = reader.read() self.assertEqual(result[0].dtype, 'S5') ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaaa'], dtype='S5') self.assertTrue((result[0] == ex_values).all()) self.assertEqual(result[1].dtype, 'i4') reader = _make_reader(dtype='S4') result = reader.read() self.assertEqual(result[0].dtype, 'S4') ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaa'], dtype='S4') self.assertTrue((result[0] == ex_values).all()) self.assertEqual(result[1].dtype, 'S4') def test_numpy_string_dtype_as_recarray(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" if compat.is_platform_windows(): raise nose.SkipTest("segfaults on win-64, only when all tests are run") def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', header=None, **kwds) reader = _make_reader(dtype='S4', as_recarray=True) result = reader.read() self.assertEqual(result['0'].dtype, 'S4') ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaa'], dtype='S4') self.assertTrue((result['0'] == ex_values).all()) self.assertEqual(result['1'].dtype, 'S4') def test_pass_dtype(self): data = """\ one,two 1,a 2,b 3,c 4,d""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(dtype={'one': 'u1', 1: 'S1'}) result = reader.read() self.assertEqual(result[0].dtype, 'u1') self.assertEqual(result[1].dtype, 'S1') reader = _make_reader(dtype={'one': np.uint8, 1: object}) result = reader.read() self.assertEqual(result[0].dtype, 'u1') self.assertEqual(result[1].dtype, 'O') reader = _make_reader(dtype={'one': np.dtype('u1'), 1: np.dtype('O')}) result = reader.read() self.assertEqual(result[0].dtype, 'u1') self.assertEqual(result[1].dtype, 'O') def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(usecols=(1, 2)) result = reader.read() exp = _make_reader().read() self.assertEqual(len(result), 2) self.assertTrue((result[1] == exp[1]).all()) self.assertTrue((result[2] == exp[2]).all()) def test_cr_delimited(self): def _test(text, **kwargs): nice_text = text.replace('\r', '\r\n') result = TextReader(StringIO(text), **kwargs).read() expected = TextReader(StringIO(nice_text), **kwargs).read() assert_array_dicts_equal(result, expected) data = 'a,b,c\r1,2,3\r4,5,6\r7,8,9\r10,11,12' _test(data, delimiter=',') data = 'a b c\r1 2 3\r4 5 6\r7 8 9\r10 11 12' _test(data, delim_whitespace=True) data = 'a,b,c\r1,2,3\r4,5,6\r,88,9\r10,11,12' _test(data, delimiter=',') sample = ('A,B,C,D,E,F,G,H,I,J,K,L,M,N,O\r' 'AAAAA,BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0\r' ',BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0') _test(sample, delimiter=',') data = 'A B C\r 2 3\r4 5 6' _test(data, delim_whitespace=True) data = 'A B C\r2 3\r4 5 6' _test(data, delim_whitespace=True) def test_empty_field_eof(self): data = 'a,b,c\n1,2,3\n4,,' result = TextReader(StringIO(data), delimiter=',').read() expected = {0: np.array([1, 4]), 1: np.array(['2', ''], dtype=object), 2: np.array(['3', ''], dtype=object)} assert_array_dicts_equal(result, expected) # GH5664 a = DataFrame([['b'], [nan]], columns=['a'], index=['a', 'c']) b = DataFrame([[1, 1, 1, 0], [1, 1, 1, 0]], columns=list('abcd'), index=[1, 1]) c = DataFrame([[1, 2, 3, 4], [6, nan, nan, nan], [8, 9, 10, 11], [13, 14, nan, nan]], columns=list('abcd'), index=[0, 5, 7, 12]) for _ in range(100): df = read_csv(StringIO('a,b\nc\n'), skiprows=0, names=['a'], engine='c') assert_frame_equal(df, a) df = read_csv(StringIO('1,1,1,1,0\n'*2 + '\n'*2), names=list("abcd"), engine='c') assert_frame_equal(df, b) df = read_csv(StringIO('0,1,2,3,4\n5,6\n7,8,9,10,11\n12,13,14'), names=list('abcd'), engine='c') assert_frame_equal(df, c) def assert_array_dicts_equal(left, right): for k, v in compat.iteritems(left): assert(np.array_equal(v, right[k])) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
apache-2.0
quimaguirre/diana
scripts/old_scripts/classify_drug_combinations.py
1
22397
import argparse import cPickle import matplotlib.pyplot as plt import numpy as np import pandas as pd import pylab import scipy import time import sys, os, re from context import diana import diana.classes.comparison as diana_comparison import diana.classes.analysis as diana_analysis def main(): options = parse_user_arguments() analysis_results(options) def parse_user_arguments(*args, **kwds): """ Parses the arguments of the program """ parser = argparse.ArgumentParser( description = "Generate the profiles of the input drug", epilog = "@oliva's lab 2017") parser.add_argument('-th','--threshold_list',dest='threshold_list',action = 'store', help = """List of percentages that will be used as cut-offs to define the profiles of the drugs. It has to be a file containing: - Different numbers that will be the threshold values separated by newline characters. For example, a file called "top_threshold.list" containing: 0.1 0.5 1 5 10 """) parser.add_argument('-f','--formula',dest='formula',action = 'store',default='simpson', help = """Define the formula used to classify. It can be: simpson, jaccard""") parser.add_argument('-se','--consider_se',dest='consider_se',action = 'store_true', help = """" Consider Side Effects / ATCs. """) parser.add_argument('-ws','--workspace',dest='workspace',action = 'store',default=os.path.join(os.path.join(os.path.dirname(__file__), '..'), 'workspace'), help = """Define the workspace directory where the data directory and the results directory will be created""") options=parser.parse_args() return options ################# ################# # MAIN FUNCTION # ################# ################# def analysis_results(options): """ Analyzes the results of the comparisons """ # Start marker for time measure start = time.time() print("\n\t\t-------------------------------------------------------------------------------------------------------------------------------\n") print("\t\tStarting Drug Interactions ANAlysis (DIANA), a program created by @OLIVA'S LAB. Analysis of results: Classify drug combinations\n") print("\t\t-------------------------------------------------------------------------------------------------------------------------------\n") # Get the script path main_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) toolbox_dir = os.path.join(main_path, 'diana/toolbox') # Check the directory of the profiles, comparisons and analysis data_dir = os.path.join(options.workspace, "profiles") check_directory(data_dir) results_dir = os.path.join(options.workspace, "comparisons") check_directory(results_dir) analysis_dir = os.path.join(options.workspace, "analysis") check_directory(analysis_dir) # Get the list of thresholds to create the profiles if options.threshold_list and fileExist(options.threshold_list): threshold_list = get_values_from_threshold_file(options.threshold_list) else: threshold_list = [1, 5, 10, 20, 50] # Do we consider Side Effects/ATC? if options.consider_se: consider_se = True else: consider_se = False # Get the names of the columns columns = diana_analysis.obtain_columns(threshold_list, ATC_SE=consider_se) #-----------------------------------------------------# # PARSE THE RESULTS AND CREATE A PANDAS DATAFRAME # #-----------------------------------------------------# pair2comb_file = os.path.join(toolbox_dir, 'pair2comb.pcl') pair2comb = cPickle.load(open(pair2comb_file)) diana_id_to_drugbank_file = os.path.join(toolbox_dir, 'diana_id_to_drugbank.pcl') diana_id_to_drugbank = cPickle.load(open(diana_id_to_drugbank_file)) ddi = sum(1 for x in pair2comb.values() if x == 1) non_ddi = sum(1 for x in pair2comb.values() if x == 0) print('NUMBER OF DRUG COMBINATIONS:\t\t{}\n'.format(ddi)) print('NUMBER OF NON-DRUG COMBINATIONS:\t{}\n'.format(non_ddi)) output_dataframe = os.path.join(analysis_dir, 'dcdb_comparisons.csv') if not fileExist(output_dataframe): # Create a data frame to store the results df = pd.DataFrame(columns=columns) # Obtain all the results subfolders of the results main folder results_dir_list = [f for f in os.listdir(results_dir) if os.path.isdir(os.path.join(results_dir, f))] for comparison in results_dir_list: drug_id1, drug_id2 = comparison.split('---') comparison_dir = os.path.join(results_dir, comparison) results_table = os.path.join(comparison_dir, 'results_table.tsv') # Add the Comb field (if it is drug combination or not) drug1 = diana_id_to_drugbank[drug_id1].upper() drug2 = diana_id_to_drugbank[drug_id2].upper() comparison_without_id = '{}---{}'.format(drug1, drug2) if comparison_without_id in pair2comb: combination_field = pair2comb[comparison_without_id] else: print('The comparison {} is not in the pair2comb dictionary!\n'.format(comparison_without_id)) print(pair2comb) sys.exit(10) if not fileExist(results_table): print('The comparison {} has not been executed properly!\n'.format(comparison)) sys.exit(10) results = diana_analysis.get_results_from_table(results_table, columns, combination_field) df2 = pd.DataFrame([results], columns=columns, index=[comparison]) # Add the information to the main data frame df = df.append(df2) # Output the Pandas dataframe in a CSV file df.to_csv(output_dataframe) else: df = pd.read_csv(output_dataframe, index_col=0) #---------------------------# # REMOVE MISSING VALUES # #---------------------------# # Replace the None values in dcstructure by nan if 'None' in df['dcstructure']: df = df.replace(to_replace={'dcstructure':{'None':np.nan}}) # Remove the nan values in dcstructure df = df.dropna() # Count the number of drug combinations / non-drug combinations dc_data = df[df['combination'] == 1] ndc_data = df[df['combination'] == 0] num_dc = len(dc_data.index) num_ndc = len(ndc_data.index) print('Number of drug combinations after removing missing values:\t{}\n'.format(num_dc)) print('Number of non-drug combinations after removing missing values:\t{}\n'.format(num_ndc)) #---------------------------# # IDENTIFY ME-TOO DRUGS # #---------------------------# me_too_dir = os.path.join(analysis_dir, 'me_too_drugs') create_directory(me_too_dir) me_too_drugs_table = os.path.join(me_too_dir, 'me_too_drugs.tsv') me_too_drug_combs_table = os.path.join(me_too_dir, 'me_too_drug_combinations.tsv') me_too_drug_pairs_file = os.path.join(me_too_dir, 'me_too_drug_pairs.pcl') me_too_drug_comb_pairs_file = os.path.join(me_too_dir, 'me_too_drug_comb_pairs.pcl') if not fileExist(me_too_drug_pairs_file) or not fileExist(me_too_drug_comb_pairs_file): df_struc = df[['dcstructure']] df_struc = df_struc.astype(float) me_too_drug_pairs, me_too_drug_comb_pairs = diana_analysis.obtain_me_too_drugs_and_combinations(df_struc, columns, me_too_drugs_table, me_too_drug_combs_table) cPickle.dump(me_too_drug_pairs, open(me_too_drug_pairs_file, 'w')) cPickle.dump(me_too_drug_comb_pairs, open(me_too_drug_comb_pairs_file, 'w')) else: me_too_drug_pairs = cPickle.load(open(me_too_drug_pairs_file)) me_too_drug_comb_pairs = cPickle.load(open(me_too_drug_comb_pairs_file)) # Process me-too drug combination pairs me_too_drug_combinations = set() drug_pair_to_me_too_times = {} for pair in me_too_drug_comb_pairs: drug_comb1, drug_comb2 = pair.split('___') me_too_drug_combinations.add(frozenset([drug_comb1, drug_comb2])) drug_pair_to_me_too_times.setdefault(drug_comb1, 0) drug_pair_to_me_too_times.setdefault(drug_comb2, 0) drug_pair_to_me_too_times[drug_comb1] += 1 drug_pair_to_me_too_times[drug_comb2] += 1 removed_drug_pairs = set() for pair in me_too_drug_comb_pairs: drug_comb1, drug_comb2 = pair.split('___') if drug_comb1 in removed_drug_pairs or drug_comb2 in removed_drug_pairs: continue if drug_pair_to_me_too_times[drug_comb1] > drug_pair_to_me_too_times[drug_comb2]: removed_drug_pairs.add(drug_comb1) else: removed_drug_pairs.add(drug_comb2) # Remove the drug pairs which appear in me-too pairs of drug pairs more times df = df.loc[~df.index.isin(list(removed_drug_pairs))] # Count the number of drug combinations / non-drug combinations dc_data = df[df['combination'] == 1] ndc_data = df[df['combination'] == 0] num_dc = len(dc_data.index) num_ndc = len(ndc_data.index) print('Number of drug combinations after removing me-too conflictive drug pairs:\t{}\n'.format(num_dc)) print('Number of non-drug combinations after removing me-too conflictive drug pairs:\t{}\n'.format(num_ndc)) img_dir = os.path.join(analysis_dir, 'figures') create_directory(img_dir) fig_format = 'png' #-----------------------------------------------------# # PLOT DISTRIBUTION OF NUMBER OF TARGETS PER DRUG # #-----------------------------------------------------# # Plot distribution of comparisons of targets drugbank2targets_file = os.path.join(toolbox_dir, 'drugbank_to_targets.pcl') drugbank_to_targets = cPickle.load(open(drugbank2targets_file)) plot_distribution_targets = os.path.join(img_dir, 'distribution_number_targets.{}'.format(fig_format)) targets = [len(x) for x in drugbank_to_targets.values()] n, bins, patches = plt.hist(np.array(targets), bins=50, weights=np.zeros_like(np.array(targets)) + 1. / np.array(targets).size, facecolor='r') plt.xlabel('Number of targets per drug') plt.ylabel('Relative frequency') plt.title('Distribution of the number of targets per drug') plt.savefig(plot_distribution_targets, format=fig_format, dpi=300) plt.clf() #----------------------------------------------------------------------------------------------# # EVALUATE OVERLAP BETWEEN TARGETS, BIOLOGICAL PROCESSES AND PATHWAYS IN DRUG COMBINATIONS # #----------------------------------------------------------------------------------------------# tables_dir = os.path.join(analysis_dir, 'tables') create_directory(tables_dir) if options.formula != 'jaccard' and options.formula != 'simpson': print('Please, introduce a correct formula to classify drug combinations: jaccard or simpson!\n') sys.exit(10) # Plot of distribution of comparisons of Targets plot_ji_targets = os.path.join(img_dir, 'distribution_{}_index_targets.{}'.format(options.formula, fig_format)) # Plot of distribution of comparisons of Biological Processes plot_ji_bp = os.path.join(img_dir, 'distribution_{}_index_biological_processes.{}'.format(options.formula, fig_format)) # Plot of distribution of comparisons of Pathways plot_ji_pathways = os.path.join(img_dir, 'distribution_{}_index_pathways.{}'.format(options.formula, fig_format)) # Output pickle file of the classification classification_targets_bp_file = os.path.join(toolbox_dir, 'classification_targets_bp.pcl') classification_targets_pathways_file = os.path.join(toolbox_dir, 'classification_targets_pathways.pcl') # Get the classification files drug_int_2_drugs_file = os.path.join(toolbox_dir, 'drug_int_2_drugs.pcl') drug_int_2_drugs = cPickle.load(open(drug_int_2_drugs_file)) drug_int_2_info_file = os.path.join(toolbox_dir, 'drug_int_2_info.pcl') drug_int_2_info = cPickle.load(open(drug_int_2_info_file)) drugbank_to_dcdb_file = os.path.join(toolbox_dir, 'drugbank_to_dcdb.pcl') drugbank_to_dcdb = cPickle.load(open(drugbank_to_dcdb_file)) bio_processes_file = os.path.join(toolbox_dir, 'target_to_bio_processes.pcl') target_to_bio_processes = cPickle.load(open(bio_processes_file)) pathways_file = os.path.join(toolbox_dir, 'target_to_pathways.pcl') target_to_pathways = cPickle.load(open(pathways_file)) target_comparisons = [] bp_comparisons = [] pathway_comparisons = [] dc_to_target_ji = {} dc_to_bp_ji = {} dc_to_pathway_ji = {} all_drugs = set() for index, row in dc_data.iterrows(): (drug_id1, drug_id2) = index.split('---') drug1 = diana_id_to_drugbank[drug_id1].upper() drug2 = diana_id_to_drugbank[drug_id2].upper() all_drugs.add(drug1) all_drugs.add(drug2) if drug1 in drugbank_to_targets and drug2 in drugbank_to_targets: targets1 = drugbank_to_targets[drug1] targets2 = drugbank_to_targets[drug2] if options.formula == 'jaccard': result_targets = diana_comparison.calculate_jaccard_index(targets1, targets2) elif options.formula == 'simpson': result_targets = diana_comparison.calculate_simpson_index(targets1, targets2) target_comparisons.append(result_targets) dc_to_target_ji[index] = result_targets bio_proc1 = get_results_from_dict_of_sets(targets1, target_to_bio_processes) bio_proc2 = get_results_from_dict_of_sets(targets2, target_to_bio_processes) if options.formula == 'jaccard': result_bp = diana_comparison.calculate_jaccard_index(bio_proc1, bio_proc2) elif options.formula == 'simpson': result_bp = diana_comparison.calculate_simpson_index(bio_proc1, bio_proc2) bp_comparisons.append(result_bp) dc_to_bp_ji[index] = result_bp pathways1 = get_results_from_dict_of_sets(targets1, target_to_pathways) pathways2 = get_results_from_dict_of_sets(targets2, target_to_pathways) if options.formula == 'jaccard': result_pathways = diana_comparison.calculate_jaccard_index(pathways1, pathways2) elif options.formula == 'simpson': result_pathways = diana_comparison.calculate_simpson_index(pathways1, pathways2) pathway_comparisons.append(result_pathways) dc_to_pathway_ji[index] = result_pathways # Plot distribution of comparisons of targets n, bins, patches = plt.hist(np.array(target_comparisons), bins=50, weights=np.zeros_like(np.array(target_comparisons)) + 1. / np.array(target_comparisons).size, facecolor='r') plt.xlabel('{} Index of Targets'.format(options.formula.capitalize())) plt.ylabel('Relative frequency') plt.title('Distribution of {} Index of Targets in drug combinations'.format(options.formula.capitalize())) plt.savefig(plot_ji_targets, format=fig_format, dpi=300) plt.clf() # Plot distribution of comparisons of biological processes n, bins, patches = plt.hist(np.array(bp_comparisons), bins=50, weights=np.zeros_like(np.array(bp_comparisons)) + 1. / np.array(bp_comparisons).size, facecolor='b') plt.xlabel('{} Index of Biological Processes'.format(options.formula.capitalize())) plt.ylabel('Relative frequency') plt.title('Distribution of {} Index of Biological Processes in drug combinations'.format(options.formula.capitalize())) plt.savefig(plot_ji_bp, format=fig_format, dpi=300) plt.clf() # Plot distribution of comparisons of pathways n, bins, patches = plt.hist(np.array(pathway_comparisons), bins=50, weights=np.zeros_like(np.array(pathway_comparisons)) + 1. / np.array(pathway_comparisons).size, facecolor='g') plt.xlabel('{} Index of Pathways'.format(options.formula.capitalize())) plt.ylabel('Relative frequency') plt.title('Distribution of {} Index of Pathways in drug combinations'.format(options.formula.capitalize())) plt.savefig(plot_ji_pathways, format=fig_format, dpi=300) plt.clf() #------------------------------------# # CLASSIFY THE DRUG COMBINATIONS # #------------------------------------# # Similar targets --> ji > 0.25 # Different targets --> ji <= 0.25 target_cut_off = 0.5 # Similar biological processes --> ji >= 0.25 # Different biological processes --> ji < 0.25 bp_cut_off = 0.5 # Similar pathways --> ji >= 0.5 # Different pathways --> ji < 0.5 pathway_cut_off = 0.5 classification_tar_bp = {} st = 0 dt = 0 st_sbp = 0 st_dbp = 0 dt_sbp = 0 dt_dbp = 0 for dc in dc_to_target_ji: # Classify by targets and biological processes if dc in dc_to_bp_ji: ji_tar = dc_to_target_ji[dc] ji_bp = dc_to_bp_ji[dc] if ji_tar > target_cut_off: classification_tar_bp[dc] = 'similar_targets' st += 1 if ji_bp > bp_cut_off: st_sbp += 1 elif ji_bp <= bp_cut_off: st_dbp += 1 elif ji_tar <= target_cut_off: dt += 1 if ji_bp > bp_cut_off: dt_sbp += 1 classification_tar_bp[dc] = 'different_targets_similar_bp' elif ji_bp <= bp_cut_off: dt_dbp += 1 classification_tar_bp[dc] = 'different_targets_different_bp' print('Similar targets {}: similar bp {}, diff bp {}\n'.format(st, st_sbp, st_dbp)) print('Different targets {}: similar bp {}, diff bp {}\n'.format(dt, dt_sbp, dt_dbp)) cPickle.dump(classification_tar_bp, open(classification_targets_bp_file, 'w')) classification_tar_pathway = {} st = 0 dt = 0 st_spath = 0 st_dpath = 0 dt_spath = 0 dt_dpath = 0 for dc in dc_to_target_ji: # Classify by targets and biological processes if dc in dc_to_pathway_ji: ji_tar = dc_to_target_ji[dc] ji_path = dc_to_pathway_ji[dc] if ji_tar > target_cut_off: classification_tar_pathway[dc] = 'similar_targets' st += 1 if ji_path > pathway_cut_off: st_spath += 1 elif ji_path <= pathway_cut_off: st_dpath += 1 elif ji_tar <= target_cut_off: dt += 1 if ji_path > pathway_cut_off: dt_spath += 1 classification_tar_pathway[dc] = 'different_targets_similar_pathways' elif ji_path <= pathway_cut_off: dt_dpath += 1 classification_tar_pathway[dc] = 'different_targets_different_pathways' print('Similar targets {}: similar pathways {}, diff pathways {}\n'.format(st, st_spath, st_dpath)) print('Different targets {}: similar pathways {}, diff pathways {}\n'.format(dt, dt_spath, dt_dpath)) cPickle.dump(classification_tar_pathway, open(classification_targets_pathways_file, 'w')) # Get number of drugs in drug combinations per number of targets targets = [len(drugbank_to_targets[drug]) for drug in drugbank_to_targets if drug in all_drugs] numtargets_to_numdrugs = {} for target in targets: numtargets_to_numdrugs.setdefault(target, 0) numtargets_to_numdrugs[target] += 1 print('Number of drugs in drug combination: {}. Divided by four: {}'.format(len(all_drugs), len(all_drugs)/4)) for numtar, numdrug in sorted(numtargets_to_numdrugs.iteritems(), key=lambda (x, y): x, reverse = True): print(numtar, numdrug) # End marker for time end = time.time() print('\n DIANA INFO:\tTIME OF EXECUTION: {:.3f} seconds or {:.3f} minutes.\n'.format(end - start, (end - start) / 60)) return ####################### ####################### # SECONDARY FUNCTIONS # ####################### ####################### def fileExist(file): """ Checks if a file exists AND is a file """ return os.path.exists(file) and os.path.isfile(file) def check_file(file): """ Checks if a file exists and if not, raises FileNotFound exception """ if not fileExist(file): raise FileNotFound(file) def create_directory(directory): """ Checks if a directory exists and if not, creates it """ try: os.stat(directory) except: os.mkdir(directory) return def check_directory(directory): """ Checks if a directory exists and if not, raises DirNotFound exception """ try: os.stat(directory) except: raise DirNotFound(directory) class FileNotFound(Exception): """ Exception raised when a file is not found. """ def __init__(self, file): self.file = file def __str__(self): return 'The file {} has not been found.\nTherefore, the comparison cannot be performed. Please, check that all the profiles have been correctly generated.\n'.format(self.file) class DirNotFound(Exception): """ Exception raised when a directory is not found. """ def __init__(self, directory): self.directory = directory def __str__(self): return 'The directory {} has not been found.\nTherefore, the comparison cannot be performed. Please, check that all the parameters have been correctly introduced and the profiles have been correctly generated.\n'.format(self.directory) def get_results_from_dict_of_sets(list_of_elements, dict_of_sets): """ We have a list of elements that are in a dict of elements, and every element have a set with results. We want to extract the results corresponding to our elements. """ results = set() for element in list_of_elements: if element in dict_of_sets: for result in dict_of_sets[element]: results.add(result) return results if __name__ == "__main__": main()
mit
francesco-mannella/dmp-esn
parametric/parametric_dmp/bin/tr_datasets/e_cursive_curves_angles_none_none/plot.py
8
2377
#!/usr/bin/env python import glob import numpy as np import matplotlib import matplotlib.pyplot as plt import os import sys matplotlib.use("cairo") pathname = os.path.dirname(sys.argv[0]) if pathname: os.chdir(pathname) coords = None if len(sys.argv) == 5: try : coords = [ float(sys.argv[x]) for x in range(1,5) ] except ValueError: pass n_dim = None def get_trajectories(pattern): trs = [] names = glob.glob(pattern) names.sort() for fname in names: t = np.loadtxt(fname) trs.append(t) return trs trains = get_trajectories("trajectories/tl*") tests = get_trajectories("trajectories/tt*") train_results = get_trajectories("results/rtl*") test_results = get_trajectories("results/rtt*") ltrain = None ltest = None lall = [] idcs = np.arange(len(trains)) theo_train = { 'color': [.6,.6,1], 'lw': 5, 'zorder': 2, 'label': "Training" } repr_train = { 'color': [0,0,.3], 'lw': 1.5, 'zorder': 3, 'label': "Training repr." } theo_test = { 'color': [1,.6,.6], 'lw': 5, 'zorder': 2, 'label': "Test" } repr_test = { 'color': [.3,0,0], 'lw': 1.5, 'zorder': 3, 'label': "Test repr" } def common_plot(ax, d, label, color, lw, zorder): h, = ax.plot(d[:,1]+d[:,7]*6, d[:,2]+d[:,8]*6, color=color, lw=lw, zorder=zorder, label=label) return h def plot_trajectories(ax, ttype, lall, **kargs): idcs = np.arange(len(ttype)) for d,i in zip(ttype, idcs): if i == 0: lplot = common_plot(ax, d, **kargs) lall.append(lplot) else: common_plot(ax, d, **kargs) fig = plt.figure("DMP Stulp", figsize=(8,8)) ax = fig.add_subplot(111, aspect="equal") plot_trajectories(ax, trains, lall, **theo_train) plot_trajectories(ax, train_results, lall, **repr_train) plot_trajectories(ax, tests, lall, **theo_test) plot_trajectories(ax, test_results, lall, **repr_test) print coords if coords == None: ax.set_xlim([-0.5,10.2]) ax.set_ylim([-0.5,7.2]) else: ax.set_xlim([coords[0], coords[1]]) ax.set_ylim([coords[2], coords[3]]) ax.set_xticks([]) ax.set_yticks([]) ax.legend(handles=lall) plt.tight_layout() plt.show()
gpl-2.0
daler/encode-dataframe
encode_dataframe/__init__.py
1
2310
import os import glob import pandas def mirror_metadata_files(genome, basedir='.'): """ Mirrors all of the `files.txt` files from the assembly's encodeDCC section on UCSC's servers. `genome` is the assembly name (hg19, mm9) Supply an optional `basedir` to download the data somewhere else. """ cmds = """ ( cd {basedir} && wget \\ -r \\ -A "files.txt" \\ "http://hgdownload.cse.ucsc.edu/goldenPath/{genome}/encodeDCC" \\ -e robots=off \\ -R "*html*" \\ -I "/goldenPath/{genome}/encodeDCC" \\ -np \\ -l 2 ) """.format(**locals()) print(cmds) os.system(cmds) def metadata_to_dataframe(fn): """ Converts a single `files.txt` file to a pandas.DataFrame. """ data = [] for line in open(fn): d = {} toks = line.strip().split('\t') filename, kvs = toks url = os.path.join( 'http://' + os.path.dirname(fn[fn.index('hgdownload.cse.ucsc.edu'):]), filename) d['url'] = url d['filename'] = filename for kv in kvs.split('; '): k, v = kv.split('=', 1) d[k] = v data.append(d) return pandas.DataFrame(data) def encode_dataframe(genome, basename='.'): """ Returns a large pandas.DataFrame containing metadata from all identified ENCODE data for the assembly. Specifically, this concatenates all of the parsed `files.txt` files into a single data frame. Assumes `mirror_metadata_files` has been called already to mirror data. """ filenames = glob.glob( os.path.join( basename, 'hgdownload.cse.ucsc.edu/goldenPath/' '{genome}/encodeDCC/*/files.txt'.format(genome=genome) ) ) dfs = [metadata_to_dataframe(fn) for fn in filenames] df = pandas.concat(dfs) df.index = df.filename return df if __name__ == "__main__": df = encode_dataframe('mm9') interesting = ( (df.cell == 'MEL') & (df.type == 'bam') & (df.treatment != 'DMSO_2.0pct') & (df.dataType.isin(['ChipSeq', 'DnaseSeq'])) & (df.replicate == '1') & df.objStatus.isnull() ) m = df.ix[interesting]
mit
arjoly/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
pratapvardhan/pandas
pandas/core/arrays/datetimes.py
1
29028
# -*- coding: utf-8 -*- import warnings import numpy as np from pytz import utc from pandas._libs import tslib from pandas._libs.tslib import Timestamp, NaT, iNaT from pandas._libs.tslibs import ( conversion, fields, timezones, resolution as libresolution) from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( _NS_DTYPE, is_datetime64tz_dtype, is_datetime64_dtype, _ensure_int64) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.tseries.frequencies import to_offset, DateOffset from .datetimelike import DatetimeLikeArrayMixin def _field_accessor(name, field, docstring=None): def f(self): values = self.asi8 if self.tz is not None: if self.tz is not utc: values = self._local_timestamps() if field in self._bool_ops: if field.endswith(('start', 'end')): freq = self.freq month_kw = 12 if freq: kwds = freq.kwds month_kw = kwds.get('startingMonth', kwds.get('month', 12)) result = fields.get_start_end_field(values, field, self.freqstr, month_kw) else: result = fields.get_date_field(values, field) # these return a boolean by-definition return result if field in self._object_ops: result = fields.get_date_name_field(values, field) result = self._maybe_mask_results(result) else: result = fields.get_date_field(values, field) result = self._maybe_mask_results(result, convert='float64') return result f.__name__ = name f.__doc__ = docstring return property(f) class DatetimeArrayMixin(DatetimeLikeArrayMixin): """ Assumes that subclass __new__/__init__ defines: tz _freq _data """ _bool_ops = ['is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'is_leap_year'] _object_ops = ['weekday_name', 'freq', 'tz'] # ----------------------------------------------------------------- # Constructors _attributes = ["freq", "tz"] @classmethod def _simple_new(cls, values, freq=None, tz=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor """ if getattr(values, 'dtype', None) is None: # empty, but with dtype compat if values is None: values = np.empty(0, dtype=_NS_DTYPE) return cls(values, freq=freq, tz=tz, **kwargs) values = np.array(values, copy=False) if not is_datetime64_dtype(values): values = _ensure_int64(values).view(_NS_DTYPE) result = object.__new__(cls) result._data = values result._freq = freq tz = timezones.maybe_get_tz(tz) result._tz = timezones.tz_standardize(tz) return result def __new__(cls, values, freq=None, tz=None): if (freq is not None and not isinstance(freq, DateOffset) and freq != 'infer'): freq = to_offset(freq) result = cls._simple_new(values, freq=freq, tz=tz) if freq == 'infer': inferred = result.inferred_freq if inferred: result.freq = to_offset(inferred) # NB: Among other things not yet ported from the DatetimeIndex # constructor, this does not call _deepcopy_if_needed return result # ----------------------------------------------------------------- # Descriptive Properties @property def _box_func(self): return lambda x: Timestamp(x, freq=self.freq, tz=self.tz) @cache_readonly def dtype(self): if self.tz is None: return _NS_DTYPE return DatetimeTZDtype('ns', self.tz) @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @property # NB: override with cache_readonly in immutable subclasses def _timezone(self): """ Comparable timezone both for pytz / dateutil""" return timezones.get_timezone(self.tzinfo) @property def offset(self): """get/set the frequency of the instance""" msg = ('{cls}.offset has been deprecated and will be removed ' 'in a future version; use {cls}.freq instead.' .format(cls=type(self).__name__)) warnings.warn(msg, FutureWarning, stacklevel=2) return self.freq @offset.setter def offset(self, value): """get/set the frequency of the instance""" msg = ('{cls}.offset has been deprecated and will be removed ' 'in a future version; use {cls}.freq instead.' .format(cls=type(self).__name__)) warnings.warn(msg, FutureWarning, stacklevel=2) self.freq = value @property # NB: override with cache_readonly in immutable subclasses def is_normalized(self): """ Returns True if all of the dates are at midnight ("no time") """ return conversion.is_date_array_normalized(self.asi8, self.tz) @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return libresolution.resolution(self.asi8, self.tz) # ---------------------------------------------------------------- # Array-like Methods def __iter__(self): """ Return an iterator over the boxed values Yields ------- tstamp : Timestamp """ # convert in chunks of 10k for efficiency data = self.asi8 length = len(self) chunksize = 10000 chunks = int(length / chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, length) converted = tslib.ints_to_pydatetime(data[start_i:end_i], tz=self.tz, freq=self.freq, box="timestamp") for v in converted: yield v # ----------------------------------------------------------------- # Comparison Methods def _has_same_tz(self, other): zzone = self._timezone # vzone sholdn't be None if value is non-datetime like if isinstance(other, np.datetime64): # convert to Timestamp as np.datetime64 doesn't have tz attr other = Timestamp(other) vzone = timezones.get_timezone(getattr(other, 'tzinfo', '__no_tz__')) return zzone == vzone def _assert_tzawareness_compat(self, other): # adapted from _Timestamp._assert_tzawareness_compat other_tz = getattr(other, 'tzinfo', None) if is_datetime64tz_dtype(other): # Get tzinfo from Series dtype other_tz = other.dtype.tz if other is NaT: # pd.NaT quacks both aware and naive pass elif self.tz is None: if other_tz is not None: raise TypeError('Cannot compare tz-naive and tz-aware ' 'datetime-like objects.') elif other_tz is None: raise TypeError('Cannot compare tz-naive and tz-aware ' 'datetime-like objects') # ----------------------------------------------------------------- # Arithmetic Methods def _sub_datelike_dti(self, other): """subtraction of two DatetimeIndexes""" if not len(self) == len(other): raise ValueError("cannot add indices of unequal length") self_i8 = self.asi8 other_i8 = other.asi8 new_values = self_i8 - other_i8 if self.hasnans or other.hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view('timedelta64[ns]') # ----------------------------------------------------------------- # Timezone Conversion and Localization Methods def _local_timestamps(self): """ Convert to an i8 (unix-like nanosecond timestamp) representation while keeping the local timezone and not using UTC. This is used to calculate time-of-day information as if the timestamps were timezone-naive. """ values = self.asi8 indexer = values.argsort() result = conversion.tz_convert(values.take(indexer), utc, self.tz) n = len(indexer) reverse = np.empty(n, dtype=np.int_) reverse.put(indexer, np.arange(n)) return result.take(reverse) def tz_convert(self, tz): """ Convert tz-aware Datetime Array/Index from one time zone to another. Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A `tz` of None will convert to UTC and remove the timezone information. Returns ------- normalized : same type as self Raises ------ TypeError If Datetime Array/Index is tz-naive. See Also -------- DatetimeIndex.tz : A timezone that has a variable offset from UTC DatetimeIndex.tz_localize : Localize tz-naive DatetimeIndex to a given time zone, or remove timezone from a tz-aware DatetimeIndex. Examples -------- With the `tz` parameter, we can change the DatetimeIndex to other time zones: >>> dti = pd.DatetimeIndex(start='2014-08-01 09:00', ... freq='H', periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert('US/Central') DatetimeIndex(['2014-08-01 02:00:00-05:00', '2014-08-01 03:00:00-05:00', '2014-08-01 04:00:00-05:00'], dtype='datetime64[ns, US/Central]', freq='H') With the ``tz=None``, we can remove the timezone (after converting to UTC if necessary): >>> dti = pd.DatetimeIndex(start='2014-08-01 09:00',freq='H', ... periods=3, tz='Europe/Berlin') >>> dti DatetimeIndex(['2014-08-01 09:00:00+02:00', '2014-08-01 10:00:00+02:00', '2014-08-01 11:00:00+02:00'], dtype='datetime64[ns, Europe/Berlin]', freq='H') >>> dti.tz_convert(None) DatetimeIndex(['2014-08-01 07:00:00', '2014-08-01 08:00:00', '2014-08-01 09:00:00'], dtype='datetime64[ns]', freq='H') """ tz = timezones.maybe_get_tz(tz) if self.tz is None: # tz naive, use tz_localize raise TypeError('Cannot convert tz-naive timestamps, use ' 'tz_localize to localize') # No conversion since timestamps are all UTC to begin with return self._shallow_copy(tz=tz) def tz_localize(self, tz, ambiguous='raise', errors='raise'): """ Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. Time zone localization helps to switch from time zone aware to time zone unaware objects. Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone to convert timestamps to. Passing ``None`` will remove the time zone information preserving local time. ambiguous : str {'infer', 'NaT', 'raise'} or bool array, default 'raise' - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times errors : {'raise', 'coerce'}, default 'raise' - 'raise' will raise a NonExistentTimeError if a timestamp is not valid in the specified time zone (e.g. due to a transition from or to DST time) - 'coerce' will return NaT if the timestamp can not be converted to the specified time zone .. versionadded:: 0.19.0 Returns ------- result : same type as self Array/Index converted to the specified time zone. Raises ------ TypeError If the Datetime Array/Index is tz-aware and tz is not None. See Also -------- DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from one time zone to another. Examples -------- >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Localize DatetimeIndex in US/Eastern time zone: >>> tz_aware = tz_naive.tz_localize(tz='US/Eastern') >>> tz_aware DatetimeIndex(['2018-03-01 09:00:00-05:00', '2018-03-02 09:00:00-05:00', '2018-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq='D') With the ``tz=None``, we can remove the time zone information while keeping the local time (not converted to UTC): >>> tz_aware.tz_localize(None) DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') """ if self.tz is not None: if tz is None: new_dates = conversion.tz_convert(self.asi8, 'UTC', self.tz) else: raise TypeError("Already tz-aware, use tz_convert to convert.") else: tz = timezones.maybe_get_tz(tz) # Convert to UTC new_dates = conversion.tz_localize_to_utc(self.asi8, tz, ambiguous=ambiguous, errors=errors) new_dates = new_dates.view(_NS_DTYPE) return self._shallow_copy(new_dates, tz=tz) # ---------------------------------------------------------------- # Conversion Methods - Vectorized analogues of Timestamp methods def to_pydatetime(self): """ Return Datetime Array/Index as object ndarray of datetime.datetime objects Returns ------- datetimes : ndarray """ return tslib.ints_to_pydatetime(self.asi8, tz=self.tz) # ----------------------------------------------------------------- # Properties - Vectorized Timestamp Properties/Methods def month_name(self, locale=None): """ Return the month names of the DateTimeIndex with specified locale. Parameters ---------- locale : string, default None (English locale) locale determining the language in which to return the month name Returns ------- month_names : Index Index of month names .. versionadded:: 0.23.0 """ if self.tz is not None and self.tz is not utc: values = self._local_timestamps() else: values = self.asi8 result = fields.get_date_name_field(values, 'month_name', locale=locale) result = self._maybe_mask_results(result) return result def day_name(self, locale=None): """ Return the day names of the DateTimeIndex with specified locale. Parameters ---------- locale : string, default None (English locale) locale determining the language in which to return the day name Returns ------- month_names : Index Index of day names .. versionadded:: 0.23.0 """ if self.tz is not None and self.tz is not utc: values = self._local_timestamps() else: values = self.asi8 result = fields.get_date_name_field(values, 'day_name', locale=locale) result = self._maybe_mask_results(result) return result @property def time(self): """ Returns numpy array of datetime.time. The time part of the Timestamps. """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC if self.tz is not None and self.tz is not utc: timestamps = self._local_timestamps() else: timestamps = self.asi8 return tslib.ints_to_pydatetime(timestamps, box="time") @property def date(self): """ Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). """ # If the Timestamps have a timezone that is not UTC, # convert them into their i8 representation while # keeping their timezone and not using UTC if self.tz is not None and self.tz is not utc: timestamps = self._local_timestamps() else: timestamps = self.asi8 return tslib.ints_to_pydatetime(timestamps, box="date") year = _field_accessor('year', 'Y', "The year of the datetime") month = _field_accessor('month', 'M', "The month as January=1, December=12") day = _field_accessor('day', 'D', "The days of the datetime") hour = _field_accessor('hour', 'h', "The hours of the datetime") minute = _field_accessor('minute', 'm', "The minutes of the datetime") second = _field_accessor('second', 's', "The seconds of the datetime") microsecond = _field_accessor('microsecond', 'us', "The microseconds of the datetime") nanosecond = _field_accessor('nanosecond', 'ns', "The nanoseconds of the datetime") weekofyear = _field_accessor('weekofyear', 'woy', "The week ordinal of the year") week = weekofyear dayofweek = _field_accessor('dayofweek', 'dow', "The day of the week with Monday=0, Sunday=6") weekday = dayofweek weekday_name = _field_accessor( 'weekday_name', 'weekday_name', "The name of day in a week (ex: Friday)\n\n.. deprecated:: 0.23.0") dayofyear = _field_accessor('dayofyear', 'doy', "The ordinal day of the year") quarter = _field_accessor('quarter', 'q', "The quarter of the date") days_in_month = _field_accessor( 'days_in_month', 'dim', "The number of days in the month") daysinmonth = days_in_month is_month_start = _field_accessor( 'is_month_start', 'is_month_start', "Logical indicating if first day of month (defined by frequency)") is_month_end = _field_accessor( 'is_month_end', 'is_month_end', """ Indicator for whether the date is the last day of the month. Returns ------- Series or array For Series, returns a Series with boolean values. For DatetimeIndex, returns a boolean array. See Also -------- is_month_start : Indicator for whether the date is the first day of the month. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2018-02-27", periods=3)) >>> dates 0 2018-02-27 1 2018-02-28 2 2018-03-01 dtype: datetime64[ns] >>> dates.dt.is_month_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2018-02-27", periods=3) >>> idx.is_month_end array([False, True, False], dtype=bool) """) is_quarter_start = _field_accessor( 'is_quarter_start', 'is_quarter_start', """ Indicator for whether the date is the first day of a quarter. Returns ------- is_quarter_start : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_end : Similar property for indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_start array([False, False, True, False]) """) is_quarter_end = _field_accessor( 'is_quarter_end', 'is_quarter_end', """ Indicator for whether the date is the last day of a quarter. Returns ------- is_quarter_end : Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- quarter : Return the quarter of the date. is_quarter_start : Similar property indicating the quarter start. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_end=df.dates.dt.is_quarter_end) dates quarter is_quarter_end 0 2017-03-30 1 False 1 2017-03-31 1 True 2 2017-04-01 2 False 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_end array([False, True, False, False]) """) is_year_start = _field_accessor( 'is_year_start', 'is_year_start', """ Indicate whether the date is the first day of a year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_end : Similar property indicating the last day of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_start 0 False 1 False 2 True dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_start array([False, False, True]) """) is_year_end = _field_accessor( 'is_year_end', 'is_year_end', """ Indicate whether the date is the last day of the year. Returns ------- Series or DatetimeIndex The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See Also -------- is_year_start : Similar property indicating the start of the year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_end array([False, True, False]) """) is_leap_year = _field_accessor( 'is_leap_year', 'is_leap_year', """ Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. Returns ------- Series or ndarray Booleans indicating if dates belong to a leap year. Examples -------- This method is available on Series with datetime values under the ``.dt`` accessor, and directly on DatetimeIndex. >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False], dtype=bool) >>> dates = pd.Series(idx) >>> dates_series 0 2012-12-31 1 2013-12-31 2 2014-12-31 dtype: datetime64[ns] >>> dates_series.dt.is_leap_year 0 True 1 False 2 False dtype: bool """) def to_julian_date(self): """ Convert Datetime Array to float64 ndarray of Julian Dates. 0 Julian date is noon January 1, 4713 BC. http://en.wikipedia.org/wiki/Julian_day """ # http://mysite.verizon.net/aesir_research/date/jdalg2.htm year = np.asarray(self.year) month = np.asarray(self.month) day = np.asarray(self.day) testarr = month < 3 year[testarr] -= 1 month[testarr] += 12 return (day + np.fix((153 * month - 457) / 5) + 365 * year + np.floor(year / 4) - np.floor(year / 100) + np.floor(year / 400) + 1721118.5 + (self.hour + self.minute / 60.0 + self.second / 3600.0 + self.microsecond / 3600.0 / 1e+6 + self.nanosecond / 3600.0 / 1e+9 ) / 24.0)
bsd-3-clause
mahat/LogisticRegression
Utils.py
1
2105
''' Author: mahat ''' import pandas as pd import numpy as np # getting titanic dataset def getTitanicDataSet(): # loading data rawData = pd.read_csv('./data/Titanic.csv', delimiter=',', index_col=0, header=0) df = rawData.drop(['Name', 'Ticket', 'Cabin'], 1) #print 'Titanic Dataset Description' #print df.describe() # handling nan variables by droping rows with Nan values df_no_missing = df.dropna() print 'Titanic Dataset Description after dropping rows with missing values' print df_no_missing.describe() print df_no_missing.dtypes # converting categorical data into numerical data df_no_missing['Gender'] = df_no_missing['Sex'].map({'female': 0, 'male': 1}).astype(int) Ports = list(enumerate(np.unique(df_no_missing['Embarked']))) # determine all values of Embarked, Ports_dict = {name: i for i, name in Ports} df_no_missing.Embarked = df_no_missing.Embarked.map(lambda x: Ports_dict[x]).astype(int) # replacing categorical data with onehotencoding embarked_one_hot_coding = pd.get_dummies(df_no_missing['Embarked']).rename(columns=lambda x: 'Emb_' + str(x)) pclass_one_hot_coding = pd.get_dummies(df_no_missing['Pclass']).rename(columns=lambda x: 'Pclass_' + str(x)) # concat old df and onehotencodings df_no_missing_and_encoded = pd.concat([df_no_missing, embarked_one_hot_coding, pclass_one_hot_coding], axis=1) # print df_no_missing_and_encoded # drop unused cols and convert data to float df_no_missing_and_encoded_cleaned = df_no_missing_and_encoded.drop(['Sex', 'Embarked', 'Pclass'], axis=1) df_no_missing_and_encoded_cleaned = df_no_missing_and_encoded_cleaned.applymap(np.float) # print df_no_missing_and_encoded_cleaned # creating dataset feat_cols = [col for col in df_no_missing_and_encoded_cleaned.columns if col not in ['Survived', 'PassengerId']] X = [elem for elem in df_no_missing_and_encoded_cleaned[feat_cols].values] Y = [elem for elem in df_no_missing_and_encoded_cleaned['Survived'].values] return [X,Y,df_no_missing_and_encoded_cleaned.columns]
gpl-3.0
smartscheduling/scikit-learn-categorical-tree
sklearn/semi_supervised/label_propagation.py
24
15181
# coding=utf8 """ Label propagation in the context of this module refers to a set of semisupervised classification algorithms. In the high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supprots RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # Licence: BSD from abc import ABCMeta, abstractmethod from scipy import sparse import numpy as np from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import rbf_kernel from ..utils.graph import graph_laplacian from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_X_y, check_is_fitted from ..externals import six from ..neighbors.unsupervised import NearestNeighbors ### Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_neighbors : integer > 0 Parameter for knn kernel """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " are supported at this time" % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') if sparse.isspmatrix(X): X_2d = X else: X_2d = np.atleast_2d(X) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
macks22/scikit-learn
sklearn/linear_model/tests/test_sgd.py
129
43401
