repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
OpenSourcePolicyCenter/dynamic
ogusa/demographics.py
1
23664
''' ------------------------------------------------------------------------ Functions for generating demographic objects necessary for the OG-USA model ------------------------------------------------------------------------ ''' # Import packages import os import numpy as np import scipy.optimize as opt import scipy.interpolate as si import pandas as pd from ogusa import parameter_plots as pp # create output director for figures CUR_PATH = os.path.split(os.path.abspath(__file__))[0] OUTPUT_DIR = os.path.join(CUR_PATH, 'OUTPUT', 'Demographics') if os.access(OUTPUT_DIR, os.F_OK) is False: os.makedirs(OUTPUT_DIR) ''' ------------------------------------------------------------------------ Define functions ------------------------------------------------------------------------ ''' def get_fert(totpers, min_yr, max_yr, graph=False): ''' This function generates a vector of fertility rates by model period age that corresponds to the fertility rate data by age in years (Source: National Vital Statistics Reports, Volume 64, Number 1, January 15, 2015, Table 3, final 2013 data http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_01.pdf) Args: totpers (int): total number of agent life periods (E+S), >= 3 min_yr (int): age in years at which agents are born, >= 0 max_yr (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output Returns: fert_rates (Numpy array): fertility rates for each model period of life ''' # Get current population data (2013) for weighting pop_file = os.path.join( CUR_PATH, 'data', 'demographic', 'pop_data.csv') pop_data = pd.read_csv(pop_file, thousands=',') pop_data_samp = pop_data[(pop_data['Age'] >= min_yr - 1) & (pop_data['Age'] <= max_yr - 1)] curr_pop = np.array(pop_data_samp['2013'], dtype='f') curr_pop_pct = curr_pop / curr_pop.sum() # Get fertility rate by age-bin data fert_data = (np.array([0.0, 0.0, 0.3, 12.3, 47.1, 80.7, 105.5, 98.0, 49.3, 10.4, 0.8, 0.0, 0.0]) / 2000) # Mid points of age bins age_midp = np.array([9, 10, 12, 16, 18.5, 22, 27, 32, 37, 42, 47, 55, 56]) # Generate interpolation functions for fertility rates fert_func = si.interp1d(age_midp, fert_data, kind='cubic') # Calculate average fertility rate in each age bin using trapezoid # method with a large number of points in each bin. binsize = (max_yr - min_yr + 1) / totpers num_sub_bins = float(10000) len_subbins = (np.float64(100 * num_sub_bins)) / totpers age_sub = (np.linspace(np.float64(binsize) / num_sub_bins, np.float64(max_yr), int(num_sub_bins*max_yr)) - 0.5 * np.float64(binsize) / num_sub_bins) curr_pop_sub = np.repeat(np.float64(curr_pop_pct) / num_sub_bins, num_sub_bins) fert_rates_sub = np.zeros(curr_pop_sub.shape) pred_ind = (age_sub > age_midp[0]) * (age_sub < age_midp[-1]) age_pred = age_sub[pred_ind] fert_rates_sub[pred_ind] = np.float64(fert_func(age_pred)) fert_rates = np.zeros(totpers) end_sub_bin = 0 for i in range(totpers): beg_sub_bin = int(end_sub_bin) end_sub_bin = int(np.rint((i + 1) * len_subbins)) fert_rates[i] = (( curr_pop_sub[beg_sub_bin:end_sub_bin] * fert_rates_sub[beg_sub_bin:end_sub_bin]).sum() / curr_pop_sub[beg_sub_bin:end_sub_bin].sum()) if graph: pp.plot_fert_rates(fert_func, age_midp, totpers, min_yr, max_yr, fert_data, fert_rates, output_dir=OUTPUT_DIR) return fert_rates def get_mort(totpers, min_yr, max_yr, graph=False): ''' This function generates a vector of mortality rates by model period age. (Source: Male and Female death probabilities Actuarial Life table, 2011 Social Security Administration, http://www.ssa.gov/oact/STATS/table4c6.html) Args: totpers (int): total number of agent life periods (E+S), >= 3 min_yr (int): age in years at which agents are born, >= 0 max_yr (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output Returns: mort_rates (Numpy array) mortality rates that correspond to each period of life infmort_rate (scalar): infant mortality rate from 2015 U.S. CIA World Factbook ''' # Get mortality rate by age data infmort_rate = 0.00587 # taken from 2015 U.S. infant mortality rate mort_file = os.path.join( CUR_PATH, 'data', 'demographic', 'mort_rates2011.csv') mort_data = pd.read_csv(mort_file, thousands=',') age_year_all = mort_data['Age'] + 1 mort_rates_all = ( ((mort_data['Male Mort. Rate'] * mort_data['Num. Male Lives']) + (mort_data['Female Mort. Rate'] * mort_data['Num. Female Lives'])) / (mort_data['Num. Male Lives'] + mort_data['Num. Female Lives'])) age_year_all = age_year_all[np.isfinite(mort_rates_all)] mort_rates_all = mort_rates_all[np.isfinite(mort_rates_all)] # Calculate implied mortality rates in sub-bins of mort_rates_all. mort_rates_mxyr = mort_rates_all[0:max_yr] num_sub_bins = int(100) len_subbins = ((np.float64((max_yr - min_yr + 1) * num_sub_bins)) / totpers) mort_rates_sub = np.zeros(num_sub_bins * max_yr, dtype=float) for i in range(max_yr): mort_rates_sub[i * num_sub_bins:(i + 1) * num_sub_bins] =\ (1 - ((1 - mort_rates_mxyr[i]) ** (1.0 / num_sub_bins))) mort_rates = np.zeros(totpers) end_sub_bin = 0 for i in range(totpers): beg_sub_bin = int(end_sub_bin) end_sub_bin = int(np.rint((i + 1) * len_subbins)) mort_rates[i] = ( 1 - (1 - (mort_rates_sub[beg_sub_bin:end_sub_bin])).prod()) mort_rates[-1] = 1 # Mortality rate in last period is set to 1 if graph: pp.plot_mort_rates_data(totpers, min_yr, max_yr, age_year_all, mort_rates_all, infmort_rate, mort_rates, output_dir=OUTPUT_DIR) return mort_rates, infmort_rate def pop_rebin(curr_pop_dist, totpers_new): ''' For cases in which totpers (E+S) is less than the number of periods in the population distribution data, this function calculates a new population distribution vector with totpers (E+S) elements. Args: curr_pop_dist (Numpy array): population distribution over N periods totpers_new (int): number of periods to which we are transforming the population distribution, >= 3 Returns: curr_pop_new (Numpy array): new population distribution over totpers (E+S) periods that approximates curr_pop_dist ''' # Number of periods in original data assert totpers_new >= 3 totpers_orig = len(curr_pop_dist) if int(totpers_new) == totpers_orig: curr_pop_new = curr_pop_dist elif int(totpers_new) < totpers_orig: num_sub_bins = float(10000) curr_pop_sub = np.repeat(np.float64(curr_pop_dist) / num_sub_bins, num_sub_bins) len_subbins = ((np.float64(totpers_orig*num_sub_bins)) / totpers_new) curr_pop_new = np.zeros(totpers_new, dtype=np.float64) end_sub_bin = 0 for i in range(totpers_new): beg_sub_bin = int(end_sub_bin) end_sub_bin = int(np.rint((i + 1) * len_subbins)) curr_pop_new[i] = \ curr_pop_sub[beg_sub_bin:end_sub_bin].sum() # Return curr_pop_new to single precision float (float32) # datatype curr_pop_new = np.float32(curr_pop_new) return curr_pop_new def get_imm_resid(totpers, min_yr, max_yr): ''' Calculate immigration rates by age as a residual given population levels in different periods, then output average calculated immigration rate. We have to replace the first mortality rate in this function in order to adjust the first implied immigration rate (Source: Population data come from Annual Estimates of the Resident Population by Single Year of Age and Sex: April 1, 2010 to July 1, 2013 (Both sexes) National Characteristics, Vintage 2013, US Census Bureau, http://www.census.gov/popest/data/national/asrh/2013/index.html) Args: totpers (int): total number of agent life periods (E+S), >= 3 min_yr (int): age in years at which agents are born, >= 0 max_yr (int): age in years at which agents die with certainty, >= 4 graph (bool): =True if want graphical output Returns: imm_rates (Numpy array):immigration rates that correspond to each period of life, length E+S ''' pop_file = os.path.join( CUR_PATH, 'data', 'demographic', 'pop_data.csv') pop_data = pd.read_csv(pop_file, thousands=',') pop_data_samp = pop_data[(pop_data['Age'] >= min_yr - 1) & (pop_data['Age'] <= max_yr - 1)] pop_2010, pop_2011, pop_2012, pop_2013 = ( np.array(pop_data_samp['2010'], dtype='f'), np.array(pop_data_samp['2011'], dtype='f'), np.array(pop_data_samp['2012'], dtype='f'), np.array(pop_data_samp['2013'], dtype='f')) pop_2010_EpS = pop_rebin(pop_2010, totpers) pop_2011_EpS = pop_rebin(pop_2011, totpers) pop_2012_EpS = pop_rebin(pop_2012, totpers) pop_2013_EpS = pop_rebin(pop_2013, totpers) # Create three years of estimated immigration rates for youngest age # individuals imm_mat = np.zeros((3, totpers)) pop11vec = np.array([pop_2010_EpS[0], pop_2011_EpS[0], pop_2012_EpS[0]]) pop21vec = np.array([pop_2011_EpS[0], pop_2012_EpS[0], pop_2013_EpS[0]]) fert_rates = get_fert(totpers, min_yr, max_yr, False) mort_rates, infmort_rate = get_mort(totpers, min_yr, max_yr, False) newbornvec = np.dot(fert_rates, np.vstack((pop_2010_EpS, pop_2011_EpS, pop_2012_EpS)).T) imm_mat[:, 0] = ((pop21vec - (1 - infmort_rate) * newbornvec) / pop11vec) # Estimate 3 years of immigration rates for all other-aged # individuals pop11mat = np.vstack((pop_2010_EpS[:-1], pop_2011_EpS[:-1], pop_2012_EpS[:-1])) pop12mat = np.vstack((pop_2010_EpS[1:], pop_2011_EpS[1:], pop_2012_EpS[1:])) pop22mat = np.vstack((pop_2011_EpS[1:], pop_2012_EpS[1:], pop_2013_EpS[1:])) mort_mat = np.tile(mort_rates[:-1], (3, 1)) imm_mat[:, 1:] = (pop22mat - (1 - mort_mat) * pop11mat) / pop12mat # Final estimated immigration rates are the averages over 3 years imm_rates = imm_mat.mean(axis=0) return imm_rates def immsolve(imm_rates, *args): ''' This function generates a vector of errors representing the difference in two consecutive periods stationary population distributions. This vector of differences is the zero-function objective used to solve for the immigration rates vector, similar to the original immigration rates vector from get_imm_resid(), that sets the steady-state population distribution by age equal to the population distribution in period int(1.5*S) Args: imm_rates (Numpy array):immigration rates that correspond to each period of life, length E+S args (tuple): (fert_rates, mort_rates, infmort_rate, omega_cur, g_n_SS) Returns: omega_errs (Numpy array): difference between omega_new and omega_cur_pct, length E+S ''' fert_rates, mort_rates, infmort_rate, omega_cur_lev, g_n_SS = args omega_cur_pct = omega_cur_lev / omega_cur_lev.sum() totpers = len(fert_rates) OMEGA = np.zeros((totpers, totpers)) OMEGA[0, :] = ((1 - infmort_rate) * fert_rates + np.hstack((imm_rates[0], np.zeros(totpers-1)))) OMEGA[1:, :-1] += np.diag(1 - mort_rates[:-1]) OMEGA[1:, 1:] += np.diag(imm_rates[1:]) omega_new = np.dot(OMEGA, omega_cur_pct) / (1 + g_n_SS) omega_errs = omega_new - omega_cur_pct return omega_errs def get_pop_objs(E, S, T, min_yr, max_yr, curr_year, GraphDiag=False): ''' This function produces the demographics objects to be used in the OG-USA model package. Args: E (int): number of model periods in which agent is not economically active, >= 1 S (int): number of model periods in which agent is economically active, >= 3 T (int): number of periods to be simulated in TPI, > 2*S min_yr (int): age in years at which agents are born, >= 0 max_yr (int): age in years at which agents die with certainty, >= 4 curr_year (int): current year for which analysis will begin, >= 2016 GraphDiag (bool): =True if want graphical output and printed diagnostics Returns: omega_path_S (Numpy array), time path of the population distribution from the current state to the steady-state, size T+S x S g_n_SS (scalar): steady-state population growth rate omega_SS (Numpy array): normalized steady-state population distribution, length S surv_rates (Numpy array): survival rates that correspond to each model period of life, lenght S mort_rates (Numpy array): mortality rates that correspond to each model period of life, length S g_n_path (Numpy array): population growth rates over the time path, length T + S ''' # age_per = np.linspace(min_yr, max_yr, E+S) fert_rates = get_fert(E + S, min_yr, max_yr, graph=False) mort_rates, infmort_rate = get_mort(E + S, min_yr, max_yr, graph=False) mort_rates_S = mort_rates[-S:] imm_rates_orig = get_imm_resid(E + S, min_yr, max_yr) OMEGA_orig = np.zeros((E + S, E + S)) OMEGA_orig[0, :] = ((1 - infmort_rate) * fert_rates + np.hstack((imm_rates_orig[0], np.zeros(E+S-1)))) OMEGA_orig[1:, :-1] += np.diag(1 - mort_rates[:-1]) OMEGA_orig[1:, 1:] += np.diag(imm_rates_orig[1:]) # Solve for steady-state population growth rate and steady-state # population distribution by age using eigenvalue and eigenvector # decomposition eigvalues, eigvectors = np.linalg.eig(OMEGA_orig) g_n_SS = (eigvalues[np.isreal(eigvalues)].real).max() - 1 eigvec_raw =\ eigvectors[:, (eigvalues[np.isreal(eigvalues)].real).argmax()].real omega_SS_orig = eigvec_raw / eigvec_raw.sum() # Generate time path of the nonstationary population distribution omega_path_lev = np.zeros((E + S, T + S)) pop_file = os.path.join( CUR_PATH, 'data', 'demographic', 'pop_data.csv') pop_data = pd.read_csv(pop_file, thousands=',') pop_data_samp = pop_data[(pop_data['Age'] >= min_yr - 1) & (pop_data['Age'] <= max_yr - 1)] pop_2013 = np.array(pop_data_samp['2013'], dtype='f') # Generate the current population distribution given that E+S might # be less than max_yr-min_yr+1 age_per_EpS = np.arange(1, E + S + 1) pop_2013_EpS = pop_rebin(pop_2013, E + S) pop_2013_pct = pop_2013_EpS / pop_2013_EpS.sum() # Age most recent population data to the current year of analysis pop_curr = pop_2013_EpS.copy() data_year = 2013 pop_next = np.dot(OMEGA_orig, pop_curr) g_n_curr = ((pop_next[-S:].sum() - pop_curr[-S:].sum()) / pop_curr[-S:].sum()) # g_n in 2013 pop_past = pop_curr # assume 2012-2013 pop # Age the data to the current year for per in range(curr_year - data_year): pop_next = np.dot(OMEGA_orig, pop_curr) g_n_curr = ((pop_next[-S:].sum() - pop_curr[-S:].sum()) / pop_curr[-S:].sum()) pop_past = pop_curr pop_curr = pop_next # Generate time path of the population distribution omega_path_lev[:, 0] = pop_curr.copy() for per in range(1, T + S): pop_next = np.dot(OMEGA_orig, pop_curr) omega_path_lev[:, per] = pop_next.copy() pop_curr = pop_next.copy() # Force the population distribution after 1.5*S periods to be the # steady-state distribution by adjusting immigration rates, holding # constant mortality, fertility, and SS growth rates imm_tol = 1e-14 fixper = int(1.5 * S) omega_SSfx = (omega_path_lev[:, fixper] / omega_path_lev[:, fixper].sum()) imm_objs = (fert_rates, mort_rates, infmort_rate, omega_path_lev[:, fixper], g_n_SS) imm_fulloutput = opt.fsolve(immsolve, imm_rates_orig, args=(imm_objs), full_output=True, xtol=imm_tol) imm_rates_adj = imm_fulloutput[0] imm_diagdict = imm_fulloutput[1] omega_path_S = (omega_path_lev[-S:, :] / np.tile(omega_path_lev[-S:, :].sum(axis=0), (S, 1))) omega_path_S[:, fixper:] = \ np.tile(omega_path_S[:, fixper].reshape((S, 1)), (1, T + S - fixper)) g_n_path = np.zeros(T + S) g_n_path[0] = g_n_curr.copy() g_n_path[1:] = ((omega_path_lev[-S:, 1:].sum(axis=0) - omega_path_lev[-S:, :-1].sum(axis=0)) / omega_path_lev[-S:, :-1].sum(axis=0)) g_n_path[fixper + 1:] = g_n_SS omega_S_preTP = (pop_past.copy()[-S:]) / (pop_past.copy()[-S:].sum()) imm_rates_mat = np.hstack(( np.tile(np.reshape(imm_rates_orig[E:], (S, 1)), (1, fixper)), np.tile(np.reshape(imm_rates_adj[E:], (S, 1)), (1, T + S - fixper)))) if GraphDiag: # Check whether original SS population distribution is close to # the period-T population distribution omegaSSmaxdif = np.absolute(omega_SS_orig - (omega_path_lev[:, T] / omega_path_lev[:, T].sum())).max() if omegaSSmaxdif > 0.0003: print('POP. WARNING: Max. abs. dist. between original SS ' + "pop. dist'n and period-T pop. dist'n is greater than" + ' 0.0003. It is ' + str(omegaSSmaxdif) + '.') else: print('POP. SUCCESS: orig. SS pop. dist is very close to ' + "period-T pop. dist'n. The maximum absolute " + 'difference is ' + str(omegaSSmaxdif) + '.') # Plot the adjusted steady-state population distribution versus # the original population distribution. The difference should be # small omegaSSvTmaxdiff = np.absolute(omega_SS_orig - omega_SSfx).max() if omegaSSvTmaxdiff > 0.0003: print('POP. WARNING: The maximimum absolute difference ' + 'between any two corresponding points in the original' + ' and adjusted steady-state population ' + 'distributions is' + str(omegaSSvTmaxdiff) + ', ' + 'which is greater than 0.0003.') else: print('POP. SUCCESS: The maximum absolute difference ' + 'between any two corresponding points in the original' + ' and adjusted steady-state population ' + 'distributions is ' + str(omegaSSvTmaxdiff)) # Print whether or not the adjusted immigration rates solved the # zero condition immtol_solved = \ np.absolute(imm_diagdict['fvec'].max()) < imm_tol if immtol_solved: print('POP. SUCCESS: Adjusted immigration rates solved ' + 'with maximum absolute error of ' + str(np.absolute(imm_diagdict['fvec'].max())) + ', which is less than the tolerance of ' + str(imm_tol)) else: print('POP. WARNING: Adjusted immigration rates did not ' + 'solve. Maximum absolute error of ' + str(np.absolute(imm_diagdict['fvec'].max())) + ' is greater than the tolerance of ' + str(imm_tol)) # Test whether the steady-state growth rates implied by the # adjusted OMEGA matrix equals the steady-state growth rate of # the original OMEGA matrix OMEGA2 = np.zeros((E + S, E + S)) OMEGA2[0, :] = ((1 - infmort_rate) * fert_rates + np.hstack((imm_rates_adj[0], np.zeros(E+S-1)))) OMEGA2[1:, :-1] += np.diag(1 - mort_rates[:-1]) OMEGA2[1:, 1:] += np.diag(imm_rates_adj[1:]) eigvalues2, eigvectors2 = np.linalg.eig(OMEGA2) g_n_SS_adj = (eigvalues[np.isreal(eigvalues2)].real).max() - 1 if np.max(np.absolute(g_n_SS_adj - g_n_SS)) > 10 ** (-8): print('FAILURE: The steady-state population growth rate' + ' from adjusted OMEGA is different (diff is ' + str(g_n_SS_adj - g_n_SS) + ') than the steady-' + 'state population growth rate from the original' + ' OMEGA.') elif np.max(np.absolute(g_n_SS_adj - g_n_SS)) <= 10 ** (-8): print('SUCCESS: The steady-state population growth rate' + ' from adjusted OMEGA is close to (diff is ' + str(g_n_SS_adj - g_n_SS) + ') the steady-' + 'state population growth rate from the original' + ' OMEGA.') # Do another test of the adjusted immigration rates. Create the # new OMEGA matrix implied by the new immigration rates. Plug in # the adjusted steady-state population distribution. Hit is with # the new OMEGA transition matrix and it should return the new # steady-state population distribution omega_new = np.dot(OMEGA2, omega_SSfx) omega_errs = np.absolute(omega_new - omega_SSfx) print('The maximum absolute difference between the adjusted ' + 'steady-state population distribution and the ' + 'distribution generated by hitting the adjusted OMEGA ' + 'transition matrix is ' + str(omega_errs.max())) # Plot the original immigration rates versus the adjusted # immigration rates immratesmaxdiff = \ np.absolute(imm_rates_orig - imm_rates_adj).max() print('The maximum absolute distance between any two points ' + 'of the original immigration rates and adjusted ' + 'immigration rates is ' + str(immratesmaxdiff)) # plots pp.plot_omega_fixed(age_per_EpS, omega_SS_orig, omega_SSfx, E, S, output_dir=OUTPUT_DIR) pp.plot_imm_fixed(age_per_EpS, imm_rates_orig, imm_rates_adj, E, S, output_dir=OUTPUT_DIR) pp.plot_population_path(age_per_EpS, pop_2013_pct, omega_path_lev, omega_SSfx, curr_year, E, S, output_dir=OUTPUT_DIR) # return omega_path_S, g_n_SS, omega_SSfx, survival rates, # mort_rates_S, and g_n_path return (omega_path_S.T, g_n_SS, omega_SSfx[-S:] / omega_SSfx[-S:].sum(), 1-mort_rates_S, mort_rates_S, g_n_path, imm_rates_mat.T, omega_S_preTP)
mit
ajaybhat/scikit-image
doc/examples/transform/plot_swirl.py
7
2712
""" ===== Swirl ===== Image swirling is a non-linear image deformation that creates a whirlpool effect. This example describes the implementation of this transform in ``skimage``, as well as the underlying warp mechanism. Image warping ------------- When applying a geometric transformation on an image, we typically make use of a reverse mapping, i.e., for each pixel in the output image, we compute its corresponding position in the input. The reason is that, if we were to do it the other way around (map each input pixel to its new output position), some pixels in the output may be left empty. On the other hand, each output coordinate has exactly one corresponding location in (or outside) the input image, and even if that position is non-integer, we may use interpolation to compute the corresponding image value. Performing a reverse mapping ---------------------------- To perform a geometric warp in ``skimage``, you simply need to provide the reverse mapping to the ``skimage.transform.warp`` function. E.g., consider the case where we would like to shift an image 50 pixels to the left. The reverse mapping for such a shift would be:: def shift_left(xy): xy[:, 0] += 50 return xy The corresponding call to warp is:: from skimage.transform import warp warp(image, shift_left) The swirl transformation ------------------------ Consider the coordinate :math:`(x, y)` in the output image. The reverse mapping for the swirl transformation first computes, relative to a center :math:`(x_0, y_0)`, its polar coordinates, .. math:: \\theta = \\arctan(y/x) \\rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}, and then transforms them according to .. math:: r = \ln(2) \, \mathtt{radius} / 5 \phi = \mathtt{rotation} s = \mathtt{strength} \\theta' = \phi + s \, e^{-\\rho / r + \\theta} where ``strength`` is a parameter for the amount of swirl, ``radius`` indicates the swirl extent in pixels, and ``rotation`` adds a rotation angle. The transformation of ``radius`` into :math:`r` is to ensure that the transformation decays to :math:`\\approx 1/1000^{\mathsf{th}}` within the specified radius. """ import matplotlib.pyplot as plt from skimage import data from skimage.transform import swirl image = data.checkerboard() swirled = swirl(image, rotation=0, strength=10, radius=120) fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, figsize=(8, 3), sharex=True, sharey=True, subplot_kw={'adjustable':'box-forced'}) ax0.imshow(image, cmap=plt.cm.gray, interpolation='none') ax0.axis('off') ax1.imshow(swirled, cmap=plt.cm.gray, interpolation='none') ax1.axis('off') plt.show()
bsd-3-clause
poryfly/scikit-learn
examples/linear_model/plot_sparse_recovery.py
243
7461
""" ============================================================ Sparse recovery: feature selection for sparse linear models ============================================================ Given a small number of observations, we want to recover which features of X are relevant to explain y. For this :ref:`sparse linear models <l1_feature_selection>` can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features are relevant. As detailed in :ref:`the compressive sensing notes <compressive_sensing>`, the ability of L1-based approach to identify the relevant variables depends on the sparsity of the ground truth, the number of samples, the number of features, the conditioning of the design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient [Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf). Here we keep all parameters constant and vary the conditioning of the design matrix. For a well-conditioned design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix), and L1-recovery with the Lasso performs very well. For an ill-conditioned matrix (high mutual incoherence), regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground truth well. In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage over a univariate F-test. In a second time, we set alpha and compare the performance of different feature selection methods, using the area under curve (AUC) of the precision-recall. """ print(__doc__) # Author: Alexandre Gramfort and Gael Varoquaux # License: BSD 3 clause import warnings import matplotlib.pyplot as plt import numpy as np from scipy import linalg from sklearn.linear_model import (RandomizedLasso, lasso_stability_path, LassoLarsCV) from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, precision_recall_curve from sklearn.ensemble import ExtraTreesRegressor from sklearn.utils.extmath import pinvh from sklearn.utils import ConvergenceWarning def mutual_incoherence(X_relevant, X_irelevant): """Mutual incoherence, as defined by formula (26a) of [Wainwright2006]. """ projector = np.dot(np.dot(X_irelevant.T, X_relevant), pinvh(np.dot(X_relevant.T, X_relevant))) return np.max(np.abs(projector).sum(axis=1)) for conditioning in (1, 1e-4): ########################################################################### # Simulate regression data with a correlated design n_features = 501 n_relevant_features = 3 noise_level = .2 coef_min = .2 # The Donoho-Tanner phase transition is around n_samples=25: below we # will completely fail to recover in the well-conditioned case n_samples = 25 block_size = n_relevant_features rng = np.random.RandomState(42) # The coefficients of our model coef = np.zeros(n_features) coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features) # The correlation of our design: variables correlated by blocs of 3 corr = np.zeros((n_features, n_features)) for i in range(0, n_features, block_size): corr[i:i + block_size, i:i + block_size] = 1 - conditioning corr.flat[::n_features + 1] = 1 corr = linalg.cholesky(corr) # Our design X = rng.normal(size=(n_samples, n_features)) X = np.dot(X, corr) # Keep [Wainwright2006] (26c) constant X[:n_relevant_features] /= np.abs( linalg.svdvals(X[:n_relevant_features])).max() X = StandardScaler().fit_transform(X.copy()) # The output variable y = np.dot(X, coef) y /= np.std(y) # We scale the added noise as a function of the average correlation # between the design and the output variable y += noise_level * rng.normal(size=n_samples) mi = mutual_incoherence(X[:, :n_relevant_features], X[:, n_relevant_features:]) ########################################################################### # Plot stability selection path, using a high eps for early stopping # of the path, to save computation time alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42, eps=0.05) plt.figure() # We plot the path as a function of alpha/alpha_max to the power 1/3: the # power 1/3 scales the path less brutally than the log, and enables to # see the progression along the path hg = plt.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r') hb = plt.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k') ymin, ymax = plt.ylim() plt.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$') plt.ylabel('Stability score: proportion of times selected') plt.title('Stability Scores Path - Mutual incoherence: %.1f' % mi) plt.axis('tight') plt.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'), loc='best') ########################################################################### # Plot the estimated stability scores for a given alpha # Use 6-fold cross-validation rather than the default 3-fold: it leads to # a better choice of alpha: # Stop the user warnings outputs- they are not necessary for the example # as it is specifically set up to be challenging. with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) warnings.simplefilter('ignore', ConvergenceWarning) lars_cv = LassoLarsCV(cv=6).fit(X, y) # Run the RandomizedLasso: we use a paths going down to .1*alpha_max # to avoid exploring the regime in which very noisy variables enter # the model alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6) clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y) trees = ExtraTreesRegressor(100).fit(X, y) # Compare with F-score F, _ = f_regression(X, y) plt.figure() for name, score in [('F-test', F), ('Stability selection', clf.scores_), ('Lasso coefs', np.abs(lars_cv.coef_)), ('Trees', trees.feature_importances_), ]: precision, recall, thresholds = precision_recall_curve(coef != 0, score) plt.semilogy(np.maximum(score / np.max(score), 1e-4), label="%s. AUC: %.3f" % (name, auc(recall, precision))) plt.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo', label="Ground truth") plt.xlabel("Features") plt.ylabel("Score") # Plot only the 100 first coefficients plt.xlim(0, 100) plt.legend(loc='best') plt.title('Feature selection scores - Mutual incoherence: %.1f' % mi) plt.show()
bsd-3-clause
pompiduskus/scikit-learn
examples/ensemble/plot_bias_variance.py
357
7324
""" ============================================================ Single estimator versus bagging: bias-variance decomposition ============================================================ This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single estimator against a bagging ensemble. In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and noise. On average over datasets of the regression problem, the bias term measures the average amount by which the predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes model). The variance term measures the variability of the predictions of the estimator when fit over different instances LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data. The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS (the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the variance, the more sensitive are the predictions for `x` to small changes in the training set. The bias term corresponds to the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue). On this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each other) while the variance is large (the red beam is rather wide). The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree. It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of the error which, as expected, appears to be constant and around `0.01`. The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures, we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around `x=2`). In the lower right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed mainly stems from a reduced variance. For further details on bias-variance decomposition, see section 7.3 of [1]_. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning", Springer, 2009. """ print(__doc__) # Author: Gilles Louppe <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import BaggingRegressor from sklearn.tree import DecisionTreeRegressor # Settings n_repeat = 50 # Number of iterations for computing expectations n_train = 50 # Size of the training set n_test = 1000 # Size of the test set noise = 0.1 # Standard deviation of the noise np.random.seed(0) # Change this for exploring the bias-variance decomposition of other # estimators. This should work well for estimators with high variance (e.g., # decision trees or KNN), but poorly for estimators with low variance (e.g., # linear models). estimators = [("Tree", DecisionTreeRegressor()), ("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))] n_estimators = len(estimators) # Generate data def f(x): x = x.ravel() return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2) def generate(n_samples, noise, n_repeat=1): X = np.random.rand(n_samples) * 10 - 5 X = np.sort(X) if n_repeat == 1: y = f(X) + np.random.normal(0.0, noise, n_samples) else: y = np.zeros((n_samples, n_repeat)) for i in range(n_repeat): y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples) X = X.reshape((n_samples, 1)) return X, y X_train = [] y_train = [] for i in range(n_repeat): X, y = generate(n_samples=n_train, noise=noise) X_train.append(X) y_train.append(y) X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat) # Loop over estimators to compare for n, (name, estimator) in enumerate(estimators): # Compute predictions y_predict = np.zeros((n_test, n_repeat)) for i in range(n_repeat): estimator.fit(X_train[i], y_train[i]) y_predict[:, i] = estimator.predict(X_test) # Bias^2 + Variance + Noise decomposition of the mean squared error y_error = np.zeros(n_test) for i in range(n_repeat): for j in range(n_repeat): y_error += (y_test[:, j] - y_predict[:, i]) ** 2 y_error /= (n_repeat * n_repeat) y_noise = np.var(y_test, axis=1) y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2 y_var = np.var(y_predict, axis=1) print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) " " + {3:.4f} (var) + {4:.4f} (noise)".format(name, np.mean(y_error), np.mean(y_bias), np.mean(y_var), np.mean(y_noise))) # Plot figures plt.subplot(2, n_estimators, n + 1) plt.plot(X_test, f(X_test), "b", label="$f(x)$") plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$") for i in range(n_repeat): if i == 0: plt.plot(X_test, y_predict[:, i], "r", label="$\^y(x)$") else: plt.plot(X_test, y_predict[:, i], "r", alpha=0.05) plt.plot(X_test, np.mean(y_predict, axis=1), "c", label="$\mathbb{E}_{LS} \^y(x)$") plt.xlim([-5, 5]) plt.title(name) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.subplot(2, n_estimators, n_estimators + n + 1) plt.plot(X_test, y_error, "r", label="$error(x)$") plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"), plt.plot(X_test, y_var, "g", label="$variance(x)$"), plt.plot(X_test, y_noise, "c", label="$noise(x)$") plt.xlim([-5, 5]) plt.ylim([0, 0.1]) if n == 0: plt.legend(loc="upper left", prop={"size": 11}) plt.show()
bsd-3-clause
walterreade/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
turbomanage/training-data-analyst
CPB100/lab2b/scheduled/transform.py
4
3058
#!/usr/bin/env python3 # Copyright 2016 Google Inc. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. # See https://github.com/GoogleCloudPlatform/datalab-samples/blob/master/basemap/earthquakes.ipynb for a notebook that illustrates this code import csv import requests import io import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap # Classes to hold the data class EarthQuake: def __init__(self, row): # Parse earthquake data from USGS self.timestamp = row[0] self.lat = float(row[1]) self.lon = float(row[2]) try: self.magnitude = float(row[4]) except ValueError: self.magnitude = 0 def get_earthquake_data(url): # Read CSV earthquake data from USGS response = requests.get(url) csvio = io.StringIO(response.text) reader = csv.reader(csvio) header = next(reader) quakes = [EarthQuake(row) for row in reader] quakes = [q for q in quakes if q.magnitude > 0] return quakes # control marker color and size based on magnitude def get_marker(magnitude): markersize = magnitude * 2.5; if magnitude < 1.0: return ('bo'), markersize if magnitude < 3.0: return ('go'), markersize elif magnitude < 5.0: return ('yo'), markersize else: return ('ro'), markersize def create_png(url, outfile): quakes = get_earthquake_data('http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_week.csv') print(quakes[0].__dict__) # Set up Basemap mpl.rcParams['figure.figsize'] = '16, 12' m = Basemap(projection='kav7', lon_0=-90, resolution = 'l', area_thresh = 1000.0) m.drawcoastlines() m.drawcountries() m.drawmapboundary(fill_color='0.3') m.drawparallels(np.arange(-90.,99.,30.)) junk = m.drawmeridians(np.arange(-180.,180.,60.)) # sort earthquakes by magnitude so that weaker earthquakes # are plotted after (i.e. on top of) stronger ones # the stronger quakes have bigger circles, so we'll see both start_day = quakes[-1].timestamp[:10] end_day = quakes[0].timestamp[:10] quakes.sort(key=lambda q: q.magnitude, reverse=True) # add earthquake info to the plot for q in quakes: x,y = m(q.lon, q.lat) mcolor, msize = get_marker(q.magnitude) m.plot(x, y, mcolor, markersize=msize) # add a title plt.title("Earthquakes {0} to {1}".format(start_day, end_day)) plt.savefig(outfile) if __name__ == '__main__': url = 'http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all_week.csv' outfile = 'earthquakes.png' create_png(url, outfile)
apache-2.0
rrohan/scikit-learn
sklearn/gaussian_process/gaussian_process.py
78
34552
# -*- coding: utf-8 -*- # Author: Vincent Dubourg <[email protected]> # (mostly translation, see implementation details) # Licence: BSD 3 clause from __future__ import print_function import numpy as np from scipy import linalg, optimize from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import check_random_state, check_array, check_X_y from ..utils.validation import check_is_fitted from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Read more in the :ref:`User Guide <gaussian_process>`. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood estimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- theta_ : array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). reduced_likelihood_function_value_ : array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations of the output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ # Run input checks self._check_params() self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X, y = check_X_y(X, y, multi_output=True, y_numeric=True) self.y_ndim_ = y.ndim if y.ndim == 1: y = y[:, np.newaxis] # Check shapes of DOE & observations n_samples, n_features = X.shape _, n_targets = y.shape # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple input features cannot have the same" " target value.") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the " "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simultaneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like, shape (n_samples, ) or (n_samples, n_targets) An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape (n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared Error at x. """ check_is_fitted(self, "X") # Check input shapes X = check_array(X) n_eval, _ = X.shape n_samples, n_features = self.X.shape n_samples_y, n_targets = self.y.shape # Run input checks self._check_params(n_samples) if X.shape[1] != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " "should match the number of features used " "for fit() " "which is %d.") % (X.shape[1], n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).reshape(n_eval, n_targets) if self.y_ndim_ == 1: y = y.ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " "at instantiation. Need to recompute " "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = linalg.solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = linalg.solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T, lower=True) else: # Ordinary Kriging u = np.zeros((n_targets, n_eval)) MSE = np.dot(self.sigma2.reshape(n_targets, 1), (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0))[np.newaxis, :]) MSE = np.sqrt((MSE ** 2.).sum(axis=0) / n_targets) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. if self.y_ndim_ == 1: MSE = MSE.ravel() return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ check_is_fitted(self, "X") if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = linalg.solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = linalg.solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = linalg.solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = linalg.solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print("The chosen optimizer is: " + str(self.optimizer)) if self.random_start > 1: print(str(self.random_start) + " random starts are required.") percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function( theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t, i=i: log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t, i=i: np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = (np.log10(self.thetaL) + self.random_state.rand(*self.theta0.shape) * np.log10(self.thetaU / self.thetaL)) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0).ravel(), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print("%s completed" % (5 * percent_completed)) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = check_array(self.theta0.min()) self.thetaL = check_array(self.thetaL.min()) self.thetaU = check_array(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print("Proceeding along dimension %d..." % (i + 1)) self.theta0 = check_array(theta_iso) self.thetaL = check_array(thetaL[0, i]) self.thetaU = check_array(thetaU[0, i]) def corr_cut(t, d): return corr(check_array(np.hstack([optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError("This optimizer ('%s') is not " "implemented yet. Please contribute!" % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError("regr should be one of %s or callable, " "%s was given." % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = np.atleast_2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError("corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = np.atleast_2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = np.atleast_2d(self.thetaL) self.thetaU = np.atleast_2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if self.optimizer not in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
RRCKI/panda-jedi
pandajedi/jedibrokerage/AtlasProdTaskBroker.py
1
40285