import pickle import unittest import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import raises from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn import linear_model, datasets, metrics from sklearn.base import clone from sklearn.linear_model import SGDClassifier, SGDRegressor from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler class SparseSGDClassifier(SGDClassifier): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).fit(X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).partial_fit(X, y, *args, **kw) def decision_function(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).decision_function(X) def predict_proba(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).predict_proba(X) class SparseSGDRegressor(SGDRegressor): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.fit(self, X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.partial_fit(self, X, y, *args, **kw) def decision_function(self, X, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.decision_function(self, X, *args, **kw) # Test Data # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2; string class labels X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5], [1, 1], [0.75, 0.5], [1.5, 1.5], [-1, -1], [0, -0.5], [1, -1]]) Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3 T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]]) true_result2 = ["one", "two", "three"] # test sample 3 X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]]) Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) # test sample 4 - two more or less redundent feature groups X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0], [1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0], [0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1], [0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]]) Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) iris = datasets.load_iris() # test sample 5 - test sample 1 as binary classification problem X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y5 = [1, 1, 1, 2, 2, 2] true_result5 = [0, 1, 1] # Classification Test Case class CommonTest(object): def factory(self, **kwargs): if "random_state" not in kwargs: kwargs["random_state"] = 42 return self.factory_class(**kwargs) # a simple implementation of ASGD to use for testing # uses squared loss to find the gradient def asgd(self, X, y, eta, alpha, weight_init=None, intercept_init=0.0): if weight_init is None: weights = np.zeros(X.shape[1]) else: weights = weight_init average_weights = np.zeros(X.shape[1]) intercept = intercept_init average_intercept = 0.0 decay = 1.0 # sparse data has a fixed decay of .01 if (isinstance(self, SparseSGDClassifierTestCase) or isinstance(self, SparseSGDRegressorTestCase)): decay = .01 for i, entry in enumerate(X): p = np.dot(entry, weights) p += intercept gradient = p - y[i] weights *= 1.0 - (eta * alpha) weights += -(eta * gradient * entry) intercept += -(eta * gradient) * decay average_weights *= i average_weights += weights average_weights /= i + 1.0 average_intercept *= i average_intercept += intercept average_intercept /= i + 1.0 return average_weights, average_intercept def _test_warm_start(self, X, Y, lr): # Test that explicit warm restart... clf = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf.fit(X, Y) clf2 = self.factory(alpha=0.001, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf2.fit(X, Y, coef_init=clf.coef_.copy(), intercept_init=clf.intercept_.copy()) # ... and implicit warm restart are equivalent. clf3 = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, warm_start=True, learning_rate=lr) clf3.fit(X, Y) assert_equal(clf3.t_, clf.t_) assert_array_almost_equal(clf3.coef_, clf.coef_) clf3.set_params(alpha=0.001) clf3.fit(X, Y) assert_equal(clf3.t_, clf2.t_) assert_array_almost_equal(clf3.coef_, clf2.coef_) def test_warm_start_constant(self): self._test_warm_start(X, Y, "constant") def test_warm_start_invscaling(self): self._test_warm_start(X, Y, "invscaling") def test_warm_start_optimal(self): self._test_warm_start(X, Y, "optimal") def test_input_format(self): # Input format tests. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) Y_ = np.array(Y)[:, np.newaxis] Y_ = np.c_[Y_, Y_] assert_raises(ValueError, clf.fit, X, Y_) def test_clone(self): # Test whether clone works ok. clf = self.factory(alpha=0.01, n_iter=5, penalty='l1') clf = clone(clf) clf.set_params(penalty='l2') clf.fit(X, Y) clf2 = self.factory(alpha=0.01, n_iter=5, penalty='l2') clf2.fit(X, Y) assert_array_equal(clf.coef_, clf2.coef_) def test_plain_has_no_average_attr(self): clf = self.factory(average=True, eta0=.01) clf.fit(X, Y) assert_true(hasattr(clf, 'average_coef_')) assert_true(hasattr(clf, 'average_intercept_')) assert_true(hasattr(clf, 'standard_intercept_')) assert_true(hasattr(clf, 'standard_coef_')) clf = self.factory() clf.fit(X, Y) assert_false(hasattr(clf, 'average_coef_')) assert_false(hasattr(clf, 'average_intercept_')) assert_false(hasattr(clf, 'standard_intercept_')) assert_false(hasattr(clf, 'standard_coef_')) def test_late_onset_averaging_not_reached(self): clf1 = self.factory(average=600) clf2 = self.factory() for _ in range(100): if isinstance(clf1, SGDClassifier): clf1.partial_fit(X, Y, classes=np.unique(Y)) clf2.partial_fit(X, Y, classes=np.unique(Y)) else: clf1.partial_fit(X, Y) clf2.partial_fit(X, Y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16) assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16) def test_late_onset_averaging_reached(self): eta0 = .001 alpha = .0001 Y_encode = np.array(Y) Y_encode[Y_encode == 1] = -1.0 Y_encode[Y_encode == 2] = 1.0 clf1 = self.factory(average=7, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=2, shuffle=False) clf2 = self.factory(average=0, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=1, shuffle=False) clf1.fit(X, Y_encode) clf2.fit(X, Y_encode) average_weights, average_intercept = \ self.asgd(X, Y_encode, eta0, alpha, weight_init=clf2.coef_.ravel(), intercept_init=clf2.intercept_) assert_array_almost_equal(clf1.coef_.ravel(), average_weights.ravel(), decimal=16) assert_almost_equal(clf1.intercept_, average_intercept, decimal=16) class DenseSGDClassifierTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDClassifier def test_sgd(self): # Check that SGD gives any results :-) for loss in ("hinge", "squared_hinge", "log", "modified_huber"): clf = self.factory(penalty='l2', alpha=0.01, fit_intercept=True, loss=loss, n_iter=10, shuffle=True) clf.fit(X, Y) # assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7) assert_array_equal(clf.predict(T), true_result) @raises(ValueError) def test_sgd_bad_l1_ratio(self): # Check whether expected ValueError on bad l1_ratio self.factory(l1_ratio=1.1) @raises(ValueError) def test_sgd_bad_learning_rate_schedule(self): # Check whether expected ValueError on bad learning_rate self.factory(learning_rate="<unknown>") @raises(ValueError) def test_sgd_bad_eta0(self): # Check whether expected ValueError on bad eta0 self.factory(eta0=0, learning_rate="constant") @raises(ValueError) def test_sgd_bad_alpha(self): # Check whether expected ValueError on bad alpha self.factory(alpha=-.1) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") @raises(ValueError) def test_sgd_n_iter_param(self): # Test parameter validity check self.factory(n_iter=-10000) @raises(ValueError) def test_sgd_shuffle_param(self): # Test parameter validity check self.factory(shuffle="false") @raises(TypeError) def test_argument_coef(self): # Checks coef_init not allowed as model argument (only fit) # Provided coef_ does not match dataset. self.factory(coef_init=np.zeros((3,))).fit(X, Y) @raises(ValueError) def test_provide_coef(self): # Checks coef_init shape for the warm starts # Provided coef_ does not match dataset. self.factory().fit(X, Y, coef_init=np.zeros((3,))) @raises(ValueError) def test_set_intercept(self): # Checks intercept_ shape for the warm starts # Provided intercept_ does not match dataset. self.factory().fit(X, Y, intercept_init=np.zeros((3,))) def test_set_intercept_binary(self): # Checks intercept_ shape for the warm starts in binary case self.factory().fit(X5, Y5, intercept_init=0) def test_average_binary_computed_correctly(self): # Checks the SGDClassifier correctly computes the average weights eta = .1 alpha = 2. n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) # simple linear function without noise y = np.dot(X, w) y = np.sign(y) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) average_weights = average_weights.reshape(1, -1) assert_array_almost_equal(clf.coef_, average_weights, decimal=14) assert_almost_equal(clf.intercept_, average_intercept, decimal=14) def test_set_intercept_to_intercept(self): # Checks intercept_ shape consistency for the warm starts # Inconsistent intercept_ shape. clf = self.factory().fit(X5, Y5) self.factory().fit(X5, Y5, intercept_init=clf.intercept_) clf = self.factory().fit(X, Y) self.factory().fit(X, Y, intercept_init=clf.intercept_) @raises(ValueError) def test_sgd_at_least_two_labels(self): # Target must have at least two labels self.factory(alpha=0.01, n_iter=20).fit(X2, np.ones(9)) def test_partial_fit_weight_class_balanced(self): # partial_fit with class_weight='balanced' not supported""" assert_raises_regexp(ValueError, "class_weight 'balanced' is not supported for " "partial_fit. In order to use 'balanced' weights, " "use compute_class_weight\('balanced', classes, y\). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.", self.factory(class_weight='balanced').partial_fit, X, Y, classes=np.unique(Y)) def test_sgd_multiclass(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_average(self): eta = .001 alpha = .01 # Multi-class average test case clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) np_Y2 = np.array(Y2) clf.fit(X2, np_Y2) classes = np.unique(np_Y2) for i, cl in enumerate(classes): y_i = np.ones(np_Y2.shape[0]) y_i[np_Y2 != cl] = -1 average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha) assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16) assert_almost_equal(average_intercept, clf.intercept_[i], decimal=16) def test_sgd_multiclass_with_init_coef(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20) clf.fit(X2, Y2, coef_init=np.zeros((3, 2)), intercept_init=np.zeros(3)) assert_equal(clf.coef_.shape, (3, 2)) assert_true(clf.intercept_.shape, (3,)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_njobs(self): # Multi-class test case with multi-core support clf = self.factory(alpha=0.01, n_iter=20, n_jobs=2).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_set_coef_multiclass(self): # Checks coef_init and intercept_init shape for for multi-class # problems # Provided coef_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, coef_init=np.zeros((2, 2))) # Provided coef_ does match dataset clf = self.factory().fit(X2, Y2, coef_init=np.zeros((3, 2))) # Provided intercept_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, intercept_init=np.zeros((1,))) # Provided intercept_ does match dataset. clf = self.factory().fit(X2, Y2, intercept_init=np.zeros((3,))) def test_sgd_proba(self): # Check SGD.predict_proba # Hinge loss does not allow for conditional prob estimate. # We cannot use the factory here, because it defines predict_proba # anyway. clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=10).fit(X, Y) assert_false(hasattr(clf, "predict_proba")) assert_false(hasattr(clf, "predict_log_proba")) # log and modified_huber losses can output probability estimates # binary case for loss in ["log", "modified_huber"]: clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X, Y) p = clf.predict_proba([3, 2]) assert_true(p[0, 1] > 0.5) p = clf.predict_proba([-1, -1]) assert_true(p[0, 1] < 0.5) p = clf.predict_log_proba([3, 2]) assert_true(p[0, 1] > p[0, 0]) p = clf.predict_log_proba([-1, -1]) assert_true(p[0, 1] < p[0, 0]) # log loss multiclass probability estimates clf = self.factory(loss="log", alpha=0.01, n_iter=10).fit(X2, Y2) d = clf.decision_function([[.1, -.1], [.3, .2]]) p = clf.predict_proba([[.1, -.1], [.3, .2]]) assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1)) assert_almost_equal(p[0].sum(), 1) assert_true(np.all(p[0] >= 0)) p = clf.predict_proba([-1, -1]) d = clf.decision_function([-1, -1]) assert_array_equal(np.argsort(p[0]), np.argsort(d[0])) l = clf.predict_log_proba([3, 2]) p = clf.predict_proba([3, 2]) assert_array_almost_equal(np.log(p), l) l = clf.predict_log_proba([-1, -1]) p = clf.predict_proba([-1, -1]) assert_array_almost_equal(np.log(p), l) # Modified Huber multiclass probability estimates; requires a separate # test because the hard zero/one probabilities may destroy the # ordering present in decision_function output. clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X2, Y2) d = clf.decision_function([3, 2]) p = clf.predict_proba([3, 2]) if not isinstance(self, SparseSGDClassifierTestCase): assert_equal(np.argmax(d, axis=1), np.argmax(p, axis=1)) else: # XXX the sparse test gets a different X2 (?) assert_equal(np.argmin(d, axis=1), np.argmin(p, axis=1)) # the following sample produces decision_function values < -1, # which would cause naive normalization to fail (see comment # in SGDClassifier.predict_proba) x = X.mean(axis=0) d = clf.decision_function(x) if np.all(d < -1): # XXX not true in sparse test case (why?) p = clf.predict_proba(x) assert_array_almost_equal(p[0], [1 / 3.] * 3) def test_sgd_l1(self): # Test L1 regularization n = len(X4) rng = np.random.RandomState(13) idx = np.arange(n) rng.shuffle(idx) X = X4[idx, :] Y = Y4[idx] clf = self.factory(penalty='l1', alpha=.2, fit_intercept=False, n_iter=2000, shuffle=False) clf.fit(X, Y) assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,))) pred = clf.predict(X) assert_array_equal(pred, Y) # test sparsify with dense inputs clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) # pickle and unpickle with sparse coef_ clf = pickle.loads(pickle.dumps(clf)) assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) def test_class_weights(self): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_equal_class_weight(self): # Test if equal class weights approx. equals no class weights. X = [[1, 0], [1, 0], [0, 1], [0, 1]] y = [0, 0, 1, 1] clf = self.factory(alpha=0.1, n_iter=1000, class_weight=None) clf.fit(X, y) X = [[1, 0], [0, 1]] y = [0, 1] clf_weighted = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X, y) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) @raises(ValueError) def test_wrong_class_weight_label(self): # ValueError due to not existing class label. clf = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5}) clf.fit(X, Y) @raises(ValueError) def test_wrong_class_weight_format(self): # ValueError due to wrong class_weight argument type. clf = self.factory(alpha=0.1, n_iter=1000, class_weight=[0.5]) clf.fit(X, Y) def test_weights_multiplied(self): # Tests that class_weight and sample_weight are multiplicative class_weights = {1: .6, 2: .3} sample_weights = np.random.random(Y4.shape[0]) multiplied_together = np.copy(sample_weights) multiplied_together[Y4 == 1] *= class_weights[1] multiplied_together[Y4 == 2] *= class_weights[2] clf1 = self.factory(alpha=0.1, n_iter=20, class_weight=class_weights) clf2 = self.factory(alpha=0.1, n_iter=20) clf1.fit(X4, Y4, sample_weight=sample_weights) clf2.fit(X4, Y4, sample_weight=multiplied_together) assert_almost_equal(clf1.coef_, clf2.coef_) def test_balanced_weight(self): # Test class weights for imbalanced data""" # compute reference metrics on iris dataset that is quite balanced by # default X, y = iris.data, iris.target X = scale(X) idx = np.arange(X.shape[0]) rng = np.random.RandomState(6) rng.shuffle(idx) X = X[idx] y = y[idx] clf = self.factory(alpha=0.0001, n_iter=1000, class_weight=None, shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf.predict(X), average='weighted'), 0.96, decimal=1) # make the same prediction using balanced class_weight clf_balanced = self.factory(alpha=0.0001, n_iter=1000, class_weight="balanced", shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf_balanced.predict(X), average='weighted'), 0.96, decimal=1) # Make sure that in the balanced case it does not change anything # to use "balanced" assert_array_almost_equal(clf.coef_, clf_balanced.coef_, 6) # build an very very imbalanced dataset out of iris data X_0 = X[y == 0, :] y_0 = y[y == 0] X_imbalanced = np.vstack([X] + [X_0] * 10) y_imbalanced = np.concatenate([y] + [y_0] * 10) # fit a model on the imbalanced data without class weight info clf = self.factory(n_iter=1000, class_weight=None, shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_less(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit a model with balanced class_weight enabled clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit another using a fit parameter override clf = self.factory(n_iter=1000, class_weight="balanced", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) def test_sample_weights(self): # Test weights on individual samples X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) @raises(ValueError) def test_wrong_sample_weights(self): # Test if ValueError is raised if sample_weight has wrong shape clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) # provided sample_weight too long clf.fit(X, Y, sample_weight=np.arange(7)) @raises(ValueError) def test_partial_fit_exception(self): clf = self.factory(alpha=0.01) # classes was not specified clf.partial_fit(X3, Y3) def test_partial_fit_binary(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y) clf.partial_fit(X[:third], Y[:third], classes=classes) assert_equal(clf.coef_.shape, (1, X.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) y_pred = clf.predict(T) assert_array_equal(y_pred, true_result) def test_partial_fit_multiclass(self): third = X2.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y2) clf.partial_fit(X2[:third], Y2[:third], classes=classes) assert_equal(clf.coef_.shape, (3, X2.shape[1])) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) id1 = id(clf.coef_.data) clf.partial_fit(X2[third:], Y2[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def test_fit_then_partial_fit(self): # Partial_fit should work after initial fit in the multiclass case. # Non-regression test for #2496; fit would previously produce a # Fortran-ordered coef_ that subsequent partial_fit couldn't handle. clf = self.factory() clf.fit(X2, Y2) clf.partial_fit(X2, Y2) # no exception here def _test_partial_fit_equal_fit(self, lr): for X_, Y_, T_ in ((X, Y, T), (X2, Y2, T2)): clf = self.factory(alpha=0.01, eta0=0.01, n_iter=2, learning_rate=lr, shuffle=False) clf.fit(X_, Y_) y_pred = clf.decision_function(T_) t = clf.t_ classes = np.unique(Y_) clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X_, Y_, classes=classes) y_pred2 = clf.decision_function(T_) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_regression_losses(self): clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="squared_epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, loss="huber") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.01, loss="squared_loss") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) def test_warm_start_multiclass(self): self._test_warm_start(X2, Y2, "optimal") def test_multiple_fit(self): # Test multiple calls of fit w/ different shaped inputs. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) assert_true(hasattr(clf, "coef_")) # Non-regression test: try fitting with a different label set. y = [["ham", "spam"][i] for i in LabelEncoder().fit_transform(Y)] clf.fit(X[:, :-1], y) class SparseSGDClassifierTestCase(DenseSGDClassifierTestCase): """Run exactly the same tests using the sparse representation variant""" factory_class = SparseSGDClassifier ############################################################################### # Regression Test Case class DenseSGDRegressorTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDRegressor def test_sgd(self): # Check that SGD gives any results. clf = self.factory(alpha=0.1, n_iter=2, fit_intercept=False) clf.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) assert_equal(clf.coef_[0], clf.coef_[1]) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") def test_sgd_averaged_computed_correctly(self): # Tests the average regressor matches the naive implementation eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_averaged_partial_fit(self): # Tests whether the partial fit yields the same average as the fit eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.partial_fit(X[:int(n_samples / 2)][:], y[:int(n_samples / 2)]) clf.partial_fit(X[int(n_samples / 2):][:], y[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16) def test_average_sparse(self): # Checks the average weights on data with 0s eta = .001 alpha = .01 clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) n_samples = Y3.shape[0] clf.partial_fit(X3[:int(n_samples / 2)][:], Y3[:int(n_samples / 2)]) clf.partial_fit(X3[int(n_samples / 2):][:], Y3[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X3, Y3, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_least_squares_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_sgd_epsilon_insensitive(self): xmin, xmax = -5, 5 n_samples = 100 X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.99) # simple linear function with noise y = 0.5 * X.ravel() \ + np.random.randn(n_samples, 1).ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.5) def test_sgd_huber_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_elasticnet_convergence(self): # Check that the SGD output is consistent with coordinate descent n_samples, n_features = 1000, 5 rng = np.random.RandomState(0) X = np.random.randn(n_samples, n_features) # ground_truth linear model that generate y from X and to which the # models should converge if the regularizer would be set to 0.0 ground_truth_coef = rng.randn(n_features) y = np.dot(X, ground_truth_coef) # XXX: alpha = 0.1 seems to cause convergence problems for alpha in [0.01, 0.001]: for l1_ratio in [0.5, 0.8, 1.0]: cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) cd.fit(X, y) sgd = self.factory(penalty='elasticnet', n_iter=50, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) sgd.fit(X, y) err_msg = ("cd and sgd did not converge to comparable " "results for alpha=%f and l1_ratio=%f" % (alpha, l1_ratio)) assert_almost_equal(cd.coef_, sgd.coef_, decimal=2, err_msg=err_msg) def test_partial_fit(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) clf.partial_fit(X[:third], Y[:third]) assert_equal(clf.coef_.shape, (X.shape[1], )) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def _test_partial_fit_equal_fit(self, lr): clf = self.factory(alpha=0.01, n_iter=2, eta0=0.01, learning_rate=lr, shuffle=False) clf.fit(X, Y) y_pred = clf.predict(T) t = clf.t_ clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X, Y) y_pred2 = clf.predict(T) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_loss_function_epsilon(self): clf = self.factory(epsilon=0.9) clf.set_params(epsilon=0.1) assert clf.loss_functions['huber'][1] == 0.1 class SparseSGDRegressorTestCase(DenseSGDRegressorTestCase): # Run exactly the same tests using the sparse representation variant factory_class = SparseSGDRegressor def test_l1_ratio(): # Test if l1 ratio extremes match L1 and L2 penalty settings. X, y = datasets.make_classification(n_samples=1000, n_features=100, n_informative=20, random_state=1234) # test if elasticnet with l1_ratio near 1 gives same result as pure l1 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.9999999999, random_state=42).fit(X, y) est_l1 = SGDClassifier(alpha=0.001, penalty='l1', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l1.coef_) # test if elasticnet with l1_ratio near 0 gives same result as pure l2 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.0000000001, random_state=42).fit(X, y) est_l2 = SGDClassifier(alpha=0.001, penalty='l2', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l2.coef_) def test_underflow_or_overlow(): with np.errstate(all='raise'): # Generate some weird data with hugely unscaled features rng = np.random.RandomState(0) n_samples = 100 n_features = 10 X = rng.normal(size=(n_samples, n_features)) X[:, :2] *= 1e300 assert_true(np.isfinite(X).all()) # Use MinMaxScaler to scale the data without introducing a numerical # instability (computing the standard deviation naively is not possible # on this data) X_scaled = MinMaxScaler().fit_transform(X) assert_true(np.isfinite(X_scaled).all()) # Define a ground truth on the scaled data ground_truth = rng.normal(size=n_features) y = (np.dot(X_scaled, ground_truth) > 0.).astype(np.int32) assert_array_equal(np.unique(y), [0, 1]) model = SGDClassifier(alpha=0.1, loss='squared_hinge', n_iter=500) # smoke test: model is stable on scaled data model.fit(X_scaled, y) assert_true(np.isfinite(model.coef_).all()) # model is numerically unstable on unscaled data msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*" " Scaling input data with StandardScaler or MinMaxScaler" " might help.") assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y) def test_numerical_stability_large_gradient(): # Non regression test case for numerical stability on scaled problems # where the gradient can still explode with some losses model = SGDClassifier(loss='squared_hinge', n_iter=10, shuffle=True, penalty='elasticnet', l1_ratio=0.3, alpha=0.01, eta0=0.001, random_state=0) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_true(np.isfinite(model.coef_).all()) def test_large_regularization(): # Non regression tests for numerical stability issues caused by large # regularization parameters for penalty in ['l2', 'l1', 'elasticnet']: model = SGDClassifier(alpha=1e5, learning_rate='constant', eta0=0.1, n_iter=5, penalty=penalty, shuffle=False) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_array_almost_equal(model.coef_, np.zeros_like(model.coef_))
bsd-3-clause
hitszxp/scikit-learn
sklearn/cluster/tests/test_dbscan.py
16
5134
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from numpy.testing import assert_raises from scipy.spatial import distance from sklearn.utils.testing import assert_equal from sklearn.cluster.dbscan_ import DBSCAN, dbscan from .common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): """Tests the DBSCAN algorithm with a similarity array.""" # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): """Tests the DBSCAN algorithm with a feature vector array.""" # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_callable(): """Tests the DBSCAN algorithm with a callable metric.""" # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): """Tests the DBSCAN algorithm with balltree for neighbor calculation.""" eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): """DBSCAN.fit should accept a list of lists.""" X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): """Test bad argument values: these should all raise ValueErrors""" assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__)
bsd-3-clause
isomerase/MyPyGLM
STA_grasshopper_ex.py
2
5644
""" .. _grasshopper: ===================================== Auditory processing in grasshoppers ===================================== Extracting the average time-series from one signal, time-locked to the occurence of some type of event in another signal is a very typical operation in the analysis of time-series from neuroscience experiments. Therefore, we have an additional example of this kind of analysis in :ref:`et-fmri` In the following code-snippet, we demonstrate the calculation of the spike-triggered average (STA). This is the average of the stimulus wave-form preceding the emission of a spike in the neuron and can be thought of as the stimulus 'preferred' by this neuron. We start by importing the required modules: """ import os import numpy as np import nitime import nitime.timeseries as ts import nitime.analysis as tsa import nitime.viz as viz from matplotlib import pyplot as plt """ Two data files are used in this example. The first contains the times of action potentials ('spikes'), recorded intra-cellularly from primary auditory receptors in the grasshopper *Locusta Migratoria*. We read in these times and initialize an Events object from them. The spike-times are given in micro-seconds: """ data_path = os.path.join(nitime.__path__[0], 'data') spike_times = np.loadtxt(os.path.join(data_path, 'grasshopper_spike_times1.txt')) spike_ev = ts.Events(spike_times, time_unit='us') """ The first data file contains the stimulus that was played during the recording. Briefly, the stimulus played was a pure-tone in the cell's preferred frequency amplitude modulated by Gaussian white-noise, up to a cut-off frequency (200 Hz in this case, for details on the experimental procedures and the stimulus see [Rokem2006]_). """ stim = np.loadtxt(os.path.join(data_path, 'grasshopper_stimulus1.txt')) """ The stimulus needs to be transformed from Volts to dB: """ def volt2dB(stim, maxdB=100): stim = (20 * 1 / np.log(10)) * (np.log(stim[:, 1] / 2.0e-5)) return maxdB - stim.max() + stim stim = volt2dB(stim, maxdB=76.4286) # maxdB taken from the spike file header """ We create a time-series object for the stimulus, which was sampled at 20 kHz: """ stim_time_series = ts.TimeSeries(t0=0, data=stim, sampling_interval=50, time_unit='us') """ Note that the time-representation will not change if we now convert the time-unit into ms. The only thing this accomplishes is to use this time-unit in subsequent visualization of the resulting time-series """ stim_time_series.time_unit = 'ms' """ Next, we initialize an EventRelatedAnalyzer: """ event_related = tsa.EventRelatedAnalyzer(stim_time_series, spike_ev, len_et=200, offset=-200) """ The actual STA gets calculated in this line (the call to 'event_related.eta') and the result gets input directly into the plotting function: """ fig01 = viz.plot_tseries(event_related.eta, ylabel='Amplitude (dB SPL)') """ We prettify the plot a bit by adding a dashed line at the mean of the stimulus """ ax = fig01.get_axes()[0] xlim = ax.get_xlim() ylim = ax.get_ylim() mean_stim = np.mean(stim_time_series.data) ax.plot([xlim[0], xlim[1]], [mean_stim, mean_stim], 'k--') """ .. image:: fig/grasshopper_01.png In the following example, a second channel has been added to both the stimulus and the spike-train time-series. This is the response of the same cell, to a different stimulus, in which the frequency modulation has a higher frequency cut-off (800 Hz). """ stim2 = np.loadtxt(os.path.join(data_path, 'grasshopper_stimulus2.txt')) stim2 = volt2dB(stim2, maxdB=76.4286) spike_times2 = np.loadtxt(os.path.join(data_path, 'grasshopper_spike_times2.txt')) """ We loop over the two spike-time events and stimulus time-series: """ et = [] means = [] for stim, spike in zip([stim, stim2], [spike_times, spike_times2]): stim_time_series = ts.TimeSeries(t0=0, data=stim, sampling_interval=50, time_unit='us') stim_time_series.time_unit = 'ms' spike_ev = ts.Events(spike, time_unit='us') #Initialize the event-related analyzer event_related = tsa.EventRelatedAnalyzer(stim_time_series, spike_ev, len_et=200, offset=-200) """ This is the line which actually executes the analysis """ et.append(event_related.eta) means.append(np.mean(stim_time_series.data)) """ Stack the data from both time-series, initialize a new time-series and plot it: """ fig02 = viz.plot_tseries( ts.TimeSeries(data=np.vstack([et[0].data, et[1].data]), sampling_rate=et[0].sampling_rate, time_unit='ms')) ax = fig02.get_axes()[0] xlim = ax.get_xlim() ax.plot([xlim[0], xlim[1]], [means[0], means[0]], 'b--') ax.plot([xlim[0], xlim[1]], [means[1], means[1]], 'g--') """ .. image:: fig/grasshopper_02.png plt.show() is called in order to display the figures """ plt.show() """ The data used in this example is also available on the `CRCNS data sharing web-site <http://crcns.org/>`_. .. [Rokem2006] Ariel Rokem, Sebastian Watzl, Tim Gollisch, Martin Stemmler, Andreas V M Herz and Ines Samengo (2006). Spike-timing precision underlies the coding efficiency of auditory receptor neurons. J Neurophysiol, 95:2541--52 """
mit
hansonzeng/DeloitteTMT
hello.py
1
6370
from cloudant import Cloudant from flask import Flask, render_template, request, jsonify, flash import atexit import cf_deployment_tracker import os import json import pandas as pd from watson_developer_cloud import VisualRecognitionV3 from flask_uploads import UploadSet, IMAGES, configure_uploads from classifyAssociation import(classify, lookup, convert_category) # Emit Bluemix deployment event cf_deployment_tracker.track() app = Flask(__name__) db_name = 'mydb' client = None db = None classifier = ["FullClassifier_1661818688", "default"] api_key = "3392034336ce62e110d77c8ea9a2d32d372ba0aa" #two instances created in this app visual_recognition = VisualRecognitionV3('2016-05-20', api_key=api_key) if 'VCAP_SERVICES' in os.environ: vcap = json.loads(os.getenv('VCAP_SERVICES')) print('Found VCAP_SERVICES') if 'cloudantNoSQLDB' in vcap: creds = vcap['cloudantNoSQLDB'][0]['credentials'] user = creds['username'] password = creds['password'] url = 'https://' + creds['host'] client = Cloudant(user, password, url=url, connect=True) db = client.create_database(db_name, throw_on_exists=False) elif os.path.isfile('vcap-local.json'): with open('vcap-local.json') as f: vcap = json.load(f) print('Found local VCAP_SERVICES') creds = vcap['services']['cloudantNoSQLDB'][0]['credentials'] user = creds['username'] password = creds['password'] url = 'https://' + creds['host'] client = Cloudant(user, password, url=url, connect=True) db = client.create_database(db_name, throw_on_exists=False) # On Bluemix, get the port number from the environment variable PORT # When running this app on the local machine, default the port to 8000 port = int(os.getenv('PORT', 9000)) photos = UploadSet('photos', IMAGES) app.config['UPLOADED_PHOTOS_DEST'] = 'static/img' configure_uploads(app, photos) #https://www.youtube.com/watch?v=Exf8RbgKmhM @app.route('/upload', methods=['GET', 'POST']) def upload(): if request.method == 'POST' and 'file' in request.files: filename = photos.save(request.files['file']) flash("Photo saved.") return filename return render_template('index.html') @app.route("/results", methods=['POST']) def recognise_image(): result_items = list() x = visual_recognition imgurl = request.form['imgurl'] # print imgurl img = x.classify(images_url=imgurl, classifier_ids=classifier) classes = img['images'][0]['classifiers'][0]['classes'] custom_classes = img['custom_classes'] images_processed = img['images_processed'] if img['images'][0]['source_url']: source_url = img['images'][0]['source_url'] else: source_url = '' if img['images'][0]['resolved_url']: resolved_url = img['images'][0]['resolved_url'] else: resolved_url = '' complete_response = json.dumps(img, sort_keys = True, indent = 4, separators = (',', ': ')) return render_template('show_results.html', json_resp=classes, custom_classes=custom_classes, images_processed=images_processed, source_url=source_url, resolved_url=resolved_url, complete_response=complete_response) @app.route("/mba_results", methods=['GET','POST']) def mba_results(): list = os.listdir('static/img') num_imgs = len(list) if 'classify_image' in request.files: save_path = 'static/img/classified_%s.jpg' % num_imgs request.files['classify_image'].save(save_path) passed_image = open(save_path, 'rb') classification = classify(images_file=passed_image, classifier=classifier, min_score=0.4, api_key=api_key) print("image classified as ") print(classification) # added cars because bikes isn't one of the groups in the MBA - still awaiting group confirmation from Kate # This will also simulate if multiple classifications are returned # classification.append('Cars') print("Determining association rules") mapped_categories = [] for i in classification: mapped_categories.append(convert_category(i)) # parameter used to run this lookup_values = mapped_categories # Shows how to get some of the output total_rules = [] times = len(lookup_values) for i in range(0, times): interest = lookup_values[i] print(interest) print("looking up") print("top two association rules are...") # gets rule set from rules table rules = lookup(interest, rules_to_return=2, classResult=classification[i]) if rules is not None: total_rules.append(rules) # checks if lookup worked if isinstance(rules, pd.DataFrame): print(rules) else: print(rules) print(type(total_rules)) return render_template('show_results_2.html', passed_image=save_path, rules_for_classes=total_rules) @app.route('/photo/<id>') def show(id): photo = Photo.load(id) if photo is None: abort(404) url = photos.url(photo.filename) return render_template('show.html', url=url, photo=photo) @app.route('/') def home(): return render_template('index.html') # /* Endpoint to greet and add a new visitor to database. # * Send a POST request to localhost:8000/api/visitors with body # * { # * "name": "Bob" # * } # */ @app.route('/api/visitors', methods=['GET']) def get_visitor(): if client: return jsonify(list(map(lambda doc: doc['name'], db))) else: print('No database') return jsonify([]) # /** # * Endpoint to get a JSON array of all the visitors in the database # * REST API example: # * <code> # * GET http://localhost:8000/api/visitors # * </code> # * # * Response: # * [ "Bob", "Jane" ] # * @return An array of all the visitor names # */ @app.route('/api/visitors', methods=['POST']) def put_visitor(): user = request.json['name'] if client: data = {'name':user} db.create_document(data) return 'Hello %s! I added you to the database.' % user else: print('No database') return 'Hello %s!' % user @atexit.register def shutdown(): if client: client.disconnect() if __name__ == '__main__': app.secret_key = 'super secret key' app.config['SESSION_TYPE'] = 'filesystem' app.run(host='0.0.0.0', port=port, debug=True)
apache-2.0
sarathid/Python-works
Intro_to_ML/outliers/outlier_removal_regression.py
11
2376
#!/usr/bin/python import random import numpy import matplotlib.pyplot as plt import pickle from outlier_cleaner import outlierCleaner ### load up some practice data with outliers in it ages = pickle.load( open("practice_outliers_ages.pkl", "r") ) net_worths = pickle.load( open("practice_outliers_net_worths.pkl", "r") ) ### ages and net_worths need to be reshaped into 2D numpy arrays ### second argument of reshape command is a tuple of integers: (n_rows, n_columns) ### by convention, n_rows is the number of data points ### and n_columns is the number of features ages = numpy.reshape( numpy.array(ages), (len(ages), 1)) net_worths = numpy.reshape( numpy.array(net_worths), (len(net_worths), 1)) from sklearn.cross_validation import train_test_split ages_train, ages_test, net_worths_train, net_worths_test = train_test_split(ages, net_worths, test_size=0.1, random_state=42) ### fill in a regression here! Name the regression object reg so that ### the plotting code below works, and you can see what your regression looks like try: plt.plot(ages, reg.predict(ages), color="blue") except NameError: pass plt.scatter(ages, net_worths) plt.show() ### identify and remove the most outlier-y points cleaned_data = [] try: predictions = reg.predict(ages_train) cleaned_data = outlierCleaner( predictions, ages_train, net_worths_train ) except NameError: print "your regression object doesn't exist, or isn't name reg" print "can't make predictions to use in identifying outliers" ### only run this code if cleaned_data is returning data if len(cleaned_data) > 0: ages, net_worths, errors = zip(*cleaned_data) ages = numpy.reshape( numpy.array(ages), (len(ages), 1)) net_worths = numpy.reshape( numpy.array(net_worths), (len(net_worths), 1)) ### refit your cleaned data! try: reg.fit(ages, net_worths) plt.plot(ages, reg.predict(ages), color="blue") except NameError: print "you don't seem to have regression imported/created," print " or else your regression object isn't named reg" print " either way, only draw the scatter plot of the cleaned data" plt.scatter(ages, net_worths) plt.xlabel("ages") plt.ylabel("net worths") plt.show() else: print "outlierCleaner() is returning an empty list, no refitting to be done"
gpl-3.0
lbishal/scikit-learn
sklearn/feature_extraction/tests/test_image.py
28
10384
# Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import scipy as sp from scipy import ndimage from nose.tools import assert_equal, assert_true from numpy.testing import assert_raises from sklearn.feature_extraction.image import ( img_to_graph, grid_to_graph, extract_patches_2d, reconstruct_from_patches_2d, PatchExtractor, extract_patches) from sklearn.utils.graph import connected_components def test_img_to_graph(): x, y = np.mgrid[:4, :4] - 10 grad_x = img_to_graph(x) grad_y = img_to_graph(y) assert_equal(grad_x.nnz, grad_y.nnz) # Negative elements are the diagonal: the elements of the original # image. Positive elements are the values of the gradient, they # should all be equal on grad_x and grad_y np.testing.assert_array_equal(grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0]) def test_grid_to_graph(): #Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=np.bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size ** 2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert_true(connected_components(A)[0] == 2) # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert_true(connected_components(A)[0] == 1) # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.bool) assert_true(A.dtype == np.bool) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.int) assert_true(A.dtype == np.int) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float64) assert_true(A.dtype == np.float64) def test_connect_regions(): lena = sp.misc.lena() for thr in (50, 150): mask = lena > thr graph = img_to_graph(lena, mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def test_connect_regions_with_grid(): lena = sp.misc.lena() mask = lena > 50 graph = grid_to_graph(*lena.shape, mask=mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) mask = lena > 150 graph = grid_to_graph(*lena.shape, mask=mask, dtype=None) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def _downsampled_lena(): lena = sp.misc.lena().astype(np.float32) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = lena.astype(np.float32) lena /= 16.0 return lena def _orange_lena(lena=None): lena = _downsampled_lena() if lena is None else lena lena_color = np.zeros(lena.shape + (3,)) lena_color[:, :, 0] = 256 - lena lena_color[:, :, 1] = 256 - lena / 2 lena_color[:, :, 2] = 256 - lena / 4 return lena_color def _make_images(lena=None): lena = _downsampled_lena() if lena is None else lena # make a collection of lenas images = np.zeros((3,) + lena.shape) images[0] = lena images[1] = lena + 1 images[2] = lena + 2 return images downsampled_lena = _downsampled_lena() orange_lena = _orange_lena(downsampled_lena) lena_collection = _make_images(downsampled_lena) def test_extract_patches_all(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_all_color(): lena = orange_lena i_h, i_w = lena.shape[:2] p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_all_rect(): lena = downsampled_lena lena = lena[:, 32:97] i_h, i_w = lena.shape p_h, p_w = 16, 12 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_max_patches(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w), max_patches=100) assert_equal(patches.shape, (100, p_h, p_w)) expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1)) patches = extract_patches_2d(lena, (p_h, p_w), max_patches=0.5) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=2.0) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=-1.0) def test_reconstruct_patches_perfect(): lena = downsampled_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_reconstruct_patches_perfect_color(): lena = orange_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_patch_extractor_fit(): lenas = lena_collection extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0) assert_true(extr == extr.fit(lenas)) def test_patch_extractor_max_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 max_patches = 100 expected_n_patches = len(lenas) * max_patches extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) max_patches = 0.5 expected_n_patches = len(lenas) * int((i_h - p_h + 1) * (i_w - p_w + 1) * max_patches) extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_max_patches_default(): lenas = lena_collection extr = PatchExtractor(max_patches=100, random_state=0) patches = extr.transform(lenas) assert_equal(patches.shape, (len(lenas) * 100, 12, 12)) def test_patch_extractor_all_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_color(): lenas = _make_images(orange_lena) i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_strided(): image_shapes_1D = [(10,), (10,), (11,), (10,)] patch_sizes_1D = [(1,), (2,), (3,), (8,)] patch_steps_1D = [(1,), (1,), (4,), (2,)] expected_views_1D = [(10,), (9,), (3,), (2,)] last_patch_1D = [(10,), (8,), (8,), (2,)] image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)] patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)] patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)] expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)] last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)] image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)] patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)] patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)] expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)] last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)] image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D expected_views = expected_views_1D + expected_views_2D + expected_views_3D last_patches = last_patch_1D + last_patch_2D + last_patch_3D for (image_shape, patch_size, patch_step, expected_view, last_patch) in zip(image_shapes, patch_sizes, patch_steps, expected_views, last_patches): image = np.arange(np.prod(image_shape)).reshape(image_shape) patches = extract_patches(image, patch_shape=patch_size, extraction_step=patch_step) ndim = len(image_shape) assert_true(patches.shape[:ndim] == expected_view) last_patch_slices = [slice(i, i + j, None) for i, j in zip(last_patch, patch_size)] assert_true((patches[[slice(-1, None, None)] * ndim] == image[last_patch_slices].squeeze()).all()) def test_extract_patches_square(): # test same patch size for all dimensions lena = downsampled_lena i_h, i_w = lena.shape p = 8 expected_n_patches = ((i_h - p + 1), (i_w - p + 1)) patches = extract_patches(lena, patch_shape=p) assert_true(patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p)) def test_width_patch(): # width and height of the patch should be less than the image x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(ValueError, extract_patches_2d, x, (4, 1)) assert_raises(ValueError, extract_patches_2d, x, (1, 4))
bsd-3-clause
maheshakya/scikit-learn
benchmarks/bench_glm.py
297
1493
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model from sklearn.utils.bench import total_seconds if __name__ == '__main__': import pylab as pl n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = total_seconds(datetime.now() - start) start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = total_seconds(datetime.now() - start) start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = total_seconds(datetime.now() - start) pl.figure('scikit-learn GLM benchmark results') pl.xlabel('Dimensions') pl.ylabel('Time (s)') pl.plot(dimensions, time_ridge, color='r') pl.plot(dimensions, time_ols, color='g') pl.plot(dimensions, time_lasso, color='b') pl.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') pl.axis('tight') pl.show()
bsd-3-clause
henrynj/PMLMC
plot/euler_old/plot_vs.py
1
7609
#!/usr/bin/env python ################################################## # PMLMC Plotting # # # # Jun Nie # # Last modification: 31-01-2018 # ################################################## import sys import numpy as np import matplotlib.pyplot as plt from plot_helper import * ### plotting for various purpose class plotting_total_cost: """ plotting total cost for diffent eps and diffenrent number of levels """ def __init__(self, eps, gamma): self.eps = eps self.gamma = gamma self.cost_mc, self.cost_ml1, self.cost_ml2, self.cost_ml3 = [], [], [], [] self.styles = ['o--', 'x--', 'd--', '*--', 's--'] self.cal_cost(gamma) def cal_cost(self, gamma): # read variance from convergence_test v_q, v_yl = read_variance() # mc on different levels for l, v in enumerate(v_q): self.cost_mc.append(compute_mc_cost(v, eps, l, gamma)) # 2 levels for l0 in range(0,3,1): level = [l0, l0+1] nm = calculate_optimal_number(level, v_yl[l0:l0+2], eps, gamma) self.cost_ml1.append( compute_mlmc_cost(nm, gamma, l0) ) # 3 levels for l0 in range(0,2,1): level = [l0, l0+1, l0+2] nm = calculate_optimal_number(level, v_yl[l0:l0+3], eps, gamma) self.cost_ml2.append( compute_mlmc_cost(nm, gamma, l0) ) # 4 levels for l0 in range(0,1,1): level = [l0, l0+1, l0+2, l0+3] nm = calculate_optimal_number(level, v_yl[l0:l0+4], eps, gamma) self.cost_ml3.append( compute_mlmc_cost(nm, gamma, l0) ) def plot(self): plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) plt.semilogy(range(4), cost_mc, styles[0], label='MC') plt.semilogy(range(1,4,1), cost_ml1, styles[1], label='MLMC: 2 levels') plt.semilogy(range(2,4,1), cost_ml2, styles[2], label='MLMC: 3 levels') plt.semilogy(range(3,4,1), cost_ml3, styles[3], label='MLMC: 4 levels') plt.xlim(-1, 3+1) plt.xlabel('level $l$') plt.ylabel('Standardised Cost') plt.legend(loc='upper left', frameon=True) plt.title('$eps=%.2f$' %self.eps) plt.savefig('cost_for_eps_%.2f.pdf' %self.eps) plt.close() ### of no meaning def plot_cost_vs_eps(gamma = 1.4): epss = [1e-2,2e-2,5e-2] v_q, v_yl = read_variance() cost_mc = [] cost_ml = [] level = [0,1,2,3] for eps in epss: cost_mc.append( compute_mc_cost(v_q[-1], eps, 3, gamma)*eps**2 ) nm = calculate_optimal_number(level, v_yl[0:4], eps, gamma) cost_ml.append( compute_mlmc_cost(nm, gamma, 0)*eps**2 ) styles = ['o--', 'x--', 'd--', '*--', 's--'] plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) plt.loglog(epss, cost_mc, styles[0], label='MC') plt.loglog(epss, cost_ml, styles[1], label='MLMC') #plt.xlim(-1, 3+1) plt.xlabel('accuracy $\epsilon$') plt.ylabel('Standardised Cost') plt.legend(loc='upper left', frameon=True) #plt.title('$eps=%.2f$' %eps) plt.savefig('cost_vs_eps.pdf') plt.close() ### plot number of samples per level def plot_nm(eps = 2e-2, gamma = 1.4): v_q, v_yl = read_variance() nm_mc = int( np.ceil(2*v_q[-1]/(eps**2)) ) level = [2,3] nm_ml2 = calculate_optimal_number(level, v_yl[2:4], eps, gamma) level = [1,2,3] nm_ml3 = calculate_optimal_number(level, v_yl[1:4], eps, gamma) level = [0,1,2,3] nm_ml4 = calculate_optimal_number(level, v_yl[0:4], eps, gamma) ### plotting styles = ['o--', 'x--', 'd--', '*--', 's--'] plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) plt.semilogy(3, nm_mc, styles[0], label='MC') plt.semilogy(range(2,4,1), nm_ml2, styles[1], label='MLMC: 2 levels') plt.semilogy(range(1,4,1), nm_ml3, styles[2], label='MLMC: 3 levels') plt.semilogy(range(0,4,1), nm_ml4, styles[3], label='MLMC: 4 levels') plt.xlim(-1, 3+1) plt.xlabel('level $l$') plt.ylabel(r'$N_l$') plt.legend(loc='upper right', frameon=True) plt.title('$eps=%.2f$' %eps) plt.savefig('nm_for_eps_%.2f.pdf' %eps) plt.close() print nm_ml2, nm_ml3, nm_ml4 def plot_nm_vs_eps(gamma=1.4): v_q, v_yl = read_variance() #nm_mc = int( np.ceil(2*v_q[-1]/(eps**2)) ) epss = [1e-2,2e-2,5e-2] level = [0,1,2,3] nm_ml2 = calculate_optimal_number(level, v_yl[0:4], epss[0], gamma) nm_ml3 = calculate_optimal_number(level, v_yl[0:4], epss[1], gamma) nm_ml4 = calculate_optimal_number(level, v_yl[0:4], epss[2], gamma) ### plotting styles = ['o--', 'x--', 'd--', '*--', 's--'] plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) #plt.semilogy(3, nm_mc, styles[0], label='MC') plt.semilogy(range(0,4,1), nm_ml2, styles[0], label='MLMC: eps=%.2f' %epss[0]) plt.semilogy(range(0,4,1), nm_ml3, styles[1], label='MLMC: eps=%.2f' %epss[1]) plt.semilogy(range(0,4,1), nm_ml4, styles[2], label='MLMC: eps=%.2f' %epss[2]) #plt.xlim(-1, 3+1) plt.xlabel('level $l$') plt.ylabel(r'$N_l$') plt.legend(loc='upper right', frameon=True) #plt.title('$eps=%.2f$' %eps) plt.savefig('nm_vs_eps.pdf') plt.close() def plot(): epss = [1e-1, 5e-2, 2e-2, 1e-2]#, 2e-3] gamma = 1.4 v_q, v_yl = read_variance() cost_mc = [] cost_ml1 = [] cost_ml2 = [] cost_ml3 = [] for eps in epss: cost_mc.append( compute_mc_cost( v_q[-1], eps, 3, gamma ) ) level = [2,3] nm = calculate_optimal_number(level, v_yl[2:4], eps, gamma) cost_ml1.append( compute_mlmc_cost(nm, gamma, 2) ) level = [1,2,3] nm = calculate_optimal_number(level, v_yl[1:4], eps, gamma) cost_ml2.append( compute_mlmc_cost(nm, gamma, 1) ) level = [0,1,2,3] nm = calculate_optimal_number(level, v_yl[0:4], eps, gamma) cost_ml3.append( compute_mlmc_cost(nm, gamma, 0) ) styles = ['o--', 'x--', 'd--', '*--', 's--'] plt.figure(figsize=(10, 8)) plt.subplot(1, 1, 1) plt.loglog(cost_mc, epss, styles[0], label='MC') plt.loglog(cost_ml1, epss, styles[1], label='MLMC: 2 levels') plt.loglog(cost_ml2, epss, styles[2], label='MLMC: 3 levels') plt.loglog(cost_ml3, epss, styles[3], label='MLMC: 4 levels') saving = np.zeros(3) saving[0] = cost_mc[2] / cost_ml1[2] saving[1] = cost_mc[2] / cost_ml2[2] saving[2] = cost_mc[2] / cost_ml3[2] print saving eps = estimate_error() plt.axhline(y=eps, linewidth=.05, color='k') eps1 = estimate_error(L=2) plt.axhline(y=eps1, linewidth=.05, color='r') #plt.ylim(2e-3, 2e-1) plt.xlabel('Standardised Cost') plt.ylabel('Standard deviation of estimator') plt.legend(loc='upper right', frameon=True) plt.savefig('eps_vs_cost.pdf') plt.close() if __name__ == '__main__': eps = 5e-2; gamma = 1.4 #plot_cost() #plot_cost_vs_eps() #plot_nm() #plot_nm_vs_eps() plot_cost_vs_eps()
gpl-3.0
mjirik/lisa
tests/shape_model_test.py
1
1313
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2015 mjirik <mjirik@hp-mjirik> # # Distributed under terms of the MIT license. """ """ import unittest # import pytest import lisa.shape_model as shm import numpy as np class ShapeModelTest(unittest.TestCase): # @pytest.mark.interactive def test_shape_model(self): """ Run shape model """ sm = shm.ShapeModel() sm.model_margin = [0, 0, 0] # train with first model sh0 = np.zeros([20, 21, 1]) sh0[13:19, 7:16] = 1 sh0[17:19, 12:16] = 0 sh0[13:15, 13:16] = 0 sh0_vs = [2, 1, 1] sm.train_one(sh0, sh0_vs) # train with second model sh1 = np.zeros([40, 20, 1]) sh1[16:27, 7:13] = 1 sh1[23:27, 11:13] = 0 sh1_vs = [1, 1, 1] sm.train_one(sh1, sh1_vs) sm.get_model([[15, 25], [10, 25], [0, 1]], [30, 30, 1]) # print mdl.shape # import matplotlib.pyplot as plt # import ipdb; ipdb.set_trace() # plt.imshow(np.squeeze(sh1)) # plt.imshow(np.squeeze(sm.model[:, :, 0])) # plt.imshow(np.squeeze(mdl)) # plt.show() # import sed3 # ed = sed3.sed3(sh1) # ed.show() if __name__ == "__main__": unittest.main()
bsd-3-clause
PyPSA/PyPSA
pypsa/linopf.py
1
45233
## Copyright 2019 Tom Brown (KIT), Fabian Hofmann (FIAS) ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 3 of the ## License, or (at your option) any later version. ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. """ Build optimisation problems from PyPSA networks without Pyomo. Originally retrieved from nomopyomo ( -> 'no more Pyomo'). """ from .pf import (_as_snapshots, get_switchable_as_dense as get_as_dense) from .descriptors import (get_bounds_pu, get_extendable_i, get_non_extendable_i, expand_series, nominal_attrs, additional_linkports, Dict) from .linopt import (linexpr, write_bound, write_constraint, write_objective, set_conref, set_varref, get_con, get_var, join_exprs, run_and_read_cbc, run_and_read_gurobi, run_and_read_glpk, run_and_read_cplex, run_and_read_xpress, define_constraints, define_variables, define_binaries, align_with_static_component) import pandas as pd import numpy as np from numpy import inf from distutils.version import LooseVersion pd_version = LooseVersion(pd.__version__) import gc, time, os, re, shutil from tempfile import mkstemp import logging logger = logging.getLogger(__name__) lookup = pd.read_csv(os.path.join(os.path.dirname(__file__), 'variables.csv'), index_col=['component', 'variable']) def define_nominal_for_extendable_variables(n, c, attr): """ Initializes variables for nominal capacities for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str network component of which the nominal capacity should be defined attr : str name of the variable, e.g. 'p_nom' """ ext_i = get_extendable_i(n, c) if ext_i.empty: return lower = n.df(c)[attr+'_min'][ext_i] upper = n.df(c)[attr+'_max'][ext_i] define_variables(n, lower, upper, c, attr) def define_dispatch_for_extendable_and_committable_variables(n, sns, c, attr): """ Initializes variables for power dispatch for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' """ ext_i = get_extendable_i(n, c) if c == 'Generator': ext_i = ext_i.union(n.generators.query('committable').index) if ext_i.empty: return define_variables(n, -inf, inf, c, attr, axes=[sns, ext_i], spec='ext') def define_dispatch_for_non_extendable_variables(n, sns, c, attr): """ Initializes variables for power dispatch for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' """ fix_i = get_non_extendable_i(n, c) if c == 'Generator': fix_i = fix_i.difference(n.generators.query('committable').index) if fix_i.empty: return nominal_fix = n.df(c)[nominal_attrs[c]][fix_i] min_pu, max_pu = get_bounds_pu(n, c, sns, fix_i, attr) lower = min_pu.mul(nominal_fix) upper = max_pu.mul(nominal_fix) axes = [sns, fix_i] dispatch = define_variables(n, -inf, inf, c, attr, axes=axes, spec='non_ext') dispatch = linexpr((1, dispatch)) define_constraints(n, dispatch, '>=', lower, c, 'mu_lower', spec='non_ext') define_constraints(n, dispatch, '<=', upper, c, 'mu_upper', spec='non_ext') def define_dispatch_for_extendable_constraints(n, sns, c, attr): """ Sets power dispatch constraints for extendable devices for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' """ ext_i = get_extendable_i(n, c) if ext_i.empty: return min_pu, max_pu = get_bounds_pu(n, c, sns, ext_i, attr) operational_ext_v = get_var(n, c, attr)[ext_i] nominal_v = get_var(n, c, nominal_attrs[c])[ext_i] rhs = 0 lhs, *axes = linexpr((max_pu, nominal_v), (-1, operational_ext_v), return_axes=True) define_constraints(n, lhs, '>=', rhs, c, 'mu_upper', axes=axes, spec=attr) lhs, *axes = linexpr((min_pu, nominal_v), (-1, operational_ext_v), return_axes=True) define_constraints(n, lhs, '<=', rhs, c, 'mu_lower', axes=axes, spec=attr) def define_fixed_variable_constraints(n, sns, c, attr, pnl=True): """ Sets constraints for fixing variables of a given component and attribute to the corresponding values in n.df(c)[attr + '_set'] if pnl is True, or n.pnl(c)[attr + '_set'] Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' pnl : bool, default True Whether variable which should be fixed is time-dependent """ if pnl: if attr + '_set' not in n.pnl(c): return fix = n.pnl(c)[attr + '_set'].unstack().dropna() if fix.empty: return lhs = linexpr((1, get_var(n, c, attr).unstack()[fix.index]), as_pandas=False) constraints = write_constraint(n, lhs, '=', fix).unstack().T else: if attr + '_set' not in n.df(c): return fix = n.df(c)[attr + '_set'].dropna() if fix.empty: return lhs = linexpr((1, get_var(n, c, attr)[fix.index]), as_pandas=False) constraints = write_constraint(n, lhs, '=', fix) set_conref(n, constraints, c, f'mu_{attr}_set') def define_generator_status_variables(n, snapshots): com_i = n.generators.query('committable').index ext_i = get_extendable_i(n, 'Generator') if not (ext_i.intersection(com_i)).empty: logger.warning("The following generators have both investment optimisation" f" and unit commitment:\n\n\t{', '.join((ext_i.intersection(com_i)))}\n\nCurrently PyPSA cannot " "do both these functions, so PyPSA is choosing investment optimisation " "for these generators.") com_i = com_i.difference(ext_i) if com_i.empty: return define_binaries(n, (snapshots, com_i), 'Generator', 'status') def define_committable_generator_constraints(n, snapshots): c, attr = 'Generator', 'status' com_i = n.df(c).query('committable and not p_nom_extendable').index if com_i.empty: return nominal = n.df(c)[nominal_attrs[c]][com_i] min_pu, max_pu = get_bounds_pu(n, c, snapshots, com_i, 'p') lower = min_pu.mul(nominal) upper = max_pu.mul(nominal) status = get_var(n, c, attr) p = get_var(n, c, 'p')[com_i] lhs = linexpr((lower, status), (-1, p)) define_constraints(n, lhs, '<=', 0, 'Generators', 'committable_lb') lhs = linexpr((upper, status), (-1, p)) define_constraints(n, lhs, '>=', 0, 'Generators', 'committable_ub') def define_ramp_limit_constraints(n, sns): """ Defines ramp limits for generators with valid ramplimit """ c = 'Generator' rup_i = n.df(c).query('ramp_limit_up == ramp_limit_up').index rdown_i = n.df(c).query('ramp_limit_down == ramp_limit_down').index if rup_i.empty & rdown_i.empty: return fix_i = get_non_extendable_i(n, c) ext_i = get_extendable_i(n, c) com_i = n.df(c).query('committable').index.difference(ext_i) p = get_var(n, c, 'p').loc[sns[1:]] p_prev = get_var(n, c, 'p').shift(1).loc[sns[1:]] # fix up gens_i = rup_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') define_constraints(n, lhs, '<=', rhs, c, 'mu_ramp_limit_up', spec='nonext.') # ext up gens_i = rup_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_up'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (-limit_pu, p_nom)) define_constraints(n, lhs, '<=', 0, c, 'mu_ramp_limit_up', spec='ext.') # com up gens_i = rup_i.intersection(com_i) if not gens_i.empty: limit_start = n.df(c).loc[gens_i].eval('ramp_limit_start_up * p_nom') limit_up = n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') status = get_var(n, c, 'status').loc[sns[1:], gens_i] status_prev = get_var(n, c, 'status').shift(1).loc[sns[1:], gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_start - limit_up, status_prev), (- limit_start, status)) define_constraints(n, lhs, '<=', 0, c, 'mu_ramp_limit_up', spec='com.') # fix down gens_i = rdown_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = n.df(c).loc[gens_i].eval('-1 * ramp_limit_down * p_nom') define_constraints(n, lhs, '>=', rhs, c, 'mu_ramp_limit_down', spec='nonext.') # ext down gens_i = rdown_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_down'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_pu, p_nom)) define_constraints(n, lhs, '>=', 0, c, 'mu_ramp_limit_down', spec='ext.') # com down gens_i = rdown_i.intersection(com_i) if not gens_i.empty: limit_shut = n.df(c).loc[gens_i].eval('ramp_limit_shut_down * p_nom') limit_down = n.df(c).loc[gens_i].eval('ramp_limit_down * p_nom') status = get_var(n, c, 'status').loc[sns[1:], gens_i] status_prev = get_var(n, c, 'status').shift(1).loc[sns[1:], gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_down - limit_shut, status), (limit_shut, status_prev)) define_constraints(n, lhs, '>=', 0, c, 'mu_ramp_limit_down', spec='com.') def define_nominal_constraints_per_bus_carrier(n, sns): for carrier in n.carriers.index: for bound, sense in [("max", "<="), ("min", ">=")]: col = f'nom_{bound}_{carrier}' if col not in n.buses.columns: continue rhs = n.buses[col].dropna() lhs = pd.Series('', rhs.index) for c, attr in nominal_attrs.items(): if c not in n.one_port_components: continue attr = nominal_attrs[c] if (c, attr) not in n.variables.index: continue nominals = get_var(n, c, attr)[n.df(c).carrier == carrier] if nominals.empty: continue per_bus = linexpr((1, nominals)).groupby(n.df(c).bus).sum() lhs += per_bus.reindex(lhs.index, fill_value='') if bound == 'max': lhs = lhs[lhs != ''] rhs = rhs.reindex(lhs.index) else: assert (lhs != '').all(), ( f'No extendable components of carrier {carrier} on bus ' f'{list(lhs[lhs == ""].index)}') define_constraints(n, lhs, sense, rhs, 'Bus', 'mu_' + col) def define_nodal_balance_constraints(n, sns): """ Defines nodal balance constraint. """ def bus_injection(c, attr, groupcol='bus', sign=1): # additional sign only necessary for branches in reverse direction if 'sign' in n.df(c): sign = sign * n.df(c).sign expr = linexpr((sign, get_var(n, c, attr))).rename(columns=n.df(c)[groupcol]) # drop empty bus2, bus3 if multiline link if c == 'Link': expr.drop(columns='', errors='ignore', inplace=True) return expr # one might reduce this a bit by using n.branches and lookup args = [['Generator', 'p'], ['Store', 'p'], ['StorageUnit', 'p_dispatch'], ['StorageUnit', 'p_store', 'bus', -1], ['Line', 's', 'bus0', -1], ['Line', 's', 'bus1', 1], ['Transformer', 's', 'bus0', -1], ['Transformer', 's', 'bus1', 1], ['Link', 'p', 'bus0', -1], ['Link', 'p', 'bus1', get_as_dense(n, 'Link', 'efficiency', sns)]] args = [arg for arg in args if not n.df(arg[0]).empty] for i in additional_linkports(n): eff = get_as_dense(n, 'Link', f'efficiency{i}', sns) args.append(['Link', 'p', f'bus{i}', eff]) kwargs = dict(numeric_only=False) if pd_version >= "1.3" else {} lhs = (pd.concat([bus_injection(*arg) for arg in args], axis=1) .groupby(axis=1, level=0) .sum(**kwargs) .reindex(columns=n.buses.index, fill_value='')) sense = '=' rhs = ((- get_as_dense(n, 'Load', 'p_set', sns) * n.loads.sign) .groupby(n.loads.bus, axis=1).sum() .reindex(columns=n.buses.index, fill_value=0)) define_constraints(n, lhs, sense, rhs, 'Bus', 'marginal_price') def define_kirchhoff_constraints(n, sns): """ Defines Kirchhoff voltage constraints """ comps = n.passive_branch_components & set(n.variables.index.levels[0]) if len(comps) == 0: return branch_vars = pd.concat({c:get_var(n, c, 's') for c in comps}, axis=1) def cycle_flow(ds): ds = ds[lambda ds: ds!=0.].dropna() vals = linexpr((ds, branch_vars[ds.index]), as_pandas=False) return vals.sum(1) constraints = [] for sub in n.sub_networks.obj: branches = sub.branches() C = pd.DataFrame(sub.C.todense(), index=branches.index) if C.empty: continue carrier = n.sub_networks.carrier[sub.name] weightings = branches.x_pu_eff if carrier == 'AC' else branches.r_pu_eff C_weighted = 1e5 * C.mul(weightings, axis=0) cycle_sum = C_weighted.apply(cycle_flow) cycle_sum.index = sns con = write_constraint(n, cycle_sum, '=', 0) constraints.append(con) if len(constraints) == 0: return constraints = pd.concat(constraints, axis=1, ignore_index=True) set_conref(n, constraints, 'SubNetwork', 'mu_kirchhoff_voltage_law') def define_storage_unit_constraints(n, sns): """ Defines state of charge (soc) constraints for storage units. In principal the constraints states: previous_soc + p_store - p_dispatch + inflow - spill == soc """ sus_i = n.storage_units.index if sus_i.empty: return c = 'StorageUnit' # spillage upper = get_as_dense(n, c, 'inflow', sns).loc[:, lambda df: df.max() > 0] spill = write_bound(n, 0, upper) set_varref(n, spill, 'StorageUnit', 'spill') eh = expand_series(n.snapshot_weightings.stores[sns], sus_i) #elapsed hours eff_stand = expand_series(1-n.df(c).standing_loss, sns).T.pow(eh) eff_dispatch = expand_series(n.df(c).efficiency_dispatch, sns).T eff_store = expand_series(n.df(c).efficiency_store, sns).T soc = get_var(n, c, 'state_of_charge') cyclic_i = n.df(c).query('cyclic_state_of_charge').index noncyclic_i = n.df(c).query('~cyclic_state_of_charge').index prev_soc_cyclic = soc.shift().fillna(soc.loc[sns[-1]]) coeff_var = [(-1, soc), (-1/eff_dispatch * eh, get_var(n, c, 'p_dispatch')), (eff_store * eh, get_var(n, c, 'p_store'))] lhs, *axes = linexpr(*coeff_var, return_axes=True) def masked_term(coeff, var, cols): return linexpr((coeff[cols], var[cols]))\ .reindex(index=axes[0], columns=axes[1], fill_value='').values if ('StorageUnit', 'spill') in n.variables.index: lhs += masked_term(-eh, get_var(n, c, 'spill'), spill.columns) lhs += masked_term(eff_stand, prev_soc_cyclic, cyclic_i) lhs += masked_term(eff_stand.loc[sns[1:]], soc.shift().loc[sns[1:]], noncyclic_i) rhs = -get_as_dense(n, c, 'inflow', sns).mul(eh) rhs.loc[sns[0], noncyclic_i] -= n.df(c).state_of_charge_initial[noncyclic_i] define_constraints(n, lhs, '==', rhs, c, 'mu_state_of_charge') def define_store_constraints(n, sns): """ Defines energy balance constraints for stores. In principal this states: previous_e - p == e """ stores_i = n.stores.index if stores_i.empty: return c = 'Store' variables = write_bound(n, -inf, inf, axes=[sns, stores_i]) set_varref(n, variables, c, 'p') eh = expand_series(n.snapshot_weightings.stores[sns], stores_i) #elapsed hours eff_stand = expand_series(1-n.df(c).standing_loss, sns).T.pow(eh) e = get_var(n, c, 'e') cyclic_i = n.df(c).query('e_cyclic').index noncyclic_i = n.df(c).query('~e_cyclic').index previous_e_cyclic = e.shift().fillna(e.loc[sns[-1]]) coeff_var = [(-eh, get_var(n, c, 'p')), (-1, e)] lhs, *axes = linexpr(*coeff_var, return_axes=True) def masked_term(coeff, var, cols): return linexpr((coeff[cols], var[cols]))\ .reindex(index=axes[0], columns=axes[1], fill_value='').values lhs += masked_term(eff_stand, previous_e_cyclic, cyclic_i) lhs += masked_term(eff_stand.loc[sns[1:]], e.shift().loc[sns[1:]], noncyclic_i) rhs = pd.DataFrame(0, sns, stores_i) rhs.loc[sns[0], noncyclic_i] -= n.df(c)['e_initial'][noncyclic_i] define_constraints(n, lhs, '==', rhs, c, 'mu_state_of_charge') def define_global_constraints(n, sns): """ Defines global constraints for the optimization. Possible types are 1. primary_energy Use this to constraint the byproducts of primary energy sources as CO2 2. transmission_volume_expansion_limit Use this to set a limit for line volume expansion. Possible carriers are 'AC' and 'DC' 3. transmission_expansion_cost_limit Use this to set a limit for line expansion costs. Possible carriers are 'AC' and 'DC' """ glcs = n.global_constraints.query('type == "primary_energy"') for name, glc in glcs.iterrows(): rhs = glc.constant lhs = '' carattr = glc.carrier_attribute emissions = n.carriers.query(f'{carattr} != 0')[carattr] if emissions.empty: continue # generators gens = n.generators.query('carrier in @emissions.index') if not gens.empty: em_pu = gens.carrier.map(emissions)/gens.efficiency em_pu = n.snapshot_weightings.generators[sns].to_frame('weightings') @\ em_pu.to_frame('weightings').T vals = linexpr((em_pu, get_var(n, 'Generator', 'p')[gens.index]), as_pandas=False) lhs += join_exprs(vals) # storage units sus = n.storage_units.query('carrier in @emissions.index and ' 'not cyclic_state_of_charge') sus_i = sus.index if not sus.empty: coeff_val = (-sus.carrier.map(emissions), get_var(n, 'StorageUnit', 'state_of_charge').loc[sns[-1], sus_i]) vals = linexpr(coeff_val, as_pandas=False) lhs = lhs + '\n' + join_exprs(vals) rhs -= sus.carrier.map(emissions) @ sus.state_of_charge_initial # stores (copy to avoid over-writing existing carrier attribute) stores = n.stores.copy() stores['carrier'] = stores.bus.map(n.buses.carrier) stores = stores.query('carrier in @emissions.index and not e_cyclic') if not stores.empty: coeff_val = (-stores.carrier.map(emissions), get_var(n, 'Store', 'e') .loc[sns[-1], stores.index]) vals = linexpr(coeff_val, as_pandas=False) lhs = lhs + '\n' + join_exprs(vals) rhs -= stores.carrier.map(emissions) @ stores.e_initial con = write_constraint(n, lhs, glc.sense, rhs, axes=pd.Index([name])) set_conref(n, con, 'GlobalConstraint', 'mu', name) # for the next two to we need a line carrier if len(n.global_constraints) > len(glcs): n.lines['carrier'] = n.lines.bus0.map(n.buses.carrier) # expansion limits glcs = n.global_constraints.query('type == ' '"transmission_volume_expansion_limit"') substr = lambda s: re.sub('[\[\]\(\)]', '', s) for name, glc in glcs.iterrows(): car = [substr(c.strip()) for c in glc.carrier_attribute.split(',')] lhs = '' for c, attr in (('Line', 's_nom'), ('Link', 'p_nom')): if n.df(c).empty: continue ext_i = n.df(c).query(f'carrier in @car and {attr}_extendable').index if ext_i.empty: continue v = linexpr((n.df(c).length[ext_i], get_var(n, c, attr)[ext_i]), as_pandas=False) lhs += '\n' + join_exprs(v) if lhs == '': continue sense = glc.sense rhs = glc.constant con = write_constraint(n, lhs, sense, rhs, axes=pd.Index([name])) set_conref(n, con, 'GlobalConstraint', 'mu', name) # expansion cost limits glcs = n.global_constraints.query('type == ' '"transmission_expansion_cost_limit"') for name, glc in glcs.iterrows(): car = [substr(c.strip()) for c in glc.carrier_attribute.split(',')] lhs = '' for c, attr in (('Line', 's_nom'), ('Link', 'p_nom')): ext_i = n.df(c).query(f'carrier in @car and {attr}_extendable').index if ext_i.empty: continue v = linexpr((n.df(c).capital_cost[ext_i], get_var(n, c, attr)[ext_i]), as_pandas=False) lhs += '\n' + join_exprs(v) if lhs == '': continue sense = glc.sense rhs = glc.constant con = write_constraint(n, lhs, sense, rhs, axes=pd.Index([name])) set_conref(n, con, 'GlobalConstraint', 'mu', name) def define_objective(n, sns): """ Defines and writes out the objective function """ # constant for already done investment nom_attr = nominal_attrs.items() constant = 0 for c, attr in nom_attr: ext_i = get_extendable_i(n, c) constant += n.df(c)[attr][ext_i] @ n.df(c).capital_cost[ext_i] object_const = write_bound(n, constant, constant) write_objective(n, linexpr((-1, object_const), as_pandas=False)[0]) n.objective_constant = constant for c, attr in lookup.query('marginal_cost').index: cost = (get_as_dense(n, c, 'marginal_cost', sns) .loc[:, lambda ds: (ds != 0).all()] .mul(n.snapshot_weightings.objective[sns], axis=0)) if cost.empty: continue terms = linexpr((cost, get_var(n, c, attr).loc[sns, cost.columns])) write_objective(n, terms) # investment for c, attr in nominal_attrs.items(): cost = n.df(c)['capital_cost'][get_extendable_i(n, c)] if cost.empty: continue terms = linexpr((cost, get_var(n, c, attr)[cost.index])) write_objective(n, terms) def prepare_lopf(n, snapshots=None, keep_files=False, skip_objective=False, extra_functionality=None, solver_dir=None): """ Sets up the linear problem and writes it out to a lp file. Returns ------- Tuple (fdp, problem_fn) indicating the file descriptor and the file name of the lp file """ n._xCounter, n._cCounter = 1, 1 n.vars, n.cons = Dict(), Dict() cols = ['component', 'name', 'pnl', 'specification'] n.variables = pd.DataFrame(columns=cols).set_index(cols[:2]) n.constraints = pd.DataFrame(columns=cols).set_index(cols[:2]) snapshots = n.snapshots if snapshots is None else snapshots start = time.time() tmpkwargs = dict(text=True, dir=solver_dir) # mkstemp(suffix, prefix, **tmpkwargs) fdo, objective_fn = mkstemp('.txt', 'pypsa-objectve-', **tmpkwargs) fdc, constraints_fn = mkstemp('.txt', 'pypsa-constraints-', **tmpkwargs) fdb, bounds_fn = mkstemp('.txt', 'pypsa-bounds-', **tmpkwargs) fdi, binaries_fn = mkstemp('.txt', 'pypsa-binaries-', **tmpkwargs) fdp, problem_fn = mkstemp('.lp', 'pypsa-problem-', **tmpkwargs) n.objective_f = open(objective_fn, mode='w') n.constraints_f = open(constraints_fn, mode='w') n.bounds_f = open(bounds_fn, mode='w') n.binaries_f = open(binaries_fn, mode='w') n.objective_f.write('\* LOPF *\n\nmin\nobj:\n') n.constraints_f.write("\n\ns.t.\n\n") n.bounds_f.write("\nbounds\n") n.binaries_f.write("\nbinary\n") for c, attr in lookup.query('nominal and not handle_separately').index: define_nominal_for_extendable_variables(n, c, attr) # define_fixed_variable_constraints(n, snapshots, c, attr, pnl=False) for c, attr in lookup.query('not nominal and not handle_separately').index: define_dispatch_for_non_extendable_variables(n, snapshots, c, attr) define_dispatch_for_extendable_and_committable_variables(n, snapshots, c, attr) align_with_static_component(n, c, attr) define_dispatch_for_extendable_constraints(n, snapshots, c, attr) # define_fixed_variable_constraints(n, snapshots, c, attr) define_generator_status_variables(n, snapshots) define_nominal_constraints_per_bus_carrier(n, snapshots) # consider only state_of_charge_set for the moment define_fixed_variable_constraints(n, snapshots, 'StorageUnit', 'state_of_charge') define_fixed_variable_constraints(n, snapshots, 'Store', 'e') define_committable_generator_constraints(n, snapshots) define_ramp_limit_constraints(n, snapshots) define_storage_unit_constraints(n, snapshots) define_store_constraints(n, snapshots) define_kirchhoff_constraints(n, snapshots) define_nodal_balance_constraints(n, snapshots) define_global_constraints(n, snapshots) if skip_objective: logger.info("The argument `skip_objective` is set to True. Expecting a " "custom objective to be build via `extra_functionality`.") else: define_objective(n, snapshots) if extra_functionality is not None: extra_functionality(n, snapshots) n.binaries_f.write("end\n") # explicit closing with file descriptor is necessary for windows machines for f, fd in (('bounds_f', fdb), ('constraints_f', fdc), ('objective_f', fdo), ('binaries_f', fdi)): getattr(n, f).close(); delattr(n, f); os.close(fd) # concatenate files with open(problem_fn, 'wb') as wfd: for f in [objective_fn, constraints_fn, bounds_fn, binaries_fn]: with open(f,'rb') as fd: shutil.copyfileobj(fd, wfd) if not keep_files: os.remove(f) logger.info(f'Total preparation time: {round(time.time()-start, 2)}s') return fdp, problem_fn def assign_solution(n, sns, variables_sol, constraints_dual, keep_references=False, keep_shadowprices=None): """ Helper function. Assigns the solution of a succesful optimization to the network. """ def set_from_frame(pnl, attr, df): if attr not in pnl: #use this for subnetworks_t pnl[attr] = df.reindex(n.snapshots) elif pnl[attr].empty: pnl[attr] = df.reindex(n.snapshots) else: pnl[attr].loc[sns, :] = df.reindex(columns=pnl[attr].columns) pop = not keep_references def map_solution(c, attr): variables = get_var(n, c, attr, pop=pop) predefined = True if (c, attr) not in lookup.index: predefined = False n.sols[c] = n.sols[c] if c in n.sols else Dict(df=pd.DataFrame(), pnl={}) n.solutions.at[(c, attr), 'in_comp'] = predefined if isinstance(variables, pd.DataFrame): # case that variables are timedependent n.solutions.at[(c, attr), 'pnl'] = True pnl = n.pnl(c) if predefined else n.sols[c].pnl values = variables.stack().map(variables_sol).unstack() if c in n.passive_branch_components and attr == "s": set_from_frame(pnl, 'p0', values) set_from_frame(pnl, 'p1', - values) elif c == 'Link' and attr == "p": set_from_frame(pnl, 'p0', values) for i in ['1'] + additional_linkports(n): i_eff = '' if i == '1' else i eff = get_as_dense(n, 'Link', f'efficiency{i_eff}', sns) set_from_frame(pnl, f'p{i}', - values * eff) pnl[f'p{i}'].loc[sns, n.links.index[n.links[f'bus{i}'] == ""]] = \ n.component_attrs['Link'].loc[f'p{i}','default'] else: set_from_frame(pnl, attr, values) else: # case that variables are static n.solutions.at[(c, attr), 'pnl'] = False sol = variables.map(variables_sol) if predefined: non_ext = n.df(c)[attr] n.df(c)[attr + '_opt'] = sol.reindex(non_ext.index).fillna(non_ext) else: n.sols[c].df[attr] = sol n.sols = Dict() n.solutions = pd.DataFrame(index=n.variables.index, columns=['in_comp', 'pnl']) for c, attr in n.variables.index: map_solution(c, attr) # if nominal capacity was no variable set optimal value to nominal for c, attr in lookup.query('nominal').index.difference(n.variables.index): n.df(c)[attr+'_opt'] = n.df(c)[attr] # recalculate storageunit net dispatch if not n.df('StorageUnit').empty: c = 'StorageUnit' n.pnl(c)['p'] = n.pnl(c)['p_dispatch'] - n.pnl(c)['p_store'] # duals if keep_shadowprices == False: keep_shadowprices = [] sp = n.constraints.index if isinstance(keep_shadowprices, list): sp = sp[sp.isin(keep_shadowprices, level=0)] def map_dual(c, attr): # If c is a pypsa component name the dual is stored at n.pnl(c) # or n.df(c). For the second case the index of the constraints have to # be a subset of n.df(c).index otherwise the dual is stored at # n.duals[c].df constraints = get_con(n, c, attr, pop=pop) is_pnl = isinstance(constraints, pd.DataFrame) # TODO: setting the sign is not very clear sign = 1 if 'upper' in attr or attr == 'marginal_price' else -1 n.dualvalues.at[(c, attr), 'pnl'] = is_pnl to_component = c in n.all_components if is_pnl: n.dualvalues.at[(c, attr), 'in_comp'] = to_component duals = constraints.stack().map(sign * constraints_dual).unstack() if c not in n.duals and not to_component: n.duals[c] = Dict(df=pd.DataFrame(), pnl={}) pnl = n.pnl(c) if to_component else n.duals[c].pnl set_from_frame(pnl, attr, duals) else: # here to_component can change duals = constraints.map(sign * constraints_dual) if to_component: to_component = (duals.index.isin(n.df(c).index).all()) n.dualvalues.at[(c, attr), 'in_comp'] = to_component if c not in n.duals and not to_component: n.duals[c] = Dict(df=pd.DataFrame(), pnl={}) df = n.df(c) if to_component else n.duals[c].df df[attr] = duals n.duals = Dict() n.dualvalues = pd.DataFrame(index=sp, columns=['in_comp', 'pnl']) # extract shadow prices attached to components for c, attr in sp: map_dual(c, attr) # correct prices for snapshot weightings n.buses_t.marginal_price.loc[sns] = ( n.buses_t.marginal_price.loc[sns].divide( n.snapshot_weightings.objective.loc[sns],axis=0)) # discard remaining if wanted if not keep_references: for c, attr in n.constraints.index.difference(sp): get_con(n, c, attr, pop) # load if len(n.loads): set_from_frame(n.pnl('Load'), 'p', get_as_dense(n, 'Load', 'p_set', sns)) # clean up vars and cons for c in list(n.vars): if n.vars[c].df.empty and n.vars[c].pnl == {}: n.vars.pop(c) for c in list(n.cons): if n.cons[c].df.empty and n.cons[c].pnl == {}: n.cons.pop(c) # recalculate injection ca = [('Generator', 'p', 'bus' ), ('Store', 'p', 'bus'), ('Load', 'p', 'bus'), ('StorageUnit', 'p', 'bus'), ('Link', 'p0', 'bus0'), ('Link', 'p1', 'bus1')] for i in additional_linkports(n): ca.append(('Link', f'p{i}', f'bus{i}')) sign = lambda c: n.df(c).sign if 'sign' in n.df(c) else -1 #sign for 'Link' n.buses_t.p = pd.concat( [n.pnl(c)[attr].mul(sign(c)).rename(columns=n.df(c)[group]) for c, attr, group in ca], axis=1).groupby(level=0, axis=1).sum()\ .reindex(columns=n.buses.index, fill_value=0) def v_ang_for_(sub): buses_i = sub.buses_o if len(buses_i) == 1: return pd.DataFrame(0, index=sns, columns=buses_i) sub.calculate_B_H(skip_pre=True) Z = pd.DataFrame(np.linalg.pinv((sub.B).todense()), buses_i, buses_i) Z -= Z[sub.slack_bus] return n.buses_t.p.reindex(columns=buses_i) @ Z n.buses_t.v_ang = (pd.concat([v_ang_for_(sub) for sub in n.sub_networks.obj], axis=1) .reindex(columns=n.buses.index, fill_value=0)) def network_lopf(n, snapshots=None, solver_name="cbc", solver_logfile=None, extra_functionality=None, skip_objective=False, skip_pre=False, extra_postprocessing=None, formulation="kirchhoff", keep_references=False, keep_files=False, keep_shadowprices=['Bus', 'Line', 'Transformer', 'Link', 'GlobalConstraint'], solver_options=None, warmstart=False, store_basis=False, solver_dir=None): """ Linear optimal power flow for a group of snapshots. Parameters ---------- snapshots : list or index slice A list of snapshots to optimise, must be a subset of network.snapshots, defaults to network.snapshots solver_name : string Must be a solver name that pyomo recognises and that is installed, e.g. "glpk", "gurobi" solver_logfile : None|string If not None, sets the logfile option of the solver. solver_options : dictionary A dictionary with additional options that get passed to the solver. (e.g. {'threads':2} tells gurobi to use only 2 cpus) solver_dir : str, default None Path to directory where necessary files are written, default None leads to the default temporary directory used by tempfile.mkstemp(). keep_files : bool, default False Keep the files that pyomo constructs from OPF problem construction, e.g. .lp file - useful for debugging formulation : string Formulation of the linear power flow equations to use; must be one of ["angles","cycles","kirchhoff","ptdf"] extra_functionality : callable function This function must take two arguments `extra_functionality(network,snapshots)` and is called after the model building is complete, but before it is sent to the solver. It allows the user to add/change constraints and add/change the objective function. skip_pre : bool, default False Skip the preliminary steps of computing topology. skip_objective : bool, default False Skip writing the default objective function. If False, a custom objective has to be defined via extra_functionality. extra_postprocessing : callable function This function must take three arguments `extra_postprocessing(network,snapshots,duals)` and is called after the model has solved and the results are extracted. It allows the user to extract further information about the solution, such as additional shadow prices. warmstart : bool or string, default False Use this to warmstart the optimization. Pass a string which gives the path to the basis file. If set to True, a path to a basis file must be given in network.basis_fn. store_basis : bool, default False Whether to store the basis of the optimization results. If True, the path to the basis file is saved in network.basis_fn. Note that a basis can only be stored if simplex, dual-simplex, or barrier *with* crossover is used for solving. keep_references : bool, default False Keep the references of variable and constraint names withing the network. These can be looked up in `n.vars` and `n.cons` after solving. keep_shadowprices : bool or list of component names Keep shadow prices for all constraints, if set to True. If a list is passed the shadow prices will only be parsed for those constraint names. Defaults to ['Bus', 'Line', 'GlobalConstraint']. After solving, the shadow prices can be retrieved using :func:`pypsa.linopt.get_dual` with corresponding name """ supported_solvers = ["cbc", "gurobi", 'glpk', 'cplex', 'xpress'] if solver_name not in supported_solvers: raise NotImplementedError(f"Solver {solver_name} not in " f"supported solvers: {supported_solvers}") if formulation != "kirchhoff": raise NotImplementedError("Only the kirchhoff formulation is supported") if n.generators.committable.any(): logger.warning("Unit commitment is not yet completely implemented for " "optimising without pyomo. Thus minimum up time, minimum down time, " "start up costs, shut down costs will be ignored.") snapshots = _as_snapshots(n, snapshots) if not skip_pre: n.calculate_dependent_values() n.determine_network_topology() logger.info("Prepare linear problem") fdp, problem_fn = prepare_lopf(n, snapshots, keep_files, skip_objective, extra_functionality, solver_dir) fds, solution_fn = mkstemp(prefix='pypsa-solve', suffix='.sol', dir=solver_dir) if warmstart == True: warmstart = n.basis_fn logger.info("Solve linear problem using warmstart") else: logger.info(f"Solve linear problem using {solver_name.title()} solver") solve = eval(f'run_and_read_{solver_name}') res = solve(n, problem_fn, solution_fn, solver_logfile, solver_options, warmstart, store_basis) status, termination_condition, variables_sol, constraints_dual, obj = res if not keep_files: os.close(fdp); os.remove(problem_fn) os.close(fds); os.remove(solution_fn) if status == "ok" and termination_condition == "optimal": logger.info('Optimization successful. Objective value: {:.2e}'.format(obj)) elif status == "warning" and termination_condition == "suboptimal": logger.warning('Optimization solution is sub-optimal. ' 'Objective value: {:.2e}'.format(obj)) else: logger.warning(f'Optimization failed with status {status} and ' f'termination condition {termination_condition}') return status, termination_condition n.objective = obj assign_solution(n, snapshots, variables_sol, constraints_dual, keep_references=keep_references, keep_shadowprices=keep_shadowprices) gc.collect() return status,termination_condition def ilopf(n, snapshots=None, msq_threshold=0.05, min_iterations=1, max_iterations=100, track_iterations=False, **kwargs): ''' Iterative linear optimization updating the line parameters for passive AC and DC lines. This is helpful when line expansion is enabled. After each sucessful solving, line impedances and line resistance are recalculated based on the optimization result. If warmstart is possible, it uses the result from the previous iteration to fasten the optimization. Parameters ---------- snapshots : list or index slice A list of snapshots to optimise, must be a subset of network.snapshots, defaults to network.snapshots msq_threshold: float, default 0.05 Maximal mean square difference between optimized line capacity of the current and the previous iteration. As soon as this threshold is undercut, and the number of iterations is bigger than 'min_iterations' the iterative optimization stops min_iterations : integer, default 1 Minimal number of iteration to run regardless whether the msq_threshold is already undercut max_iterations : integer, default 100 Maximal number of iterations to run regardless whether msq_threshold is already undercut track_iterations: bool, default False If True, the intermediate branch capacities and values of the objective function are recorded for each iteration. The values of iteration 0 represent the initial state. **kwargs Keyword arguments of the lopf function which runs at each iteration ''' n.lines['carrier'] = n.lines.bus0.map(n.buses.carrier) ext_i = get_extendable_i(n, 'Line') typed_i = n.lines.query('type != ""').index ext_untyped_i = ext_i.difference(typed_i) ext_typed_i = ext_i.intersection(typed_i) base_s_nom = (np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) * n.lines.bus0.map(n.buses.v_nom)) n.lines.loc[ext_typed_i, 'num_parallel'] = (n.lines.s_nom/base_s_nom)[ext_typed_i] def update_line_params(n, s_nom_prev): factor = n.lines.s_nom_opt / s_nom_prev for attr, carrier in (('x', 'AC'), ('r', 'DC')): ln_i = (n.lines.query('carrier == @carrier').index.intersection(ext_untyped_i)) n.lines.loc[ln_i, attr] /= factor[ln_i] ln_i = ext_i.intersection(typed_i) n.lines.loc[ln_i, 'num_parallel'] = (n.lines.s_nom_opt/base_s_nom)[ln_i] def msq_diff(n, s_nom_prev): lines_err = np.sqrt((s_nom_prev - n.lines.s_nom_opt).pow(2).mean()) / \ n.lines['s_nom_opt'].mean() logger.info(f"Mean square difference after iteration {iteration} is " f"{lines_err}") return lines_err def save_optimal_capacities(n, iteration, status): for c, attr in pd.Series(nominal_attrs)[n.branch_components].items(): n.df(c)[f'{attr}_opt_{iteration}'] = n.df(c)[f'{attr}_opt'] setattr(n, f"status_{iteration}", status) setattr(n, f"objective_{iteration}", n.objective) n.iteration = iteration n.global_constraints = n.global_constraints.rename(columns={'mu': f'mu_{iteration}'}) if track_iterations: for c, attr in pd.Series(nominal_attrs)[n.branch_components].items(): n.df(c)[f'{attr}_opt_0'] = n.df(c)[f'{attr}'] iteration = 1 kwargs['store_basis'] = True diff = msq_threshold while diff >= msq_threshold or iteration < min_iterations: if iteration > max_iterations: logger.info(f'Iteration {iteration} beyond max_iterations ' f'{max_iterations}. Stopping ...') break s_nom_prev = n.lines.s_nom_opt.copy() if iteration else n.lines.s_nom.copy() kwargs['warmstart'] = bool(iteration and ('basis_fn' in n.__dir__())) status, termination_condition = network_lopf(n, snapshots, **kwargs) assert status == 'ok', (f'Optimization failed with status {status}' f'and termination {termination_condition}') if track_iterations: save_optimal_capacities(n, iteration, status) update_line_params(n, s_nom_prev) diff = msq_diff(n, s_nom_prev) iteration += 1 logger.info('Running last lopf with fixed branches (HVDC links and HVAC lines)') ext_dc_links_b = n.links.p_nom_extendable & (n.links.carrier == "DC") s_nom_orig = n.lines.s_nom.copy() p_nom_orig = n.links.p_nom.copy() n.lines.loc[ext_i, ['s_nom', 's_nom_extendable']] = n.lines.loc[ext_i, 's_nom_opt'], False n.links.loc[ext_dc_links_b, ["p_nom", "p_nom_extendable"]] = n.links.loc[ext_dc_links_b, "p_nom_opt"], False kwargs['warmstart'] = False network_lopf(n, snapshots, **kwargs) n.lines.loc[ext_i, ['s_nom', 's_nom_extendable']] = s_nom_orig.loc[ext_i], True n.links.loc[ext_dc_links_b, ['p_nom', 'p_nom_extendable']] = p_nom_orig.loc[ext_dc_links_b], True ## add costs of additional infrastructure to objective value of last iteration obj_links = n.links[ext_dc_links_b].eval("capital_cost * (p_nom_opt - p_nom_min)").sum() obj_lines = n.lines.eval("capital_cost * (s_nom_opt - s_nom_min)").sum() n.objective += obj_links + obj_lines n.objective_constant -= (obj_links + obj_lines)
gpl-3.0
pvlib/pvlib-python
pvlib/tests/iotools/test_crn.py
2
3259
import pandas as pd import numpy as np from numpy import dtype, nan import pytest from pvlib.iotools import crn from ..conftest import DATA_DIR, assert_frame_equal @pytest.fixture def columns(): return [ 'WBANNO', 'UTC_DATE', 'UTC_TIME', 'LST_DATE', 'LST_TIME', 'CRX_VN', 'longitude', 'latitude', 'temp_air', 'PRECIPITATION', 'ghi', 'ghi_flag', 'SURFACE_TEMPERATURE', 'ST_TYPE', 'ST_FLAG', 'relative_humidity', 'relative_humidity_flag', 'SOIL_MOISTURE_5', 'SOIL_TEMPERATURE_5', 'WETNESS', 'WET_FLAG', 'wind_speed', 'wind_speed_flag'] @pytest.fixture def dtypes(): return [ dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('O'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('float64'), dtype('int64'), dtype('float64'), dtype('O'), dtype('int64'), dtype('float64'), dtype('int64'), dtype('float64'), dtype('float64'), dtype('int64'), dtype('int64'), dtype('float64'), dtype('int64')] @pytest.fixture def testfile(): return DATA_DIR / 'CRNS0101-05-2019-AZ_Tucson_11_W.txt' @pytest.fixture def testfile_problems(): return DATA_DIR / 'CRN_with_problems.txt' def test_read_crn(testfile, columns, dtypes): index = pd.DatetimeIndex(['2019-01-01 16:10:00', '2019-01-01 16:15:00', '2019-01-01 16:20:00', '2019-01-01 16:25:00'], freq=None).tz_localize('UTC') values = np.array([ [53131, 20190101, 1610, 20190101, 910, 3, -111.17, 32.24, nan, 0.0, 296.0, 0, 4.4, 'C', 0, 90.0, 0, nan, nan, 24, 0, 0.78, 0], [53131, 20190101, 1615, 20190101, 915, 3, -111.17, 32.24, 3.3, 0.0, 183.0, 0, 4.0, 'C', 0, 87.0, 0, nan, nan, 1182, 0, 0.36, 0], [53131, 20190101, 1620, 20190101, 920, 3, -111.17, 32.24, 3.5, 0.0, 340.0, 0, 4.3, 'C', 0, 83.0, 0, nan, nan, 1183, 0, 0.53, 0], [53131, 20190101, 1625, 20190101, 925, 3, -111.17, 32.24, 4.0, 0.0, 393.0, 0, 4.8, 'C', 0, 81.0, 0, nan, nan, 1223, 0, 0.64, 0]]) expected = pd.DataFrame(values, columns=columns, index=index) for (col, _dtype) in zip(expected.columns, dtypes): expected[col] = expected[col].astype(_dtype) out = crn.read_crn(testfile) assert_frame_equal(out, expected) def test_read_crn_problems(testfile_problems, columns, dtypes): # GH1025 index = pd.DatetimeIndex(['2020-07-06 12:00:00', '2020-07-06 13:10:00'], freq=None).tz_localize('UTC') values = np.array([ [92821, 20200706, 1200, 20200706, 700, '3', -80.69, 28.62, 24.9, 0.0, 190.0, 0, 25.5, 'C', 0, 93.0, 0, nan, nan, 990, 0, 1.57, 0], [92821, 20200706, 1310, 20200706, 810, '2.623', -80.69, 28.62, 26.9, 0.0, 430.0, 0, 30.2, 'C', 0, 87.0, 0, nan, nan, 989, 0, 1.64, 0]]) expected = pd.DataFrame(values, columns=columns, index=index) for (col, _dtype) in zip(expected.columns, dtypes): expected[col] = expected[col].astype(_dtype) out = crn.read_crn(testfile_problems) assert_frame_equal(out, expected)
bsd-3-clause
kenji0x02/srcnn-from-scratch
core/resume_train_srcnn.py
1
1279
# coding: utf-8 from load_image import load_image import numpy as np import matplotlib.pyplot as plt from srcnn import SRCNN from common.trainer import Trainer (x_train, t_train), (x_test, t_test) = load_image() print('resume training...') start_epoch = 100 max_epochs = 50000 network = SRCNN(params={'f1': 9, 'f2': 1, 'f3': 5, 'n1': 64, 'n2': 32, 'channel': 3}, weight_init_std=0.01) start_epoch_file = "./result/params_epoch_" + "{0:06d}".format(start_epoch) + ".pkl" network.load_params(start_epoch_file) trainer = Trainer(network, x_train, t_train, x_test, t_test, epochs=max_epochs, mini_batch_size=50, optimizer='Adam', optimizer_param={'lr': 0.01}, evaluate_sample_num_per_epoch=50, start_epoch=start_epoch) trainer.train() # パラメータの保存 network.save_params("./result/srcnn_params.pkl") print("Saved Network Parameters!") # グラフの描画 markers = {'train': 'o', 'test': 's'} x = np.arange(max_epochs) plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2) plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2) plt.xlabel("epochs") plt.ylabel("PSNR") plt.legend(loc='lower right') plt.show()
mit
cancan101/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io_test.py
18
5832
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys # TODO: #6568 Remove this hack that makes dlopen() not crash. if hasattr(sys, 'getdlopenflags') and hasattr(sys, 'setdlopenflags'): import ctypes sys.setdlopenflags(sys.getdlopenflags() | ctypes.RTLD_GLOBAL) import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.test_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.test_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.test_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
apache-2.0
hainm/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
pb-pravin/data-science-from-scratch
code/recommender_systems.py
60
6291
from __future__ import division import math, random from collections import defaultdict, Counter from linear_algebra import dot users_interests = [ ["Hadoop", "Big Data", "HBase", "Java", "Spark", "Storm", "Cassandra"], ["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"], ["Python", "scikit-learn", "scipy", "numpy", "statsmodels", "pandas"], ["R", "Python", "statistics", "regression", "probability"], ["machine learning", "regression", "decision trees", "libsvm"], ["Python", "R", "Java", "C++", "Haskell", "programming languages"], ["statistics", "probability", "mathematics", "theory"], ["machine learning", "scikit-learn", "Mahout", "neural networks"], ["neural networks", "deep learning", "Big Data", "artificial intelligence"], ["Hadoop", "Java", "MapReduce", "Big Data"], ["statistics", "R", "statsmodels"], ["C++", "deep learning", "artificial intelligence", "probability"], ["pandas", "R", "Python"], ["databases", "HBase", "Postgres", "MySQL", "MongoDB"], ["libsvm", "regression", "support vector machines"] ] popular_interests = Counter(interest for user_interests in users_interests for interest in user_interests).most_common() def most_popular_new_interests(user_interests, max_results=5): suggestions = [(interest, frequency) for interest, frequency in popular_interests if interest not in user_interests] return suggestions[:max_results] # # user-based filtering # def cosine_similarity(v, w): return dot(v, w) / math.sqrt(dot(v, v) * dot(w, w)) unique_interests = sorted(list({ interest for user_interests in users_interests for interest in user_interests })) def make_user_interest_vector(user_interests): """given a list of interests, produce a vector whose i-th element is 1 if unique_interests[i] is in the list, 0 otherwise""" return [1 if interest in user_interests else 0 for interest in unique_interests] user_interest_matrix = map(make_user_interest_vector, users_interests) user_similarities = [[cosine_similarity(interest_vector_i, interest_vector_j) for interest_vector_j in user_interest_matrix] for interest_vector_i in user_interest_matrix] def most_similar_users_to(user_id): pairs = [(other_user_id, similarity) # find other for other_user_id, similarity in # users with enumerate(user_similarities[user_id]) # nonzero if user_id != other_user_id and similarity > 0] # similarity return sorted(pairs, # sort them key=lambda (_, similarity): similarity, # most similar reverse=True) # first def user_based_suggestions(user_id, include_current_interests=False): # sum up the similarities suggestions = defaultdict(float) for other_user_id, similarity in most_similar_users_to(user_id): for interest in users_interests[other_user_id]: suggestions[interest] += similarity # convert them to a sorted list suggestions = sorted(suggestions.items(), key=lambda (_, weight): weight, reverse=True) # and (maybe) exclude already-interests if include_current_interests: return suggestions else: return [(suggestion, weight) for suggestion, weight in suggestions if suggestion not in users_interests[user_id]] # # Item-Based Collaborative Filtering # interest_user_matrix = [[user_interest_vector[j] for user_interest_vector in user_interest_matrix] for j, _ in enumerate(unique_interests)] interest_similarities = [[cosine_similarity(user_vector_i, user_vector_j) for user_vector_j in interest_user_matrix] for user_vector_i in interest_user_matrix] def most_similar_interests_to(interest_id): similarities = interest_similarities[interest_id] pairs = [(unique_interests[other_interest_id], similarity) for other_interest_id, similarity in enumerate(similarities) if interest_id != other_interest_id and similarity > 0] return sorted(pairs, key=lambda (_, similarity): similarity, reverse=True) def item_based_suggestions(user_id, include_current_interests=False): suggestions = defaultdict(float) user_interest_vector = user_interest_matrix[user_id] for interest_id, is_interested in enumerate(user_interest_vector): if is_interested == 1: similar_interests = most_similar_interests_to(interest_id) for interest, similarity in similar_interests: suggestions[interest] += similarity suggestions = sorted(suggestions.items(), key=lambda (_, similarity): similarity, reverse=True) if include_current_interests: return suggestions else: return [(suggestion, weight) for suggestion, weight in suggestions if suggestion not in users_interests[user_id]] if __name__ == "__main__": print "Popular Interests" print popular_interests print print "Most Popular New Interests" print "already like:", ["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"] print most_popular_new_interests(["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"]) print print "already like:", ["R", "Python", "statistics", "regression", "probability"] print most_popular_new_interests(["R", "Python", "statistics", "regression", "probability"]) print print "User based similarity" print "most similar to 0" print most_similar_users_to(0) print "Suggestions for 0" print user_based_suggestions(0) print print "Item based similarity" print "most similar to 'Big Data'" print most_similar_interests_to(0) print print "suggestions for user 0" print item_based_suggestions(0)
unlicense
mailhexu/pyDFTutils
pyDFTutils/unfolding/unfolding/DDB_unfolder.py
1
7020