import re import sys import random import traceback from pandajedi.jedicore.MsgWrapper import MsgWrapper from pandajedi.jedicore import Interaction from TaskBrokerBase import TaskBrokerBase from pandajedi.jedicore.ThreadUtils import ListWithLock,ThreadPool,WorkerThread,MapWithLock import AtlasBrokerUtils from AtlasProdJobBroker import AtlasProdJobBroker from pandaserver.userinterface import Client as PandaClient from pandaserver.dataservice import DataServiceUtils # cannot use pandaserver.taskbuffer while Client is used from taskbuffer.JobSpec import JobSpec # logger from pandacommon.pandalogger.PandaLogger import PandaLogger logger = PandaLogger().getLogger(__name__.split('.')[-1]) # brokerage for ATLAS production class AtlasProdTaskBroker (TaskBrokerBase): # constructor def __init__(self,taskBufferIF,ddmIF): TaskBrokerBase.__init__(self,taskBufferIF,ddmIF) # main to check def doCheck(self,taskSpecList): # make logger tmpLog = MsgWrapper(logger) tmpLog.debug('start doCheck') # return for failure retFatal = self.SC_FATAL,{} retTmpError = self.SC_FAILED,{} # get list of jediTaskIDs taskIdList = [] taskSpecMap = {} for taskSpec in taskSpecList: taskIdList.append(taskSpec.jediTaskID) taskSpecMap[taskSpec.jediTaskID] = taskSpec # check with panda tmpLog.debug('check with panda') tmpPandaStatus,cloudsInPanda = PandaClient.seeCloudTask(taskIdList) if tmpPandaStatus != 0: tmpLog.error('failed to see clouds') return retTmpError # make return map retMap = {} for tmpTaskID,tmpCoreName in cloudsInPanda.iteritems(): tmpLog.debug('jediTaskID={0} -> {1}'.format(tmpTaskID,tmpCoreName)) if not tmpCoreName in ['NULL','',None]: taskSpec = taskSpecMap[tmpTaskID] if taskSpec.useWorldCloud(): # get destinations for WORLD cloud ddmIF = self.ddmIF.getInterface(taskSpec.vo) # get site siteSpec = self.siteMapper.getSite(tmpCoreName) # get nucleus nucleus = siteSpec.pandasite # get output/log datasets tmpStat,tmpDatasetSpecs = self.taskBufferIF.getDatasetsWithJediTaskID_JEDI(tmpTaskID,['output','log']) # get destinations retMap[tmpTaskID] = {'datasets':[],'nucleus':nucleus} for datasetSpec in tmpDatasetSpecs: # skip distributed datasets if DataServiceUtils.getDistributedDestination(datasetSpec.storageToken) != None: continue # get token token = ddmIF.convertTokenToEndpoint(siteSpec.ddm,datasetSpec.storageToken) # use default endpoint if token == None: token = siteSpec.ddm # add origianl token if not datasetSpec.storageToken in ['',None]: token += '/{0}'.format(datasetSpec.storageToken) retMap[tmpTaskID]['datasets'].append({'datasetID':datasetSpec.datasetID, 'token':'dst:{0}'.format(token), 'destination':tmpCoreName}) else: retMap[tmpTaskID] = tmpCoreName tmpLog.debug('ret {0}'.format(str(retMap))) # return tmpLog.debug('done') return self.SC_SUCCEEDED,retMap # main to assign def doBrokerage(self,inputList,vo,prodSourceLabel,workQueue): # list with a lock inputListWorld = ListWithLock([]) # variables for submission maxBunchTask = 100 # make logger tmpLog = MsgWrapper(logger) tmpLog.debug('start doBrokerage') # return for failure retFatal = self.SC_FATAL retTmpError = self.SC_FAILED tmpLog.debug('vo={0} label={1} queue={2} nTasks={3}'.format(vo,prodSourceLabel, workQueue.queue_name, len(inputList))) # loop over all tasks allRwMap = {} prioMap = {} tt2Map = {} expRWs = {} jobSpecList = [] for tmpJediTaskID,tmpInputList in inputList: for taskSpec,cloudName,inputChunk in tmpInputList: # collect tasks for WORLD if taskSpec.useWorldCloud(): inputListWorld.append((taskSpec,inputChunk)) continue # make JobSpec to be submitted for TaskAssigner jobSpec = JobSpec() jobSpec.taskID = taskSpec.jediTaskID jobSpec.jediTaskID = taskSpec.jediTaskID # set managed to trigger TA jobSpec.prodSourceLabel = 'managed' jobSpec.processingType = taskSpec.processingType jobSpec.workingGroup = taskSpec.workingGroup jobSpec.metadata = taskSpec.processingType jobSpec.assignedPriority = taskSpec.taskPriority jobSpec.currentPriority = taskSpec.currentPriority jobSpec.maxDiskCount = (taskSpec.getOutDiskSize() + taskSpec.getWorkDiskSize()) / 1024 / 1024 if taskSpec.useWorldCloud(): # use destinationSE to trigger task brokerage in WORLD cloud jobSpec.destinationSE = taskSpec.cloud prodDBlock = None setProdDBlock = False for datasetSpec in inputChunk.getDatasets(): prodDBlock = datasetSpec.datasetName if datasetSpec.isMaster(): jobSpec.prodDBlock = datasetSpec.datasetName setProdDBlock = True for fileSpec in datasetSpec.Files: tmpInFileSpec = fileSpec.convertToJobFileSpec(datasetSpec) jobSpec.addFile(tmpInFileSpec) # use secondary dataset name as prodDBlock if setProdDBlock == False and prodDBlock != None: jobSpec.prodDBlock = prodDBlock # append jobSpecList.append(jobSpec) prioMap[jobSpec.taskID] = jobSpec.currentPriority tt2Map[jobSpec.taskID] = jobSpec.processingType # get RW for a priority if not allRwMap.has_key(jobSpec.currentPriority): tmpRW = self.taskBufferIF.calculateRWwithPrio_JEDI(vo,prodSourceLabel,workQueue, jobSpec.currentPriority) if tmpRW == None: tmpLog.error('failed to calculate RW with prio={0}'.format(jobSpec.currentPriority)) return retTmpError allRwMap[jobSpec.currentPriority] = tmpRW # get expected RW expRW = self.taskBufferIF.calculateTaskRW_JEDI(jobSpec.jediTaskID) if expRW == None: tmpLog.error('failed to calculate RW for jediTaskID={0}'.format(jobSpec.jediTaskID)) return retTmpError expRWs[jobSpec.taskID] = expRW # for old clouds if jobSpecList != []: # get fullRWs fullRWs = self.taskBufferIF.calculateRWwithPrio_JEDI(vo,prodSourceLabel,None,None) if fullRWs == None: tmpLog.error('failed to calculate full RW') return retTmpError # set metadata for jobSpec in jobSpecList: rwValues = allRwMap[jobSpec.currentPriority] jobSpec.metadata = "%s;%s;%s;%s;%s;%s" % (jobSpec.metadata, str(rwValues),str(expRWs), str(prioMap),str(fullRWs), str(tt2Map)) tmpLog.debug('run task assigner for {0} tasks'.format(len(jobSpecList))) nBunchTask = 0 while nBunchTask < len(jobSpecList): # get a bunch jobsBunch = jobSpecList[nBunchTask:nBunchTask+maxBunchTask] strIDs = 'jediTaskID=' for tmpJobSpec in jobsBunch: strIDs += '{0},'.format(tmpJobSpec.taskID) strIDs = strIDs[:-1] tmpLog.debug(strIDs) # increment index nBunchTask += maxBunchTask # run task brokerge stS,outSs = PandaClient.runTaskAssignment(jobsBunch) tmpLog.debug('{0}:{1}'.format(stS,str(outSs))) # for WORLD if len(inputListWorld) > 0: # thread pool threadPool = ThreadPool() # get full RW for WORLD fullRWs = self.taskBufferIF.calculateWorldRWwithPrio_JEDI(vo,prodSourceLabel,None,None) if fullRWs == None: tmpLog.error('failed to calculate full WORLD RW') return retTmpError # get RW per priority for taskSpec,inputChunk in inputListWorld: if not taskSpec.currentPriority in allRwMap: tmpRW = self.taskBufferIF.calculateWorldRWwithPrio_JEDI(vo,prodSourceLabel,workQueue, taskSpec.currentPriority) if tmpRW == None: tmpLog.error('failed to calculate RW with prio={0}'.format(taskSpec.currentPriority)) return retTmpError allRwMap[taskSpec.currentPriority] = tmpRW # live counter for RWs liveCounter = MapWithLock(allRwMap) # make workers ddmIF = self.ddmIF.getInterface(vo) for iWorker in range(4): thr = AtlasProdTaskBrokerThread(inputListWorld,threadPool, self.taskBufferIF,ddmIF, fullRWs,liveCounter, workQueue) thr.start() threadPool.join(60*10) # return tmpLog.debug('doBrokerage done') return self.SC_SUCCEEDED # check file availability def findMissingFiles(self,jediTaskID,cloudName): tmpLog = MsgWrapper(logger,'<jediTaskID={0}>'.format(jediTaskID)) tmpLog.debug('start findMissingFiles') # return for failure retError = self.SC_FAILED # get datasets tmpSt,datasetSpecList = self.taskBufferIF.getDatasetsWithJediTaskID_JEDI(jediTaskID,['input'],True) if not tmpSt: tmpLog.error('failed to get the list of datasets') return retError # loop over all datasets for datasetSpec in datasetSpecList: # check only master dataset if not datasetSpec.isMaster(): continue tmpLog.debug('checking {0}'.format(datasetSpec.datasetName)) # get ddmIF ddmIF = self.ddmIF.getInterface(datasetSpec.vo) if ddmIF == None: tmpLog.error('failed to get DDM I/F for vo={0}'.format(datasetSpec.vo)) return retError # get the list of sites where data is available tmpSt,tmpRet = AtlasBrokerUtils.getSitesWithData(self.siteMapper,ddmIF, datasetSpec.datasetName) if tmpSt != self.SC_SUCCEEDED: tmpLog.error('failed to get the list of sites where {0} is available, since {1}'.format(datasetSpec.datasetName, tmpRet)) return retError dataSiteMap = tmpRet # data is unavailable in cloud if not dataSiteMap.has_key(cloudName): tmpLog.error('{0} is unavailable in cloud={1} map={2}'.format(datasetSpec.datasetName,cloudName,str(dataSiteMap))) return retError # mapping between sites and storage endpoints checkedSites = [self.siteMapper.getCloud(cloudName)['source']]+dataSiteMap[cloudName]['t2'] siteStorageEP = AtlasBrokerUtils.getSiteStorageEndpointMap(checkedSites,self.siteMapper) # get available files per site/endpoint tmpAvFileMap = ddmIF.getAvailableFiles(datasetSpec, siteStorageEP, self.siteMapper, ngGroup=[1], checkLFC=True) if tmpAvFileMap == None: tmpLog.error('failed to get available file list for {0}'.format(datasetSpec.datasetName)) return retError # check availability missingFiles = [] for fileSpec in datasetSpec.Files: fileFound = False for tmpSiteName,availableFilesMap in tmpAvFileMap.iteritems(): for tmpStorageType,availableFiles in availableFilesMap.iteritems(): for availableFile in availableFiles: if fileSpec.lfn == availableFile.lfn: fileFound = True break if fileFound: break if fileFound: break # missing if not fileFound: missingFiles.append(fileSpec.fileID) tmpLog.debug('{0} missing'.format(fileSpec.lfn)) # update contents if missingFiles != []: tmpSt = self.taskBufferIF.setMissingFiles_JEDI(jediTaskID,datasetSpec.datasetID,missingFiles) if not tmpSt: tmpLog.error('failed to set missing files in {0}'.format(datasetSpec.datasetName)) return retError tmpLog.debug('done findMissingFiles') return self.SC_SUCCEEDED # thread for real worker class AtlasProdTaskBrokerThread (WorkerThread): # constructor def __init__(self,inputList,threadPool,taskbufferIF,ddmIF, fullRW,prioRW,workQueue): # initialize woker with no semaphore WorkerThread.__init__(self,None,threadPool,logger) # attributres self.inputList = inputList self.taskBufferIF = taskbufferIF self.ddmIF = ddmIF self.msgType = 'taskbrokerage' self.fullRW = fullRW self.prioRW = prioRW self.numTasks = 0 self.workQueue = workQueue # wrapper for return def sendLogMessage(self,tmpLog): # send info to logger tmpLog.bulkSendMsg('taskbrokerage',loggerName='bamboo') tmpLog.debug('sent') # main function def runImpl(self): # cutoff for disk in TB diskThreshold = self.taskBufferIF.getConfigValue(self.msgType, 'DISK_THRESHOLD_{0}'.format(self.workQueue.queue_name), 'jedi', 'atlas') if diskThreshold is None: diskThreshold = 100 * 1024 # dataset type to ignore file availability check datasetTypeToSkipCheck = ['log'] # thresholds for data availability check thrInputSize = self.taskBufferIF.getConfigValue(self.msgType, 'INPUT_SIZE_THRESHOLD', 'jedi', 'atlas') if thrInputSize is None: thrInputSize = 1 thrInputSize *= 1024*1024*1024 thrInputNum = self.taskBufferIF.getConfigValue(self.msgType, 'INPUT_NUM_THRESHOLD', 'jedi', 'atlas') if thrInputNum is None: thrInputNum = 100 thrInputSizeFrac = self.taskBufferIF.getConfigValue(self.msgType, 'INPUT_SIZE_FRACTION', 'jedi', 'atlas') if thrInputSizeFrac is None: thrInputSizeFrac = 10 thrInputSizeFrac = float(thrInputSizeFrac) / 100 thrInputNumFrac = self.taskBufferIF.getConfigValue(self.msgType, 'INPUT_NUM_FRACTION', 'jedi', 'atlas') if thrInputNumFrac is None: thrInputNumFrac = 10 thrInputNumFrac = float(thrInputNumFrac) / 100 cutOffRW = 50 negWeightTape = 0.001 # main lastJediTaskID = None siteMapper = self.taskBufferIF.getSiteMapper() while True: try: taskInputList = self.inputList.get(1) # no more datasets if len(taskInputList) == 0: self.logger.debug('{0} terminating after processing {1} tasks since no more inputs '.format(self.__class__.__name__, self.numTasks)) return # loop over all tasks for taskSpec,inputChunk in taskInputList: lastJediTaskID = taskSpec.jediTaskID # make logger tmpLog = MsgWrapper(self.logger,'<jediTaskID={0}>'.format(taskSpec.jediTaskID),monToken='jediTaskID={0}'.format(taskSpec.jediTaskID)) tmpLog.debug('start') tmpLog.info('thrInputSize:{0} thrInputNum:{1} thrInputSizeFrac:{2} thrInputNumFrac;{3}'.format(thrInputSize, thrInputNum, thrInputSizeFrac, thrInputNumFrac)) # RW taskRW = self.taskBufferIF.calculateTaskWorldRW_JEDI(taskSpec.jediTaskID) # get nuclei nucleusList = siteMapper.nuclei if taskSpec.nucleus in nucleusList: candidateNucleus = taskSpec.nucleus else: tmpLog.info('got {0} candidates'.format(len(nucleusList))) ###################################### # check status newNucleusList = {} for tmpNucleus,tmpNucleusSpec in nucleusList.iteritems(): if not tmpNucleusSpec.state in ['ACTIVE']: tmpLog.info(' skip nucleus={0} due to status={1} criteria=-status'.format(tmpNucleus, tmpNucleusSpec.state)) else: newNucleusList[tmpNucleus] = tmpNucleusSpec nucleusList = newNucleusList tmpLog.info('{0} candidates passed status check'.format(len(nucleusList))) if nucleusList == {}: tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) continue ###################################### # check status of transfer backlog t1Weight = taskSpec.getT1Weight() if t1Weight < 0: tmpLog.info('skip transfer backlog check due to negative T1Weight') else: newNucleusList = {} backlogged_nuclei = self.taskBufferIF.getBackloggedNuclei() for tmpNucleus, tmpNucleusSpec in nucleusList.iteritems(): if tmpNucleus in backlogged_nuclei: tmpLog.info(' skip nucleus={0} due to long transfer backlog criteria=-transfer_backlog'. format(tmpNucleus)) else: newNucleusList[tmpNucleus] = tmpNucleusSpec nucleusList = newNucleusList tmpLog.info('{0} candidates passed transfer backlog check'.format(len(nucleusList))) if nucleusList == {}: tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) continue ###################################### # check endpoint fractionFreeSpace = {} newNucleusList = {} tmpStat,tmpDatasetSpecList = self.taskBufferIF.getDatasetsWithJediTaskID_JEDI(taskSpec.jediTaskID, ['output','log']) for tmpNucleus,tmpNucleusSpec in nucleusList.iteritems(): toSkip = False for tmpDatasetSpec in tmpDatasetSpecList: # ignore distributed datasets if DataServiceUtils.getDistributedDestination(tmpDatasetSpec.storageToken) != None: continue # get endpoint with the pattern tmpEP = tmpNucleusSpec.getAssoicatedEndpoint(tmpDatasetSpec.storageToken) if tmpEP == None: tmpLog.info(' skip nucleus={0} since no endpoint with {1} criteria=-match'.format(tmpNucleus, tmpDatasetSpec.storageToken)) toSkip = True break # check state """ if not tmpEP['state'] in ['ACTIVE']: tmpLog.info(' skip nucleus={0} since endpoint {1} is in {2} criteria=-epstatus'.format(tmpNucleus, tmpEP['ddm_endpoint_name'], tmpEP['state'])) toSkip = True break """ # check space tmpSpaceSize = tmpEP['space_free'] + tmpEP['space_expired'] tmpSpaceToUse = 0 if tmpNucleus in self.fullRW: # 0.25GB per cpuTime/corePower/day tmpSpaceToUse = long(self.fullRW[tmpNucleus]/10/24/3600*0.25) if tmpSpaceSize-tmpSpaceToUse < diskThreshold: tmpLog.info(' skip nucleus={0} since disk shortage (free {1} - reserved {2} < thr {3}) at endpoint {4} criteria=-space'.format(tmpNucleus, tmpSpaceSize, tmpSpaceToUse, diskThreshold, tmpEP['ddm_endpoint_name'])) toSkip = True break # keep fraction of free space if not tmpNucleus in fractionFreeSpace: fractionFreeSpace[tmpNucleus] = {'total':0,'free':0} try: tmpOld = float(fractionFreeSpace[tmpNucleus]['free']) / \ float(fractionFreeSpace[tmpNucleus]['total']) except: tmpOld = None try: tmpNew = float(tmpSpaceSize-tmpSpaceToUse)/float(tmpEP['space_total']) except: tmpNew = None if tmpNew != None and (tmpOld == None or tmpNew < tmpOld): fractionFreeSpace[tmpNucleus] = {'total':tmpEP['space_total'], 'free':tmpSpaceSize-tmpSpaceToUse} if not toSkip: newNucleusList[tmpNucleus] = tmpNucleusSpec nucleusList = newNucleusList tmpLog.info('{0} candidates passed endpoint check {1} TB'.format(len(nucleusList),diskThreshold/1024)) if nucleusList == {}: tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) continue ###################################### # ability to execute jobs newNucleusList = {} # get all panda sites tmpSiteList = [] for tmpNucleus,tmpNucleusSpec in nucleusList.iteritems(): tmpSiteList += tmpNucleusSpec.allPandaSites tmpSiteList = list(set(tmpSiteList)) tmpLog.debug('===== start for job check') jobBroker = AtlasProdJobBroker(self.ddmIF,self.taskBufferIF) tmpSt,tmpRet = jobBroker.doBrokerage(taskSpec,taskSpec.cloud,inputChunk,None,True, tmpSiteList,tmpLog) tmpLog.debug('===== done for job check') if tmpSt != Interaction.SC_SUCCEEDED: tmpLog.error('no sites can run jobs') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) continue okNuclei = set() for tmpSite in tmpRet: siteSpec = siteMapper.getSite(tmpSite) okNuclei.add(siteSpec.pandasite) for tmpNucleus,tmpNucleusSpec in nucleusList.iteritems(): if tmpNucleus in okNuclei: newNucleusList[tmpNucleus] = tmpNucleusSpec else: tmpLog.info(' skip nucleus={0} due to missing ability to run jobs criteria=-job'.format(tmpNucleus)) nucleusList = newNucleusList tmpLog.info('{0} candidates passed job check'.format(len(nucleusList))) if nucleusList == {}: tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) continue ###################################### # data locality toSkip = False availableData = {} for datasetSpec in inputChunk.getDatasets(): # only for real datasets if datasetSpec.isPseudo(): continue # ignore DBR if DataServiceUtils.isDBR(datasetSpec.datasetName): continue # skip locality check if DataServiceUtils.getDatasetType(datasetSpec.datasetName) in datasetTypeToSkipCheck: continue # use deep scan for primary dataset if datasetSpec.isMaster(): deepScan = True else: deepScan = False # get nuclei where data is available tmpSt,tmpRet = AtlasBrokerUtils.getNucleiWithData(siteMapper,self.ddmIF, datasetSpec.datasetName, nucleusList.keys(), deepScan) if tmpSt != Interaction.SC_SUCCEEDED: tmpLog.error('failed to get nuclei where data is available, since {0}'.format(tmpRet)) taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) toSkip = True break # sum for tmpNucleus,tmpVals in tmpRet.iteritems(): if not tmpNucleus in availableData: availableData[tmpNucleus] = tmpVals else: availableData[tmpNucleus] = dict((k,v+tmpVals[k]) for (k,v) in availableData[tmpNucleus].iteritems()) if toSkip: continue if availableData != {}: newNucleusList = {} # skip if no data skipMsgList = [] for tmpNucleus,tmpNucleusSpec in nucleusList.iteritems(): if len(nucleusList) == 1: tmpLog.info(' disable data locality check for nucleus={0} since no other candidate'.format(tmpNucleus)) newNucleusList[tmpNucleus] = tmpNucleusSpec elif availableData[tmpNucleus]['tot_size'] > thrInputSize and \ availableData[tmpNucleus]['ava_size_any'] < availableData[tmpNucleus]['tot_size'] * thrInputSizeFrac: tmpMsg = ' skip nucleus={0} due to insufficient input size {1}B < {2}*{3} criteria=-insize'.format(tmpNucleus, availableData[tmpNucleus]['ava_size_any'], availableData[tmpNucleus]['tot_size'], thrInputSizeFrac) skipMsgList.append(tmpMsg) elif availableData[tmpNucleus]['tot_num'] > thrInputNum and \ availableData[tmpNucleus]['ava_num_any'] < availableData[tmpNucleus]['tot_num'] * thrInputNumFrac: tmpMsg = ' skip nucleus={0} due to short number of input files {1} < {2}*{3} criteria=-innum'.format(tmpNucleus, availableData[tmpNucleus]['ava_num_any'], availableData[tmpNucleus]['tot_num'], thrInputNumFrac) skipMsgList.append(tmpMsg) else: newNucleusList[tmpNucleus] = tmpNucleusSpec if len(newNucleusList) > 0: nucleusList = newNucleusList for tmpMsg in skipMsgList: tmpLog.info(tmpMsg) else: tmpLog.info(' disable data locality check since no nucleus has input data') tmpLog.info('{0} candidates passed data check'.format(len(nucleusList))) if nucleusList == {}: tmpLog.error('no candidates') taskSpec.setErrDiag(tmpLog.uploadLog(taskSpec.jediTaskID)) self.sendLogMessage(tmpLog) continue ###################################### # weight self.prioRW.acquire() nucleusRW = self.prioRW[taskSpec.currentPriority] self.prioRW.release() totalWeight = 0 nucleusweights = [] for tmpNucleus,tmpNucleusSpec in nucleusList.iteritems(): if not tmpNucleus in nucleusRW: nucleusRW[tmpNucleus] = 0 wStr = '1' # with RW if tmpNucleus in nucleusRW and nucleusRW[tmpNucleus] >= cutOffRW: weight = 1 / float(nucleusRW[tmpNucleus]) wStr += '/( RW={0} )'.format(nucleusRW[tmpNucleus]) else: weight = 1 wStr += '/(1 : RW={0}<{1})'.format(nucleusRW[tmpNucleus],cutOffRW) # with data if availableData != {}: if availableData[tmpNucleus]['tot_size'] > 0: weight *= float(availableData[tmpNucleus]['ava_size_any']) weight /= float(availableData[tmpNucleus]['tot_size']) wStr += '* ( available_input_size_DISKTAPE={0} )'.format(availableData[tmpNucleus]['ava_size_any']) wStr += '/ ( total_input_size={0} )'.format(availableData[tmpNucleus]['tot_size']) # negative weight for tape if availableData[tmpNucleus]['ava_size_any'] > availableData[tmpNucleus]['ava_size_disk']: weight *= negWeightTape wStr += '*( weight_TAPE={0} )'.format(negWeightTape) # fraction of free space if tmpNucleus in fractionFreeSpace: try: tmpFrac = float(fractionFreeSpace[tmpNucleus]['free']) / \ float(fractionFreeSpace[tmpNucleus]['total']) weight *= tmpFrac wStr += '*( free_space={0} )/( total_space={1} )'.format(fractionFreeSpace[tmpNucleus]['free'], fractionFreeSpace[tmpNucleus]['total']) except: pass tmpLog.info(' use nucleus={0} weight={1} {2} criteria=+use'.format(tmpNucleus,weight,wStr)) totalWeight += weight nucleusweights.append((tmpNucleus,weight)) tmpLog.info('final {0} candidates'.format(len(nucleusList))) ###################################### # final selection tgtWeight = random.uniform(0,totalWeight) candidateNucleus = None for tmpNucleus,weight in nucleusweights: tgtWeight -= weight if tgtWeight <= 0: candidateNucleus = tmpNucleus break if candidateNucleus == None: candidateNucleus = nucleusweights[-1][0] ###################################### # update nucleusSpec = nucleusList[candidateNucleus] # get output/log datasets tmpStat,tmpDatasetSpecs = self.taskBufferIF.getDatasetsWithJediTaskID_JEDI(taskSpec.jediTaskID, ['output','log']) # get destinations retMap = {taskSpec.jediTaskID: AtlasBrokerUtils.getDictToSetNucleus(nucleusSpec,tmpDatasetSpecs)} tmpRet = self.taskBufferIF.setCloudToTasks_JEDI(retMap) tmpLog.info(' set nucleus={0} with {1} criteria=+set'.format(candidateNucleus,tmpRet)) self.sendLogMessage(tmpLog) if tmpRet: tmpMsg = 'set task.status=ready' tmpLog.info(tmpMsg) tmpLog.sendMsg(tmpMsg,self.msgType) # update RW table self.prioRW.acquire() for prio,rwMap in self.prioRW.iteritems(): if prio > taskSpec.currentPriority: continue if candidateNucleus in rwMap: rwMap[candidateNucleus] += taskRW else: rwMap[candidateNucleus] = taskRW self.prioRW.release() except: errtype,errvalue = sys.exc_info()[:2] errMsg = '{0}.runImpl() failed with {1} {2} '.format(self.__class__.__name__,errtype.__name__,errvalue) errMsg += 'lastJediTaskID={0} '.format(lastJediTaskID) errMsg += traceback.format_exc() logger.error(errMsg)
apache-2.0
jorge2703/scikit-learn
examples/cluster/plot_color_quantization.py
297
3443
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1] china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
bsd-3-clause
etkirsch/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
igabr/Metis_Projects_Chicago_2017
05-project-kojack/filters.py
1
7976
import pandas as pd import numpy as np import string from nltk.corpus import stopwords nltk_stopwords = stopwords.words("english")+["rt", "via","-»","--»","--","---","-->","<--","->","<-","«--","«","«-","»","«»", " →", "→"] punc = '!"%&\'()*+,-./:;<=>?@[\\]^_`{|}~' def filtration_1(dataframe, column_to_clean, new_col): cleaned_tweets = [] for label in dataframe.index: tweet = dataframe.loc[label, :][column_to_clean] tweet = tweet.lower() clean = [x for x in tweet.split() if x not in string.punctuation] clean = [x for x in clean if x not in nltk_stopwords] clean = [x for x in clean if "@" not in x] clean = [x for x in clean if "฿" not in x] clean = [x for x in clean if x[0] not in string.digits] clean = [x for x in clean if x[0] not in punc] clean = [x for x in clean if len(x) != 1] clean = " ".join(clean) clean = clean.strip() cleaned_tweets.append(clean) dataframe[new_col] = cleaned_tweets return dataframe def filtration_2(dataframe, column): # clean = list(map(lambda x: x.replace("#", ""), clean)) #we want to maintain hashtags! dataframe[column] = dataframe[column].apply(lambda x: x.replace('"', "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("♬♫♩♪", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("…", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(".","")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("⋆", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" ⋆ ", " ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("#rt", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("#re", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" alime ", " all time ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" alltime ", " all time ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" →", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("alime", "all time ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("atm", "at the moment")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" ath ", " all time high ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("str8", "straight")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" v ", " very ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" #d", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" ddos ", " distributed denial of service ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("btce", "btc")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("bitcoina", "bitcoin")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("rbitcoin", "bitcoin")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" – ", " ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("-&gt;", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" ➤ ", " ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("◄►", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("◄", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" ur ", " your ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" u ", " you ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("forthen", "for then")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("&gt;", "greater than")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("&lt;", "less than")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("lt", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("gt", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(":", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("&amp;", "and")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("ampamp", "and")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("amp", "and")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" amp ", " and ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" bu ", " but ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("/", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("...", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("(", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(")", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("“", '"')) dataframe[column] = dataframe[column].apply(lambda x: x.replace("”", '"')) dataframe[column] = dataframe[column].apply(lambda x: x.replace("‘", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("’", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("-"," ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("*", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("!", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("⬛️", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("\u200d", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("\U0001f986", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("\U0001f942", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("\U0001f92f", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("\U0001f911", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("\U0001F193", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" ⭕ ", " ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("🤔", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("☞ ", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("[", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("]", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("{", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("}", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("ô", "o")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("ó", "o")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("é", "e")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("ï","i")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("®", "")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("á", "a")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("ã", "a")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("ç", "c")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" jan ", " january ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" feb ", " february ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" mar ", " march ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" apr ", " april ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" jun ", " june ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" jul ", " july ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" aug ", " august ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" sept ", " september ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" oct ", " october ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" nov ", " november ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace(" dec ", " december ")) dataframe[column] = dataframe[column].apply(lambda x: x.replace("washinon", "washington")) return dataframe
mit
JDReutt/BayesDB
bayesdb/select_utils.py
2
6044
# # Copyright (c) 2010-2014, MIT Probabilistic Computing Project # # Lead Developers: Jay Baxter and Dan Lovell # Authors: Jay Baxter, Dan Lovell, Baxter Eaves, Vikash Mansinghka # Research Leads: Vikash Mansinghka, Patrick Shafto # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re import utils import numpy import os import pylab import matplotlib.cm import inspect import operator import ast import string import utils import functions import data_utils as du from pyparsing import * import bayesdb.bql_grammar as bql_grammar def evaluate_where_on_row(row_idx, row, where_conditions, M_c, M_c_full, X_L_list, X_D_list, T, T_full, engine, tablename, numsamples, impute_confidence): """ Helper function that applies WHERE conditions to row, returning False if row doesn't satisfy where clause, and the list of function results if it does satisfy the where clause. """ function_values = [] for (func, f_args, op, val) in where_conditions: if func == functions._column and f_args[1] != None and numpy.isnan(T[row_idx][f_args[0]]): col_idx = f_args[0] confidence = f_args[1] ## need to do predictive sampling to evaluate where condition with confidence ## TODO: easier way to do this would be to call impute on backend, but would need to change ## crosscat so that impute_and_confidence could also return the original samples, or evaluate ## a whereclause. Y = [(row_idx, cidx, row[cidx]) for cidx in M_c['name_to_idx'].values() \ if not numpy.isnan(T[row_idx][cidx])] samples = engine.call_backend('simple_predictive_sample', dict(M_c=M_c, X_L=X_L_list, X_D=X_D_list, Y=Y, Q=[[row_idx,col_idx]], n=numsamples)) samples_satisfying_where = 0 for sample in samples: value = du.convert_code_to_value(M_c, col_idx, sample[0]) if op(value, val): samples_satisfying_where += 1 if float(samples_satisfying_where)/len(samples) >= confidence: # Where clause is satisfied! Now, generate impute summary. imputed_code, imputation_confidence = utils.get_imputation_and_confidence_from_samples( M_c, X_L_list[0], col_idx, samples) if imputed_code is not None: imputed_value = du.convert_code_to_value(M_c, col_idx, imputed_code) else: imputed_value = T[row_idx][col_idx] function_values.append(imputed_value) else: return False else: if func != functions._column_ignore: where_value = func(f_args, row_idx, row, M_c, X_L_list, X_D_list, T, engine, numsamples) else: where_value = func(f_args, row_idx, row, M_c_full, T_full, engine) if func == functions._row_id: # val should be a row list name in this case. look up the row list, and set val to be the list of # row indices in the row list. Throws BayesDBRowListDoesNotExistError if row list does not exist. val = engine.persistence_layer.get_row_list(tablename, val) if op(val, where_value): # for operator.contains, op(a,b) means 'b in a': so need to switch args. function_values.append(where_value) else: return False else: # Normal, most common condition. if op(where_value, val): function_values.append(where_value) else: return False return function_values def convert_row_from_codes_to_values(row, M_c): """ Helper function to convert a row from its 'code' (as it's stored in T) to its 'value' (the human-understandable value). """ ret = [] for cidx, code in enumerate(row): if not du.flexible_isnan(code): ret.append(du.convert_code_to_value(M_c, cidx, code)) else: ret.append(code) return tuple(ret) def check_if_functions_need_models(queries, tablename, order_by, where_conditions): """ If there are no models, make sure that we aren't using functions that require models. TODO: make this less hardcoded """ blacklisted_functions = [functions._similarity, functions._row_typicality, functions._col_typicality, functions._probability] used_functions = [q[0] for q in queries] + [w[0] for w in where_conditions] + [x[0] for x in order_by] for bf in blacklisted_functions: if bf in queries: raise utils.BayesDBNoModelsError(tablename) def compute_result_and_limit(rows, limit, queries, M_c, X_L_list, X_D_list, T, engine, numsamples): data = [] row_count = 0 # Compute aggregate functions just once, then cache them. aggregate_cache = dict() for query_idx, (query_function, query_args, aggregate) in enumerate(queries): if aggregate: aggregate_cache[query_idx] = query_function(query_args, None, None, M_c, X_L_list, X_D_list, T, engine, numsamples) # Only return one row if all aggregate functions (row_id will never be aggregate, so subtract 1 and don't return it). assert queries[0][0] == functions._row_id if len(aggregate_cache) == len(queries) - 1: limit = 1 # Iterate through data table, calling each query_function to fill in the output values. for row_id, row_values in rows: ret_row = [] for query_idx, (query_function, query_args, aggregate) in enumerate(queries): if aggregate: ret_row.append(aggregate_cache[query_idx]) else: ret_row.append(query_function(query_args, row_id, row_values, M_c, X_L_list, X_D_list, T, engine, numsamples)) data.append(tuple(ret_row)) row_count += 1 if row_count >= limit: break return data
apache-2.0
elijah513/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
JPFrancoia/scikit-learn
sklearn/ensemble/forest.py
14
67896
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount, parallel_helper from ..utils.multiclass import check_classification_targets __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest .. versionadded:: 0.18 Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start: # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False, random_state=random_state) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before `feature_importances_`.") all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('auto', 'balanced', 'subsample', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.class_weight == "subsample": warn("class_weight='subsample' is deprecated in 0.17 and" "will be removed in 0.19. It was replaced by " "class_weight='balanced_subsample' using the balanced" "strategy.", DeprecationWarning) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight not in ['subsample', 'balanced_subsample'] or not self.bootstrap): if self.class_weight == 'subsample': class_weight = 'auto' elif self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight with warnings.catch_warnings(): if class_weight == "auto": warnings.simplefilter('ignore', DeprecationWarning) expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_split=1e-7, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ # ensure_2d=False because there are actually unit test checking we fail # for 1d. X = check_array(X, accept_sparse=['csc'], ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
jgrisham4/nonlinear-gfem
src/plot_results.py
1
1425
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from scipy import stats d_c = np.genfromtxt("coarse.dat") d_m = np.genfromtxt("medium.dat") d_f = np.genfromtxt("fine.dat") d_e = np.genfromtxt("exact.dat") plt.plot(d_e[1:,0], d_e[1:,1], lw=1.5, label="exact") plt.plot(d_c[1:,0], d_c[1:,1], "o", label="coarse") plt.plot(d_m[1:,0], d_m[1:,1], "s", label="medium", markevery=4) plt.plot(d_f[1:,0], d_f[1:,1], "v", label="fine", markevery=6) plt.xlabel("x [m]") plt.ylabel("T [deg C]") plt.legend(loc=2) N = np.array([d_c[0,0], d_m[0,0], d_f[0,0]]) L2 = np.array([d_c[0,1], d_m[0,1], d_f[0,1]]) fig2 = plt.figure() plt.plot(1.0/N, L2, "ok") plt.xscale("log") plt.yscale("log") slope, intercept, r_value, p_value, std_err = stats.linregress(np.log10(1.0/N), np.log10(L2)) print("Order of accuracy: {}".format(slope)) dfdm = np.genfromtxt("fdm.dat") dcvm = np.genfromtxt("cvm.dat") dsacvm = np.genfromtxt("sacvm.dat") fig3 = plt.figure() plt.plot(dfdm[:,0], dfdm[:,1], "-k" , lw=1.5) plt.plot(dfdm[:,0], dfdm[:,2], "-b" , lw=1.5) plt.plot(dfdm[:,0], dfdm[:,3], "-r" , lw=1.5) plt.plot(dcvm[:,0], dcvm[:,1], "--r" , lw=1.5) plt.plot(dcvm[:,0], dcvm[:,2], "--k" , lw=1.5) plt.plot(dcvm[:,0], dcvm[:,3], "--b" , lw=1.5) plt.plot(dsacvm[:,0], dsacvm[:,1], "or" , lw=1.5) plt.plot(dsacvm[:,0], dsacvm[:,2], "ok" , lw=1.5) plt.plot(dsacvm[:,0], dsacvm[:,3], "ob" , lw=1.5) #plt.legend(loc=2) plt.show()
gpl-3.0
efiring/numpy-work
doc/example.py
1
3497
"""This is the docstring for the example.py module. Modules names should have short, all-lowercase names. The module name may have underscores if this improves readability. Every module should have a docstring at the very top of the file. The module's docstring may extend over multiple lines. If your docstring does extend over multiple lines, the closing three quotation marks must be on a line by itself, preferably preceeded by a blank line. """ import os # standard library imports first # Do NOT import using *, e.g. from numpy import * # # Import the module using # # import numpy # # instead or import individual functions as needed, e.g # # from numpy import array, zeros # # If you prefer the use of abbreviated module names, we suggest the # convention used by NumPy itself:: import numpy as np import scipy as sp import matplotlib as mpl import matplotlib.pyplot as plt # These abbreviated names are not to be used in docstrings; users must # be able to paste and execute docstrings after importing only the # numpy module itself, unabbreviated. from my_module import my_func, other_func def foo(var1, var2, long_var_name='hi') : """A one-line summary that does not use variable names or the function name. Several sentences providing an extended description. Refer to variables using back-ticks, e.g. `var`. Parameters ---------- var1 : array_like Array_like means all those objects -- lists, nested lists, etc. -- that can be converted to an array. We can also refer to variables like `var1`. var2 : int The type above can either refer to an actual Python type (e.g. ``int``), or describe the type of the variable in more detail, e.g. ``(N,) ndarray`` or ``array_like``. Long_variable_name : {'hi', 'ho'}, optional Choices in brackets, default first when optional. Returns ------- describe : type Explanation output Explanation tuple Explanation items even more explaining Other Parameters ---------------- only_seldom_used_keywords : type Explanation common_parameters_listed_above : type Explanation Raises ------ BadException Because you shouldn't have done that. See Also -------- otherfunc : relationship (optional) newfunc : Relationship (optional), which could be fairly long, in which case the line wraps here. thirdfunc, fourthfunc, fifthfunc Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a greek symbol like :math:`omega` inline. References ---------- Cite the relevant literature, e.g. [1]_. You may also cite these references in the notes section above. .. [1] O. McNoleg, "The integration of GIS, remote sensing, expert systems and adaptive co-kriging for environmental habitat modelling of the Highland Haggis using object-oriented, fuzzy-logic and neural-network techniques," Computers & Geosciences, vol. 22, pp. 585-588, 1996. Examples -------- These are written in doctest format, and should illustrate how to use the function. >>> a=[1,2,3] >>> print [x + 3 for x in a] [4, 5, 6] >>> print "a\n\nb" a <BLANKLINE> b """ pass
bsd-3-clause
DailyActie/Surrogate-Model
01-codes/scipy-master/scipy/stats/_stats_mstats_common.py
1
8448
from collections import namedtuple import numpy as np from . import distributions __all__ = ['_find_repeats', 'linregress', 'theilslopes'] LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) def linregress(x, y=None): """ Calculate a linear least-squares regression for two sets of measurements. Parameters ---------- x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line rvalue : float correlation coefficient pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero. stderr : float Standard error of the estimated gradient. See also -------- :func:`scipy.optimize.curve_fit` : Use non-linear least squares to fit a function to data. :func:`scipy.optimize.leastsq` : Minimize the sum of squares of a set of equations. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> np.random.seed(12345678) >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) To get coefficient of determination (r_squared) >>> print("r-squared:", r_value**2) ('r-squared:', 0.080402268539028335) Plot the data along with the fitted line >>> plt.plot(x, y, 'o', label='original data') >>> plt.plot(x, intercept + slope*x, 'r', label='fitted line') >>> plt.legend() >>> plt.show() """ TINY = 1.0e-20 if y is None: # x is a (2, N) or (N, 2) shaped array_like x = np.asarray(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = np.asarray(x) y = np.asarray(y) if x.size == 0 or y.size == 0: raise ValueError("Inputs must not be empty.") n = len(x) xmean = np.mean(x, None) ymean = np.mean(y, None) # average sum of squares: ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat r_num = ssxym r_den = np.sqrt(ssxm * ssym) if r_den == 0.0: r = 0.0 else: r = r_num / r_den # test for numerical error propagation if r > 1.0: r = 1.0 elif r < -1.0: r = -1.0 df = n - 2 t = r * np.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY))) prob = 2 * distributions.t.sf(np.abs(t), df) slope = r_num / ssxm intercept = ymean - slope * xmean sterrest = np.sqrt((1 - r ** 2) * ssym / ssxm / df) return LinregressResult(slope, intercept, r, prob, sterrest) def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- The implementation of `theilslopes` follows [1]_. The intercept is not defined in [1]_, and here it is defined as ``median(y) - medslope*median(x)``, which is given in [3]_. Other definitions of the intercept exist in the literature. A confidence interval for the intercept is not given as this question is not addressed in [1]_. References ---------- .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968. .. [2] H. Theil, "A rank-invariant method of linear and polynomial regression analysis I, II and III", Nederl. Akad. Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950. .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed., John Wiley and Sons, New York, pp. 493. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, num=150) >>> y = x + np.random.normal(size=x.size) >>> y[11:15] += 10 # add outliers >>> y[-5:] -= 7 Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`: >>> res = stats.theilslopes(y, x, 0.90) >>> lsq_res = stats.linregress(x, y) Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, 'b.') >>> ax.plot(x, res[1] + res[0] * x, 'r-') >>> ax.plot(x, res[1] + res[2] * x, 'r--') >>> ax.plot(x, res[1] + res[3] * x, 'r--') >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-') >>> plt.show() """ # We copy both x and y so we can use _find_repeats. y = np.array(y).flatten() if x is None: x = np.arange(len(y), dtype=float) else: x = np.array(x, dtype=float).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y), len(x))) # Compute sorted slopes only when deltax > 0 deltax = x[:, np.newaxis] - x deltay = y[:, np.newaxis] - y slopes = deltay[deltax > 0] / deltax[deltax > 0] slopes.sort() medslope = np.median(slopes) medinter = np.median(y) - medslope * np.median(x) # Now compute confidence intervals if alpha > 0.5: alpha = 1. - alpha z = distributions.norm.ppf(alpha / 2.) # This implements (2.6) from Sen (1968) _, nxreps = _find_repeats(x) _, nyreps = _find_repeats(y) nt = len(slopes) # N in Sen (1968) ny = len(y) # n in Sen (1968) # Equation 2.6 in Sen (1968): sigsq = 1 / 18. * (ny * (ny - 1) * (2 * ny + 5) - np.sum(k * (k - 1) * (2 * k + 5) for k in nxreps) - np.sum(k * (k - 1) * (2 * k + 5) for k in nyreps)) # Find the confidence interval indices in `slopes` sigma = np.sqrt(sigsq) Ru = min(int(np.round((nt - z * sigma) / 2.)), len(slopes) - 1) Rl = max(int(np.round((nt + z * sigma) / 2.)) - 1, 0) delta = slopes[[Rl, Ru]] return medslope, medinter, delta[0], delta[1] def _find_repeats(arr): # This function assumes it may clobber its input. if len(arr) == 0: return np.array(0, np.float64), np.array(0, np.intp) # XXX This cast was previously needed for the Fortran implementation, # should we ditch it? arr = np.asarray(arr, np.float64).ravel() arr.sort() # Taken from NumPy 1.9's np.unique. change = np.concatenate(([True], arr[1:] != arr[:-1])) unique = arr[change] change_idx = np.concatenate(np.nonzero(change) + ([arr.size],)) freq = np.diff(change_idx) atleast2 = freq > 1 return unique[atleast2], freq[atleast2]
mit
alexandrebarachant/decoding-brain-challenge-2016
utils.py
2
2039
import numpy as np from copy import deepcopy from sklearn.base import BaseEstimator, TransformerMixin def epoch_data(data, events, stim_ID, tmin=-.2, tmax=0.399): """Epoch data.""" ix_events = np.where(np.diff(np.int32(events > 0)) == 1)[0] + 1 ix_min = int(tmin*1000) ix_max = int(tmax*1000) nsamp = ix_max - ix_min X = np.zeros((len(ix_events), data.shape[0], nsamp)) y = np.int32(events[ix_events] > 50) st_id = np.int32(stim_ID[ix_events]) for i, ix in enumerate(ix_events): sl = slice((ix + ix_min), (ix + ix_max)) tmp = data[:, sl] X[i, :, 0:tmp.shape[1]] = tmp return X, y, st_id class DownSampler(BaseEstimator, TransformerMixin): """Downsample transformer""" def __init__(self, factor=4): """Init.""" self.factor = factor def fit(self, X, y): return self def transform(self, X): return X[:, :, ::self.factor] class EpochsVectorizer(BaseEstimator, TransformerMixin): """Vectorize epochs.""" def __init__(self): """Init.""" def fit(self, X, y): return self def transform(self, X): X2 = np.array([x.flatten() for x in X]) return X2 class CospBoostingClassifier(BaseEstimator, TransformerMixin): """Cospectral matrice bagging.""" def __init__(self, baseclf): """Init.""" self.baseclf = baseclf def fit(self, X, y): self.clfs_ = [] for i in range(X.shape[-1]): clf = deepcopy(self.baseclf) self.clfs_.append(clf.fit(X[:, :, :, i], y)) return self def predict_proba(self, X): proba = [] for i in range(X.shape[-1]): proba.append(self.clfs_[i].predict_proba(X[:, :, :, i])) proba = np.mean(proba, axis=0) return proba def transform(self, X): proba = [] for i in range(X.shape[-1]): proba.append(self.clfs_[i].predict_proba(X[:, :, :, i])) proba = np.concatenate(proba, 1) return proba
bsd-3-clause
kekeller/ultrasound_image
bicep_script.py
1
8623
import os import numpy as np # linear algebra import scipy from skimage.io import imread import matplotlib.pyplot as plt from skimage import segmentation from skimage.filters import gaussian, median from skimage.measure import * from sklearn.cluster import * from skimage.segmentation import * from skimage.exposure import * import matplotlib.patches as patches from skimage.transform import * from matplotlib.path import Path import peakutils from peakutils.plot import plot as pplot import string import csv # return cropped image def crop_border(image): x1,x2 = 120,571 y1,y2 = 60,531 image = image[y1:y2,x1:x2] return resize(image,[451,441]) def crop_border_ref(image): x1,x2 = 203,644 y1,y2 = 87,538 return image[y1:y2,x1:x2] IMAGE_BICEP_TRAIN = './tendon_images/Bicep_Train' IMAGE_SUP_TRAIN = './tendon_images/Sup_Train' IMAGE_BICEP = './tendon_images/Biceps' IMAGE_SUP = './tendon_images/Supraspinatus' def load_images_names_from_folder(folder): images = [] name = [] train = [] train_name = [] for filename in os.listdir(folder): if "ID" in filename and 'REF' not in filename: img = imread(os.path.join(folder,filename)) images.append(crop_border(img)) name.append(filename) # if there are training images, load them ref = filename.replace('.jpg','')+'_REF_SEL.jpg' if ref in os.listdir(folder): img = imread(os.path.join(folder,ref)) train.append(crop_border_ref(img)) train_name.append(ref) return [images,train,name,train_name] # extract x value to find where the ROI should start # this looks at the very top of the image to find the imprint of two metal bars on the skin # these are shown as peaks in the rows and we can localize an x coordinate for the region from these. # Bicep tendon has bars on the left, sup on the right # for the Bicep the ROI is then a set distance from the bars, for the sup it varies between patients def set_x_ROI(image,offset): image = gaussian(image,sigma=2) y = [] for i in range(image.shape[1]): y.insert(i,np.mean(image[0:10,i])) x = np.linspace(0, image.shape[1], image.shape[1]) y = np.array(y) indexes = np.array(peakutils.indexes(y, thres=0.8, min_dist=20)) # there should be two peaks it returns x = ((indexes[1] - indexes[0])) x = x + offset return x # extract initial ROI by sliding window down to find maximum intensity # in thresholded image def find_initial_ROI(image,init_x): maximum = 0 max_x = init_x max_y = 50 (x1,y1) = (init_x,50) # if there is a brighter region at top from skin then ignore length = 193 # from training width = 100 (x2,y2) = (x1+length,y1+width) # shift down to find brightest region for j in range (image.shape[1] - width): x = x1 y = y1 + j (x2,y2) = (x+length,y+width) temp = np.sum(image[y:y2, x:x2]) if temp > maximum: maximum = temp max_x = x max_y = y return max_x,max_y # fit contour on region based on window on maximum def fit_contour(image,max_x,max_y,length,width): s = np.linspace(0, 2*np.pi, 400) x = (max_x + length/2) + length*np.cos(s) y = (max_y + width/2) + (width/2)*np.sin(s) init = np.array([x, y]).T snake = active_contour(image,init, bc ='fixed', alpha=1.5, beta=1.0, w_line=1, w_edge=1, gamma=0.1) return snake # fix x coordinates of snake to be maximum length def fix_snake(snake,x,length): for val in snake: if val[0] < x: val[0] = x if val[0] > (x+length): val[0] = x+length return snake # based on the snake coordinates, we can extract the maximim sized # rectangle for the region def ROI_from_snake(snake): s = snake x = [] y = [] top = [] bottom = [] for i,j in s: x.append(i) y.append(j) for i,j in s: if (i >= (min(x) + 10)) and (i <= (max(x) - 10)): if j > int(np.mean(y)): bottom.append(int(j)) elif j < int(np.mean(y)): top.append(int(j)) ymin = int(np.mean(y)) ymax = int(np.mean(y)) for i in range(100): ymin = ymin - 1 if ymin in top: break for i in range(100): ymax = ymax + 1 if ymax in bottom: break ROI = [[int(min(x)),ymin],[int(max(x)),ymax] ] #ROI = [[int(min(x)),max(top)],[max(x),max(bottom)] ]#[[min(x),max(top)],[max(x),min(bottom)] ] return ROI # 1. Transform images by equalizing histogram and filtering # 2. Then threshold the image to get the maximum # 3. After the inital ROI is extracted based on the brightness # we fit a snake onto the thresholded image # 4. Cut the snake so it fits within in the desired length # set values thres_val = 0.97 length = 193 #2cm width = 100 offset = 145 # 145 is about 1.5cm c = [] # converted images snake = [] ROI_xy = [] ROI = [] rect = [] # used for plotting ROI_img = [] # used for F1 extraction Precision = [] Recall = [] F1 = [] IMAGE_BICEP_TRAIN = raw_input("Enter Bicep Image Folder:" )#'./tendon_images/Bicep_Train' [images,train,names,train_name] = load_images_names_from_folder(IMAGE_BICEP_TRAIN) print "Starting Analysis" # filter and threshold for i in range(len(images)): temp = images[i] temp = equalize_hist(temp) temp = gaussian(temp,sigma=2) x = np.max(temp,2) x[x<thres_val]=0 c.insert(i,x) print "Calculating the ROI" # fit snake for i in range(len(c)): ROI_x = set_x_ROI(images[i],offset) [x,y] = find_initial_ROI(c[i],ROI_x) ROI_xy.insert(i,[x,y]) contour = fit_contour(c[i],ROI_xy[i][0],ROI_xy[i][1],length,width) snake.insert(i,contour) snake[i] = fix_snake(snake[i],ROI_xy[i][0],length) region = ROI_from_snake(snake[i]) ROI.insert(i,region) # Find F1, precision, and recall scores for the images # this is done by converting the ROI region and the training image # to a boolean matrix and checking the overlaps. if train_name != []: # build image for idx in range(len(c)): image = c[idx] x1 = ROI[idx][0][0] x2 = ROI[idx][1][0] y1 = ROI[idx][0][1] y2 = ROI[idx][1][1] # build rectangle path around ROI p = Path([[x1,y1],[x2,y1],[x2,y2],[x1,y2]]) #p = Path(np.array(snake[idx])) for i in range(image.shape[0]): for j in range(image.shape[1]): if (p.contains_points([[j,i]])): image[i,j] = 255 else: image[i,j] = 0 ROI_img.insert(idx,image) # find f1 score for idx in range(len(c)): t = np.max(train[idx],2).astype(bool).ravel() # convert to bool vector img = ROI_img[idx].astype(bool).ravel() tp = 0.0 fn = 0.0 tn = 0.0 fp = 0.0 for i in range(len(t)): if ((t[i] == True) and (img[i] == True)): tp = tp +1 if ((t[i] == True) and (img[i] == False)): fn = fn +1 if ((t[i] == False) and (img[i] == False)): tn = tn +1 if ((t[i] == False) and (img[i] == True)): fp = fp +1 precision = tp/ (tp + fp) recall = tp/(tp + fn) Precision.insert(idx,precision) Recall.insert(idx,recall) f1 = 2 * (precision*recall) / (precision + recall) F1.insert(idx,f1) print "Saving data" # Save the data to a csv file if train_name != []: label = ['name','ROIx1','ROIy1','ROIx2','ROIy2','tendon_width','F1','Prec','Recall'] data = [] for i in range(len(names)): x = [names[i].replace('.jpg',''),int(ROI[i][0][0]), int(ROI[i][0][1]),int(ROI[i][1][0]),int(ROI[i][1][1]), int(ROI[i][1][1] - ROI[i][0][1]), round(F1[i],2), round(Precision[i],2), round(Recall[i],2) ] data.insert(i,x) else: label = ['name','ROIx1','ROIy1','ROIx2','ROIy2','tendon_width'] data = [] for i in range(len(names)): x = [names[i].replace('.jpg',''),int(ROI[i][0][0]), int(ROI[i][0][1]),int(ROI[i][1][0]),int(ROI[i][1][1]), int(ROI[i][1][1] - ROI[i][0][1])] data.insert(i,x) # write label and data with open('Bicep_Output.csv', 'w') as csvfile3: datawriter = csv.writer(csvfile3, delimiter=',') datawriter.writerow(label) for data in data: datawriter.writerow(data) print "All Done! \n"
gpl-3.0
mrcslws/htmresearch
projects/capybara/supervised_baseline/v1_no_sequences/plot_utils.py
9
8500
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2017, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import itertools import plotly.offline as py import plotly.graph_objs as go import matplotlib.pyplot as plt import numpy as np def show_values(pc, fmt="%.2f", **kw): """ Heatmap with text in each cell with matplotlib's pyplot Source: http://stackoverflow.com/a/25074150/395857 By HYRY """ from itertools import izip pc.update_scalarmappable() ax = pc.axes for p, color, value in izip(pc.get_paths(), pc.get_facecolors(), pc.get_array()): x, y = p.vertices[:-2, :].mean(0) if np.all(color[:3] > 0.5): color = (0.0, 0.0, 0.0) else: color = (1.0, 1.0, 1.0) ax.text(x, y, fmt % value, ha="center", va="center", color=color, **kw) def cm2inch(*tupl): """ Specify figure size in centimeter in matplotlib Source: http://stackoverflow.com/a/22787457/395857 By gns-ank """ inch = 2.54 if type(tupl[0]) == tuple: return tuple(i / inch for i in tupl[0]) else: return tuple(i / inch for i in tupl) def heatmap(AUC, title, xlabel, ylabel, xticklabels, yticklabels, figure_width=40, figure_height=20, correct_orientation=False, cmap='RdBu'): """ Inspired by: - http://stackoverflow.com/a/16124677/395857 - http://stackoverflow.com/a/25074150/395857 """ # Plot it out fig, ax = plt.subplots() # c = ax.pcolor(AUC, edgecolors='k', linestyle= 'dashed', # linewidths=0.2, cmap='RdBu', vmin=0.0, vmax=1.0) c = ax.pcolor(AUC, edgecolors='k', linestyle='dashed', linewidths=0.2, cmap=cmap) # put the major ticks at the middle of each cell ax.set_yticks(np.arange(AUC.shape[0]) + 0.5, minor=False) ax.set_xticks(np.arange(AUC.shape[1]) + 0.5, minor=False) # set tick labels # ax.set_xticklabels(np.arange(1,AUC.shape[1]+1), minor=False) ax.set_xticklabels(xticklabels, minor=False) ax.set_yticklabels(yticklabels, minor=False) # set title and x/y labels plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) # Remove last blank column plt.xlim((0, AUC.shape[1])) # Turn off all the ticks ax = plt.gca() for t in ax.xaxis.get_major_ticks(): t.tick1On = False t.tick2On = False for t in ax.yaxis.get_major_ticks(): t.tick1On = False t.tick2On = False # Add color bar plt.colorbar(c) # Add text in each cell show_values(c) # Proper orientation (origin at the top left instead of bottom left) if correct_orientation: ax.invert_yaxis() ax.xaxis.tick_top() # resize fig = plt.gcf() # fig.set_size_inches(cm2inch(40, 20)) # fig.set_size_inches(cm2inch(40*4, 20*4)) fig.set_size_inches(cm2inch(figure_width, figure_height)) def plot_classification_report(classification_report, filename, title='Classification report ', cmap='RdBu'): """ Plot scikit-learn classification report. Extension based on http://stackoverflow.com/a/31689645/395857 """ lines = classification_report.split('\n') classes = [] plotMat = [] support = [] class_names = [] for line in lines[2: (len(lines) - 2)]: t = line.strip().split() if len(t) < 2: continue classes.append(t[0]) v = [float(x) for x in t[1: len(t) - 1]] support.append(int(t[-1])) class_names.append(t[0]) plotMat.append(v) xlabel = 'Metrics' ylabel = 'Classes' xticklabels = ['Precision', 'Recall', 'F1-score'] yticklabels = ['{0} ({1})'.format(class_names[idx], sup) for idx, sup in enumerate(support)] figure_width = 25 figure_height = len(class_names) + 7 correct_orientation = False heatmap(np.array(plotMat), title, xlabel, ylabel, xticklabels, yticklabels, figure_width, figure_height, correct_orientation, cmap=cmap) plt.savefig(filename, dpi=200, format='png', bbox_inches='tight') plt.close() def plot_train_history(epochs, acc, loss, output_file): trace0 = go.Scatter(x=epochs, y=loss, name='Loss') trace1 = go.Scatter(x=epochs, y=acc, name='Accuracy') layout = go.Layout(showlegend=True, title='Training history') fig = go.Figure(data=[trace0, trace1], layout=layout) py.plot(fig, filename=output_file, auto_open=False, link_text=False) def plot_data(X, y_labels, t, title): unique_labels = np.unique(y_labels) print('unique labels (%s): %s' % (title, unique_labels)) colors = ['grey', 'blue', 'black', 'orange', 'yellow', 'pink'] # Plot input data traces = [] for label in unique_labels: trace = go.Scatter(x=t[np.where(y_labels == label)[0]], y=X[np.where(y_labels == label)[0]][:, 0], name='Data (class %s)' % label, mode='markers', marker={'color': colors[int(label)]}) traces.append(trace) layout = go.Layout(showlegend=True, title='Data (%s)' % title) fig = go.Figure(data=traces, layout=layout) py.plot(fig, filename='%s_data.html' % title, auto_open=False, link_text=False) def plot_predictions(t, X_values, y_true, y_pred, output_file_path, title): """ Plot prediction results (correct and incorrect) :param t: (list) timesteps :param X_values: (list) input scalar values (before any encoding) :param y_true: (list) true labels :param y_pred: (list) predicted labels :param output_file_path: (str) path to output file :param title: (str) title of the plot. """ if type(t) != np.ndarray: t = np.array(t) if type(X_values) != np.ndarray: X_values = np.array(X_values) if type(y_true) != np.ndarray: y_true = np.array(y_true) if type(y_pred) != np.ndarray: y_pred = np.array(y_pred) correct = [] incorrect = [] for prediction in y_true == y_pred: correct.append(prediction) incorrect.append(not prediction) trace0 = go.Scatter(x=t[correct], y=X_values[correct], name='Correct predictions', mode='markers', marker={'color': 'green'}) trace1 = go.Scatter(x=t[incorrect], y=X_values[incorrect], name='Incorrect predictions', mode='markers', marker={'color': 'red'}) layout = go.Layout(showlegend=True, title=title) fig = go.Figure(data=[trace0, trace1], layout=layout) py.plot(fig, filename=output_file_path, auto_open=False, link_text=False) def plot_confusion_matrix(cm, filename, classes, normalize=True, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # Use only 2 decimal numbers cm = np.around(cm, 2) plt.figure() plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=30) plt.yticks(tick_marks, classes) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.savefig(filename)
agpl-3.0
tuos/FlowAndCorrelations
healpy/isotropic/mapAllandSingleEvent/analysis_iso_smooth_single.py
1
1349
import healpy as hp import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import scipy.special as spc import math import matplotlib as mpl from scipy.special import lpmn import scipy.integrate as integrate from scipy.integrate import quad from numpy import sin, cos from matplotlib.cm import ScalarMappable import random nside = 64 npix = hp.nside2npix(nside) SIZE = 400 DPI = 100 hpxmap2 = np.zeros(npix, dtype = np.float) hpxmap1 = np.zeros(npix, dtype = np.float) hpxmapNorm = np.zeros(npix, dtype = np.float) events = 8000 mult = 2500 for i in range(events): for k in range(mult): ipix = random.randint(0, npix-1) #hpxmap2[indices2[i]] += 1.0 hpxmap2[ipix] += npix*1.0/mult/events if i == 0: hpxmap1[ipix] += npix*1.0/mult for i in range(npix): if hpxmap2[i] != 0: hpxmapNorm[i] = hpxmap1[i]*1.0/hpxmap2[i] #hp_smoothed = hp.sphtfunc.smoothing(hpxmap2, fwhm=np.radians(1), iter = 1) hp_smoothed = hp.smoothing(hpxmapNorm, fwhm=np.radians(5)) #hp.mollview(hp_smoothed, cmap = cm.jet, xsize = SIZE, min = 0.9, max = 1.1, title='Isotropic smoothed 1 event with normalization') hp.mollview(hp_smoothed, cmap = cm.jet, xsize = SIZE, title='Isotropic smoothed 1 event with normalization') hp.graticule() plt.savefig("map_iso_smooth_single.png", dpi = DPI)
mit
saiwing-yeung/scikit-learn
sklearn/tests/test_calibration.py
2
12016
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_greater, assert_almost_equal, assert_greater_equal, assert_array_equal, assert_raises, ignore_warnings, assert_warns_message) from sklearn.datasets import make_classification, make_blobs from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.metrics import brier_score_loss, log_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve @ignore_warnings def test_calibration(): """Test calibration objects with isotonic and sigmoid""" n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1) assert_raises(ValueError, pc_clf.fit, X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv=2) # Note that this fit overwrites the fit on the entire training # set pc_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] pc_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_pc_clf_relabeled = \ pc_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_pc_clf, 1 - prob_pos_pc_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss((y_test + 1) % 2, prob_pos_pc_clf_relabeled)) # check that calibration can also deal with regressors that have # a decision_function clf_base_regressor = CalibratedClassifierCV(Ridge()) clf_base_regressor.fit(X_train, y_train) clf_base_regressor.predict(X_test) # Check failure cases: # only "isotonic" and "sigmoid" should be accepted as methods clf_invalid_method = CalibratedClassifierCV(clf, method="foo") assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train) # base-estimators should provide either decision_function or # predict_proba (most regressors, for instance, should fail) clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid") assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train) def test_sample_weight(): n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] for method in ['sigmoid', 'isotonic']: base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV(base_estimator, method=method) calibrated_clf.fit(X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # a different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert_greater(diff, 0.1) def test_calibration_multiclass(): """Test calibration for multiclass """ # test multi-class setting with classifier that implements # only decision function clf = LinearSVC() X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42, centers=3, cluster_std=3.0) # Use categorical labels to check that CalibratedClassifierCV supports # them correctly target_names = np.array(['a', 'b', 'c']) y = target_names[y_idx] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=2) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that log-loss of calibrated classifier is smaller than # log-loss of naively turned OvR decision function to probabilities # via softmax def softmax(y_pred): e = np.exp(-y_pred) return e / e.sum(axis=1).reshape(-1, 1) uncalibrated_log_loss = \ log_loss(y_test, softmax(clf.decision_function(X_test))) calibrated_log_loss = log_loss(y_test, probas) assert_greater_equal(uncalibrated_log_loss, calibrated_log_loss) # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier X, y = make_blobs(n_samples=100, n_features=2, random_state=42, cluster_std=3.0) X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) loss = log_loss(y_test, clf_probs) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=3) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) cal_loss = log_loss(y_test, cal_clf_probs) assert_greater(loss, cal_loss) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: pc_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = pc_clf.predict_proba(this_X_test) y_pred = pc_clf.predict(this_X_test) prob_pos_pc_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays assert_raises(ValueError, _SigmoidCalibration().fit, np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert_equal(len(prob_true), len(prob_pred)) assert_equal(len(prob_true), 2) assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False assert_raises(ValueError, calibration_curve, [1.1], [-0.1], normalize=False) def test_calibration_nan_imputer(): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', Imputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_c.fit(X, y) clf_c.predict(X)
bsd-3-clause
lseman/pylspm
pylspm/test_heuristic.py
1
2855
import numpy as np from numpy import inf import pandas as pd import scipy.stats from .pylspm import PyLSpm from .results import PyLSpmHTML from .boot import PyLSboot from itertools import combinations from .mga import mga from .permuta import permuta def test_heuristic(nrboot, cores, data_, lvmodel, mvmodel, scheme, regression, h='0', maxit='100'): test = 'pso' if test == 'ga': split = [1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1] if test == 'pso': split = [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0] split = pd.DataFrame(split) split.columns = ['Split'] dataSplit = pd.concat([data_, split], axis=1) nk = max(split['Split']) splitado = [] f1 = [] for i in range(nk + 1): data_ = (dataSplit.loc[dataSplit['Split'] == i]).drop('Split', axis=1) data_.index = range(len(data_)) estima = PyLSpm(data_, lvmodel, mvmodel, scheme, regression, 0, 100, HOC='true') print(estima.path_matrix) f1.append(estima.residuals()[3]) print(f1) print(np.sum(f1)) print(1 / np.sum(f1)) compara = 1 if compara == 1: allCombs = list(combinations(range(0, nk + 1), 2)) for i in range(len(allCombs)): print("Groups " + str(allCombs[i][0]) + '-' + str(allCombs[i][1])) print('MGA') mga(50, 8, dataSplit, lvmodel, mvmodel, scheme, regression, 0, 100, g1=allCombs[i][0], g2=allCombs[i][1], segmento='Split') print('Permutation') permuta(nrboot, cores, data_, lvmodel, mvmodel, scheme, regression, 0, 100, g1=allCombs[i][0], g2=allCombs[i][1])
mit
calebfoss/tensorflow
tensorflow/contrib/learn/python/learn/preprocessing/tests/categorical_test.py
18
2444
# encoding: utf-8 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Categorical tests.""" # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys # TODO: #6568 Remove this hack that makes dlopen() not crash. if hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags"): import ctypes sys.setdlopenflags(sys.getdlopenflags() | ctypes.RTLD_GLOBAL) import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.preprocessing import categorical from tensorflow.python.platform import test class CategoricalTest(test.TestCase): """Categorical tests.""" def testSingleCategoricalProcessor(self): cat_processor = categorical.CategoricalProcessor(min_frequency=1) x = cat_processor.fit_transform([["0"], [1], [float("nan")], ["C"], ["C"], [1], ["0"], [np.nan], [3]]) self.assertAllEqual(list(x), [[2], [1], [0], [3], [3], [1], [2], [0], [0]]) def testSingleCategoricalProcessorPandasSingleDF(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top cat_processor = categorical.CategoricalProcessor() data = pd.DataFrame({"Gender": ["Male", "Female", "Male"]}) x = list(cat_processor.fit_transform(data)) self.assertAllEqual(list(x), [[1], [2], [1]]) def testMultiCategoricalProcessor(self): cat_processor = categorical.CategoricalProcessor( min_frequency=0, share=False) x = cat_processor.fit_transform([["0", "Male"], [1, "Female"], ["3", "Male"]]) self.assertAllEqual(list(x), [[1, 1], [2, 2], [3, 1]]) if __name__ == "__main__": test.main()
apache-2.0
nhejazi/scikit-learn
examples/linear_model/plot_ols_3d.py
53
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) # ############################################################################# # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
kristoforcarlson/nest-simulator-fork
topology/examples/test_3d_gauss.py
13
2641
# -*- coding: utf-8 -*- # # test_3d_gauss.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. ''' NEST Topology Module EXPERIMENTAL example of 3d layer. 3d layers are currently not supported, use at your own risk! Hans Ekkehard Plesser, UMB ''' import nest import pylab import random import nest.topology as topo import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D pylab.ion() nest.ResetKernel() # generate list of 1000 (x,y,z) triplets pos = [[random.uniform(-0.5,0.5), random.uniform(-0.5,0.5), random.uniform(-0.5,0.5)] for j in range(1000)] l1 = topo.CreateLayer({'extent': [1.5, 1.5, 1.5], # must specify 3d extent AND center 'center': [0., 0., 0.], 'positions': pos, 'elements': 'iaf_neuron'}) # visualize #xext, yext = nest.GetStatus(l1, 'topology')[0]['extent'] #xctr, yctr = nest.GetStatus(l1, 'topology')[0]['center'] # extract position information, transpose to list of x, y and z positions xpos, ypos, zpos = zip(*topo.GetPosition(nest.GetChildren(l1)[0])) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xpos, ypos, zpos, s=15, facecolor='b', edgecolor='none') # Gaussian connections in full volume [-0.75,0.75]**3 topo.ConnectLayers(l1, l1, {'connection_type': 'divergent', 'allow_autapses': False, 'mask': {'volume': {'lower_left': [-0.75,-0.75,-0.75], 'upper_right': [0.75,0.75,0.75]}}, 'kernel':{'gaussian': {'p_center': 1., 'sigma': 0.25}}}) # show connections from center element # sender shown in red, targets in green ctr=topo.FindCenterElement(l1) xtgt, ytgt, ztgt = zip(*topo.GetTargetPositions(ctr,l1)[0]) xctr, yctr, zctr = topo.GetPosition(ctr)[0] ax.scatter([xctr],[yctr],[zctr],s=40, facecolor='r', edgecolor='none') ax.scatter(xtgt,ytgt,ztgt,s=40, facecolor='g', edgecolor='g') tgts=topo.GetTargetNodes(ctr,l1)[0] d=topo.Distance(ctr,tgts) plt.figure() plt.hist(d, 25) #plt.show()
gpl-2.0
sbirch/TUSK
tusk/analysis/distance.py
1
4950
import numpy as np import scipy.spatial from sklearn import manifold import matplotlib.pyplot as plt import tusk.atus as atus import math import functools32 from collections import Counter random_cases = [x['caseid'] for x in atus.db.query('select respondents.caseid from respondents inner join summary on respondents.caseid=summary.caseid where minutes_working>120 order by random() limit 500')] ''' random_cases = [20031009031805, 20110505111101, 20120302121318, 20030504033191, 20110302111360, 20040201041709, 20060302060511, 20080302081207, 20040112032778, 20100112091142, 20030705032646, 20100605100732, 20051110050839, 20081110081173, 20031211031999, 20090111080659, 20110101111533, 20040605041647, 20101111102089, 20050403051716, 20030112022622, 20100301101675, 20110504111952, 20050404050948, 20101211101391, 20110403111160, 20080302081151, 20100908101628, 20080201080730, 20080605080167, 20030504032942, 20110403110501, 20041211041182, 20070302071571, 20091009091727, 20060605061393, 20050706051141, 20051110051311, 20091110091985, 20100301101588, 20080605080547, 20031110030649, 20040504041194, 20110808112195, 20040201040766, 20050706051175, 20110212100922, 20100402101639, 20121009121668, 20090909091448, 20080201080836, 20040110033112, 20030807032050, 20120403121652, 20090908091367, 20051211052239, 20041009041726, 20110112101558, 20110604111221, 20110101112303, 20060302060501, 20110402111572, 20110504111043, 20060504061709, 20070504071540, 20100302100879, 20050707051673, 20060807060533, 20070504071415, 20061211061382, 20030403031703, 20080807082185, 20090706091095, 20070404072432, 20100201101183, 20030403031975, 20090303090536, 20090111081932, 20040907041797, 20060909061509, 20090302092134, 20120605122173, 20040704042004, 20120403122380, 20030212020681, 20030604033336, 20050605051503, 20070404071681, 20030908033334, 20040112031370, 20030403032090, 20050807051406, 20090504092493, 20060101061528, 20030302031598, 20060402062179, 20030908031287, 20070101070597, 20040908041705, 20120504122342] ''' @functools32.lru_cache(maxsize=None) def get_case_data(c): r = atus.db.query('''select activity_code, activity_number, start_minute, stop_minute from activities where caseid=%d order by start_minute''' % c) return list(r) @functools32.lru_cache(maxsize=None) def get_case_data_1(c): entries = get_case_data(c) activity_vector = {} for entry in entries: for m in xrange(entry['start_minute'], entry['stop_minute']+1): activity_vector[m] = entry['activity_code'] result = tuple([activity_vector.get(m,None) for m in xrange(0, 1440+1, 10)]) return result @functools32.lru_cache(maxsize=None) def get_case_data_2(c): entries = get_case_data(c) tier1_vector = Counter() for entry in entries: tier1_vector[int(entry['activity_code'][:2])] += entry['stop_minute'] - entry['start_minute'] # Note that this ignores class 18 (travel) and class 50 (data codes) result = np.array([tier1_vector.get(tier1, 0) for tier1 in xrange(0, 18)]) return result def actdiff(x,y): if x is None or y is None: return 1 x1,x2,x3 = x[:2],x[2:4],x[4:] y1,y2,y3 = y[:2],y[2:4],y[4:] if x1 == '18': x1 = x2 if y1 == '18': y1 = y2 score = 1 if x1 == y1: score -= 0.5 if x1 == y1 and x2 == y2: score -= 0.3 if x == y: score -= 0.2 return score def case_distance_1(c1, c2): c1, c2 = int(c1), int(c2) d1 = get_case_data_1(c1) d2 = get_case_data_1(c2) return sum([actdiff(x,y) for x,y in zip(d1,d2)])**3 def case_distance_2(c1, c2): c1, c2 = int(c1), int(c2) d1 = get_case_data_2(c1) d2 = get_case_data_2(c2) return np.sum( (d1-d2)**2 ) def color_day(case): weekday = atus.db.get('''select weekday from respondents where caseid=%d''' % case) if weekday.lower() in ['saturday', 'sunday']: return plt.cm.winter(0.0) return plt.cm.winter(1.0) def color_work(case): mins = atus.db.get('''select minutes_working from summary where caseid=%d''' % case) if mins < 120: return plt.cm.winter(0.0) return plt.cm.winter(1.0) def look(case): marker = 'o' weekday = atus.db.get('''select weekday from respondents where caseid=%d''' % case) if weekday.lower() in ['saturday', 'sunday']: marker = 'v' #mins = atus.db.get('''select minutes_working from summary where caseid=%d''' % case) income_code = atus.db.get('''select family_income_code from cps where caseid=%d and lineno=1''' % case) return 40, marker, plt.cm.Greys(1.0 - (income_code/16.0)) np.set_printoptions(precision=2) case_vectors = [] for case in random_cases: case_vectors.append((case,)) dists = scipy.spatial.distance.pdist( case_vectors, case_distance_2 ) dists = scipy.spatial.distance.squareform(dists) #print scipy.spatial.distance.squareform(dists) mds = manifold.MDS(2, dissimilarity="precomputed") Y = mds.fit_transform(dists) for i in xrange(len(Y)): size, marker, color = look(case_vectors[i]) plt.scatter(Y[i, 0], Y[i, 1], c=color, s=size, marker=marker) plt.title("MDS embedding") plt.show()
mit
aferr/TemporalPartitioningMemCtl
util/stats/output.py
90
7981
# Copyright (c) 2005-2006 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nathan Binkert from chart import ChartOptions class StatOutput(ChartOptions): def __init__(self, jobfile, info, stat=None): super(StatOutput, self).__init__() self.jobfile = jobfile self.stat = stat self.invert = False self.info = info def display(self, name, printmode = 'G'): import info if printmode == 'G': valformat = '%g' elif printmode != 'F' and value > 1e6: valformat = '%0.5e' else: valformat = '%f' for job in self.jobfile.jobs(): value = self.info.get(job, self.stat) if value is None: return if not isinstance(value, list): value = [ value ] if self.invert: for i,val in enumerate(value): if val != 0.0: value[i] = 1 / val valstring = ', '.join([ valformat % val for val in value ]) print '%-50s %s' % (job.name + ':', valstring) def graph(self, name, graphdir, proxy=None): from os.path import expanduser, isdir, join as joinpath from barchart import BarChart from matplotlib.numerix import Float, array, zeros import os, re, urllib from jobfile import crossproduct confgroups = self.jobfile.groups() ngroups = len(confgroups) skiplist = [ False ] * ngroups groupopts = [] baropts = [] groups = [] for i,group in enumerate(confgroups): if group.flags.graph_group: groupopts.append(group.subopts()) skiplist[i] = True elif group.flags.graph_bars: baropts.append(group.subopts()) skiplist[i] = True else: groups.append(group) has_group = bool(groupopts) if has_group: groupopts = [ group for group in crossproduct(groupopts) ] else: groupopts = [ None ] if baropts: baropts = [ bar for bar in crossproduct(baropts) ] else: raise AttributeError, 'No group selected for graph bars' directory = expanduser(graphdir) if not isdir(directory): os.mkdir(directory) html = file(joinpath(directory, '%s.html' % name), 'w') print >>html, '<html>' print >>html, '<title>Graphs for %s</title>' % name print >>html, '<body>' html.flush() for options in self.jobfile.options(groups): chart = BarChart(self) data = [ [ None ] * len(baropts) for i in xrange(len(groupopts)) ] enabled = False stacked = 0 for g,gopt in enumerate(groupopts): for b,bopt in enumerate(baropts): if gopt is None: gopt = [] job = self.jobfile.job(options + gopt + bopt) if not job: continue if proxy: import db proxy.dict['system'] = self.info[job.system] val = self.info.get(job, self.stat) if val is None: print 'stat "%s" for job "%s" not found' % \ (self.stat, job) if isinstance(val, (list, tuple)): if len(val) == 1: val = val[0] else: stacked = len(val) data[g][b] = val if stacked == 0: for i in xrange(len(groupopts)): for j in xrange(len(baropts)): if data[i][j] is None: data[i][j] = 0.0 else: for i in xrange(len(groupopts)): for j in xrange(len(baropts)): val = data[i][j] if val is None: data[i][j] = [ 0.0 ] * stacked elif len(val) != stacked: raise ValueError, "some stats stacked, some not" data = array(data) if data.sum() == 0: continue dim = len(data.shape) x = data.shape[0] xkeep = [ i for i in xrange(x) if data[i].sum() != 0 ] y = data.shape[1] ykeep = [ i for i in xrange(y) if data[:,i].sum() != 0 ] data = data.take(xkeep, axis=0) data = data.take(ykeep, axis=1) if not has_group: data = data.take([ 0 ], axis=0) chart.data = data bopts = [ baropts[i] for i in ykeep ] bdescs = [ ' '.join([o.desc for o in opt]) for opt in bopts] if has_group: gopts = [ groupopts[i] for i in xkeep ] gdescs = [ ' '.join([o.desc for o in opt]) for opt in gopts] if chart.legend is None: if stacked: try: chart.legend = self.info.rcategories except: chart.legend = [ str(i) for i in xrange(stacked) ] else: chart.legend = bdescs if chart.xticks is None: if has_group: chart.xticks = gdescs else: chart.xticks = [] chart.graph() names = [ opt.name for opt in options ] descs = [ opt.desc for opt in options ] if names[0] == 'run': names = names[1:] descs = descs[1:] basename = '%s-%s' % (name, ':'.join(names)) desc = ' '.join(descs) pngname = '%s.png' % basename psname = '%s.eps' % re.sub(':', '-', basename) epsname = '%s.ps' % re.sub(':', '-', basename) chart.savefig(joinpath(directory, pngname)) chart.savefig(joinpath(directory, epsname)) chart.savefig(joinpath(directory, psname)) html_name = urllib.quote(pngname) print >>html, '''%s<br><img src="%s"><br>''' % (desc, html_name) html.flush() print >>html, '</body>' print >>html, '</html>' html.close()
bsd-3-clause
yask123/scikit-learn
examples/calibration/plot_calibration.py
225
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see http://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.cross_validation import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
idlead/scikit-learn
benchmarks/bench_sparsify.py
323
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
LohithBlaze/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
smeerten/ssnake
src/ssNake.py
1
398261