#!/usr/bin/env python import abipy.abilab as abilab import numpy as np from ase.build import bulk from ase.dft.kpoints import get_special_points, bandpath from pyDFTutils.unfolding.phonon_unfolder import phonon_unfolder from pyDFTutils.phonon.plotphon import plot_band_weight import matplotlib.pyplot as plt atomic_masses = np.array([ 1., 1.008, 4.002602, 6.94, 9.0121831, 10.81, 12.011, 14.007, 15.999, 18.99840316, 20.1797, 22.98976928, 24.305, 26.9815385, 28.085, 30.973762, 32.06, 35.45, 39.948, 39.0983, 40.078, 44.955908, 47.867, 50.9415, 51.9961, 54.938044, 55.845, 58.933194, 58.6934, 63.546, 65.38, 69.723, 72.63, 74.921595, 78.971, 79.904, 83.798, 85.4678, 87.62, 88.90584, 91.224, 92.90637, 95.95, 97.90721, 101.07, 102.9055, 106.42, 107.8682, 112.414, 114.818, 118.71, 121.76, 127.6, 126.90447, 131.293, 132.90545196, 137.327, 138.90547, 140.116, 140.90766, 144.242, 144.91276, 150.36, 151.964, 157.25, 158.92535, 162.5, 164.93033, 167.259, 168.93422, 173.054, 174.9668, 178.49, 180.94788, 183.84, 186.207, 190.23, 192.217, 195.084, 196.966569, 200.592, 204.38, 207.2, 208.9804, 208.98243, 209.98715, 222.01758, 223.01974, 226.02541, 227.02775, 232.0377, 231.03588, 238.02891, 237.04817, 244.06421, 243.06138, 247.07035, 247.07031, 251.07959, 252.083, 257.09511, 258.09843, 259.101, 262.11, 267.122, 268.126, 271.134, 270.133, 269.1338, 278.156, 281.165, 281.166, 285.177, 286.182, 289.19, 289.194, 293.204, 293.208, 294.214 ]) def kpath(): #DDB = abilab.abiopen('out_DDB') #struct = DDB.structure #atoms = DDB.structure.to_ase_atoms() atoms = bulk('Cu','fcc') points = get_special_points('fcc', atoms.cell, eps=0.01) GXW = [points[k] for k in 'GXWGL'] kpts, x, X = bandpath(GXW, atoms.cell, 700) names = ['$\Gamma$', 'X', 'W', '$\Gamma$', 'L'] return kpts, x, X, names, GXW def displacement_cart_to_evec(displ_cart, masses, scaled_positions, qpoint=None, add_phase=True): """ displ_cart: cartisien displacement. (atom1_x, atom1_y, atom1_z, atom2_x, ...) masses: masses of atoms. scaled_postions: scaled postions of atoms. qpoint: if phase needs to be added, qpoint must be given. add_phase: whether to add phase to the eigenvectors. """ if add_phase and qpoint is None: raise ValueError('qpoint must be given if adding phase is needed') m = np.sqrt(np.kron(masses,[1,1,1])) evec=displ_cart *m if add_phase: phase = [np.exp(-2j*np.pi*np.dot(pos,qpoint)) for pos in scaled_positions] phase = np.kron(phase,[1,1,1]) evec*=phase evec /= np.linalg.norm(evec) return evec def DDB_unfolder(DDB_fname, kpath_bounds,sc_mat): DDB = abilab.abiopen(DDB_fname) struct = DDB.structure atoms = DDB.structure.to_ase_atoms() scaled_positions = struct.frac_coords cell = struct.lattice_vectors() numbers = struct.atomic_numbers masses = [atomic_masses[i] for i in numbers] #print numbers #print cell #print scaled_positions #print kpath_bounds phbst, phdos = DDB.anaget_phbst_and_phdos_files( nqsmall=2, asr=1, chneut=1, dipdip=0, verbose=1, lo_to_splitting=False, qptbounds=kpath_bounds, ) #phbst.plot_phbands() qpoints = phbst.qpoints.frac_coords nqpts = len(qpoints) nbranch = 3 * len(numbers) evals = np.zeros([nqpts, nbranch]) evecs = np.zeros([nqpts, nbranch, nbranch], dtype='complex128') m = np.sqrt(np.kron(masses,[1,1,1])) #positions=np.kron(scaled_positions,[1,1,1]) for iqpt, qpt in enumerate(qpoints): for ibranch in range(nbranch): phmode = phbst.get_phmode(qpt, ibranch) evals[iqpt, ibranch] = phmode.freq #evec=phmode.displ_cart *m #phase = [np.exp(-2j*np.pi*np.dot(pos,qpt)) for pos in scaled_positions] #phase = np.kron(phase,[1,1,1]) #evec*=phase #evec /= np.linalg.norm(evec) evec=displacement_cart_to_evec(phmode.displ_cart, masses, scaled_positions, qpoint=qpt, add_phase=True) evecs[iqpt,:,ibranch] = evec uf = phonon_unfolder(atoms,sc_mat,evecs,qpoints,phase=False) weights = uf.get_weights() x=np.arange(nqpts) freqs=evals names = ['$\Gamma$', 'X', 'W', '$\Gamma$', 'L'] #ax=plot_band_weight([list(x)]*freqs.shape[1],freqs.T*33.356,weights[:,:].T*0.98+0.01,xticks=[names,X],axis=ax) ax=plot_band_weight([list(x)]*freqs.shape[1],freqs.T*27*33.356,weights[:,:].T*0.98+0.01,xticks=[names,[1,2,3,4,5]],style='alpha') plt.show() def nc_unfolder(fname, sc_mat, kx=None, knames=None ,ghost_atoms=None): ncfile=abilab.abiopen(fname) struct = ncfile.structure atoms = ncfile.structure.to_ase_atoms() scaled_positions = struct.frac_coords cell = struct.lattice_vectors() numbers = struct.atomic_numbers masses = [atomic_masses[i] for i in numbers] #print numbers #print cell #print scaled_positions #print kpath_bounds phbst = ncfile.phbands #phbst.plot_phbands() qpoints = phbst.qpoints.frac_coords nqpts = len(qpoints) nbranch = 3 * len(numbers) evals = np.zeros([nqpts, nbranch]) evecs = np.zeros([nqpts, nbranch, nbranch], dtype='complex128') m = np.sqrt(np.kron(masses,[1,1,1])) #positions=np.kron(scaled_positions,[1,1,1]) freqs=phbst.phfreqs displ_carts=phbst.phdispl_cart for iqpt, qpt in enumerate(qpoints): print(iqpt, qpt) for ibranch in range(nbranch): #phmode = ncfile.get_phmode(qpt, ibranch) #print(2) evals[iqpt, ibranch] = freqs[iqpt, ibranch] #evec=phmode.displ_cart *m #phase = [np.exp(-2j*np.pi*np.dot(pos,qpt)) for pos in scaled_positions] #phase = np.kron(phase,[1,1,1]) #evec*=phase #evec /= np.linalg.norm(evec) evec=displacement_cart_to_evec(displ_carts[iqpt, ibranch,: ], masses, scaled_positions, qpoint=qpt, add_phase=True) evecs[iqpt,:,ibranch] = evec uf = phonon_unfolder(atoms,sc_mat,evecs,qpoints,phase=False, ghost_atoms=ghost_atoms) weights = uf.get_weights() x=np.arange(nqpts) freqs=evals #names = ['$\Gamma$', 'X', 'W', '$\Gamma$', 'L'] #ax=plot_band_weight([list(x)]*freqs.shape[1],freqs.T*33.356,weights[:,:].T*0.98+0.01,xticks=[names,X],axis=ax) ax=plot_band_weight([list(x)]*freqs.shape[1],freqs.T*8065.6,weights[:,:].T*0.98+0.01,xticks=[knames, kx],style='alpha') #plt.show() return ax def main(): #sc_mat = np.linalg.inv((np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]) / 2.0)) #sc_mat=np.array([[0,1,1],[1,0,1],[1,1,0]]) sc_mat=np.eye(3) #points = kpath()[-1] points=np.array([(0,0,0),(0,.5,0),(0.5,0.5,0),[.5,.5,.5],[0,0,0]]) DDB_unfolder(DDB_fname='out_DDB', kpath_bounds = [np.dot(k, sc_mat) for k in points],sc_mat=sc_mat) #main()
lgpl-3.0
mavlab2015/paparazzi
sw/airborne/test/stabilization/compare_ref_quat.py
38
1206
#! /usr/bin/env python from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt import ref_quat_float import ref_quat_int steps = 512 * 2 ref_eul_res = np.zeros((steps, 3)) ref_quat_res = np.zeros((steps, 3)) ref_quat_float.init() ref_quat_int.init() # reset psi and update_ref_quat_from_eulers ref_quat_float.enter() ref_quat_int.enter() q_sp = np.array([0.92387956, 0.38268346, 0., 0.]) ref_quat_float.sp_quat.array = q_sp ref_quat_int.sp_quat.array = q_sp * (1 << 15) for i in range(0, steps): ref_quat_float.update() ref_eul_res[i, :] = ref_quat_float.ref_euler.array ref_quat_int.update() ref_quat_res[i, :] = ref_quat_int.ref_euler.array / (1 << 20) plt.figure(1) plt.subplot(311) plt.title("reference in euler angles") plt.plot(np.degrees(ref_eul_res[:, 0]), 'g') plt.plot(np.degrees(ref_quat_res[:, 0]), 'r') plt.ylabel("phi [deg]") plt.subplot(312) plt.plot(np.degrees(ref_eul_res[:, 1]), 'g') plt.plot(np.degrees(ref_quat_res[:, 1]), 'r') plt.ylabel("theta [deg]") plt.subplot(313) plt.plot(np.degrees(ref_eul_res[:, 2]), 'g') plt.plot(np.degrees(ref_quat_res[:, 2]), 'r') plt.ylabel("psi [deg]") plt.show()
gpl-2.0
Eric89GXL/scikit-learn
examples/linear_model/plot_ols_3d.py
8
2024
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import pylab as pl import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = pl.figure(fig_num, figsize=(4, 3)) pl.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) pl.show()
bsd-3-clause
AlexRobson/nilmtk
nilmtk/dataset_converters/eco/convert_eco.py
6
7138
import pandas as pd import numpy as np import sys from os import listdir, getcwd from os.path import isdir, join, dirname, abspath from pandas.tools.merge import concat from nilmtk.utils import get_module_directory, check_directory_exists from nilmtk.datastore import Key from nilmtk.measurement import LEVEL_NAMES from nilm_metadata import convert_yaml_to_hdf5 from inspect import currentframe, getfile, getsourcefile from sys import getfilesystemencoding """ DATASET STRUCTURE: ------------------ On extracting all the dataset values, we should arrive at a similar directory structure as mentioned. ECO Dataset will have a folder '<i>_sm_csv' and '<i>_plug_csv' where i is the building no. <i>_sm_csv has a folder 01 <i>_plug_csv has a folder 01, 02,....<n> where n is the plug numbers. Each folder has a CSV file as per each day, with each day csv file containing 86400 entries. """ plugs_column_name = {1:('power', 'active'), }; def convert_eco(dataset_loc, hdf_filename, timezone): """ Parameters: ----------- dataset_loc: str The root directory where the dataset is located. hdf_filename: str The location where the hdf_filename is present. The directory location has to contain the hdf5file name for the converter to work. timezone: str specifies the timezone of the dataset. """ # Creating a new HDF File store = pd.HDFStore(hdf_filename, 'w', complevel=9, complib='blosc') check_directory_exists(dataset_loc) directory_list = [i for i in listdir(dataset_loc) if '.txt' not in i] directory_list.sort() print directory_list # Traversing every folder for folder in directory_list: if folder[0] == '.' or folder[-3:] == '.h5': print 'Skipping ', folder continue print 'Computing for folder',folder #Building number and meter_flag building_no = int(folder[:2]) meter_flag = 'sm' if 'sm_csv' in folder else 'plugs' dir_list = [i for i in listdir(join(dataset_loc, folder)) if isdir(join(dataset_loc,folder,i))] dir_list.sort() print 'Current dir list:',dir_list for fl in dir_list: print 'Computing for folder ',fl fl_dir_list = [i for i in listdir(join(dataset_loc,folder,fl)) if '.csv' in i] fl_dir_list.sort() if meter_flag == 'sm': for fi in fl_dir_list: df = pd.read_csv(join(dataset_loc,folder,fl,fi), names=[i for i in range(1,17)], dtype=np.float32) for phase in range(1,4): key = str(Key(building=building_no, meter=phase)) df_phase = df.ix[:,[1+phase, 5+phase, 8+phase, 13+phase]] # get reactive power power = df_phase.as_matrix([1+phase, 13+phase]) reactive = power[:,0] * np.tan(power[:,1] * np.pi / 180) df_phase['Q'] = reactive df_phase.index = pd.DatetimeIndex(start=fi[:-4], freq='s', periods=86400, tz='GMT') df_phase = df_phase.tz_convert(timezone) sm_column_name = {1+phase:('power', 'active'), 5+phase:('current', ''), 8+phase:('voltage', ''), 13+phase:('phase_angle', ''), 'Q': ('power', 'reactive'), }; df_phase.rename(columns=sm_column_name, inplace=True) tmp_before = np.size(df_phase.power.active) df_phase = df_phase[df_phase.power.active != -1] tmp_after = np.size(df_phase.power.active) if (tmp_before != tmp_after): print('Removed missing measurements - Size before: ' + str(tmp_before) + ', size after: ' + str(tmp_after)) df_phase.columns.set_names(LEVEL_NAMES, inplace=True) if not key in store: store.put(key, df_phase, format='Table') else: store.append(key, df_phase, format='Table') store.flush() print 'Building',building_no,', Meter no.',phase,'=> Done for ',fi[:-4] else: #Meter number to be used in key meter_num = int(fl) + 3 key = str(Key(building=building_no, meter=meter_num)) #Getting dataframe for each csv file seperately for fi in fl_dir_list: df = pd.read_csv(join(dataset_loc,folder,fl ,fi), names=[1], dtype=np.float64) df.index = pd.DatetimeIndex(start=fi[:-4], freq='s', periods=86400, tz = 'GMT') df.rename(columns=plugs_column_name, inplace=True) df = df.tz_convert(timezone) df.columns.set_names(LEVEL_NAMES, inplace=True) tmp_before = np.size(df.power.active) df = df[df.power.active != -1] tmp_after = np.size(df.power.active) if (tmp_before != tmp_after): print('Removed missing measurements - Size before: ' + str(tmp_before) + ', size after: ' + str(tmp_after)) # If table not present in hdf5, create or else append to existing data if not key in store: store.put(key, df, format='Table') print 'Building',building_no,', Meter no.',meter_num,'=> Done for ',fi[:-4] else: store.append(key, df, format='Table') store.flush() print 'Building',building_no,', Meter no.',meter_num,'=> Done for ',fi[:-4] print "Data storage completed." store.close() # Adding the metadata to the HDF5file print "Proceeding to Metadata conversion..." meta_path = join(_get_module_directory(), 'metadata') convert_yaml_to_hdf5(meta_path, hdf_filename) print "Completed Metadata conversion." def _get_module_directory(): # Taken from http://stackoverflow.com/a/6098238/732596 path_to_this_file = dirname(getfile(currentframe())) if not isdir(path_to_this_file): encoding = getfilesystemencoding() path_to_this_file = dirname(unicode(__file__, encoding)) if not isdir(path_to_this_file): abspath(getsourcefile(lambda _: None)) if not isdir(path_to_this_file): path_to_this_file = getcwd() assert isdir(path_to_this_file), path_to_this_file + ' is not a directory' return path_to_this_file
apache-2.0
kstensbo/perceptron
python/make_dataset.py
1
1816
import numpy as np from sklearn.datasets import make_blobs, make_circles, make_classification, \ make_moons import matplotlib.pyplot as plt import seaborn as sns seapal = sns.color_palette('Paired', 12) sns.set_style('ticks') from IPython import embed if __name__ == "__main__": info = {} X, y = make_blobs(30, n_features=2, centers=2, cluster_std=2, random_state=42) info["Blobs"] = {'X': X, 'y': y} X, y = make_circles(100, noise=0.1, factor=0.4, random_state=42) info["Circles"] = {'X': X, 'y': y} X, y = make_moons(100, noise=0.1, random_state=42) info["Moons"] = {'X': X, 'y': y} X, y = make_classification(100, 2, n_informative=1, n_redundant=0, n_clusters_per_class=1, random_state=1) info["Classification"] = {'X': X, 'y': y} for key, val in info.items(): with open("../Data/{}.hs".format(key), 'w') as f: X = val['X'] y = val['y'] y[y == 0] = -1 f.write("module Data.{}\n( x\n, y\n) where\n\n".format(key)) f.write("x = [") for xi in X[:-1]: f.write("[{:6.4f}, {:6.4f}], ".format(xi[0], xi[1])) f.write("[{:6.4f}, {:6.4f}]]\n".format(X[-1,0], X[-1,1])) f.write("\ny :: [Double]") f.write("\ny = [") for yi in y[:-1]: f.write("{:d}, ".format(yi)) f.write("{:d}]\n".format(y[-1])) #fig, ax = plt.subplots() ## Plot data points #scolour = [seapal[1] if i==-1 else seapal[3] for i in y] #ax.scatter(X[:,0], X[:,1], c=scolour, s=42, # edgecolors=plt.cm.binary(0), alpha=0.8, zorder=100) #ax.set_xlabel(r'$x_1$', fontsize=14) #ax.set_ylabel(r'$x_2$', fontsize=14) #plt.show()
mit
Curly-Mo/mir-tools
cross_validate.py
1
7202
#!/usr/bin/env python """Script to run Cross-Validation""" import logging logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO) import argparse from time import time import scipy import sklearn from sklearn.externals import joblib from sklearn import cross_validation from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import numpy as np import feature_extraction import machine_learning import util def report(actual, predicted, plot=False, save=False): labels = np.unique(np.concatenate([actual, predicted])) confusion = confusion_matrix(actual, predicted, labels) confusion_string = machine_learning.confusion_str(confusion, labels) scores = classification_report(actual, predicted, target_names=labels) return '{}\n{}'.format(confusion_string, scores) def sample_report(tracks, plot=False, save=False): actual, predicted = [], [] for track in tracks: predicted.extend(track['sample_predictions']) actual.extend([track['label']] * len(track['sample_predictions'])) return report(actual, predicted, plot, save) def track_report(tracks, plot=False, save=False): actual, predicted = [], [] for track in tracks: actual.append(track['label']) predicted.append(track['prediction']) return report(actual, predicted, plot, save) def best_svm(tracks, feature_names, n_iter=200, save=False): clf = machine_learning.Classifier('rbfsvm') X, Y = machine_learning.shape_features(tracks, feature_names) param_dist = { 'C': scipy.stats.expon(scale=1000), 'class_weight': ['auto'], #'loss': ['squared_hinge'], #'penalty': ['l2'], #'dual': [False], 'tol': scipy.stats.expon(scale=0.1), } logging.info('Optimizing parameters: {}'.format(param_dist)) random_search = sklearn.grid_search.RandomizedSearchCV( clf.clf, param_distributions=param_dist, n_iter=n_iter, verbose=10, ) random_search.fit(X, Y) for score in random_search.grid_scores_: print(score) print('Best Score: {}'.format(random_search.best_score_)) print('Best Params: {}'.format(random_search.best_params_)) if save: logging.info('Saving classifier to disk...') joblib.dump(random_search.best_estimator_, save, compress=True) return random_search.best_estimator_ def cross_val_score(tracks, feature_names, folds=5): X, Y = machine_learning.shape_features(tracks, feature_names) clf = sklearn.svm.LinearSVC(class_weight='auto') scores = cross_validation.cross_val_score( clf, X, Y, cv=folds, scoring='f1_weighted' ) return scores def kfold(tracks, feature_names, folds=5, shuffle=True, **kwargs): labels = [track['label'] for track in tracks] kf = cross_validation.StratifiedKFold(labels, n_folds=folds, shuffle=shuffle) for train, test in kf: train_tracks = [tracks[i] for i in train] test_tracks = [tracks[i] for i in test] clf = machine_learning.Classifier(**kwargs) clf = machine_learning.train_tracks(clf, train_tracks, feature_names) predicted_all = [] Y_test_all = [] for track in test_tracks: X_test, Y_test = machine_learning.shape_features([track], feature_names) predicted = machine_learning.predict(X_test, clf) track['sample_predictions'] = predicted track['prediction'], track['predictions'] = util.most_common(predicted) predicted_all.extend(predicted) Y_test_all.extend(Y_test) yield test_tracks def main(**kwargs): start = time() tracks, args = feature_extraction.load_tracks(**kwargs) if kwargs['action'] == 'kfold': folds = kfold(tracks, **kwargs) for tracks in folds: scores = sample_report(tracks, plot=True) print(scores) scores = track_report(tracks, plot=True) print(scores) elif kwargs['action'] == 'cross_val_score': scores = cross_val_score(tracks, args['feature_names'], folds=args.folds) print(scores) elif kwargs['action'] == 'optimize': clf = best_svm(tracks, args['feature_names'], save=kwargs['save_classifier']) print(clf) end = time() logging.info('Elapsed time: {}'.format(end - start)) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Extract instrument stems from medleydb") parser.add_argument('action', type=str, choices={'kfold', 'cross_val_score', 'optimize'}, help='Action to take') parser.add_argument('label', type=str, choices={'instrument', 'genre'}, help='Track label') parser.add_argument('-s', '--save_features', type=str, default=None, help='Location to save pickled features to') parser.add_argument('-l', '--load_features', type=str, default=None, help='Location to load pickled features from') parser.add_argument('-m', '--min_sources', type=int, default=10, help='Min sources required for instrument selection') parser.add_argument('-i', '--instruments', nargs='*', default=None, help='List of instruments to extract') parser.add_argument('-g', '--genres', nargs='*', default=None, help='List of genres to extract') parser.add_argument('-c', '--count', type=int, default=None, help='Max number of tracks for each label') parser.add_argument('-r', '--rm_silence', action='store_true', help='Remove silence from audio files') parser.add_argument('-t', '--trim', type=int, default=None, help='Trim audio files to this length (in seconds)') parser.add_argument('-k', '--folds', type=int, default=5, help='Number of folds in kfold cross validation') parser.add_argument('-n', '--n_fft', type=int, default=2048, help='FFT size of MFCCs') parser.add_argument('--hop_length', type=int, default=1024, help='Hop size of MFCCs') parser.add_argument('-a', '--average', type=int, default=None, help='Number of seconds to average features over') parser.add_argument('--normalize', action='store_true', help='Normalize MFCC feature vectors between 0 and 1') parser.add_argument('-f', '--feature_names', nargs='+', default=None, choices=['mfcc', 'mfcc_delta', 'mfcc_delta_delta'], help='List of features names to use') parser.add_argument('--save_classifier', type=str, default=None, help='Location to save pickled classifier to') parser.add_argument('--classifier', type=str, default='svm', choices=['linearsvm', 'rbfsvm', 'adaboost'], help='Type of classifier to use.') args = parser.parse_args() main(**vars(args))
mit
xzh86/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
276
3790
# Authors: Lars Buitinck <[email protected]> # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
wschenck/nest-simulator
pynest/nest/tests/test_spatial/test_plotting.py
12
5748
# -*- coding: utf-8 -*- # # test_plotting.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Tests for basic spatial plotting functions. """ import unittest import nest import numpy as np try: import matplotlib.pyplot as plt tmp_fig = plt.figure() # make sure we can open a window; DISPLAY may not be set plt.close(tmp_fig) PLOTTING_POSSIBLE = True except: PLOTTING_POSSIBLE = False @unittest.skipIf(not PLOTTING_POSSIBLE, 'Plotting impossible because matplotlib or display missing') class PlottingTestCase(unittest.TestCase): def test_PlotLayer(self): """Test plotting layer.""" nest.ResetKernel() l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[3, 3], extent=[2., 2.], edge_wrap=True)) nest.PlotLayer(l) plotted_datapoints = plt.gca().collections[-1].get_offsets().data reference_datapoints = nest.GetPosition(l) self.assertTrue(np.allclose(plotted_datapoints, reference_datapoints)) def test_PlotTargets(self): """Test plotting targets.""" delta = 0.05 mask = {'rectangular': {'lower_left': [-delta, -2/3 - delta], 'upper_right': [2/3 + delta, delta]}} cdict = {'rule': 'pairwise_bernoulli', 'p': 1., 'mask': mask} sdict = {'synapse_model': 'stdp_synapse'} nest.ResetKernel() l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[3, 3], extent=[2., 2.], edge_wrap=True)) # connect l -> l nest.Connect(l, l, cdict, sdict) ctr = nest.FindCenterElement(l) fig = nest.PlotTargets(ctr, l) fig.gca().set_title('Plain call') plotted_datapoints = plt.gca().collections[0].get_offsets().data eps = 0.01 pos = np.array(nest.GetPosition(l)) pos_xmask = pos[np.where(pos[:, 0] > -eps)] reference_datapoints = pos_xmask[np.where(pos_xmask[:, 1] < eps)][::-1] self.assertTrue(np.array_equal(np.sort(plotted_datapoints, axis=0), np.sort(reference_datapoints, axis=0))) fig = nest.PlotTargets(ctr, l, mask=mask) ax = fig.gca() ax.set_title('Call with mask') self.assertGreaterEqual(len(ax.patches), 1) def test_plot_probability_kernel(self): """Plot parameter probability""" nest.ResetKernel() plot_shape = [10, 10] plot_edges = [-0.5, 0.5, -0.5, 0.5] def probability_calculation(distance): return 1 - 1.5*distance l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid([10, 10], edge_wrap=False)) source = l[25] source_pos = np.array(nest.GetPosition(source)) source_x, source_y = source_pos # Calculate reference values ref_probability = np.zeros(plot_shape[::-1]) for i, x in enumerate(np.linspace(plot_edges[0], plot_edges[1], plot_shape[0])): positions = np.array([[x, y] for y in np.linspace(plot_edges[2], plot_edges[3], plot_shape[1])]) ref_distances = np.sqrt((positions[:, 0] - source_x)**2 + (positions[:, 1] - source_y)**2) values = probability_calculation(ref_distances) ref_probability[:, i] = np.maximum(np.minimum(np.array(values), 1.0), 0.0) # Create the parameter parameter = probability_calculation(nest.spatial.distance) fig, ax = plt.subplots() nest.PlotProbabilityParameter(source, parameter, ax=ax, shape=plot_shape, edges=plot_edges) self.assertEqual(len(ax.images), 1) img = ax.images[0] img_data = img.get_array().data self.assertTrue(np.array_equal(img_data, ref_probability)) def test_plot_probability_kernel_with_mask(self): """Plot parameter probability with mask""" nest.ResetKernel() plot_shape = [10, 10] plot_edges = [-0.5, 0.5, -0.5, 0.5] l = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid([10, 10], edge_wrap=False)) parameter = 1 - 1.5*nest.spatial.distance source = l[25] masks = [{'circular': {'radius': 0.4}}, {'doughnut': {'inner_radius': 0.2, 'outer_radius': 0.45}}, {'rectangular': {'lower_left': [-.3, -.3], 'upper_right': [0.3, 0.3]}}, {'elliptical': {'major_axis': 0.8, 'minor_axis': 0.4}}] fig, axs = plt.subplots(2, 2) for mask, ax in zip(masks, axs.flatten()): nest.PlotProbabilityParameter(source, parameter, mask=mask, ax=ax, shape=plot_shape, edges=plot_edges) self.assertEqual(len(ax.images), 1) self.assertGreaterEqual(len(ax.patches), 1) def suite(): suite = unittest.makeSuite(PlottingTestCase, 'test') return suite if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=2) runner.run(suite()) plt.show()
gpl-2.0
wzbozon/statsmodels
statsmodels/sandbox/tsa/diffusion.py
31
18732
'''getting started with diffusions, continuous time stochastic processes Author: josef-pktd License: BSD References ---------- An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations Author(s): Desmond J. Higham Source: SIAM Review, Vol. 43, No. 3 (Sep., 2001), pp. 525-546 Published by: Society for Industrial and Applied Mathematics Stable URL: http://www.jstor.org/stable/3649798 http://www.sitmo.com/ especially the formula collection Notes ----- OU process: use same trick for ARMA with constant (non-zero mean) and drift some of the processes have easy multivariate extensions *Open Issues* include xzero in returned sample or not? currently not *TODOS* * Milstein from Higham paper, for which processes does it apply * Maximum Likelihood estimation * more statistical properties (useful for tests) * helper functions for display and MonteCarlo summaries (also for testing/checking) * more processes for the menagerie (e.g. from empirical papers) * characteristic functions * transformations, non-linear e.g. log * special estimators, e.g. Ait Sahalia, empirical characteristic functions * fft examples * check naming of methods, "simulate", "sample", "simexact", ... ? stochastic volatility models: estimation unclear finance applications ? option pricing, interest rate models ''' from __future__ import print_function import numpy as np from scipy import stats, signal import matplotlib.pyplot as plt #np.random.seed(987656789) class Diffusion(object): '''Wiener Process, Brownian Motion with mu=0 and sigma=1 ''' def __init__(self): pass def simulateW(self, nobs=100, T=1, dt=None, nrepl=1): '''generate sample of Wiener Process ''' dt = T*1.0/nobs t = np.linspace(dt, 1, nobs) dW = np.sqrt(dt)*np.random.normal(size=(nrepl, nobs)) W = np.cumsum(dW,1) self.dW = dW return W, t def expectedsim(self, func, nobs=100, T=1, dt=None, nrepl=1): '''get expectation of a function of a Wiener Process by simulation initially test example from ''' W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl) U = func(t, W) Umean = U.mean(0) return U, Umean, t class AffineDiffusion(Diffusion): ''' differential equation: :math:: dx_t = f(t,x)dt + \sigma(t,x)dW_t integral: :math:: x_T = x_0 + \\int_{0}^{T}f(t,S)dt + \\int_0^T \\sigma(t,S)dW_t TODO: check definition, affine, what about jump diffusion? ''' def __init__(self): pass def sim(self, nobs=100, T=1, dt=None, nrepl=1): # this doesn't look correct if drift or sig depend on x # see arithmetic BM W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl) dx = self._drift() + self._sig() * W x = np.cumsum(dx,1) xmean = x.mean(0) return x, xmean, t def simEM(self, xzero=None, nobs=100, T=1, dt=None, nrepl=1, Tratio=4): ''' from Higham 2001 TODO: reverse parameterization to start with final nobs and DT TODO: check if I can skip the loop using my way from exactprocess problem might be Winc (reshape into 3d and sum) TODO: (later) check memory efficiency for large simulations ''' #TODO: reverse parameterization to start with final nobs and DT nobs = nobs * Tratio # simple way to change parameter # maybe wrong parameterization, # drift too large, variance too small ? which dt/Dt # _drift, _sig independent of dt is wrong if xzero is None: xzero = self.xzero if dt is None: dt = T*1.0/nobs W, t = self.simulateW(nobs=nobs, T=T, dt=dt, nrepl=nrepl) dW = self.dW t = np.linspace(dt, 1, nobs) Dt = Tratio*dt; L = nobs/Tratio; # L EM steps of size Dt = R*dt Xem = np.zeros((nrepl,L)); # preallocate for efficiency Xtemp = xzero Xem[:,0] = xzero for j in np.arange(1,L): #Winc = np.sum(dW[:,Tratio*(j-1)+1:Tratio*j],1) Winc = np.sum(dW[:,np.arange(Tratio*(j-1)+1,Tratio*j)],1) #Xtemp = Xtemp + Dt*lamda*Xtemp + mu*Xtemp*Winc; Xtemp = Xtemp + self._drift(x=Xtemp) + self._sig(x=Xtemp) * Winc #Dt*lamda*Xtemp + mu*Xtemp*Winc; Xem[:,j] = Xtemp return Xem ''' R = 4; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt Xem = zeros(1,L); % preallocate for efficiency Xtemp = Xzero; for j = 1:L Winc = sum(dW(R*(j-1)+1:R*j)); Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc; Xem(j) = Xtemp; end ''' class ExactDiffusion(AffineDiffusion): '''Diffusion that has an exact integral representation this is currently mainly for geometric, log processes ''' def __init__(self): pass def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''ddt : discrete delta t should be the same as an AR(1) not tested yet ''' t = np.linspace(ddt, nobs*ddt, nobs) #expnt = np.exp(-self.lambd * t) expddt = np.exp(-self.lambd * ddt) normrvs = np.random.normal(size=(nrepl,nobs)) #do I need lfilter here AR(1) ? if mean reverting lag-coeff<1 #lfilter doesn't handle 2d arrays, it does? inc = self._exactconst(expddt) + self._exactstd(expddt) * normrvs return signal.lfilter([1.], [1.,-expddt], inc) def exactdist(self, xzero, t): expnt = np.exp(-self.lambd * t) meant = xzero * expnt + self._exactconst(expnt) stdt = self._exactstd(expnt) return stats.norm(loc=meant, scale=stdt) class ArithmeticBrownian(AffineDiffusion): ''' :math:: dx_t &= \\mu dt + \\sigma dW_t ''' def __init__(self, xzero, mu, sigma): self.xzero = xzero self.mu = mu self.sigma = sigma def _drift(self, *args, **kwds): return self.mu def _sig(self, *args, **kwds): return self.sigma def exactprocess(self, nobs, xzero=None, ddt=1., nrepl=2): '''ddt : discrete delta t not tested yet ''' if xzero is None: xzero = self.xzero t = np.linspace(ddt, nobs*ddt, nobs) normrvs = np.random.normal(size=(nrepl,nobs)) inc = self._drift + self._sigma * np.sqrt(ddt) * normrvs #return signal.lfilter([1.], [1.,-1], inc) return xzero + np.cumsum(inc,1) def exactdist(self, xzero, t): expnt = np.exp(-self.lambd * t) meant = self._drift * t stdt = self._sigma * np.sqrt(t) return stats.norm(loc=meant, scale=stdt) class GeometricBrownian(AffineDiffusion): '''Geometric Brownian Motion :math:: dx_t &= \\mu x_t dt + \\sigma x_t dW_t $x_t $ stochastic process of Geometric Brownian motion, $\mu $ is the drift, $\sigma $ is the Volatility, $W$ is the Wiener process (Brownian motion). ''' def __init__(self, xzero, mu, sigma): self.xzero = xzero self.mu = mu self.sigma = sigma def _drift(self, *args, **kwds): x = kwds['x'] return self.mu * x def _sig(self, *args, **kwds): x = kwds['x'] return self.sigma * x class OUprocess(AffineDiffusion): '''Ornstein-Uhlenbeck :math:: dx_t&=\\lambda(\\mu - x_t)dt+\\sigma dW_t mean reverting process TODO: move exact higher up in class hierarchy ''' def __init__(self, xzero, mu, lambd, sigma): self.xzero = xzero self.lambd = lambd self.mu = mu self.sigma = sigma def _drift(self, *args, **kwds): x = kwds['x'] return self.lambd * (self.mu - x) def _sig(self, *args, **kwds): x = kwds['x'] return self.sigma * x def exact(self, xzero, t, normrvs): #TODO: aggregate over time for process with observations for all t # i.e. exact conditional distribution for discrete time increment # -> exactprocess #TODO: for single t, return stats.norm -> exactdist expnt = np.exp(-self.lambd * t) return (xzero * expnt + self.mu * (1-expnt) + self.sigma * np.sqrt((1-expnt*expnt)/2./self.lambd) * normrvs) def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''ddt : discrete delta t should be the same as an AR(1) not tested yet # after writing this I saw the same use of lfilter in sitmo ''' t = np.linspace(ddt, nobs*ddt, nobs) expnt = np.exp(-self.lambd * t) expddt = np.exp(-self.lambd * ddt) normrvs = np.random.normal(size=(nrepl,nobs)) #do I need lfilter here AR(1) ? lfilter doesn't handle 2d arrays, it does? from scipy import signal #xzero * expnt inc = ( self.mu * (1-expddt) + self.sigma * np.sqrt((1-expddt*expddt)/2./self.lambd) * normrvs ) return signal.lfilter([1.], [1.,-expddt], inc) def exactdist(self, xzero, t): #TODO: aggregate over time for process with observations for all t #TODO: for single t, return stats.norm expnt = np.exp(-self.lambd * t) meant = xzero * expnt + self.mu * (1-expnt) stdt = self.sigma * np.sqrt((1-expnt*expnt)/2./self.lambd) from scipy import stats return stats.norm(loc=meant, scale=stdt) def fitls(self, data, dt): '''assumes data is 1d, univariate time series formula from sitmo ''' # brute force, no parameter estimation errors nobs = len(data)-1 exog = np.column_stack((np.ones(nobs), data[:-1])) parest, res, rank, sing = np.linalg.lstsq(exog, data[1:]) const, slope = parest errvar = res/(nobs-2.) lambd = -np.log(slope)/dt sigma = np.sqrt(-errvar * 2.*np.log(slope)/ (1-slope**2)/dt) mu = const / (1-slope) return mu, lambd, sigma class SchwartzOne(ExactDiffusion): '''the Schwartz type 1 stochastic process :math:: dx_t = \\kappa (\\mu - \\ln x_t) x_t dt + \\sigma x_tdW \\ The Schwartz type 1 process is a log of the Ornstein-Uhlenbeck stochastic process. ''' def __init__(self, xzero, mu, kappa, sigma): self.xzero = xzero self.mu = mu self.kappa = kappa self.lambd = kappa #alias until I fix exact self.sigma = sigma def _exactconst(self, expnt): return (1-expnt) * (self.mu - self.sigma**2 / 2. /self.kappa) def _exactstd(self, expnt): return self.sigma * np.sqrt((1-expnt*expnt)/2./self.kappa) def exactprocess(self, xzero, nobs, ddt=1., nrepl=2): '''uses exact solution for log of process ''' lnxzero = np.log(xzero) lnx = super(self.__class__, self).exactprocess(xzero, nobs, ddt=ddt, nrepl=nrepl) return np.exp(lnx) def exactdist(self, xzero, t): expnt = np.exp(-self.lambd * t) #TODO: check this is still wrong, just guessing meant = np.log(xzero) * expnt + self._exactconst(expnt) stdt = self._exactstd(expnt) return stats.lognorm(loc=meant, scale=stdt) def fitls(self, data, dt): '''assumes data is 1d, univariate time series formula from sitmo ''' # brute force, no parameter estimation errors nobs = len(data)-1 exog = np.column_stack((np.ones(nobs),np.log(data[:-1]))) parest, res, rank, sing = np.linalg.lstsq(exog, np.log(data[1:])) const, slope = parest errvar = res/(nobs-2.) #check denominator estimate, of sigma too low kappa = -np.log(slope)/dt sigma = np.sqrt(errvar * kappa / (1-np.exp(-2*kappa*dt))) mu = const / (1-np.exp(-kappa*dt)) + sigma**2/2./kappa if np.shape(mu)== (1,): mu = mu[0] # how to remove scalar array ? if np.shape(sigma)== (1,): sigma = sigma[0] #mu, kappa are good, sigma too small return mu, kappa, sigma class BrownianBridge(object): def __init__(self): pass def simulate(self, x0, x1, nobs, nrepl=1, ddt=1., sigma=1.): nobs=nobs+1 dt = ddt*1./nobs t = np.linspace(dt, ddt-dt, nobs) t = np.linspace(dt, ddt, nobs) wm = [t/ddt, 1-t/ddt] #wmi = wm[1] #wm1 = x1*wm[0] wmi = 1-dt/(ddt-t) wm1 = x1*(dt/(ddt-t)) su = sigma* np.sqrt(t*(1-t)/ddt) s = sigma* np.sqrt(dt*(ddt-t-dt)/(ddt-t)) x = np.zeros((nrepl, nobs)) x[:,0] = x0 rvs = s*np.random.normal(size=(nrepl,nobs)) for i in range(1,nobs): x[:,i] = x[:,i-1]*wmi[i] + wm1[i] + rvs[:,i] return x, t, su class CompoundPoisson(object): '''nobs iid compound poisson distributions, not a process in time ''' def __init__(self, lambd, randfn=np.random.normal): if len(lambd) != len(randfn): raise ValueError('lambd and randfn need to have the same number of elements') self.nobj = len(lambd) self.randfn = randfn self.lambd = np.asarray(lambd) def simulate(self, nobs, nrepl=1): nobj = self.nobj x = np.zeros((nrepl, nobs, nobj)) N = np.random.poisson(self.lambd[None,None,:], size=(nrepl,nobs,nobj)) for io in range(nobj): randfnc = self.randfn[io] nc = N[:,:,io] #print nrepl,nobs,nc #xio = randfnc(size=(nrepl,nobs,np.max(nc))).cumsum(-1)[np.arange(nrepl)[:,None],np.arange(nobs),nc-1] rvs = randfnc(size=(nrepl,nobs,np.max(nc))) print('rvs.sum()', rvs.sum(), rvs.shape) xio = rvs.cumsum(-1)[np.arange(nrepl)[:,None],np.arange(nobs),nc-1] #print xio.shape x[:,:,io] = xio x[N==0] = 0 return x, N ''' randn('state',100) % set the state of randn T = 1; N = 500; dt = T/N; t = [dt:dt:1]; M = 1000; % M paths simultaneously dW = sqrt(dt)*randn(M,N); % increments W = cumsum(dW,2); % cumulative sum U = exp(repmat(t,[M 1]) + 0.5*W); Umean = mean(U); plot([0,t],[1,Umean],'b-'), hold on % plot mean over M paths plot([0,t],[ones(5,1),U(1:5,:)],'r--'), hold off % plot 5 individual paths xlabel('t','FontSize',16) ylabel('U(t)','FontSize',16,'Rotation',0,'HorizontalAlignment','right') legend('mean of 1000 paths','5 individual paths',2) averr = norm((Umean - exp(9*t/8)),'inf') % sample error ''' if __name__ == '__main__': doplot = 1 nrepl = 1000 examples = []#['all'] if 'all' in examples: w = Diffusion() # Wiener Process # ^^^^^^^^^^^^^^ ws = w.simulateW(1000, nrepl=nrepl) if doplot: plt.figure() tmp = plt.plot(ws[0].T) tmp = plt.plot(ws[0].mean(0), linewidth=2) plt.title('Standard Brownian Motion (Wiener Process)') func = lambda t, W: np.exp(t + 0.5*W) us = w.expectedsim(func, nobs=500, nrepl=nrepl) if doplot: plt.figure() tmp = plt.plot(us[0].T) tmp = plt.plot(us[1], linewidth=2) plt.title('Brownian Motion - exp') #plt.show() averr = np.linalg.norm(us[1] - np.exp(9*us[2]/8.), np.inf) print(averr) #print us[1][:10] #print np.exp(9.*us[2][:10]/8.) # Geometric Brownian # ^^^^^^^^^^^^^^^^^^ gb = GeometricBrownian(xzero=1., mu=0.01, sigma=0.5) gbs = gb.simEM(nobs=100, nrepl=100) if doplot: plt.figure() tmp = plt.plot(gbs.T) tmp = plt.plot(gbs.mean(0), linewidth=2) plt.title('Geometric Brownian') plt.figure() tmp = plt.plot(np.log(gbs).T) tmp = plt.plot(np.log(gbs.mean(0)), linewidth=2) plt.title('Geometric Brownian - log-transformed') ab = ArithmeticBrownian(xzero=1, mu=0.05, sigma=1) abs = ab.simEM(nobs=100, nrepl=100) if doplot: plt.figure() tmp = plt.plot(abs.T) tmp = plt.plot(abs.mean(0), linewidth=2) plt.title('Arithmetic Brownian') # Ornstein-Uhlenbeck # ^^^^^^^^^^^^^^^^^^ ou = OUprocess(xzero=2, mu=1, lambd=0.5, sigma=0.1) ous = ou.simEM() oue = ou.exact(1, 1, np.random.normal(size=(5,10))) ou.exact(0, np.linspace(0,10,10/0.1), 0) ou.exactprocess(0,10) print(ou.exactprocess(0,10, ddt=0.1,nrepl=10).mean(0)) #the following looks good, approaches mu oues = ou.exactprocess(0,100, ddt=0.1,nrepl=100) if doplot: plt.figure() tmp = plt.plot(oues.T) tmp = plt.plot(oues.mean(0), linewidth=2) plt.title('Ornstein-Uhlenbeck') # SchwartsOne # ^^^^^^^^^^^ so = SchwartzOne(xzero=0, mu=1, kappa=0.5, sigma=0.1) sos = so.exactprocess(0,50, ddt=0.1,nrepl=100) print(sos.mean(0)) print(np.log(sos.mean(0))) doplot = 1 if doplot: plt.figure() tmp = plt.plot(sos.T) tmp = plt.plot(sos.mean(0), linewidth=2) plt.title('Schwartz One') print(so.fitls(sos[0,:],dt=0.1)) sos2 = so.exactprocess(0,500, ddt=0.1,nrepl=5) print('true: mu=1, kappa=0.5, sigma=0.1') for i in range(5): print(so.fitls(sos2[i],dt=0.1)) # Brownian Bridge # ^^^^^^^^^^^^^^^ bb = BrownianBridge() #bbs = bb.sample(x0, x1, nobs, nrepl=1, ddt=1., sigma=1.) bbs, t, wm = bb.simulate(0, 0.5, 99, nrepl=500, ddt=1., sigma=0.1) if doplot: plt.figure() tmp = plt.plot(bbs.T) tmp = plt.plot(bbs.mean(0), linewidth=2) plt.title('Brownian Bridge') plt.figure() plt.plot(wm,'r', label='theoretical') plt.plot(bbs.std(0), label='simulated') plt.title('Brownian Bridge - Variance') plt.legend() # Compound Poisson # ^^^^^^^^^^^^^^^^ cp = CompoundPoisson([1,1], [np.random.normal,np.random.normal]) cps = cp.simulate(nobs=20000,nrepl=3) print(cps[0].sum(-1).sum(-1)) print(cps[0].sum()) print(cps[0].mean(-1).mean(-1)) print(cps[0].mean()) print(cps[1].size) print(cps[1].sum()) #Note Y = sum^{N} X is compound poisson of iid x, then #E(Y) = E(N)*E(X) eg. eq. (6.37) page 385 in http://ee.stanford.edu/~gray/sp.html #plt.show()
bsd-3-clause
zbanga/trading-with-python
cookbook/reconstructVXX/reconstructVXX.py
77
3574
# -*- coding: utf-8 -*- """ Reconstructing VXX from futures data author: Jev Kuznetsov License : BSD """ from __future__ import division from pandas import * import numpy as np import os class Future(object): """ vix future class, used to keep data structures simple """ def __init__(self,series,code=None): """ code is optional, example '2010_01' """ self.series = series.dropna() # price data self.settleDate = self.series.index[-1] self.dt = len(self.series) # roll period (this is default, should be recalculated) self.code = code # string code 'YYYY_MM' def monthNr(self): """ get month nr from the future code """ return int(self.code.split('_')[1]) def dr(self,date): """ days remaining before settlement, on a given date """ return(sum(self.series.index>date)) def price(self,date): """ price on a date """ return self.series.get_value(date) def returns(df): """ daily return """ return (df/df.shift(1)-1) def recounstructVXX(): """ calculate VXX returns needs a previously preprocessed file vix_futures.csv """ dataDir = os.path.expanduser('~')+'/twpData' X = DataFrame.from_csv(dataDir+'/vix_futures.csv') # raw data table # build end dates list & futures classes futures = [] codes = X.columns endDates = [] for code in codes: f = Future(X[code],code=code) print code,':', f.settleDate endDates.append(f.settleDate) futures.append(f) endDates = np.array(endDates) # set roll period of each future for i in range(1,len(futures)): futures[i].dt = futures[i].dr(futures[i-1].settleDate) # Y is the result table idx = X.index Y = DataFrame(index=idx, columns=['first','second','days_left','w1','w2', 'ret','30days_avg']) # W is the weight matrix W = DataFrame(data = np.zeros(X.values.shape),index=idx,columns = X.columns) # for VXX calculation see http://www.ipathetn.com/static/pdf/vix-prospectus.pdf # page PS-20 for date in idx: i =np.nonzero(endDates>=date)[0][0] # find first not exprired future first = futures[i] # first month futures class second = futures[i+1] # second month futures class dr = first.dr(date) # number of remaining dates in the first futures contract dt = first.dt #number of business days in roll period W.set_value(date,codes[i],100*dr/dt) W.set_value(date,codes[i+1],100*(dt-dr)/dt) # this is all just debug info p1 = first.price(date) p2 = second.price(date) w1 = 100*dr/dt w2 = 100*(dt-dr)/dt Y.set_value(date,'first',p1) Y.set_value(date,'second',p2) Y.set_value(date,'days_left',first.dr(date)) Y.set_value(date,'w1',w1) Y.set_value(date,'w2',w2) Y.set_value(date,'30days_avg',(p1*w1+p2*w2)/100) valCurr = (X*W.shift(1)).sum(axis=1) # value on day N valYest = (X.shift(1)*W.shift(1)).sum(axis=1) # value on day N-1 Y['ret'] = valCurr/valYest-1 # index return on day N return Y ##-------------------Main script--------------------------- if __name__=="__main__": Y = recounstructVXX() print Y.head(30)# Y.to_csv('reconstructedVXX.csv')
bsd-3-clause
devanshdalal/scikit-learn
examples/neighbors/plot_digits_kde_sampling.py
108
2026
""" ========================= Kernel Density Estimation ========================= This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn. These new samples reflect the underlying model of the data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.neighbors import KernelDensity from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV # load the data digits = load_digits() data = digits.data # project the 64-dimensional data to a lower dimension pca = PCA(n_components=15, whiten=False) data = pca.fit_transform(digits.data) # use grid search cross-validation to optimize the bandwidth params = {'bandwidth': np.logspace(-1, 1, 20)} grid = GridSearchCV(KernelDensity(), params) grid.fit(data) print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth)) # use the best estimator to compute the kernel density estimate kde = grid.best_estimator_ # sample 44 new points from the data new_data = kde.sample(44, random_state=0) new_data = pca.inverse_transform(new_data) # turn data into a 4x11 grid new_data = new_data.reshape((4, 11, -1)) real_data = digits.data[:44].reshape((4, 11, -1)) # plot real digits and resampled digits fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[])) for j in range(11): ax[4, j].set_visible(False) for i in range(4): im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) ax[0, 5].set_title('Selection from the input data') ax[5, 5].set_title('"New" digits drawn from the kernel density model') plt.show()
bsd-3-clause
Clyde-fare/scikit-learn
examples/ensemble/plot_bias_variance.py
357
7324
""" ============================================================ Single estimator versus bagging: bias-variance decomposition ============================================================ This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and noise. On average over datasets of the regression problem, the bias term measures the average amount by which the predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes model). The variance term measures the variability of the predictions of the estimator when fit over different instances LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data. The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS (the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the variance, the more sensitive are the predictions for `x` to small changes in the training set. The bias term corresponds to the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other) while the variance is large (the red beam is rather wide). The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree. It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of the error which, as expected, appears to be constant and around `0.01`. The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures, we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around `x=2`). In the lower right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed mainly stems from a reduced variance. For further details on bias-variance decomposition, see section 7.3 of [1]_. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer, 2009. """ print(__doc__) # Author: Gilles Louppe <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import BaggingRegressor from sklearn.tree import DecisionTreeRegressor # Settings n_repeat = 50 # Number of iterations for computing expectations n_train = 50 # Size of the training set n_test = 1000 # Size of the test set noise = 0.1 # Standard deviation of the noise np.random.seed(0) # Change this for exploring the bias-variance decomposition of other # estimators. This should work well for estimators with high variance (e.g., # decision trees or KNN), but poorly for estimators with low variance (e.g., # linear models). estimators = [("Tree", DecisionTreeRegressor()), ("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))] n_estimators = len(estimators) # Generate data def f(x): x = x.ravel() return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2) def generate(n_samples, noise, n_repeat=1): X = np.random.rand(n_samples) * 10 - 5 X = np.sort(X) if n_repeat == 1: y = f(X) + np.random.normal(0.0, noise, n_samples) else: y = np.zeros((n_samples, n_repeat)) for i in range(n_repeat): y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples) X = X.reshape((n_samples, 1)) return X, y X_train = [] y_train = [] for i in range(n_repeat): X, y = generate(n_samples=n_train, noise=noise) X_train.append(X) y_train.append(y) X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat) # Loop over estimators to compare for n, (name, estimator) in enumerate(estimators): # Compute predictions y_predict = np.zeros((n_test, n_repeat)) for i in range(n_repeat): estimator.fit(X_train[i], y_train[i]) y_predict[:, i] = estimator.predict(X_test) # Bias^2 + Variance + Noise decomposition of the mean squared error y_error = np.zeros(n_test) for i in range(n_repeat): for j in range(n_repeat): y_error += (y_test[:, j] - y_predict[:, i]) ** 2 y_error /= (n_repeat * n_repeat) y_noise = np.var(y_test, axis=1) y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2 y_var = np.var(y_predict, axis=1) print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) " " + {3:.4f} (var) + {4:.4f} (noise)".format(name, np.mean(y_error), np.mean(y_bias), np.mean(y_var), np.mean(y_noise))) # Plot figures plt.subplot(2, n_estimators, n + 1) plt.plot(X_test, f(X_test), "b", label="$f(x)$") plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$") for i in range(n_repeat): if i == 0: plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$") else: plt.plot(X_test, y_predict[:, i], "r", alpha=0.05) plt.plot(X_test, np.mean(y_predict, axis=1), "c", label="$\mathbb{E}_{LS} \^y(x)$") plt.xlim([-5, 5]) plt.title(name) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, y_error, "r", label="$error(x)$") plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"), plt.plot(X_test, y_var, "g", label="$variance(x)$"), plt.plot(X_test, y_noise, "c", label="$noise(x)$") plt.xlim([-5, 5]) plt.ylim([0, 0.1]) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.show()
bsd-3-clause
nesterione/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
HyukjinKwon/spark
python/pyspark/sql/pandas/typehints.py
26
6324
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark.sql.pandas.utils import require_minimum_pandas_version def infer_eval_type(sig): """ Infers the evaluation type in :class:`pyspark.rdd.PythonEvalType` from :class:`inspect.Signature` instance. """ from pyspark.sql.pandas.functions import PandasUDFType require_minimum_pandas_version() import pandas as pd annotations = {} for param in sig.parameters.values(): if param.annotation is not param.empty: annotations[param.name] = param.annotation # Check if all arguments have type hints parameters_sig = [annotations[parameter] for parameter in sig.parameters if parameter in annotations] if len(parameters_sig) != len(sig.parameters): raise ValueError( "Type hints for all parameters should be specified; however, got %s" % sig) # Check if the return has a type hint return_annotation = sig.return_annotation if sig.empty is return_annotation: raise ValueError( "Type hint for the return type should be specified; however, got %s" % sig) # Series, Frame or Union[DataFrame, Series], ... -> Series or Frame is_series_or_frame = ( all(a == pd.Series or # Series a == pd.DataFrame or # DataFrame check_union_annotation( # Union[DataFrame, Series] a, parameter_check_func=lambda na: na == pd.Series or na == pd.DataFrame) for a in parameters_sig) and (return_annotation == pd.Series or return_annotation == pd.DataFrame)) # Iterator[Tuple[Series, Frame or Union[DataFrame, Series], ...] -> Iterator[Series or Frame] is_iterator_tuple_series_or_frame = ( len(parameters_sig) == 1 and check_iterator_annotation( # Iterator parameters_sig[0], parameter_check_func=lambda a: check_tuple_annotation( # Tuple a, parameter_check_func=lambda ta: ( ta == Ellipsis or # ... ta == pd.Series or # Series ta == pd.DataFrame or # DataFrame check_union_annotation( # Union[DataFrame, Series] ta, parameter_check_func=lambda na: ( na == pd.Series or na == pd.DataFrame))))) and check_iterator_annotation( return_annotation, parameter_check_func=lambda a: a == pd.DataFrame or a == pd.Series)) # Iterator[Series, Frame or Union[DataFrame, Series]] -> Iterator[Series or Frame] is_iterator_series_or_frame = ( len(parameters_sig) == 1 and check_iterator_annotation( parameters_sig[0], parameter_check_func=lambda a: ( a == pd.Series or # Series a == pd.DataFrame or # DataFrame check_union_annotation( # Union[DataFrame, Series] a, parameter_check_func=lambda ua: ua == pd.Series or ua == pd.DataFrame))) and check_iterator_annotation( return_annotation, parameter_check_func=lambda a: a == pd.DataFrame or a == pd.Series)) # Series, Frame or Union[DataFrame, Series], ... -> Any is_series_or_frame_agg = ( all(a == pd.Series or # Series a == pd.DataFrame or # DataFrame check_union_annotation( # Union[DataFrame, Series] a, parameter_check_func=lambda ua: ua == pd.Series or ua == pd.DataFrame) for a in parameters_sig) and ( # It's tricky to include only types which pd.Series constructor can take. # Simply exclude common types used here for now (which becomes object # types Spark can't recognize). return_annotation != pd.Series and return_annotation != pd.DataFrame and not check_iterator_annotation(return_annotation) and not check_tuple_annotation(return_annotation) )) if is_series_or_frame: return PandasUDFType.SCALAR elif is_iterator_tuple_series_or_frame or is_iterator_series_or_frame: return PandasUDFType.SCALAR_ITER elif is_series_or_frame_agg: return PandasUDFType.GROUPED_AGG else: raise NotImplementedError("Unsupported signature: %s." % sig) def check_tuple_annotation(annotation, parameter_check_func=None): # Python 3.6 has `__name__`. Python 3.7 and 3.8 have `_name`. # Check if the name is Tuple first. After that, check the generic types. name = getattr(annotation, "_name", getattr(annotation, "__name__", None)) return name == "Tuple" and ( parameter_check_func is None or all(map(parameter_check_func, annotation.__args__))) def check_iterator_annotation(annotation, parameter_check_func=None): name = getattr(annotation, "_name", getattr(annotation, "__name__", None)) return name == "Iterator" and ( parameter_check_func is None or all(map(parameter_check_func, annotation.__args__))) def check_union_annotation(annotation, parameter_check_func=None): import typing # Note that we cannot rely on '__origin__' in other type hints as it has changed from version # to version. For example, it's abc.Iterator in Python 3.7 but typing.Iterator in Python 3.6. origin = getattr(annotation, "__origin__", None) return origin == typing.Union and ( parameter_check_func is None or all(map(parameter_check_func, annotation.__args__)))