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2016 - 2020 Bas van Meerten and Wouter Franssen # This file is part of ssNake. # # ssNake is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ssNake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ssNake. If not, see <http://www.gnu.org/licenses/>. EXE = False import sys if sys.version_info.major == 2: import sip sip.setapi('QString', 2) print('DEPRECATION WARNING: From version 1.4 onwards, python2 is no longer supported. Consider upgrading to python3.') import os import importlib try: from PyQt5 import QtGui, QtCore, QtWidgets QT = 5 except ImportError: from PyQt4 import QtGui, QtCore from PyQt4 import QtGui as QtWidgets QT = 4 print('DEPRECATION WARNING: From version 1.4 onwards, PyQt4 is no longer supported. Consider upgrading to PyQt5.') QtCore.pyqtRemoveInputHook() import matplotlib # First import matplotlib and Qt if QT == 4: matplotlib.use('Qt4Agg') from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas else: matplotlib.use('Qt5Agg') from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import multiprocessing # Create splash window if __name__ == '__main__': multiprocessing.freeze_support() #Fix multiprocessing for pyinstaller on windows (line does nothing otherwise) root = QtWidgets.QApplication(sys.argv) root.setWindowIcon(QtGui.QIcon(os.path.dirname(os.path.realpath(__file__)) + '/Icons/logo.gif')) splash_pix = QtGui.QPixmap(os.path.dirname(os.path.realpath(__file__)) + '/Icons/logo.gif') splash = QtWidgets.QSplashScreen(splash_pix, QtCore.Qt.WindowStaysOnTopHint) splash.setMask(splash_pix.mask()) progressBar = QtWidgets.QProgressBar(splash) progressBar.setGeometry(int(2.5 * splash.width() / 10.0), int(0.89 * splash.height()), int(5 * splash.width() / 10.0), int(splash.height() / 20.0)) splash.show() def splashProgressStep(splashStep): # A function to easily increase the progressbar value if __name__ == '__main__': splashStep = splashStep + 1 progressBar.setValue(int(splashStep // splashSteps + (splashStep % splashSteps > 0))) # Rounds up without math or numpy module root.processEvents() return splashStep def import_lib(name, nameAs, className, splashStep): # Function to load a library from string names if className is None: globals()[nameAs] = importlib.import_module(name) else: mod = importlib.import_module(name) globals()[nameAs] = getattr(mod, className) return splashProgressStep(splashStep) # List of all libs to be imported: # [name, name to be saved as, import specific class] importList = [['matplotlib.figure', 'Figure', 'Figure'], ['traceback', 'tb', None], ['numpy', 'np', None], ['copy', 'copy', None], ['gc', 'gc', None], ['multiprocessing', 'multiprocessing', None], ['datetime', 'datetime', None], ['webbrowser', 'webbrowser', None], ['spectrum', 'sc', None], ['hypercomplex', 'hc', None], ['fitting', 'fit', None], ['safeEval', 'safeEval', 'safeEval'], ['widgetClasses', 'wc', None], ['updateWindow', 'UpdateWindow', 'UpdateWindow'], ['saveFigure', 'SaveFigureWindow', 'SaveFigureWindow'], ['functions', 'func', None], ['specIO', 'io', None], ['views', 'views', None], ['simFunctions', 'sim', None], ['loadIsotopes', 'loadIsotopes', None], ['scipy', 'optimize', 'optimize']] splashSteps = len(importList) / 100.0 splashStep = 0 # Import everything else for elem in importList: splashStep = import_lib(elem[0], elem[1], elem[2], splashStep) isoPath = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + "IsotopeProperties" ISOTOPES = loadIsotopes.getIsotopeInfo(isoPath) matplotlib.rc('font', family='DejaVu Sans') np.set_printoptions(threshold=sys.maxsize) QtCore.QLocale.setDefault(QtCore.QLocale('en_US')) VERSION = 'v1.3' # Required library version NPVERSION = '1.11.0' MPLVERSION = '1.5.0' SPVERSION = '0.14.1' PY2VERSION = '2.7' PY3VERSION = '3.4' def splitString(val, size): #Split a string at spaces, with maxsize 'size' total = '' while len(val) > size: tmp = val[0:size] space = tmp.rfind(' ') total = total + val[0:space] + '\n' val = val[space + 1::] #increment string. +1 to cut off the space total = total + val return total #Prepare TOOLTIPS dictionary TOOLTIPS = dict() with open(os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Tooltips', 'r') as f: data = f.read().split('\n') for line in data: if line: tmp = line.split('\t') if len(tmp) > 2: text = tmp[1] + '\n\n' + splitString(tmp[2], 80) #Header plus split main text else: text = tmp[1] TOOLTIPS[tmp[0]] = text class SsnakeException(sc.SpectrumException): pass class MainProgram(QtWidgets.QMainWindow): def __init__(self, root): super(MainProgram, self).__init__() self.root = root self.VERSION = VERSION self.errors = [] self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.setAcceptDrops(True) self.mainWindow = None self.workspaces = [] self.workspaceNames = [] self.workspaceNum = 0 self.macros = {} self.macroActions = {} self.referenceName = [] # List with saved reference names self.referenceValue = [] # List with saved reference values self.referenceActions = {} self.loadDefaults() if self.defaultStartupBool: self.lastLocation = os.path.expanduser(self.defaultStartupDir) else: if EXE: self.lastLocation = os.path.expanduser('~') else: self.lastLocation = os.getcwd() if not self.defaultTooltips: #Disable tooltips by setting them to empty strings for elem in TOOLTIPS.keys(): TOOLTIPS[elem] = '' self.initMenu() self.menuCheck() self.main_widget = QtWidgets.QSplitter(self) self.main_widget.setHandleWidth(10) self.gridWidget = QtWidgets.QWidget(self) self.mainFrame = QtWidgets.QGridLayout(self.gridWidget) self.tree = wc.SsnakeTreeWidget(self) self.main_widget.addWidget(self.tree) self.main_widget.addWidget(self.gridWidget) self.logo = QtWidgets.QLabel(self) self.logo.setPixmap(QtGui.QPixmap(os.path.dirname(os.path.realpath(__file__)) + "/Icons/logo.gif")) self.mainFrame.addWidget(self.logo, 0, 0, QtCore.Qt.AlignCenter) self.tabs = wc.SsnakeTabs(self) self.tabs.setMovable(True) self.tabs.tabBar().tabMoved.connect(self.moveWorkspace) self.allowChange = True self.tabs.setTabsClosable(True) self.tabs.currentChanged.connect(self.changeMainWindow) self.tabs.tabCloseRequested.connect(self.destroyWorkspace) self.mainFrame.addWidget(self.tabs, 0, 0) self.statusBar = QtWidgets.QStatusBar(self) self.setStatusBar(self.statusBar) self.tabs.hide() self.main_widget.setFocus() self.setCentralWidget(self.main_widget) self.eventFilter = wc.SsnakeEventFilter(self) self.root.installEventFilter(self.eventFilter) self.initToolbar() self.main_widget.setStretchFactor(1, 10) #Set double click filter for splitter self.splitterEventFilter = wc.SplitterEventFilter(self.main_widget) self.main_widget.handle(1).installEventFilter(self.splitterEventFilter) self.resize(self.defaultWidth, self.defaultHeight) if self.defaultMaximized: self.showMaximized() QtWidgets.QShortcut(QtGui.QKeySequence.Paste, self).activated.connect(self.handlePaste) QtWidgets.QShortcut(QtGui.QKeySequence.Copy, self).activated.connect(self.handleCopy) def dispError(self, error): self.dispMsg("Program error. Please report.", color="red") CurTime = datetime.datetime.now() TimeStr = '{0:02d}'.format(CurTime.hour) + ':' + '{0:02d}'.format(CurTime.minute) + ':' + '{0:02d}'.format(CurTime.second) self.errors.append([TimeStr, error]) def handlePaste(self): self.dropEvent(QtWidgets.QApplication.instance().clipboard()) def handleCopy(self): """ Makes a pixelwise copy of the currently viewed canvas """ if self.mainWindow is None: return if issubclass(type(self.mainWindow), fit.TabFittingWindow): #If fitting, take canvas from current tab canvas = self.mainWindow.tabs.currentWidget().canvas else: canvas = self.mainWindow.canvas if QT == 5: screen = self.root.primaryScreen() pixmap = screen.grabWindow(canvas.winId()) else: pixmap = QtGui.QPixmap.grabWidget(canvas) QtWidgets.QApplication.clipboard().setPixmap(pixmap) def resetDefaults(self): self.defaultUnits = 1 self.defaultShowTitle = True self.defaultPPM = False self.defaultWidth = 1 self.defaultHeight = 1 self.defaultMaximized = False self.defaultAskName = True self.defaultToolBar = True self.defaultLinewidth = 1.0 self.defaultMinXTicks = 12 self.defaultMinYTicks = 8 self.defaultColor = '#1F77B4' self.defaultGrids = [False, False] self.defaultDiagonalBool = False self.defaultDiagonalMult = 1 self.defaultZeroScroll = True self.defaultZoomStep = 1 self.defaultColorRange = 'none' self.defaultColorMap = 'seismic' self.defaultPColorMap = 'gray' self.defaultWidthRatio = 3.0 self.defaultHeightRatio = 3.0 self.defaultContourConst = True self.defaultPosColor = '#1F77B4' self.defaultNegColor = '#FF7F0E' self.defaultStartupBool = False self.defaultStartupDir = '~' self.defaultTooltips = True self.defaultToolbarActionList = ['File --> Open', 'File -- > Save --> Matlab', 'File --> Export --> Figure', 'Seperator', 'Workspaces --> Duplicate', 'Workspaces --> Delete', 'Seperator', 'Edit --> Undo', 'Edit --> Redo', 'Edit --> Reload', 'Seperator', 'Tools --> Apodize', 'Tools --> Phasing --> Phase', 'Tools --> Phasing --> Autophase 0', 'Seperator', 'Matrix --> Sizing', 'Matrix --> Shift Data', 'Matrix --> Multiply', 'Seperator', 'Fitting --> S/N', 'Fitting --> FWHM', 'Fitting --> Integrals', 'Fitting --> Relaxation Curve', 'Fitting --> Lorentzian/Gaussian', 'Seperator', 'Plot --> 1D Plot', 'Plot --> Stack Plot', 'Plot --> Array Plot', 'Plot --> Contour Plot', 'Plot --> Multi Plot', 'Seperator', 'History --> History', 'History --> Clear Undo/Redo List', 'Seperator', 'Utilities --> NMR Table'] def loadDefaults(self): self.resetDefaults() QtCore.QSettings.setDefaultFormat(QtCore.QSettings.IniFormat) QtCore.QCoreApplication.setOrganizationName("ssNake") QtCore.QCoreApplication.setApplicationName("ssNake") settings = QtCore.QSettings() try: self.defaultUnits = settings.value("plot/units", self.defaultUnits, int) except TypeError: self.dispMsg("Incorrect value in the config file for the units") self.defaultPPM = settings.value("plot/ppm", self.defaultPPM, bool) self.defaultToolbarActionList = settings.value("toolbarList", self.defaultToolbarActionList, str) self.defaultShowTitle = settings.value("plot/showTitle", self.defaultShowTitle, bool) self.defaultColor = settings.value("plot/colour", self.defaultColor, str) self.defaultColorRange = settings.value("plot/colourrange", self.defaultColorRange, str) if not str(self.defaultColorRange) in views.COLORRANGELIST: self.dispMsg("Incorrect colourrange in config file") self.defaultColorRange = views.COLORRANGELIST[0] try: self.defaultLinewidth = settings.value("plot/linewidth", self.defaultLinewidth, float) except TypeError: self.dispMsg("Incorrect value in the config file for the plot/linewidth") self.defaultMinXTicks = settings.value("plot/minXTicks", self.defaultMinXTicks, int) self.defaultMinYTicks = settings.value("plot/minYTicks", self.defaultMinYTicks, int) self.defaultGrids = [settings.value("plot/xgrid", self.defaultGrids[0], bool), settings.value("plot/ygrid", self.defaultGrids[1], bool)] self.defaultZeroScroll = settings.value("plot/zeroscroll", self.defaultZeroScroll, bool) self.defaultZoomStep = settings.value("plot/zoomstep", self.defaultZoomStep, float) self.defaultColorMap = settings.value("contour/colourmap", self.defaultColorMap, str) self.defaultContourConst = settings.value("contour/constantcolours", self.defaultContourConst, bool) self.defaultPosColor = settings.value("contour/poscolour", self.defaultPosColor, str) self.defaultNegColor = settings.value("contour/negcolour", self.defaultNegColor, str) self.defaultPColorMap = settings.value("2Dcolor/colourmap", self.defaultPColorMap, str) if not str(self.defaultColorMap) in views.COLORMAPLIST: self.dispMsg("Incorrect colourmap in config file") self.defaultColorMap = views.COLORMAPLIST[0] if not str(self.defaultPColorMap) in views.COLORMAPLIST: self.dispMsg("Incorrect pcolourmap in config file") self.defaultPColorMap = views.COLORMAPLIST[0] self.defaultDiagonalBool = settings.value("contour/diagonalbool", self.defaultDiagonalBool, bool) try: self.defaultDiagonalMult = settings.value("contour/diagonalmult", self.defaultDiagonalMult, float) except TypeError: self.dispMsg("Incorrect value in the config file for the diagonal multiplier") self.defaultMaximized = settings.value("maximized", self.defaultMaximized, bool) try: self.defaultWidth = settings.value("width", self.defaultWidth, int) except TypeError: self.dispMsg("Incorrect value in the config file for the width") try: self.defaultHeight = settings.value("height", self.defaultHeight, int) except TypeError: self.dispMsg("Incorrect value in the config file for the height") self.defaultAskName = settings.value("ask_name", self.defaultAskName, bool) self.defaultToolBar = settings.value("toolbar", self.defaultToolBar, bool) self.defaultStartupBool = settings.value("startupdiron", self.defaultStartupBool, bool) self.defaultStartupDir = settings.value("startupdir", self.defaultStartupDir, str) self.defaultTooltips = settings.value("tooltips", self.defaultTooltips, bool) try: self.defaultWidthRatio = settings.value("contour/width_ratio", self.defaultWidthRatio, float) except TypeError: self.dispMsg("Incorrect value in the config file for the contour/width_ratio") try: self.defaultHeightRatio = settings.value("contour/height_ratio", self.defaultHeightRatio, float) except TypeError: self.dispMsg("Incorrect value in the config file for the contour/height_ratio") def saveDefaults(self): QtCore.QSettings.setDefaultFormat(QtCore.QSettings.IniFormat) QtCore.QCoreApplication.setOrganizationName("ssNake") QtCore.QCoreApplication.setApplicationName("ssNake") settings = QtCore.QSettings() settings.setValue("plot/showTitle", self.defaultShowTitle) settings.setValue("plot/units", self.defaultUnits) settings.setValue("plot/ppm", self.defaultPPM) settings.setValue('toolbarList', self.defaultToolbarActionList) settings.setValue("plot/colour", self.defaultColor) settings.setValue("plot/colourrange", self.defaultColorRange) settings.setValue("plot/linewidth", self.defaultLinewidth) settings.setValue("plot/minXTicks", self.defaultMinXTicks) settings.setValue("plot/minYTicks", self.defaultMinYTicks) settings.setValue("plot/xgrid", self.defaultGrids[0]) settings.setValue("plot/ygrid", self.defaultGrids[1]) settings.setValue("plot/zeroscroll", self.defaultZeroScroll) settings.setValue("plot/zoomstep", self.defaultZoomStep) settings.setValue("maximized", self.defaultMaximized) settings.setValue("width", self.defaultWidth) settings.setValue("height", self.defaultHeight) settings.setValue("ask_name", self.defaultAskName) settings.setValue("toolbar", self.defaultToolBar) settings.setValue("startupdiron", self.defaultStartupBool) settings.setValue("startupdir", self.defaultStartupDir) settings.setValue("tooltips", self.defaultTooltips) settings.setValue("contour/colourmap", self.defaultColorMap) settings.setValue("contour/constantcolours", self.defaultContourConst) settings.setValue("contour/poscolour", self.defaultPosColor) settings.setValue("contour/negcolour", self.defaultNegColor) settings.setValue("contour/width_ratio", self.defaultWidthRatio) settings.setValue("contour/height_ratio", self.defaultHeightRatio) settings.setValue("contour/diagonalbool", self.defaultDiagonalBool) settings.setValue("contour/diagonalmult", self.defaultDiagonalMult) settings.setValue("2Dcolor/colourmap", self.defaultPColorMap) def dispMsg(self, msg, color='black'): if color == 'red': self.statusBar.setStyleSheet("QStatusBar{padding-left:8px;color:red;}") else: self.statusBar.setStyleSheet("QStatusBar{padding-left:8px;}") self.statusBar.showMessage(msg, 10000) def initToolbar(self): if self.defaultToolBar: self.toolbar = self.addToolBar('Toolbar') self.toolbar.setMovable(False) self.toolbar.setIconSize(QtCore.QSize(22, 22)) self.toolbar.toggleViewAction().setEnabled(False) self.seperatorAction = [] self.allActionsList = [['Seperator', None], ['File --> Open', self.openAct], ['File --> Save --> JSON', self.saveAct], ['File -- > Save --> Matlab', self.saveMatAct], ['File --> Export --> Figure', self.savefigAct], ['File --> Export --> Simpson', self.saveSimpsonAct], ['File --> Export --> ASCII (1D/2D)', self.saveASCIIAct], ['File --> Preferences', self.preferencesAct], ['File --> Quit', self.quitAct], ['Workspaces --> Duplicate', self.newAct], ['Workspaces --> Slice to Workspace', self.newSlice], ['Workspaces --> Delete', self.closeAct], ['Workspaces --> Rename', self.renameWorkspaceAct], ['Workspaces --> Next', self.forwardAct], ['Workspaces --> Previous', self.backAct], ['Workspaces --> Info', self.workInfoAct], ['Macro --> Start Recording', self.macrostartAct], ['Macro --> Stop Recording', self.macrostopAct], ['Macro --> Load', self.macroLoadAct], ['Edit --> Undo', self.undoAction], ['Edit --> Redo', self.redoAction], ['Edit --> Reload', self.reloadAct], ['Edit --> Monitor', self.monitorAct], ['Tools --> Real', self.realAct], ['Tools --> Imag', self.imagAct], ['Tools --> Abs', self.absAct], ['Tools --> Complex Conjugate', self.conjAct], ['Tools --> Apodize', self.apodizeAct], ['Tools --> Phasing --> Phase', self.phaseAct], ['Tools --> Phasing --> Autophase 0', self.autoPhaseAct0], ['Tools --> Phasing --> Autophase 0+1', self.autoPhaseAct1], ['Tools --> Phasing --> Autophase per trace 0', self.autoPhaseAllAct0], ['Tools --> Phasing --> Autophase per trace 0+1', self.autoPhaseAllAct1], ['Tools --> Swap Echo', self.swapEchoAct], ['Tools --> Offset Correction', self.corOffsetAct], ['Tools --> Baseline Correction', self.baselineAct], ['Tools --> Subtract Averages', self.subAvgAct], ['Tools --> Reference Deconvolution', self.refDeconvAct], ['Tools --> Correct Digital Filter', self.digitalFilterAct], ['Tools --> Scale SW', self.scaleSWAct], ['Tools --> LPSVD', self.lpsvdAct], ['Matrix --> Sizing', self.sizingAct], ['Matrix --> Shift Data', self.shiftAct], ['Matrix --> Roll Data', self.rollAct], ['Matrix --> Align Maxima', self.alignAct], ['Matrix --> Multiply', self.multiplyAct], ['Matrix --> Normalize', self.normalizeAct], ['Matrix --> Region --> Integrate', self.intRegionAct], ['Matrix --> Region --> Sum', self.sumRegionAct], ['Matrix --> Region --> Max', self.maxRegionAct], ['Matrix --> Region --> Min', self.minRegionAct], ['Matrix --> Region --> Max Position', self.maxposRegionAct], ['Matrix --> Region --> Min Position', self.minposRegionAct], ['Matrix --> Region --> Average', self.averageRegionAct], ['Matrix --> Diff', self.diffAct], ['Matrix --> Cumsum', self.cumsumAct], ['Matrix --> Extract Part', self.extractpartAct], ['Matrix --> Flip L/R', self.fliplrAct], ['Matrix --> Delete', self.matrixdelAct], ['Matrix --> Split', self.splitAct], ['Matrix --> Reorder', self.reorderAct], ['Matrix --> Regrid', self.regridAct], ['Matrix --> Concatenate', self.concatAct], ['Matrix --> Shearing', self.shearAct], ['Transforms --> Fourier Transform', self.fourierAct], ['Transforms --> Real Fourier Transform', self.realFourierAct], ['Transforms --> Fftshift', self.fftshiftAct], ['Transforms --> Inv fftshift', self.invfftshiftAct], ['Transforms --> Hilbert Transform', self.hilbertAct], ['Transforms --> NUS --> FFM', self.ffmAct], ['Transforms --> NUS --> CLEAN', self.cleanAct], ['Transforms --> NUS --> IST', self.istAct], ['Transforms --> Hypercomplex --> States', self.statesAct], ['Transforms --> Hypercomplex --> TPPI', self.statesTPPIAct], ['Transforms --> Hypercomplex --> Echo-antiecho', self.echoantiAct], ['Fitting --> S/N', self.snrAct], ['Fitting --> FWHM', self.fwhmAct], ['Fitting --> Centre of Mass', self.massAct], ['Fitting --> Integrals', self.intfitAct], ['Fitting --> Relaxation Curve', self.relaxAct], ['Fitting --> Diffusion Curve', self.diffusionAct], ['Fitting --> Lorentzian/Gaussian', self.lorentzfitAct], ['Fitting --> CSA', self.csastaticAct], ['Fitting --> Quadrupole', self.quadAct], ['Fitting --> Quadrupole+CSA', self.quadCSAAct], ['Fitting --> Czjzek', self.czjzekAct], ['Fitting --> MQMAS', self.mqmasAct], ['Fitting --> Czjzek MQMAS', self.mqmasCzjzekAct], ['Fitting --> External', self.externalFitAct], ['Fitting --> Function', self.functionFitAct], ['Combine --> Combine Workspaces', self.combineWorkspaceAct], ['Combine --> Insert From Workspace', self.insertdatAct], ['Combine --> Add', self.adddatAct], ['Combine --> Subtract', self.subdatAct], ['Combine --> Multiply', self.multdatAct], ['Combine --> Divide', self.divdatAct], ['Plot --> 1D Plot', self.onedplotAct], ['Plot --> Scatter', self.scatterplotAct], ['Plot --> Stack Plot', self.stackplotAct], ['Plot --> Array Plot', self.arrayplotAct], ['Plot --> Contour Plot', self.contourplotAct], ['Plot --> 2D Colour Plot', self.colour2DplotAct], ['Plot --> Multi Plot', self.multiplotAct], ['Plot --> Set Reference', self.setrefAct], ['Plot --> Clear Current Reference', self.delrefAct], ['Plot --> Load Reference', self.loadrefAct], ['Plot --> User X-axis', self.userxAct], ['Plot --> Plot Settings', self.plotprefAct], ['History --> History', self.historyAct], ['History --> Clear Undo/Redo List', self.clearundoAct], ['Utilities --> Chemical Shift Conversion Tool', self.shiftconvAct], ['Utilities --> Dipolar Distance Tool', self.dipolarconvAct], ['Utilities --> Quadrupole Coupling Conversion Tool', self.quadconvAct], ['Utilities --> NMR Table', self.nmrtableAct], ['Help --> GitHub Page', self.githubAct], ['Help --> ssNake Tutorials', self.tutorialAct], ['Help --> About', self.aboutAct]] for element in self.defaultToolbarActionList: if element == 'Seperator': self.seperatorAction.append(QtWidgets.QAction(self)) self.seperatorAction[-1].setSeparator(True) self.toolbar.addAction(self.seperatorAction[-1]) else: for action in self.allActionsList: if element == action[0]: self.toolbar.addAction(action[1]) def initMenu(self): IconDirectory = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Icons' + os.path.sep self.menubar = self.menuBar() self.filemenu = QtWidgets.QMenu('&File', self) self.menubar.addMenu(self.filemenu) self.openAct = self.filemenu.addAction(QtGui.QIcon(IconDirectory + 'open.png'), '&Open', self.loadFromMenu, QtGui.QKeySequence.Open) self.openAct.setToolTip('Open a File') self.combineLoadAct = self.filemenu.addAction(QtGui.QIcon(IconDirectory + 'combine.png'), '&Open && Combine', self.createCombineLoadWindow) self.combineLoadAct.setToolTip('Open and Combine Multiple Files') self.savemenu = QtWidgets.QMenu('&Save', self) self.filemenu.addMenu(self.savemenu) self.saveAct = self.savemenu.addAction(QtGui.QIcon(IconDirectory + 'JSON.png'), 'JSON', self.saveJSONFile, QtGui.QKeySequence.Save) self.saveAct.setToolTip('Save as JSON File') self.saveMatAct = self.savemenu.addAction(QtGui.QIcon(IconDirectory + 'Matlab.png'), 'MATLAB', self.saveMatlabFile) self.saveMatAct.setToolTip('Save as MATLAB File') self.exportmenu = QtWidgets.QMenu('&Export', self) self.filemenu.addMenu(self.exportmenu) self.savefigAct = self.exportmenu.addAction(QtGui.QIcon(IconDirectory + 'figure.png'), 'Figure', self.saveFigure, QtGui.QKeySequence.Print) self.savefigAct.setToolTip('Export as Figure') self.saveSimpsonAct = self.exportmenu.addAction(QtGui.QIcon(IconDirectory + 'simpson.png'), 'Simpson', self.saveSimpsonFile) self.saveSimpsonAct.setToolTip('Export as Simpson File') self.saveASCIIAct = self.exportmenu.addAction(QtGui.QIcon(IconDirectory + 'ASCII.png'), 'ASCII (1D/2D)', self.saveASCIIFile) self.saveASCIIAct.setToolTip('Save as ASCII Text File') self.preferencesAct = self.filemenu.addAction(QtGui.QIcon(IconDirectory + 'preferences.png'), '&Preferences', lambda: PreferenceWindow(self)) self.preferencesAct.setToolTip('Open Preferences Window') self.quitAct = self.filemenu.addAction(QtGui.QIcon(IconDirectory + 'quit.png'), '&Quit', self.fileQuit, QtGui.QKeySequence.Quit) self.quitAct.setToolTip('Close ssNake') self.saveActList = [self.saveAct, self.saveMatAct] self.exportActList = [self.savefigAct, self.saveSimpsonAct, self.saveASCIIAct] self.fileActList = [self.openAct, self.saveAct, self.saveMatAct, self.savefigAct, self.saveSimpsonAct, self.saveASCIIAct, self.combineLoadAct, self.preferencesAct, self.quitAct] # Workspaces menu self.workspacemenu = QtWidgets.QMenu('&Workspaces', self) self.menubar.addMenu(self.workspacemenu) self.newAct = self.workspacemenu.addAction(QtGui.QIcon(IconDirectory + 'duplicate.png'), 'D&uplicate', self.duplicateWorkspace, QtGui.QKeySequence.New) self.newAct.setToolTip('Duplicate Workspace') self.newSlice = self.workspacemenu.addAction(QtGui.QIcon(IconDirectory + 'duplicate.png'), 'Slice to Workspace', lambda: self.duplicateWorkspace(sliceOnly=True)) self.newSlice.setToolTip('Copy Current Slice to New Workspace') self.closeAct = self.workspacemenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), '&Delete', self.destroyWorkspace, QtGui.QKeySequence.Close) self.closeAct.setToolTip('Delete Workspace') self.renameWorkspaceAct = self.workspacemenu.addAction(QtGui.QIcon(IconDirectory + 'rename.png'), '&Rename', self.renameWorkspace, QtCore.Qt.Key_F2) self.renameWorkspaceAct.setToolTip('Rename Workspace') self.activemenu = QtWidgets.QMenu('&Go to', self) self.workspacemenu.addMenu(self.activemenu) self.forwardAct = self.workspacemenu.addAction(QtGui.QIcon(IconDirectory + 'next.png'), '&Next', lambda: self.stepWorkspace(1), QtGui.QKeySequence.Forward) self.forwardAct.setToolTip('Next Workspace') self.backAct = self.workspacemenu.addAction(QtGui.QIcon(IconDirectory + 'previous.png'), '&Previous', lambda: self.stepWorkspace(-1), QtGui.QKeySequence.Back) self.backAct.setToolTip('Previous Workspace') self.workInfoAct = self.workspacemenu.addAction(QtGui.QIcon(IconDirectory + 'about.png'), '&Info', lambda: self.mainWindowCheck(lambda mainWindow: WorkInfoWindow(mainWindow))) self.workInfoAct.setToolTip('Workspace Information') self.workspaceActList = [self.newAct, self.newSlice, self.closeAct, self.renameWorkspaceAct, self.forwardAct, self.backAct, self.workInfoAct] # Macro menu self.macromenu = QtWidgets.QMenu('&Macros', self) self.menubar.addMenu(self.macromenu) self.macrostartAct = self.macromenu.addAction(QtGui.QIcon(IconDirectory + 'record.png'), 'St&art Recording', self.macroCreate) self.macrostartAct.setToolTip('Start Recording Macro') self.macrostopAct = self.macromenu.addAction(QtGui.QIcon(IconDirectory + 'stop.png'), 'St&op Recording', self.stopMacro) self.macrostopAct.setToolTip('Stop Recording Macro') self.macrolistmenu = QtWidgets.QMenu('&Run', self) self.macromenu.addMenu(self.macrolistmenu) self.macrorenamemenu = QtWidgets.QMenu('Re&name', self) self.macromenu.addMenu(self.macrorenamemenu) self.macrodeletemenu = QtWidgets.QMenu('&Delete', self) self.macromenu.addMenu(self.macrodeletemenu) self.macrosavemenu = QtWidgets.QMenu('&Save', self) self.macromenu.addMenu(self.macrosavemenu) self.macroLoadAct = self.macromenu.addAction(QtGui.QIcon(IconDirectory + 'open.png'), '&Load', self.loadMacro) self.macroLoadAct.setToolTip('Load Macro') self.macroActList = [self.macrostartAct, self.macrostopAct] self.multiDActions = [] # the edit drop down menu self.editmenu = QtWidgets.QMenu("&Edit", self) self.menubar.addMenu(self.editmenu) self.undoAction = self.editmenu.addAction(QtGui.QIcon(IconDirectory + 'undo.png'), "&Undo", self.undo, QtGui.QKeySequence.Undo) self.undoAction.setShortcutContext(QtCore.Qt.WidgetShortcut) self.undoAction.setToolTip('Undo') self.redoAction = self.editmenu.addAction(QtGui.QIcon(IconDirectory + 'redo.png'), "&Redo", self.redo, QtGui.QKeySequence.Redo) self.redoAction.setShortcutContext(QtCore.Qt.WidgetShortcut) self.redoAction.setToolTip('Redo') self.noUndoAct = QtWidgets.QAction("&No Undo Mode", self.editmenu, checkable=True) self.noUndoAct.toggled.connect(self.noUndoMode) self.editmenu.addAction(self.noUndoAct) self.clearundoAct = self.editmenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), "&Clear Undo/Redo List", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.clearUndo())) self.clearundoAct.setToolTip('Clear Undo/Redo List') self.reloadAct = self.editmenu.addAction(QtGui.QIcon(IconDirectory + 'reload.png'), "Re&load", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.reloadLast()), QtGui.QKeySequence.Refresh) self.reloadAct.setToolTip('Reload Current Data') self.monitorAct = self.editmenu.addAction(QtGui.QIcon(IconDirectory + 'monitor.png'), "&Monitor", lambda: self.mainWindowCheck(lambda mainWindow: MonitorWindow(mainWindow))) self.monitorAct.setToolTip('Monitor Current Data') self.editActList = [self.undoAction, self.redoAction, self.clearundoAct, self.noUndoAct, self.reloadAct, self.monitorAct] # the tool drop down menu self.toolMenu = QtWidgets.QMenu("&Tools", self) self.menubar.addMenu(self.toolMenu) self.realAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'real.png'), "&Real", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.real())) self.realAct.setToolTip('Take Real Part of Data') self.imagAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'imag.png'), "&Imag", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.imag())) self.imagAct.setToolTip('Take Imaginary Part of Data') self.absAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'abs.png'), "&Abs", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.abs())) self.absAct.setToolTip('Take Absolute of Data') self.conjAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'complexconj.png'), "&Complex Conjugate", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.conj())) self.conjAct.setToolTip('Take Complex Conjugate of Data') self.apodizeAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'apodize.png'), "Apo&dize", lambda: self.mainWindowCheck(lambda mainWindow: ApodWindow(mainWindow))) self.apodizeAct.setToolTip('Open Apodize Window') self.phasingmenu = QtWidgets.QMenu('&Phasing', self) self.toolMenu.addMenu(self.phasingmenu) self.phaseAct = self.phasingmenu.addAction(QtGui.QIcon(IconDirectory + 'phase.png'), "&Phase", lambda: self.mainWindowCheck(lambda mainWindow: PhaseWindow(mainWindow))) self.phaseAct.setToolTip('Open Phasing Window') self.autoPhaseAct0 = self.phasingmenu.addAction(QtGui.QIcon(IconDirectory + 'autophase0.png'), "Autophase 0", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.directAutoPhase(0))) self.autoPhaseAct0.setToolTip('Autophase 0 order') self.autoPhaseAct1 = self.phasingmenu.addAction(QtGui.QIcon(IconDirectory + 'autophase1.png'), "Autophase 0+1", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.directAutoPhase(1))) self.autoPhaseAct1.setToolTip('Autophase 0 and 1 order') self.autoPhaseAllAct0 = self.phasingmenu.addAction(QtGui.QIcon(IconDirectory + 'autophase0.png'), "Autophase per trace 0", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.autoPhaseAll(0))) self.autoPhaseAllAct0.setToolTip('Autophase per trace 0 order') self.autoPhaseAllAct1 = self.phasingmenu.addAction(QtGui.QIcon(IconDirectory + 'autophase1.png'), "Autophase per trace 0+1", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.autoPhaseAll(1))) self.autoPhaseAllAct1.setToolTip('Autophase per trace 0 and 1 order') self.swapEchoAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'swapecho.png'), "Swap &Echo", lambda: self.mainWindowCheck(lambda mainWindow: SwapEchoWindow(mainWindow))) self.swapEchoAct.setToolTip('Swap Echo') self.corOffsetAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'offset.png'), "&Offset Correction", lambda: self.mainWindowCheck(lambda mainWindow: DCWindow(mainWindow))) self.corOffsetAct.setToolTip('Offset Correction') self.baselineAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'baseline.png'), "&Baseline Correction", lambda: self.mainWindowCheck(lambda mainWindow: BaselineWindow(mainWindow))) self.baselineAct.setToolTip('Baseline Correction') self.subAvgAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'subaverage.png'), "S&ubtract Averages", lambda: self.mainWindowCheck(lambda mainWindow: SubtractAvgWindow(mainWindow))) self.subAvgAct.setToolTip('Subtract Averages') self.refDeconvAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'deconvolute.png'), "Re&ference Deconvolution", lambda: self.mainWindowCheck(lambda mainWindow: FiddleWindow(mainWindow))) self.refDeconvAct.setToolTip('Reference Deconvolution') self.digitalFilterAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'dFilter.png'), "&Correct Digital Filter", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.CorrectDigitalFilter())) self.digitalFilterAct.setToolTip("Correct Digital Filter") self.lpsvdAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'LPSVD.png'), "&LPSVD", lambda: self.mainWindowCheck(lambda mainWindow: LPSVDWindow(mainWindow))) self.lpsvdAct.setToolTip('LPSVD linear prediction') self.scaleSWAct = self.toolMenu.addAction(QtGui.QIcon(IconDirectory + 'ScaleSW.png'), "Scale SW", lambda: self.mainWindowCheck(lambda mainWindow: ScaleSWWindow(mainWindow))) self.scaleSWAct.setToolTip('Scale the Current Spectral Width') self.referencelistmenu = QtWidgets.QMenu('&Reference', self) self.toolMenu.addMenu(self.referencelistmenu) self.setrefAct = self.referencelistmenu.addAction(QtGui.QIcon(IconDirectory + 'setreference.png'), "&Set Reference", lambda: self.mainWindowCheck(lambda mainWindow: RefWindow(mainWindow))) self.setrefAct.setToolTip('Set Reference') self.delrefAct = self.referencelistmenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), "&Clear Current Reference", self.referenceClear) self.delrefAct.setToolTip('Clear Current Reference') self.referencerunmenu = QtWidgets.QMenu('&Apply', self) self.referencelistmenu.addMenu(self.referencerunmenu) self.referencedeletemenu = QtWidgets.QMenu('&Delete', self) self.referencelistmenu.addMenu(self.referencedeletemenu) self.referencerenamemenu = QtWidgets.QMenu('Re&name', self) self.referencelistmenu.addMenu(self.referencerenamemenu) self.referencesavemenu = QtWidgets.QMenu('&Save', self) self.referencelistmenu.addMenu(self.referencesavemenu) self.loadrefAct = self.referencelistmenu.addAction(QtGui.QIcon(IconDirectory + 'open.png'), "&Load", self.referenceLoad) self.loadrefAct.setToolTip('Load Reference') self.toolsActList = [self.realAct, self.imagAct, self.absAct, self.conjAct, self.apodizeAct, self.phaseAct, self.autoPhaseAct0, self.autoPhaseAct1, self.autoPhaseAllAct0, self.phasingmenu, self.autoPhaseAllAct1, self.swapEchoAct, self.corOffsetAct, self.baselineAct, self.subAvgAct, self.refDeconvAct, self.lpsvdAct, self.digitalFilterAct, self.scaleSWAct] # the matrix drop down menu self.matrixMenu = QtWidgets.QMenu("M&atrix", self) self.menubar.addMenu(self.matrixMenu) self.sizingAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'sizing.png'), "&Sizing", lambda: self.mainWindowCheck(lambda mainWindow: SizeWindow(mainWindow))) self.sizingAct.setToolTip('Set Size') self.shiftAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'shift.png'), "S&hift Data", lambda: self.mainWindowCheck(lambda mainWindow: ShiftDataWindow(mainWindow))) self.shiftAct.setToolTip('Shift Data') self.rollAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'roll.png'), "Roll Data", lambda: self.mainWindowCheck(lambda mainWindow: RollDataWindow(mainWindow))) self.rollAct.setToolTip('Roll Data') self.alignAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'alignMax.png'), "Align Maxima", lambda: self.mainWindowCheck(lambda mainWindow: AlignDataWindow(mainWindow))) self.alignAct.setToolTip('Align Maxima') self.regionMenu = QtWidgets.QMenu("Region", self) self.matrixMenu.addMenu(self.regionMenu) self.intRegionAct = self.regionMenu.addAction(QtGui.QIcon(IconDirectory + 'int.png'), "&Integrate", lambda: self.mainWindowCheck(lambda mainWindow: integrateWindow(mainWindow))) self.intRegionAct.setToolTip('Integrate Region') self.sumRegionAct = self.regionMenu.addAction(QtGui.QIcon(IconDirectory + 'sum.png'), "S&um", lambda: self.mainWindowCheck(lambda mainWindow: sumWindow(mainWindow))) self.sumRegionAct.setToolTip('Sum Region') self.maxRegionAct = self.regionMenu.addAction(QtGui.QIcon(IconDirectory + 'max.png'), "&Max", lambda: self.mainWindowCheck(lambda mainWindow: maxWindow(mainWindow))) self.maxRegionAct.setToolTip('Maximum of Region') self.minRegionAct = self.regionMenu.addAction(QtGui.QIcon(IconDirectory + 'min.png'), "M&in", lambda: self.mainWindowCheck(lambda mainWindow: minWindow(mainWindow))) self.minRegionAct.setToolTip('Minimum of Region') self.maxposRegionAct = self.regionMenu.addAction(QtGui.QIcon(IconDirectory + 'maxpos.png'), "Ma&x position", lambda: self.mainWindowCheck(lambda mainWindow: argmaxWindow(mainWindow))) self.maxposRegionAct.setToolTip('Position of Maximum of Region') self.minposRegionAct = self.regionMenu.addAction(QtGui.QIcon(IconDirectory + 'minpos.png'), "Mi&n position", lambda: self.mainWindowCheck(lambda mainWindow: argminWindow(mainWindow))) self.minposRegionAct.setToolTip('Position of Minimum of Region') self.averageRegionAct = self.regionMenu.addAction(QtGui.QIcon(IconDirectory + 'average.png'), "&Average", lambda: self.mainWindowCheck(lambda mainWindow: avgWindow(mainWindow))) self.averageRegionAct.setToolTip('Average of Region') self.diffAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'diff.png'), "&Diff", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.diff())) self.diffAct.setToolTip('Difference') self.cumsumAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'cumsum.png'), "&Cumsum", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.cumsum())) self.cumsumAct.setToolTip('Cumulative sum') self.extractpartAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'extractpart.png'), "&Extract part", lambda: self.mainWindowCheck(lambda mainWindow: extractRegionWindow(mainWindow))) self.extractpartAct.setToolTip('Extract part') self.fliplrAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'fliplr.png'), "&Flip L/R", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.flipLR())) self.fliplrAct.setToolTip('Flip L/R') self.matrixdelAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'matrixdelete.png'), "De&lete", lambda: self.mainWindowCheck(lambda mainWindow: DeleteWindow(mainWindow))) self.matrixdelAct.setToolTip('Delete Points') self.splitAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'split.png'), "S&plit", lambda: self.mainWindowCheck(lambda mainWindow: SplitWindow(mainWindow))) self.splitAct.setToolTip('Split') self.multiplyAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'multiply.png'), "Mul&tiply", lambda: self.mainWindowCheck(lambda mainWindow: MultiplyWindow(mainWindow))) self.multiplyAct.setToolTip('Multiply') self.normalizeAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'normalize.png'), "Normalize", lambda: self.mainWindowCheck(lambda mainWindow: NormalizeWindow(mainWindow))) self.normalizeAct.setToolTip('Normalize') self.reorderAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'reorder.png'), "&Reorder", lambda: self.mainWindowCheck(lambda mainWindow: ReorderWindow(mainWindow))) self.reorderAct.setToolTip('Reorder') self.regridAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'regrid.png'), "Regrid", lambda: self.mainWindowCheck(lambda mainWindow: RegridWindow(mainWindow))) self.regridAct.setToolTip('Regrid') self.concatAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'concatenate.png'), "C&oncatenate", lambda: self.mainWindowCheck(lambda mainWindow: ConcatenateWindow(mainWindow))) self.concatAct.setToolTip('Concatenate') self.multiDActions.append(self.concatAct) self.shearAct = self.matrixMenu.addAction(QtGui.QIcon(IconDirectory + 'shear.png'), "Shearin&g", lambda: self.mainWindowCheck(lambda mainWindow: ShearingWindow(mainWindow))) self.shearAct.setToolTip('Shearing') self.multiDActions.append(self.shearAct) self.matrixActList = [self.sizingAct, self.shiftAct, self.rollAct, self.alignAct, self.intRegionAct, self.sumRegionAct, self.maxRegionAct, self.minRegionAct, self.maxposRegionAct, self.minposRegionAct, self.averageRegionAct, self.diffAct, self.cumsumAct, self.extractpartAct, self.fliplrAct, self.matrixdelAct, self.splitAct, self.multiplyAct, self.normalizeAct, self.reorderAct, self.regridAct, self.concatAct, self.shearAct] # the Transforms drop down menu self.transformsMenu = QtWidgets.QMenu("T&ransforms", self) self.menubar.addMenu(self.transformsMenu) self.fourierAct = self.transformsMenu.addAction(QtGui.QIcon(IconDirectory + 'fourier.png'), "&Fourier Transform", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.fourier()), QtCore.Qt.CTRL + QtCore.Qt.Key_F) self.fourierAct.setToolTip('Fourier Transform') self.realFourierAct = self.transformsMenu.addAction(QtGui.QIcon(IconDirectory + 'realfourier.png'), "&Real Fourier Transform", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.realFourier())) self.realFourierAct.setToolTip('Real Fourier Transform') self.fftshiftAct = self.transformsMenu.addAction(QtGui.QIcon(IconDirectory + 'fftshift.png'), "Fft&shift", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.fftshift())) self.fftshiftAct.setToolTip('Fftshift') self.invfftshiftAct = self.transformsMenu.addAction(QtGui.QIcon(IconDirectory + 'ifftshift.png'), "&Inv fftshift", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.invFftshift())) self.invfftshiftAct.setToolTip('Inverse fftshift') self.hilbertAct = self.transformsMenu.addAction(QtGui.QIcon(IconDirectory + 'hilbert.png'), "&Hilbert Transform", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.hilbert())) self.hilbertAct.setToolTip('Hilbert Transform') self.nusMenu = QtWidgets.QMenu("&NUS", self) self.transformsMenu.addMenu(self.nusMenu) self.ffmAct = self.nusMenu.addAction(QtGui.QIcon(IconDirectory + 'ffm.png'), "&FFM", lambda: self.mainWindowCheck(lambda mainWindow: FFMWindow(mainWindow))) self.ffmAct.setToolTip('FFM') self.cleanAct = self.nusMenu.addAction(QtGui.QIcon(IconDirectory + 'clean.png'), "&CLEAN", lambda: self.mainWindowCheck(lambda mainWindow: CLEANWindow(mainWindow))) self.cleanAct.setToolTip('CLEAN') self.istAct = self.nusMenu.addAction(QtGui.QIcon(IconDirectory + 'ist.png'), "&IST", lambda: self.mainWindowCheck(lambda mainWindow: ISTWindow(mainWindow))) self.istAct.setToolTip('IST') self.hypercomplexMenu = QtWidgets.QMenu("Hypercomplex", self) self.transformsMenu.addMenu(self.hypercomplexMenu) self.statesAct = self.hypercomplexMenu.addAction(QtGui.QIcon(IconDirectory + 'States.png'), "&States", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.states())) self.statesAct.setToolTip('States Hypercomplex Data Processing') self.statesTPPIAct = self.hypercomplexMenu.addAction(QtGui.QIcon(IconDirectory + 'statestppi.png'), "States-&TPPI", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.statesTPPI())) self.statesTPPIAct.setToolTip('States-TPPI Hypercomplex Data Processing') self.echoantiAct = self.hypercomplexMenu.addAction(QtGui.QIcon(IconDirectory + 'echoantiecho.png'), "Ec&ho-antiecho", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.echoAntiEcho())) self.echoantiAct.setToolTip('Ec&ho-antiecho Hypercomplex Data Processing') self.transformActList = [self.fourierAct, self.realFourierAct, self.fftshiftAct, self.invfftshiftAct, self.hilbertAct, self.ffmAct, self.cleanAct, self.istAct, self.statesAct, self.statesTPPIAct, self.echoantiAct] # the fitting drop down menu self.fittingMenu = QtWidgets.QMenu("F&itting", self) self.menubar.addMenu(self.fittingMenu) self.snrAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'snr.png'), "&S/N", lambda: self.mainWindowCheck(lambda mainWindow: SNWindow(mainWindow))) self.snrAct.setToolTip('Signal-to-Noise Ratio') self.fwhmAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'fwhm.png'), "&FWHM", lambda: self.mainWindowCheck(lambda mainWindow: FWHMWindow(mainWindow))) self.fwhmAct.setToolTip('Full Width at Half Maximum') self.massAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'mass.png'), "Centre of Mass", lambda: self.mainWindowCheck(lambda mainWindow: COMWindow(mainWindow))) self.massAct.setToolTip('Centre of Mass') self.intfitAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'int.png'), "&Integrals", lambda: self.mainWindowCheck(lambda mainWindow: IntegralsWindow(mainWindow))) self.intfitAct.setToolTip('Get Integrals') self.relaxAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'relaxation.png'), "&Relaxation Curve", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createRelaxWindow())) self.relaxAct.setToolTip('Fit Relaxation Curve') self.diffusionAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'diffusion.png'), "&Diffusion Curve", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createDiffusionWindow())) self.diffusionAct.setToolTip('Fit Diffusion Curve') self.lorentzfitAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'lorentz.png'), "&Lorentzian/Gaussian", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createPeakDeconvWindow())) self.lorentzfitAct.setToolTip('Fit Lorentzian/Gaussian') self.csastaticAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'csastatic.png'), "&CSA", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createCsaDeconvWindow())) self.csastaticAct.setToolTip('Fit CSA') self.quadAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'quadconversion.png'), "&Quadrupole", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createQuadDeconvWindow())) self.quadAct.setToolTip('Fit Quadrupole') self.quadCSAAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'quadcsa.png'), "Q&uadrupole+CSA", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createQuadCSADeconvWindow())) self.quadCSAAct.setToolTip('Fit Quadrupole+CSA') self.czjzekAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'czjzekstatic.png'), "C&zjzek", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createQuadCzjzekWindow())) self.czjzekAct.setToolTip('Fit Czjzek Pattern') self.mqmasAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'mqmas.png'), "&MQMAS", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createMQMASWindow())) self.mqmasAct.setToolTip('Fit MQMAS') self.mqmasCzjzekAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'mqmas.png'), "Cz&jzek MQMAS", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createMQMASCzjzekWindow())) self.mqmasCzjzekAct.setToolTip('Fit Czjzek MQMAS') self.externalFitAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'simpson.png'), "&External", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createExternalFitWindow())) self.externalFitAct.setToolTip('Fit External') self.functionFitAct = self.fittingMenu.addAction(QtGui.QIcon(IconDirectory + 'function.png'), "F&unction fit", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.createFunctionFitWindow())) self.functionFitAct.setToolTip('Fit Function') self.fittingActList = [self.snrAct, self.fwhmAct, self.massAct, self.intfitAct, self.relaxAct, self.diffusionAct, self.lorentzfitAct, self.csastaticAct, self.quadAct, self.quadCSAAct, self.czjzekAct, self.externalFitAct, self.functionFitAct] # the combine drop down menu self.combineMenu = QtWidgets.QMenu("Com&bine", self) self.menubar.addMenu(self.combineMenu) self.combineWorkspaceAct = self.combineMenu.addAction(QtGui.QIcon(IconDirectory + 'combine.png'), '&Combine Workspaces', self.createCombineWorkspaceWindow) self.combineWorkspaceAct.setToolTip('Combine Workspaces') self.insertdatAct = self.combineMenu.addAction(QtGui.QIcon(IconDirectory + 'insert.png'), "&Insert From Workspace", lambda: self.mainWindowCheck(lambda