apache-2.0
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/indexes/period/test_arithmetic.py
2
4488
import numpy as np import pytest import pandas as pd from pandas import PeriodIndex, period_range import pandas.util.testing as tm class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # PeriodIndex.shift is used by __add__ and __sub__ def test_pi_shift_ndarray(self): idx = PeriodIndex( ["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx" ) result = idx.shift(np.array([1, 2, 3, 4])) expected = PeriodIndex( ["2011-02", "2011-04", "NaT", "2011-08"], freq="M", name="idx" ) tm.assert_index_equal(result, expected) result = idx.shift(np.array([1, -2, 3, -4])) expected = PeriodIndex( ["2011-02", "2010-12", "NaT", "2010-12"], freq="M", name="idx" ) tm.assert_index_equal(result, expected) def test_shift(self): pi1 = period_range(freq="A", start="1/1/2001", end="12/1/2009") pi2 = period_range(freq="A", start="1/1/2002", end="12/1/2010") tm.assert_index_equal(pi1.shift(0), pi1) assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = period_range(freq="A", start="1/1/2001", end="12/1/2009") pi2 = period_range(freq="A", start="1/1/2000", end="12/1/2008") assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) pi1 = period_range(freq="M", start="1/1/2001", end="12/1/2009") pi2 = period_range(freq="M", start="2/1/2001", end="1/1/2010") assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = period_range(freq="M", start="1/1/2001", end="12/1/2009") pi2 = period_range(freq="M", start="12/1/2000", end="11/1/2009") assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) pi1 = period_range(freq="D", start="1/1/2001", end="12/1/2009") pi2 = period_range(freq="D", start="1/2/2001", end="12/2/2009") assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = period_range(freq="D", start="1/1/2001", end="12/1/2009") pi2 = period_range(freq="D", start="12/31/2000", end="11/30/2009") assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) def test_shift_corner_cases(self): # GH#9903 idx = pd.PeriodIndex([], name="xxx", freq="H") with pytest.raises(TypeError): # period shift doesn't accept freq idx.shift(1, freq="H") tm.assert_index_equal(idx.shift(0), idx) tm.assert_index_equal(idx.shift(3), idx) idx = pd.PeriodIndex( ["2011-01-01 10:00", "2011-01-01 11:00", "2011-01-01 12:00"], name="xxx", freq="H", ) tm.assert_index_equal(idx.shift(0), idx) exp = pd.PeriodIndex( ["2011-01-01 13:00", "2011-01-01 14:00", "2011-01-01 15:00"], name="xxx", freq="H", ) tm.assert_index_equal(idx.shift(3), exp) exp = pd.PeriodIndex( ["2011-01-01 07:00", "2011-01-01 08:00", "2011-01-01 09:00"], name="xxx", freq="H", ) tm.assert_index_equal(idx.shift(-3), exp) def test_shift_nat(self): idx = PeriodIndex( ["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx" ) result = idx.shift(1) expected = PeriodIndex( ["2011-02", "2011-03", "NaT", "2011-05"], freq="M", name="idx" ) tm.assert_index_equal(result, expected) assert result.name == expected.name def test_shift_gh8083(self): # test shift for PeriodIndex # GH#8083 drange = pd.period_range("20130101", periods=5, freq="D") result = drange.shift(1) expected = PeriodIndex( ["2013-01-02", "2013-01-03", "2013-01-04", "2013-01-05", "2013-01-06"], freq="D", ) tm.assert_index_equal(result, expected) def test_shift_periods(self): # GH #22458 : argument 'n' was deprecated in favor of 'periods' idx = period_range(freq="A", start="1/1/2001", end="12/1/2009") tm.assert_index_equal(idx.shift(periods=0), idx) tm.assert_index_equal(idx.shift(0), idx) with tm.assert_produces_warning(FutureWarning, check_stacklevel=True): tm.assert_index_equal(idx.shift(n=0), idx)
apache-2.0
LiaoPan/scikit-learn
sklearn/cluster/spectral.py
233
18153
# -*- coding: utf-8 -*- """Algorithms for spectral clustering""" # Author: Gael Varoquaux [email protected] # Brian Cheung # Wei LI <[email protected]> # License: BSD 3 clause import warnings import numpy as np from ..base import BaseEstimator, ClusterMixin from ..utils import check_random_state, as_float_array from ..utils.validation import check_array from ..utils.extmath import norm from ..metrics.pairwise import pairwise_kernels from ..neighbors import kneighbors_graph from ..manifold import spectral_embedding from .k_means_ import k_means def discretize(vectors, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None): """Search for a partition matrix (clustering) which is closest to the eigenvector embedding. Parameters ---------- vectors : array-like, shape: (n_samples, n_clusters) The embedding space of the samples. copy : boolean, optional, default: True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, optional, default: 30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, optional, default: 30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state: int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the of the rotation matrix Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """ from scipy.sparse import csc_matrix from scipy.linalg import LinAlgError random_state = check_random_state(random_state) vectors = as_float_array(vectors, copy=copy) eps = np.finfo(float).eps n_samples, n_components = vectors.shape # Normalize the eigenvectors to an equal length of a vector of ones. # Reorient the eigenvectors to point in the negative direction with respect # to the first element. This may have to do with constraining the # eigenvectors to lie in a specific quadrant to make the discretization # search easier. norm_ones = np.sqrt(n_samples) for i in range(vectors.shape[1]): vectors[:, i] = (vectors[:, i] / norm(vectors[:, i])) \ * norm_ones if vectors[0, i] != 0: vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i]) # Normalize the rows of the eigenvectors. Samples should lie on the unit # hypersphere centered at the origin. This transforms the samples in the # embedding space to the space of partition matrices. vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis] svd_restarts = 0 has_converged = False # If there is an exception we try to randomize and rerun SVD again # do this max_svd_restarts times. while (svd_restarts < max_svd_restarts) and not has_converged: # Initialize first column of rotation matrix with a row of the # eigenvectors rotation = np.zeros((n_components, n_components)) rotation[:, 0] = vectors[random_state.randint(n_samples), :].T # To initialize the rest of the rotation matrix, find the rows # of the eigenvectors that are as orthogonal to each other as # possible c = np.zeros(n_samples) for j in range(1, n_components): # Accumulate c to ensure row is as orthogonal as possible to # previous picks as well as current one c += np.abs(np.dot(vectors, rotation[:, j - 1])) rotation[:, j] = vectors[c.argmin(), :].T last_objective_value = 0.0 n_iter = 0 while not has_converged: n_iter += 1 t_discrete = np.dot(vectors, rotation) labels = t_discrete.argmax(axis=1) vectors_discrete = csc_matrix( (np.ones(len(labels)), (np.arange(0, n_samples), labels)), shape=(n_samples, n_components)) t_svd = vectors_discrete.T * vectors try: U, S, Vh = np.linalg.svd(t_svd) svd_restarts += 1 except LinAlgError: print("SVD did not converge, randomizing and trying again") break ncut_value = 2.0 * (n_samples - S.sum()) if ((abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max)): has_converged = True else: # otherwise calculate rotation and continue last_objective_value = ncut_value rotation = np.dot(Vh.T, U.T) if not has_converged: raise LinAlgError('SVD did not converge') return labels def spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10, eigen_tol=0.0, assign_labels='kmeans'): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- affinity : array-like or sparse matrix, shape: (n_samples, n_samples) The affinity matrix describing the relationship of the samples to embed. **Must be symmetric**. Possible examples: - adjacency matrix of a graph, - heat kernel of the pairwise distance matrix of the samples, - symmetric k-nearest neighbours connectivity matrix of the samples. n_clusters : integer, optional Number of clusters to extract. n_components : integer, optional, default is n_clusters Number of eigen vectors to use for the spectral embedding eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. See the 'Multiclass spectral clustering' paper referenced below for more details on the discretization approach. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ------ The graph should contain only one connect component, elsewhere the results make little sense. This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering. """ if assign_labels not in ('kmeans', 'discretize'): raise ValueError("The 'assign_labels' parameter should be " "'kmeans' or 'discretize', but '%s' was given" % assign_labels) random_state = check_random_state(random_state) n_components = n_clusters if n_components is None else n_components maps = spectral_embedding(affinity, n_components=n_components, eigen_solver=eigen_solver, random_state=random_state, eigen_tol=eigen_tol, drop_first=False) if assign_labels == 'kmeans': _, labels, _ = k_means(maps, n_clusters, random_state=random_state, n_init=n_init) else: labels = discretize(maps, random_state=random_state) return labels class SpectralClustering(BaseEstimator, ClusterMixin): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. When calling ``fit``, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF) kernel of the euclidean distanced ``d(X, X)``:: np.exp(-gamma * d(X,X) ** 2) or a k-nearest neighbors connectivity matrix. Alternatively, using ``precomputed``, a user-provided affinity matrix can be used. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- n_clusters : integer, optional The dimension of the projection subspace. affinity : string, array-like or callable, default 'rbf' If a string, this may be one of 'nearest_neighbors', 'precomputed', 'rbf' or one of the kernels supported by `sklearn.metrics.pairwise_kernels`. Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm. gamma : float Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for ``affinity='nearest_neighbors'``. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. n_neighbors : integer Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for ``affinity='rbf'``. eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. kernel_params : dictionary of string to any, optional Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. Attributes ---------- affinity_matrix_ : array-like, shape (n_samples, n_samples) Affinity matrix used for clustering. Available only if after calling ``fit``. labels_ : Labels of each point Notes ----- If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm by applying the Gaussian (RBF, heat) kernel:: np.exp(- X ** 2 / (2. * delta ** 2)) Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points. If the pyamg package is installed, it is used: this greatly speeds up computation. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf """ def __init__(self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1., affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, coef0=1, kernel_params=None): self.n_clusters = n_clusters self.eigen_solver = eigen_solver self.random_state = random_state self.n_init = n_init self.gamma = gamma self.affinity = affinity self.n_neighbors = n_neighbors self.eigen_tol = eigen_tol self.assign_labels = assign_labels self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def fit(self, X, y=None): """Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity matrix. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) OR, if affinity==`precomputed`, a precomputed affinity matrix of shape (n_samples, n_samples) """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) if X.shape[0] == X.shape[1] and self.affinity != "precomputed": warnings.warn("The spectral clustering API has changed. ``fit``" "now constructs an affinity matrix from data. To use" " a custom affinity matrix, " "set ``affinity=precomputed``.") if self.affinity == 'nearest_neighbors': connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors, include_self=True) self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == 'precomputed': self.affinity_matrix_ = X else: params = self.kernel_params if params is None: params = {} if not callable(self.affinity): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity, filter_params=True, **params) random_state = check_random_state(self.random_state) self.labels_ = spectral_clustering(self.affinity_matrix_, n_clusters=self.n_clusters, eigen_solver=self.eigen_solver, random_state=random_state, n_init=self.n_init, eigen_tol=self.eigen_tol, assign_labels=self.assign_labels) return self @property def _pairwise(self): return self.affinity == "precomputed"
bsd-3-clause
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/mne-python-0.10/examples/realtime/ftclient_rt_average.py
14
2841
""" ======================================================== Compute real-time evoked responses with FieldTrip client ======================================================== This example demonstrates how to connect the MNE real-time system to the Fieldtrip buffer using FieldTripClient class. This example was tested in simulation mode neuromag2ft --file MNE-sample-data/MEG/sample/sample_audvis_raw.fif using a modified version of neuromag2ft available at http://neuro.hut.fi/~mainak/neuromag2ft-2.0.0.zip to run the FieldTrip buffer. Then running this example acquires the data on the client side. Since the Fieldtrip buffer does not contain all the measurement information required by the MNE real-time processing pipeline, an info dictionary must be provided to instantiate FieldTripClient. Alternatively, the MNE-Python script will try to guess the missing measurement info from the Fieldtrip Header object. Together with RtEpochs, this can be used to compute evoked responses using moving averages. """ # Author: Mainak Jas <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.viz import plot_events from mne.realtime import FieldTripClient, RtEpochs print(__doc__) # select the left-auditory condition event_id, tmin, tmax = 1, -0.2, 0.5 # user must provide list of bad channels because # FieldTrip header object does not provide that bads = ['MEG 2443', 'EEG 053'] plt.ion() # make plot interactive _, ax = plt.subplots(2, 1, figsize=(8, 8)) # create subplots with FieldTripClient(host='localhost', port=1972, tmax=150, wait_max=10) as rt_client: # get measurement info guessed by MNE-Python raw_info = rt_client.get_measurement_info() # select gradiometers picks = mne.pick_types(raw_info, meg='grad', eeg=False, eog=True, stim=True, exclude=bads) # create the real-time epochs object rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, stim_channel='STI 014', picks=picks, reject=dict(grad=4000e-13, eog=150e-6), decim=1, isi_max=10.0, proj=None) # start the acquisition rt_epochs.start() for ii, ev in enumerate(rt_epochs.iter_evoked()): print("Just got epoch %d" % (ii + 1)) if ii == 0: evoked = ev else: evoked += ev ax[0].cla() ax[1].cla() # clear axis plot_events(rt_epochs.events[-5:], sfreq=ev.info['sfreq'], first_samp=-rt_client.tmin_samp, axes=ax[0]) evoked.plot(axes=ax[1]) # plot on second subplot ax[1].set_title('Evoked response for gradiometer channels' '(event_id = %d)' % event_id) plt.pause(0.05) plt.draw() plt.close()
bsd-3-clause
aleaf/pest_tools
load_jco.py
2
2515
import numpy as np import pandas as pd import struct def load_jco(file_name, return_par = True, return_obs = True): '''Read PEST Jacobian matrix file (binary) into Pandas data frame Parameters ---------- file_name : string File name for .jco (binary) produced by PEST return_par : {True, False}, optional If True (default) return list of parameters return_obs : {True, False}, optional If True (default) return list of observations Returns ------- jco_df : Pandas DataFrame DataFrame of the Jacobian Matrix. Index entries of DataFrame are observations (rows). Columns are parameters par_names : list List of parmeter names. Returned if return_par = True ob_names : list List of observation names. Returned if return_obs = True ''' f = open(file_name,'rb') #--the header data type npar = abs(struct.unpack('i', f.read(4))[0]) nobs = abs(struct.unpack('i', f.read(4))[0]) count = abs(struct.unpack('i', f.read(4))[0]) x = np.zeros((nobs, npar)) #--read all data records for record in range(count): if count > 1000000: if record % 1000000 == 0: percent = (float(record) / count) *100 print '%.1f Percent; Record %s of %s \r' % (percent, record, count) j = struct.unpack('i', f.read(4))[0] col = ((j-1) / nobs) + 1 row = j - ((col - 1) * nobs) data = struct.unpack('d', f.read(8))[0] x[row-1, col-1] = data #--read parameter names par_names = [] for i in range(npar): par_name = struct.unpack('12s', f.read(12))[0].strip().lower() par_names.append(par_name) #print 'par:',pn #--read obs names obs_names = [] for i in range(nobs): ob_name = struct.unpack('20s', f.read(20))[0].strip().lower() obs_names.append(ob_name) #print 'obs:',on f.close() jco_df = pd.DataFrame(x, index = obs_names, columns = par_names) # Clean Up del(x) if return_par == True and return_obs == True: return jco_df, par_names, obs_names if return_par == True and return_obs == False: return jco_df, par_names if return_par == False and return_obs == True: return jco_df, obs_names if return_par == False and return_obs == False: return jco_df
mit
nwjs/chromium.src
tools/perf/cli_tools/soundwave/tables/timeseries.py
10
5908
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import collections from cli_tools.soundwave import pandas_sqlite from core.external_modules import pandas TABLE_NAME = 'timeseries' COLUMN_TYPES = ( # Index columns. ('test_suite', str), # benchmark name ('loading.mobile') ('measurement', str), # metric name ('timeToFirstContentfulPaint') ('bot', str), # master/builder name ('ChromiumPerf.android-nexus5') ('test_case', str), # story name ('Wikipedia') ('point_id', 'int64'), # monotonically increasing id for time series axis # Other columns. ('value', 'float64'), # value recorded for test_path at given point_id ('timestamp', 'datetime64[ns]'), # when the value got stored on dashboard ('commit_pos', 'int64'), # chromium commit position ('chromium_rev', str), # git hash of chromium revision ('clank_rev', str), # git hash of clank revision ('trace_url', str), # URL to a sample trace. ('units', str), # unit of measurement (e.g. 'ms', 'bytes') ('improvement_direction', str), # good direction ('up', 'down', 'unknown') ) COLUMNS = tuple(c for c, _ in COLUMN_TYPES) INDEX = COLUMNS[:5] # Copied from https://goo.gl/DzGYpW. _CODE_TO_IMPROVEMENT_DIRECTION = { 0: 'up', 1: 'down', } TEST_PATH_PARTS = ( 'master', 'builder', 'test_suite', 'measurement', 'test_case') # Query template to find all data points of a given test_path (i.e. fixed # test_suite, measurement, bot, and test_case values). _QUERY_TIME_SERIES = ( 'SELECT * FROM %s WHERE %s' % (TABLE_NAME, ' AND '.join('%s=?' % c for c in INDEX[:-1]))) # Required columns to request from /timeseries2 API. _TIMESERIES2_COLS = [ 'revision', 'revisions', 'avg', 'timestamp', 'annotations'] class Key(collections.namedtuple('Key', INDEX[:-1])): """Uniquely identifies a single timeseries.""" @classmethod def FromDict(cls, *args, **kwargs): kwargs = dict(*args, **kwargs) kwargs.setdefault('test_case', '') # test_case is optional. return cls(**kwargs) def AsDict(self): return dict(zip(self._fields, self)) def AsApiParams(self): """Return a dict with params for a /timeseries2 API request.""" params = self.AsDict() if not params['test_case']: del params['test_case'] # test_case is optional. params['columns'] = ','.join(_TIMESERIES2_COLS) return params def DataFrame(rows=None): return pandas_sqlite.DataFrame(COLUMN_TYPES, index=INDEX, rows=rows) def _ParseIntValue(value, on_error=-1): # Try to parse as int and, in case of error, return a pre-defined value. try: return int(value) except StandardError: return on_error def _ParseConfigFromTestPath(test_path): if isinstance(test_path, Key): return test_path.AsDict() values = test_path.split('/', len(TEST_PATH_PARTS) - 1) if len(values) < len(TEST_PATH_PARTS): values.append('') # Possibly missing test_case. if len(values) != len(TEST_PATH_PARTS): raise ValueError(test_path) config = dict(zip(TEST_PATH_PARTS, values)) config['bot'] = '%s/%s' % (config.pop('master'), config.pop('builder')) return config def DataFrameFromJson(test_path, data): if isinstance(test_path, Key): return _DataFrameFromJsonV2(test_path, data) else: # TODO(crbug.com/907121): Remove when we can switch entirely to v2. return _DataFrameFromJsonV1(test_path, data) def _DataFrameFromJsonV2(ts_key, data): rows = [] for point in data['data']: point = dict(zip(_TIMESERIES2_COLS, point)) rows.append(ts_key + ( point['revision'], # point_id point['avg'], # value point['timestamp'], # timestamp _ParseIntValue(point['revisions']['r_commit_pos']), # commit_pos point['revisions'].get('r_chromium'), # chromium_rev point['revisions'].get('r_clank'), # clank_rev point['annotations'].get('a_tracing_uri'), # trace_url data['units'], # units data['improvement_direction'], # improvement_direction )) return DataFrame(rows) def _DataFrameFromJsonV1(test_path, data): # The dashboard API returns an empty list if there is no recent data for the # timeseries. if not data: return DataFrame() assert test_path == data['test_path'] config = _ParseConfigFromTestPath(data['test_path']) config['improvement_direction'] = _CODE_TO_IMPROVEMENT_DIRECTION.get( data['improvement_direction'], 'unknown') timeseries = data['timeseries'] # The first element in timeseries list contains header with column names. header = timeseries[0] rows = [] # Remaining elements contain the values for each row. for values in timeseries[1:]: row = config.copy() row.update(zip(header, values)) row['point_id'] = row['revision'] row['commit_pos'] = _ParseIntValue(row['r_commit_pos']) row['chromium_rev'] = row.get('r_chromium') row['clank_rev'] = row.get('r_clank', None) rows.append(tuple(row.get(k) for k in COLUMNS)) return DataFrame(rows) def GetTimeSeries(con, test_path, extra_cond=None): """Get the records for all data points on the given test_path. Returns: A pandas.DataFrame with all records found. """ config = _ParseConfigFromTestPath(test_path) params = tuple(config[c] for c in INDEX[:-1]) query = _QUERY_TIME_SERIES if extra_cond is not None: query = ' '.join([query, extra_cond]) return pandas.read_sql(query, con, params=params, parse_dates=['timestamp']) def GetMostRecentPoint(con, test_path): """Find the record for the most recent data point on the given test_path. Returns: A pandas.Series with the record if found, or None otherwise. """ df = GetTimeSeries(con, test_path, 'ORDER BY timestamp DESC LIMIT 1') return df.iloc[0] if not df.empty else None
bsd-3-clause
pradyu1993/scikit-learn
sklearn/semi_supervised/tests/test_label_propagation.py
3
1845
""" test the label propagation module """ import nose import numpy as np from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) nose.tools.assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
bsd-3-clause
tmhm/scikit-learn
sklearn/datasets/tests/test_mldata.py
384
5221
"""Test functionality of mldata fetching utilities.""" import os import shutil import tempfile import scipy as sp from sklearn import datasets from sklearn.datasets import mldata_filename, fetch_mldata from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import mock_mldata_urlopen from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import with_setup from sklearn.utils.testing import assert_array_equal tmpdir = None def setup_tmpdata(): # create temporary dir global tmpdir tmpdir = tempfile.mkdtemp() os.makedirs(os.path.join(tmpdir, 'mldata')) def teardown_tmpdata(): # remove temporary dir if tmpdir is not None: shutil.rmtree(tmpdir) def test_mldata_filename(): cases = [('datasets-UCI iris', 'datasets-uci-iris'), ('news20.binary', 'news20binary'), ('book-crossing-ratings-1.0', 'book-crossing-ratings-10'), ('Nile Water Level', 'nile-water-level'), ('MNIST (original)', 'mnist-original')] for name, desired in cases: assert_equal(mldata_filename(name), desired) @with_setup(setup_tmpdata, teardown_tmpdata) def test_download(): """Test that fetch_mldata is able to download and cache a data set.""" _urlopen_ref = datasets.mldata.urlopen datasets.mldata.urlopen = mock_mldata_urlopen({ 'mock': { 'label': sp.ones((150,)), 'data': sp.ones((150, 4)), }, }) try: mock = fetch_mldata('mock', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data"]: assert_in(n, mock) assert_equal(mock.target.shape, (150,)) assert_equal(mock.data.shape, (150, 4)) assert_raises(datasets.mldata.HTTPError, fetch_mldata, 'not_existing_name') finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_one_column(): _urlopen_ref = datasets.mldata.urlopen try: dataname = 'onecol' # create fake data set in cache x = sp.arange(6).reshape(2, 3) datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}}) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "data"]: assert_in(n, dset) assert_not_in("target", dset) assert_equal(dset.data.shape, (2, 3)) assert_array_equal(dset.data, x) # transposing the data array dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir) assert_equal(dset.data.shape, (3, 2)) finally: datasets.mldata.urlopen = _urlopen_ref @with_setup(setup_tmpdata, teardown_tmpdata) def test_fetch_multiple_column(): _urlopen_ref = datasets.mldata.urlopen try: # create fake data set in cache x = sp.arange(6).reshape(2, 3) y = sp.array([1, -1]) z = sp.arange(12).reshape(4, 3) # by default dataname = 'threecol-default' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ( { 'label': y, 'data': x, 'z': z, }, ['z', 'data', 'label'], ), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by order dataname = 'threecol-order' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['y', 'x', 'z']), }) dset = fetch_mldata(dataname, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "z"]: assert_in(n, dset) assert_not_in("x", dset) assert_not_in("y", dset) assert_array_equal(dset.data, x) assert_array_equal(dset.target, y) assert_array_equal(dset.z, z.T) # by number dataname = 'threecol-number' datasets.mldata.urlopen = mock_mldata_urlopen({ dataname: ({'y': y, 'x': x, 'z': z}, ['z', 'x', 'y']), }) dset = fetch_mldata(dataname, target_name=2, data_name=0, data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) assert_array_equal(dset.data, z) assert_array_equal(dset.target, y) # by name dset = fetch_mldata(dataname, target_name='y', data_name='z', data_home=tmpdir) for n in ["COL_NAMES", "DESCR", "target", "data", "x"]: assert_in(n, dset) assert_not_in("y", dset) assert_not_in("z", dset) finally: datasets.mldata.urlopen = _urlopen_ref
bsd-3-clause
qiudebo/13learn
code/matplotlib/aqy/aqy_radar_chart3.py
2
2100
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'qiudebo' import matplotlib.pyplot as plt from math import pi if __name__ == '__main__': data1 = (8.5, 8.2, 7.7, 7.8, 7.9, 8.4, 8.1, 8.3, 8.1, 8.1, 10.0, 8.5) data2 = (8.9, 8.5, 8.2, 8.0, 7.9, 8.3, 8.0, 8.1, 7.9, 8.0, 9.3, 8.9) labels = (u"白羊座", u"双鱼座", u"水平座", u"摩羯座", u"射手座", u"天蝎座", u"天秤座", u"处女座", u"狮子座", u"巨蟹座", u"双子座", u"金牛座") N = len(labels) x_as = [n / float(N) * 2 * pi for n in range(N)] data1 += data1[:1] x_as += x_as[:1] data2 += data2[:1] plt.rc('axes', linewidth=0.5, edgecolor="#888888") ax = plt.subplot(111, polar=True) ax.set_theta_offset(pi / 2) ax.set_theta_direction(-1) ax.set_rlabel_position(0) ax.xaxis.grid(True, color="#888888", linestyle='solid', linewidth=0.5) ax.yaxis.grid(True, color="#888888", linestyle='solid', linewidth=0.5) plt.xticks(x_as[:-1], []) plt.yticks([2, 4, 6, 8, 10], ["2", "4", "6", "8", "10"]) ax.plot(x_as, data1, linewidth=0, linestyle='solid', zorder=3, label=u'我的前半生') ax.plot(x_as, data2, linewidth=0, linestyle='solid', zorder=3, label=u'三生三世十里桃花') ax.fill(x_as, data1, 'b', alpha=0.3) ax.fill(x_as, data2, 'g', alpha=0.3) plt.ylim(0, 10) for i in range(N): angle_rad = i / float(N) * 2 * pi if angle_rad == 0: ha, distance_ax = "center", 10 elif 0 < angle_rad < pi: ha, distance_ax = "left", 1 elif angle_rad == pi: ha, distance_ax = "center", 1 else: ha, distance_ax = "right", 1 ax.text(angle_rad, 10 + distance_ax, labels[i], size=10, horizontalalignment=ha, verticalalignment="center") plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 # plt.legend() plt.show()
mit
edwinschrauwen/interpi
rcv.py
1
1963
#!/usr/bin/python3 from datetime import datetime #import matplotlib.pyplot as pyplot import RPi.GPIO as GPIO #RECEIVED_SIGNAL = [[], []] #[[time of reading], [signal reading]] #sigs = [ [], [] ] sigs = [] MAX_DURATION = 2 RECEIVE_PIN = 14 short_delay = 100 long_delay = 180 extended_delay = 1000 message_delay = 8000 terminator_delay = 1000 if __name__ == '__main__': GPIO.setmode(GPIO.BCM) GPIO.setup(RECEIVE_PIN, GPIO.IN) cumulative_time = 0 beginning_time = datetime.now() previous_sig = -1 previous_time = datetime.now() print('**Started recording**') sigcount = 0 while cumulative_time < MAX_DURATION: time_delta = datetime.now() - beginning_time sig = GPIO.input(RECEIVE_PIN) if sig != previous_sig: sigtime = (datetime.now() - previous_time).microseconds if sigtime > 0: print( ' ' + str( sigtime ) + '* ' + str( previous_sig ) ) #print previous_sig, if sigtime > extended_delay: print( '-' ) sigs.append(' ') sigcount += 1 if sigcount >= 34: sigcount = 0 sigs.append('\n') if previous_sig == 1: if sigtime > short_delay: actualsig = 1 if sigtime > long_delay: actualsig = 0 #print actualsig, sigs.append(str(actualsig)) #print str( sigtime ) + ' ' + str( actualsig ) previous_time = datetime.now() previous_sig = sig cumulative_time = time_delta.seconds print( '**Ended recording**' ) #print len(RECEIVED_SIGNAL[0]), 'samples recorded' GPIO.cleanup() print( '**Processing results**' ) for i in range(len(sigs)): # timestamp = sigs[0][i] sig = sigs[i] print( str(sig), end='' )
gpl-3.0
rosswhitfield/mantid
qt/applications/workbench/workbench/plotting/plotscriptgenerator/test/test_plotscriptgeneratorfitting.py
3
4406
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2020 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. import ast import re import json import unittest from unittest.mock import Mock from matplotlib.backend_bases import FigureManagerBase from mantidqt.widgets.fitpropertybrowser import FitPropertyBrowser from workbench.plotting.plotscriptgenerator.fitting import get_fit_cmds, BASE_FIT_COMMAND, BASE_FIT_INCLUDE EXAMPLE_FIT_PROPERTIES = {'EndX': 1018, "Function": "name=Lorentzian,Amplitude=22078.3," "PeakCentre=492.226,FWHM=56.265", "InputWorkspace": "TestWorkspace", "MaxIterations": 5000, "Normalise": True, "Output": "TestWorkspaceOutput", "OutputCompositeMembers": True, "StartX": 5.6, "WorkspaceIndex": 4} # This is an example of whats returned by the method getFitAlgorithmParameters in the FitPropertyBrowser EXAMPLE_FIT_ALG_PROPERTIES = json.dumps({'name': 'Fit', 'properties': EXAMPLE_FIT_PROPERTIES, 'version': 1}) class PlotScriptGeneratorFittingTest(unittest.TestCase): def setUp(self): self.mock_fig = Mock() self.mock_browser = Mock(spec=FitPropertyBrowser) self.mock_fig.canvas.manager.fit_browser = self.mock_browser def test_fit_commands_empty_if_no_fit(self): self.mock_browser.fit_result_ws_name = "" commands, headers = get_fit_cmds(self.mock_fig) self.assertEqual(commands, []) self.assertEqual(headers, []) def test_returns_empty_commands_if_no_fit_browser(self): mock_fig = Mock() # Figure manager base has no fit browser mock_fig.canvas.manager = Mock(spec=FigureManagerBase) commands, headers = get_fit_cmds(mock_fig) self.assertEqual(commands, []) self.assertEqual(headers, []) def test_get_fit_cmds_returns_expected_commands(self): self.mock_browser.fit_result_ws_name = "TestWorkspace" self.mock_browser.getFitAlgorithmParameters.return_value = EXAMPLE_FIT_ALG_PROPERTIES commands, headers = get_fit_cmds(self.mock_fig) self.assertEqual(headers[0], BASE_FIT_INCLUDE) # Should be the 9 algorithm properties + the final call to Fit # Check each is its expected value self.assertEqual(len(commands), len(EXAMPLE_FIT_PROPERTIES) + 1) for i in range(len(commands) - 1): fit_property, fit_value = tuple(commands[i].split('=', 1)) self.assertEqual(EXAMPLE_FIT_PROPERTIES[fit_property], ast.literal_eval(fit_value)) def test_get_fit_commands_returns_expected_fit_algorithm_call(self): self.mock_browser.fit_result_ws_name = "TestWorkspace" self.mock_browser.getFitAlgorithmParameters.return_value = EXAMPLE_FIT_ALG_PROPERTIES commands, headers = get_fit_cmds(self.mock_fig) fit_command = commands[-1] alg_call = re.sub(r'\([^)]*\)', '', fit_command) fit_args = re.findall(r'\((.*?)\)', fit_command)[0].split(',') # check that the alg call is the same # Check correct args are passed into the Fit call self.assertEqual(alg_call, BASE_FIT_COMMAND) self.assertEqual(len(fit_args), len(EXAMPLE_FIT_PROPERTIES)) fit_arg_list = [fit_arg.split('=')[0] for fit_arg in fit_args] self.assertEqual(fit_arg_list, list(EXAMPLE_FIT_PROPERTIES.keys())) def test_get_fit_commands_returns_expected_order(self): self.mock_browser.fit_result_ws_name = "TestWorkspace" self.mock_browser.getFitAlgorithmParameters.return_value = EXAMPLE_FIT_ALG_PROPERTIES commands, headers = get_fit_cmds(self.mock_fig) fit_properties = [fit_command.split('=')[0] for fit_command in commands] # Test some of the properties are in the correct place self.assertEqual(fit_properties[0], 'Function') self.assertEqual(fit_properties[2], 'WorkspaceIndex') self.assertEqual(fit_properties[5], 'EndX') if __name__ == '__main__': unittest.main()
gpl-3.0
openwns/wrowser
openwns/wrowser/Tools.py
1
9632
############################################################################### # This file is part of openWNS (open Wireless Network Simulator) # _____________________________________________________________________________ # # Copyright (C) 2004-2007 # Chair of Communication Networks (ComNets) # Kopernikusstr. 16, D-52074 Aachen, Germany # phone: ++49-241-80-27910, # fax: ++49-241-80-22242 # email: [email protected] # www: http://www.openwns.org # _____________________________________________________________________________ # # openWNS is free software; you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License version 2 as published by the # Free Software Foundation; # # openWNS is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### from PyQt4 import QtCore, QtGui def classAndInstanceDict(instance): """Join class and instance attribute dicts. """ return dict(instance.__class__.__dict__.items() + instance.__dict__.items()) def uniqElements(probeNames): def numCommonElements(probeNames): for i in range(len(probeNames[0].split(';')[0].split('.'))) : prefix = probeNames[0].split('.')[0:i] for probe in probeNames : if prefix != probe.split('.')[0:i] : return i-1 i+=1 return i-1 uniqParts = [] uniqStart = numCommonElements(probeNames) for probe in probeNames : probeNameParts=len(probe.split('.')) uniqParts.append(".".join(probe.split('.')[uniqStart:])) return uniqParts class ParameterWriter: out = None def __init__(self, outstream): self.out = outstream def write(self, name, value, comment=''): if len(comment)>0: comment = " #"+comment if type(value) == str : self.out.write(" "+name + " = \'" + value + "\'") else: self.out.write(" "+name + " = " + str(value)) self.out.write(comment+"\n") class Chameleon: """Class with variable attributes. On instantiation of Chameleon, the object will get as attributes all keyword parameters you specify. """ def __init__(self, **attribs): for name, value in attribs.items(): setattr(self, name, value) def dict2string(dic, separator = "; ", displayNoneValue = False): """Convert a dict to a nice string. """ s = "" for key, value in dic.items(): if len(s) > 0: s += separator if key != None or displayNoneValue: s += str(key) if value != None or displayNoneValue: s += ": " + str(value) return s class ObjectFilterError(Exception): """Raised, if the stringexpression could not be evaluated. """ def __init__(self, stringexpression): self.stringexpression = stringexpression def __str__(self): return "Could not evaluate '" + self.stringexpression + "'" def objectFilter(stringexpression, objectList, viewGetter = classAndInstanceDict): """Return all objects in 'objectList' for which 'stringexpression' applies. 'stringexpression' must be a string containing a valid python expression that can be evaluated against the entries in the dict returned by 'viewGetter' for all instances in 'objectList'. 'viewGetter' defaults to returning the attributes of each object. If you want to specify that 'stringexpression' should be checked against the dict attribute foo, use 'viewGetter = lambda x: x.foo'. Or if you want to check against the attributes of the attribute foo (which then is a class instance), use 'viewGetter = lambda x: classAndInstanceDict(x.foo)'. """ instanceList = [] for instance in objectList: try: if eval(stringexpression, # we don't want globals... {}, viewGetter(instance)): instanceList.append(instance) except NameError: instanceList.append(instance) except: raise ObjectFilterError(stringexpression) return instanceList def convert(expression): """Convert the string 'expression' to its best python representation. convert('1') will return an int, convert('2.3') will return a float and so on. If 'expression' cannot be converted returns 'expression' as string. """ try: return eval(expression, {}, {}) except: return expression class Observable(object): def __init__(self): self.emitter = QtCore.QObject() def __setattr__(self, name, value): object.__setattr__(self, name, value) self.emitter.emit(QtCore.SIGNAL("changed"), name, value, self) self.emitter.emit(QtCore.SIGNAL(name + "_changed"), value) class Observing: def observe(self, callable, subject, attribName = ""): if attribName != "": self.connect(subject.emitter, QtCore.SIGNAL(attribName + "_changed"), callable) else: self.connect(subject.emitter, QtCore.SIGNAL("changed"), callable) class URI(Observable): def __init__(self, scheme = "", user = "", password = "", host = "", port = "", database = "", parameters = ""): Observable.__init__(self) self.scheme = scheme self.user = user self.password = password self.host = host self.port = port self.database = database self.parameters = parameters def toString(self, withPassword = False): uri = self.scheme + "://" if len(self.user) > 0: uri += self.user if withPassword and len(self.password) > 0: uri += ":" + self.password uri += "@" if len(self.host) > 0: uri += self.host if len(self.port) > 0: uri +=":" + self.port if not self.database.startswith("/"): uri += "/" uri += self.database if len(self.parameters) > 0: uri += "?" + self.parameters return uri def __str__(self): return self.toString() def parse(self, uri): def split(s, sep, minsplit, maxsplit): l = s.split(sep, maxsplit - 1) while len(l) < minsplit: l += [""] return l self.scheme, location = split(uri, "://", 2, 2) loginHostPort, databaseParameters = split(location, "/", 2, 2) self.database, self.parameters = split(databaseParameters, "?", 2, 2) if "@" in loginHostPort: login, hostPort = split(loginHostPort, "@", 2, 2) else: login = "" hostPort = loginHostPort if ":" in login: self.user, self.password = split(login, ":", 2, 2) else: self.user = login self.host, self.port = split(hostPort, ":", 2, 2) def renderLineSampleImage(line, width, dpi = 100): import Debug # Debug.printCall(None, (line, width)) from matplotlib.backends.backend_agg import RendererAgg as Renderer from matplotlib.lines import Line2D useValue = True try: from matplotlib.transforms import Value except ImportError: useValue = False from PyQt4 import QtGui attributes = ["antialiased", "color", "dash_capstyle", "dash_joinstyle", "linestyle", "linewidth", "marker", "markeredgecolor", "markeredgewidth", "markerfacecolor", "markersize", "solid_capstyle", "solid_joinstyle"] lineAttributes = dict() for attribute in attributes: lineAttributes[attribute] = getattr(line, "get_" + attribute)() height = max(lineAttributes["linewidth"], lineAttributes["markersize"] * 1.4 + 2 + 2*lineAttributes["markeredgewidth"]) pixmapWidth = int(width + lineAttributes["markersize"] * 1.4 + 2 + 2*lineAttributes["markeredgewidth"]) + 1 markerSize = lineAttributes["markersize"] if(useValue): renderer = Renderer(pixmapWidth, height, Value(dpi)) else: renderer = Renderer(pixmapWidth, height, dpi) linePos = int(height / 2 + 1) sampleLine = Line2D([markerSize, pixmapWidth - markerSize], [linePos, linePos], **lineAttributes) sampleLine.draw(renderer) lineImageStr = renderer.tostring_argb() lineARGB = [map(ord, lineImageStr[i:i+4]) for i in xrange(0, len(lineImageStr), 4)] image = QtGui.QImage(pixmapWidth, height, QtGui.QImage.Format_ARGB32) for x in xrange(pixmapWidth): for y in xrange(int(height)): argb = lineARGB[x + y * pixmapWidth] image.setPixel(x, y, QtGui.qRgba(argb[1], argb[2], argb[3], argb[0])) return image class ProbeFilterValidator(QtGui.QValidator): def __init__(self, probesModel, parent): QtGui.QValidator.__init__(self, parent) self.probesModel = probesModel def validate(self, input, pos): if len(self.probesModel.getProbeNamesFilteredBy(str(input))) == 0: return (QtGui.QValidator.Intermediate, pos) else: return (QtGui.QValidator.Acceptable, pos)
gpl-2.0
medifle/python_6.00.1x
HashGraphs/HashGraphs.py
1
1819
import matplotlib.pyplot as plt import string def loadWords(): '''Returns a list containing the words from PSET 4''' fin = open('/Users/bolo/githubRepo/python_6.00.1x/HashGraphs/words.txt', 'r') wordList = [] for line in fin: wordList.append(line.strip().lower()) return wordList fin.close() ##-------------------------------------------------------- ## The following three hash functions were given to us. def firstHashFunction(s): return string.ascii_lowercase.index(s[0]) def secondHashFunction(s): return string.ascii_lowercase.index(s[-1]) def thirdHashFunction(s): total = 0 for char in s: total += string.ascii_lowercase.index(char) return total % 26 ##---------------------------------------------------------- def doHashing(hashFunction): '''Takes as argument one of the three hash functions defined. Returns a dictionary containing a frequency distribution of all integers returned by the hash function.''' wordList = loadWords() hashedDict = {} for w in wordList: #Convert each word in the wordList to its corresponding hash. hashedWord = hashFunction(w) #Create a frequency distribution of all the integers returned by the hash function. hashedDict[hashedWord] = hashedDict.get(hashedWord, 0) + 1 return hashedDict def plotHash(hashFunction): ''' Takes as argument one of the hash functions defined. Plots frequency distribution of all the integers returned by the hash function.''' plt.bar(doHashing(hashFunction).keys(),doHashing(hashFunction).values(),facecolor='#9999ff', edgecolor='white') plt.ylabel('Number of words in wordlist') plt.xlabel('Hash') plt.title(hashFunction) plt.axis([0, 26, 0, 10000]) plt.show()
mit
apacha/MusicSymbolClassifier
ModelTrainer/reporting/test_classification.py
1
9765
from sklearn import datasets from sklearn.datasets import make_multilabel_classification from sklearn.metrics.tests.test_classification import make_prediction from sklearn.utils.testing import assert_warns_message, assert_equal from reporting.sklearn_reporting import classification_report import numpy as np def test_classification_report_multiclass(): # Test performance report iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.83 0.79 0.81 24 versicolor 0.33 0.10 0.15 31 virginica 0.42 0.90 0.57 20 weighted avg 0.51 0.53 0.47 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 weighted avg 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_digits(): # Test performance report with added digits in floating point values iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.82609 0.79167 0.80851 24 versicolor 0.33333 0.09677 0.15000 31 virginica 0.41860 0.90000 0.57143 20 weighted avg 0.51375 0.53333 0.47310 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names, digits=5) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 weighted avg 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_string_label(): y_true, y_pred, _ = make_prediction(binary=False) y_true = np.array(["blue", "green", "red"])[y_true] y_pred = np.array(["blue", "green", "red"])[y_pred] expected_report = """\ precision recall f1-score support blue 0.83 0.79 0.81 24 green 0.33 0.10 0.15 31 red 0.42 0.90 0.57 20 weighted avg 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) expected_report = """\ precision recall f1-score support a 0.83 0.79 0.81 24 b 0.33 0.10 0.15 31 c 0.42 0.90 0.57 20 weighted avg 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred, target_names=["a", "b", "c"]) assert_equal(report, expected_report) def test_classification_report_multiclass_with_unicode_label(): y_true, y_pred, _ = make_prediction(binary=False) labels = np.array([u"blue\xa2", u"green\xa2", u"red\xa2"]) y_true = labels[y_true] y_pred = labels[y_pred] expected_report = u"""\ precision recall f1-score support blue\xa2 0.83 0.79 0.81 24 green\xa2 0.33 0.10 0.15 31 red\xa2 0.42 0.90 0.57 20 weighted avg 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_long_string_label(): y_true, y_pred, _ = make_prediction(binary=False) labels = np.array(["blue", "green" * 5, "red"]) y_true = labels[y_true] y_pred = labels[y_pred] expected_report = """\ precision recall f1-score support blue 0.83 0.79 0.81 24 greengreengreengreengreen 0.33 0.10 0.15 31 red 0.42 0.90 0.57 20 weighted avg 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_labels_target_names_unequal_length(): y_true = [0, 0, 2, 0, 0] y_pred = [0, 2, 2, 0, 0] target_names = ['class 0', 'class 1', 'class 2'] assert_warns_message(UserWarning, "labels size, 2, does not " "match size of target_names, 3", classification_report, y_true, y_pred, target_names=target_names) def test_multilabel_classification_report(): n_classes = 4 n_samples = 50 _, y_true = make_multilabel_classification(n_features=1, n_samples=n_samples, n_classes=n_classes, random_state=0) _, y_pred = make_multilabel_classification(n_features=1, n_samples=n_samples, n_classes=n_classes, random_state=1) expected_report = """\ precision recall f1-score support 0 0.50 0.67 0.57 24 1 0.51 0.74 0.61 27 2 0.29 0.08 0.12 26 3 0.52 0.56 0.54 27 weighted avg 0.45 0.51 0.46 104 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_multilabel_classification_report_with_samples_averaging(): n_classes = 4 n_samples = 50 _, y_true = make_multilabel_classification(n_features=1, n_samples=n_samples, n_classes=n_classes, random_state=0) _, y_pred = make_multilabel_classification(n_features=1, n_samples=n_samples, n_classes=n_classes, random_state=1) expected_report = """\ precision recall f1-score support 0 0.50 0.67 0.57 24 1 0.51 0.74 0.61 27 2 0.29 0.08 0.12 26 3 0.52 0.56 0.54 27 samples avg 0.46 0.42 0.40 104 """ report = classification_report(y_true, y_pred, average='samples') assert_equal(report, expected_report) def test_classification_report_multiclass_with_micro_averaging(): # Test performance report iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.83 0.79 0.81 24 versicolor 0.33 0.10 0.15 31 virginica 0.42 0.90 0.57 20 micro avg 0.53 0.53 0.53 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names, average='micro') assert_equal(report, expected_report) def test_classification_report_multiclass_with_macro_averaging(): # Test performance report iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.83 0.79 0.81 24 versicolor 0.33 0.10 0.15 31 virginica 0.42 0.90 0.57 20 macro avg 0.53 0.60 0.51 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names, average='macro') assert_equal(report, expected_report) def test_classification_report_binary_averaging(): y_true = [0, 1, 1, 1, 0, 1, 1, 0] y_pred = [0, 0, 1, 1, 1, 0, 1, 0] # print classification report with class names expected_report = """\ precision recall f1-score support 0 0.50 0.67 0.57 3 1 0.75 0.60 0.67 5 binary avg 0.75 0.60 0.67 8 """ report = classification_report(y_true, y_pred, average='binary') assert_equal(report, expected_report)
mit
hsiaoching/streethunt-matcher
streethunt.py
2
8126
# -*- coding: utf-8 -*- import ParsePy import numpy as np import cv2 import sys, os, urllib, csv, json, time, shutil import geopy from math import floor from util import * from geopy import distance from operator import itemgetter import matplotlib.pyplot as plt """ Data Model: db_dict = { 'file0.jpg':{ 'lat':23.7584929, 'lnt':121.4858102,: 'descps':[DESCP0_LIST, DESCP1_LIST, DESCP2_LIST, DESCP3_LIST] 'file1.jpg':{ ... } ... } """ data_points = [] testcase_data = None testcase_video = None db_dict = {} dbname = "database" dirname = "XinYiRd-East" data_file_name = "data.json" NEAR_DISTANCE_THRESHOLD = 25 API_KEY = "AIzaSyBS-HaMAHhazScAOwdTOaclJEGBNptWFss" N_SLICE = 4 def fetch_data(nodes, street_name, direction): #print "Fetching data for " + street_name data = [] #dirname = "%s_%s" % (street_name, direction) global dbname, dirname, db_dict for n in nodes: print str(nodes.index(n) + 1) + "/" + str(len(nodes)) + "(" + str(n.lat) + ", " + str(n.lng) + ")" data.append([n.lat, n.lng]) for i in range(8): url = imageurl(n.lat, n.lng, i * 45) img_file_name = get_img_file_name(n.lat, n.lng, i) if not db_dict.has_key(img_file_name): db_dict[img_file_name] = { 'lat':n.lat, 'lnt':n.lng } save_image(url, dbname, dirname, "sv_%f_%f_%d.jpg" % (n.lat, n.lng, i)) f = open(os.path.join(dbname, dirname, data_file_name), 'w') json.dump(db_dict, f, indent=2) f.close() def load_db(street_name=u"信義路", direction=u"東"): #dirname = street_name + "_" + direction global dirname dirpath = os.path.join(dbname, dirname) query = ParsePy.ParseQuery("Node") query = query.limit(10000).eq("streetName", street_name).eq("direction", direction) nodes = query.fetch() print "There're %d nodes on the server." % (len(nodes)) global files if not os.path.exists(dirpath): fetch_data(nodes, street_name, direction) else: files = [f for f in os.listdir(dirpath) if f[-3:] == "jpg"] data_file_path = os.path.join(dbname, dirname, data_file_name) if os.path.isfile(data_file_path): f = open(data_file_path, 'r') global db_dict db_dict = json.load(f) if db_dict is None: db_dict = {} if not ((len(files) / 8 == len(nodes)) and (len(db_dict) / 8 == len(nodes))): fetch_data(nodes, street_name, direction) else: print "Your database is up-to-date." else: print "data.json file does not exists." fetch_data(nodes, street_name, direction) global data_points data_points = [geopy.Point(n.lat, n.lng) for n in nodes] def compute_db_descts(): print "Start computing descriptors for images in database." has_updated = False global db_dict, dbname, dirname, data_file_name print "There are currently", len(db_dict), "image data in db_dict." start = time.time() n_files = len(db_dict) for i in range(n_files): f = db_dict.keys()[i] if not db_dict[f].has_key('descps'): print "[%04d/%04d] Computing descriptors for %s" % (i + 1, n_files, f) has_updated = True file_path = os.path.join(dbname, dirname, f) descps = [d.tolist() for d in get_descriptor(f_path=file_path, n_slice=N_SLICE)[1]] db_dict[f]['descps'] = descps end = time.time() print "Computing finished. Elapsed time: %.5f sec." % ((end - start) / 1000) if has_updated: f = open(os.path.join(dbname, dirname, data_file_name), 'w') json.dump(db_dict, f, indent=4) f.close() def get_nearby_points(lat, lnt, threshold=NEAR_DISTANCE_THRESHOLD): p = geopy.Point(lat, lnt) near_points = [dp for dp in data_points if distance.distance(p, dp).m < threshold] #for np in near_points: # for i in range(8): # print "sv_%f_%f_%d.jpg" % (np.latitude, np.longitude, i) print "Found", len(near_points), "points" return near_points def get_clip_data(video_name="IMG_2124.mov", id="HK6Kyn3LMr"): #default id is for IMG_2124.mov global testcase_data testcase_data = ParsePy.ParseQuery("Clip").get(id) video_path = os.path.join("testcase", video_name) if os.path.isfile(video_path): global testcase_video testcase_video = cv2.VideoCapture(video_path) if not testcase_video.isOpened(): testcase_video = None print "ERROR: video file isn't opened" else: print "Plase place " + video_name + " under directory testcase/" def compare_frame(frame, lat, lnt, n_slice=4): near_points = get_nearby_points(lat, lnt, NEAR_DISTANCE_THRESHOLD) file_set = [] global dirname for np in near_points: for i in range(8): file_set.append("sv_%f_%f_%d.jpg" % (np.latitude, np.longitude, i)) frame_descp = get_descriptor(img=frame, n_slice=N_SLICE)[1] db_descps = [] for f in file_set: descp = None print f if db_dict[f].has_key('descps'): print "Descriptors are already computed!" descp = db_dict[f]['descps'] else: file_path = os.path.join(dbname, dirname, f) descp = get_descriptor(f_path=file_path, n_slice=N_SLICE)[1] db_dict[f]['descps'] = descp db_descps.append(descp) min_dists = [get_min_dist(d, frame_descp) for d in db_descps] indices, sorted_min_dists = zip(*sorted(enumerate(min_dists), key=itemgetter(1))) print "********************" print "Ranking:" for i in indices: print file_set[i], min_dists[i] return file_set, indices, min_dists[indices[0]] def match(): min_dists = [] changes = [] cmp_lat = -1.0 cmp_lnt = -1.0 n_frame = testcase_video.get(7) output_dir_name = "output" if not os.path.exists(output_dir_name): os.mkdir(output_dir_name) for i in range(len(testcase_data.dataPoints)): #for i in range(1): #i = len(testcase_data.dataPoints) - 7 lat = testcase_data.dataPoints[i]['location']['latitude'] lnt = testcase_data.dataPoints[i]['location']['longitude'] print "[" + str(i * 0.2) + "] (" + str(lat) + ", " + str(lnt) + ")" if lat != cmp_lat and lnt != cmp_lnt: #print "!" changes.append(i) cmp_lat = lat cmp_lnt = lnt print changes #for i in changes: for i in range(1): time = i * 0.2 frame = n_frame * i * 0.2 / testcase_data.length print "[" + str(i * 0.2) + "] (" + str(lat) + ", " + str(lnt) + ") ===> " + str(frame) img_frame = get_specific_frame(testcase_video, frame) cv2.imwrite('%d.jpg' % (i + 1), img_frame) files, indices, min_dist = compare_frame(get_specific_frame(testcase_video, frame), lat, lnt) for j in range(len(files)): src_path = os.path.join(dbname, dirname, files[indices[j]]) des_path = os.path.join(output_dir_name, "%d_%d.jpg" % (i + 1, j + 1)) shutil.copy2(src_path, des_path) print "[%.1f] %.5f" % (time, min_dist) min_dists.append(min_dist) for i in range(len(changes)): print "[%.1f] %.5f" % (changes[i] * 0.2, min_dists[i]) print "Saving db_dict before exit." plt.plot(min_dists) plt.show() def main(): init_parse() load_db() #compute_db_descts() get_clip_data() n_frame = floor(testcase_video.get(7)) print "Total " + str(n_frame) + " frames" match() if __name__ == '__main__': try: main() except (KeyboardInterrupt, SystemExit): raise except e: print e #print "Saving db_dict before exit." #f = open(os.path.join(dbname, dirname, data_file_name), 'w') #json.dump(db_dict, f, indent=2) #f.close()
mit
mkness/TheCannon
code/deprecated/makeplot_R4.py
1
4257
#!/usr/bin/python import numpy from numpy import savetxt import matplotlib from matplotlib import pyplot import scipy from scipy import interpolate from matplotlib.ticker import MultipleLocator, FormatStrFormatter s = matplotlib.font_manager.FontProperties() s.set_family('serif') s.set_size(14) from matplotlib import rc rc('text', usetex=False) rc('font', family='serif') from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib from matplotlib import pyplot from matplotlib.ticker import MultipleLocator, FormatStrFormatter s = matplotlib.font_manager.FontProperties() s.set_family('serif') rcParams["xtick.labelsize"] = 14 rcParams["ytick.labelsize"] = 14 from matplotlib.ticker import MultipleLocator, FormatStrFormatter s = matplotlib.font_manager.FontProperties() majorLocator = MultipleLocator(5) majorFormatter = FormatStrFormatter('%d') minorLocator = MultipleLocator(5) yminorLocator = MultipleLocator(10) yminorLocator2 = MultipleLocator(25) xminorLocator = MultipleLocator(5) yminorLocator = MultipleLocator(5) ymajorLocator = MultipleLocator(50) xmajorLocator = MultipleLocator(10) rcParams['figure.figsize'] = 15.0, 10.0 fig, temp = pyplot.subplots(5,1, sharex=True, sharey=False) ax1 = temp[0] ax2 = temp[1] ax3 = temp[2] ax4 = temp[3] ax5 = temp[4] #plot(dataall[:, 0, 0], 1. * coeffs[:, 0]) # mean spectra #plot(dataall[:, 0, 0], 1. * coeffs[:, 1]) # teff #plot(dataall[:, 0, 0], 1. * coeffs[:, 2]) # log g #plot(dataall[:, 0, 0], 1. * coeffs[:, 3]) # feh covs_mean = 1/invcovs[:,:,0]*10**-17 covs_t = 1/invcovs[:,:,1]*10**-17 covs_g = 1/invcovs[:,:,2]*10**-17 covs_feh = 1/invcovs[:,:,3]*10**-17 #ax1.plot(dataall[:, 0, 0], 1. * coeffs[:, 0],color = 'k' ,linewidth = 2) # median ax1.plot(dataall[:, 0, 0], 1. * coeffs[:, 1], color = 'green' ,linewidth = 2) # teff ax2.plot(dataall[:, 0, 0], 1. * coeffs[:, 2], color = 'blue' ,linewidth = 2) # g ax3.plot(dataall[:, 0, 0], 1. * coeffs[:, 3],color = 'red' ,linewidth = 2) # feh ax4.plot(dataall[:, 0, 0], 1. * coeffs[:, 0],color = 'k' ,linewidth = 2) # median ax5.plot(dataall[:, 0, 0], 1. * coeffs[:, 3], color = 'red',linewidth = 2) # feh ax5.plot(dataall[:, 0, 0], 1. * coeffs[:, 2], color = 'blue',linewidth = 2) # g ax5.plot(dataall[:, 0, 0], 1000. * coeffs[:, 1], color = 'green',linewidth = 2) # teff l1a = 15390 l2a = 15394 l1b = 15693 l2b = 15700 l1c = 15956 l2c = 15960 l1d = 16202 l2d = 16210 l1e = 16116 l2e = 16122 l1f = 1666.5 l2f = 16172.5 val0 = 16208.6 ax1.vlines(val0, -1,2, linestyle = 'dashed', linewidth = 2) ax2.vlines(val0, -1,2, linestyle = 'dashed', linewidth = 2) ax3.vlines(val0, -1,2, linestyle = 'dashed', linewidth = 2) ax4.vlines(val0, -1,2, linestyle = 'dashed', linewidth = 2) ax5.vlines(val0, -1,2, linestyle = 'dashed', linewidth = 2) ax2.set_xlim(l1d - 20, l2d + 20 ) ax1.set_ylim(-0.00046 ,0.00046) ax2.set_ylim(-0.5 ,0.5) ax3.set_ylim(-0.5 ,0.5) ax4.set_ylim(0.6 ,1.2) ax5.set_ylim(-0.5 ,0.5) ax1.set_xlim(l1d - 20, l2d + 20 ) ax2.set_xlim(l1d - 20, l2d + 20 ) ax3.set_xlim(l1d - 20, l2d + 20 ) ax4.set_xlim(l1d - 20, l2d + 20 ) ax5.set_xlim(l1d - 20, l2d + 20 ) ax1.text(l1b-19, 0.00004, "Teff coeff" , fontsize = 12) ax2.text(l1b-19, 0.3, "log g coeff" , fontsize = 12) ax3.text(l1b-19, 0.3, "[Fe/H] coeff" , fontsize = 12) ax4.text(l1b-19, 1.1, "mean spectra" , fontsize = 12) ax5.text(l1b-19, 0.3, "[Fe/H] coeff, log g coeff, Teff coeff*1000" , fontsize = 12) ax1.set_title("REGION 4 USED FOR [Fe/H] INDEX") axlist = [ax1,ax2,ax3,ax4,ax5] for each in axlist: each.plot([l1d-30,l2d+30], [0,0],'k--') ax4.plot([l1b-30, l2d+30],[1,1], 'k--') ax1.axvspan(l1d, l2d, facecolor='c', alpha=0.1) ax2.axvspan(l1d, l2d, facecolor='c', alpha=0.1) ax3.axvspan(l1d, l2d, facecolor='c', alpha=0.1) ax4.axvspan(l1d, l2d, facecolor='c', alpha=0.1) ax5.axvspan(l1d, l2d, facecolor='c', alpha=0.1) ax5.set_xlabel("Wavelength $\AA$", fontsize = 20) ax1.set_ylabel("coeff a1", fontsize = 20) ax2.set_ylabel("coeff a2", fontsize = 20) ax3.set_ylabel("coeff a3", fontsize = 20) ax4.set_ylabel("coeff a0", fontsize = 20) ax4.set_ylabel("coeff a0", fontsize = 20) ax5.set_ylabel("coeff a1,a2,a3", fontsize = 20) fig.subplots_adjust(hspace=0) fig.subplots_adjust(wspace=0)
mit
mayblue9/scikit-learn
sklearn/cross_decomposition/cca_.py
209
3150
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): _PLS.__init__(self, n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
henridwyer/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
256
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
chrisburr/scikit-learn
sklearn/utils/__init__.py
22
12134
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric) from .deprecation import deprecated from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count from ..exceptions import ConvergenceWarning as ConvergenceWarning_ from ..exceptions import DataConversionWarning as DataConversionWarning_ class ConvergenceWarning(ConvergenceWarning_): pass ConvergenceWarning = deprecated("ConvergenceWarning has been moved " "into the sklearn.exceptions module. " "It will not be available here from " "version 0.19")(ConvergenceWarning) __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric"] def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask: array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list. Data from which to sample rows or items. indices : array-like, list Indices according to which X will be subsampled. """ if hasattr(X, "iloc"): # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning_) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples if max_n_samples > n_samples: raise ValueError("Cannot sample %d out of arrays with dim %d" % ( max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], ensure_2d=False) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x)
bsd-3-clause
rvraghav93/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
48
2080
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score # ############################################################################# # Generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal(size=n_samples) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples // 2], y[:n_samples // 2] X_test, y_test = X[n_samples // 2:], y[n_samples // 2:] # ############################################################################# # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) # ############################################################################# # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, color='lightgreen', linewidth=2, label='Elastic net coefficients') plt.plot(lasso.coef_, color='gold', linewidth=2, label='Lasso coefficients') plt.plot(coef, '--', color='navy', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
gojira/tensorflow
tensorflow/python/estimator/canned/dnn_linear_combined_test.py
11
33691
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn_linear_combined.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator import estimator from tensorflow.python.estimator.canned import dnn_linear_combined from tensorflow.python.estimator.canned import dnn_testing_utils from tensorflow.python.estimator.canned import linear_testing_utils from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import nn from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import gradient_descent from tensorflow.python.training import input as input_lib from tensorflow.python.training import optimizer as optimizer_lib try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False class DNNOnlyModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__(self, self._dnn_only_model_fn) def _dnn_only_model_fn(self, features, labels, mode, head, hidden_units, feature_columns, optimizer='Adagrad', activation_fn=nn.relu, dropout=None, input_layer_partitioner=None, config=None): return dnn_linear_combined._dnn_linear_combined_model_fn( features=features, labels=labels, mode=mode, head=head, linear_feature_columns=[], dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, dnn_activation_fn=activation_fn, dnn_dropout=dropout, input_layer_partitioner=input_layer_partitioner, config=config) # A function to mimic linear-regressor init reuse same tests. def _linear_regressor_fn(feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Ftrl', config=None, partitioner=None): return dnn_linear_combined.DNNLinearCombinedRegressor( model_dir=model_dir, linear_feature_columns=feature_columns, linear_optimizer=optimizer, label_dimension=label_dimension, weight_column=weight_column, input_layer_partitioner=partitioner, config=config) class LinearOnlyRegressorPartitionerTest( linear_testing_utils.BaseLinearRegressorPartitionerTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorPartitionerTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorEvaluationTest( linear_testing_utils.BaseLinearRegressorEvaluationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorEvaluationTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorPredictTest( linear_testing_utils.BaseLinearRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorPredictTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorIntegrationTest( linear_testing_utils.BaseLinearRegressorIntegrationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorIntegrationTest.__init__( self, _linear_regressor_fn) class LinearOnlyRegressorTrainingTest( linear_testing_utils.BaseLinearRegressorTrainingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearRegressorTrainingTest.__init__( self, _linear_regressor_fn) def _linear_classifier_fn(feature_columns, model_dir=None, n_classes=2, weight_column=None, label_vocabulary=None, optimizer='Ftrl', config=None, partitioner=None): return dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=model_dir, linear_feature_columns=feature_columns, linear_optimizer=optimizer, n_classes=n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, input_layer_partitioner=partitioner, config=config) class LinearOnlyClassifierTrainingTest( linear_testing_utils.BaseLinearClassifierTrainingTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierTrainingTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierClassesEvaluationTest( linear_testing_utils.BaseLinearClassifierEvaluationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierEvaluationTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierPredictTest( linear_testing_utils.BaseLinearClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierPredictTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class LinearOnlyClassifierIntegrationTest( linear_testing_utils.BaseLinearClassifierIntegrationTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) linear_testing_utils.BaseLinearClassifierIntegrationTest.__init__( self, linear_classifier_fn=_linear_classifier_fn) class DNNLinearCombinedRegressorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): linear_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] dnn_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] feature_columns = linear_feature_columns + dnn_feature_columns est = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) # A function to mimic dnn-classifier init reuse same tests. def _dnn_classifier_fn(hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column=None, label_vocabulary=None, optimizer='Adagrad', config=None, input_layer_partitioner=None): return dnn_linear_combined.DNNLinearCombinedClassifier( model_dir=model_dir, dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, n_classes=n_classes, weight_column=weight_column, label_vocabulary=label_vocabulary, input_layer_partitioner=input_layer_partitioner, config=config) class DNNOnlyClassifierEvaluateTest( dnn_testing_utils.BaseDNNClassifierEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn) class DNNOnlyClassifierPredictTest( dnn_testing_utils.BaseDNNClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn) class DNNOnlyClassifierTrainTest( dnn_testing_utils.BaseDNNClassifierTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn) # A function to mimic dnn-regressor init reuse same tests. def _dnn_regressor_fn(hidden_units, feature_columns, model_dir=None, label_dimension=1, weight_column=None, optimizer='Adagrad', config=None, input_layer_partitioner=None): return dnn_linear_combined.DNNLinearCombinedRegressor( model_dir=model_dir, dnn_hidden_units=hidden_units, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, label_dimension=label_dimension, weight_column=weight_column, input_layer_partitioner=input_layer_partitioner, config=config) class DNNOnlyRegressorEvaluateTest( dnn_testing_utils.BaseDNNRegressorEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn) class DNNOnlyRegressorPredictTest( dnn_testing_utils.BaseDNNRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn) class DNNOnlyRegressorTrainTest( dnn_testing_utils.BaseDNNRegressorTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn) class DNNLinearCombinedClassifierIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): linear_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] dnn_feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] feature_columns = linear_feature_columns + dnn_feature_columns est = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_feature_columns, dnn_hidden_units=(2, 2), dnn_feature_columns=dnn_feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = self._as_label(np.reshape(data[:batch_size], (batch_size, 1))) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 2 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes-1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = linear_testing_utils.queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) class DNNLinearCombinedTests(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: shutil.rmtree(self._model_dir) def _mock_optimizer(self, real_optimizer, var_name_prefix): """Verifies global_step is None and var_names start with given prefix.""" def _minimize(loss, global_step=None, var_list=None): self.assertIsNone(global_step) trainable_vars = var_list or ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) var_names = [var.name for var in trainable_vars] self.assertTrue( all([name.startswith(var_name_prefix) for name in var_names])) # var is used to check this op called by training. with ops.name_scope(''): var = variables_lib.Variable(0., name=(var_name_prefix + '_called')) with ops.control_dependencies([var.assign(100.)]): return real_optimizer.minimize(loss, global_step, var_list) optimizer_mock = test.mock.NonCallableMagicMock( spec=optimizer_lib.Optimizer, wraps=real_optimizer) optimizer_mock.minimize = test.mock.MagicMock(wraps=_minimize) return optimizer_mock def test_train_op_calls_both_dnn_and_linear(self): opt = gradient_descent.GradientDescentOptimizer(1.) x_column = feature_column.numeric_column('x') input_fn = numpy_io.numpy_input_fn( x={'x': np.array([[0.], [1.]])}, y=np.array([[0.], [1.]]), batch_size=1, shuffle=False) est = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[x_column], # verifies linear_optimizer is used only for linear part. linear_optimizer=self._mock_optimizer(opt, 'linear'), dnn_hidden_units=(2, 2), dnn_feature_columns=[x_column], # verifies dnn_optimizer is used only for linear part. dnn_optimizer=self._mock_optimizer(opt, 'dnn'), model_dir=self._model_dir) est.train(input_fn, steps=1) # verifies train_op fires linear minimize op self.assertEqual(100., checkpoint_utils.load_variable( self._model_dir, 'linear_called')) # verifies train_op fires dnn minimize op self.assertEqual(100., checkpoint_utils.load_variable( self._model_dir, 'dnn_called')) def test_dnn_and_linear_logits_are_added(self): with ops.Graph().as_default(): variables_lib.Variable([[1.0]], name='linear/linear_model/x/weights') variables_lib.Variable([2.0], name='linear/linear_model/bias_weights') variables_lib.Variable([[3.0]], name='dnn/hiddenlayer_0/kernel') variables_lib.Variable([4.0], name='dnn/hiddenlayer_0/bias') variables_lib.Variable([[5.0]], name='dnn/logits/kernel') variables_lib.Variable([6.0], name='dnn/logits/bias') variables_lib.Variable(1, name='global_step', dtype=dtypes.int64) linear_testing_utils.save_variables_to_ckpt(self._model_dir) x_column = feature_column.numeric_column('x') est = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[x_column], dnn_hidden_units=[1], dnn_feature_columns=[x_column], model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={'x': np.array([[10.]])}, batch_size=1, shuffle=False) # linear logits = 10*1 + 2 = 12 # dnn logits = (10*3 + 4)*5 + 6 = 176 # logits = dnn + linear = 176 + 12 = 188 self.assertAllClose( { prediction_keys.PredictionKeys.PREDICTIONS: [188.], }, next(est.predict(input_fn=input_fn))) class DNNLinearCombinedWarmStartingTest(test.TestCase): def setUp(self): # Create a directory to save our old checkpoint and vocabularies to. self._ckpt_and_vocab_dir = tempfile.mkdtemp() # Make a dummy input_fn. def _input_fn(): features = { 'age': [[23.], [31.]], 'city': [['Palo Alto'], ['Mountain View']], } return features, [0, 1] self._input_fn = _input_fn def tearDown(self): # Clean up checkpoint / vocab dir. writer_cache.FileWriterCache.clear() shutil.rmtree(self._ckpt_and_vocab_dir) def test_classifier_basic_warm_starting(self): """Tests correctness of DNNLinearCombinedClassifier default warm-start.""" age = feature_column.numeric_column('age') city = feature_column.embedding_column( feature_column.categorical_column_with_vocabulary_list( 'city', vocabulary_list=['Mountain View', 'Palo Alto']), dimension=5) # Create a DNNLinearCombinedClassifier and train to save a checkpoint. dnn_lc_classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], model_dir=self._ckpt_and_vocab_dir, n_classes=4, linear_optimizer='SGD', dnn_optimizer='SGD') dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) # Create a second DNNLinearCombinedClassifier, warm-started from the first. # Use a learning_rate = 0.0 optimizer to check values (use SGD so we don't # have accumulator values that change). warm_started_dnn_lc_classifier = ( dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], n_classes=4, linear_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), dnn_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), warm_start_from=dnn_lc_classifier.model_dir)) warm_started_dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) for variable_name in warm_started_dnn_lc_classifier.get_variable_names(): self.assertAllClose( dnn_lc_classifier.get_variable_value(variable_name), warm_started_dnn_lc_classifier.get_variable_value(variable_name)) def test_regressor_basic_warm_starting(self): """Tests correctness of DNNLinearCombinedRegressor default warm-start.""" age = feature_column.numeric_column('age') city = feature_column.embedding_column( feature_column.categorical_column_with_vocabulary_list( 'city', vocabulary_list=['Mountain View', 'Palo Alto']), dimension=5) # Create a DNNLinearCombinedRegressor and train to save a checkpoint. dnn_lc_regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], model_dir=self._ckpt_and_vocab_dir, linear_optimizer='SGD', dnn_optimizer='SGD') dnn_lc_regressor.train(input_fn=self._input_fn, max_steps=1) # Create a second DNNLinearCombinedRegressor, warm-started from the first. # Use a learning_rate = 0.0 optimizer to check values (use SGD so we don't # have accumulator values that change). warm_started_dnn_lc_regressor = ( dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], linear_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), dnn_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), warm_start_from=dnn_lc_regressor.model_dir)) warm_started_dnn_lc_regressor.train(input_fn=self._input_fn, max_steps=1) for variable_name in warm_started_dnn_lc_regressor.get_variable_names(): self.assertAllClose( dnn_lc_regressor.get_variable_value(variable_name), warm_started_dnn_lc_regressor.get_variable_value(variable_name)) def test_warm_starting_selective_variables(self): """Tests selecting variables to warm-start.""" age = feature_column.numeric_column('age') city = feature_column.embedding_column( feature_column.categorical_column_with_vocabulary_list( 'city', vocabulary_list=['Mountain View', 'Palo Alto']), dimension=5) # Create a DNNLinearCombinedClassifier and train to save a checkpoint. dnn_lc_classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], model_dir=self._ckpt_and_vocab_dir, n_classes=4, linear_optimizer='SGD', dnn_optimizer='SGD') dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) # Create a second DNNLinearCombinedClassifier, warm-started from the first. # Use a learning_rate = 0.0 optimizer to check values (use SGD so we don't # have accumulator values that change). warm_started_dnn_lc_classifier = ( dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age], dnn_feature_columns=[city], dnn_hidden_units=[256, 128], n_classes=4, linear_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), dnn_optimizer=gradient_descent.GradientDescentOptimizer( learning_rate=0.0), # The provided regular expression will only warm-start the deep # portion of the model. warm_start_from=estimator.WarmStartSettings( ckpt_to_initialize_from=dnn_lc_classifier.model_dir, vars_to_warm_start='.*(dnn).*'))) warm_started_dnn_lc_classifier.train(input_fn=self._input_fn, max_steps=1) for variable_name in warm_started_dnn_lc_classifier.get_variable_names(): if 'dnn' in variable_name: self.assertAllClose( dnn_lc_classifier.get_variable_value(variable_name), warm_started_dnn_lc_classifier.get_variable_value(variable_name)) elif 'linear' in variable_name: linear_values = warm_started_dnn_lc_classifier.get_variable_value( variable_name) # Since they're not warm-started, the linear weights will be # zero-initialized. self.assertAllClose(np.zeros_like(linear_values), linear_values) if __name__ == '__main__': test.main()
apache-2.0
webmasterraj/GaSiProMo
flask/lib/python2.7/site-packages/pandas/io/tests/test_ga.py
5
7200
import os from datetime import datetime import nose import pandas as pd from pandas import DataFrame from pandas.util.testing import network, assert_frame_equal, with_connectivity_check from numpy.testing.decorators import slow import pandas.util.testing as tm try: import httplib2 import pandas.io.ga as ga from pandas.io.ga import GAnalytics, read_ga from pandas.io.auth import AuthenticationConfigError, reset_default_token_store from pandas.io import auth except ImportError: raise nose.SkipTest("need httplib2 and auth libs") class TestGoogle(tm.TestCase): _multiprocess_can_split_ = True def test_remove_token_store(self): auth.DEFAULT_TOKEN_FILE = 'test.dat' with open(auth.DEFAULT_TOKEN_FILE, 'w') as fh: fh.write('test') reset_default_token_store() self.assertFalse(os.path.exists(auth.DEFAULT_TOKEN_FILE)) @slow @network def test_getdata(self): try: end_date = datetime.now() start_date = end_date - pd.offsets.Day() * 5 end_date = end_date.strftime('%Y-%m-%d') start_date = start_date.strftime('%Y-%m-%d') reader = GAnalytics() df = reader.get_data( metrics=['avgTimeOnSite', 'visitors', 'newVisits', 'pageviewsPerVisit'], start_date=start_date, end_date=end_date, dimensions=['date', 'hour'], parse_dates={'ts': ['date', 'hour']}) assert isinstance(df, DataFrame) assert isinstance(df.index, pd.DatetimeIndex) assert len(df) > 1 assert 'date' not in df assert 'hour' not in df assert df.index.name == 'ts' assert 'avgTimeOnSite' in df assert 'visitors' in df assert 'newVisits' in df assert 'pageviewsPerVisit' in df df2 = read_ga( metrics=['avgTimeOnSite', 'visitors', 'newVisits', 'pageviewsPerVisit'], start_date=start_date, end_date=end_date, dimensions=['date', 'hour'], parse_dates={'ts': ['date', 'hour']}) assert_frame_equal(df, df2) except AuthenticationConfigError: raise nose.SkipTest("authentication error") @slow @with_connectivity_check("http://www.google.com") def test_iterator(self): try: reader = GAnalytics() it = reader.get_data( metrics='visitors', start_date='2005-1-1', dimensions='date', max_results=10, chunksize=5) df1 = next(it) df2 = next(it) for df in [df1, df2]: assert isinstance(df, DataFrame) assert isinstance(df.index, pd.DatetimeIndex) assert len(df) == 5 assert 'date' not in df assert df.index.name == 'date' assert 'visitors' in df assert (df2.index > df1.index).all() except AuthenticationConfigError: raise nose.SkipTest("authentication error") def test_v2_advanced_segment_format(self): advanced_segment_id = 1234567 query = ga.format_query('google_profile_id', ['visits'], '2013-09-01', segment=advanced_segment_id) assert query['segment'] == 'gaid::' + str(advanced_segment_id), "An integer value should be formatted as an advanced segment." def test_v2_dynamic_segment_format(self): dynamic_segment_id = 'medium==referral' query = ga.format_query('google_profile_id', ['visits'], '2013-09-01', segment=dynamic_segment_id) assert query['segment'] == 'dynamic::ga:' + str(dynamic_segment_id), "A string value with more than just letters and numbers should be formatted as a dynamic segment." def test_v3_advanced_segment_common_format(self): advanced_segment_id = 'aZwqR234' query = ga.format_query('google_profile_id', ['visits'], '2013-09-01', segment=advanced_segment_id) assert query['segment'] == 'gaid::' + str(advanced_segment_id), "A string value with just letters and numbers should be formatted as an advanced segment." def test_v3_advanced_segment_weird_format(self): advanced_segment_id = '_aZwqR234-s1' query = ga.format_query('google_profile_id', ['visits'], '2013-09-01', segment=advanced_segment_id) assert query['segment'] == 'gaid::' + str(advanced_segment_id), "A string value with just letters, numbers, and hyphens should be formatted as an advanced segment." def test_v3_advanced_segment_with_underscore_format(self): advanced_segment_id = 'aZwqR234_s1' query = ga.format_query('google_profile_id', ['visits'], '2013-09-01', segment=advanced_segment_id) assert query['segment'] == 'gaid::' + str(advanced_segment_id), "A string value with just letters, numbers, and underscores should be formatted as an advanced segment." @slow @with_connectivity_check("http://www.google.com") def test_segment(self): try: end_date = datetime.now() start_date = end_date - pd.offsets.Day() * 5 end_date = end_date.strftime('%Y-%m-%d') start_date = start_date.strftime('%Y-%m-%d') reader = GAnalytics() df = reader.get_data( metrics=['avgTimeOnSite', 'visitors', 'newVisits', 'pageviewsPerVisit'], start_date=start_date, end_date=end_date, segment=-2, dimensions=['date', 'hour'], parse_dates={'ts': ['date', 'hour']}) assert isinstance(df, DataFrame) assert isinstance(df.index, pd.DatetimeIndex) assert len(df) > 1 assert 'date' not in df assert 'hour' not in df assert df.index.name == 'ts' assert 'avgTimeOnSite' in df assert 'visitors' in df assert 'newVisits' in df assert 'pageviewsPerVisit' in df #dynamic df = read_ga( metrics=['avgTimeOnSite', 'visitors', 'newVisits', 'pageviewsPerVisit'], start_date=start_date, end_date=end_date, segment="source=~twitter", dimensions=['date', 'hour'], parse_dates={'ts': ['date', 'hour']}) assert isinstance(df, DataFrame) assert isinstance(df.index, pd.DatetimeIndex) assert len(df) > 1 assert 'date' not in df assert 'hour' not in df assert df.index.name == 'ts' assert 'avgTimeOnSite' in df assert 'visitors' in df assert 'newVisits' in df assert 'pageviewsPerVisit' in df except AuthenticationConfigError: raise nose.SkipTest("authentication error") if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-2.0
trnewman/VT-USRP-daughterboard-drivers_python
gr-utils/src/python/gr_plot_const.py
1
9861
#!/usr/bin/env python # # Copyright 2007,2008 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # try: import scipy except ImportError: print "Please install SciPy to run this script (http://www.scipy.org/)" raise SystemExit, 1 try: from pylab import * from matplotlib.font_manager import fontManager, FontProperties except ImportError: print "Please install Matplotlib to run this script (http://matplotlib.sourceforge.net/)" raise SystemExit, 1 from optparse import OptionParser matplotlib.interactive(True) matplotlib.use('TkAgg') class draw_constellation: def __init__(self, filename, options): self.hfile = open(filename, "r") self.block_length = options.block self.start = options.start self.sample_rate = options.sample_rate self.datatype = scipy.complex64 self.sizeof_data = self.datatype().nbytes # number of bytes per sample in file self.axis_font_size = 16 self.label_font_size = 18 self.title_font_size = 20 # Setup PLOT self.fig = figure(1, figsize=(16, 9), facecolor='w') rcParams['xtick.labelsize'] = self.axis_font_size rcParams['ytick.labelsize'] = self.axis_font_size self.text_file = figtext(0.10, 0.95, ("File: %s" % filename), weight="heavy", size=16) self.text_file_pos = figtext(0.10, 0.90, "File Position: ", weight="heavy", size=16) self.text_block = figtext(0.40, 0.90, ("Block Size: %d" % self.block_length), weight="heavy", size=16) self.text_sr = figtext(0.60, 0.90, ("Sample Rate: %.2f" % self.sample_rate), weight="heavy", size=16) self.make_plots() self.button_left_axes = self.fig.add_axes([0.45, 0.01, 0.05, 0.05], frameon=True) self.button_left = Button(self.button_left_axes, "<") self.button_left_callback = self.button_left.on_clicked(self.button_left_click) self.button_right_axes = self.fig.add_axes([0.50, 0.01, 0.05, 0.05], frameon=True) self.button_right = Button(self.button_right_axes, ">") self.button_right_callback = self.button_right.on_clicked(self.button_right_click) self.xlim = self.sp_iq.get_xlim() self.manager = get_current_fig_manager() connect('draw_event', self.zoom) connect('key_press_event', self.click) connect('button_press_event', self.mouse_button_callback) show() def get_data(self): self.text_file_pos.set_text("File Position: %d" % (self.hfile.tell()//self.sizeof_data)) iq = scipy.fromfile(self.hfile, dtype=self.datatype, count=self.block_length) #print "Read in %d items" % len(iq) if(len(iq) == 0): print "End of File" else: self.reals = [r.real for r in iq] self.imags = [i.imag for i in iq] self.time = [i*(1/self.sample_rate) for i in range(len(self.reals))] def make_plots(self): # if specified on the command-line, set file pointer self.hfile.seek(self.sizeof_data*self.start, 1) self.get_data() # Subplot for real and imaginary parts of signal self.sp_iq = self.fig.add_subplot(2,1,1, position=[0.075, 0.2, 0.4, 0.6]) self.sp_iq.set_title(("I&Q"), fontsize=self.title_font_size, fontweight="bold") self.sp_iq.set_xlabel("Time (s)", fontsize=self.label_font_size, fontweight="bold") self.sp_iq.set_ylabel("Amplitude (V)", fontsize=self.label_font_size, fontweight="bold") self.plot_iq = self.sp_iq.plot(self.time, self.reals, 'bo-', self.time, self.imags, 'ro-') # Subplot for constellation plot self.sp_const = self.fig.add_subplot(2,2,1, position=[0.575, 0.2, 0.4, 0.6]) self.sp_const.set_title(("Constellation"), fontsize=self.title_font_size, fontweight="bold") self.sp_const.set_xlabel("Inphase", fontsize=self.label_font_size, fontweight="bold") self.sp_const.set_ylabel("Qaudrature", fontsize=self.label_font_size, fontweight="bold") self.plot_const = self.sp_const.plot(self.reals, self.imags, 'bo') # Add plots to mark current location of point between time and constellation plots self.indx = 0 self.plot_iq += self.sp_iq.plot([self.time[self.indx],], [self.reals[self.indx],], 'mo', ms=8) self.plot_iq += self.sp_iq.plot([self.time[self.indx],], [self.imags[self.indx],], 'mo', ms=8) self.plot_const += self.sp_const.plot([self.reals[self.indx],], [self.imags[self.indx],], 'mo', ms=12) # Adjust axis self.sp_iq.axis([min(self.time), max(self.time), 1.5*min([min(self.reals), min(self.imags)]), 1.5*max([max(self.reals), max(self.imags)])]) self.sp_const.axis([-2, 2, -2, 2]) draw() def update_plots(self): self.plot_iq[0].set_data([self.time, self.reals]) self.plot_iq[1].set_data([self.time, self.imags]) self.sp_iq.axis([min(self.time), max(self.time), 1.5*min([min(self.reals), min(self.imags)]), 1.5*max([max(self.reals), max(self.imags)])]) self.plot_const[0].set_data([self.reals, self.imags]) self.sp_const.axis([-2, 2, -2, 2]) draw() def zoom(self, event): newxlim = self.sp_iq.get_xlim() if(newxlim != self.xlim): self.xlim = newxlim r = self.reals[int(ceil(self.xlim[0])) : int(ceil(self.xlim[1]))] i = self.imags[int(ceil(self.xlim[0])) : int(ceil(self.xlim[1]))] self.plot_const[0].set_data(r, i) self.sp_const.axis([-2, 2, -2, 2]) self.manager.canvas.draw() draw() def click(self, event): forward_valid_keys = [" ", "down", "right"] backward_valid_keys = ["up", "left"] trace_forward_valid_keys = [">",] trace_backward_valid_keys = ["<",] if(find(event.key, forward_valid_keys)): self.step_forward() elif(find(event.key, backward_valid_keys)): self.step_backward() elif(find(event.key, trace_forward_valid_keys)): self.indx = min(self.indx+1, len(self.time)-1) self.set_trace(self.indx) elif(find(event.key, trace_backward_valid_keys)): self.indx = max(0, self.indx-1) self.set_trace(self.indx) def button_left_click(self, event): self.step_backward() def button_right_click(self, event): self.step_forward() def step_forward(self): self.get_data() self.update_plots() def step_backward(self): # Step back in file position if(self.hfile.tell() >= 2*self.sizeof_data*self.block_length ): self.hfile.seek(-2*self.sizeof_data*self.block_length, 1) else: self.hfile.seek(-self.hfile.tell(),1) self.get_data() self.update_plots() def mouse_button_callback(self, event): x, y = event.xdata, event.ydata if x is not None and y is not None: if(event.inaxes == self.sp_iq): self.indx = searchsorted(self.time, [x]) self.set_trace(self.indx) def set_trace(self, indx): self.plot_iq[2].set_data(self.time[indx], self.reals[indx]) self.plot_iq[3].set_data(self.time[indx], self.imags[indx]) self.plot_const[1].set_data(self.reals[indx], self.imags[indx]) draw() def find(item_in, list_search): try: return list_search.index(item_in) != None except ValueError: return False def main(): usage="%prog: [options] input_filename" description = "Takes a GNU Radio complex binary file and displays the I&Q data versus time and the constellation plot (I vs. Q). You can set the block size to specify how many points to read in at a time and the start position in the file. By default, the system assumes a sample rate of 1, so in time, each sample is plotted versus the sample number. To set a true time axis, set the sample rate (-R or --sample-rate) to the sample rate used when capturing the samples." parser = OptionParser(conflict_handler="resolve", usage=usage, description=description) parser.add_option("-B", "--block", type="int", default=1000, help="Specify the block size [default=%default]") parser.add_option("-s", "--start", type="int", default=0, help="Specify where to start in the file [default=%default]") parser.add_option("-R", "--sample-rate", type="float", default=1.0, help="Set the sampler rate of the data [default=%default]") (options, args) = parser.parse_args () if len(args) != 1: parser.print_help() raise SystemExit, 1 filename = args[0] dc = draw_constellation(filename, options) if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
motmot/strokelitude
plot_raw_timeseries.py
1
4190
import pkg_resources import pylab import numpy as np import sys import tables import motmot.fview_ext_trig.easy_decode as easy_decode import matplotlib.ticker as mticker from optparse import OptionParser import pytz, datetime, time pacific = pytz.timezone('US/Pacific') import scipy.io def doit(fname,options): fname = sys.argv[1] h5 = tables.openFile(fname,mode='r') stroke_data=h5.root.stroke_data[:] stroke_times = stroke_data['trigger_timestamp'] time_data=h5.root.time_data[:] gain,offset,resids = easy_decode.get_gain_offset_resids( input=time_data['framestamp'], output=time_data['timestamp']) top = h5.root.time_data.attrs.top wordstream = h5.root.ain_wordstream[:] wordstream = wordstream['word'] # extract into normal numpy array r=easy_decode.easy_decode(wordstream,gain,offset,top) if r is not None: chans = r.dtype.fields.keys() chans.sort() chans.remove('timestamps') if 0: Vcc = h5.root.ain_wordstream.attrs.Vcc print 'Vcc read from file at',Vcc else: Vcc=3.3 print 'Vcc',Vcc ADCmax = (2**10)-1 analog_gain = Vcc/ADCmax else: chans = [] names = h5.root.ain_wordstream.attrs.channel_names if r is not None: dt = r['timestamps'][1]-r['timestamps'][0] samps_per_sec = 1.0/dt adc_duration = n_adc_samples*dt print '%d samples at %.1f samples/sec = %.1f seconds'%(n_adc_samples, samps_per_sec, adc_duration) t0 = r['timestamps'][0] stroke_times_zero_offset = stroke_times-t0 if len(stroke_times_zero_offset): stroke_data_duration = stroke_times_zero_offset[-1] total_duration = max(stroke_data_duration,adc_duration) else: t0 = 0 N_subplots = len(chans)+5 ax=None for i in range(N_subplots): ax = pylab.subplot(N_subplots,1,i+1,sharex=ax) if i < len(chans): try: label = names[int(chans[i])] except Exception, err: print 'ERROR: ingnoring exception %s'%(err,) label = 'channel %s'%chans[i] ax.plot(r['timestamps']-t_offset,r[chans[i]]*analog_gain, label=label) ax.set_ylabel('V') ax.legend() elif i == len(chans): if np.all(np.isnan(stroke_data['right'])): continue ax.set_ylabel('R (degrees)') ax.legend() elif i == len(chans)+1: if np.all(np.isnan(stroke_data['left'])): continue ax.set_ylabel('L (degrees)') ax.legend() elif i == len(chans)+2: if np.all(np.isnan(stroke_data['left_antenna'])): continue ax.plot(stroke_times-t0,stroke_data['left_antenna'],label='Lant') ax.set_ylabel('L antenna (degrees)') ax.legend() elif i == len(chans)+3: if np.all(np.isnan(stroke_data['right_antenna'])): continue ax.plot(stroke_times-t0,stroke_data['right_antenna'],label='Rant') ax.set_ylabel('R antenna (degrees)') ax.legend() elif i == len(chans)+4: if np.all(np.isnan(stroke_data['head'])): continue ax.plot(stroke_times-t0,stroke_data['head'],label='H') ax.set_ylabel('head (degrees)') ax.legend() ax.xaxis.set_major_formatter(mticker.FormatStrFormatter("%s")) ax.yaxis.set_major_formatter(mticker.FormatStrFormatter("%s")) ax.set_xlabel('Time (sec)') ax.set_xlim((t_plot_start,t_plot_start+total_duration)) if options.timestamps: pylab.gcf().autofmt_xdate() pylab.show() def main(): usage = '%prog [options] FILE' parser = OptionParser(usage) parser.add_option("--timestamps", action='store_true', default=False) (options, args) = parser.parse_args() fname = args[0] doit(fname,options) if __name__=='__main__': main()
bsd-3-clause
mwv/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
wlamond/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
smenon8/AnimalWildlifeEstimator
script/DeriveFinalResultSet.py
1
23433