mainWindow: InsertWindow(mainWindow))) self.insertdatAct.setToolTip('Insert From Workspace') self.adddatAct = self.combineMenu.addAction(QtGui.QIcon(IconDirectory + 'add.png'), "&Add", lambda: self.mainWindowCheck(lambda mainWindow: CombineWindow(mainWindow, 0))) self.adddatAct.setToolTip('Add Data From Workspace') self.subdatAct = self.combineMenu.addAction(QtGui.QIcon(IconDirectory + 'subtract.png'), "&Subtract", lambda: self.mainWindowCheck(lambda mainWindow: CombineWindow(mainWindow, 1))) self.subdatAct.setToolTip('Subtract Data From Workspace') self.multdatAct = self.combineMenu.addAction(QtGui.QIcon(IconDirectory + 'multiplyWorkspace.png'), "&Multiply", lambda: self.mainWindowCheck(lambda mainWindow: CombineWindow(mainWindow, 2))) self.multdatAct.setToolTip('Multiply Data From Workspace') self.divdatAct = self.combineMenu.addAction(QtGui.QIcon(IconDirectory + 'divideWorkspace.png'), "&Divide", lambda: self.mainWindowCheck(lambda mainWindow: CombineWindow(mainWindow, 3))) self.divdatAct.setToolTip('Divide Data From Workspace') self.combineActList = [self.combineWorkspaceAct, self.insertdatAct, self.adddatAct, self.subdatAct, self.multdatAct, self.divdatAct] # the plot drop down menu self.plotMenu = QtWidgets.QMenu("&Plot", self) self.menubar.addMenu(self.plotMenu) self.onedplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + '1dplot.png'), "&1D Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plot1D())) self.onedplotAct.setToolTip('1D plot') self.scatterplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'scatterplot.png'), "&Scatter Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plotScatter())) self.scatterplotAct.setToolTip('Scatter Plot') self.stackplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'stack.png'), "S&tack Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plotStack())) self.stackplotAct.setToolTip('Stack Plot') self.multiDActions.append(self.stackplotAct) self.arrayplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'array.png'), "&Array Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plotArray())) self.arrayplotAct.setToolTip('Array Plot') self.multiDActions.append(self.arrayplotAct) self.contourplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'contour.png'), "&Contour Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plotContour())) self.contourplotAct.setToolTip('Contour Plot') self.multiDActions.append(self.contourplotAct) self.multiContourplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'multicontour.png'),"Mu&lti Contour Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plotMultiContour())) self.multiContourplotAct.setToolTip('Multi Contour Plot') self.multiDActions.append(self.multiContourplotAct) self.colour2DplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + '2DColour.png'), "2D Colour Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plotColour2D())) self.colour2DplotAct.setToolTip('2D Colour Plot') self.multiDActions.append(self.colour2DplotAct) self.multiplotAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'multi.png'), "&Multi Plot", lambda: self.mainWindowCheck(lambda mainWindow: mainWindow.plotMulti())) self.multiplotAct.setToolTip('Multi Plot') #========== self.userxAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'xaxis.png'), "&User X-axis", lambda: self.mainWindowCheck(lambda mainWindow: XaxWindow(mainWindow))) self.userxAct.setToolTip('User X-axis') self.plotprefAct = self.plotMenu.addAction(QtGui.QIcon(IconDirectory + 'preferences.png'), "&Plot Settings", lambda: self.mainWindowCheck(lambda mainWindow: PlotSettingsWindow(mainWindow))) self.plotprefAct.setToolTip('Plot Settings') self.plotActList = [self.onedplotAct, self.scatterplotAct, self.stackplotAct, self.arrayplotAct, self.contourplotAct, self.colour2DplotAct, self.multiplotAct, self.multiContourplotAct, self.setrefAct, self.delrefAct, self.userxAct, self.plotprefAct] # the history drop down menu self.historyMenu = QtWidgets.QMenu("&History", self) self.menubar.addMenu(self.historyMenu) self.historyAct = self.historyMenu.addAction(QtGui.QIcon(IconDirectory + 'history.png'), "&History", lambda: self.mainWindowCheck(lambda mainWindow: HistoryWindow(mainWindow))) self.historyAct.setToolTip('Show Processing History') self.errorAct = self.historyMenu.addAction(QtGui.QIcon(IconDirectory + 'error.png'), "&Error Messages", lambda: errorWindow(self)) self.errorAct.setToolTip('Show Error Messages') self.historyActList = [self.historyAct] # Utilities dropdown menu self.utilitiesMenu = QtWidgets.QMenu("&Utilities", self) self.menubar.addMenu(self.utilitiesMenu) self.shiftconvAct = self.utilitiesMenu.addAction(QtGui.QIcon(IconDirectory + 'shifttool.png'), "&Chemical Shift Conversion Tool", self.createShiftConversionWindow) self.shiftconvAct.setToolTip('Chemical Shift Conversion Tool') self.dipolarconvAct = self.utilitiesMenu.addAction(QtGui.QIcon(IconDirectory + 'dipolar.png'), "Dipolar Distance Tool", self.createDipolarDistanceWindow) self.dipolarconvAct.setToolTip('Dipolar Distance Tool') self.quadconvAct = self.utilitiesMenu.addAction(QtGui.QIcon(IconDirectory + 'quadconversion.png'), "&Quadrupole Coupling Conversion Tool", self.createQuadConversionWindow) self.quadconvAct.setToolTip('Quadrupole Coupling Conversion Tool') self.mqmasconvAct = self.utilitiesMenu.addAction(QtGui.QIcon(IconDirectory + 'mqmas.png'), "MQMAS Parameter Extraction Tool", self.createMqmasExtractWindow) self.mqmasconvAct.setToolTip('MQMAS Parameter Extraction Tool') self.tempcalAct = self.utilitiesMenu.addAction(QtGui.QIcon(IconDirectory + 'temperature.png'), "Temperature Calibration Tool", self.createTempcalWindow) self.tempcalAct.setToolTip('Dipolar Distance Tool') self.nmrtableAct = self.utilitiesMenu.addAction(QtGui.QIcon(IconDirectory + 'table.png'), "&NMR Table", self.nmrTable) self.nmrtableAct.setToolTip('NMR Periodic Table') self.utilitiesActList = [self.shiftconvAct, self.quadconvAct, self.nmrtableAct, self.dipolarconvAct, self.mqmasconvAct, self.tempcalAct] # the help drop down menu self.helpMenu = QtWidgets.QMenu("&Help", self) self.menubar.addMenu(self.helpMenu) if not EXE: self.updateAct = self.helpMenu.addAction(QtGui.QIcon(IconDirectory + 'update.png'), "&Update", self.updateMenu) self.updateAct.setToolTip('Update ssNake') self.helpActList = [self.updateAct] else: self.helpActList = [] self.refmanAct = self.helpMenu.addAction(QtGui.QIcon(IconDirectory + 'manual.png'), "Reference Manual", openRefMan) self.refmanAct.setToolTip('Open the Reference Manual') self.basTutorialAct = self.helpMenu.addAction(QtGui.QIcon(IconDirectory + 'Tutorial.png'), "Basic Tutorial", openTutorial) self.basTutorialAct.setToolTip('Open the Tutorial Folder') self.tutorialAct = self.helpMenu.addAction(QtGui.QIcon(IconDirectory + 'Tutorial.png'), "Advanced Tutorials", lambda: webbrowser.open('https://github.com/smeerten/ssnake_tutorials/')) self.tutorialAct.setToolTip('Link to ssNake Advanced Processing Tutorials') self.githubAct = self.helpMenu.addAction(QtGui.QIcon(IconDirectory + 'GitHub.png'), "GitHub Page", lambda: webbrowser.open('https://github.com/smeerten/ssnake/')) self.githubAct.setToolTip('ssNake GitHub Page') self.aboutAct = self.helpMenu.addAction(QtGui.QIcon(IconDirectory + 'about.png'), "&About", lambda: aboutWindow(self)) self.aboutAct.setToolTip('About Menu') self.helpActList = self.helpActList + [self.shiftconvAct, self.quadconvAct, self.nmrtableAct, self.githubAct, self.tutorialAct, self.aboutAct, self.basTutorialAct] # Extra event lists: self.specOnlyList = [self.regridAct, self.csastaticAct, self.quadAct, self.quadCSAAct, self.czjzekAct] self.fidOnlyList = [self.relaxAct, self.diffusionAct, self.swapEchoAct] self.Only1DPlot = [self.snrAct, self.fwhmAct, self.massAct, self.intfitAct] self.notInArrayPlot = [self.userxAct, self.setrefAct, self.swapEchoAct, self.corOffsetAct, self.baselineAct, self.subAvgAct, self.refDeconvAct, self.intRegionAct, self.sumRegionAct, self.maxRegionAct, self.maxRegionAct, self.minRegionAct, self.maxposRegionAct, self.minposRegionAct, self.averageRegionAct, self.extractpartAct, self.matrixdelAct, self.normalizeAct, self.regridAct] def mainWindowCheck(self, transfer): # checks if mainWindow exist to execute the function if self.mainWindow is not None: transfer(self.mainWindow) else: raise SsnakeException("No workspaces open") def dragEnterEvent(self, event): if event.mimeData().hasUrls: event.accept() else: event.ignore() def dropEvent(self, event): fileList = [url.toLocalFile() for url in event.mimeData().urls()] self.loadData(fileList) def menuCheck(self): if self.mainWindow is None: self.savemenu.menuAction().setEnabled(False) self.exportmenu.menuAction().setEnabled(False) self.workspacemenu.menuAction().setEnabled(False) self.macrolistmenu.menuAction().setEnabled(False) self.editmenu.menuAction().setEnabled(False) self.toolMenu.menuAction().setEnabled(True) self.matrixMenu.menuAction().setEnabled(False) self.transformsMenu.menuAction().setEnabled(False) self.fittingMenu.menuAction().setEnabled(False) self.combineMenu.menuAction().setEnabled(False) self.referencerunmenu.menuAction().setEnabled(False) for act in self.saveActList + self.exportActList + self.workspaceActList + self.macroActList + self.editActList + self.toolsActList + self.matrixActList + self.transformActList + self.fittingActList + self.plotActList + self.combineActList + self.historyActList: act.setEnabled(False) else: self.editmenu.menuAction().setEnabled(True) self.toolMenu.menuAction().setEnabled(True) self.matrixMenu.menuAction().setEnabled(True) self.transformsMenu.menuAction().setEnabled(True) self.fittingMenu.menuAction().setEnabled(True) self.combineMenu.menuAction().setEnabled(True) self.referencerunmenu.menuAction().setEnabled(True) for act in self.editActList + self.toolsActList + self.matrixActList + self.transformActList + self.fittingActList + self.plotActList + self.historyActList + self.combineActList: act.setEnabled(True) if type(self.mainWindow) is Main1DWindow: self.menuEnable(True) for act in self.specOnlyList: act.setEnabled(self.mainWindow.current.spec() == 1) # Only on for spec for act in self.fidOnlyList: act.setEnabled(self.mainWindow.current.spec() == 0) # Only on for FID #Limit functions based on plot type if type(self.mainWindow.current) == views.CurrentMulti or type(self.mainWindow.current) == views.CurrentStacked or type(self.mainWindow.current) == views.CurrentArrayed: for act in self.Only1DPlot: act.setEnabled(False) if type(self.mainWindow.current) == views.CurrentArrayed: for act in self.notInArrayPlot: act.setEnabled(False) if self.mainWindow.masterData.noUndo: # Set menu check to the same value as in the data self.noUndoAct.setChecked(True) else: self.noUndoAct.setChecked(False) if len(self.mainWindow.masterData.shape()) < 2: for i in self.multiDActions: i.setEnabled(False) else: for i in self.multiDActions: i.setEnabled(True) if not self.mainWindow.masterData.undoList: self.undoAction.setEnabled(False) else: self.undoAction.setEnabled(True) if not self.mainWindow.masterData.redoList: self.redoAction.setEnabled(False) else: self.redoAction.setEnabled(True) if not self.mainWindow.masterData.undoList and not self.mainWindow.masterData.redoList: self.clearundoAct.setEnabled(False) self.savemenu.menuAction().setEnabled(True) self.exportmenu.menuAction().setEnabled(True) self.savefigAct.setEnabled(True) self.macrolistmenu.menuAction().setEnabled(True) if self.mainWindow.currentMacro is None: self.macrostopAct.setEnabled(False) self.macrostartAct.setEnabled(True) else: self.macrostopAct.setEnabled(True) self.macrostartAct.setEnabled(False) self.savemenu.menuAction().setEnabled(True) self.exportmenu.menuAction().setEnabled(True) self.workspacemenu.menuAction().setEnabled(True) elif type(self.mainWindow) is SaveFigureWindow: self.menuEnable(False, True) self.savemenu.menuAction().setEnabled(False) self.exportmenu.menuAction().setEnabled(False) for act in self.workspaceActList: act.setEnabled(True) for act in self.saveActList + self.exportActList: act.setEnabled(False) self.workspacemenu.menuAction().setEnabled(True) self.macrolistmenu.menuAction().setEnabled(False) self.workInfoAct.setEnabled(False) else: #Fitting menu self.menuEnable(False, True) self.savemenu.menuAction().setEnabled(False) self.exportmenu.menuAction().setEnabled(True) self.workspacemenu.menuAction().setEnabled(True) self.macrolistmenu.menuAction().setEnabled(False) for act in self.saveActList + self.exportActList + self.workspaceActList: act.setEnabled(False) for act in self.workspaceActList: act.setEnabled(True) self.savefigAct.setEnabled(True) self.workInfoAct.setEnabled(False) def menuEnable(self, enable=True, internalWindow=False): self.menuActive = enable or internalWindow self.macrolistmenu.menuAction().setEnabled(enable) self.editmenu.menuAction().setEnabled(enable) self.matrixMenu.menuAction().setEnabled(enable) self.transformsMenu.menuAction().setEnabled(enable) self.fittingMenu.menuAction().setEnabled(enable) self.combineMenu.menuAction().setEnabled(enable) self.referencerunmenu.menuAction().setEnabled(enable) # Actions: for act in self.macroActList + self.editActList + self.toolsActList + self.matrixActList + self.transformActList + self.fittingActList + self.plotActList + self.combineActList + self.historyActList: act.setEnabled(enable) if not internalWindow: self.tree.setEnabled(enable) self.filemenu.menuAction().setEnabled(enable) self.workspacemenu.menuAction().setEnabled(enable) self.toolMenu.menuAction().setEnabled(enable) for act in self.fileActList + self.workspaceActList: act.setEnabled(enable) for i in range(self.tabs.count()): if i != self.workspaceNum: self.tabs.setTabEnabled(i, enable) self.undoAction.setEnabled(enable) self.redoAction.setEnabled(enable) def askName(self, filePath=None, name=None): if filePath is None: message = 'Spectrum name' else: message = 'Spectrum name for: ' + filePath count = 0 if name is None: name = 'spectrum' + str(count) while name in self.workspaceNames: count += 1 name = 'spectrum' + str(count) givenName, ok = QtWidgets.QInputDialog.getText(self, message, 'Name:', text=name) if not ok: return None while (givenName in self.workspaceNames) or givenName == '': self.dispMsg("Workspace name '" + givenName + "' already exists") givenName, ok = QtWidgets.QInputDialog.getText(self, message, 'Name:', text=name) if not ok: return None return givenName def undo(self, *args): if isinstance(self.mainWindow, Main1DWindow): self.mainWindow.undo() def redo(self, *args): if self.mainWindow is not None: self.mainWindow.redo() def macroCreate(self): if self.mainWindow is None: return if self.mainWindow.currentMacro is not None: return count = 0 name = 'macro' + str(count) while name in self.macros.keys(): count += 1 name = 'macro' + str(count) givenName, ok = QtWidgets.QInputDialog.getText(self, 'Macro name', 'Name:', text=name) if not ok: return while (givenName in self.macros.keys()) or (givenName == ''): self.dispMsg("Macro name '" + givenName + "' already exists") givenName, ok = QtWidgets.QInputDialog.getText(self, 'Macro name', 'Name:', text=name) if not ok: return self.macros[givenName] = [] self.mainWindow.redoMacro = [] self.mainWindow.currentMacro = givenName IconDirectory = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Icons' + os.path.sep action1 = self.macrolistmenu.addAction(QtGui.QIcon(IconDirectory + 'run.png'), givenName, lambda name=givenName: self.runMacro(name)) action2 = self.macrosavemenu.addAction(QtGui.QIcon(IconDirectory + 'save.png'), givenName, lambda name=givenName: self.saveMacro(name)) action3 = self.macrodeletemenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), givenName, lambda name=givenName: self.deleteMacro(name)) action4 = self.macrorenamemenu.addAction(QtGui.QIcon(IconDirectory + 'rename.png'), givenName, lambda name=givenName: self.renameMacro(name)) self.macroActions[givenName] = [action1, action2, action3, action4] self.menuCheck() def renameMacro(self, oldName): if self.mainWindow is None: return count = 0 name = 'macro' + str(count) while name in self.macros.keys(): count += 1 name = 'macro' + str(count) givenName, ok = QtWidgets.QInputDialog.getText(self, 'Macro name', 'Name:', text=name) while (givenName in self.macros.keys()) or givenName == '': if not ok: return self.dispMsg("Macro name '" + givenName + "' already exists") givenName, ok = QtWidgets.QInputDialog.getText(self, 'Macro name', 'Name:', text=name) self.macros[givenName] = self.macros.pop(oldName) if self.mainWindow.currentMacro == oldName: self.mainWindow.currentMacro = givenName oldActions = self.macroActions.pop(oldName) self.macrolistmenu.removeAction(oldActions[0]) self.macrosavemenu.removeAction(oldActions[1]) self.macrodeletemenu.removeAction(oldActions[2]) self.macrorenamemenu.removeAction(oldActions[3]) IconDirectory = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Icons' + os.path.sep action1 = self.macrolistmenu.addAction(QtGui.QIcon(IconDirectory + 'run.png'), givenName, lambda name=givenName: self.runMacro(name)) action2 = self.macrosavemenu.addAction(QtGui.QIcon(IconDirectory + 'save.png'), givenName, lambda name=givenName: self.saveMacro(name)) action3 = self.macrodeletemenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), givenName, lambda name=givenName: self.deleteMacro(name)) action4 = self.macrorenamemenu.addAction(QtGui.QIcon(IconDirectory + 'rename.png'), givenName, lambda name=givenName: self.renameMacro(name)) self.macroActions[givenName] = [action1, action2, action3, action4] self.menuCheck() def stopMacro(self): if self.mainWindow is None: return if self.mainWindow.currentMacro is None: return self.mainWindow.redoMacro = [] self.mainWindow.currentMacro = None self.menuCheck() def macroAdd(self, name, macros): self.macros[name].append(macros) def runMacro(self, name): if self.mainWindow is not None: self.mainWindow.runMacro(self.macros[name]) def saveMacro(self, name): fileName = QtWidgets.QFileDialog.getSaveFileName(self, 'Save file', self.lastLocation + os.path.sep + name + '.macro', 'MACRO (*.macro)') if isinstance(fileName, tuple): fileName = fileName[0] if not fileName: return self.lastLocation = os.path.dirname(fileName) outputMacro = self.macros[name] with open(fileName, 'w') as f: for line in outputMacro: f.write(line[0]) f.write(repr(line[1]).replace('\n', '').replace(' ', '')) f.write('\n') def deleteMacro(self, name): self.macrolistmenu.removeAction(self.macroActions[name][0]) self.macrosavemenu.removeAction(self.macroActions[name][1]) self.macrodeletemenu.removeAction(self.macroActions[name][2]) self.macrorenamemenu.removeAction(self.macroActions[name][3]) del self.macros[name] del self.macroActions[name] for i in self.workspaces: if i.currentMacro == name: i.currentMacro = None self.menuCheck() def loadMacro(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open File', self.lastLocation) if isinstance(filename, tuple): filename = filename[0] if filename: # if not cancelled self.lastLocation = os.path.dirname(filename) # Save used path if not filename: return self.stopMacro() count = 0 name = 'macro' + str(count) while name in self.macros.keys(): count += 1 name = 'macro' + str(count) givenName, ok = QtWidgets.QInputDialog.getText(self, 'Macro name', 'Name:', text=name) while (givenName in self.macros.keys()) or (givenName == ''): if not ok: return self.dispMsg("Macro name '" + givenName + "' already exists") givenName, ok = QtWidgets.QInputDialog.getText(self, 'Macro name', 'Name:', text=name) with open(filename, 'r') as f: stringList = f.readlines() self.macros[givenName] = [] for line in stringList: splitLine = line.split("(", 1) splitLine[0] = splitLine[0].replace(' ', '') splitLine[1] = safeEval("(" + splitLine[1]) self.macros[givenName].append(splitLine) IconDirectory = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Icons' + os.path.sep action1 = self.macrolistmenu.addAction(QtGui.QIcon(IconDirectory + 'run.png'), givenName, lambda name=givenName: self.runMacro(name)) action2 = self.macrosavemenu.addAction(QtGui.QIcon(IconDirectory + 'save.png'), givenName, lambda name=givenName: self.saveMacro(name)) action3 = self.macrodeletemenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), givenName, lambda name=givenName: self.deleteMacro(name)) action4 = self.macrorenamemenu.addAction(QtGui.QIcon(IconDirectory + 'rename.png'), givenName, lambda name=givenName: self.renameMacro(name)) self.macroActions[givenName] = [action1, action2, action3, action4] self.menuCheck() def referenceAdd(self, reffreq, name): self.referenceName.append(name) self.referenceValue.append(reffreq) # List with saved refrence values IconDirectory = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Icons' + os.path.sep action1 = self.referencerunmenu.addAction(QtGui.QIcon(IconDirectory + 'run.png'), name, lambda name=name: self.referenceRun(name)) action2 = self.referencedeletemenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), name, lambda name=name: self.referenceRemove(name)) action3 = self.referencerenamemenu.addAction(QtGui.QIcon(IconDirectory + 'rename.png'), name, lambda name=name: self.referenceRename(name)) action4 = self.referencesavemenu.addAction(QtGui.QIcon(IconDirectory + 'save.png'), name, lambda name=name: self.referenceSave(name)) self.referenceActions[name] = [action1, action2, action3, action4] self.menuCheck() def referenceClear(self): self.mainWindow.current.setRef(None) def referenceRun(self, name): reffreq = self.referenceValue[self.referenceName.index(name)] self.mainWindow.current.setRef(reffreq) def referenceRemove(self, name): self.referenceValue.remove(self.referenceValue[self.referenceName.index(name)]) self.referenceName.remove(name) self.referencerunmenu.removeAction(self.referenceActions[name][0]) self.referencedeletemenu.removeAction(self.referenceActions[name][1]) self.referencerenamemenu.removeAction(self.referenceActions[name][2]) self.referencesavemenu.removeAction(self.referenceActions[name][3]) del self.referenceActions[name] self.menuCheck() def referenceRename(self, oldName): if self.mainWindow is None: return givenName, ok = QtWidgets.QInputDialog.getText(self, 'Reference name', 'Name:', text=oldName) if givenName == oldName or not ok: return while (givenName in self.referenceName) or (givenName == ''): self.dispMsg('Name exists') givenName, ok = QtWidgets.QInputDialog.getText(self, 'Reference name', 'Name:', text=oldName) if not ok: return self.referenceName[self.referenceName.index(oldName)] = givenName oldActions = self.referenceActions.pop(oldName) self.referencerunmenu.removeAction(oldActions[0]) self.referencedeletemenu.removeAction(oldActions[1]) self.referencerenamemenu.removeAction(oldActions[2]) self.referencesavemenu.removeAction(oldActions[3]) IconDirectory = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Icons' + os.path.sep action1 = self.referencerunmenu.addAction(QtGui.QIcon(IconDirectory + 'run.png'), givenName, lambda name=givenName: self.referenceRun(name)) action2 = self.referencedeletemenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), givenName, lambda name=givenName: self.referenceRemove(name)) action3 = self.referencerenamemenu.addAction(QtGui.QIcon(IconDirectory + 'rename.png'), givenName, lambda name=givenName: self.referenceRename(name)) action4 = self.referencesavemenu.addAction(QtGui.QIcon(IconDirectory + 'save.png'), givenName, lambda name=givenName: self.referenceSave(name)) self.referenceActions[givenName] = [action1, action2, action3, action4] self.menuCheck() def referenceSave(self, name): fileName = QtWidgets.QFileDialog.getSaveFileName(self, 'Save reference', self.lastLocation + os.path.sep + name + '.txt', 'txt (*.txt)') if isinstance(fileName, tuple): fileName = fileName[0] if not fileName: return self.lastLocation = os.path.dirname(fileName) reffreq = self.referenceValue[self.referenceName.index(name)] with open(fileName, 'w') as f: f.write(str(reffreq)) def referenceLoad(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open File', self.lastLocation) if isinstance(filename, tuple): filename = filename[0] if filename: # if not cancelled self.lastLocation = os.path.dirname(filename) # Save used path if not filename: return name = os.path.basename(filename) if name.endswith('.txt'): #If regular extension, name becomes filename - extension name = name[:-4] count = 0 while name in self.referenceName: #If name known, cycle trough defaults name = 'ref' + str(count) count += 1 givenName, ok = QtWidgets.QInputDialog.getText(self, 'Reference name', 'Name:', text=name) while (givenName in self.macros.keys()) or (givenName == ''): if not ok: return self.dispMsg('Name exists') givenName, ok = QtWidgets.QInputDialog.getText(self, 'Macro name', 'Name:', text=name) with open(filename, 'r') as f: self.referenceName.append(givenName) try: freq = float(f.read()) except Exception: raise SsnakeException("Failed loading '" + filename + "' as reference.") IconDirectory = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'Icons' + os.path.sep self.referenceValue.append(freq) action1 = self.referencerunmenu.addAction(QtGui.QIcon(IconDirectory + 'run.png'), givenName, lambda name=givenName: self.referenceRun(name)) action2 = self.referencedeletemenu.addAction(QtGui.QIcon(IconDirectory + 'delete.png'), givenName, lambda name=givenName: self.referenceRemove(name)) action3 = self.referencerenamemenu.addAction(QtGui.QIcon(IconDirectory + 'rename.png'), givenName, lambda name=givenName: self.referenceRename(name)) action4 = self.referencesavemenu.addAction(QtGui.QIcon(IconDirectory + 'save.png'), givenName, lambda name=givenName: self.referenceSave(name)) self.referenceActions[givenName] = [action1, action2, action3, action4] self.menuCheck() def noUndoMode(self, val): self.mainWindow.current.setNoUndo(val) self.menuCheck() def changeMainWindow(self, var): if not self.allowChange: return self.logo.hide() self.tabs.show() if isinstance(var, int): num = var else: num = self.workspaceNames.index(var) self.workspaceNum = num self.mainWindow = self.workspaces[num] self.tabs.setCurrentIndex(num) self.updWorkspaceMenu() self.menuCheck() try: if type(self.mainWindow.current) is views.CurrentMulti: self.mainWindow.sideframe.checkChanged() except Exception: pass def moveWorkspace(self, end, start): self.workspaces.insert(end, self.workspaces.pop(start)) self.workspaceNames.insert(end, self.workspaceNames.pop(start)) if self.workspaceNum == start: self.workspaceNum = end elif self.workspaceNum > end and self.workspaceNum < start: self.workspaceNum += 1 elif self.workspaceNum < end and self.workspaceNum > start: self.workspaceNum -= 1 def stepWorkspace(self, step): if len(self.workspaces) > 1: self.workspaceNum += step self.workspaceNum = self.workspaceNum % len(self.workspaces) self.mainWindow = self.workspaces[self.workspaceNum] self.tabs.setCurrentIndex(self.workspaceNum) self.updWorkspaceMenu() self.menuCheck() if type(self.mainWindow) is not SaveFigureWindow: if type(self.mainWindow.current) is views.CurrentMulti: self.mainWindow.sideframe.checkChanged() def duplicateWorkspace(self, sliceOnly=False, *args): name = self.askName() if sliceOnly: data = copy.deepcopy(self.mainWindow.get_current().data1D) data.setNoUndo(self.mainWindow.get_masterData().noUndo) else: data = copy.deepcopy(self.mainWindow.get_masterData()) if name is None: return self.workspaces.append(Main1DWindow(self, data, self.mainWindow.get_current())) self.workspaces[-1].rename(name) self.tabs.addTab(self.workspaces[-1], name) self.workspaceNames.append(name) self.changeMainWindow(name) def renameWorkspace(self, *args): tmp = self.workspaceNames[self.workspaceNum] self.workspaceNames[self.workspaceNum] = '' name = self.askName(tmp, tmp) if name is None: self.workspaceNames[self.workspaceNum] = tmp return self.workspaceNames[self.workspaceNum] = name self.tabs.setTabText(self.workspaceNum, name) self.updWorkspaceMenu() self.workspaces[self.workspaceNum].rename(name) def destroyWorkspace(self, num=None): if self.mainWindow is None or self.menuActive is False: return if num is None: num = self.workspaceNum self.allowChange = False self.tabs.removeTab(num) self.allowChange = True if num == self.workspaceNum: self.mainWindow.kill() self.mainWindow = None else: self.workspaces[num].kill() del self.workspaceNames[num] del self.workspaces[num] if num == self.workspaceNum: if num == len(self.workspaces): self.workspaceNum = num - 1 if num < self.workspaceNum: self.workspaceNum -= 1 if self.workspaces: self.changeMainWindow(self.workspaceNames[self.workspaceNum]) else: self.logo.show() self.tabs.hide() self.updWorkspaceMenu() def updWorkspaceMenu(self): self.activemenu.clear() for i in self.workspaceNames: self.activemenu.addAction(i, lambda i=i: self.changeMainWindow(i)) self.menuCheck() def newWorkspace(self, masterData): name = self.askName() if name is None: raise SsnakeException("No name given") self.workspaces.append(Main1DWindow(self, masterData)) self.workspaces[-1].rename(name) self.tabs.addTab(self.workspaces[-1], name) self.workspaceNames.append(name) self.changeMainWindow(name) def createCombineWorkspaceWindow(self): CombineWorkspaceWindow(self) def createCombineLoadWindow(self): CombineLoadWindow(self) def combineWorkspace(self, combineNames): wsname = self.askName() if wsname is None: return i = self.workspaceNames.index(combineNames[0]) combineMasterData = copy.deepcopy(self.workspaces[i].get_masterData()) shapeRequired = combineMasterData.shape() hyperShape = len(combineMasterData.data) combineMasterData.split(1, -1) for name in combineNames[1:]: i = self.workspaceNames.index(name) addData = self.workspaces[i].get_masterData() if addData.shape() != shapeRequired: raise SsnakeException("Not all the data has the same shape") if len(addData.data) != hyperShape: raise SsnakeException("Not all the data has the same hypercomplex shape") combineMasterData.insert(addData.data, combineMasterData.shape()[0], 0) self.workspaces.append(Main1DWindow(self, combineMasterData)) self.workspaces[-1].rename(wsname) self.tabs.addTab(self.workspaces[-1], wsname) self.workspaceNames.append(wsname) self.changeMainWindow(wsname) def loadFromMenu(self): fileList = QtWidgets.QFileDialog.getOpenFileNames(self, 'Open File', self.lastLocation) if isinstance(fileList, tuple): fileList = fileList[0] self.loadData(fileList) def loadData(self, fileList): for filePath in fileList: if filePath: # if not cancelled self.lastLocation = os.path.dirname(filePath) # Save used path if not filePath: return masterData = io.autoLoad(filePath) if masterData is None: raise SsnakeException("Could not load data") if masterData == -1: dialog = AsciiLoadWindow(self, filePath) if dialog.exec_(): if dialog.closed: return asciiInfo = (dialog.dataDimension, dialog.dataOrder, dialog.dataSpec, dialog.delim, dialog.sw, dialog.axisMulti) masterData = io.autoLoad(filePath, [asciiInfo]) if self.defaultAskName: name = self.askName(filePath, masterData.name) if name is None: return else: name = masterData.name count = 0 while name in self.workspaceNames: name = 'spectrum' + str(count) count += 1 masterData.rename(name) if masterData is not None: self.workspaces.append(Main1DWindow(self, masterData)) self.tabs.addTab(self.workspaces[-1], name) self.workspaceNames.append(name) self.changeMainWindow(name) def loadFitLibDir(self): #fileName = QtWidgets.QFileDialog.getExistingDirectory(self, 'Open Library Directory', self.lastLocation) fileName = QtWidgets.QFileDialog.getOpenFileName(self, 'Open Library File', self.lastLocation) if isinstance(fileName, tuple): fileName = fileName[0] return fileName def loadSIMPSONScript(self): fileName = QtWidgets.QFileDialog.getOpenFileName(self, 'Open SIMPSON Script', self.lastLocation) if isinstance(fileName, tuple): fileName = fileName[0] return fileName def loadAndCombine(self, filePathList): masterData = io.autoLoad(filePathList) wsname = self.askName() if wsname is None: return masterData.rename(wsname) self.workspaces.append(Main1DWindow(self, masterData)) self.workspaces[-1].rename(wsname) self.tabs.addTab(self.workspaces[-1], wsname) self.workspaceNames.append(wsname) self.changeMainWindow(wsname) def dataFromFit(self, data, filePath, freq, sw, spec, wholeEcho, ref, xaxArray, axes): name = self.askName() if name is None: return masterData = sc.Spectrum(data, filePath, freq, sw, spec, wholeEcho, ref, xaxArray, history=['Data obtained from fit'], name=name) masterData.resetXax(axes) self.workspaces.append(Main1DWindow(self, masterData)) self.tabs.addTab(self.workspaces[-1], name) self.workspaceNames.append(name) self.changeMainWindow(name) def saveSimpsonFile(self): self.mainWindow.get_mainWindow().SaveSimpsonFile() def saveASCIIFile(self): self.mainWindow.get_mainWindow().saveASCIIFile() def saveJSONFile(self): self.mainWindow.get_mainWindow().saveJSONFile() def saveMatlabFile(self): self.mainWindow.get_mainWindow().saveMatlabFile() def saveFigure(self): if self.mainWindow is None: return self.allowChange = False self.menuEnable(False, True) num = self.workspaces.index(self.mainWindow) self.mainWindow = SaveFigureWindow(self, self.mainWindow) self.tabs.removeTab(num) self.tabs.insertTab(num, self.mainWindow, self.workspaceNames[num]) self.workspaces[num] = self.mainWindow self.tabs.setCurrentIndex(num) self.menuCheck() self.allowChange = True def closeSaveFigure(self, mainWindow): self.allowChange = False num = self.workspaces.index(self.mainWindow) self.tabs.removeTab(num) self.mainWindow = mainWindow self.workspaces[num] = self.mainWindow self.tabs.insertTab(num, self.mainWindow, self.workspaceNames[num]) self.tabs.setCurrentIndex(num) self.menuEnable(True, True) self.tabs.setCurrentIndex(num) self.menuCheck() self.allowChange = True def createFitWindow(self, fitWindow): if self.mainWindow is None: return self.allowChange = False self.menuEnable(False, True) num = self.workspaces.index(self.mainWindow) self.tabs.removeTab(num) self.mainWindow = fitWindow self.tabs.insertTab(num, self.mainWindow, self.workspaceNames[num]) self.workspaces[num] = self.mainWindow self.tabs.setCurrentIndex(num) self.menuCheck() self.allowChange = True def closeFitWindow(self, mainWindow): self.allowChange = False num = self.workspaces.index(self.mainWindow) self.tabs.removeTab(num) del self.mainWindow self.mainWindow = mainWindow self.workspaces[num] = self.mainWindow self.tabs.insertTab(num, self.mainWindow, self.workspaceNames[num]) self.menuEnable(True, True) self.tabs.setCurrentIndex(num) self.menuCheck() self.allowChange = True def updateMenu(self): UpdateWindow(self) def createShiftConversionWindow(self): shiftConversionWindow(self) def createDipolarDistanceWindow(self): dipolarDistanceWindow(self) def createQuadConversionWindow(self): quadConversionWindow(self) def createMqmasExtractWindow(self): mqmasExtractWindow(self) def createTempcalWindow(self): tempCalWindow(self) def nmrTable(self): import nmrTable nmrTable.PeriodicTable() def fileQuit(self): self.close() def closeEvent(self, event): quit_msg = "Are you sure you want to close ssNake?" close = True if len(self.workspaces) != 0: close = QtWidgets.QMessageBox.Yes == QtWidgets.QMessageBox.question(self, 'Close', quit_msg, QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) if close: for item in fit.stopDict.keys(): # Send stop commands to all threads fit.stopDict[item] = True event.accept() else: event.ignore() ###################################################################################################### class Main1DWindow(QtWidgets.QWidget): def __init__(self, father, masterData, duplicateCurrent=None): super(Main1DWindow, self).__init__(father) self.fig = Figure() self.canvas = FigureCanvas(self.fig) grid = QtWidgets.QGridLayout(self) grid.addWidget(self.canvas, 0, 0) self.currentMacro = None self.redoMacro = [] self.monitor = None # Monitor of files self.monitorMacros = [] self.father = father self.masterData = masterData if duplicateCurrent is not None: self.current = duplicateCurrent.copyCurrent(self, self.fig, self.canvas, masterData) else: self.current = views.Current1D(self, self.fig, self.canvas, masterData) self.menubar = self.father.menubar self.sideframe = SideFrame(self) grid.addWidget(self.sideframe, 0, 1) self.bottomframe = BottomFrame(self) grid.addWidget(self.bottomframe, 1, 0, 1, 2) self.textframe = TextFrame(self) grid.addWidget(self.textframe, 2, 0, 1, 2) grid.setColumnStretch(0, 1) grid.setRowStretch(0, 1) self.grid = grid self.canvas.mpl_connect('button_press_event', self.buttonPress) self.canvas.mpl_connect('button_release_event', self.buttonRelease) self.canvas.mpl_connect('motion_notify_event', self.pan) self.canvas.mpl_connect('scroll_event', self.scroll) self.canvas.setFocusPolicy(QtCore.Qt.ClickFocus) self.canvas.setFocus() def rename(self, name): self.current.rename(name) def buttonPress(self, event): self.current.buttonPress(event) def buttonRelease(self, event): self.current.buttonRelease(event) def pan(self, event): self.current.pan(event) def scroll(self, event): self.current.scroll(event) def get_mainWindow(self): return self def get_masterData(self): return self.masterData def get_current(self): return self.current def kill(self): self.current.kill() del self.current del self.masterData del self.canvas del self.fig # fig is destroyed for i in reversed(range(self.grid.count())): self.grid.itemAt(i).widget().deleteLater() self.grid.deleteLater() self.bottomframe.kill() del self.bottomframe self.textframe.kill() del self.textframe self.sideframe.kill() del self.sideframe self.deleteLater() gc.collect() def rescue(self): self.current.kill() self.current = views.Current1D(self, self.current.fig, self.current.canvas, self.masterData) def menuEnable(self, enable=True): self.father.menuEnable(enable) self.sideframe.frameEnable(enable) self.bottomframe.frameEnable(enable) self.textframe.frameEnable(enable) if enable: self.menuCheck() def menuCheck(self): self.father.menuCheck() def runMacro(self, macro, display=True): for i, _ in enumerate(macro): iter1 = macro[i] # Do not loop over the macro list itself to prevent recursion if the running macro is also the one being recorded self.addMacro(iter1) try: getattr(self.masterData, iter1[0])(*iter1[1]) except AttributeError: raise SsnakeException('unknown macro command: ' + iter1[0]) if display: self.current.upd() # get the first slice of data self.current.showFid() # plot the data self.current.plotReset() # reset the axes limits self.updAllFrames() self.menuCheck() def addMacro(self, macroStep): if self.currentMacro is not None: self.father.macroAdd(self.currentMacro, macroStep) self.redoMacro = [] def saveJSONFile(self): WorkspaceName = self.father.workspaceNames[self.father.workspaceNum] # Set name of file to be saved to workspace name to start name = QtWidgets.QFileDialog.getSaveFileName(self, 'Save File', self.father.lastLocation + os.path.sep + WorkspaceName + '.json', 'JSON (*.json)') if isinstance(name, tuple): name = name[0] if not name: return self.father.lastLocation = os.path.dirname(name) # Save used path io.saveJSONFile(name, self.masterData) def saveMatlabFile(self): WorkspaceName = self.father.workspaceNames[self.father.workspaceNum] # Set name of file to be saved to workspace name to start name = QtWidgets.QFileDialog.getSaveFileName(self, 'Save File', self.father.lastLocation + os.path.sep + WorkspaceName + '.mat', 'MATLAB file (*.mat)') if isinstance(name, tuple): name = name[0] if not name: return self.father.lastLocation = os.path.dirname(name) # Save used path io.saveMatlabFile(name, self.masterData, self.father.workspaceNames[self.father.workspaceNum]) def SaveSimpsonFile(self): if self.masterData.ndim() > 2: raise SsnakeException('Saving to Simpson format only allowed for 1D and 2D data!') WorkspaceName = self.father.workspaceNames[self.father.workspaceNum] # Set name of file to be saved to workspace name to start if sum(self.masterData.spec) / len(self.masterData.spec) == 1: name = QtWidgets.QFileDialog.getSaveFileName(self, 'Save File', self.father.lastLocation + os.path.sep + WorkspaceName + '.spe', 'SIMPSON file (*.spe)') if isinstance(name, tuple): name = name[0] if not name: return elif sum(self.masterData.spec) == 0: name = QtWidgets.QFileDialog.getSaveFileName(self, 'Save File', self.father.lastLocation + os.path.sep + WorkspaceName + '.fid', 'SIMPSON file (*.fid)') if isinstance(name, tuple): name = name[0] if not name: return else: raise SsnakeException('Saving to Simpson format not allowed for mixed time/frequency domain data!') self.father.lastLocation = os.path.dirname(name) # Save used path io.saveSimpsonFile(name, self.masterData) def saveASCIIFile(self): if self.masterData.ndim() > 2: raise SsnakeException('Saving to ASCII format only allowed for 1D and 2D data!') WorkspaceName = self.father.workspaceNames[self.father.workspaceNum] # Set name of file to be saved to workspace name to start name = QtWidgets.QFileDialog.getSaveFileName(self, 'Save File', self.father.lastLocation + os.path.sep + WorkspaceName + '.txt', 'ASCII file (*.txt)') if isinstance(name, tuple): name = name[0] if not name: return self.father.lastLocation = os.path.dirname(name) # Save used path axMult = self.current.getCurrentAxMult() io.saveASCIIFile(name, self.masterData, axMult) def reloadLast(self): self.current.reload() self.updAllFrames() self.menuCheck() gc.collect() def monitorLoad(self, filePath, delay=0.5): self.monitor.blockSignals(True) if not os.path.exists(filePath): self.stopMonitor() return loadData = io.autoLoad(*self.masterData.filePath) self.masterData.restoreData(loadData, None) for name in self.monitorMacros: self.runMacro(self.father.macros[name], display=False) self.current.upd() # self.current.plotReset() self.current.showFid() self.updAllFrames() self.menuCheck() QtCore.QTimer.singleShot(delay * 1000, lambda: self.monitor.blockSignals(False)) if filePath in self.monitor.files() or filePath in self.monitor.directories(): return self.monitor.addPath(filePath) def startMonitor(self, macroNames, delay=0.5): self.monitorMacros = macroNames self.monitor = QtCore.QFileSystemWatcher(self.masterData.filePath[0], self) self.monitor.fileChanged.connect(lambda a: self.monitorLoad(a, delay)) self.monitor.directoryChanged.connect(lambda a: self.monitorLoad(a, delay)) def stopMonitor(self): self.monitorMacros = [] if self.monitor is not None: for name in self.masterData.filePath[0]: self.monitor.removePath(name) self.monitor = None def real(self): self.current.real() self.sideframe.upd() self.menuCheck() def imag(self): self.current.imag() self.sideframe.upd() self.menuCheck() def abs(self): self.current.abs() self.sideframe.upd() self.menuCheck() def conj(self): self.current.conj() self.sideframe.upd() self.menuCheck() def fourier(self): self.current.complexFourier() self.bottomframe.upd() self.menuCheck() def realFourier(self): self.current.realFourier() self.bottomframe.upd() self.menuCheck() def fftshift(self): self.current.fftshift() self.updAllFrames() self.menuCheck() def invFftshift(self): self.current.fftshift(inv=True) self.updAllFrames() self.menuCheck() def diff(self): self.current.diff() self.updAllFrames() self.menuCheck() def cumsum(self): self.current.cumsum() self.updAllFrames() self.menuCheck() def hilbert(self): self.current.hilbert() self.menuCheck() def states(self): self.current.states() self.updAllFrames() self.menuCheck() def statesTPPI(self): self.current.statesTPPI() self.updAllFrames() self.menuCheck() def echoAntiEcho(self): self.current.echoAntiEcho() self.updAllFrames() self.menuCheck() def setFreq(self, freq, sw): self.current.setFreq(freq, sw) self.menuCheck() def flipLR(self): self.current.flipLR() self.menuCheck() def directAutoPhase(self, phaseNum): self.current.directAutoPhase(phaseNum) self.menuCheck() def autoPhaseAll(self, phaseNum): self.current.autoPhaseAll(phaseNum) self.menuCheck() def CorrectDigitalFilter(self): if self.current.data.dFilter is None: raise SsnakeException('Digital filter: no value defined') self.current.correctDFilter() self.menuCheck() def createRelaxWindow(self): self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'relax')) def createDiffusionWindow(self): self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'diffusion')) def createPeakDeconvWindow(self): self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'peakdeconv')) def createCsaDeconvWindow(self): self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'csadeconv')) def createQuadDeconvWindow(self): if self.current.freq() == 0.0: raise SsnakeException("Please set the spectrometer frequency first!") self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'quaddeconv')) def createQuadCSADeconvWindow(self): if self.current.freq() == 0.0: raise SsnakeException("Please set the spectrometer frequency first!") self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'quadcsadeconv')) def createQuadCzjzekWindow(self): if self.current.freq() == 0.0: raise SsnakeException("Please set the spectrometer frequency first!") self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'quadczjzek')) def createMQMASWindow(self): if self.masterData.ndim() < 2: raise SsnakeException("Data has not enough dimensions for MQMAS fitting") if self.current.freq() == 0.0: raise SsnakeException("Please set the spectrometer frequency first!") self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'mqmas')) def createMQMASCzjzekWindow(self): if self.masterData.ndim() < 2: raise SsnakeException("Data has not enough dimensions for MQMAS fitting") if self.current.freq() == 0.0: raise SsnakeException("Please set the spectrometer frequency first!") self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'mqmasczjzek')) def createExternalFitWindow(self): self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'external')) def createFunctionFitWindow(self): self.father.createFitWindow(fit.TabFittingWindow(self.father, self.father.mainWindow, 'function')) def plot1D(self): tmpcurrent = views.Current1D(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def plotScatter(self): tmpcurrent = views.CurrentScatter(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def plotStack(self): if len(self.masterData.shape()) < 2: raise SsnakeException("Data does not have enough dimensions") tmpcurrent = views.CurrentStacked(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def plotArray(self): if len(self.masterData.shape()) < 2: raise SsnakeException("Data does not have enough dimensions") tmpcurrent = views.CurrentArrayed(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def plotContour(self): if len(self.masterData.shape()) < 2: raise SsnakeException("Data does not have enough dimensions") tmpcurrent = views.CurrentContour(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def plotMultiContour(self): if len(self.masterData.shape()) < 2: raise SsnakeException("Data does not have enough dimensions") tmpcurrent = views.CurrentMultiContour(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def plotColour2D(self): if len(self.masterData.shape()) < 2: raise SsnakeException("Data does not have enough dimensions") tmpcurrent = views.CurrentColour2D(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def plotMulti(self): tmpcurrent = views.CurrentMulti(self, self.fig, self.canvas, self.masterData, self.current) self.current.kill() del self.current self.current = tmpcurrent self.updAllFrames() self.menuCheck() def updAllFrames(self): self.sideframe.upd() self.bottomframe.upd() self.textframe.upd() def undo(self, *args): self.father.dispMsg(self.masterData.undo()) self.current.upd() self.current.showFid() self.current.plotReset() self.updAllFrames() if self.currentMacro is not None: self.redoMacro.append(self.father.macros[self.currentMacro].pop()) self.menuCheck() def redo(self, *args): self.masterData.redo() self.current.upd() self.current.showFid() self.current.plotReset() self.updAllFrames() if self.currentMacro is not None: self.father.macroAdd(self.currentMacro, self.redoMacro.pop()) self.menuCheck() def clearUndo(self): self.masterData.clearUndo() self.menuCheck() ######################################################################################## class SideFrame(QtWidgets.QScrollArea): FITTING = False def __init__(self, parent): super(SideFrame, self).__init__(parent) self.father = parent self.entries = [] self.plotIs2D = False content = QtWidgets.QWidget() grid = QtWidgets.QGridLayout(content) grid.setSizeConstraint(QtWidgets.QLayout.SetFixedSize) frame1Widget = QtWidgets.QWidget() frame2Widget = QtWidgets.QWidget() grid.addWidget(frame1Widget, 0, 0) grid.addWidget(frame2Widget, 1, 0) self.frame1 = QtWidgets.QGridLayout() self.frame2 = QtWidgets.QGridLayout() frame1Widget.setLayout(self.frame1) frame2Widget.setLayout(self.frame2) self.frame1.setAlignment(QtCore.Qt.AlignTop) self.frame2.setAlignment(QtCore.Qt.AlignTop) self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.grid = grid self.setWidget(content) self.upd() def kill(self): for i in reversed(range(self.grid.count())): self.grid.itemAt(i).widget().deleteLater() self.grid.deleteLater() def frameEnable(self, enable=True): self.setEnabled(enable) def upd(self): current = self.father.current self.shape = current.data.shape() self.length = len(self.shape) for i in reversed(range(self.frame1.count())): item = self.frame1.itemAt(i).widget() if self.FITTING: item.hide() self.frame1.removeWidget(item) item.deleteLater() for i in reversed(range(self.frame2.count())): item = self.frame2.itemAt(i).widget() if self.FITTING: item.hide() self.frame2.removeWidget(item) item.deleteLater() offset = 0 self.plotIs2D = isinstance(current, views.CurrentStacked) if self.plotIs2D: offset = 1 self.entries = [] self.buttons1 = [] self.buttons1Group = QtWidgets.QButtonGroup(self) self.buttons1Group.buttonClicked.connect(lambda: self.setAxes(True)) self.buttons2 = [] self.buttons2Group = QtWidgets.QButtonGroup(self) self.buttons2Group.buttonClicked.connect(lambda: self.setAxes(False)) if self.length > 1: for num in range(self.length): if not self.FITTING: self.buttons1.append(QtWidgets.QRadioButton('')) self.buttons1Group.addButton(self.buttons1[num], num) self.buttons1[num].setToolTip(TOOLTIPS['sideframeDimension1']) self.frame1.addWidget(self.buttons1[num], num * 2 + 1, 0) if self.plotIs2D: self.buttons2.append(QtWidgets.QRadioButton('')) self.buttons2Group.addButton(self.buttons2[num], num) self.buttons2[num].setToolTip(TOOLTIPS['sideframeDimension2']) self.frame1.addWidget(self.buttons2[num], num * 2 + 1, 1) if current.isComplex(num): tmpLabel = "*D" else: tmpLabel = "D" self.frame1.addWidget(wc.QLabel(tmpLabel + str(num + 1), self), num * 2, 1 + offset) self.entries.append(wc.SliceSpinBox(self, 0, self.shape[num] - 1)) self.entries[-1].setToolTip(TOOLTIPS['sideFrameDimensionSlice']) self.frame1.addWidget(self.entries[num], num * 2 + 1, 1 + offset) if not self.plotIs2D: self.entries[num].setValue(current.locList[num]) else: self.entries[num].setValue(current.locList[num]) if self.FITTING and num in current.axes: self.entries[num].setDisabled(True) self.entries[num].valueChanged.connect(lambda event, num=num: self.getSlice(num)) if type(current) in (views.CurrentStacked, views.CurrentArrayed): if current.viewSettings["stackBegin"] is not None: from2D = current.viewSettings["stackBegin"] else: from2D = 0 if current.viewSettings["stackEnd"] is not None: to2D = current.viewSettings["stackEnd"] else: to2D = self.shape[current.axes[-2]] if current.viewSettings["stackStep"] is not None: step2D = current.viewSettings["stackStep"] else: step2D = 1 self.frame2.addWidget(wc.QLabel("From", self), 1, 0) self.fromSpin = wc.SliceSpinBox(self, 0, to2D - 1) self.fromSpin.setToolTip(TOOLTIPS['sideFrom']) self.frame2.addWidget(self.fromSpin, 2, 0) self.fromSpin.setValue(from2D) self.fromSpin.valueChanged.connect(self.setToFrom) self.frame2.addWidget(wc.QLabel("To", self), 3, 0) self.toSpin = wc.SliceSpinBox(self, from2D + 1, self.shape[current.axes[-2]]) self.toSpin.setToolTip(TOOLTIPS['sideTo']) self.frame2.addWidget(self.toSpin, 4, 0) self.toSpin.setValue(to2D) self.toSpin.valueChanged.connect(self.setToFrom) self.frame2.addWidget(wc.QLabel("Step", self), 5, 0) self.stepSpin = wc.SliceSpinBox(self, 1, self.shape[current.axes[-2]]) self.stepSpin.setToolTip(TOOLTIPS['stackStep']) self.frame2.addWidget(self.stepSpin, 6, 0) self.stepSpin.setValue(step2D) self.stepSpin.valueChanged.connect(self.setToFrom) self.frame2.addWidget(wc.QLabel("Spacing", self), 7, 0) self.spacingEntry = QtWidgets.QLineEdit(self) self.spacingEntry.setToolTip(TOOLTIPS['stackSpacing']) self.spacingEntry.setText('%#.3g' % current.viewSettings["spacing"]) self.spacingEntry.returnPressed.connect(self.setSpacing) self.frame2.addWidget(self.spacingEntry, 8, 0) if isinstance(current, (views.CurrentContour)): if type(current) in (views.CurrentContour, views.CurrentMultiContour): self.contourTypeGroup = QtWidgets.QGroupBox('Contour type:') self.contourTypeFrame = QtWidgets.QGridLayout() self.contourNumberLabel = wc.QLeftLabel("Number:", self) self.contourTypeFrame.addWidget(self.contourNumberLabel, 0, 0) self.numLEntry = wc.SsnakeSpinBox() self.numLEntry.setMaximum(100000) self.numLEntry.setMinimum(1) self.numLEntry.setToolTip(TOOLTIPS['contourNumber']) self.numLEntry.setValue(current.viewSettings["numLevels"]) self.numLEntry.valueChanged.connect(self.setContour) self.contourTypeFrame.addWidget(self.numLEntry, 0, 1) self.contourTypeFrame.addWidget(wc.QLeftLabel("Sign:", self), 1, 0) self.contourSignEntry = QtWidgets.QComboBox() self.contourSignEntry.setToolTip(TOOLTIPS['contourSign']) self.contourSignEntry.addItems(['Both', '+ only', '- only']) self.contourSignEntry.setCurrentIndex(current.viewSettings["contourSign"]) self.contourSignEntry.currentIndexChanged.connect(self.setContour) self.contourTypeFrame.addWidget(self.contourSignEntry, 1, 1) self.contourTypeLabel = wc.QLeftLabel("Type:", self) self.contourTypeFrame.addWidget(self.contourTypeLabel, 2, 0) self.contourTypeEntry = QtWidgets.QComboBox() self.contourTypeEntry.setToolTip(TOOLTIPS['contourType']) self.contourTypeEntry.addItems(['Linear', 'Multiplier']) self.contourTypeEntry.setCurrentIndex(current.viewSettings["contourType"]) self.contourTypeEntry.currentIndexChanged.connect(self.setContour) self.contourTypeFrame.addWidget(self.contourTypeEntry, 2, 1) self.multiValueLabel = wc.QLeftLabel("Multiplier:", self) self.contourTypeFrame.addWidget(self.multiValueLabel, 3, 0) self.multiValue = wc.QLineEdit(current.viewSettings["multiValue"], self.setContour) self.multiValue.setToolTip(TOOLTIPS['contourMultiplier']) self.multiValue.setMaximumWidth(120) self.contourTypeFrame.addWidget(self.multiValue, 3, 1) if current.viewSettings["contourType"] != 1: self.multiValueLabel.hide() self.multiValue.hide() self.contourTypeGroup.setLayout(self.contourTypeFrame) self.frame2.addWidget(self.contourTypeGroup, 6, 0, 1, 3) # Contour limits self.contourLimitsGroup = QtWidgets.QGroupBox('Contour limits [%]:') self.contourLimitsFrame = QtWidgets.QGridLayout() self.maxLEntry = wc.QLineEdit(format(current.viewSettings["maxLevels"] * 100.0, '.7g'), self.setContour) self.maxLEntry.setMaximumWidth(120) self.maxLEntry.setToolTip(TOOLTIPS['contourMax']) self.contourLimitsFrame.addWidget(self.maxLEntry, 1, 1) self.minLEntry = wc.QLineEdit(format(current.viewSettings["minLevels"] * 100.0, '.7g'), self.setContour) self.minLEntry.setMaximumWidth(120) self.minLEntry.setToolTip(TOOLTIPS['contourMin']) self.contourLimitsFrame.addWidget(self.minLEntry, 2, 1) self.contourLimType = QtWidgets.QComboBox() self.contourLimType.addItems(['Current 2D', 'Full data']) self.contourLimType.setCurrentIndex(current.viewSettings["limitType"]) self.contourLimType.setToolTip(TOOLTIPS['contourLimType']) self.contourLimType.currentIndexChanged.connect(self.setContour) self.contourLimitsFrame.addWidget(self.contourLimType, 0, 1) self.maxLabel = wc.QLeftLabel("Max:", self) self.minLabel = wc.QLeftLabel("Min:", self) self.relLabel = wc.QLeftLabel("Rel. to:", self) self.contourLimitsFrame.addWidget(self.relLabel, 0, 0) self.contourLimitsFrame.addWidget(self.maxLabel, 1, 0) self.contourLimitsFrame.addWidget(self.minLabel, 2, 0) self.contourLimitsGroup.setLayout(self.contourLimitsFrame) self.frame2.addWidget(self.contourLimitsGroup, 7, 0, 1, 3) # Projections self.contourProjGroup = QtWidgets.QGroupBox('Projections:') self.contourProjFrame = QtWidgets.QGridLayout() self.projTopLabel = wc.QLeftLabel("Top:", self) self.contourProjFrame.addWidget(self.projTopLabel, 0, 0) self.projDropTop = QtWidgets.QComboBox() self.projDropTop.setToolTip(TOOLTIPS['contourTopProjection']) self.projDropTop.addItems(["Sum", "Max", "Min", "Off", "Slice", "Diagonal"]) self.projDropTop.setCurrentIndex(current.viewSettings["projTop"]) self.projDropTop.activated.connect(lambda val, self=self: self.changeProj(val, 1)) self.contourProjFrame.addWidget(self.projDropTop, 0, 1) self.projTraceTop = wc.SsnakeSpinBox() self.projTraceTop.setMaximum(self.shape[current.axes[-2]] - 1) self.projTraceTop.setMinimum(0) self.projTraceTop.setValue(current.viewSettings["projPos"][0]) self.projTraceTop.valueChanged.connect(lambda val, self=self: self.changeTrace(val, 0)) self.projTraceTop.setToolTip(TOOLTIPS['contourProjTopTrac']) self.contourProjFrame.addWidget(self.projTraceTop, 1, 1) if current.viewSettings["projTop"] != 4: self.projTraceTop.hide() self.projRightLabel = wc.QLeftLabel("Right:", self) self.contourProjFrame.addWidget(self.projRightLabel, 2, 0) self.projDropRight = QtWidgets.QComboBox() self.projDropRight.setToolTip(TOOLTIPS['contourRightProjection']) self.projDropRight.addItems(["Sum", "Max", "Min", "Off", "Slice", "Diagonal"]) self.projDropRight.setCurrentIndex(current.viewSettings["projRight"]) self.projDropRight.activated.connect(lambda val, self=self: self.changeProj(val, 2)) self.contourProjFrame.addWidget(self.projDropRight, 2, 1) self.projTraceRight = wc.SsnakeSpinBox() self.projTraceRight.setMaximum(self.shape[current.axes[-1]] - 1) self.projTraceRight.setMinimum(0) self.projTraceRight.setValue(current.viewSettings["projPos"][1]) self.projTraceRight.valueChanged.connect(lambda val, self=self: self.changeTrace(val, 1)) self.projTraceRight.setToolTip(TOOLTIPS['contourProjRightTrac']) self.contourProjFrame.addWidget(self.projTraceRight, 3, 1) if current.viewSettings["projRight"] != 4: self.projTraceRight.hide() self.selectTraceButton = QtWidgets.QPushButton("Select slices", self) self.selectTraceButton.clicked.connect(self.selectTraces) self.contourProjFrame.addWidget(self.selectTraceButton, 4, 1) if (current.viewSettings["projTop"] != 4) and (current.viewSettings["projRight"] != 4): self.selectTraceButton.hide() # Ranges self.rangeCheckbox = QtWidgets.QCheckBox('Projection ranges', self) self.rangeCheckbox.setChecked(current.viewSettings["projLimitsBool"]) self.rangeCheckbox.stateChanged.connect(self.activateRanges) self.rangeCheckbox.setToolTip(TOOLTIPS['contourProjRanges']) self.contourProjFrame.addWidget(self.rangeCheckbox, 5, 0, 1, 2) self.projTopRangeMaxLabel = wc.QLeftLabel("Top max:", self) self.projTopRangeMaxLabel.hide() self.contourProjFrame.addWidget(self.projTopRangeMaxLabel, 6, 0) self.projTopRangeMax = wc.SsnakeSpinBox() self.projTopRangeMax.setMaximum(self.shape[current.axes[-2]] - 1) self.projTopRangeMax.setMinimum(0) self.projTopRangeMax.setToolTip(TOOLTIPS['contourTopRangeMax']) if current.viewSettings["projLimits"][0] is None: self.projTopRangeMax.setValue(self.shape[current.axes[-2]] - 1) else: self.projTopRangeMax.setValue(current.viewSettings["projLimits"][0]) self.projTopRangeMax.valueChanged.connect(self.changeRanges) self.projTopRangeMax.hide() self.contourProjFrame.addWidget(self.projTopRangeMax, 6, 1) self.projTopRangeMinLabel = wc.QLeftLabel("Top min:", self) self.projTopRangeMinLabel.hide() self.contourProjFrame.addWidget(self.projTopRangeMinLabel, 7, 0) self.projTopRangeMin = wc.SsnakeSpinBox() self.projTopRangeMin.setMaximum(self.shape[current.axes[-2]] - 1) self.projTopRangeMin.setMinimum(0) self.projTopRangeMin.setToolTip(TOOLTIPS['contourTopRangeMin']) if current.viewSettings["projLimits"][1] is None: self.projTopRangeMin.setValue(0) else: self.projTopRangeMin.setValue(current.viewSettings["projLimits"][1]) self.projTopRangeMin.valueChanged.connect(self.changeRanges) self.projTopRangeMin.hide() self.contourProjFrame.addWidget(self.projTopRangeMin, 7, 1) self.projRightRangeMaxLabel = wc.QLeftLabel("Right max:", self) self.projRightRangeMaxLabel.hide() self.contourProjFrame.addWidget(self.projRightRangeMaxLabel, 8, 0) self.projRightRangeMax = wc.SsnakeSpinBox() self.projRightRangeMax.setMaximum(self.shape[current.axes[-1]] - 1) self.projRightRangeMax.setMinimum(0) self.projRightRangeMax.setToolTip(TOOLTIPS['contourRightRangeMax']) if current.viewSettings["projLimits"][2] is None: self.projRightRangeMax.setValue(self.shape[current.axes[-1]] - 1) else: self.projRightRangeMax.setValue(current.viewSettings["projLimits"][2]) self.projRightRangeMax.valueChanged.connect(self.changeRanges) self.projRightRangeMax.hide() self.contourProjFrame.addWidget(self.projRightRangeMax, 8, 1) self.projRightRangeMinLabel = wc.QLeftLabel("Right min:", self) self.contourProjFrame.addWidget(self.projRightRangeMinLabel, 9, 0) self.projRightRangeMinLabel.hide() self.projRightRangeMin = wc.SsnakeSpinBox() self.projRightRangeMin.setMaximum(self.shape[current.axes[-1]] - 1) self.projRightRangeMin.setMinimum(0) self.projRightRangeMin.setToolTip(TOOLTIPS['contourRightRangeMin']) if current.viewSettings["projLimits"][3] is None: self.projRightRangeMin.setValue(0) else: self.projRightRangeMin.setValue(current.viewSettings["projLimits"][3]) self.projRightRangeMin.valueChanged.connect(self.changeRanges) self.projRightRangeMin.hide() self.contourProjFrame.addWidget(self.projRightRangeMin, 9, 1) self.contourProjGroup.setLayout(self.contourProjFrame) self.frame2.addWidget(self.contourProjGroup, 9, 0, 1, 3) self.activateRanges(self.rangeCheckbox.checkState()) # Diagonal group self.diagonalGroup = QtWidgets.QGroupBox('Diagonal:') self.diagonalGroup.setCheckable(True) self.diagonalGroup.setChecked(current.viewSettings["diagonalBool"]) self.diagonalGroup.toggled.connect(self.switchDiagonal) self.diagonalGroup.setToolTip(TOOLTIPS['contourDiagonal']) self.diagonalFrame = QtWidgets.QGridLayout() self.diagMultiLabel = wc.QLeftLabel("Multiplier:", self) self.diagonalFrame.addWidget(self.diagMultiLabel, 0, 0) self.diagonalEntry = wc.QLineEdit(current.viewSettings["diagonalMult"], self.setDiagonal) self.diagonalEntry.setMaximumWidth(120) self.diagonalEntry.setToolTip(TOOLTIPS['contourDiagonalMulti']) self.diagonalFrame.addWidget(self.diagonalEntry, 0, 1) self.diagonalGroup.setLayout(self.diagonalFrame) self.frame2.addWidget(self.diagonalGroup, 10, 0, 1, 3) if not self.FITTING: self.buttons1Group.button(current.axes[-1]).toggle() if self.plotIs2D: self.buttons2Group.button(current.axes[-2]).toggle() if isinstance(current, (views.CurrentMulti, views.CurrentMultiContour)): self.extraEntries = [] self.extraButtons1 = [] self.extraButtons1Group = [] self.extraButtons2 = [] self.extraButtons2Group = [] self.nameLabels = [] iter1 = 0 for i in range(len(current.viewSettings["extraData"])): frameWidget = QtWidgets.QWidget(self) frame = QtWidgets.QGridLayout(frameWidget) self.frame2.addWidget(frameWidget, iter1, 0) frameWidget.setLayout(frame) name = current.viewSettings["extraName"][i] if len(name) > 20: name = name[:20] self.nameLabels.append(wc.QLabel(name, self)) frame.addWidget(self.nameLabels[i], 0, 0, 1, 3) self.nameLabels[i].setStyleSheet("QLabel { color: rgb" + str(current.getExtraColor(i)) + ";}") colorbutton = QtWidgets.QPushButton("Colour", self) colorbutton.clicked.connect(lambda arg, num=i: self.setExtraColor(num)) colorbutton.setToolTip(TOOLTIPS['multiplotColour']) frame.addWidget(colorbutton, 1, 0) button = QtWidgets.QPushButton("x", self) button.clicked.connect(lambda arg, num=i: self.delMultiSpec(num)) button.setToolTip(TOOLTIPS['multiplotX']) if isinstance(current, (views.CurrentMulti)): frame.addWidget(button, 1, 1) self.OOM = self.father.current.getOOM() # Order of Magnitude self.scaleLabel = wc.QLeftLabel("Scale:", self) frame.addWidget(self.scaleLabel, 2, 0) self.offsetLabel = wc.QLeftLabel(u"Offset (×1e" + str(self.OOM) + "):", self) frame.addWidget(self.offsetLabel, 3, 0) self.shiftLabel = wc.QLeftLabel("Shift:", self) frame.addWidget(self.shiftLabel, 4, 0) scaleEntry = wc.SsnakeDoubleSpinBox() scaleEntry.setDecimals(4) scaleEntry.setMaximum(1e3) scaleEntry.setMinimum(-1e3) scaleEntry.setSingleStep(0.1) scaleEntry.setValue(self.father.current.viewSettings["extraScale"][i]) scaleEntry.valueChanged.connect(lambda arg, num=i: self.setScale(arg, num)) scaleEntry.setToolTip(TOOLTIPS['multiplotScale']) frame.addWidget(scaleEntry, 2, 1) offsetEntry = wc.SsnakeDoubleSpinBox() offsetEntry.setDecimals(4) offsetEntry.setMaximum(1e3) offsetEntry.setMinimum(-1e3) offsetEntry.setSingleStep(0.1) offsetEntry.setValue(self.father.current.viewSettings["extraOffset"][i] / (10**self.OOM)) offsetEntry.valueChanged.connect(lambda arg, num=i: self.setOffset(arg, num)) offsetEntry.setToolTip(TOOLTIPS['multiplotOffset']) frame.addWidget(offsetEntry, 3, 1) shiftEntry = wc.SsnakeDoubleSpinBox() shiftEntry.setDecimals(4) shiftEntry.setMaximum(1e3) shiftEntry.setMinimum(-1e3) shiftEntry.setSingleStep(0.1) shiftEntry.setValue(self.father.current.viewSettings["extraShift"][i]) shiftEntry.valueChanged.connect(lambda arg, num=i: self.setShift(arg, num)) shiftEntry.setToolTip(TOOLTIPS['multiplotShift1']) frame.addWidget(shiftEntry, 4, 1) elif isinstance(current, (views.CurrentMultiContour)): frame.addWidget(button, 1, 1, 1, 2) self.OOM = self.father.current.getOOM() # Order of Magnitude self.scaleLabel = wc.QLeftLabel("Scale:", self) frame.addWidget(self.scaleLabel, 2, 0) self.shift1Label = wc.QLeftLabel("x Shift:", self) frame.addWidget(self.shift1Label, 3, 0) self.shift2Label = wc.QLeftLabel("y Shift:", self) frame.addWidget(self.shift2Label, 4, 0) scaleEntry = wc.SsnakeDoubleSpinBox() scaleEntry.setDecimals(4) scaleEntry.setMaximum(1e3) scaleEntry.setMinimum(-1e3) scaleEntry.setSingleStep(0.1) scaleEntry.setValue(self.father.current.viewSettings["extraScale"][i]) scaleEntry.valueChanged.connect(lambda arg, num=i: self.setScale(arg, num)) scaleEntry.setToolTip(TOOLTIPS['multiplotScale']) frame.addWidget(scaleEntry, 2, 1, 1, 2) shiftEntry = wc.SsnakeDoubleSpinBox() shiftEntry.setDecimals(4) shiftEntry.setMaximum(1e3) shiftEntry.setMinimum(-1e3) shiftEntry.setSingleStep(0.1) shiftEntry.setValue(self.father.current.viewSettings["extraShift"][i]) shiftEntry.valueChanged.connect(lambda arg, num=i: self.setShift(arg, num)) shiftEntry.setToolTip(TOOLTIPS['multiplotShift1']) frame.addWidget(shiftEntry, 3, 1, 1, 2) shiftEntry = wc.SsnakeDoubleSpinBox() shiftEntry.setDecimals(4) shiftEntry.setMaximum(1e3) shiftEntry.setMinimum(-1e3) shiftEntry.setSingleStep(0.1) shiftEntry.setValue(self.father.current.viewSettings["extraShift2"][i]) shiftEntry.valueChanged.connect(lambda arg, num=i: self.setShift2(arg, num)) shiftEntry.setToolTip(TOOLTIPS['multiplotShift2']) frame.addWidget(shiftEntry, 4, 1, 1, 2) entries = [] self.extraEntries.append(entries) buttons1 = [] self.extraButtons1.append(buttons1) self.extraButtons1Group.append(QtWidgets.QButtonGroup(self)) self.extraButtons1Group[i].buttonClicked.connect(lambda: self.setExtraAxes(True)) buttons2 = [] self.extraButtons2.append(buttons1) self.extraButtons2Group.append(QtWidgets.QButtonGroup(self)) self.extraButtons2Group[i].buttonClicked.connect(lambda: self.setExtraAxes(False)) if current.viewSettings["extraData"][i].ndim() > 1: for num in range(current.viewSettings["extraData"][i].ndim()): offset = 0 buttons1.append(QtWidgets.QRadioButton('')) buttons1[-1].setToolTip(TOOLTIPS['multiplotDim1']) self.extraButtons1Group[i].addButton(buttons1[num], num) frame.addWidget(buttons1[num], num * 3 + 6, 0) if self.plotIs2D: offset = 1 buttons2.append(QtWidgets.QRadioButton('')) buttons2[-1].setToolTip(TOOLTIPS['multiplotDim2']) self.extraButtons2Group[i].addButton(buttons2[num], num) frame.addWidget(buttons2[num], num * 3 + 6, 1) frame.addWidget(wc.QLabel("D" + str(num + 1), self), num * 3 + 5, 1 + offset) entries.append(wc.SliceSpinBox(self, 0, current.viewSettings["extraData"][i].shape()[num] - 1)) entries[-1].setToolTip(TOOLTIPS['sideFrameDimensionSlice']) frame.addWidget(entries[num], num * 3 + 6, 1 + offset) entries[num].setValue(current.viewSettings["extraLoc"][i][num]) entries[num].valueChanged.connect(lambda event, num=num, i=i: self.getExtraSlice(num, i)) self.extraButtons1Group[i].button(current.viewSettings["extraAxes"][i][-1]).toggle() if self.plotIs2D: self.extraButtons2Group[i].button(current.viewSettings["extraAxes"][i][-2]).toggle() iter1 += 1 addButton = QtWidgets.QPushButton("Add plot", self) addButton.setToolTip(TOOLTIPS['multiplotAddPlot']) addButton.clicked.connect(self.addMultiSpec) self.frame2.addWidget(addButton, iter1, 0, 1, 2) QtCore.QTimer.singleShot(100, self.resizeAll) def resizeAll(self): self.setMinimumWidth(self.grid.sizeHint().width() + self.verticalScrollBar().sizeHint().width()) def setToFrom(self, *args): current = self.father.current if not (type(current) is views.CurrentStacked or type(current) is views.CurrentArrayed): return fromVar = self.fromSpin.value() toVar = self.toSpin.value() stepVar = self.stepSpin.value() current.stackSelect(fromVar, toVar, stepVar) self.fromSpin.setMaximum(toVar - 1) self.toSpin.setMinimum(fromVar + 1) def scrollSpacing(self, var): self.spacingEntry.setText('%#.3g' % var) def setSpacing(self, *args): var = safeEval(self.spacingEntry.text(), length=self.father.current.len(), Type='FI') self.spacingEntry.setText('%#.3g' % var) self.father.current.setSpacing(var) def setContour(self, *args): var1 = self.numLEntry.value() maxC = safeEval(self.maxLEntry.text(), length=self.father.current.len(), Type='FI') if maxC is None: maxC = self.father.current.viewSettings["maxLevels"] * 100 self.father.father.dispMsg('Invalid value for contour maximum') else: maxC = abs(float(maxC)) minC = safeEval(self.minLEntry.text(), length=self.father.current.len(), Type='FI') if minC is None: minC = self.father.current.viewSettings["minLevels"] * 100 self.father.father.dispMsg('Invalid value for contour minimum') else: minC = abs(float(minC)) if minC > maxC: # if wrong order, interchange maxC, minC = (minC, maxC) self.maxLEntry.setText(str(maxC)) self.minLEntry.setText(str(minC)) cSign = self.contourSignEntry.currentIndex() cType = self.contourTypeEntry.currentIndex() if cType == 0: self.multiValue.hide() self.multiValueLabel.hide() else: self.multiValue.show() self.multiValueLabel.show() multi = safeEval(self.multiValue.text(), length=self.father.current.len(), Type='FI') if multi is None or multi <= 1.0: multi = self.father.current.viewSettings["multiValue"] self.father.father.dispMsg('Invalid value for contour multiplier') else: multi = abs(float(multi)) self.multiValue.setText(str(multi)) limitType = self.contourLimType.currentIndex() self.father.current.setLevels(var1, maxC / 100.0, minC / 100.0, limitType, cSign, cType, multi) def changeProj(self, pType, direc): if pType == 4: if direc == 1: self.projTraceTop.show() else: self.projTraceRight.show() else: self.selectTraceButton.hide() if direc == 1: self.projTraceTop.hide() else: self.projTraceRight.hide() self.father.current.setProjType(pType, direc) if (self.father.current.viewSettings["projTop"] == 4) or (self.father.current.viewSettings["projRight"] == 4): self.selectTraceButton.show() else: self.selectTraceButton.hide() # if not self.FITTING: # self.father.current.clearProj() # self.father.current.showAllProj() # else: # self.father.current.showFid() def changeTrace(self, num, direc): self.father.current.setProjTraces(num, direc) # if not self.FITTING: # self.father.current.clearProj() # self.father.current.showAllProj() # else: # self.father.current.showFid() def selectTraces(self, *args): self.father.current.peakPickFunc = lambda pos, self=self: self.pickedTraces(pos) self.father.current.peakPick = 3 def pickedTraces(self, pos): if self.father.current.viewSettings["projTop"] == 4 and pos[3] != self.projTraceTop.value(): self.projTraceTop.setValue(pos[3]) if self.father.current.viewSettings["projRight"] == 4 and pos[3] != self.projTraceRight.value(): self.projTraceRight.setValue(pos[0]) def changeRanges(self): check = self.rangeCheckbox.isChecked() ranges = [self.projTopRangeMax.value(), self.projTopRangeMin.value(), self.projRightRangeMax.value(), self.projRightRangeMin.value()] self.father.current.setProjLimits(check, ranges) # if not self.FITTING: # self.father.current.clearProj() # self.father.current.showAllProj() # else: # self.father.current.showFid() def activateRanges(self, state): if state: self.projTopRangeMaxLabel.show() self.projTopRangeMax.show() self.projTopRangeMinLabel.show() self.projTopRangeMin.show() self.projRightRangeMaxLabel.show() self.projRightRangeMax.show() self.projRightRangeMinLabel.show() self.projRightRangeMin.show() else: self.projTopRangeMaxLabel.hide() self.projTopRangeMax.hide() self.projTopRangeMinLabel.hide() self.projTopRangeMin.hide() self.projRightRangeMaxLabel.hide() self.projRightRangeMax.hide() self.projRightRangeMinLabel.hide() self.projRightRangeMin.hide() self.changeRanges() def setAxes(self, first=True): axes = self.buttons1Group.checkedId() if self.plotIs2D: axes2 = self.buttons2Group.checkedId() if axes == axes2: if first: axes2 = self.father.current.axes[-1] else: axes = self.father.current.axes[-2] if isinstance(self.father.current, (views.CurrentContour)): # If contour # Correct proj values and maxima newRanges = [self.projRightRangeMax.value(), self.projRightRangeMin.value(), self.projTopRangeMax.value(), self.projTopRangeMin.value()] self.father.current.setProjLimits(self.rangeCheckbox.isChecked(), newRanges) self.father.current.setProjTraces(self.projTraceTop.value(), 1) self.father.current.setProjTraces(self.projTraceRight.value(), 0) #Flip diagonal multiplier: inp = safeEval(self.diagonalEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.father.current.viewSettings["diagonalMult"] = 1.0 / inp #Make sure the bottom frame nicely inverts the axis units time1 = self.father.bottomframe.axisDropTime.currentIndex() time2 = self.father.bottomframe.axisDropTime2.currentIndex() freq1 = self.father.bottomframe.axisDropFreq.currentIndex() freq2 = self.father.bottomframe.axisDropFreq2.currentIndex() self.father.bottomframe.axisDropTime.setCurrentIndex(time2) self.father.bottomframe.axisDropTime2.setCurrentIndex(time1) self.father.bottomframe.axisDropFreq.setCurrentIndex(freq2) self.father.bottomframe.axisDropFreq2.setCurrentIndex(freq1) if bool(self.father.current.spec()) is True: tmp1 = freq1 else: tmp1 = time1 if bool(self.father.current.spec(-2)) is True: tmp2 = freq2 else: tmp2 = time2 self.father.bottomframe.changeAxis(tmp2, update=False) self.father.bottomframe.changeAxis2(tmp1, update=False) self.buttons2Group.button(axes2).toggle() self.getSlice(axes, True) self.upd() def getSlice(self, entryNum, button=False): axisChange = False if button: dimNum = entryNum axisChange = True elif not self.plotIs2D: if entryNum == self.father.current.axes[-1]: if entryNum == self.length - 1: dimNum = self.length - 2 axisChange = True else: dimNum = self.length - 1 axisChange = True else: dimNum = self.father.current.axes[-1] else: dimNum = self.father.current.axes[-1] locList = np.array(self.father.current.locList, dtype=int) for num in range(self.length): locList[num] = self.entries[num].value() if not self.FITTING: self.buttons1Group.button(dimNum).toggle() axes = np.array([self.buttons2Group.checkedId(), dimNum], dtype=int) else: axes = self.father.current.axes if self.plotIs2D: self.father.current.setSlice(axes, locList) else: self.father.current.setSlice(np.array([dimNum]), locList) if not self.FITTING: self.father.bottomframe.upd() if axisChange: self.father.menuCheck() self.upd() def setExtraAxes(self, first=True): for i in range(len(self.extraButtons1Group)): axes = self.extraButtons1Group[i].checkedId() if self.plotIs2D: axes2 = self.extraButtons2Group[i].checkedId() if axes == axes2: if first: axes2 = self.father.current.viewSettings["extraAxes"][i][-1] else: axes = self.father.current.viewSettings["extraAxes"][i][-2] self.extraButtons2Group[i].button(axes2).toggle() self.getExtraSlice(axes, i, True) self.father.current.showFid() def getExtraSlice(self, entryNum, entryi, button=False): length = self.father.current.viewSettings["extraData"][entryi].ndim() if button: dimNum = entryNum else: if entryNum == self.father.current.viewSettings["extraAxes"][entryi][-1]: if entryNum == length - 1: dimNum = length - 2 else: dimNum = length - 1 else: dimNum = self.father.current.viewSettings["extraAxes"][entryi][-1] locList = np.array(self.father.current.viewSettings["extraLoc"][entryi]) for num in range(length): locList[num] = self.extraEntries[entryi][num].value() self.extraButtons1Group[entryi].button(dimNum).toggle() axes = np.array([self.extraButtons2Group[entryi].checkedId(), dimNum], dtype=int) if self.plotIs2D: self.father.current.setExtraSlice(entryi, axes, locList) else: self.father.current.setExtraSlice(entryi, np.array([dimNum]), locList) if not button: self.father.current.showFid() # self.upd() def setScale(self, scale, num): self.father.current.setExtraScale(num, scale) def setOffset(self, offset, num): self.father.current.setExtraOffset(num, offset * 10**self.OOM) def setShift(self, shift, num): self.father.current.setExtraShift(num, shift) def setShift2(self, shift, num): self.father.current.setExtraShift2(num, shift) def switchDiagonal(self, val): self.father.current.setDiagonal(bool(val)) def setDiagonal(self): inp = safeEval(self.diagonalEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: inp = self.father.current.viewSettings["diagonalMult"] self.father.father.dispMsg('Invalid value for diagonal multiplier') else: inp = float(inp) self.diagonalEntry.setText(str(inp)) self.father.current.setDiagonal(None, inp) def checkChanged(self): for i in range(len(self.father.current.viewSettings["extraData"])): extraData = self.father.current.viewSettings["extraData"][i] if extraData.ndim() > 1: for j in range(len(self.extraEntries[i])): self.extraEntries[i][j].setMaximum(extraData.data[0].shape[j] - 1) self.upd() self.father.current.showFid() def setExtraColor(self, num): color = QtWidgets.QColorDialog.getColor() if not color.isValid(): return self.father.current.setExtraColor(num, color.getRgbF()) self.nameLabels[num].setStyleSheet("QLabel { color: rgb" + str(self.father.current.getExtraColor(num)) + ";}") def addMultiSpec(self, *args): text = QtWidgets.QInputDialog.getItem(self, "Select spectrum to show", "Spectrum name:", self.father.father.workspaceNames, 0, False) if text[1]: self.father.current.addExtraData(self.father.father.workspaces[self.father.father.workspaceNames.index(text[0])].get_masterData(), str(text[0])) self.upd() def delMultiSpec(self, num): self.father.current.delExtraData(num) self.upd() ################################################################################ class BottomFrame(QtWidgets.QWidget): def __init__(self, parent): super(BottomFrame, self).__init__(parent) self.father = parent grid = QtWidgets.QGridLayout(self) self.setLayout(grid) fourierButton = QtWidgets.QPushButton("Fourier", parent=self) fourierButton.setToolTip(TOOLTIPS['Fourier']) fourierButton.clicked.connect(self.father.fourier) grid.addWidget(fourierButton, 0, 0, 2, 1) self.specGroup = QtWidgets.QButtonGroup(self) self.specGroup.buttonClicked.connect(self.changeSpec) timeButton = QtWidgets.QRadioButton('Time', parent=self) timeButton.setToolTip(TOOLTIPS['timeButton']) self.specGroup.addButton(timeButton, 0) grid.addWidget(timeButton, 0, 1) freqButton = QtWidgets.QRadioButton('Frequency', parent=self) freqButton.setToolTip(TOOLTIPS['freqButton']) self.specGroup.addButton(freqButton, 1) grid.addWidget(freqButton, 1, 1) self.wholeEcho = QtWidgets.QCheckBox("Whole echo", parent=self) self.wholeEcho.setToolTip(TOOLTIPS['wholeEcho']) self.wholeEcho.clicked.connect(self.setWholeEcho) grid.addWidget(self.wholeEcho, 0, 2, 2, 1) grid.addWidget(wc.QLabel("Freq [MHz]:", self), 0, 3) self.freqEntry = wc.QLineEdit('', self.changeFreq, parent=self) self.freqEntry.setToolTip(TOOLTIPS['freqEntry']) grid.addWidget(self.freqEntry, 1, 3) grid.addWidget(wc.QLabel("Sweepwidth [kHz]:", self), 0, 4) self.swEntry = wc.QLineEdit('', self.changeFreq, parent=self) self.swEntry.setToolTip(TOOLTIPS['swEntry']) grid.addWidget(self.swEntry, 1, 4) grid.addWidget(wc.QLabel("Plot:", self), 0, 5) self.plotDrop = QtWidgets.QComboBox(parent=self) self.plotDrop.addItems(["Real", "Imag", "Both", "Abs"]) self.plotDrop.setToolTip(TOOLTIPS['plotDrop']) self.plotDrop.activated.connect(self.changePlot) grid.addWidget(self.plotDrop, 1, 5) grid.addWidget(wc.QLabel("Axis:", self), 0, 6) self.axisDropTime = QtWidgets.QComboBox(parent=self) self.axisDropTime.setToolTip(TOOLTIPS['axisDrop']) self.axisDropTime.addItems(["s", "ms", u"μs"]) self.axisDropTime.activated.connect(self.changeAxis) grid.addWidget(self.axisDropTime, 1, 6) self.axisDropFreq = QtWidgets.QComboBox(parent=self) self.axisDropFreq.addItems(["Hz", "kHz", "MHz", "ppm"]) self.axisDropFreq.setToolTip(TOOLTIPS['axisDrop']) self.axisDropFreq.activated.connect(self.changeAxis) grid.addWidget(self.axisDropFreq, 1, 6) self.ax2Label = wc.QLabel("Axis2:", self) grid.addWidget(self.ax2Label, 0, 7) self.axisDropTime2 = QtWidgets.QComboBox(parent=self) self.axisDropTime2.addItems(["s", "ms", u"μs"]) self.axisDropTime2.setToolTip(TOOLTIPS['axis2Drop']) self.axisDropTime2.activated.connect(self.changeAxis2) grid.addWidget(self.axisDropTime2, 1, 7) self.axisDropFreq2 = QtWidgets.QComboBox(parent=self) self.axisDropFreq2.setToolTip(TOOLTIPS['axis2Drop']) self.axisDropFreq2.addItems(["Hz", "kHz", "MHz", "ppm"]) self.axisDropFreq2.activated.connect(self.changeAxis2) grid.addWidget(self.axisDropFreq2, 1, 7) grid.setColumnStretch(10, 1) grid.setAlignment(QtCore.Qt.AlignLeft) self.grid = grid self.upd() def kill(self): for i in reversed(range(self.grid.count())): self.grid.itemAt(i).widget().deleteLater() self.grid.deleteLater() def frameEnable(self, enable=True): self.setEnabled(enable) def upd(self): self.freqEntry.setText('%.6f' % (self.father.current.freq() / 1000000.0)) self.swEntry.setText('%.6f' % (self.father.current.sw() / 1000.0)) self.axisDropTime2.hide() self.axisDropFreq2.hide() self.axisDropFreq.model().item(3).setEnabled(True) if self.father.current.spec() == 0: self.specGroup.button(0).toggle() self.axisDropFreq.hide() self.axisDropTime.show() self.ax2Label.hide() self.axisDropTime.setCurrentIndex(self.father.current.getAxType()) elif self.father.current.spec() == 1: self.specGroup.button(1).toggle() self.axisDropTime.hide() self.axisDropFreq.show() if self.father.current.freq() == 0.0 or self.father.current.ref() == 0.0: self.axisDropFreq.model().item(3).setEnabled(False) self.ax2Label.hide() if self.father.current.getppm() and self.father.current.freq() != 0.0 and self.father.current.ref() != 0.0: self.axisDropFreq.setCurrentIndex(3) else: self.axisDropFreq.setCurrentIndex(self.father.current.getAxType()) if isinstance(self.father.current, views.CurrentContour): self.ax2Label.show() self.axisDropFreq2.model().item(3).setEnabled(True) if self.father.current.spec(-2) == 0: self.axisDropTime2.show() self.axisDropTime2.setCurrentIndex(self.father.current.getAxType(-2)) elif self.father.current.spec(-2) == 1: self.axisDropFreq2.show() if self.father.current.freq(-2) == 0.0 or self.father.current.ref(-2) == 0.0: self.axisDropFreq2.model().item(3).setEnabled(False) if self.father.current.getppm(-2) and self.father.current.freq(-2) != 0.0 and self.father.current.ref(-2) != 0.0: self.axisDropFreq2.setCurrentIndex(3) else: self.axisDropFreq2.setCurrentIndex(self.father.current.getAxType(-2)) if type(self.father.current) is views.CurrentArrayed: self.ax2Label.show() self.axisDropFreq2.model().item(3).setEnabled(True) if self.father.current.spec(-2) == 0: self.axisDropTime2.show() self.axisDropTime2.setCurrentIndex(self.father.current.getAxType(-2)) elif self.father.current.spec(-2) == 1: self.axisDropFreq2.show() if self.father.current.freq(-2) == 0.0: self.axisDropFreq2.model().item(3).setEnabled(False) if self.father.current.getppm(-2) and self.father.current.freq(-2) != 0.0 and self.father.current.ref(-2) != 0.0: self.axisDropFreq2.setCurrentIndex(3) else: self.axisDropFreq2.setCurrentIndex(self.father.current.getAxType(-2)) if self.father.current.wholeEcho(): self.wholeEcho.setCheckState(QtCore.Qt.Checked) else: self.wholeEcho.setCheckState(QtCore.Qt.Unchecked) def setWholeEcho(self, inp): self.father.current.setWholeEcho(inp) self.father.menuCheck() def changeSpec(self): self.father.current.setSpec(self.specGroup.checkedId()) self.upd() self.father.menuCheck() def changeFreq(self): freq = safeEval(self.freqEntry.text(), length=self.father.current.len(), Type='FI') sw = safeEval(self.swEntry.text(), length=self.father.current.len(), Type='FI') if sw is None: self.father.father.dispMsg('Invalid sweepwidth') elif sw == 0.0: sw = None self.father.father.dispMsg('Sweepwidth cannot be 0') else: sw *= 1000 if freq is not None: freq *= 1e6 else: self.father.father.dispMsg('Invalid spectrum frequency') self.father.setFreq(freq, sw) self.upd() def changePlot(self, pType): self.father.current.viewSettings["plotType"] = pType self.father.current.showFid() def changeAxis(self, pType, update=True): self.father.current.setAxType(pType, update) def changeAxis2(self, pType, update=True): self.father.current.setAxType(pType, update, -2) ################################################################## class TextFrame(QtWidgets.QScrollArea): def __init__(self, parent): super(TextFrame, self).