# coding: utf-8 # python-3 # Author: Sreejith Menon ([email protected]) # Creation date: 6/14/16 # Description: Contains multiple methods to calculate final result statistics. # The methods in this script file highly utilizes objects created by JobsMapResultsFilesToContainerObjs.py. # Three global variables are declared in the scope of this project, the currently point to CSV files that have information from second phase of the mechanical turk deployment. # gidAidMapFl, aidFeatureMapFl, imgJobMap # These parameters are used by multiple methods within this script. import importlib, pandas as pd, statistics as s, re, json, csv, matplotlib.pyplot as plt import GetPropertiesAPI as GP from collections import OrderedDict import IBEIS_mongo_helper as IB_h import JobsMapResultsFilesToContainerObjs as ImageMap importlib.reload(ImageMap) importlib.reload(IB_h) # Global variables for the scope of this script gidAidMapFl = "../data/experiment2_gid_aid_map.json" aidFeatureMapFl = "../data/experiment2_aid_features.json" imgJobMap = "../data/imageGID_job_map_expt2_corrected.csv" def PRINT(jsonLike): print(json.dumps(jsonLike, indent=4)) # This method is a simplification of adding up the share/no share counts of a particular image. # For example, for a particular image which appeared in 5 different albums, the share rates were 9,5,9,10,10. # This method will return gid:sum([9,5,9,10,10]). def genTotCnts(ovrCnts): dSum = {} for key in ovrCnts: dSum[key] = sum(ovrCnts[key]) return dSum # This dictionary answers the question, what percentage of this feature/image were shared. # The share proportion is calculated as total_shares/(total_shares+total_not_shares). def getShrProp(ovrAggCnts) : totCnt = genTotCnts(ovrAggCnts) shareKeys = list(filter(lambda x : 'share' in x,totCnt.keys())) totKeys = list(filter(lambda x : 'total' in x,totCnt.keys())) shareKeys = sorted(shareKeys,key=lambda x: (x[:len(x)-1])) totKeys = sorted(totKeys,key=lambda x: (x[:len(x)-1])) lenKey = len(shareKeys[0])-1 propDict = {} for i in range(len(shareKeys)): propDict[shareKeys[i][:lenKey]] = totCnt[shareKeys[i]] * 100 / totCnt[totKeys[i]] return propDict # independent of the results # This method defines the counting logic for a particular image for a given feature. # For instance, for the feature ‘SPECIES’, there might be images that contains both a zebra and a giraffe. # In that case, the share counts have to be added to both zebra and giraffe. def getCountingLogic(*args, **kwargs): if len(kwargs.keys()): client, feature, source, withNumInds = args[0], args[1], args[2], args[3] featuresPerImg = IB_h.extractImageFeaturesFromMap(client, feature, source=source) else: gidAidMapFl, aidFeatureMapFl, feature, withNumInds = args[0], args[1], args[2], args[3] if len(args) == 5: mode = args[4] else: mode = "GZC" featuresPerImg = ImageMap.extractImageFeaturesFromMap(gidAidMapFl, aidFeatureMapFl, feature, mode=mode) countLogic = {} for gid in featuresPerImg.keys(): numInds = len(featuresPerImg[gid]) # number of individuals in a particular image countFor = list(set(featuresPerImg[gid])) if withNumInds: countLogic[gid] = [numInds, countFor] else: countLogic[gid] = countFor return countLogic def getCountingLogic_old(gidAidMapFl,aidFeatureMapFl,feature,withNumInds=True, mode="GZC"): featuresPerImg = ImageMap.extractImageFeaturesFromMap(gidAidMapFl,aidFeatureMapFl,feature, mode=mode) countLogic = {} for gid in featuresPerImg.keys(): numInds = len(featuresPerImg[gid]) # number of individuals in a particular image countFor = list(set(featuresPerImg[gid])) if withNumInds: countLogic[gid] = [numInds,countFor] else: countLogic[gid] = countFor return countLogic # This method is used to generate the number of shares and not_shares per feature in a particular album. # For instance, if the required features list contains ‘SPECIES’, then it tells the share and not_share count per album for each available/identifiable species. def genAlbmFtrs(gidAidMapFl,aidFeatureMapFl,imgJobMap,reqdFtrList): albmFtrDict = {} albumGidDict = ImageMap.genAlbumGIDDictFromMap(imgJobMap) for cntFtr in reqdFtrList: cntLogic = getCountingLogic(gidAidMapFl,aidFeatureMapFl,cntFtr,False) for album in albumGidDict.keys(): ftrDict = albmFtrDict.get(album,{}) for gid in albumGidDict[album]: ftrList = cntLogic.get(gid,"UNIDENTIFIED") if ftrList != "UNIDENTIFIED": for ftr in ftrList: ftrDict[ftr] = ftrDict.get(ftr,0) + 1 else: ftrDict['UNIDENTIFIED'] = ftrDict.get('UNIDENTIFIED',0) + 1 albmFtrDict[album] = ftrDict return albmFtrDict # This method derives the share proportions of images across different albums as opposed to generating an overall proportion of images. # For example, the output of this method will contain how many times a particular image was shared in a particular album. # This is particularly insightful for images that appear across multiple albums. # It could essentially tell if a certain image was shared in the same way or differently and if the share rate of an image is orthogonal to the context of album. def getShrPropImgsAcrossAlbms(imgJobMap,resSetStrt,resSetEnd,flNm): imgAlbumDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) master = ImageMap.createResultDict(resSetStrt,resSetEnd) imgShareNotShareList,noResponse = ImageMap.imgShareCountsPerAlbum(imgAlbumDict,master) albumGidDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) # filters the GID's that appears in multiple albums imgsInMultAlbms = list(filter(lambda x : len(albumGidDict[x]) > 1,albumGidDict.keys())) gidAlbmDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) imgAlbmPropDict = {} # image album proportion dict for tup in imgShareNotShareList: if tup[0] in imgsInMultAlbms: imgAlbmPropDict[(tup[0],tup[1])] = tup[4] return imgAlbmPropDict,getConsistencyDict(imgsInMultAlbms,gidAlbmDict,imgAlbmPropDict,flNm) # This method returns a lambda function or a logic in filtering all valid rows without the UNIDENTIFIED. # A slight adjustment is needed depending on what feature is being filtered. def getFltrCondn(ftr): if ftr=='NID': return lambda x : x[0] != 'UNIDENTIFIED' and int(x[0]) > 0 else: # for all other features return lambda x : x[0] != 'UNIDENTIFIED' # This is a helper method for getConsistencyDict(). It returns three objects. # i. A list with only valid features i.e. without the UNIDENTIFIED entries. # ii. A dictionary object that contains the albums in which a particular feature is seen. Ex. GIRAFFE is seen in albums 1, 3,4,5 etc. # iii. A dictionary object that contains the share proportion of feature per album. Ex. giraffes in album 1 were shared 70% of times etc. Format of the key: (feature, album) def genObjsForConsistency(gidAidMapFl,aidFeatureMapFl,ftr,imgJobMap,resSetStrt=1,resSetEnd=100): d = shrCntsByFtrPrAlbm(gidAidMapFl,aidFeatureMapFl,ftr,imgJobMap,resSetStrt,resSetEnd) fltrCondn = getFltrCondn(ftr) d_filtered = {} d_filtered_keys = list(filter(fltrCondn, d.keys())) for key in d_filtered_keys: d_filtered[key] = d[key] ftrAlbmPropDict = getShrProp(d_filtered) filteredKeyArr = [x[0] for x in ftrAlbmPropDict.keys()] ftrAlbmDict = {} for ftr,albm in ftrAlbmPropDict.keys(): ftrAlbmDict[ftr] = ftrAlbmDict.get(ftr,[]) + [albm] return filteredKeyArr,ftrAlbmDict,ftrAlbmPropDict # This method should be thought as the main counting logic while calculating the share rate related statistic for any feature that is extracted from IBEIS. # The output dictionary is all the valid features and thier share-rates across different albums. # The output dictionary is a key - dictionary pair. Ex. {giraffe : {album_1 : 70, album_2 : 89}, ...} def getConsistencyDict(filteredKeyArr,ftrAlbmDict,ftrAlbmShrPropDict,flNm='/tmp/getConsistencyDict.output'): consistency = {} for ftr in filteredKeyArr: tempDict = {} for albm in ftrAlbmDict[ftr]: tempDict[albm] = ftrAlbmShrPropDict.get((ftr,albm),None) consistency[ftr] = tempDict consistency_mult = {} for key in consistency: if len(consistency[key]) > 1: consistency_mult[key] = consistency[key] fl = open(flNm,"w") json.dump(consistency_mult,fl,indent=4) fl.close() return consistency_mult # consistency object is retuned by getShrPropImgsAcrossAlbms() # his method generates the mean, variance and standard deviation for a particular feature element for across different albums. def genVarStddevShrPropAcrsAlbms(consistency): gidShrVarStdDevDict = {} for gid in consistency: albmShrRateD = consistency[gid] if None not in albmShrRateD.values(): var = s.variance(albmShrRateD.values()) mean = s.mean(albmShrRateD.values()) std = s.stdev(albmShrRateD.values()) gidShrVarStdDevDict[gid] = {'mean' : mean, 'variance' : var, 'standard_deviation' : std} return gidShrVarStdDevDict # This method generates the overall share statistic for every element of a particular feature. # The logic involves simple counting for each element of the feature based on the counting logic. # This explicitly handles the images where there are multiple features and the counts are made in each of the feature. # This method is ideal for getting share rate of a particular feature across the entire experiment, not limited by album. # In other words, the result dict has share proportions calculated across albums. def ovrallShrCntsByFtr(gidAidMapFl,aidFeatureMapFl,feature,imgJobMap,resSetStrt,resSetEnd): countLogic = getCountingLogic(gidAidMapFl,aidFeatureMapFl,feature) imgAlbumDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) master = ImageMap.createResultDict(resSetStrt,resSetEnd) imgShareNotShareList,noResponse = ImageMap.imgShareCountsPerAlbum(imgAlbumDict,master) answerSet = {} for tup in imgShareNotShareList: if tup[0] not in countLogic.keys(): # where the image has no associated annotation, tup[0] = GID answerSet[('UNIDENTIFIED' , 'share')] = answerSet.get(('UNIDENTIFIED' , 'share'),[]) + [tup[2]] answerSet[('UNIDENTIFIED' , 'not_share')] = answerSet.get(('UNIDENTIFIED' , 'not_share'),[]) + [tup[3]] answerSet[('UNIDENTIFIED', 'total')] = answerSet.get(('UNIDENTIFIED' , 'total'),[]) + [tup[2] + tup[3]] else: logic = countLogic[tup[0]] for countForEle in logic[1]: varNameShare = (countForEle , "share") varNameNotShare = (countForEle , "not_share") varNameTot = (countForEle , "total") answerSet[varNameShare] = answerSet.get(varNameShare,[]) + [tup[2]] answerSet[varNameNotShare] = answerSet.get(varNameNotShare,[]) + [tup[3]] answerSet[varNameTot] = answerSet.get(varNameTot,[]) + [tup[2] + tup[3]] return answerSet # This method generates the share statistic for every element of a particular feature for each album in which there are some instances with the said feature. # The logic involves simple counting for each element of the feature based on the counting logic. # This explicitly handles the images where there are multiple features and the counts are made in each of the feature. # This method is ideal for getting share rate of a particular feature across the entire experiment by album. # In other words, this should used to calculate and compare the share rates of a particular feature and how it changes across different albums. # As a sidenote, if the same feature is being shared differently across albums, then it means there is some contextual information from the album that is dominating this effect. def shrCntsByFtrPrAlbm(gidAidMapFl,aidFeatureMapFl,feature,imgJobMap,resSetStrt=1,resSetEnd=100): countLogic = getCountingLogic(gidAidMapFl,aidFeatureMapFl,feature) imgAlbumDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) master = ImageMap.createResultDict(resSetStrt,resSetEnd) imgShareNotShareList,noResponse = ImageMap.imgShareCountsPerAlbum(imgAlbumDict,master) answerSet = {} for tup in imgShareNotShareList: if tup[0] not in countLogic.keys(): # where the image has no associated annotation, tup[0] = GID answerSet[('UNIDENTIFIED' , 'share', tup[1])] = answerSet.get(('UNIDENTIFIED' , 'share', tup[1]),[]) + [tup[2]] answerSet[('UNIDENTIFIED' , 'not_share', tup[1])] = answerSet.get(('UNIDENTIFIED' , 'not_share', tup[1]),[]) + [tup[3]] answerSet[('UNIDENTIFIED', 'total', tup[1])] = answerSet.get(('UNIDENTIFIED' , 'total', tup[1]),[]) + [tup[2] + tup[3]] else: logic = countLogic[tup[0]] for countForEle in logic[1]: varNameShare = (countForEle , tup[1], "share") varNameNotShare = (countForEle , tup[1], "not_share") varNameTot = (countForEle , tup[1], "total") answerSet[varNameShare] = answerSet.get(varNameShare,[]) + [tup[2]] answerSet[varNameNotShare] = answerSet.get(varNameNotShare,[]) + [tup[3]] answerSet[varNameTot] = answerSet.get(varNameTot,[]) + [tup[2] + tup[3]] return answerSet # This method is used to generate cross statistic for two features. # The logic involves simple counting for each element of the feature based on the counting logic. # Since there are two features to be dealt here, the instances are divided into even and uneven features. # Even features are defined as when the number of instances of feature 1 and feature 2 are identical. # Uneven features on the other hand are when the number of instances of feature 1 and feature 2 are not identical. # Uneven features are handled differently for 1-many, many-1 and many-many. def ovrallShrCntsByTwoFtrs(getCountingLogicgidAidMapFl,aidFeatureMapFl,ftr1,ftr2,imgJobMap,resSetStrt,resSetEnd): countLogic1 = (gidAidMapFl,aidFeatureMapFl,ftr1) countLogic2 = getCountingLogic(gidAidMapFl,aidFeatureMapFl,ftr2) imgAlbumDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) master = ImageMap.createResultDict(resSetStrt,resSetEnd) imgShareNotShareList,noResponse = ImageMap.imgShareCountsPerAlbum(imgAlbumDict,master) answerSet = {} unEvnFtrsTups =[] for tup in imgShareNotShareList: if tup[0] not in countLogic1.keys(): # where the image has no associated annotation, tup[0] = GID pass answerSet[('UNIDENTIFIED' , None,'share')] = answerSet.get(('UNIDENTIFIED' ,None, 'share'),[]) + [tup[2]] answerSet[('UNIDENTIFIED' , None, 'not_share')] = answerSet.get(('UNIDENTIFIED' , None, 'not_share'),[]) + [tup[3]] answerSet[('UNIDENTIFIED' , None, 'total')] = answerSet.get(('UNIDENTIFIED' , None, 'total'),[]) + [tup[2]+tup[3]] else: logic1 = countLogic1[tup[0]] logic2 = countLogic2[tup[0]] for i in range(len(logic1[1])): if len(logic1[1]) == len(logic2[1]): # there are two individuals with matching features varNameShare = (logic1[1][i] , logic2[1][i], "share") varNameNotShare = (logic1[1][i] , logic2[1][i], "not_share") varNameTot = (logic1[1][i] , logic2[1][i], "total") # there are more logic1 features than logic2 features elif len(logic1[1]) == 1 or len(logic2[1]) == 1: # one of the logic has just 1 feature if len(logic1[1]) == 1: varNameShare = (logic1[1][0] , logic2[1][i], "share") varNameNotShare = (logic1[1][0] , logic2[1][i], "not_share") varNameTot = (logic1[1][0] , logic2[1][i], "total") else: varNameShare = (logic1[1][i] , logic2[1][0], "share") varNameNotShare = (logic1[1][i] , logic2[1][0], "not_share") varNameTot = (logic1[1][i] , logic2[1][0], "total") else: # uneven features in logic1 and logic2 unEvnFtrsTups.append(tup) answerSet[varNameShare] = answerSet.get(varNameShare,[]) + [tup[2]] answerSet[varNameNotShare] = answerSet.get(varNameNotShare,[]) + [tup[3]] answerSet[varNameTot] = answerSet.get(varNameTot,[]) + [tup[2] + tup[3]] # handling un-even features - issues after GetPropertiesAPI update - issue being tracked - issue name: Issue with consolidated feature file #1 unEvnFtrsTups = list(set(unEvnFtrsTups)) for tup in unEvnFtrsTups: aidList = GP.getAnnotID(tup[0]) for aid in aidList: feature1 = GP.getImageFeature(aid,GP.ftrNms[ftr1]) feature2 = GP.getImageFeature(aid,GP.ftrNms[ftr2]) feature1 = list(map(str,feature1)) feature2 = list(map(str,feature2)) if ftr1 == 'AGE': feature1 = GP.getAgeFeatureReadableFmt(feature1) if ftr2 == 'AGE': feature2 = GP.getAgeFeatureReadableFmt(feature2) varNameShare = (feature1[0],feature2[0],"share") varNameNotShare = (feature1[0],feature2[0],"not_share") varNameTot = (feature1[0],feature2[0],"total") answerSet[varNameShare] = answerSet.get(varNameShare,[]) + [tup[2]] answerSet[varNameNotShare] = answerSet.get(varNameNotShare,[]) + [tup[3]] answerSet[varNameTot] = answerSet.get(varNameTot,[]) + [tup[2] + tup[3]] return answerSet # This method generates the rank list of number of individuals in an image by share proportion. def genNumIndsRankList(): # no. of individuals per image countLogic = getCountingLogic(gidAidMapFl,aidFeatureMapFl,"SPECIES") imgAlbumDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) master = ImageMap.createResultDict(1,100) imgShareNotShareList,noResponse = ImageMap.imgShareCountsPerAlbum(imgAlbumDict,master) totOfIndsPerImg = {} for key in countLogic: totOfIndsPerImg[countLogic[key][0]] = totOfIndsPerImg.get(countLogic[key][0],0) + 1 # Rank list by number of images noOfIndsPerImgSharesRnkLst = {} noOfIndsPerImgNotSharesRnkLst = {} for tup in imgShareNotShareList: if tup[0] in countLogic.keys(): noOfIndsPerImgSharesRnkLst[countLogic[tup[0]][0]] = noOfIndsPerImgSharesRnkLst.get(countLogic[tup[0]][0],0) + tup[2] noOfIndsPerImgNotSharesRnkLst[countLogic[tup[0]][0]] = noOfIndsPerImgNotSharesRnkLst.get(countLogic[tup[0]][0],0) + tup[3] return noOfIndsPerImgSharesRnkLst,noOfIndsPerImgNotSharesRnkLst # Comments: Number of shares/not shares for each and every position are enumerated inside a list. # Use of OrderedDict() from the Python collections framework ensures that the records are picked in the exact same order they appear in the albums. # This returned dictionary can then be embedded inside a data-frame and can be visualized. def getPosShrProptn(imgJobMap,resStart,resEnd): pos = {} # 1:(shr,noShr,prop) for i in range(resStart,resEnd): results = ImageMap.createResultDict(i,i) imgAlbumDict = ImageMap.genImgAlbumDictFromMap(imgJobMap) shrCnt,junk = ImageMap.imgShareCountsPerAlbum(imgAlbumDict,results) for i in range(1,len(shrCnt)+1): pos[i] = pos.get(i,[]) + [(shrCnt[i-1][2],shrCnt[i-1][3])] summaryPosCnt = OrderedDict() for position in pos: shrs = [x[0] for x in pos[position]] notShrs = [x[1] for x in pos[position]] total = [x[0]+x[1] for x in pos[position]] summaryPosCnt[position] = {'share' : sum(shrs), 'not_share' : sum(notShrs), 'total': sum(total) } for pos in summaryPosCnt: dct = summaryPosCnt[pos] dct['proportion'] = dct['share'] * 100 / dct['total'] return summaryPosCnt def __main__(): d = ovrallShrCntsByTwoFtrs(gidAidMapFl,aidFeatureMapFl,"SPECIES","AGE",imgJobMap,1,100) #d = shrCntsByFtrPrAlbm(gidAidMapFl,aidFeatureMapFl,"SPECIES",imgJobMap,1,50) #d = ovrallShrCntsByFtr(gidAidMapFl,aidFeatureMapFl,"SPECIES",imgJobMap,1,50) dc = getShrProp(d) pd.DataFrame(dc,index=["share proportion"]).transpose() ''' resultsPerJobDf > Gives you shares/not shares per image per album (Python Object of .results file converted to DF) resultsPerJobDf['GID','Album','Shared','Not Shared','Proportion'] ''' imgAlbumDict = ImageMap.genImgAlbumDictFromMap("../data/imageGID_job_map_expt2_corrected.csv") master = ImageMap.createResultDict(1,100) imgShareNotShareList,noResponse = ImageMap.imgShareCountsPerAlbum(imgAlbumDict,master) resultsPerJobDf = pd.DataFrame(imgShareNotShareList,columns = ['GID','Album','Shared','Not Shared','Proportion']) ''' Code for reading from json files into data frames aidGidDf['AID','GID'] aidFeaturesDf['AID',[FEATURES]] ''' aidGidDict = ImageMap.genAidGidTupListFromMap('../data/experiment2_gid_aid_map.json') aidGidDf= pd.DataFrame(aidGidDict,columns = ['AID','GID']) aidFeaturesDf = pd.DataFrame(ImageMap.genAidFeatureDictList('../data/experiment2_aid_features.json')) aidFeaturesDf['AID'] = aidFeaturesDf['AID'].astype('int32') ''' rankListImgsDf > Gives you the results of number of times each image was shared overall rankListImgsDf['GID','Shared','Not Shared','Proportion'] ''' rankListImgsDf = resultsPerJobDf.groupby(['GID'])['Shared','Not Shared'].sum() rankListImgsDf['Total'] = rankListImgsDf['Shared'] + rankListImgsDf['Not Shared'] rankListImgsDf['Proportion'] = rankListImgsDf['Shared'] * 100 / rankListImgsDf['Total'] rankListImgsDf = rankListImgsDf.sort_values(by = ['Proportion'],ascending = False) #rankListImgsDf.to_csv('../FinalResults/rankListImages_expt2.csv') ''' resultsAIDGIDDf > Merged data frame that add's AID info to the results data resultsAIDGIDDf['AID' + [resultsPerJobDf]] gidAidResultsFeaturesDf > A master data frame that has results data merged along with all the image features gidAidResultsFeaturesDf['GID','AID',[FEATURES],[resultsPerJobDf]] ''' resultsAIDGIDDf = pd.merge(aidGidDf,resultsPerJobDf,left_on='GID',right_on = 'GID',how="right") gidAidResultsFeaturesDf = pd.merge(resultsAIDGIDDf,aidFeaturesDf,left_on = 'AID',right_on = 'AID') # most important data frame with all the info gidAidResultsFeaturesDf.to_csv("../FinalResults/resultsFeaturesComb_expt2.csv",index=False) if __name__ == "__main__": __main__()
bsd-3-clause
nest/nest-simulator
pynest/examples/hh_phaseplane.py
8
5059
# -*- coding: utf-8 -*- # # hh_phaseplane.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Numerical phase-plane analysis of the Hodgkin-Huxley neuron ----------------------------------------------------------- hh_phaseplane makes a numerical phase-plane analysis of the Hodgkin-Huxley neuron (``hh_psc_alpha``). Dynamics is investigated in the V-n space (see remark below). A constant DC can be specified and its influence on the nullclines can be studied. Remark ~~~~~~ To make the two-dimensional analysis possible, the (four-dimensional) Hodgkin-Huxley formalism needs to be artificially reduced to two dimensions, in this case by 'clamping' the two other variables, `m` and `h`, to constant values (`m_eq` and `h_eq`). """ import nest import numpy as np from matplotlib import pyplot as plt amplitude = 100. # Set externally applied current amplitude in pA dt = 0.1 # simulation step length [ms] v_min = -100. # Min membrane potential v_max = 42. # Max membrane potential n_min = 0.1 # Min inactivation variable n_max = 0.81 # Max inactivation variable delta_v = 2. # Membrane potential step length delta_n = 0.01 # Inactivation variable step length V_vec = np.arange(v_min, v_max, delta_v) n_vec = np.arange(n_min, n_max, delta_n) num_v_steps = len(V_vec) num_n_steps = len(n_vec) nest.ResetKernel() nest.set_verbosity('M_ERROR') nest.SetKernelStatus({'resolution': dt}) neuron = nest.Create('hh_psc_alpha') # Numerically obtain equilibrium state nest.Simulate(1000) m_eq = neuron.Act_m h_eq = neuron.Inact_h neuron.I_e = amplitude # Apply external current # Scan state space print('Scanning phase space') V_matrix = np.zeros([num_n_steps, num_v_steps]) n_matrix = np.zeros([num_n_steps, num_v_steps]) # pp_data will contain the phase-plane data as a vector field pp_data = np.zeros([num_n_steps * num_v_steps, 4]) count = 0 for i, V in enumerate(V_vec): for j, n in enumerate(n_vec): # Set V_m and n neuron.set(V_m=V, Act_n=n, Act_m=m_eq, Inact_h=h_eq) # Find state V_m = neuron.V_m Act_n = neuron.Act_n # Simulate a short while nest.Simulate(dt) # Find difference between new state and old state V_m_new = neuron.V_m - V Act_n_new = neuron.Act_n - n # Store in vector for later analysis V_matrix[j, i] = abs(V_m_new) n_matrix[j, i] = abs(Act_n_new) pp_data[count] = np.array([V_m, Act_n, V_m_new, Act_n_new]) if count % 10 == 0: # Write updated state next to old state print('') print('Vm: \t', V_m) print('new Vm:\t', V_m_new) print('Act_n:', Act_n) print('new Act_n:', Act_n_new) count += 1 # Set state for AP generation neuron.set(V_m=-34., Act_n=0.2, Act_m=m_eq, Inact_h=h_eq) print('') print('AP-trajectory') # ap will contain the trace of a single action potential as one possible # numerical solution in the vector field ap = np.zeros([1000, 2]) for i in range(1000): # Find state V_m = neuron.V_m Act_n = neuron.Act_n if i % 10 == 0: # Write new state next to old state print('Vm: \t', V_m) print('Act_n:', Act_n) ap[i] = np.array([V_m, Act_n]) # Simulate again neuron.set(Act_m=m_eq, Inact_h=h_eq) nest.Simulate(dt) # Make analysis print('') print('Plot analysis') nullcline_V = [] nullcline_n = [] print('Searching nullclines') for i in range(0, len(V_vec)): index = np.nanargmin(V_matrix[:][i]) if index != 0 and index != len(n_vec): nullcline_V.append([V_vec[i], n_vec[index]]) index = np.nanargmin(n_matrix[:][i]) if index != 0 and index != len(n_vec): nullcline_n.append([V_vec[i], n_vec[index]]) print('Plotting vector field') factor = 0.1 for i in range(0, np.shape(pp_data)[0], 3): plt.plot([pp_data[i][0], pp_data[i][0] + factor * pp_data[i][2]], [pp_data[i][1], pp_data[i][1] + factor * pp_data[i][3]], color=[0.6, 0.6, 0.6]) plt.plot(nullcline_V[:][0], nullcline_V[:][1], linewidth=2.0) plt.plot(nullcline_n[:][0], nullcline_n[:][1], linewidth=2.0) plt.xlim([V_vec[0], V_vec[-1]]) plt.ylim([n_vec[0], n_vec[-1]]) plt.plot(ap[:][0], ap[:][1], color='black', linewidth=1.0) plt.xlabel('Membrane potential V [mV]') plt.ylabel('Inactivation variable n') plt.title('Phase space of the Hodgkin-Huxley Neuron') plt.show()
gpl-2.0
zhenv5/scikit-learn
sklearn/ensemble/weight_boosting.py
71
40664
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # Licence: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float) sample_weight[:] = 1. / X.shape[0] else: # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Warning: This method needs to be overriden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight) def _boost_real(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass generator = check_random_state(self.random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = sample_weight.cumsum() cdf /= cdf[-1] uniform_samples = generator.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = self.estimator_weights_[sorted_idx].cumsum(axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
j33433/MPowerTCX
source/physics/physics.py
1
3722
#!/usr/bin/env python # # MPowerTCX: Share Schwinn A.C. indoor cycle data with Strava, GoldenCheetah and other apps # Copyright (C) 2017 James Roth # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # This file contains a model to estimate bike speed based on power # import math class SimpleBike(object): def __init__(self, mass): self.drag_coefficient = 0.88 self.frontal_area = 0.32 self.rho = 1.2 self.eta = 0.97 self.rolling_coefficient = 5.0e-3 # kg self.mass = mass self.grade = 0.0 self.g = 9.81 self.time_delta = 1 self.velocity = 0.0 self.distance = 0.0 def set_time_delta(self, delta): self.time_delta = delta def drag(self, velocity): return 0.5 * self.drag_coefficient * self.frontal_area * self.rho * velocity * velocity def rolling(self, grade, velocity): if velocity > 0.01: return self.g * math.cos(math.atan(grade)) * self.mass * self.rolling_coefficient else: return 0.0 def gravity(self, grade): return self.g * math.sin(math.atan(grade)) * self.mass def next_sample(self, power): drag = self.drag(self.velocity) rolling = self.rolling(self.grade, self.velocity) gravity = self.gravity(self.grade) total_force = drag + rolling + gravity power_needed = total_force * (self.velocity / self.eta) net_power = power - power_needed r = self.velocity * self.velocity + 2 * net_power * self.time_delta * self.eta / self.mass if r > 0.0: self.velocity = math.sqrt(r) else: self.velocity = 0.0 # print ("p %.2f, v %.2f, drag %.2f, rolling %.6f, gravity %.2f, total %.2f, r %.2f" % (power, self.velocity, drag, gravity, rolling, total_force, r)) self.distance += self.velocity * self.time_delta # m/s to mph v_mph = self.velocity * 2.23694 return power, v_mph, self.distance def main(): #import matplotlib.pyplot as plt velocity_a = [0] time_a = [0] power_a = [0] distance_a = [0] bike = SimpleBike() # loop over time: for x in range(0, 150): (power, velocity, distance) = bike.next_sample() velocity_a.append(velocity) power_a.append(power) distance_a.append(distance) time_a.append(bike.time_delta * x) fig, velocity_axis = plt.subplots() velocity_axis.margins(0.05) velocity_axis.plot(time_a, velocity_a, color='b') velocity_axis.set_xlabel('time (s)') velocity_axis.set_ylabel('velocity (mph)', color='b') power_axis = velocity_axis.twinx() power_axis.margins(0.05) power_axis.plot(time_a, power_a, 'r') power_axis.set_ylabel('power (w)', color='r') distance_axis = velocity_axis.twinx() distance_axis.margins(0.05) distance_axis.plot(time_a, distance_a, 'g') distance_axis.set_ylabel('distance (m)', color='g') plt.show() # main()
gpl-3.0
xzh86/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
FRESNA/PyPSA
examples/ac-dc-meshed/ac-dc-lpf.py
1
1741
#Compute Linear Power Flow for each snapshot for AC-DC network in #folder ac-dc-data/ # make the code as Python 3 compatible as possible from __future__ import print_function, division from __future__ import absolute_import import pypsa, os import pandas as pd import numpy as np from itertools import chain network = pypsa.Network() folder_name = "ac-dc-data" network.import_from_csv_folder(folder_name) network.lpf(network.snapshots) print("\nSub-Networks:") for sn in network.sub_networks.obj: print(sn,network.sub_networks.at[sn.name,"carrier"],len(sn.buses()),len(sn.branches())) print("\nControllable branches:") print(network.links) now = network.snapshots[5] print("\nCheck power balance at each bus:") for bus in network.buses.index: print("\n"*3+bus) generators = sum(network.generators_t.p.loc[now,network.generators.bus==bus]) loads = sum(network.loads_t.p.loc[now,network.loads.bus==bus]) print("Generators:",generators) print("Loads:",loads) print("Total:",generators-loads) p0 = 0. p1 = 0. for c in network.iterate_components(network.branch_components): bs = (c.df.bus0 == bus) if bs.any(): print(c,"\n",c.pnl.p0.loc[now,bs]) p0 += c.pnl.p0.loc[now,bs].sum() bs = (c.df.bus1 == bus) if bs.any(): print(c,"\n",c.pnl.p1.loc[now,bs]) p1 += c.pnl.p1.loc[now,bs].sum() print("Branches",p0+p1) np.testing.assert_allclose(p0+p1,generators-loads) print("") print(sum(network.generators_t.p.loc[now])) print(sum(network.loads_t.p.loc[now])) results_folder_name = os.path.join(folder_name,"results-lpf") if True: network.export_to_csv_folder(results_folder_name)
gpl-3.0
fyffyt/scikit-learn
examples/ensemble/plot_adaboost_twoclass.py
347
3268
""" ================== Two-class AdaBoost ================== This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two "Gaussian quantiles" clusters (see :func:`sklearn.datasets.make_gaussian_quantiles`) and plots the decision boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B. The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a desired purity of class B, for example, by only selecting samples with a decision score above some value. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, random_state=1) X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1) X = np.concatenate((X1, X2)) y = np.concatenate((y1, - y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist(twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label='Class %s' % n, alpha=.5) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc='upper right') plt.ylabel('Samples') plt.xlabel('Score') plt.title('Decision Scores') plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show()
bsd-3-clause
rjurney/Agile_Data_Code_2
ch07/train_sklearn_model.py
1
5304
import sys, os, re sys.path.append("lib") import utils import numpy as np import sklearn import iso8601 import datetime print("Imports loaded...") # Load and check the size of our training data. May take a minute. print("Original JSON file size: {:,} Bytes".format(os.path.getsize("data/simple_flight_delay_features.jsonl"))) training_data = utils.read_json_lines_file('data/simple_flight_delay_features.jsonl') print("Training items: {:,}".format(len(training_data))) # 5,714,008 print("Data loaded...") # Inspect a record before we alter them print("Size of training data in RAM: {:,} Bytes".format(sys.getsizeof(training_data))) # 50MB print(training_data[0]) # # Sample down our training data at first... sampled_training_data = training_data#np.random.choice(training_data, 1000000) print("Sampled items: {:,} Bytes".format(len(training_data))) print("Data sampled...") # Separate our results from the rest of the data, vectorize and size up results = [record['ArrDelay'] for record in sampled_training_data] results_vector = np.array(results) sys.getsizeof(results_vector) # 45,712,160 Bytes print("Results vectorized...") # Remove the two delay fields and the flight date from our training data for item in sampled_training_data: item.pop('ArrDelay', None) item.pop('FlightDate', None) print("ArrDelay and FlightDate removed from training data...") # Must convert datetime strings to unix times for item in sampled_training_data: if isinstance(item['CRSArrTime'], str): dt = iso8601.parse_date(item['CRSArrTime']) unix_time = int(dt.timestamp()) item['CRSArrTime'] = unix_time if isinstance(item['CRSDepTime'], str): dt = iso8601.parse_date(item['CRSDepTime']) unix_time = int(dt.timestamp()) item['CRSDepTime'] = unix_time print("Datetimes converted to unix times...") # Use DictVectorizer to convert feature dicts to vectors from sklearn.feature_extraction import DictVectorizer print("Original dimensions: [{:,}]".format(len(training_data))) vectorizer = DictVectorizer() training_vectors = vectorizer.fit_transform(training_data) print("Size of DictVectorized vectors: {:,} Bytes".format(training_vectors.data.nbytes)) print("Training data vectorized...") from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( training_vectors, results_vector, test_size=0.1, random_state=43 ) print(X_train.shape, X_test.shape) print(y_train.shape, y_test.shape) print("Test train split performed...") # Train a regressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.metrics import median_absolute_error, r2_score print("Regressor library and metrics imported...") regressor = LinearRegression() print("Regressor instantiated...") from sklearn.ensemble import GradientBoostingRegressor regressor = GradientBoostingRegressor print("Swapped gradient boosting trees for linear regression!") # Lets go back for now... regressor = LinearRegression() print("Swapped back to linear regression!") regressor.fit(X_train, y_train) print("Regressor fitted...") predicted = regressor.predict(X_test) print("Predictions made for X_test...") # Definitions from http://scikit-learn.org/stable/modules/model_evaluation.html from sklearn.metrics import median_absolute_error, r2_score # Median absolute error is the median of all absolute differences between the target and the prediction. # Less is better, more indicates a high error between target and prediction. medae = median_absolute_error(y_test, predicted) print("Median absolute error: {:.3g}".format(medae)) # R2 score is the coefficient of determination. Ranges from 1-0, 1.0 is best, 0.0 is worst. # Measures how well future samples are likely to be predicted. r2 = r2_score(y_test, predicted) print("r2 score: {:.3g}".format(r2)) # Plot outputs, compare actual vs predicted values # import matplotlib.pyplot as plt # # plt.scatter( # y_test, # predicted, # color='blue', # linewidth=1 # ) # # plt.xticks(()) # plt.yticks(()) # # plt.show() # # Persist model using pickle # print("Testing model persistance...") import pickle project_home = os.environ["PROJECT_HOME"] # Dump the model itself regressor_path = "{}/models/sklearn_regressor.pkl".format(project_home) regressor_bytes = pickle.dumps(regressor) model_f = open(regressor_path, 'wb') model_f.write(regressor_bytes) # Dump the DictVectorizer that vectorizes the features vectorizer_path = "{}/models/sklearn_vectorizer.pkl".format(project_home) vectorizer_bytes = pickle.dumps(vectorizer) vectorizer_f = open(vectorizer_path, 'wb') vectorizer_f.write(vectorizer_bytes) # Load the model itself model_f = open(regressor_path, 'rb') model_bytes = model_f.read() regressor = pickle.loads(model_bytes) # Load the DictVectorizer vectorizer_f = open(vectorizer_path, 'rb') vectorizer_bytes = vectorizer_f.read() vectorizer = pickle.loads(vectorizer_bytes) # # Persist model using sklearn.externals.joblib # from sklearn.externals import joblib # Dump the model and vectorizer joblib.dump(regressor, regressor_path) joblib.dump(vectorizer, vectorizer_path) # Load the model and vectorizer regressor = joblib.load(regressor_path) vectorizer = joblib.load(vectorizer_path)
mit
yipenggao/moose
modules/porous_flow/doc/tests/radialinjection.py
5
4190
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # # The two phase radial injection problem has a similarity solution (r^2/t) # # Read MOOSE simulation data for constant time (tdata) and constant # radial distance (rdata) tdata = np.genfromtxt('../../tests/dirackernels/theis3_line_0016.csv', delimiter = ',', names = True, dtype = float) rdata = np.genfromtxt('../../tests/dirackernels/theis3.csv', delimiter = ',', names = True, dtype = float) # Distance where data is sampled as a function of time r = 4 # Time where data is sampled along the spatial dimension t = 2e4 fig, axes = plt.subplots(1, 2, figsize = (15, 4)) # Water pressure vs similarity solution axes[0].plot(tdata['x']**2 / t, tdata['ppwater'] * 1e-6, label = 'Fixed $t$') axes[0].plot(r**2 / rdata['time'], rdata['ppwater'] * 1e-6, 'o', label = 'Fixed $r$') axes[0].set_xscale('log') axes[0].set_xlim([5e-4, 5e1]) axes[0].set_xlabel('$\zeta = r^2/t$') axes[0].set_ylabel('Liquid pressure (MPa)') axes[0].legend() # Gas saturation vs similarity solution axes[1].plot(tdata['x']**2 / t, tdata['sgas'], label = 'Fixed $t$') axes[1].plot(r**2 / rdata['time'], rdata['sgas'], 'o', label = 'Fixed $r$') axes[1].set_xscale('log') axes[1].set_xlim([5e-4, 5e1]) axes[1].set_ylim([-0.1, 1.1]) axes[1].set_xlabel('$\zeta = r^2/t$') axes[1].set_ylabel('Gas saturation (-)') axes[1].legend() plt.tight_layout() plt.savefig("theis_similarity_fig.pdf") # # The similarity solution (r^2/t) is applicable even when dissolution is included # # Read MOOSE simulation data for constant time (tdata) and constant # radial distance (rdata) using the water-ncg fluid state tdata = np.genfromtxt('../../tests/fluidstate/theis_csvout_line_0028.csv', delimiter = ',', names = True, dtype = float) rdata = np.genfromtxt('../../tests/fluidstate/theis_csvout.csv', delimiter = ',', names = True, dtype = float) # Distance where data is sampled as a function of time r = 4 # Time where data is sampled along the spatial dimension t = 1e5 fig, axes = plt.subplots(1, 2, figsize = (15, 4)) # Gas pressure vs similarity solution axes[0].plot(tdata['x']**2 / t, tdata['pgas'] * 1e-6, label = 'Fixed $t$') axes[0].plot(r**2 / rdata['time'], rdata['pgas'] * 1e-6, 'o', label = 'Fixed $r$') axes[0].set_xscale('log') axes[0].set_xlim([1e-4, 5e1]) axes[0].set_xlabel('$\zeta = r^2/t$') axes[0].set_ylabel('Gas pressure (MPa)') axes[0].legend() # Total mass fraction vs similarity solution axes[1].plot(tdata['x']**2 / t, tdata['zi'], label = 'Fixed $t$') axes[1].plot(r**2 / rdata['time'], rdata['zi'], 'o', label = 'Fixed $r$') axes[1].set_xscale('log') axes[1].set_xlim([1e-4, 5e1]) axes[1].set_ylim([-0.1, 1.1]) axes[1].set_xlabel('$\zeta = r^2/t$') axes[1].set_ylabel('Total mass fraction (-)') axes[1].legend() plt.tight_layout() plt.savefig("theis_similarity_waterncg_fig.pdf") # # Read MOOSE simulation data for constant time (tdata) and constant # radial distance (rdata) using the brine-co2 fluid state tdata = np.genfromtxt('../../tests/fluidstate/theis_brineco2_csvout_line_0028.csv', delimiter = ',', names = True, dtype = float) rdata = np.genfromtxt('../../tests/fluidstate/theis_brineco2_csvout.csv', delimiter = ',', names = True, dtype = float) # Distance where data is sampled as a function of time r = 4 # Time where data is sampled along the spatial dimension t = 1e5 fig, axes = plt.subplots(1, 2, figsize = (15, 4)) # Gas pressure vs similarity solution axes[0].plot(tdata['x']**2 / t, tdata['pgas'] * 1e-6, label = 'Fixed $t$') axes[0].plot(r**2 / rdata['time'], rdata['pgas'] * 1e-6, 'o', label = 'Fixed $r$') axes[0].set_xscale('log') axes[0].set_xlim([1e-4, 5e1]) axes[0].set_xlabel('$\zeta = r^2/t$') axes[0].set_ylabel('Gas pressure (MPa)') axes[0].legend() # Total mass fraction vs similarity solution axes[1].plot(tdata['x']**2 / t, tdata['zi'], label = 'Fixed $t$') axes[1].plot(r**2 / rdata['time'], rdata['zi'], 'o', label = 'Fixed $r$') axes[1].set_xscale('log') axes[1].set_xlim([1e-4, 5e1]) axes[1].set_ylim([-0.1, 1.1]) axes[1].set_xlabel('$\zeta = r^2/t$') axes[1].set_ylabel('Total mass fraction (-)') axes[1].legend() plt.tight_layout() plt.savefig("theis_similarity_brineco2_fig.pdf")
lgpl-2.1
jlegendary/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_gtk.py
69
43991
from __future__ import division import os, sys def fn_name(): return sys._getframe(1).f_code.co_name try: import gobject import gtk; gdk = gtk.gdk import pango except ImportError: raise ImportError("Gtk* backend requires pygtk to be installed.") pygtk_version_required = (2,2,0) if gtk.pygtk_version < pygtk_version_required: raise ImportError ("PyGTK %d.%d.%d is installed\n" "PyGTK %d.%d.%d or later is required" % (gtk.pygtk_version + pygtk_version_required)) del pygtk_version_required import matplotlib from matplotlib import verbose from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors from matplotlib.backends.backend_gdk import RendererGDK, FigureCanvasGDK from matplotlib.cbook import is_string_like, is_writable_file_like from matplotlib.colors import colorConverter from matplotlib.figure import Figure from matplotlib.widgets import SubplotTool from matplotlib import lines from matplotlib import cbook backend_version = "%d.%d.%d" % gtk.pygtk_version _debug = False #_debug = True # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 96 cursord = { cursors.MOVE : gdk.Cursor(gdk.FLEUR), cursors.HAND : gdk.Cursor(gdk.HAND2), cursors.POINTER : gdk.Cursor(gdk.LEFT_PTR), cursors.SELECT_REGION : gdk.Cursor(gdk.TCROSS), } # ref gtk+/gtk/gtkwidget.h def GTK_WIDGET_DRAWABLE(w): flags = w.flags(); return flags & gtk.VISIBLE != 0 and flags & gtk.MAPPED != 0 def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw() def show(mainloop=True): """ Show all the figures and enter the gtk main loop This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.window.show() if mainloop and gtk.main_level() == 0 and \ len(Gcf.get_all_fig_managers())>0: gtk.main() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasGTK(thisFig) manager = FigureManagerGTK(canvas, num) # equals: #manager = FigureManagerGTK(FigureCanvasGTK(Figure(*args, **kwargs), num) return manager class FigureCanvasGTK (gtk.DrawingArea, FigureCanvasBase): keyvald = {65507 : 'control', 65505 : 'shift', 65513 : 'alt', 65508 : 'control', 65506 : 'shift', 65514 : 'alt', 65361 : 'left', 65362 : 'up', 65363 : 'right', 65364 : 'down', 65307 : 'escape', 65470 : 'f1', 65471 : 'f2', 65472 : 'f3', 65473 : 'f4', 65474 : 'f5', 65475 : 'f6', 65476 : 'f7', 65477 : 'f8', 65478 : 'f9', 65479 : 'f10', 65480 : 'f11', 65481 : 'f12', 65300 : 'scroll_lock', 65299 : 'break', 65288 : 'backspace', 65293 : 'enter', 65379 : 'insert', 65535 : 'delete', 65360 : 'home', 65367 : 'end', 65365 : 'pageup', 65366 : 'pagedown', 65438 : '0', 65436 : '1', 65433 : '2', 65435 : '3', 65430 : '4', 65437 : '5', 65432 : '6', 65429 : '7', 65431 : '8', 65434 : '9', 65451 : '+', 65453 : '-', 65450 : '*', 65455 : '/', 65439 : 'dec', 65421 : 'enter', } # Setting this as a static constant prevents # this resulting expression from leaking event_mask = (gdk.BUTTON_PRESS_MASK | gdk.BUTTON_RELEASE_MASK | gdk.EXPOSURE_MASK | gdk.KEY_PRESS_MASK | gdk.KEY_RELEASE_MASK | gdk.ENTER_NOTIFY_MASK | gdk.LEAVE_NOTIFY_MASK | gdk.POINTER_MOTION_MASK | gdk.POINTER_MOTION_HINT_MASK) def __init__(self, figure): if _debug: print 'FigureCanvasGTK.%s' % fn_name() FigureCanvasBase.__init__(self, figure) gtk.DrawingArea.__init__(self) self._idle_draw_id = 0 self._need_redraw = True self._pixmap_width = -1 self._pixmap_height = -1 self._lastCursor = None self.connect('scroll_event', self.scroll_event) self.connect('button_press_event', self.button_press_event) self.connect('button_release_event', self.button_release_event) self.connect('configure_event', self.configure_event) self.connect('expose_event', self.expose_event) self.connect('key_press_event', self.key_press_event) self.connect('key_release_event', self.key_release_event) self.connect('motion_notify_event', self.motion_notify_event) self.connect('leave_notify_event', self.leave_notify_event) self.connect('enter_notify_event', self.enter_notify_event) self.set_events(self.__class__.event_mask) self.set_double_buffered(False) self.set_flags(gtk.CAN_FOCUS) self._renderer_init() self._idle_event_id = gobject.idle_add(self.idle_event) def destroy(self): #gtk.DrawingArea.destroy(self) gobject.source_remove(self._idle_event_id) if self._idle_draw_id != 0: gobject.source_remove(self._idle_draw_id) def scroll_event(self, widget, event): if _debug: print 'FigureCanvasGTK.%s' % fn_name() x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y if event.direction==gdk.SCROLL_UP: step = 1 else: step = -1 FigureCanvasBase.scroll_event(self, x, y, step) return False # finish event propagation? def button_press_event(self, widget, event): if _debug: print 'FigureCanvasGTK.%s' % fn_name() x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y FigureCanvasBase.button_press_event(self, x, y, event.button) return False # finish event propagation? def button_release_event(self, widget, event): if _debug: print 'FigureCanvasGTK.%s' % fn_name() x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y FigureCanvasBase.button_release_event(self, x, y, event.button) return False # finish event propagation? def key_press_event(self, widget, event): if _debug: print 'FigureCanvasGTK.%s' % fn_name() key = self._get_key(event) if _debug: print "hit", key FigureCanvasBase.key_press_event(self, key) return False # finish event propagation? def key_release_event(self, widget, event): if _debug: print 'FigureCanvasGTK.%s' % fn_name() key = self._get_key(event) if _debug: print "release", key FigureCanvasBase.key_release_event(self, key) return False # finish event propagation? def motion_notify_event(self, widget, event): if _debug: print 'FigureCanvasGTK.%s' % fn_name() if event.is_hint: x, y, state = event.window.get_pointer() else: x, y, state = event.x, event.y, event.state # flipy so y=0 is bottom of canvas y = self.allocation.height - y FigureCanvasBase.motion_notify_event(self, x, y) return False # finish event propagation? def leave_notify_event(self, widget, event): FigureCanvasBase.leave_notify_event(self, event) def enter_notify_event(self, widget, event): FigureCanvasBase.enter_notify_event(self, event) def _get_key(self, event): if event.keyval in self.keyvald: key = self.keyvald[event.keyval] elif event.keyval <256: key = chr(event.keyval) else: key = None ctrl = event.state & gdk.CONTROL_MASK shift = event.state & gdk.SHIFT_MASK return key def configure_event(self, widget, event): if _debug: print 'FigureCanvasGTK.%s' % fn_name() if widget.window is None: return w, h = event.width, event.height if w < 3 or h < 3: return # empty fig # resize the figure (in inches) dpi = self.figure.dpi self.figure.set_size_inches (w/dpi, h/dpi) self._need_redraw = True return False # finish event propagation? def draw(self): # Note: FigureCanvasBase.draw() is inconveniently named as it clashes # with the deprecated gtk.Widget.draw() self._need_redraw = True if GTK_WIDGET_DRAWABLE(self): self.queue_draw() # do a synchronous draw (its less efficient than an async draw, # but is required if/when animation is used) self.window.process_updates (False) def draw_idle(self): def idle_draw(*args): self.draw() self._idle_draw_id = 0 return False if self._idle_draw_id == 0: self._idle_draw_id = gobject.idle_add(idle_draw) def _renderer_init(self): """Override by GTK backends to select a different renderer Renderer should provide the methods: set_pixmap () set_width_height () that are used by _render_figure() / _pixmap_prepare() """ self._renderer = RendererGDK (self, self.figure.dpi) def _pixmap_prepare(self, width, height): """ Make sure _._pixmap is at least width, height, create new pixmap if necessary """ if _debug: print 'FigureCanvasGTK.%s' % fn_name() create_pixmap = False if width > self._pixmap_width: # increase the pixmap in 10%+ (rather than 1 pixel) steps self._pixmap_width = max (int (self._pixmap_width * 1.1), width) create_pixmap = True if height > self._pixmap_height: self._pixmap_height = max (int (self._pixmap_height * 1.1), height) create_pixmap = True if create_pixmap: self._pixmap = gdk.Pixmap (self.window, self._pixmap_width, self._pixmap_height) self._renderer.set_pixmap (self._pixmap) def _render_figure(self, pixmap, width, height): """used by GTK and GTKcairo. GTKAgg overrides """ self._renderer.set_width_height (width, height) self.figure.draw (self._renderer) def expose_event(self, widget, event): """Expose_event for all GTK backends. Should not be overridden. """ if _debug: print 'FigureCanvasGTK.%s' % fn_name() if GTK_WIDGET_DRAWABLE(self): if self._need_redraw: x, y, w, h = self.allocation self._pixmap_prepare (w, h) self._render_figure(self._pixmap, w, h) self._need_redraw = False x, y, w, h = event.area self.window.draw_drawable (self.style.fg_gc[self.state], self._pixmap, x, y, x, y, w, h) return False # finish event propagation? filetypes = FigureCanvasBase.filetypes.copy() filetypes['jpg'] = 'JPEG' filetypes['jpeg'] = 'JPEG' filetypes['png'] = 'Portable Network Graphics' def print_jpeg(self, filename, *args, **kwargs): return self._print_image(filename, 'jpeg') print_jpg = print_jpeg def print_png(self, filename, *args, **kwargs): return self._print_image(filename, 'png') def _print_image(self, filename, format): if self.flags() & gtk.REALIZED == 0: # for self.window(for pixmap) and has a side effect of altering # figure width,height (via configure-event?) gtk.DrawingArea.realize(self) width, height = self.get_width_height() pixmap = gdk.Pixmap (self.window, width, height) self._renderer.set_pixmap (pixmap) self._render_figure(pixmap, width, height) # jpg colors don't match the display very well, png colors match # better pixbuf = gdk.Pixbuf(gdk.COLORSPACE_RGB, 0, 8, width, height) pixbuf.get_from_drawable(pixmap, pixmap.get_colormap(), 0, 0, 0, 0, width, height) if is_string_like(filename): try: pixbuf.save(filename, format) except gobject.GError, exc: error_msg_gtk('Save figure failure:\n%s' % (exc,), parent=self) elif is_writable_file_like(filename): if hasattr(pixbuf, 'save_to_callback'): def save_callback(buf, data=None): data.write(buf) try: pixbuf.save_to_callback(save_callback, format, user_data=filename) except gobject.GError, exc: error_msg_gtk('Save figure failure:\n%s' % (exc,), parent=self) else: raise ValueError("Saving to a Python file-like object is only supported by PyGTK >= 2.8") else: raise ValueError("filename must be a path or a file-like object") def get_default_filetype(self): return 'png' def flush_events(self): gtk.gdk.threads_enter() while gtk.events_pending(): gtk.main_iteration(True) gtk.gdk.flush() gtk.gdk.threads_leave() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerGTK(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The gtk.Toolbar (gtk only) vbox : The gtk.VBox containing the canvas and toolbar (gtk only) window : The gtk.Window (gtk only) """ def __init__(self, canvas, num): if _debug: print 'FigureManagerGTK.%s' % fn_name() FigureManagerBase.__init__(self, canvas, num) self.window = gtk.Window() self.window.set_title("Figure %d" % num) self.vbox = gtk.VBox() self.window.add(self.vbox) self.vbox.show() self.canvas.show() # attach a show method to the figure for pylab ease of use self.canvas.figure.show = lambda *args: self.window.show() self.vbox.pack_start(self.canvas, True, True) self.toolbar = self._get_toolbar(canvas) # calculate size for window w = int (self.canvas.figure.bbox.width) h = int (self.canvas.figure.bbox.height) if self.toolbar is not None: self.toolbar.show() self.vbox.pack_end(self.toolbar, False, False) tb_w, tb_h = self.toolbar.size_request() h += tb_h self.window.set_default_size (w, h) def destroy(*args): Gcf.destroy(num) self.window.connect("destroy", destroy) self.window.connect("delete_event", destroy) if matplotlib.is_interactive(): self.window.show() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar is not None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) self.canvas.grab_focus() def destroy(self, *args): if _debug: print 'FigureManagerGTK.%s' % fn_name() self.vbox.destroy() self.window.destroy() self.canvas.destroy() self.toolbar.destroy() self.__dict__.clear() if Gcf.get_num_fig_managers()==0 and \ not matplotlib.is_interactive() and \ gtk.main_level() >= 1: gtk.main_quit() def show(self): # show the figure window self.window.show() def full_screen_toggle (self): self._full_screen_flag = not self._full_screen_flag if self._full_screen_flag: self.window.fullscreen() else: self.window.unfullscreen() _full_screen_flag = False def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar'] == 'classic': toolbar = NavigationToolbar (canvas, self.window) elif matplotlib.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2GTK (canvas, self.window) else: toolbar = None return toolbar def set_window_title(self, title): self.window.set_title(title) def resize(self, width, height): 'set the canvas size in pixels' #_, _, cw, ch = self.canvas.allocation #_, _, ww, wh = self.window.allocation #self.window.resize (width-cw+ww, height-ch+wh) self.window.resize(width, height) class NavigationToolbar2GTK(NavigationToolbar2, gtk.Toolbar): # list of toolitems to add to the toolbar, format is: # text, tooltip_text, image_file, callback(str) toolitems = ( ('Home', 'Reset original view', 'home.png', 'home'), ('Back', 'Back to previous view','back.png', 'back'), ('Forward', 'Forward to next view','forward.png', 'forward'), ('Pan', 'Pan axes with left mouse, zoom with right', 'move.png','pan'), ('Zoom', 'Zoom to rectangle','zoom_to_rect.png', 'zoom'), (None, None, None, None), ('Subplots', 'Configure subplots','subplots.png', 'configure_subplots'), ('Save', 'Save the figure','filesave.png', 'save_figure'), ) def __init__(self, canvas, window): self.win = window gtk.Toolbar.__init__(self) NavigationToolbar2.