__init__(parent) self.father = parent self.oldx = 0.0 self.oldy = 0.0 self.oldamp = 0.0 widthScale = 0.6 content = QtWidgets.QWidget() grid = QtWidgets.QGridLayout(content) getButton = QtWidgets.QPushButton("&Get Position") getButton.setToolTip(TOOLTIPS['GetPos']) getButton.clicked.connect(self.getPosition) grid.addWidget(getButton, 0, 1) grid.addWidget(wc.QLabel("x-Position:"), 0, 2) self.xpos = wc.QLineEdit("0") self.xpos.setReadOnly(True) self.xpos.setToolTip(TOOLTIPS['xPosition']) self.xpos.setFixedWidth(int(self.xpos.sizeHint().width() * widthScale)) grid.addWidget(self.xpos, 0, 3) self.yposlabel = wc.QLabel("y-Position:") grid.addWidget(self.yposlabel, 0, 4) self.ypos = wc.QLineEdit("0") self.ypos.setToolTip(TOOLTIPS['yPosition']) self.ypos.setReadOnly(True) self.ypos.setFixedWidth(int(self.ypos.sizeHint().width() * widthScale)) grid.addWidget(self.ypos, 0, 5) grid.addWidget(wc.QLabel("x-Value:"), 0, 6) self.xpoint = wc.QLineEdit("0.0") self.xpoint.setToolTip(TOOLTIPS['xValue']) self.xpoint.setReadOnly(True) self.xpoint.setFixedWidth(int(self.xpoint.sizeHint().width() * widthScale)) grid.addWidget(self.xpoint, 0, 7) self.ylabel = wc.QLabel("y-Value:") grid.addWidget(self.ylabel, 0, 8) self.ypoint = wc.QLineEdit("0.0") self.ypoint.setToolTip(TOOLTIPS['yValue']) self.ypoint.setReadOnly(True) self.ypoint.setFixedWidth(int(self.ypoint.sizeHint().width() * widthScale)) grid.addWidget(self.ypoint, 0, 9) grid.addWidget(wc.QLabel("Amp:"), 0, 10) self.amppoint = wc.QLineEdit("0.0") self.amppoint.setToolTip(TOOLTIPS['ampValue']) self.amppoint.setReadOnly(True) self.amppoint.setFixedWidth(int(self.amppoint.sizeHint().width() * widthScale)) grid.addWidget(self.amppoint, 0, 11) grid.addWidget(wc.QLabel(u"Δx:"), 0, 12) self.deltaxpoint = wc.QLineEdit("0.0") self.deltaxpoint.setToolTip(TOOLTIPS['deltaxvalue']) self.deltaxpoint.setReadOnly(True) self.deltaxpoint.setFixedWidth(int(self.deltaxpoint.sizeHint().width() * widthScale)) grid.addWidget(self.deltaxpoint, 0, 13) self.deltaylabel = wc.QLabel(u"Δy:") grid.addWidget(self.deltaylabel, 0, 14) self.deltaypoint = wc.QLineEdit("0.0") self.deltaypoint.setToolTip(TOOLTIPS['deltayvalue']) self.deltaypoint.setReadOnly(True) self.deltaypoint.setFixedWidth(int(self.deltaypoint.sizeHint().width() * widthScale)) grid.addWidget(self.deltaypoint, 0, 15) grid.addWidget(wc.QLabel(u"Δamp:"), 0, 16) self.deltaamppoint = wc.QLineEdit("0.0") self.deltaamppoint.setToolTip(TOOLTIPS['deltaamplitude']) self.deltaamppoint.setReadOnly(True) self.deltaamppoint.setFixedWidth(int(self.deltaamppoint.sizeHint().width() * widthScale)) grid.addWidget(self.deltaamppoint, 0, 17) grid.setColumnStretch(20, 1) self.grid = grid self.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setWidget(content) self.setMaximumHeight(self.grid.sizeHint().height() + self.horizontalScrollBar().sizeHint().height()) self.upd() def upd(self): if isinstance(self.father.current, views.CurrentContour): self.ypos.show() self.yposlabel.show() self.ypoint.show() self.deltaypoint.show() self.ylabel.show() self.deltaylabel.show() else: self.ypos.hide() self.yposlabel.hide() self.ypoint.hide() self.deltaypoint.hide() self.ylabel.hide() self.deltaylabel.hide() def kill(self): for i in reversed(range(self.grid.count())): self.grid.itemAt(i).widget().deleteLater() self.grid.deleteLater() def frameEnable(self, enable=True): for child in self.children(): child.setEnabled(enable) def setLabels(self, position): if len(position) > 3: self.ypos.setText(str(position[3])) self.deltaypoint.setText('%#.4g' % np.abs(self.oldy - position[4])) self.ypoint.setText('%#.4g' % position[4]) self.oldy = position[4] self.deltaxpoint.setText('%#.4g' % np.abs(self.oldx - position[1])) self.deltaamppoint.setText('%#.4g' % np.abs(self.oldamp - position[2])) self.xpos.setText(str(position[0])) self.xpoint.setText('%#.4g' % position[1]) self.amppoint.setText('%#.4g' % position[2]) self.oldx = position[1] self.oldamp = position[2] def getPosition(self, *args): self.father.current.peakPickFunc = lambda pos, self=self: self.setLabels(pos) if isinstance(self.father.current, views.CurrentContour): self.father.current.peakPick = 2 else: self.father.current.peakPick = True ################################################################################# class AsciiLoadWindow(QtWidgets.QDialog): dataOrders = ['XRI', 'XR', 'XI', 'RI', 'R'] delimiters = ['Tab', 'Space', 'Comma'] timeUnits = ['s','ms',u'μs'] timeMultiVals = [1.0,1.0e-3,1.0e-6] freqUnits = ['Hz','kHz','MHz','ppm'] freqMultiVals = [1.0, 1.0e3, 1.0e6, None] def __init__(self, parent, file): super(AsciiLoadWindow, self).__init__(parent) self.setWindowFlags(QtCore.Qt.Window | QtCore.Qt.Tool | QtCore.Qt.WindowContextHelpButtonHint) self.dataDimension = 1 self.dataSpec = False self.dataOrder = 'XRI' self.sw = 0.0 self.delim = 'Tab' self.closed = False self.axisMulti = 1.0 self.setWindowTitle("Load ASCII") grid = QtWidgets.QGridLayout(self) grid.addWidget(QtWidgets.QLabel("# Dimensions:"), 1, 0) self.numDims = wc.SsnakeSpinBox() self.numDims.setMinimum(1) self.numDims.setValue(1) self.numDims.setMaximum(2) grid.addWidget(self.numDims, 2, 0, 1, 2) grid.addWidget(QtWidgets.QLabel("Data Type:"), 3, 0) self.specGroup = QtWidgets.QButtonGroup(self) self.specGroup.buttonClicked.connect(self.checkState) self.timeButton = QtWidgets.QRadioButton('Time', parent=self) self.timeButton.toggle() self.specGroup.addButton(self.timeButton, 0) grid.addWidget(self.timeButton, 4, 0) self.freqButton = QtWidgets.QRadioButton('Frequency', parent=self) self.specGroup.addButton(self.freqButton, 1) grid.addWidget(self.freqButton, 4, 1) grid.addWidget(QtWidgets.QLabel("Data Order:"), 5, 0) self.datOrderBox = QtWidgets.QComboBox() self.datOrderBox.addItems(self.dataOrders) grid.addWidget(self.datOrderBox, 6, 0, 1, 2) self.unitLabel = wc.QLeftLabel("x-axis unit:") grid.addWidget(self.unitLabel, 7, 0, 1, 2) self.timeUnitBox = QtWidgets.QComboBox() self.timeUnitBox.addItems(self.timeUnits) grid.addWidget(self.timeUnitBox, 8, 0, 1, 2) self.freqUnitBox = QtWidgets.QComboBox() self.freqUnitBox.addItems(self.freqUnits) self.freqUnitBox.currentIndexChanged.connect(self.checkState) grid.addWidget(self.freqUnitBox, 8, 0, 1, 2) self.freqUnitBox.hide() self.swLabel = wc.QLeftLabel("Spectral Width [kHz]:") grid.addWidget(self.swLabel, 9, 0, 1, 2) self.swEntry = wc.QLineEdit("0.0") grid.addWidget(self.swEntry, 10, 0, 1, 2) self.swLabel.hide() self.swEntry.hide() self.datOrderBox.currentIndexChanged.connect(self.checkState) self.freqLabel = wc.QLeftLabel("Spectrometer freq. [MHz]:") grid.addWidget(self.freqLabel, 11, 0, 1, 2) self.freqEntry = wc.QLineEdit("0.0") grid.addWidget(self.freqEntry, 12, 0, 1, 2) self.freqLabel.hide() self.freqEntry.hide() grid.addWidget(QtWidgets.QLabel("Data Delimiter:"), 13, 0) self.datDelimBox = QtWidgets.QComboBox() self.datDelimBox.addItems(self.delimiters) grid.addWidget(self.datDelimBox, 14, 0, 1, 2) cancelButton = QtWidgets.QPushButton("&Cancel") cancelButton.clicked.connect(self.closeEvent) okButton = QtWidgets.QPushButton("&Ok") okButton.clicked.connect(self.applyAndClose) box = QtWidgets.QDialogButtonBox() box.addButton(cancelButton, QtWidgets.QDialogButtonBox.RejectRole) box.addButton(okButton, QtWidgets.QDialogButtonBox.AcceptRole) grid.addWidget(box, 15, 0, 1, 2) self.show() self.setFixedSize(self.size()) self.checkType(file) def checkState(self): tmp = self.dataOrders[self.datOrderBox.currentIndex()] if tmp in ('RI', 'R'): self.swLabel.show() self.swEntry.show() self.unitLabel.hide() self.timeUnitBox.hide() self.freqUnitBox.hide() self.freqLabel.hide() self.freqEntry.hide() else: self.swLabel.hide() self.swEntry.hide() self.unitLabel.show() if self.timeButton.isChecked(): self.timeUnitBox.show() self.freqUnitBox.hide() self.freqLabel.hide() self.freqEntry.hide() else: self.timeUnitBox.hide() self.freqUnitBox.show() self.freqLabel.hide() self.freqEntry.hide() if self.freqUnitBox.currentIndex() == 3: self.freqLabel.show() self.freqEntry.show() def checkType(self, file): if file.endswith('.zip'): return # cannot read zipped files from here try: with open(file, 'r') as f: line = f.readline() if line.count(',') > 0: sep = 'Comma' elif line.count('\t') > 0: sep = 'Tab' else: sep = 'Space' self.datDelimBox.setCurrentIndex(self.delimiters.index(sep)) sepList = ['\t', ' ', ','] data = np.fromstring(line, sep=sepList[self.delimiters.index(sep)]) if len(data) > 3: self.numDims.setValue(2) except Exception: return def closeEvent(self, *args): self.closed = True self.accept() self.deleteLater() def applyAndClose(self): self.dataOrder = self.dataOrders[self.datOrderBox.currentIndex()] self.delim = self.delimiters[self.datDelimBox.currentIndex()] if self.dataOrder == 'RI' or self.dataOrder == 'R': self.sw = safeEval(self.swEntry.text(), Type='FI') if self.sw == 0 or self.sw is None: raise SsnakeException('Spectral Width input is not valid') self.dataDimension = self.numDims.value() if self.timeButton.isChecked(): self.dataSpec = False else: self.dataSpec = True if 'X' in self.dataOrder: # If there is an x-axis if self.dataSpec == False: self.axisMulti = self.timeMultiVals[self.timeUnitBox.currentIndex()] else: if self.freqUnitBox.currentIndex() == 3: #If ppm self.axisMulti = safeEval(self.freqEntry.text()) else: self.axisMulti = self.freqMultiVals[self.freqUnitBox.currentIndex()] self.accept() self.deleteLater() ################################################################################# class WorkInfoWindow(QtWidgets.QDialog): #A window to view info of the workspace (size etc) def __init__(self, parent): super(WorkInfoWindow, self).__init__(parent) self.father = parent self.setWindowFlags(QtCore.Qt.Window | QtCore.Qt.Tool | QtCore.Qt.WindowContextHelpButtonHint) self.setWindowTitle("Workspace Info") grid = QtWidgets.QGridLayout(self) workGroup = QtWidgets.QGroupBox('Data:') workFrame = QtWidgets.QGridLayout() workGroup.setLayout(workFrame) workFrame.addWidget(QtWidgets.QLabel("Name:"), 0, 0) workFrame.addWidget(wc.QSelectLabel(self.father.masterData.name), 0, 1) workFrame.addWidget(QtWidgets.QLabel("# Dimensions:"), 1, 0) workFrame.addWidget(wc.QSelectLabel(str(self.father.masterData.ndim())), 1, 1) sw = self.father.masterData.sw np = self.father.masterData.shape() freq = self.father.masterData.freq ref = [x/1e6 if x is not None else x for x in self.father.masterData.ref] whole = self.father.masterData.wholeEcho spec = ['Time' if x == 0 else 'Frequency' for x in self.father.masterData.spec] for x in range(self.father.masterData.ndim()): workFrame.addWidget(wc.QSelectLabel('D' + str(x+1)), 2, x+1) workFrame.addWidget(wc.QSelectLabel(str(sw[x]/1000)), 3, x+1) workFrame.addWidget(wc.QSelectLabel(str(freq[x]/1e6)), 4, x+1) workFrame.addWidget(wc.QSelectLabel(str(ref[x])), 5, x+1) workFrame.addWidget(wc.QSelectLabel(str(np[x])), 6, x+1) workFrame.addWidget(wc.QSelectLabel(spec[x]), 7, x+1) workFrame.addWidget(wc.QSelectLabel(str(self.father.masterData.isComplex(x))), 8, x+1) workFrame.addWidget(wc.QSelectLabel(str(whole[x])), 9, x+1) workFrame.addWidget(QtWidgets.QLabel('Spectral Width [kHz]:'), 3, 0) workFrame.addWidget(QtWidgets.QLabel('Frequency [MHz]:'), 4, 0) workFrame.addWidget(QtWidgets.QLabel('Reference [MHz]:'), 5, 0) workFrame.addWidget(QtWidgets.QLabel('Number of Points:'), 6, 0) workFrame.addWidget(QtWidgets.QLabel('Type:'), 7, 0) workFrame.addWidget(QtWidgets.QLabel('Complex:'), 8, 0) workFrame.addWidget(QtWidgets.QLabel('Whole Echo:'), 9, 0) grid.addWidget(workGroup, 0, 0, 1, 3) metaGroup = QtWidgets.QGroupBox('Metadata:') metaFrame = QtWidgets.QGridLayout() metaGroup.setLayout(metaFrame) for pos, key in enumerate(self.father.masterData.metaData): metaFrame.addWidget(QtWidgets.QLabel(key), pos, 0) metaFrame.addWidget(wc.QSelectLabel(self.father.masterData.metaData[key]), pos, 1) grid.addWidget(metaGroup, 1, 0, 1, 3) okButton = QtWidgets.QPushButton("&Close") okButton.clicked.connect(self.closeEvent) grid.addWidget(okButton, 2, 1) self.show() self.setFixedSize(self.size()) def closeEvent(self, *args): self.closed = True self.accept() self.deleteLater() ################################################################################# class PhaseWindow(wc.ToolWindow): NAME = "Phasing" SINGLESLICE = True RESOLUTION = 1000 P1LIMIT = 540.0 PHASE0STEP = 1.0 PHASE1STEP = 1.0 def __init__(self, parent): super(PhaseWindow, self).__init__(parent) self.zeroVal = 0.0 self.firstVal = 0.0 self.pivotVal = 0.0 self.available = True # Zero order self.zeroOrderGroup = QtWidgets.QGroupBox('Zero order:') self.zeroOrderFrame = QtWidgets.QGridLayout() autoZero = QtWidgets.QPushButton("Autophase 0th") autoZero.clicked.connect(lambda: self.autophase(0)) self.zeroOrderFrame.addWidget(autoZero, 0, 1) self.zeroEntry = wc.QLineEdit("0.000", self.inputZeroOrder) self.zeroOrderFrame.addWidget(self.zeroEntry, 2, 1) self.leftZero = QtWidgets.QPushButton("<") self.leftZero.clicked.connect(lambda: self.stepPhase(-1, 0)) self.leftZero.setAutoRepeat(True) self.zeroOrderFrame.addWidget(self.leftZero, 2, 0) self.rightZero = QtWidgets.QPushButton(">") self.rightZero.clicked.connect(lambda: self.stepPhase(1, 0)) self.rightZero.setAutoRepeat(True) self.zeroOrderFrame.addWidget(self.rightZero, 2, 2) self.zeroScale = wc.SsnakeSlider(QtCore.Qt.Horizontal) self.zeroScale.setRange(-self.RESOLUTION, self.RESOLUTION) self.zeroScale.valueChanged.connect(self.setZeroOrder) self.zeroOrderFrame.addWidget(self.zeroScale, 3, 0, 1, 3) self.zeroOrderGroup.setLayout(self.zeroOrderFrame) self.grid.addWidget(self.zeroOrderGroup, 0, 0, 1, 3) # First order self.firstOrderGroup = QtWidgets.QGroupBox('First order:') self.firstOrderFrame = QtWidgets.QGridLayout() autoFirst = QtWidgets.QPushButton("Autophase 0th+1st") autoFirst.clicked.connect(lambda: self.autophase(1)) self.firstOrderFrame.addWidget(autoFirst, 5, 1) self.firstEntry = wc.QLineEdit("0.000", self.inputFirstOrder) self.firstOrderFrame.addWidget(self.firstEntry, 6, 1) self.leftFirst = QtWidgets.QPushButton("<") self.leftFirst.clicked.connect(lambda: self.stepPhase(0, -1)) self.leftFirst.setAutoRepeat(True) self.firstOrderFrame.addWidget(self.leftFirst, 6, 0) self.rightFirst = QtWidgets.QPushButton(">") self.rightFirst.clicked.connect(lambda: self.stepPhase(0, 1)) self.rightFirst.setAutoRepeat(True) self.firstOrderFrame.addWidget(self.rightFirst, 6, 2) self.firstScale = wc.SsnakeSlider(QtCore.Qt.Horizontal) self.firstScale.setRange(-self.RESOLUTION, self.RESOLUTION) self.firstScale.valueChanged.connect(self.setFirstOrder) self.firstOrderFrame.addWidget(self.firstScale, 7, 0, 1, 3) if self.father.current.spec() > 0: self.firstOrderFrame.addWidget(wc.QLabel("Pivot point [Hz]:"), 8, 0, 1, 3) pickRef = QtWidgets.QPushButton("Pick pivot") pickRef.clicked.connect(self.pickRef) self.firstOrderFrame.addWidget(pickRef, 9, 1) self.refEntry = wc.QLineEdit(('%.3f' % self.pivotVal), self.inputRef) self.firstOrderFrame.addWidget(self.refEntry, 10, 1) self.firstOrderGroup.setLayout(self.firstOrderFrame) self.grid.addWidget(self.firstOrderGroup, 1, 0, 1, 3) def setModifierTexts(self, event): sign = u"\u00D7" if event.modifiers() & QtCore.Qt.AltModifier: sign = '/' left = [self.leftZero, self.leftFirst] right = [self.rightZero, self.rightFirst] if event.modifiers() & QtCore.Qt.ControlModifier and event.modifiers() & QtCore.Qt.ShiftModifier: text = ' ' + sign + '1000' elif event.modifiers() & QtCore.Qt.ControlModifier: text = ' ' + sign + '10' elif event.modifiers() & QtCore.Qt.ShiftModifier: text = ' ' + sign + '100' else: text = '' for widget in left: widget.setText('<' + text) for widget in right: widget.setText('>' + text) def keyPressEvent(self, event): self.setModifierTexts(event) def keyReleaseEvent(self, event): self.setModifierTexts(event) def setZeroOrder(self, value, *args): if self.available: self.zeroVal = float(value) / self.RESOLUTION * 180 self.zeroEntry.setText('%.3f' % self.zeroVal) self.father.current.setPhaseInter(np.pi * self.zeroVal / 180.0, np.pi * self.firstVal / 180.0) def inputZeroOrder(self, *args): inp = safeEval(self.zeroEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException('Phasing: zero order value input is not valid!') self.zeroVal = np.mod(inp + 180, 360) - 180 self.zeroEntry.setText('%.3f' % self.zeroVal) self.available = False self.zeroScale.setValue(int(round(self.zeroVal / 180.0 * self.RESOLUTION))) self.available = True self.father.current.setPhaseInter(np.pi * self.zeroVal / 180.0, np.pi * self.firstVal / 180.0) def setFirstOrder(self, value, *args): if self.available: value = float(value) / self.RESOLUTION * self.P1LIMIT newZero = (self.zeroVal - (value - self.firstVal) * self.pivotVal / self.father.current.sw()) self.zeroVal = np.mod(newZero + 180, 360) - 180 self.zeroEntry.setText('%.3f' % self.zeroVal) self.firstVal = value self.firstEntry.setText('%.3f' % self.firstVal) self.available = False self.zeroScale.setValue(int(round(self.zeroVal / 180.0 * self.RESOLUTION))) self.available = True self.father.current.setPhaseInter(np.pi * self.zeroVal / 180.0, np.pi * self.firstVal / 180.0) def inputFirstOrder(self, *args): value = safeEval(self.firstEntry.text(), length=self.father.current.len(), Type='FI') if value is None: raise SsnakeException('Phasing: first order value input is not valid!') newZero = (self.zeroVal - (value - self.firstVal) * self.pivotVal / self.father.current.sw()) self.zeroVal = np.mod(newZero + 180, 360) - 180 self.zeroEntry.setText('%.3f' % self.zeroVal) self.firstVal = value self.firstEntry.setText('%.3f' % self.firstVal) self.available = False self.zeroScale.setValue(int(round(self.zeroVal / 180.0 * self.RESOLUTION))) self.firstScale.setValue(int(round(self.firstVal / self.P1LIMIT * self.RESOLUTION))) self.available = True self.father.current.setPhaseInter(np.pi * self.zeroVal / 180.0, np.pi * self.firstVal / 180.0) def autophase(self, num): phases = self.father.current.autoPhase(num) val = phases[0] / np.pi * 180.0 self.zeroVal = (np.mod(val + 180, 360) - 180) self.zeroEntry.setText('%.3f' % self.zeroVal) self.available = False self.zeroScale.setValue(round(self.zeroVal / 180.0 * self.RESOLUTION)) self.available = True if num == 1: val = phases[1] / np.pi * 180.0 self.firstVal = val self.firstEntry.setText('%.3f' % self.firstVal) self.inputFirstOrder() def stepPhase(self, phase0, phase1): step = 1 multiplier = 1 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier and QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: multiplier *= 1000 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier: multiplier *= 10 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: multiplier *= 100 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.AltModifier: step = step / multiplier else: step = step * multiplier phase0 = step * phase0 phase1 = step * phase1 inp = safeEval(self.zeroEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException('Phasing: zero order value input is not valid!') inp += phase0 * self.PHASE0STEP self.zeroVal = np.mod(inp + 180, 360) - 180 value = safeEval(self.firstEntry.text(), length=self.father.current.len(), Type='FI') if value is None: raise SsnakeException('Phasing: first order value input is not valid!') value += phase1 * self.PHASE1STEP if self.father.current.spec() > 0: self.inputRef() value += phase1 * self.PHASE1STEP newZero = (self.zeroVal - (value - self.firstVal) * self.pivotVal / self.father.current.sw()) self.zeroVal = np.mod(newZero + 180, 360) - 180 self.zeroEntry.setText('%.3f' % self.zeroVal) self.firstVal = value self.firstEntry.setText('%.3f' % self.firstVal) self.available = False self.zeroScale.setValue(round(self.zeroVal / 180.0 * self.RESOLUTION)) self.firstScale.setValue(round(self.firstVal / self.P1LIMIT * self.RESOLUTION)) self.available = True self.father.current.setPhaseInter(np.pi * self.zeroVal / 180.0, np.pi * self.firstVal / 180.0) def inputRef(self, *args): Val = safeEval(self.refEntry.text(), length=self.father.current.len(), Type='FI') if Val is None: raise SsnakeException('Phasing: pivot input is not valid!') self.pivotVal = Val self.refEntry.setText('%.3f' % self.pivotVal) def setRef(self, value, *args): self.pivotVal = float(value) self.refEntry.setText('%.3f' % self.pivotVal) def pickRef(self, *args): self.father.current.peakPickFunc = lambda pos, self=self: self.setRef(self.father.current.xax()[pos[0]]) self.father.current.peakPick = True def applyFunc(self): if self.father.current.spec() > 0: self.inputRef() self.inputZeroOrder() self.inputFirstOrder() self.father.current.applyPhase(np.pi * self.zeroVal / 180.0, np.pi * self.firstVal / 180.0, (self.singleSlice.isChecked() == 1)) ################################################################ class ApodWindow(wc.ToolWindow): RESOLUTION = 10000 NAME = "Apodize" SINGLESLICE = True def __init__(self, parent): super(ApodWindow, self).__init__(parent) self.entries = {} self.ticks = {} boldFont = QtGui.QFont() boldFont.setBold(True) self.maximum = 100.0 * self.father.current.sw() / (self.father.current.len()) self.lbstep = 1.0 self.available = True self.lorGroup = QtWidgets.QGroupBox() self.lorFrame = QtWidgets.QGridLayout() lorTick = QtWidgets.QCheckBox("Lorentzian [Hz]:") lorTick.setFont(boldFont) lorTick.toggled.connect(lambda x: self.checkEval('lor')) self.lorFrame.addWidget(lorTick, 0, 0, 1, 3) self.ticks['lor'] = lorTick lorEntry = wc.QLineEdit("0.00", self.apodPreview) lorEntry.setMinimumWidth(150) lorEntry.setEnabled(False) self.lorFrame.addWidget(lorEntry, 1, 1) self.entries['lor'] = [lorEntry] self.leftLor = QtWidgets.QPushButton("<") self.leftLor.clicked.connect(lambda: self.stepLB(-0.5 * self.father.current.sw() / (self.father.current.len()), 'lor')) self.leftLor.setAutoRepeat(True) self.lorFrame.addWidget(self.leftLor, 1, 0) self.rightLor = QtWidgets.QPushButton(">") self.rightLor.clicked.connect(lambda: self.stepLB(0.5 * self.father.current.sw() / (self.father.current.len()), 'lor')) self.rightLor.setAutoRepeat(True) self.lorFrame.addWidget(self.rightLor, 1, 2) self.lorScale = wc.SsnakeSlider(QtCore.Qt.Horizontal) self.lorScale.setRange(0, self.RESOLUTION) self.lorScale.valueChanged.connect(lambda x: self.setLorGauss(x, 'lor')) self.lorFrame.addWidget(self.lorScale, 2, 0, 1, 3) self.lorMax = 100.0 * self.father.current.sw() / (self.father.current.len()) self.lorGroup.setLayout(self.lorFrame) self.grid.addWidget(self.lorGroup, 0, 0, 1, 3) self.gaussGroup = QtWidgets.QGroupBox() self.gaussFrame = QtWidgets.QGridLayout() gaussTick = QtWidgets.QCheckBox("Gaussian [Hz]:") gaussTick.setFont(boldFont) gaussTick.toggled.connect(lambda: self.checkEval('gauss')) self.gaussFrame.addWidget(gaussTick, 3, 0, 1, 3) self.ticks['gauss'] = gaussTick gaussEntry = wc.QLineEdit("0.00", self.apodPreview) gaussEntry.setEnabled(False) gaussEntry.setMinimumWidth(150) self.gaussFrame.addWidget(gaussEntry, 4, 1) self.entries['gauss'] = [gaussEntry] self.leftGauss = QtWidgets.QPushButton("<") self.leftGauss.clicked.connect(lambda: self.stepLB(-0.5 * self.father.current.sw() / (self.father.current.len()), 'gauss')) self.leftGauss.setAutoRepeat(True) self.gaussFrame.addWidget(self.leftGauss, 4, 0) self.rightGauss = QtWidgets.QPushButton(">") self.rightGauss.clicked.connect(lambda: self.stepLB(0.5 * self.father.current.sw() / (self.father.current.len()), 'gauss')) self.rightGauss.setAutoRepeat(True) self.gaussFrame.addWidget(self.rightGauss, 4, 2) self.gaussScale = wc.SsnakeSlider(QtCore.Qt.Horizontal) self.gaussScale.setRange(0, self.RESOLUTION) self.gaussScale.valueChanged.connect(lambda x: self.setLorGauss(x, 'gauss')) self.gaussFrame.addWidget(self.gaussScale, 5, 0, 1, 3) self.gaussMax = 100.0 * self.father.current.sw() / (self.father.current.len()) self.gaussGroup.setLayout(self.gaussFrame) self.grid.addWidget(self.gaussGroup, 1, 0, 1, 3) self.cos2Group = QtWidgets.QGroupBox() self.cos2Frame = QtWidgets.QGridLayout() cos2Tick = QtWidgets.QCheckBox("Cos^2:") cos2Tick.setFont(boldFont) cos2Tick.clicked.connect(lambda: self.checkEval('cos2')) self.cos2Frame.addWidget(cos2Tick, 0, 0, 1, 2) self.ticks['cos2'] = cos2Tick cos2Entry = wc.QLineEdit("1", self.apodPreview) cos2Entry.setEnabled(False) widthHint = cos2Entry.minimumSizeHint() widthHint.setWidth(widthHint.width() *4) cos2Entry.setMinimumSize(widthHint) self.cos2Frame.addWidget(cos2Entry, 1, 2) self.entries['cos2'] = [cos2Entry] cos2Label = wc.QLeftLabel("Frequency:") cos2Label.setEnabled(False) self.entries['cos2'].append(cos2Label) self.cos2Frame.addWidget(cos2Label, 1, 0) cos2DegEntry = wc.QLineEdit("0", self.apodPreview) cos2DegEntry.setEnabled(False) cos2DegEntry.setMinimumSize(widthHint) self.cos2Frame.addWidget(cos2DegEntry, 2, 2) self.entries['cos2'].append(cos2DegEntry) cos2PhLabel = wc.QLeftLabel("Phase [deg]:") cos2PhLabel.setEnabled(False) self.entries['cos2'].append(cos2PhLabel) self.cos2Frame.addWidget(QtWidgets.QWidget(), 1, 1) self.cos2Frame.setColumnStretch(1, 1) self.cos2Frame.addWidget(cos2PhLabel, 2, 0) self.cos2Group.setLayout(self.cos2Frame) self.grid.addWidget(self.cos2Group, 2, 0, 1, 3) self.hammingGroup = QtWidgets.QGroupBox() self.hammingFrame = QtWidgets.QGridLayout() hammingTick = QtWidgets.QCheckBox("Hamming:") hammingTick.setFont(boldFont) hammingTick.clicked.connect(lambda: self.checkEval('hamming')) self.hammingFrame.addWidget(hammingTick, 0, 0, 1, 2) self.ticks['hamming'] = hammingTick hammingLabel = wc.QLeftLabel("Frequency:\t") hammingLabel.setEnabled(False) self.entries['hamming'] = [hammingLabel] self.hammingFrame.addWidget(hammingLabel, 1, 0) hammingEntry = wc.QLineEdit("1", self.apodPreview) hammingEntry.setEnabled(False) hammingEntry.setMinimumSize(widthHint) self.hammingFrame.addWidget(hammingEntry, 1, 2) self.entries['hamming'].append(hammingEntry) self.hammingFrame.addWidget(QtWidgets.QWidget(), 1, 1) self.hammingFrame.setColumnStretch(1, 1) self.hammingGroup.setLayout(self.hammingFrame) self.grid.addWidget(self.hammingGroup, 3, 0, 1, 3) self.shiftGroup = QtWidgets.QGroupBox() self.shiftFrame = QtWidgets.QGridLayout() shiftTick = QtWidgets.QCheckBox("Shift:") shiftTick.setFont(boldFont) shiftTick.clicked.connect(lambda: self.checkEval('shift')) self.ticks['shift'] = shiftTick self.shiftFrame.addWidget(shiftTick, 0, 0) shiftLabel = wc.QLeftLabel("Value [s]:") shiftLabel.setEnabled(False) self.shiftFrame.addWidget(shiftLabel, 1, 0) shiftEntry = wc.QLineEdit("0", self.apodPreview) self.shiftFrame.addWidget(QtWidgets.QWidget(), 1, 1) shiftEntry.setMinimumSize(widthHint) shiftEntry.setEnabled(False) self.entries['shift'] = [shiftEntry, shiftLabel] self.shiftFrame.addWidget(shiftEntry, 1, 2) self.shiftGroup.setLayout(self.shiftFrame) self.shiftFrame.setColumnStretch(1, 1) self.grid.addWidget(self.shiftGroup, 4, 0, 1, 3) if self.father.current.data.ndim() > 1: self.shiftingGroup = QtWidgets.QGroupBox() self.shiftingFrame = QtWidgets.QGridLayout() shiftingTick = QtWidgets.QCheckBox("Shifting:") shiftingTick.clicked.connect(lambda: self.checkEval('shifting')) shiftingTick.setFont(boldFont) self.ticks['shifting'] = shiftingTick self.shiftingFrame.addWidget(shiftingTick, 0, 0) self.shiftingDropdown = QtWidgets.QComboBox() self.shiftingDropdown.addItems(['User Defined', 'Spin 3/2, -3Q (7/9)', 'Spin 5/2, 3Q (19/12)', 'Spin 5/2, -5Q (25/12)', 'Spin 7/2, 3Q (101/45)', 'Spin 7/2, 5Q (11/9)', 'Spin 7/2, -7Q (161/45)', 'Spin 9/2, 3Q (91/36)', 'Spin 9/2, 5Q (95/36)', 'Spin 9/2, 7Q (7/18)', 'Spin 9/2, -9Q (31/6)']) self.shiftingDropdown.activated.connect(self.dropdownChanged) self.shiftingList = [0, 7.0 / 9.0, 19.0 / 12.0, 25.0 / 12.0, 101.0 / 45.0, 11.0 / 9.0, 161.0 / 45.0, 91.0 / 36.0, 95.0 / 36.0, 7.0 / 18.0, 31.0 / 6.0] self.shiftingDropdown.setMinimumSize(widthHint) self.shiftingDropdown.setEnabled(False) self.shiftingFrame.addWidget(self.shiftingDropdown, 1, 2) shiftingTypeLabel = wc.QLeftLabel("Type:") shiftingTypeLabel.setEnabled(False) self.shiftingFrame.addWidget(shiftingTypeLabel, 1, 0) self.shiftingEntry = wc.QLineEdit("0.00", self.apodPreview) self.shiftingEntry.setEnabled(False) self.shiftingEntry.setMinimumSize(widthHint) self.shiftingFrame.addWidget(self.shiftingEntry, 2, 2) shiftingValueLabel = wc.QLeftLabel("Value:") shiftingValueLabel.setEnabled(False) self.shiftingFrame.addWidget(shiftingValueLabel, 2, 0) self.shiftingAxis = QtWidgets.QComboBox() self.shiftingValues = list(map(str, np.delete(range(1, self.father.current.data.ndim() + 1), self.father.current.axes[-1]))) self.shiftingAxis.addItems(self.shiftingValues) self.shiftingAxis.currentIndexChanged.connect(self.apodPreview) self.shiftingAxis.setMinimumSize(widthHint) self.shiftingAxis.setEnabled(False) self.shiftingFrame.addWidget(self.shiftingAxis, 3, 2) shiftingAxisLabel = wc.QLeftLabel("Axis:") shiftingAxisLabel.setEnabled(False) self.shiftingFrame.addWidget(shiftingAxisLabel, 3, 0) self.shiftingFrame.addWidget(QtWidgets.QWidget(), 1, 1) self.shiftingFrame.setColumnStretch(1, 1) self.entries['shifting'] = [self.shiftingDropdown, shiftingTypeLabel, self.shiftingEntry, shiftingValueLabel, self.shiftingAxis, shiftingAxisLabel] self.shiftingGroup.setLayout(self.shiftingFrame) self.grid.addWidget(self.shiftingGroup, 5, 0, 1, 3) def setModifierTexts(self, event): sign = u"\u00D7" if event.modifiers() & QtCore.Qt.AltModifier: sign = '/' left = [self.leftLor, self.leftGauss] right = [self.rightLor, self.rightGauss] if event.modifiers() & QtCore.Qt.ControlModifier and event.modifiers() & QtCore.Qt.ShiftModifier: text = ' ' + sign + '1000' elif event.modifiers() & QtCore.Qt.ControlModifier: text = ' ' + sign + '10' elif event.modifiers() & QtCore.Qt.ShiftModifier: text = ' ' + sign + '100' else: text = '' for widget in left: widget.setText('<' + text) for widget in right: widget.setText('>' + text) def keyPressEvent(self, event): self.setModifierTexts(event) def keyReleaseEvent(self, event): self.setModifierTexts(event) def dropdownChanged(self, update=True): index = self.shiftingDropdown.currentIndex() if index == 0: self.shiftingEntry.setEnabled(True) else: self.shiftingEntry.setEnabled(False) if update: self.shiftingEntry.setText("%.9f" % self.shiftingList[index]) self.apodPreview() def checkEval(self, key): if self.ticks[key].isChecked(): for elem in self.entries[key]: elem.setEnabled(True) else: for elem in self.entries[key]: elem.setEnabled(False) if self.father.current.data.ndim() > 1: if self.ticks['shifting'].isChecked(): self.dropdownChanged(update=False) #Check dropdown state if key in ('lor', 'gauss'): # for lorentzian and gaussian if safeEval(self.entries[key][0].text(), length=self.father.current.len(), Type='FI') != 0.0: # only update if value was not zero self.apodPreview() else: self.apodPreview() def setLorGauss(self,value, type, *args): #type: 'lor' or 'gauss' if self.available: self.entries[type][0].setText('%.4g' % (float(value) * self.maximum / self.RESOLUTION)) if not self.ticks[type].isChecked(): self.ticks[type].setChecked(1) self.apodPreview() def apodPreview(self, *args): self.available = False #turn off gauss/lorentz callbacks lor, gauss, cos2, cos2Ph, hamming, shift, shifting, shiftingAxis = self.checkInput() self.available = True self.father.current.apodPreview(lor, gauss, [cos2, cos2Ph], hamming, shift, shifting, shiftingAxis) def stepLB(self, incr, type): step = incr * self.lbstep multiplier = 1 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier and QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: multiplier = 1000 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier: multiplier = 10 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: multiplier = 100 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.AltModifier: step = step / multiplier else: step = step * multiplier if not self.ticks[type].isChecked(): self.ticks[type].setChecked(1) lor, gauss, cos2, cos2Ph, hamming, shift, shifting, shiftingAxis = self.checkInput() if type == 'lor': self.entries[type][0].setText('%.4g' % (lor + step)) elif type == 'gauss': self.entries[type][0].setText('%.4g' % (gauss + step)) self.apodPreview() def checkInput(self): lor = None gauss = None cos2 = None cos2Ph = None hamming = None shift = 0.0 shifting = 0.0 shiftingAxis = None if self.ticks['lor'].isChecked(): lor = safeEval(self.entries['lor'][0].text(), length=self.father.current.len(), Type='FI') if lor is None: self.father.current.showFid() raise SsnakeException('Apodize: Lorentzian value is not valid!') self.lorScale.setValue(int(round(lor * self.RESOLUTION / self.maximum))) if self.ticks['gauss'].isChecked(): gauss = safeEval(self.entries['gauss'][0].text(), length=self.father.current.len(), Type='FI') if gauss is None: self.father.current.showFid() raise SsnakeException('Apodize: Gaussian value is not valid!') self.gaussScale.setValue(int(round(gauss * self.RESOLUTION / self.maximum))) if self.ticks['cos2'].isChecked(): cos2 = safeEval(self.entries['cos2'][0].text(), length=self.father.current.len(), Type='FI') if cos2 is None: self.father.current.showFid() raise SsnakeException('Apodize: cos^2 frequency value is not valid!') if self.ticks['cos2'].isChecked(): cos2Ph = safeEval(self.entries['cos2'][2].text(), length=self.father.current.len(), Type='FI') if cos2Ph is None: self.father.current.showFid() raise SsnakeException('Apodize: cos^2 phase value is not valid!') if self.ticks['hamming'].isChecked(): hamming = safeEval(self.entries['hamming'][1].text(), length=self.father.current.len(), Type='FI') if hamming is None: self.father.current.showFid() raise SsnakeException('Apodize: Hamming value is not valid!') if self.ticks['shift'].isChecked(): shift = safeEval(self.entries['shift'][0].text(), length=self.father.current.len(), Type='FI') if shift is None: self.father.current.showFid() raise SsnakeException('Apodize: Shift value is not valid!') if self.father.current.data.ndim() > 1: if self.ticks['shifting'].isChecked(): if self.father.current.data.ndim() > 1: shifting = safeEval(self.shiftingEntry.text(), length=self.father.current.len(), Type='FI') if shifting is None: self.father.current.showFid() raise SsnakeException('Apodize: Shifting value is not valid!') shiftingAxis = int(self.shiftingValues[self.shiftingAxis.currentIndex()]) - 1 else: shiftingAxis = None return lor, gauss, cos2, cos2Ph, hamming, shift, shifting, shiftingAxis def applyFunc(self): lor, gauss, cos2, cos2Ph, hamming, shift, shifting, shiftingAxis = self.checkInput() self.father.current.applyApod(lor, gauss, [cos2, cos2Ph], hamming, shift, shifting, shiftingAxis, (self.singleSlice.isChecked())) ####################################################################################### class SizeWindow(wc.ToolWindow): NAME = "Set size" def __init__(self, parent): super(SizeWindow, self).__init__(parent) self.sizeGroup = QtWidgets.QGroupBox('Size:') self.sizeFrame = QtWidgets.QGridLayout() self.sizeVal = parent.current.len() self.sizeEntry = wc.QLineEdit(self.sizeVal, self.sizePreview) self.sizeEntry.setMinimumWidth(100) self.sizeFrame.addWidget(self.sizeEntry, 0, 1) rightPower = QtWidgets.QPushButton("+ 2^n") rightPower.clicked.connect(lambda: self.stepSize(True)) # rightZero.setAutoRepeat(True) self.sizeFrame.addWidget(rightPower, 0, 2) leftPower = QtWidgets.QPushButton("- 2^n") leftPower.clicked.connect(lambda: self.stepSize(False)) self.sizeFrame.addWidget(leftPower, 0, 0) self.sizeGroup.setLayout(self.sizeFrame) self.grid.addWidget(self.sizeGroup, 0, 0, 1, 3) # offset self.offGroup = QtWidgets.QGroupBox('Offset:') self.offFrame = QtWidgets.QGridLayout() if self.father.current.wholeEcho(): self.posVal = int(np.floor(parent.current.len() / 2.0)) else: self.posVal = parent.current.len() self.posEntry = wc.QLineEdit(self.posVal, self.sizePreview) self.offFrame.addWidget(self.posEntry, 0, 1) self.offGroup.setLayout(self.offFrame) self.grid.addWidget(self.offGroup, 1, 0, 1, 3) if not self.father.current.spec(): self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def stepSize(self, forward): inp = safeEval(self.sizeEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException('Sizing: \'Size\' input is not valid') inp = int(round(inp)) if inp < 1: raise SsnakeException('Sizing: \'Size\' cannot be below 1') if forward: # If + button new = int(np.floor(np.log2(inp)) + 1) else: new = int(np.ceil(np.log2(inp)) - 1) if new < 0: new = 0 self.sizeEntry.setText(str(2**new)) self.sizePreview() def sizePreview(self, *args): inp = safeEval(self.sizeEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException('Sizing: \'Size\' input is not valid') self.sizeVal = int(round(inp)) if self.sizeVal < 1: raise SsnakeException('Sizing: \'Size\' cannot be below 1') self.sizeEntry.setText(str(self.sizeVal)) inp = safeEval(self.posEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException('Sizing: \'Offset\' input is not valid') self.posVal = int(round(inp)) if self.posVal < 1: raise SsnakeException('Sizing: \'Offset\' cannot be below 1') self.posEntry.setText(str(self.posVal)) self.father.current.resizePreview(self.sizeVal, self.posVal) def applyFunc(self): inp = safeEval(self.sizeEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException('Sizing: \'Size\' input is not valid') self.sizeVal = int(round(inp)) if self.sizeVal < 1: raise SsnakeException('Sizing: \'Size\' cannot be below 1') inp = safeEval(self.posEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException('Sizing: \'Offset\' input is not valid') self.posVal = int(round(inp)) if self.posVal < 1: raise SsnakeException('Sizing: \'Offset\' cannot be below 1') self.father.current.resize(self.sizeVal, self.posVal) self.father.sideframe.upd() def picked(self, pos): self.posEntry.setText(str(pos[0])) self.sizePreview() self.father.current.peakPick = True self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) ########################################################################################## class SwapEchoWindow(wc.ToolWindow): NAME = "Swap echo" def __init__(self, parent): super(SwapEchoWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Echo position:"), 0, 0) self.posVal = int(round(0.5 * parent.current.len())) self.posEntry = wc.QLineEdit(self.posVal, self.swapEchoPreview) self.grid.addWidget(self.posEntry, 1, 0) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def swapEchoPreview(self, *args): inp = safeEval(self.posEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Swap echo: not a valid index") self.posVal = int(round(inp)) self.posEntry.setText(str(self.posVal)) if self.posVal > 0 and self.posVal < self.father.current.len(): self.father.current.swapEchoPreview(self.posVal) self.father.current.peakPick = False def applyFunc(self): self.father.current.peakPickReset() inp = safeEval(self.posEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Swap echo: not a valid index") self.posVal = int(round(inp)) self.posEntry.setText(str(self.posVal)) if self.posVal < 0 or self.posVal >= (self.father.current.len()): raise SsnakeException("Swap echo: not a valid index") self.father.current.swapEcho(self.posVal) self.father.bottomframe.upd() def picked(self, pos): self.father.current.swapEchoPreview(pos[0]) self.posEntry.setText(str(pos[0])) self.father.current.peakPick = False ########################################################################### class LPSVDWindow(wc.ToolWindow): NAME = "LPSVD" def __init__(self, parent): super(LPSVDWindow, self).