__init__(self, canvas) self._idle_draw_id = 0 def set_message(self, s): if self._idle_draw_id == 0: self.message.set_label(s) def set_cursor(self, cursor): self.canvas.window.set_cursor(cursord[cursor]) def release(self, event): try: del self._imageBack except AttributeError: pass def dynamic_update(self): # legacy method; new method is canvas.draw_idle self.canvas.draw_idle() def draw_rubberband(self, event, x0, y0, x1, y1): 'adapted from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/189744' drawable = self.canvas.window if drawable is None: return gc = drawable.new_gc() height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 w = abs(x1 - x0) h = abs(y1 - y0) rect = [int(val)for val in min(x0,x1), min(y0, y1), w, h] try: lastrect, imageBack = self._imageBack except AttributeError: #snap image back if event.inaxes is None: return ax = event.inaxes l,b,w,h = [int(val) for val in ax.bbox.bounds] b = int(height)-(b+h) axrect = l,b,w,h self._imageBack = axrect, drawable.get_image(*axrect) drawable.draw_rectangle(gc, False, *rect) self._idle_draw_id = 0 else: def idle_draw(*args): drawable.draw_image(gc, imageBack, 0, 0, *lastrect) drawable.draw_rectangle(gc, False, *rect) self._idle_draw_id = 0 return False if self._idle_draw_id == 0: self._idle_draw_id = gobject.idle_add(idle_draw) def _init_toolbar(self): self.set_style(gtk.TOOLBAR_ICONS) if gtk.pygtk_version >= (2,4,0): self._init_toolbar2_4() else: self._init_toolbar2_2() def _init_toolbar2_2(self): basedir = os.path.join(matplotlib.rcParams['datapath'],'images') for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.append_space() continue fname = os.path.join(basedir, image_file) image = gtk.Image() image.set_from_file(fname) w = self.append_item(text, tooltip_text, 'Private', image, getattr(self, callback) ) self.append_space() self.message = gtk.Label() self.append_widget(self.message, None, None) self.message.show() def _init_toolbar2_4(self): basedir = os.path.join(matplotlib.rcParams['datapath'],'images') self.tooltips = gtk.Tooltips() for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.insert( gtk.SeparatorToolItem(), -1 ) continue fname = os.path.join(basedir, image_file) image = gtk.Image() image.set_from_file(fname) tbutton = gtk.ToolButton(image, text) self.insert(tbutton, -1) tbutton.connect('clicked', getattr(self, callback)) tbutton.set_tooltip(self.tooltips, tooltip_text, 'Private') toolitem = gtk.SeparatorToolItem() self.insert(toolitem, -1) # set_draw() not making separator invisible, # bug #143692 fixed Jun 06 2004, will be in GTK+ 2.6 toolitem.set_draw(False) toolitem.set_expand(True) toolitem = gtk.ToolItem() self.insert(toolitem, -1) self.message = gtk.Label() toolitem.add(self.message) self.show_all() def get_filechooser(self): if gtk.pygtk_version >= (2,4,0): return FileChooserDialog( title='Save the figure', parent=self.win, filetypes=self.canvas.get_supported_filetypes(), default_filetype=self.canvas.get_default_filetype()) else: return FileSelection(title='Save the figure', parent=self.win,) def save_figure(self, button): fname, format = self.get_filechooser().get_filename_from_user() if fname: try: self.canvas.print_figure(fname, format=format) except Exception, e: error_msg_gtk(str(e), parent=self) def configure_subplots(self, button): toolfig = Figure(figsize=(6,3)) canvas = self._get_canvas(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) w = int (toolfig.bbox.width) h = int (toolfig.bbox.height) window = gtk.Window() window.set_title("Subplot Configuration Tool") window.set_default_size(w, h) vbox = gtk.VBox() window.add(vbox) vbox.show() canvas.show() vbox.pack_start(canvas, True, True) window.show() def _get_canvas(self, fig): return FigureCanvasGTK(fig) class NavigationToolbar(gtk.Toolbar): """ Public attributes canvas - the FigureCanvas (gtk.DrawingArea) win - the gtk.Window """ # list of toolitems to add to the toolbar, format is: # text, tooltip_text, image, callback(str), callback_arg, scroll(bool) toolitems = ( ('Left', 'Pan left with click or wheel mouse (bidirectional)', gtk.STOCK_GO_BACK, 'panx', -1, True), ('Right', 'Pan right with click or wheel mouse (bidirectional)', gtk.STOCK_GO_FORWARD, 'panx', 1, True), ('Zoom In X', 'Zoom In X (shrink the x axis limits) with click or wheel' ' mouse (bidirectional)', gtk.STOCK_ZOOM_IN, 'zoomx', 1, True), ('Zoom Out X', 'Zoom Out X (expand the x axis limits) with click or wheel' ' mouse (bidirectional)', gtk.STOCK_ZOOM_OUT, 'zoomx', -1, True), (None, None, None, None, None, None,), ('Up', 'Pan up with click or wheel mouse (bidirectional)', gtk.STOCK_GO_UP, 'pany', 1, True), ('Down', 'Pan down with click or wheel mouse (bidirectional)', gtk.STOCK_GO_DOWN, 'pany', -1, True), ('Zoom In Y', 'Zoom in Y (shrink the y axis limits) with click or wheel' ' mouse (bidirectional)', gtk.STOCK_ZOOM_IN, 'zoomy', 1, True), ('Zoom Out Y', 'Zoom Out Y (expand the y axis limits) with click or wheel' ' mouse (bidirectional)', gtk.STOCK_ZOOM_OUT, 'zoomy', -1, True), (None, None, None, None, None, None,), ('Save', 'Save the figure', gtk.STOCK_SAVE, 'save_figure', None, False), ) def __init__(self, canvas, window): """ figManager is the FigureManagerGTK instance that contains the toolbar, with attributes figure, window and drawingArea """ gtk.Toolbar.__init__(self) self.canvas = canvas # Note: gtk.Toolbar already has a 'window' attribute self.win = window self.set_style(gtk.TOOLBAR_ICONS) if gtk.pygtk_version >= (2,4,0): self._create_toolitems_2_4() self.update = self._update_2_4 self.fileselect = FileChooserDialog( title='Save the figure', parent=self.win, filetypes=self.canvas.get_supported_filetypes(), default_filetype=self.canvas.get_default_filetype()) else: self._create_toolitems_2_2() self.update = self._update_2_2 self.fileselect = FileSelection(title='Save the figure', parent=self.win) self.show_all() self.update() def _create_toolitems_2_4(self): # use the GTK+ 2.4 GtkToolbar API iconSize = gtk.ICON_SIZE_SMALL_TOOLBAR self.tooltips = gtk.Tooltips() for text, tooltip_text, image_num, callback, callback_arg, scroll \ in self.toolitems: if text is None: self.insert( gtk.SeparatorToolItem(), -1 ) continue image = gtk.Image() image.set_from_stock(image_num, iconSize) tbutton = gtk.ToolButton(image, text) self.insert(tbutton, -1) if callback_arg: tbutton.connect('clicked', getattr(self, callback), callback_arg) else: tbutton.connect('clicked', getattr(self, callback)) if scroll: tbutton.connect('scroll_event', getattr(self, callback)) tbutton.set_tooltip(self.tooltips, tooltip_text, 'Private') # Axes toolitem, is empty at start, update() adds a menu if >=2 axes self.axes_toolitem = gtk.ToolItem() self.insert(self.axes_toolitem, 0) self.axes_toolitem.set_tooltip ( self.tooltips, tip_text='Select axes that controls affect', tip_private = 'Private') align = gtk.Alignment (xalign=0.5, yalign=0.5, xscale=0.0, yscale=0.0) self.axes_toolitem.add(align) self.menubutton = gtk.Button ("Axes") align.add (self.menubutton) def position_menu (menu): """Function for positioning a popup menu. Place menu below the menu button, but ensure it does not go off the bottom of the screen. The default is to popup menu at current mouse position """ x0, y0 = self.window.get_origin() x1, y1, m = self.window.get_pointer() x2, y2 = self.menubutton.get_pointer() sc_h = self.get_screen().get_height() # requires GTK+ 2.2 + w, h = menu.size_request() x = x0 + x1 - x2 y = y0 + y1 - y2 + self.menubutton.allocation.height y = min(y, sc_h - h) return x, y, True def button_clicked (button, data=None): self.axismenu.popup (None, None, position_menu, 0, gtk.get_current_event_time()) self.menubutton.connect ("clicked", button_clicked) def _update_2_4(self): # for GTK+ 2.4+ # called by __init__() and FigureManagerGTK self._axes = self.canvas.figure.axes if len(self._axes) >= 2: self.axismenu = self._make_axis_menu() self.menubutton.show_all() else: self.menubutton.hide() self.set_active(range(len(self._axes))) def _create_toolitems_2_2(self): # use the GTK+ 2.2 (and lower) GtkToolbar API iconSize = gtk.ICON_SIZE_SMALL_TOOLBAR for text, tooltip_text, image_num, callback, callback_arg, scroll \ in self.toolitems: if text is None: self.append_space() continue image = gtk.Image() image.set_from_stock(image_num, iconSize) item = self.append_item(text, tooltip_text, 'Private', image, getattr(self, callback), callback_arg) if scroll: item.connect("scroll_event", getattr(self, callback)) self.omenu = gtk.OptionMenu() self.omenu.set_border_width(3) self.insert_widget( self.omenu, 'Select axes that controls affect', 'Private', 0) def _update_2_2(self): # for GTK+ 2.2 and lower # called by __init__() and FigureManagerGTK self._axes = self.canvas.figure.axes if len(self._axes) >= 2: # set up the axis menu self.omenu.set_menu( self._make_axis_menu() ) self.omenu.show_all() else: self.omenu.hide() self.set_active(range(len(self._axes))) def _make_axis_menu(self): # called by self._update*() def toggled(item, data=None): if item == self.itemAll: for item in items: item.set_active(True) elif item == self.itemInvert: for item in items: item.set_active(not item.get_active()) ind = [i for i,item in enumerate(items) if item.get_active()] self.set_active(ind) menu = gtk.Menu() self.itemAll = gtk.MenuItem("All") menu.append(self.itemAll) self.itemAll.connect("activate", toggled) self.itemInvert = gtk.MenuItem("Invert") menu.append(self.itemInvert) self.itemInvert.connect("activate", toggled) items = [] for i in range(len(self._axes)): item = gtk.CheckMenuItem("Axis %d" % (i+1)) menu.append(item) item.connect("toggled", toggled) item.set_active(True) items.append(item) menu.show_all() return menu def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def panx(self, button, direction): 'panx in direction' for a in self._active: a.xaxis.pan(direction) self.canvas.draw() return True def pany(self, button, direction): 'pany in direction' for a in self._active: a.yaxis.pan(direction) self.canvas.draw() return True def zoomx(self, button, direction): 'zoomx in direction' for a in self._active: a.xaxis.zoom(direction) self.canvas.draw() return True def zoomy(self, button, direction): 'zoomy in direction' for a in self._active: a.yaxis.zoom(direction) self.canvas.draw() return True def get_filechooser(self): if gtk.pygtk_version >= (2,4,0): return FileChooserDialog( title='Save the figure', parent=self.win, filetypes=self.canvas.get_supported_filetypes(), default_filetype=self.canvas.get_default_filetype()) else: return FileSelection(title='Save the figure', parent=self.win) def save_figure(self, button): fname, format = self.get_filechooser().get_filename_from_user() if fname: try: self.canvas.print_figure(fname, format=format) except Exception, e: error_msg_gtk(str(e), parent=self) if gtk.pygtk_version >= (2,4,0): class FileChooserDialog(gtk.FileChooserDialog): """GTK+ 2.4 file selector which remembers the last file/directory selected and presents the user with a menu of supported image formats """ def __init__ (self, title = 'Save file', parent = None, action = gtk.FILE_CHOOSER_ACTION_SAVE, buttons = (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_SAVE, gtk.RESPONSE_OK), path = None, filetypes = [], default_filetype = None ): super (FileChooserDialog, self).__init__ (title, parent, action, buttons) self.set_default_response (gtk.RESPONSE_OK) if not path: path = os.getcwd() + os.sep # create an extra widget to list supported image formats self.set_current_folder (path) self.set_current_name ('image.' + default_filetype) hbox = gtk.HBox (spacing=10) hbox.pack_start (gtk.Label ("File Format:"), expand=False) liststore = gtk.ListStore(gobject.TYPE_STRING) cbox = gtk.ComboBox(liststore) cell = gtk.CellRendererText() cbox.pack_start(cell, True) cbox.add_attribute(cell, 'text', 0) hbox.pack_start (cbox) self.filetypes = filetypes self.sorted_filetypes = filetypes.items() self.sorted_filetypes.sort() default = 0 for i, (ext, name) in enumerate(self.sorted_filetypes): cbox.append_text ("%s (*.%s)" % (name, ext)) if ext == default_filetype: default = i cbox.set_active(default) self.ext = default_filetype def cb_cbox_changed (cbox, data=None): """File extension changed""" head, filename = os.path.split(self.get_filename()) root, ext = os.path.splitext(filename) ext = ext[1:] new_ext = self.sorted_filetypes[cbox.get_active()][0] self.ext = new_ext if ext in self.filetypes: filename = root + '.' + new_ext elif ext == '': filename = filename.rstrip('.') + '.' + new_ext self.set_current_name (filename) cbox.connect ("changed", cb_cbox_changed) hbox.show_all() self.set_extra_widget(hbox) def get_filename_from_user (self): while True: filename = None if self.run() != int(gtk.RESPONSE_OK): break filename = self.get_filename() break self.hide() return filename, self.ext else: class FileSelection(gtk.FileSelection): """GTK+ 2.2 and lower file selector which remembers the last file/directory selected """ def __init__(self, path=None, title='Select a file', parent=None): super(FileSelection, self).__init__(title) if path: self.path = path else: self.path = os.getcwd() + os.sep if parent: self.set_transient_for(parent) def get_filename_from_user(self, path=None, title=None): if path: self.path = path if title: self.set_title(title) self.set_filename(self.path) filename = None if self.run() == int(gtk.RESPONSE_OK): self.path = filename = self.get_filename() self.hide() ext = None if filename is not None: ext = os.path.splitext(filename)[1] if ext.startswith('.'): ext = ext[1:] return filename, ext class DialogLineprops: """ A GUI dialog for controlling lineprops """ signals = ( 'on_combobox_lineprops_changed', 'on_combobox_linestyle_changed', 'on_combobox_marker_changed', 'on_colorbutton_linestyle_color_set', 'on_colorbutton_markerface_color_set', 'on_dialog_lineprops_okbutton_clicked', 'on_dialog_lineprops_cancelbutton_clicked', ) linestyles = [ls for ls in lines.Line2D.lineStyles if ls.strip()] linestyled = dict([ (s,i) for i,s in enumerate(linestyles)]) markers = [m for m in lines.Line2D.markers if cbook.is_string_like(m)] markerd = dict([(s,i) for i,s in enumerate(markers)]) def __init__(self, lines): import gtk.glade datadir = matplotlib.get_data_path() gladefile = os.path.join(datadir, 'lineprops.glade') if not os.path.exists(gladefile): raise IOError('Could not find gladefile lineprops.glade in %s'%datadir) self._inited = False self._updateson = True # suppress updates when setting widgets manually self.wtree = gtk.glade.XML(gladefile, 'dialog_lineprops') self.wtree.signal_autoconnect(dict([(s, getattr(self, s)) for s in self.signals])) self.dlg = self.wtree.get_widget('dialog_lineprops') self.lines = lines cbox = self.wtree.get_widget('combobox_lineprops') cbox.set_active(0) self.cbox_lineprops = cbox cbox = self.wtree.get_widget('combobox_linestyles') for ls in self.linestyles: cbox.append_text(ls) cbox.set_active(0) self.cbox_linestyles = cbox cbox = self.wtree.get_widget('combobox_markers') for m in self.markers: cbox.append_text(m) cbox.set_active(0) self.cbox_markers = cbox self._lastcnt = 0 self._inited = True def show(self): 'populate the combo box' self._updateson = False # flush the old cbox = self.cbox_lineprops for i in range(self._lastcnt-1,-1,-1): cbox.remove_text(i) # add the new for line in self.lines: cbox.append_text(line.get_label()) cbox.set_active(0) self._updateson = True self._lastcnt = len(self.lines) self.dlg.show() def get_active_line(self): 'get the active line' ind = self.cbox_lineprops.get_active() line = self.lines[ind] return line def get_active_linestyle(self): 'get the active lineinestyle' ind = self.cbox_linestyles.get_active() ls = self.linestyles[ind] return ls def get_active_marker(self): 'get the active lineinestyle' ind = self.cbox_markers.get_active() m = self.markers[ind] return m def _update(self): 'update the active line props from the widgets' if not self._inited or not self._updateson: return line = self.get_active_line() ls = self.get_active_linestyle() marker = self.get_active_marker() line.set_linestyle(ls) line.set_marker(marker) button = self.wtree.get_widget('colorbutton_linestyle') color = button.get_color() r, g, b = [val/65535. for val in color.red, color.green, color.blue] line.set_color((r,g,b)) button = self.wtree.get_widget('colorbutton_markerface') color = button.get_color() r, g, b = [val/65535. for val in color.red, color.green, color.blue] line.set_markerfacecolor((r,g,b)) line.figure.canvas.draw() def on_combobox_lineprops_changed(self, item): 'update the widgets from the active line' if not self._inited: return self._updateson = False line = self.get_active_line() ls = line.get_linestyle() if ls is None: ls = 'None' self.cbox_linestyles.set_active(self.linestyled[ls]) marker = line.get_marker() if marker is None: marker = 'None' self.cbox_markers.set_active(self.markerd[marker]) r,g,b = colorConverter.to_rgb(line.get_color()) color = gtk.gdk.Color(*[int(val*65535) for val in r,g,b]) button = self.wtree.get_widget('colorbutton_linestyle') button.set_color(color) r,g,b = colorConverter.to_rgb(line.get_markerfacecolor()) color = gtk.gdk.Color(*[int(val*65535) for val in r,g,b]) button = self.wtree.get_widget('colorbutton_markerface') button.set_color(color) self._updateson = True def on_combobox_linestyle_changed(self, item): self._update() def on_combobox_marker_changed(self, item): self._update() def on_colorbutton_linestyle_color_set(self, button): self._update() def on_colorbutton_markerface_color_set(self, button): 'called colorbutton marker clicked' self._update() def on_dialog_lineprops_okbutton_clicked(self, button): self._update() self.dlg.hide() def on_dialog_lineprops_cancelbutton_clicked(self, button): self.dlg.hide() # set icon used when windows are minimized # Unfortunately, the SVG renderer (rsvg) leaks memory under earlier # versions of pygtk, so we have to use a PNG file instead. try: if gtk.pygtk_version < (2, 8, 0): icon_filename = 'matplotlib.png' else: icon_filename = 'matplotlib.svg' gtk.window_set_default_icon_from_file ( os.path.join (matplotlib.rcParams['datapath'], 'images', icon_filename)) except: verbose.report('Could not load matplotlib icon: %s' % sys.exc_info()[1]) def error_msg_gtk(msg, parent=None): if parent is not None: # find the toplevel gtk.Window parent = parent.get_toplevel() if parent.flags() & gtk.TOPLEVEL == 0: parent = None if not is_string_like(msg): msg = ','.join(map(str,msg)) dialog = gtk.MessageDialog( parent = parent, type = gtk.MESSAGE_ERROR, buttons = gtk.BUTTONS_OK, message_format = msg) dialog.run() dialog.destroy() FigureManager = FigureManagerGTK
gpl-3.0
fred3m/toyz
setup.py
1
4724
import os import sys import glob from setuptools import setup from setuptools import find_packages import subprocess import warnings def update_git_devstr(version, path=None): """ Updates the git revision string if and only if the path is being imported directly from a git working copy. This ensures that the revision number in the version string is accurate. """ try: # Quick way to determine if we're in git or not - returns '' if not devstr = get_git_devstr(sha=True, show_warning=False, path=path) except OSError: return version if not devstr: # Probably not in git so just pass silently return version if 'dev' in version: # update to the current git revision version_base = version.split('.dev', 1)[0] devstr = get_git_devstr(sha=False, show_warning=False, path=path) return version_base + '.dev' + devstr else: #otherwise it's already the true/release version return version def get_git_devstr(sha=False, show_warning=True, path=None): """ Determines the number of revisions in this repository. Parameters ---------- sha : bool If True, the full SHA1 hash will be returned. Otherwise, the total count of commits in the repository will be used as a "revision number". show_warning : bool If True, issue a warning if git returns an error code, otherwise errors pass silently. path : str or None If a string, specifies the directory to look in to find the git repository. If `None`, the current working directory is used. If given a filename it uses the directory containing that file. Returns ------- devversion : str Either a string with the revsion number (if `sha` is False), the SHA1 hash of the current commit (if `sha` is True), or an empty string if git version info could not be identified. """ if path is None: path = os.getcwd() if not os.path.isdir(path): path = os.path.abspath(os.path.dirname(path)) if not os.path.exists(os.path.join(path, '.git')): return '' if sha: cmd = ['rev-parse'] # Faster for getting just the hash of HEAD else: cmd = ['rev-list', '--count'] try: p = subprocess.Popen(['git'] + cmd + ['HEAD'], cwd=path, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) stdout, stderr = p.communicate() except OSError as e: if show_warning: warnings.warn('Error running git: ' + str(e)) return '' if p.returncode == 128: if show_warning: warnings.warn('No git repository present at {0!r}! Using default ' 'dev version.'.format(path)) return '' elif p.returncode != 0: if show_warning: warnings.warn('Git failed while determining revision ' 'count: ' + stderr) return '' if sha: return stdout.decode('utf-8')[:40] else: return stdout.decode('utf-8').strip() _last_generated_version = '0.0.dev146' version = update_git_devstr(_last_generated_version) githash = get_git_devstr(sha=True, show_warning=False) major = 0 minor = 0 bugfix = 0 release = False debug = False # Package info PACKAGE_NAME = "toyz" DESCRIPTION = "Data reduction and analysis software" LONG_DESC = "Interface to run python plots and scripts from a web browser" AUTHOR = "Fred Moolekamp" AUTHOR_EMAIL = "[email protected]" LICENSE = "BSD 3-clause" URL = "http://fred3m.github.io/toyz/" # VERSION should be PEP386 compatible (http://www.python.org/dev/peps/pep-0386) VERSION = '1.1.0dev' #VERSION = '1.1.0' if 'dev' in VERSION: VERSION += get_git_devstr(False) scripts = [fname for fname in glob.glob(os.path.join('scripts', '*')) if os.path.basename(fname) != 'README.rst'] packages = find_packages() setup(name=PACKAGE_NAME, version=VERSION, description=DESCRIPTION, packages=packages, scripts=scripts, extras_require={ 'all': [ 'scipy>=0.15', 'matplotlib', 'pandas>=0.14', 'astropy>=0.4', 'sqlalchemy', 'pillow' ] }, install_requires=[ 'tornado>=4.0.2,<4.2', 'passlib', 'numpy>=1.5.1', 'six', 'importlib' ], #provides=[PACKAGE_NAME], author=AUTHOR, author_email=AUTHOR_EMAIL, license=LICENSE, url=URL, long_description=LONG_DESC, zip_safe=False, use_2to3=True, include_package_data=True )
bsd-3-clause
lukeiwanski/tensorflow-opencl
tensorflow/examples/learn/text_classification_cnn.py
53
4430
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for CNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 100 EMBEDDING_SIZE = 20 N_FILTERS = 10 WINDOW_SIZE = 20 FILTER_SHAPE1 = [WINDOW_SIZE, EMBEDDING_SIZE] FILTER_SHAPE2 = [WINDOW_SIZE, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 n_words = 0 def cnn_model(features, target): """2 layer ConvNet to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. target = tf.one_hot(target, 15, 1, 0) word_vectors = tf.contrib.layers.embed_sequence( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words') word_vectors = tf.expand_dims(word_vectors, 3) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.contrib.layers.convolution2d( word_vectors, N_FILTERS, FILTER_SHAPE1, padding='VALID') # Add a RELU for non linearity. conv1 = tf.nn.relu(conv1) # Max pooling across output of Convolution+Relu. pool1 = tf.nn.max_pool( conv1, ksize=[1, POOLING_WINDOW, 1, 1], strides=[1, POOLING_STRIDE, 1, 1], padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.contrib.layers.convolution2d( pool1, N_FILTERS, FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.contrib.layers.fully_connected(pool2, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) x_train = np.array(list(vocab_processor.fit_transform(x_train))) x_test = np.array(list(vocab_processor.transform(x_test))) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model classifier = learn.Estimator(model_fn=cnn_model) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
sergiy-evision/math-algorithms
data science/Assessment 3/assessment 3.py
1
1156
import numpy as np import pandas from sklearn.cross_validation import KFold from sklearn.cross_validation import cross_val_score from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import scale def get_k_score(x, cv, y): res = [] for k in range(1, 51): neigh = KNeighborsClassifier(n_neighbors=k) arr = cross_val_score(neigh, x, y, cv=cv) a = round(arr.sum() / len(arr), 2) res.append(a) print res return np.array(res) if __name__ == '__main__': df = pandas.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data", header=0, index_col=None, names=['CLS', 'W', 'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P', 'A', 'S', 'D', 'F']) Y = df['CLS'].as_matrix() X = df[['W', 'E', 'R', 'T', 'Y', 'U', 'I', 'O', 'P', 'A', 'S', 'D', 'F']].as_matrix() kf = KFold(len(Y), n_folds=5, shuffle=True, random_state=42) ans = get_k_score(X, kf, Y) print ans.max(), ans.argmax() ans_scaled = get_k_score(scale(X), kf, Y) print ans_scaled.max(), ans_scaled.argmin()
mit
ortylp/scipy
scipy/signal/waveforms.py
64
14818
# Author: Travis Oliphant # 2003 # # Feb. 2010: Updated by Warren Weckesser: # Rewrote much of chirp() # Added sweep_poly() from __future__ import division, print_function, absolute_import import numpy as np from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \ exp, cos, sin, polyval, polyint __all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly'] def sawtooth(t, width=1): """ Return a periodic sawtooth or triangle waveform. The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like Time. width : array_like, optional Width of the rising ramp as a proportion of the total cycle. Default is 1, producing a rising ramp, while 0 produces a falling ramp. `width` = 0.5 produces a triangle wave. If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the sawtooth waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500) >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t)) """ t, w = asarray(t), asarray(width) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # take t modulo 2*pi tmod = mod(t, 2 * pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1 - mask1) & (tmod < w * 2 * pi) tsub = extract(mask2, tmod) wsub = extract(mask2, w) place(y, mask2, tsub / (pi * wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) tsub = extract(mask3, tmod) wsub = extract(mask3, w) place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub))) return y def square(t, duty=0.5): """ Return a periodic square-wave waveform. The square wave has a period ``2*pi``, has value +1 from 0 to ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in the interval [0,1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like The input time array. duty : array_like, optional Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the square waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500, endpoint=False) >>> plt.plot(t, signal.square(2 * np.pi * 5 * t)) >>> plt.ylim(-2, 2) A pulse-width modulated sine wave: >>> plt.figure() >>> sig = np.sin(2 * np.pi * t) >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2) >>> plt.subplot(2, 1, 1) >>> plt.plot(t, sig) >>> plt.subplot(2, 1, 2) >>> plt.plot(t, pwm) >>> plt.ylim(-1.5, 1.5) """ t, w = asarray(t), asarray(duty) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # on the interval 0 to duty*2*pi function is 1 tmod = mod(t, 2 * pi) mask2 = (1 - mask1) & (tmod < w * 2 * pi) place(y, mask2, 1) # on the interval duty*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) place(y, mask3, -1) return y def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False): """ Return a Gaussian modulated sinusoid: ``exp(-a t^2) exp(1j*2*pi*fc*t).`` If `retquad` is True, then return the real and imaginary parts (in-phase and quadrature). If `retenv` is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid. Parameters ---------- t : ndarray or the string 'cutoff' Input array. fc : int, optional Center frequency (e.g. Hz). Default is 1000. bw : float, optional Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is 0.5. bwr : float, optional Reference level at which fractional bandwidth is calculated (dB). Default is -6. tpr : float, optional If `t` is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below `tpr` (in dB). Default is -60. retquad : bool, optional If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False. retenv : bool, optional If True, return the envelope of the signal. Default is False. Returns ------- yI : ndarray Real part of signal. Always returned. yQ : ndarray Imaginary part of signal. Only returned if `retquad` is True. yenv : ndarray Envelope of signal. Only returned if `retenv` is True. See Also -------- scipy.signal.morlet Examples -------- Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False) >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True) >>> plt.plot(t, i, t, q, t, e, '--') """ if fc < 0: raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc) if bw <= 0: raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw) if bwr >= 0: raise ValueError("Reference level for bandwidth (bwr=%.2f) must " "be < 0 dB" % bwr) # exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f) ref = pow(10.0, bwr / 20.0) # fdel = fc*bw/2: g(fdel) = ref --- solve this for a # # pi^2/a * fc^2 * bw^2 /4=-log(ref) a = -(pi * fc * bw) ** 2 / (4.0 * log(ref)) if t == 'cutoff': # compute cut_off point # Solve exp(-a tc**2) = tref for tc # tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20) if tpr >= 0: raise ValueError("Reference level for time cutoff must be < 0 dB") tref = pow(10.0, tpr / 20.0) return sqrt(-log(tref) / a) yenv = exp(-a * t * t) yI = yenv * cos(2 * pi * fc * t) yQ = yenv * sin(2 * pi * fc * t) if not retquad and not retenv: return yI if not retquad and retenv: return yI, yenv if retquad and not retenv: return yI, yQ if retquad and retenv: return yI, yQ, yenv def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True): """Frequency-swept cosine generator. In the following, 'Hz' should be interpreted as 'cycles per unit'; there is no requirement here that the unit is one second. The important distinction is that the units of rotation are cycles, not radians. Likewise, `t` could be a measurement of space instead of time. Parameters ---------- t : array_like Times at which to evaluate the waveform. f0 : float Frequency (e.g. Hz) at time t=0. t1 : float Time at which `f1` is specified. f1 : float Frequency (e.g. Hz) of the waveform at time `t1`. method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details. phi : float, optional Phase offset, in degrees. Default is 0. vertex_zero : bool, optional This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1. Returns ------- y : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below. See Also -------- sweep_poly Notes ----- There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used. linear, lin, li: ``f(t) = f0 + (f1 - f0) * t / t1`` quadratic, quad, q: The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is: if vertex_zero is True: ``f(t) = f0 + (f1 - f0) * t**2 / t1**2`` else: ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2`` To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.waveforms.sweep_poly`. logarithmic, log, lo: ``f(t) = f0 * (f1/f0)**(t/t1)`` f0 and f1 must be nonzero and have the same sign. This signal is also known as a geometric or exponential chirp. hyperbolic, hyp: ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)`` f0 and f1 must be nonzero. """ # 'phase' is computed in _chirp_phase, to make testing easier. phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) # Convert phi to radians. phi *= pi / 180 return cos(phase + phi) def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True): """ Calculate the phase used by chirp_phase to generate its output. See `chirp_phase` for a description of the arguments. """ t = asarray(t) f0 = float(f0) t1 = float(t1) f1 = float(f1) if method in ['linear', 'lin', 'li']: beta = (f1 - f0) / t1 phase = 2 * pi * (f0 * t + 0.5 * beta * t * t) elif method in ['quadratic', 'quad', 'q']: beta = (f1 - f0) / (t1 ** 2) if vertex_zero: phase = 2 * pi * (f0 * t + beta * t ** 3 / 3) else: phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3) elif method in ['logarithmic', 'log', 'lo']: if f0 * f1 <= 0.0: raise ValueError("For a logarithmic chirp, f0 and f1 must be " "nonzero and have the same sign.") if f0 == f1: phase = 2 * pi * f0 * t else: beta = t1 / log(f1 / f0) phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0) elif method in ['hyperbolic', 'hyp']: if f0 == 0 or f1 == 0: raise ValueError("For a hyperbolic chirp, f0 and f1 must be " "nonzero.") if f0 == f1: # Degenerate case: constant frequency. phase = 2 * pi * f0 * t else: # Singular point: the instantaneous frequency blows up # when t == sing. sing = -f1 * t1 / (f0 - f1) phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing)) else: raise ValueError("method must be 'linear', 'quadratic', 'logarithmic'," " or 'hyperbolic', but a value of %r was given." % method) return phase def sweep_poly(t, poly, phi=0): """ Frequency-swept cosine generator, with a time-dependent frequency. This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time `t` is given by the polynomial `poly`. Parameters ---------- t : ndarray Times at which to evaluate the waveform. poly : 1-D array_like or instance of numpy.poly1d The desired frequency expressed as a polynomial. If `poly` is a list or ndarray of length n, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of numpy.poly1d, then the instantaneous frequency is ``f(t) = poly(t)`` phi : float, optional Phase offset, in degrees, Default: 0. Returns ------- sweep_poly : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above. See Also -------- chirp Notes ----- .. versionadded:: 0.8.0 If `poly` is a list or ndarray of length `n`, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is: ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of `numpy.poly1d`, then the instantaneous frequency is: ``f(t) = poly(t)`` Finally, the output `s` is: ``cos(phase + (pi/180)*phi)`` where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``, ``f(t)`` as defined above. """ # 'phase' is computed in _sweep_poly_phase, to make testing easier. phase = _sweep_poly_phase(t, poly) # Convert to radians. phi *= pi / 180 return cos(phase + phi) def _sweep_poly_phase(t, poly): """ Calculate the phase used by sweep_poly to generate its output. See `sweep_poly` for a description of the arguments. """ # polyint handles lists, ndarrays and instances of poly1d automatically. intpoly = polyint(poly) phase = 2 * pi * polyval(intpoly, t) return phase
bsd-3-clause
jakobj/nest-simulator
pynest/examples/glif_cond_neuron.py
14
9655
# -*- coding: utf-8 -*- # # glif_cond_neuron.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Conductance-based generalized leaky integrate and fire (GLIF) neuron example ---------------------------------------------------------------------------- Simple example of how to use the ``glif_cond`` neuron model for five different levels of GLIF neurons. Four stimulation paradigms are illustrated for the GLIF model with externally applied current and spikes impinging Voltage traces, injecting current traces, threshold traces, synaptic conductance traces and spikes are shown. KEYWORDS: glif_cond """ ############################################################################## # First, we import all necessary modules to simulate, analyze and plot this # example. import nest import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec ############################################################################## # We initialize the nest and set the simulation resolution. nest.ResetKernel() resolution = 0.05 nest.SetKernelStatus({"resolution": resolution}) ############################################################################### # We create the five levels of GLIF model to be tested, i.e., # ``lif``, ``lif_r``, ``lif_asc``, ``lif_r_asc``, ``lif_r_asc_a``. # For each level of GLIF model, we create a ``glif_cond`` node. The node is # created by setting relative model mechanism parameters. Other neuron # parameters are set as default. The five ``glif_cond`` node handles are # combined as a list. Note that the default number of synaptic ports # is two for spike inputs. One port is excitation receptor with time # constant being 0.2 ms and reversal potential being 0.0 mV. The other port is # inhibition receptor with time constant being 2.0 ms and -85.0 mV. # Note that users can set as many synaptic ports as needed for ``glif_cond`` # by setting array parameters ``tau_syn`` and ``E_rev`` of the model. n_lif = nest.Create("glif_cond", params={"spike_dependent_threshold": False, "after_spike_currents": False, "adapting_threshold": False}) n_lif_r = nest.Create("glif_cond", params={"spike_dependent_threshold": True, "after_spike_currents": False, "adapting_threshold": False}) n_lif_asc = nest.Create("glif_cond", params={"spike_dependent_threshold": False, "after_spike_currents": True, "adapting_threshold": False}) n_lif_r_asc = nest.Create("glif_cond", params={"spike_dependent_threshold": True, "after_spike_currents": True, "adapting_threshold": False}) n_lif_r_asc_a = nest.Create("glif_cond", params={"spike_dependent_threshold": True, "after_spike_currents": True, "adapting_threshold": True}) neurons = n_lif + n_lif_r + n_lif_asc + n_lif_r_asc + n_lif_r_asc_a ############################################################################### # For the stimulation input to the glif_cond neurons, we create one excitation # spike generator and one inhibition spike generator, each of which generates # three spikes; we also create one step current generator and a Poisson # generator, a parrot neuron(to be paired with the Poisson generator). # The three different injections are spread to three different time periods, # i.e., 0 ms ~ 200 ms, 200 ms ~ 500 ms, 600 ms ~ 900 ms. # Configuration of the current generator includes the definition of the start # and stop times and the amplitude of the injected current. Configuration of # the Poisson generator includes the definition of the start and stop times and # the rate of the injected spike train. espikes = nest.Create("spike_generator", params={"spike_times": [10., 100., 150.], "spike_weights": [20.]*3}) ispikes = nest.Create("spike_generator", params={"spike_times": [15., 99., 150.], "spike_weights": [-20.]*3}) cg = nest.Create("step_current_generator", params={"amplitude_values": [400., ], "amplitude_times": [200., ], "start": 200., "stop": 500.}) pg = nest.Create("poisson_generator", params={"rate": 15000., "start": 600., "stop": 900.}) pn = nest.Create("parrot_neuron") ############################################################################### # The generators are then connected to the neurons. Specification of # the ``receptor_type`` uniquely defines the target receptor. # We connect current generator to receptor 0, the excitation spike generator # and the Poisson generator (via parrot neuron) to receptor 1, and the # inhibition spike generator to receptor 2 of the GLIF neurons. # Note that Poisson generator is connected to parrot neuron to transit the # spikes to the glif_cond neuron. nest.Connect(cg, neurons, syn_spec={"delay": resolution}) nest.Connect(espikes, neurons, syn_spec={"delay": resolution, "receptor_type": 1}) nest.Connect(ispikes, neurons, syn_spec={"delay": resolution, "receptor_type": 2}) nest.Connect(pg, pn, syn_spec={"delay": resolution}) nest.Connect(pn, neurons, syn_spec={"delay": resolution, "receptor_type": 1}) ############################################################################### # A ``multimeter`` is created and connected to the neurons. The parameters # specified for the multimeter include the list of quantities that should be # recorded and the time interval at which quantities are measured. mm = nest.Create("multimeter", params={"interval": resolution, "record_from": ["V_m", "I", "g_1", "g_2", "threshold", "threshold_spike", "threshold_voltage", "ASCurrents_sum"]}) nest.Connect(mm, neurons) ############################################################################### # A ``spike_recorder`` is created and connected to the neurons record the # spikes generated by the glif_cond neurons. sr = nest.Create("spike_recorder") nest.Connect(neurons, sr) ############################################################################### # Run the simulation for 1000 ms and retrieve recorded data from # the multimeter and spike recorder. nest.Simulate(1000.) data = mm.events senders = data["senders"] spike_data = sr.events spike_senders = spike_data["senders"] spikes = spike_data["times"] ############################################################################### # We plot the time traces of the membrane potential (in blue) and # the overall threshold (in green), and the spikes (as red dots) in one panel; # the spike component of threshold (in yellow) and the voltage component of # threshold (in black) in another panel; the injected currents (in strong blue), # the sum of after spike currents (in cyan) in the third panel; and the synaptic # conductances of the two receptors (in blue and orange) in responding to the # spike inputs to the neurons in the fourth panel. We plot all these four # panels for each level of GLIF model in a separated figure. glif_models = ["lif", "lif_r", "lif_asc", "lif_r_asc", "lif_r_asc_a"] for i in range(len(glif_models)): glif_model = glif_models[i] node_id = neurons[i].global_id plt.figure(glif_model) gs = gridspec.GridSpec(4, 1, height_ratios=[2, 1, 1, 1]) t = data["times"][senders == 1] ax1 = plt.subplot(gs[0]) plt.plot(t, data["V_m"][senders == node_id], "b") plt.plot(t, data["threshold"][senders == node_id], "g--") plt.plot(spikes[spike_senders == node_id], [max(data["threshold"][senders == node_id]) * 0.95] * len(spikes[spike_senders == node_id]), "r.") plt.legend(["V_m", "threshold", "spike"]) plt.ylabel("V (mV)") plt.title("Simulation of glif_cond neuron of " + glif_model) ax2 = plt.subplot(gs[1]) plt.plot(t, data["threshold_spike"][senders == node_id], "y") plt.plot(t, data["threshold_voltage"][senders == node_id], "k--") plt.legend(["threshold_spike", "threshold_voltage"]) plt.ylabel("V (mV)") ax3 = plt.subplot(gs[2]) plt.plot(t, data["I"][senders == node_id], "--") plt.plot(t, data["ASCurrents_sum"][senders == node_id], "c-.") plt.legend(["I_e", "ASCurrents_sum", "I_syn"]) plt.ylabel("I (pA)") plt.xlabel("t (ms)") ax4 = plt.subplot(gs[3]) plt.plot(t, data["g_1"][senders == node_id], "-") plt.plot(t, data["g_2"][senders == node_id], "--") plt.legend(["G_1", "G_2"]) plt.ylabel("G (nS)") plt.xlabel("t (ms)") plt.show()
gpl-2.0
michaelbramwell/sms-tools
lectures/06-Harmonic-model/plots-code/f0Twm-piano.py
19
1261
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackman import math import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF import stft as STFT import sineModel as SM import harmonicModel as HM (fs, x) = UF.wavread('../../../sounds/piano.wav') w = np.blackman(1501) N = 2048 t = -90 minf0 = 100 maxf0 = 300 f0et = 1 maxnpeaksTwm = 4 H = 128 x1 = x[1.5*fs:1.8*fs] plt.figure(1, figsize=(9, 7)) mX, pX = STFT.stftAnal(x, fs, w, N, H) f0 = HM.f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et) f0 = UF.cleaningTrack(f0, 5) yf0 = UF.sinewaveSynth(f0, .8, H, fs) f0[f0==0] = np.nan maxplotfreq = 800.0 numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N*maxplotfreq/fs+1])) plt.autoscale(tight=True) plt.plot(frmTime, f0, linewidth=2, color='k') plt.autoscale(tight=True) plt.title('mX + f0 (piano.wav), TWM') plt.tight_layout() plt.savefig('f0Twm-piano.png') UF.wavwrite(yf0, fs, 'f0Twm-piano.wav') plt.show()
agpl-3.0
alexsavio/scikit-learn
sklearn/tests/test_kernel_ridge.py
342
3027
import numpy as np import scipy.sparse as sp from sklearn.datasets import make_regression from sklearn.linear_model import Ridge from sklearn.kernel_ridge import KernelRidge from sklearn.metrics.pairwise import pairwise_kernels from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_almost_equal X, y = make_regression(n_features=10) Xcsr = sp.csr_matrix(X) Xcsc = sp.csc_matrix(X) Y = np.array([y, y]).T def test_kernel_ridge(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csr(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsr, y).predict(Xcsr) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsr, y).predict(Xcsr) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_csc(): pred = Ridge(alpha=1, fit_intercept=False, solver="cholesky").fit(Xcsc, y).predict(Xcsc) pred2 = KernelRidge(kernel="linear", alpha=1).fit(Xcsc, y).predict(Xcsc) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_singular_kernel(): # alpha=0 causes a LinAlgError in computing the dual coefficients, # which causes a fallback to a lstsq solver. This is tested here. pred = Ridge(alpha=0, fit_intercept=False).fit(X, y).predict(X) kr = KernelRidge(kernel="linear", alpha=0) ignore_warnings(kr.fit)(X, y) pred2 = kr.predict(X) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed(): for kernel in ["linear", "rbf", "poly", "cosine"]: K = pairwise_kernels(X, X, metric=kernel) pred = KernelRidge(kernel=kernel).fit(X, y).predict(X) pred2 = KernelRidge(kernel="precomputed").fit(K, y).predict(K) assert_array_almost_equal(pred, pred2) def test_kernel_ridge_precomputed_kernel_unchanged(): K = np.dot(X, X.T) K2 = K.copy() KernelRidge(kernel="precomputed").fit(K, y) assert_array_almost_equal(K, K2) def test_kernel_ridge_sample_weights(): K = np.dot(X, X.T) # precomputed kernel sw = np.random.RandomState(0).rand(X.shape[0]) pred = Ridge(alpha=1, fit_intercept=False).fit(X, y, sample_weight=sw).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, y, sample_weight=sw).predict(X) pred3 = KernelRidge(kernel="precomputed", alpha=1).fit(K, y, sample_weight=sw).predict(K) assert_array_almost_equal(pred, pred2) assert_array_almost_equal(pred, pred3) def test_kernel_ridge_multi_output(): pred = Ridge(alpha=1, fit_intercept=False).fit(X, Y).predict(X) pred2 = KernelRidge(kernel="linear", alpha=1).fit(X, Y).predict(X) assert_array_almost_equal(pred, pred2) pred3 = KernelRidge(kernel="linear", alpha=1).fit(X, y).predict(X) pred3 = np.array([pred3, pred3]).T assert_array_almost_equal(pred2, pred3)
bsd-3-clause
idealabasu/code_pynamics
python/pynamics_examples/bouncy2.py
1
3683
# -*- coding: utf-8 -*- """ Written by Daniel M. Aukes Email: danaukes<at>gmail.com Please see LICENSE for full license. """ import pynamics from pynamics.frame import Frame from pynamics.variable_types import Differentiable,Constant,Variable from pynamics.system import System from pynamics.body import Body from pynamics.dyadic import Dyadic from pynamics.output import Output from pynamics.output import PointsOutput from pynamics.particle import Particle import pynamics.integration import sympy import numpy import matplotlib.pyplot as plt plt.ion() from math import pi system = System() pynamics.set_system(__name__,system) error = 1e-3 error_tol = 1e-3 alpha = 1e6 beta = 1e5 #preload1 = Constant('preload1',0*pi/180,system) a = Constant(0,'a',system) l1 = Constant(1,'l1',system) m1 = Constant(1e1,'m1',system) m2 = Constant(1e0,'m2',system) k = Constant(1e4,'k',system) l0 = Constant(1,'l0',system) b = Constant(5e0,'b',system) g = Constant(9.81,'g',system) Ixx_A = Constant(1,'Ixx_A',system) Iyy_A = Constant(1,'Iyy_A',system) Izz_A = Constant(1,'Izz_A',system) tinitial = 0 tfinal = 10 tstep = 1/30 t = numpy.r_[tinitial:tfinal:tstep] x1,x1_d,x1_dd = Differentiable('x1',system) y1,y1_d,y1_dd = Differentiable('y1',system) q1,q1_d,q1_dd = Differentiable('q1',system) y2,y2_d,y2_dd = Differentiable('x2',system) initialvalues = {} initialvalues[q1]=0 initialvalues[q1_d]=.01 initialvalues[x1]=0 initialvalues[x1_d]=0 initialvalues[y1]=2 initialvalues[y1_d]=0 initialvalues[y2]=1 initialvalues[y2_d]=0 statevariables = system.get_state_variables() ini = [initialvalues[item] for item in statevariables] N = Frame('N') A = Frame('A') system.set_newtonian(N) A.rotate_fixed_axis_directed(N,[0,0,1],q1,system) pOrigin = 0*N.x pm1 = x1*N.x +y1*N.y pm2 = pm1 +a*A.x - y2*A.y IA = Dyadic.build(A,Ixx_A,Iyy_A,Izz_A) BodyA = Body('BodyA',A,pm1,m1,IA,system) Particle2 = Particle(pm2,m2,'Particle2',system) vpm1 = pm1.time_derivative(N,system) vpm2 = pm2.time_derivative(N,system) l_ = pm1-pm2 l = (l_.dot(l_))**.5 l_d =system.derivative(l) stretch = l - l0 ul_ = l_*(l**-1) vl = l_.time_derivative(N,system) system.add_spring_force1(k,stretch*ul_,vl) #system.addforce(-k*stretch*ul_,vpm1) #system.addforce(k*stretch*ul_,vpm2) system.addforce(-b*l_d*ul_,vpm1) system.addforce(b*l_d*ul_,vpm2) #system.addforce(k*l*ul_,vpm2) #system.addforce(-b*vl,vl) #system.addforce(-b*vl,vl) #system.addforce(-b*vl,vl) system.addforcegravity(-g*N.y) #system.addforcegravity(-g*N.y) #system.addforcegravity(-g*N.y) eq1 = [] eq1.append(pm1.dot(N.y)-0) eq1.append(pm2.dot(N.y)-0) eq1_d=[system.derivative(item) for item in eq1] eq1_dd=[system.derivative(system.derivative(item)) for item in eq1] a = [] a.append(0-pm1.dot(N.y)) a.append(0-pm2.dot(N.y)) b = [(item+abs(item)) for item in a] x1 = BodyA.pCM.dot(N.y) x2 = Particle2.pCM.dot(N.y) f,ma = system.getdynamics() #func = system.state_space_post_invert(f,ma,eq) func = system.state_space_post_invert2(f,ma,eq1_dd,eq1_d,eq1,eq_active = b) states=pynamics.integration.integrate_odeint(func,ini,t,rtol = error, atol = error, args=({'alpha':alpha,'beta':beta, 'constants':system.constant_values},),full_output = 1,mxstep = int(1e5)) states = states[0] KE = system.get_KE() PE = system.getPEGravity(pOrigin) - system.getPESprings() output = Output([x1,x2,l, KE-PE],system) y = output.calc(states) plt.figure(0) plt.plot(t,y[:,0]) plt.plot(t,y[:,1]) plt.axis('equal') plt.figure(1) plt.plot(t,y[:,2]) plt.axis('equal') plt.figure(2) plt.plot(t,y[:,3]) #plt.axis('equal') points = [BodyA.pCM,Particle2.pCM] points = PointsOutput(points) points.calc(states) points.animate(fps = 30, movie_name='bouncy2.mp4',lw=2)
mit
waldol1/BYU-AWESOME
scripts/cbad_simple_evaluation/add_extracted_points1.py
1
3329
import sys import cv2 import numpy as np import os import matplotlib.pyplot as plt import json from copy import deepcopy import time def pred_to_pts(color_img): global_threshold = 127 slice_size = 25 # small_threshold = 0 small_threshold = 250 img = cv2.cvtColor( color_img, cv2.COLOR_RGB2GRAY ) ret, th = cv2.threshold(img,global_threshold,255,cv2.THRESH_BINARY) connectivity = 4 s = time.time() output= cv2.connectedComponentsWithStats(th, connectivity, cv2.CV_32S) baselines = [] #skip background for label_id in xrange(1, output[0]): min_x = output[2][label_id][0] min_y = output[2][label_id][1] max_x = output[2][label_id][2] + min_x max_y = output[2][label_id][3] + min_y cnt = output[2][label_id][4] if cnt < small_threshold: continue baseline = output[1][min_y:max_y, min_x:max_x] pts = [] x_all, y_all = np.where(baseline == label_id) first_idx = y_all.argmin() first = (y_all[first_idx]+min_x, x_all[first_idx]+min_y) pts.append(first) for i in xrange(0, baseline.shape[1], slice_size): next_i = i+slice_size baseline_slice = baseline[:, i:next_i] x, y = np.where(baseline_slice == label_id) x_avg = x.mean() y_avg = y.mean() pts.append((int(y_avg+i+min_x), int(x_avg+min_y))) last_idx = y_all.argmax() last = (y_all[last_idx]+min_x, x_all[last_idx]+min_y) pts.append(last) if len(pts) <= 1: continue baselines.append(pts) # img_copy = color_img.copy() # for b in baselines: # pts = np.array(b, np.int32) # pts = pts.reshape((-1,1,2)) # cv2.polylines(img_copy,[pts],False,(0,255,255), thickness=1) # # plt.imshow(img_copy) # plt.show() return baselines def write_baseline_pts(baselines, filename): with open(filename, 'w') as f: for baseline in baselines: baseline_txt = [] for pt in baseline: pt_txt = "{},{}".format(*pt) baseline_txt.append(pt_txt) f.write(";".join(baseline_txt)+"\n") if __name__ == "__main__": input_paths_path = sys.argv[1] output_paths_path = sys.argv[2] output_txt_folder_path = sys.argv[3] with open(input_paths_path) as f: input_paths = json.load(f) output_paths = [] start = time.time() cnt = 0 for i, input_path in enumerate(input_paths): if i%10 == 0: print i, cnt, (time.time() - start) / (i+1) # image_path = input_path['gt_pixel_img_path'] image_path = input_path['pred_pixel_path'] save_path = os.path.basename(image_path) save_path = os.path.splitext(save_path)[0] save_path = "{}-{}.txt".format(save_path, i) save_path = os.path.join(output_txt_folder_path, save_path) img = cv2.imread(image_path) baselines = pred_to_pts(img) cnt += len(baselines) write_baseline_pts(baselines, save_path) output_path = deepcopy(input_path) output_path['pred_baseline_path'] = save_path output_paths.append(output_path) with open(output_paths_path, 'w') as f: json.dump(output_paths, f)
gpl-3.0