__init__(parent) self.specGroup = QtWidgets.QButtonGroup(self) backwardButton = QtWidgets.QRadioButton('Backward', parent=self) self.specGroup.addButton(backwardButton, 1) forwardButton = QtWidgets.QRadioButton('Forward', parent=self) self.specGroup.addButton(forwardButton, 0) self.grid.addWidget(backwardButton, 1, 0) self.grid.addWidget(forwardButton, 2, 0) backwardButton.setChecked(True) self.grid.addWidget(wc.QLabel("Number of points for analysis:"), 3, 0) analPoints = int(np.floor(self.father.current.len() * 3 / 4.0)) self.aPointsEntry = wc.QLineEdit(analPoints) self.grid.addWidget(self.aPointsEntry, 4, 0) self.grid.addWidget(wc.QLabel("Max number of frequencies:"), 5, 0) numberFreq = 20 self.nFreqEntry = wc.QLineEdit(numberFreq) self.grid.addWidget(self.nFreqEntry, 6, 0) self.grid.addWidget(wc.QLabel("Number of points to predict:"), 7, 0) predictPoints = 10 self.nPredictEntry = wc.QLineEdit(predictPoints) self.grid.addWidget(self.nPredictEntry, 8, 0) def applyFunc(self): analPoints = safeEval(self.aPointsEntry.text(), length=self.father.current.len(), Type='FI') if analPoints is None: raise SsnakeException('LPSVD: Number of points for analysis is not valid') numberFreq = safeEval(self.nFreqEntry.text(), length=self.father.current.len(), Type='FI') if numberFreq is None: raise SsnakeException('LPSVD: Number of frequencies is not valid') predictPoints = safeEval(self.nPredictEntry.text(), length=self.father.current.len(), Type='FI') if predictPoints is None: raise SsnakeException('LPSVD: Number of points to predict is not valid') if analPoints > self.father.current.len(): raise SsnakeException('LPSVD: Number of points for analysis cannot be larger than data size') if analPoints < 2: raise SsnakeException('LPSVD: Number of points for analysis should be at least 2') if self.specGroup.checkedId() == 0: forward = True else: forward = False self.father.current.lpsvd(predictPoints, numberFreq, forward, analPoints) self.father.sideframe.upd() ########################################################################### class ScaleSWWindow(wc.ToolWindow): NAME = "Scale SW" def __init__(self, parent): super(ScaleSWWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Scale Factor:"), 0, 0) self.scaleDropdown = QtWidgets.QComboBox() self.scaleDropdown.addItems(['User Defined', 'Spin 3/2, -3Q (9/34)', 'Spin 5/2, 3Q (-12/17)', 'Spin 5/2, -5Q (12/85)', 'Spin 7/2, 3Q (-45/34)', 'Spin 7/2, 5Q (-9/34)', 'Spin 7/2, -7Q (45/476)', 'Spin 9/2, 3Q (-36/17)', 'Spin 9/2, 5Q (-36/85)', 'Spin 9/2, 7Q (-18/117)', 'Spin 9/2, -9Q (6/85)']) self.scaleDropdown.activated.connect(self.dropdownChanged) self.scaleList = [0, 9.0/34.0, -12.0/17.0, 12.0/85.0, -45.0/34.0, -9/34.0, 45.0/476.0, -36.0/17.0, -36.0/85.0, -18.0/117.0, 6.0/85.0] self.grid.addWidget(self.scaleDropdown, 1, 0) self.scaleEntry = wc.QLineEdit("0.0") self.grid.addWidget(self.scaleEntry, 3, 0) def dropdownChanged(self): index = self.scaleDropdown.currentIndex() self.scaleEntry.setText("%.9f" % self.scaleList[index]) def applyFunc(self): scale = safeEval(self.scaleEntry.text(), length=self.father.current.len(), Type='FI') if scale is None: raise SsnakeException("Scale SW: Factor not a valid value") self.father.current.scaleSw(scale) ########################################################################### class ShiftDataWindow(wc.ToolWindow): NAME = "Shifting data" SINGLESLICE = True def __init__(self, parent): super(ShiftDataWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Data points to shift:"), 0, 0, 1, 3) self.shiftVal = 0 self.shiftEntry = wc.QLineEdit(self.shiftVal, self.shiftPreview) self.shiftEntry.setMinimumWidth(100) self.grid.addWidget(self.shiftEntry, 1, 1) leftShift = QtWidgets.QPushButton("<") leftShift.clicked.connect(self.stepDownShift) leftShift.setAutoRepeat(True) self.grid.addWidget(leftShift, 1, 0) rightShift = QtWidgets.QPushButton(">") rightShift.clicked.connect(self.stepUpShift) rightShift.setAutoRepeat(True) self.grid.addWidget(rightShift, 1, 2) def stepUpShift(self, *args): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Shift data: shift value not valid") self.shiftVal = int(round(inp)) shift = 1 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier and QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 1000 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier: shift *= 10 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 100 self.shiftVal = self.shiftVal + shift self.shiftEntry.setText(str(self.shiftVal)) self.shiftPreview() def stepDownShift(self, *args): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Shift data: shift value not valid") self.shiftVal = int(round(inp)) shift = -1 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier and QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 1000 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier: shift *= 10 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 100 self.shiftVal = self.shiftVal + shift self.shiftEntry.setText(str(self.shiftVal)) self.shiftPreview() def shiftPreview(self, *args): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Shift data: shift value not valid") self.shiftVal = int(round(inp)) self.shiftEntry.setText(str(self.shiftVal)) self.father.current.shiftPreview(self.shiftVal) def applyFunc(self): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Shift data: shift value not valid") shift = int(round(inp)) self.father.current.shift(shift, (self.singleSlice.isChecked())) ########################################################################### class RollDataWindow(wc.ToolWindow): NAME = "Roll data" SINGLESLICE = True def __init__(self, parent): super(RollDataWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Data points to roll:"), 0, 0, 1, 3) self.shiftVal = 0 self.shiftEntry = wc.QLineEdit(self.shiftVal, self.rollPreview) self.shiftEntry.setMinimumWidth(100) self.grid.addWidget(self.shiftEntry, 1, 1) leftShift = QtWidgets.QPushButton("<") leftShift.clicked.connect(self.stepDownShift) leftShift.setAutoRepeat(True) self.grid.addWidget(leftShift, 1, 0) rightShift = QtWidgets.QPushButton(">") rightShift.clicked.connect(self.stepUpShift) rightShift.setAutoRepeat(True) self.grid.addWidget(rightShift, 1, 2) def stepUpShift(self, *args): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Roll data: roll value not valid") self.shiftVal = inp shift = 1 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier and QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 1000 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier: shift *= 10 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 100 self.shiftVal = self.shiftVal + shift self.shiftEntry.setText(str(self.shiftVal)) self.rollPreview() def stepDownShift(self, *args): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Roll data: roll value not valid") self.shiftVal = inp shift = -1 if QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier and QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 1000 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ControlModifier: shift *= 10 elif QtWidgets.qApp.keyboardModifiers() & QtCore.Qt.ShiftModifier: shift *= 100 self.shiftVal = self.shiftVal + shift self.shiftEntry.setText(str(self.shiftVal)) self.rollPreview() def rollPreview(self, *args): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Roll data: roll value not valid") self.shiftVal = inp self.shiftEntry.setText(str(self.shiftVal)) self.father.current.rollPreview(self.shiftVal) def applyFunc(self): inp = safeEval(self.shiftEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Roll data: roll value not valid") shift = inp self.father.current.roll(shift, (self.singleSlice.isChecked())) ############################################################# class DCWindow(wc.ToolWindow): NAME = "Offset correction" SINGLESLICE = True def __init__(self, parent): super(DCWindow, self).__init__(parent) self.startVal = int(round(0.8 * parent.current.len())) self.endVal = parent.current.len() self.grid.addWidget(wc.QLabel("Start index:"), 0, 0) self.startEntry = wc.QLineEdit(self.startVal, self.offsetPreview) self.grid.addWidget(self.startEntry, 1, 0) self.grid.addWidget(wc.QLabel("End index:"), 2, 0) self.endEntry = wc.QLineEdit(self.endVal, self.offsetPreview) self.grid.addWidget(self.endEntry, 3, 0) self.grid.addWidget(wc.QLabel("Offset:"), 4, 0) val = parent.current.getdcOffset(int(round(0.8 * parent.current.len())), parent.current.len()) self.offsetEntry = wc.QLineEdit('{:.2e}'.format(val), lambda: self.offsetPreview(True)) self.grid.addWidget(self.offsetEntry, 5, 0) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def picked(self, pos, second=False): dataLength = self.father.current.len() if second: inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.endVal = pos[0] self.endEntry.setText(str(self.endVal)) if inp is not None: self.startEntry.setText(str(self.startVal)) val = self.father.current.getdcOffset(self.startVal, self.endVal) self.offsetEntry.setText('{:.2e}'.format(val)) self.father.current.dcOffset(val) else: self.offsetEntry.setText('') self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True else: self.startEntry.setText(str(pos[0])) inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.endVal = int(round(inp)) if self.endVal < 0: self.endVal = 0 elif self.endVal > dataLength: self.endVal = dataLength self.startVal = pos[0] if inp is not None: val = self.father.current.getdcOffset(self.startVal, self.endVal) self.offsetEntry.setText('{:.2e}'.format(val)) else: self.offsetEntry.setText('') self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, True) self.father.current.peakPick = True def offsetPreview(self, inserted=False): if inserted: dcVal = safeEval(self.offsetEntry.text(), length=self.father.current.len(), Type='C') if dcVal is None: raise SsnakeException("Offset correction: offset value not valid") self.father.current.dcOffset(dcVal) else: dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Offset correction: start value not valid") self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.startEntry.setText(str(self.startVal)) inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Offset correction: end value not valid") self.endVal = int(round(inp)) if self.endVal < 0: self.endVal = 0 elif self.endVal > dataLength: self.endVal = dataLength self.endEntry.setText(str(self.endVal)) val = self.father.current.getdcOffset(self.startVal, self.endVal) self.offsetEntry.setText('{:.2e}'.format(val)) self.father.current.dcOffset(val) def applyFunc(self): inp = safeEval(self.offsetEntry.text(), length=self.father.current.len(), Type='C') if inp is None: raise SsnakeException("Offset correction: offset value not valid") self.father.current.peakPickReset() self.father.current.subtract([inp], self.singleSlice.isChecked()) ############################################################# class BaselineWindow(wc.ToolWindow): NAME = "Baseline correction" SINGLESLICE = True TYPES = ['poly','sin/cos'] TYP_NAMES = ['Polynomial','sine/cosine'] def __init__(self, parent): super(BaselineWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Type:"), 0, 0, 1, 2) self.typeDropdown = QtWidgets.QComboBox() self.typeDropdown.addItems(self.TYP_NAMES) self.grid.addWidget(self.typeDropdown, 1, 0, 1, 2) self.grid.addWidget(wc.QLabel("Degree:"), 2, 0, 1, 2) self.removeList = [] self.degreeEntry = wc.SsnakeSpinBox() self.degreeEntry.setMaximum(10000) self.degreeEntry.setMinimum(1) self.degreeEntry.setValue(3) self.degreeEntry.setAlignment(QtCore.Qt.AlignCenter) self.grid.addWidget(self.degreeEntry, 3, 0, 1, 2) self.invertButton = QtWidgets.QCheckBox("Invert selection") self.invertButton.stateChanged.connect(self.preview) self.grid.addWidget(self.invertButton, 4, 0, 1, 2) self.allFitButton = QtWidgets.QCheckBox("Fit traces separately") self.grid.addWidget(self.allFitButton, 5, 0, 1, 2) resetButton = QtWidgets.QPushButton("&Reset") resetButton.clicked.connect(self.reset) self.grid.addWidget(resetButton, 6, 0) fitButton = QtWidgets.QPushButton("&Fit") fitButton.clicked.connect(self.preview) self.grid.addWidget(fitButton, 6, 1) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def picked(self, pos): self.removeList.append(pos[0]) self.father.current.previewRemoveList(self.removeList, invert=self.invertButton.isChecked()) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def preview(self, *args): type = self.TYPES[self.typeDropdown.currentIndex()] inp = self.degreeEntry.value() self.father.current.previewRemoveList(self.removeList, invert=self.invertButton.isChecked()) self.father.current.previewBaselineCorrection(inp, self.removeList, type, invert=self.invertButton.isChecked()) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def reset(self, *args): self.removeList = [] self.father.current.resetPreviewRemoveList() self.preview() def closeEvent(self, *args): self.father.current.removeListLines = [] del self.father.current.removeListLines super(BaselineWindow, self).closeEvent(*args) def applyFunc(self): inp = self.degreeEntry.value() type = self.TYPES[self.typeDropdown.currentIndex()] if self.allFitButton.isChecked(): self.father.current.baselineCorrectionAll(inp, self.removeList, type, invert=self.invertButton.isChecked()) else: self.father.current.baselineCorrection(inp, self.removeList, type, self.singleSlice.isChecked(), invert=self.invertButton.isChecked()) self.father.current.peakPickReset() self.father.current.resetPreviewRemoveList() ############################################################# class regionWindow(wc.ToolWindow): def __init__(self, parent, name): self.NAME = name super(regionWindow, self).__init__(parent) self.startVal = [0] # dummy variables self.endVal = [parent.current.len()] # dummy variables self.grid.addWidget(wc.QLabel("Start index:"), 0, 0) self.grid.addWidget(wc.QLabel("End index:"), 0, 1) self.startEntry = [] self.endEntry = [] self.deleteButton = [] self.partIter = 0 self.entryCount = 1 self.first = True self.startEntry.append(wc.QLineEdit("")) self.startEntry[0].editingFinished.connect(lambda self=self, tmp=self.startEntry[0]: self.setVal(tmp, True)) self.grid.addWidget(self.startEntry[0], 1, 0) self.endEntry.append(wc.QLineEdit("")) self.endEntry[0].editingFinished.connect(lambda self=self, tmp=self.endEntry[0]: self.setVal(tmp, False)) self.grid.addWidget(self.endEntry[0], 1, 1) self.deleteButton.append(QtWidgets.QPushButton("X")) self.deleteButton[0].clicked.connect(lambda extra, self=self: self.deleteEntry(self.deleteButton[0])) self.grid.addWidget(self.deleteButton[0], 1, 2) self.newSpec = QtWidgets.QCheckBox("Result in new workspace") self.layout.addWidget(self.newSpec, 1, 0, 1, 2) self.grid.setRowStretch(100, 1) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def addValue(self, pos): if self.first: self.startVal[self.partIter] = pos self.startEntry[self.partIter].setText(str(pos)) self.first = False else: tmp = self.startVal[self.partIter] self.startVal[self.partIter] = min(pos, tmp) self.endVal[self.partIter] = max(pos, tmp) self.startVal = np.append(self.startVal, 0) self.endVal = np.append(self.endVal, self.father.current.len()) self.startEntry[self.partIter].setText(str(self.startVal[self.partIter])) self.endEntry[self.partIter].setText(str(self.endVal[self.partIter])) self.partIter += 1 self.startEntry.append(wc.QLineEdit()) self.startEntry[self.partIter].editingFinished.connect(lambda self=self, tmp=self.startEntry[self.partIter]: self.setVal(tmp, True)) self.grid.addWidget(self.startEntry[self.partIter], 1 + self.entryCount, 0) self.endEntry.append(wc.QLineEdit()) self.endEntry[self.partIter].editingFinished.connect(lambda self=self, tmp=self.endEntry[self.partIter]: self.setVal(tmp, False)) self.grid.addWidget(self.endEntry[self.partIter], 1 + self.entryCount, 1) self.deleteButton.append(QtWidgets.QPushButton("X")) self.deleteButton[self.partIter].clicked.connect(lambda extra, self=self, tmp=self.deleteButton[self.partIter]: self.deleteEntry(tmp)) self.grid.addWidget(self.deleteButton[self.partIter], 1 + self.entryCount, 2) self.entryCount += 1 self.first = True def deleteEntry(self, button=None, num=None): if num is None: num = self.deleteButton.index(button) if num == self.partIter: self.startVal[num] = 0 self.endVal[num] = self.father.current.len() self.startEntry[num].setText("") self.endEntry[num].setText("") self.first = True return self.grid.removeWidget(self.endEntry[num]) self.grid.removeWidget(self.startEntry[num]) self.grid.removeWidget(self.deleteButton[num]) self.endEntry[num].deleteLater() self.startEntry[num].deleteLater() self.deleteButton[num].deleteLater() self.endEntry.pop(num) self.startEntry.pop(num) self.deleteButton.pop(num) self.startVal = np.delete(self.startVal, num) self.endVal = np.delete(self.endVal, num) self.partIter -= 1 def picked(self, pos): self.addValue(pos[0]) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def setVal(self, entry, isMin=False): inp = safeEval(entry.text(), length=self.father.current.len(), Type='FI') error = False if inp is not None: inp = int(inp) if inp < 0: inp = 0 if inp > self.father.current.len(): inp = self.father.current.len() if isMin: num = self.startEntry.index(entry) if inp is None: self.startVal[num] = -1 # If the input is wrong, use -1 as a placeholder for it in the value list self.father.father.dispMsg(self.NAME + ": wrong input") error = True elif self.endVal[num] == -1: self.startVal[num] = inp else: self.startVal[num] = min(inp, self.endVal[num]) self.endVal[num] = max(inp, self.endVal[num]) else: num = self.endEntry.index(entry) if inp is None: self.endVal[num] = -1 self.father.father.dispMsg(self.NAME + ": wrong input") error = True elif self.startVal[num] == -1: self.endVal[num] = inp else: self.endVal[num] = max(inp, self.startVal[num]) self.startVal[num] = min(inp, self.startVal[num]) if num == self.partIter: self.partIter += 1 self.startVal = np.append(self.startVal, 0) self.endVal = np.append(self.endVal, self.father.current.len()) self.startEntry.append(wc.QLineEdit()) self.startEntry[self.partIter].editingFinished.connect(lambda self=self, tmp=self.startEntry[self.partIter]: self.setVal(tmp, True)) self.grid.addWidget(self.startEntry[self.partIter], 1 + self.entryCount, 0) self.endEntry.append(wc.QLineEdit()) self.endEntry[self.partIter].editingFinished.connect(lambda self=self, tmp=self.endEntry[self.partIter]: self.setVal(tmp, False)) self.grid.addWidget(self.endEntry[self.partIter], 1 + self.entryCount, 1) self.deleteButton.append(QtWidgets.QPushButton("X")) self.deleteButton[self.partIter].clicked.connect(lambda extra, self=self, tmp=self.deleteButton[self.partIter]: self.deleteEntry(tmp)) self.grid.addWidget(self.deleteButton[self.partIter], 1 + self.entryCount, 2) self.entryCount += 1 self.first = True if error: # Return only after partIter check return if self.startVal[num] != -1: # Only if the input is OK, reprint it self.startEntry[num].setText(str(self.startVal[num])) if self.endVal[num] != -1: self.endEntry[num].setText(str(self.endVal[num])) def apply(self, maximum, minimum, newSpec): pass def applyFunc(self): if self.partIter == 0: self.apply(np.array([0]), np.array([self.father.current.len()]), self.newSpec.isChecked()) else: self.apply(self.startVal[:self.partIter], self.endVal[:self.partIter], self.newSpec.isChecked()) ############################################################ class integrateWindow(regionWindow): def __init__(self, parent): super(integrateWindow, self).__init__(parent, 'Integrate') def apply(self, maximum, minimum, newSpec): if np.any(maximum < 0) or np.any(minimum < 0): # Check for errors in the inputs raise SsnakeException(self.NAME + ": wrong input") if newSpec: self.father.father.newWorkspace(self.father.current.integrate(minimum, maximum, newSpec)) else: self.father.current.integrate(minimum, maximum, newSpec) self.father.updAllFrames() ############################################################ class sumWindow(regionWindow): def __init__(self, parent): super(sumWindow, self).__init__(parent, 'Sum') def apply(self, maximum, minimum, newSpec): if np.any(maximum < 0) or np.any(minimum < 0): raise SsnakeException(self.NAME + ": wrong input") if newSpec: self.father.father.newWorkspace(self.father.current.sum(minimum, maximum, newSpec)) else: self.father.current.sum(minimum, maximum, newSpec) self.father.updAllFrames() ############################################################ class maxWindow(regionWindow): def __init__(self, parent): super(maxWindow, self).__init__(parent, 'Max') def apply(self, maximum, minimum, newSpec): if np.any(maximum < 0) or np.any(minimum < 0): raise SsnakeException(self.NAME + ": wrong input") if newSpec: self.father.father.newWorkspace(self.father.current.max(minimum, maximum, newSpec)) else: self.father.current.max(minimum, maximum, newSpec) self.father.updAllFrames() ############################################################ class minWindow(regionWindow): def __init__(self, parent): super(minWindow, self).__init__(parent, 'Min') def apply(self, maximum, minimum, newSpec): if np.any(maximum < 0) or np.any(minimum < 0): raise SsnakeException(self.NAME + ": wrong input") if newSpec: self.father.father.newWorkspace(self.father.current.min(minimum, maximum, newSpec)) else: self.father.current.min(minimum, maximum, newSpec) self.father.updAllFrames() ############################################################ class argmaxWindow(regionWindow): def __init__(self, parent): super(argmaxWindow, self).__init__(parent, 'Max position') def apply(self, maximum, minimum, newSpec): if np.any(maximum < 0) or np.any(minimum < 0): raise SsnakeException(self.NAME + ": wrong input") if newSpec: self.father.father.newWorkspace(self.father.current.argmax(minimum, maximum, newSpec)) else: self.father.current.argmax(minimum, maximum, newSpec) self.father.updAllFrames() ############################################################ class argminWindow(regionWindow): def __init__(self, parent): super(argminWindow, self).__init__(parent, 'Min position') def apply(self, maximum, minimum, newSpec): if np.any(maximum < 0) or np.any(minimum < 0): raise SsnakeException(self.NAME + ": wrong input") if newSpec: self.father.father.newWorkspace(self.father.current.argmin(minimum, maximum, newSpec)) else: self.father.current.argmin(minimum, maximum, newSpec) self.father.updAllFrames() ############################################################ class avgWindow(regionWindow): def __init__(self, parent): super(avgWindow, self).__init__(parent, 'Average') def apply(self, maximum, minimum, newSpec): if np.any(maximum < 0) or np.any(minimum < 0): raise SsnakeException(self.NAME + ": wrong input") if newSpec: self.father.father.newWorkspace(self.father.current.average(minimum, maximum, newSpec)) else: self.father.current.average(minimum, maximum, newSpec) self.father.updAllFrames() ############################################################# class regionWindow2(wc.ToolWindow): def __init__(self, parent, name, newSpecOption): self.NAME = name super(regionWindow2, self).__init__(parent) self.startVal = 0 self.endVal = parent.current.len() self.grid.addWidget(wc.QLabel("Start index:"), 0, 0) self.startEntry = wc.QLineEdit(self.startVal, self.checkValues) self.grid.addWidget(self.startEntry, 1, 0) self.grid.addWidget(wc.QLabel("End index:"), 2, 0) self.endEntry = wc.QLineEdit(self.endVal, self.checkValues) self.grid.addWidget(self.endEntry, 3, 0) self.newSpec = QtWidgets.QCheckBox("Result in new workspace") if not newSpecOption: self.newSpec.hide() self.layout.addWidget(self.newSpec, 1, 0, 1, 2) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def preview(self, maximum, minimum): pass def picked(self, pos, second=False): if second: dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.startEntry.setText(str(self.startVal)) self.endVal = pos[0] self.endEntry.setText(str(self.endVal)) self.preview(self.startVal, self.endVal) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True else: self.startEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, True) self.father.current.peakPick = True def checkValues(self, *args): dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.startEntry.setText(str(self.startVal)) inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.endVal = int(round(inp)) if self.endVal < 0: self.endVal = 0 elif self.endVal > dataLength: self.endVal = dataLength self.endEntry.setText(str(self.endVal)) self.preview(self.startVal, self.endVal) def applyFunc(self): dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException(self.NAME + ": value not valid") inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException(self.NAME + ": value not valid") self.checkValues(self) self.apply(self.startVal, self.endVal, self.newSpec.isChecked()) def apply(self, maximum, minimum, newSpec): pass ############################################################# class regionWindowStep(wc.ToolWindow): def __init__(self, parent, name, newSpecOption): self.NAME = name super(regionWindowStep, self).__init__(parent) self.startVal = 0 self.endVal = parent.current.len() self.stepVal = 1; self.grid.addWidget(wc.QLabel("Start index:"), 0, 0) self.startEntry = wc.QLineEdit(self.startVal, self.checkValues) self.grid.addWidget(self.startEntry, 1, 0) self.grid.addWidget(wc.QLabel("End index:"), 2, 0) self.endEntry = wc.QLineEdit(self.endVal, self.checkValues) self.grid.addWidget(self.endEntry, 3, 0) self.grid.addWidget(wc.QLabel("Step size:"), 4, 0) self.stepEntry = wc.QLineEdit(self.stepVal, self.checkValues) self.grid.addWidget(self.stepEntry, 5, 0) self.newSpec = QtWidgets.QCheckBox("Result in new workspace") if not newSpecOption: self.newSpec.hide() self.layout.addWidget(self.newSpec, 1, 0, 1, 2) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def preview(self, maximum, minimum, step): pass def picked(self, pos, second=False): if second: dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.startEntry.setText(str(self.startVal)) self.endVal = pos[0] self.endEntry.setText(str(self.endVal)) self.preview(self.startVal, self.endVal, self.stepVal) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True else: self.startEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, True) self.father.current.peakPick = True def checkValues(self, *args): dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.startEntry.setText(str(self.startVal)) inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.endVal = int(round(inp)) if self.endVal < 0: self.endVal = 0 elif self.endVal > dataLength: self.endVal = dataLength self.endEntry.setText(str(self.endVal)) inp = safeEval(self.stepEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.stepVal = int(round(inp)) if self.stepVal <= 0: self.stepVal = 1 elif self.stepVal > dataLength: self.stepVal = dataLength self.stepEntry.setText(str(self.stepVal)) self.preview(self.startVal, self.endVal, self.stepVal) def applyFunc(self): dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException(self.NAME + ": value not valid") inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException(self.NAME + ": value not valid") inp = safeEval(self.stepEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException(self.NAME + ": value not valid") self.checkValues(self) self.apply(self.startVal, self.endVal, self.newSpec.isChecked(), self.stepVal) def apply(self, maximum, minimum, newSpec, step): pass ############################################################ class extractRegionWindow(regionWindowStep): def __init__(self, parent): super(extractRegionWindow, self).__init__(parent, 'Extract part', True) def apply(self, maximum, minimum, newSpec, step): if newSpec: if self.father.father.newWorkspace(self.father.current.extract(minimum, maximum, newSpec, step)) is None: return None else: self.father.current.extract(minimum, maximum, newSpec, step) self.father.updAllFrames() return 1 ############################################################ class SubtractAvgWindow(regionWindow2): def __init__(self, parent): super(SubtractAvgWindow, self).__init__(parent, 'Subtract Avg', False) def apply(self, maximum, minimum, newSpec): self.father.current.subtractAvg(maximum, minimum) self.father.updAllFrames() return 1 def preview(self, maximum, minimum): self.father.current.subtractAvgPreview(maximum, minimum) ############################################################ class AlignDataWindow(regionWindow2): def __init__(self, parent): super(AlignDataWindow, self).__init__(parent, 'Align Maxima', False) def apply(self, maximum, minimum, newSpec): self.father.current.align(maximum, minimum) self.father.updAllFrames() return 1 # def preview(self, maximum, minimum): # self.father.current.subtractAvgPreview(maximum, minimum) ############################################################# class FiddleWindow(wc.ToolWindow): NAME = "Reference deconvolution" def __init__(self, parent): super(FiddleWindow, self).__init__(parent) self.startVal = 0 self.endVal = parent.current.len() self.grid.addWidget(wc.QLabel("Start index:"), 0, 0) self.startEntry = wc.QLineEdit(self.startVal, self.checkValues) self.grid.addWidget(self.startEntry, 1, 0) self.grid.addWidget(wc.QLabel("End index:"), 2, 0) self.endEntry = wc.QLineEdit(self.endVal, self.checkValues) self.grid.addWidget(self.endEntry, 3, 0) self.grid.addWidget(wc.QLabel("Linebroadening [Hz]:"), 4, 0) self.lbEntry = wc.QLineEdit("1.0", self.checkValues) self.grid.addWidget(self.lbEntry, 5, 0) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def picked(self, pos, second=False): if second: dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.startEntry.setText(str(self.startVal)) self.endVal = pos[0] self.endEntry.setText(str(self.endVal)) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True else: self.startEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, True) self.father.current.peakPick = True def checkValues(self, *args): dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength self.startEntry.setText(str(self.startVal)) inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.endVal = int(round(inp)) if self.endVal < 0: self.endVal = 0 elif self.endVal > dataLength: self.endVal = dataLength self.endEntry.setText(str(self.endVal)) inp = safeEval(self.lbEntry.text(), length=self.father.current.len(), Type='FI') if inp is not None: self.lbEntry.setText(str(inp)) def applyFunc(self): dataLength = self.father.current.len() inp = safeEval(self.startEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Reference deconv: start entry not valid") self.startVal = int(round(inp)) if self.startVal < 0: self.startVal = 0 elif self.startVal > dataLength: self.startVal = dataLength inp = safeEval(self.endEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Reference deconv: end entry not valid") self.endVal = int(round(inp)) if self.endVal < 0: self.endVal = 0 elif self.endVal > dataLength: self.endVal = dataLength lb = safeEval(self.lbEntry.text(), length=self.father.current.len(), Type='FI') if lb is None: raise SsnakeException("Reference deconv: Linebroadening entry not valid") self.father.current.fiddle(self.startVal, self.endVal, lb) ############################################################## class DeleteWindow(wc.ToolWindow): NAME = "Delete" def __init__(self, parent): super(DeleteWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Indexes to delete:"), 0, 0) self.delEntry = wc.QLineEdit('0', self.preview) self.grid.addWidget(self.delEntry, 1, 0) def preview(self, *args): length = int(self.father.current.len()) pos = safeEval(self.delEntry.text(), length=self.father.current.len()) if pos is None: raise SsnakeException('Delete: not all values are valid indexes to delete') pos = np.array(pos) pos[pos < 0] = pos[pos < 0] + length if (pos < 0).any() or (pos >= length).any(): raise SsnakeException('Delete: not all values are valid indexes to delete') self.father.current.deletePreview(pos) def applyFunc(self): length = self.father.current.len() pos = safeEval(self.delEntry.text(), length=self.father.current.len()) if pos is None: raise SsnakeException('Delete: not all values are valid indexes to delete') if isinstance(pos, (int, float)): pos = np.array([pos]) else: pos = np.array(pos) pos[pos < 0] = pos[pos < 0] + length if (pos < 0).any() or (pos >= length).any(): raise SsnakeException('Delete: not all values are valid indexes to delete') self.father.current.delete(pos) ############################################################## class SplitWindow(wc.ToolWindow): NAME = "Split" def __init__(self, parent): super(SplitWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Sections:"), 0, 0) self.splitEntry = wc.QLineEdit('1', self.preview) self.grid.addWidget(self.splitEntry, 1, 0) def preview(self, *args): val = safeEval(self.splitEntry.text(), length=self.father.current.len(), Type='FI') if val is None: raise SsnakeException("Split: input not valid") self.splitEntry.setText(str(int(round(val)))) def applyFunc(self): val = safeEval(self.splitEntry.text(), length=self.father.current.len(), Type='FI') if val is None: raise SsnakeException("Split: input not valid") val = int(val) if val <= 0: raise SsnakeException("Split: input not valid") self.father.current.split(int(round(val))) ############################################################## class ConcatenateWindow(wc.ToolWindow): NAME = "Concatenate" def __init__(self, parent): super(ConcatenateWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Concatenation axes:"), 0, 0) self.axesEntry = QtWidgets.QComboBox() self.axesEntry.addItems(np.array(np.arange(self.father.current.data.ndim() - 1) + 1, dtype=str)) self.grid.addWidget(self.axesEntry, 1, 0) def applyFunc(self): self.father.current.concatenate(self.axesEntry.currentIndex()) ############################################################## class InsertWindow(wc.ToolWindow): NAME = "Insert" def __init__(self, parent): super(InsertWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Start insert at index:"), 0, 0) self.posEntry = wc.QLineEdit(self.father.current.len(), self.preview) self.grid.addWidget(self.posEntry, 1, 0) self.grid.addWidget(wc.QLabel("Workspace to insert:"), 2, 0) self.wsEntry = QtWidgets.QComboBox() self.wsEntry.addItems(self.father.father.workspaceNames) self.grid.addWidget(self.wsEntry, 3, 0) def preview(self, *args): pos = safeEval(self.posEntry.text(), length=self.father.current.len(), Type='FI') if pos is None: return pos = int(round(pos)) if pos > self.father.current.len(): pos = self.father.current.len() elif pos < 0: pos = 0 self.posEntry.setText(str(pos)) def applyFunc(self): pos = safeEval(self.posEntry.text(), length=self.father.current.len(), Type='FI') if pos is None: raise SsnakeException("Not a valid value") pos = int(round(pos)) if pos > self.father.current.len(): pos = self.father.current.len() elif pos < 0: pos = 0 ws = self.wsEntry.currentIndex() self.father.current.insert(self.father.father.workspaces[ws].masterData.getData(), pos) ############################################################## class CombineWindow(wc.ToolWindow): SINGLESLICE = True RESIZABLE = True def __init__(self, parent, combType): super(CombineWindow, self).__init__(parent) self.combType = combType # 0 = add, 1 = subtract, 2 = multiply, 3 = divide if self.combType == 0: self.WindowTitle = "Add" self.grid.addWidget(wc.QLabel("Workspace to add:"), 0, 0) elif self.combType == 1: self.WindowTitle = "Subtract" self.grid.addWidget(wc.QLabel("Workspace to subtract:"), 0, 0) elif self.combType == 2: self.WindowTitle = "Multiply" self.grid.addWidget(wc.QLabel("Workspace to multiply:"), 0, 0) elif self.combType == 3: self.WindowTitle = "Divide" self.grid.addWidget(wc.QLabel("Workspace to divide:"), 0, 0) self.setWindowTitle(self.WindowTitle) self.wsEntry = QtWidgets.QComboBox() self.wsEntry.addItems(self.father.father.workspaceNames) self.grid.addWidget(self.wsEntry, 1, 0) def applyFunc(self): ws = self.wsEntry.currentIndex() if self.combType == 0: returnValue = self.father.current.add(self.father.father.workspaces[ws].masterData.getData(), self.singleSlice.isChecked()) elif self.combType == 1: returnValue = self.father.current.subtract(self.father.father.workspaces[ws].masterData.getData(), self.singleSlice.isChecked()) elif self.combType == 2: returnValue = self.father.current.multiply(self.father.father.workspaces[ws].masterData.getData(), self.singleSlice.isChecked()) elif self.combType == 3: returnValue = self.father.current.divide(self.father.father.workspaces[ws].masterData.getData(), self.singleSlice.isChecked()) ############################################################## class SNWindow(wc.ToolWindow): NAME = "Signal to noise" CANCELNAME = "&Close" OKNAME = "C&alc" APPLYANDCLOSE = False def __init__(self, parent): super(SNWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Start index noise:"), 0, 0) self.minNoiseEntry = wc.QLineEdit('0', self.checkValues) self.grid.addWidget(self.minNoiseEntry, 1, 0) self.grid.addWidget(wc.QLabel("End index noise:"), 2, 0) self.maxNoiseEntry = wc.QLineEdit(parent.current.len(), self.checkValues) self.grid.addWidget(self.maxNoiseEntry, 3, 0) self.grid.addWidget(wc.QLabel("Start index signal:"), 4, 0) self.minEntry = wc.QLineEdit('0', self.checkValues) self.grid.addWidget(self.minEntry, 5, 0) self.grid.addWidget(wc.QLabel("End index signal:"), 6, 0) self.maxEntry = wc.QLineEdit(parent.current.len(), self.checkValues) self.grid.addWidget(self.maxEntry, 7, 0) self.grid.addWidget(wc.QLabel("S/N:"), 8, 0) self.snEntry = wc.QLineEdit("0.0") self.grid.addWidget(self.snEntry, 9, 0) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def picked(self, pos, num=0): if num == 0: self.minNoiseEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 1) self.father.current.peakPick = True elif num == 1: self.maxNoiseEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 2) self.father.current.peakPick = True elif num == 2: self.minEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 3) self.father.current.peakPick = True elif num == 3: self.maxEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 0) self.father.current.peakPick = True self.applyFunc() def checkValues(self, *args): dataLength = self.father.current.len() inp = safeEval(self.minNoiseEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minNoiseEntry.setText(str(minimum)) inp = safeEval(self.maxNoiseEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxNoiseEntry.setText(str(maximum)) inp = safeEval(self.minEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minEntry.setText(str(minimum)) inp = safeEval(self.maxEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxEntry.setText(str(maximum)) self.applyFunc() def applyFunc(self): dataLength = self.father.current.len() inp = safeEval(self.minNoiseEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("S/N: invalid range") minimumNoise = int(round(inp)) if minimumNoise < 0: minimumNoise = 0 elif minimumNoise > dataLength: minimumNoise = dataLength self.minNoiseEntry.setText(str(minimumNoise)) inp = safeEval(self.maxNoiseEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("S/N: invalid range") maximumNoise = int(round(inp)) if maximumNoise < 0: maximumNoise = 0 elif maximumNoise > dataLength: maximumNoise = dataLength self.maxNoiseEntry.setText(str(maximumNoise)) inp = safeEval(self.minEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("S/N: invalid range") minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minEntry.setText(str(minimum)) inp = safeEval(self.maxEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("S/N: invalid range") maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxEntry.setText(str(maximum)) self.snEntry.setText(str(self.father.current.SN(minimumNoise, maximumNoise, minimum, maximum))) ############################################################## class FWHMWindow(wc.ToolWindow): NAME = "FWHM" CANCELNAME = "&Close" OKNAME = "C&alc" APPLYANDCLOSE = False def __init__(self, parent): super(FWHMWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Start index:"), 0, 0) self.minEntry = wc.QLineEdit('0', self.checkValues) self.grid.addWidget(self.minEntry, 1, 0) self.grid.addWidget(wc.QLabel("End index:"), 2, 0) self.maxEntry = wc.QLineEdit(parent.current.len(), self.checkValues) self.grid.addWidget(self.maxEntry, 3, 0) self.grid.addWidget(wc.QLabel("Units:"), 4, 0) unitSelect = self.father.current.getAxType() if self.father.current.spec() == 1: unitList = ['Hz', 'kHz', 'MHz', 'ppm'] if self.father.current.getppm(): unitSelect = 3 else: unitList = ['s', 'ms', u'μs'] self.unitDrop = QtWidgets.QComboBox() self.unitDrop.addItems(unitList) self.unitDrop.setCurrentIndex(unitSelect) self.unitDrop.currentIndexChanged.connect(self.checkValues) self.grid.addWidget(self.unitDrop, 5, 0) self.grid.addWidget(wc.QLabel(u"FWHM:"), 6, 0) self.fwhmEntry = wc.QLineEdit("0.0") self.grid.addWidget(self.fwhmEntry, 7, 0) self.grid.addWidget(wc.QLabel(u"0.55%:"), 8, 0) self.zffEntry = wc.QLineEdit("0.0") self.grid.addWidget(self.zffEntry, 9, 0) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def picked(self, pos, num=0): if num == 0: self.minEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 1) self.father.current.peakPick = True elif num == 1: self.maxEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 0) self.father.current.peakPick = True self.applyFunc() def checkValues(self, *args): dataLength = self.father.current.len() inp = safeEval(self.minEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minEntry.setText(str(minimum)) inp = safeEval(self.maxEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxEntry.setText(str(maximum)) self.applyFunc() def applyFunc(self): dataLength = self.father.current.len() inp = safeEval(self.minEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("FWHM: invalid range") minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minEntry.setText(str(minimum)) inp = safeEval(self.maxEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("FWHM: invalid range") maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxEntry.setText(str(maximum)) self.fwhmEntry.setText(str(self.father.current.fwhm(minimum, maximum, 0.5, self.unitDrop.currentIndex()))) self.zffEntry.setText(str(self.father.current.fwhm(minimum, maximum, 0.0055, self.unitDrop.currentIndex()))) ############################################################## class COMWindow(wc.ToolWindow): # Centre of Mass Window NAME = "Centre of Mass" CANCELNAME = "&Close" OKNAME = "C&alc" APPLYANDCLOSE = False def __init__(self, parent): super(COMWindow, self).__init__(parent) self.pickDim = 1 if isinstance(self.father.current, views.CurrentContour): self.pickDim = 2 self.grid.addWidget(wc.QLabel("X axis:"), 0, 0, 1, 2) self.grid.addWidget(wc.QLabel("Start:"), 1, 0) self.grid.addWidget(wc.QLabel("End:"), 2, 0) if self.pickDim == 2: unitSelectY = self.father.current.getAxType(-2) if self.father.current.spec(-2) == 1: unitListY = ['Hz', 'kHz', 'MHz', 'ppm'] if self.father.current.getppm(-2): unitSelectY = 3 else: unitListY = ['s', 'ms', u'μs'] self.grid.addWidget(wc.QLabel("Y axis:"), 3, 0, 1, 2) self.grid.addWidget(wc.QLabel("Start:"), 4, 0) self.grid.addWidget(wc.QLabel("End:"), 5, 0) self.minEntryY = wc.QLineEdit("0", lambda: self.applyFunc(False)) self.grid.addWidget(self.minEntryY, 4, 1) self.maxEntryY = wc.QLineEdit(parent.current.len(-2), lambda: self.applyFunc(False)) self.grid.addWidget(self.maxEntryY, 5, 1) self.grid.addWidget(wc.QLabel("Y Unit:"), 11, 0) self.unitDropY = QtWidgets.QComboBox() self.unitDropY.addItems(unitListY) self.unitDropY.setCurrentIndex(unitSelectY) self.unitDropY.currentIndexChanged.connect(lambda: self.applyFunc(True)) self.grid.addWidget(self.unitDropY, 11, 1) self.comEntryY = wc.QLineEdit("0.0") self.grid.addWidget(wc.QLabel(u"Y COM:"), 12, 0) self.grid.addWidget(self.comEntryY, 12, 1) if self.father.current.spec() == 1: unitList = ['Hz', 'kHz', 'MHz', 'ppm'] if self.father.current.getppm(): unitSelect = 3 else: unitList = ['s', 'ms', u'μs'] self.minEntry = wc.QLineEdit("0", lambda: self.applyFunc(False)) self.grid.addWidget(self.minEntry, 1, 1) self.maxEntry = wc.QLineEdit(parent.current.len(), lambda: self.applyFunc(False)) self.grid.addWidget(self.maxEntry, 2, 1) unitSelect = self.father.current.getAxType() self.grid.addWidget(wc.QLabel(u"Centre of Mass:"), 8, 0, 1, 2) self.grid.addWidget(wc.QLabel("X Unit:"), 9, 0) self.unitDrop = QtWidgets.QComboBox() self.unitDrop.addItems(unitList) self.unitDrop.setCurrentIndex(unitSelect) self.unitDrop.currentIndexChanged.connect(lambda: self.applyFunc(True)) self.grid.addWidget(self.unitDrop, 9, 1) self.comEntry = wc.QLineEdit("0.0") self.grid.addWidget(wc.QLabel(u"X COM:"), 10, 0) self.grid.addWidget(self.comEntry, 10, 1) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = self.pickDim def picked(self, pos, num=0): if num == 0: self.minEntry.setText(str(pos[0])) if self.pickDim == 2: self.minEntryY.setText(str(pos[3])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 1) self.father.current.peakPick = self.pickDim elif num == 1: self.maxEntry.setText(str(pos[0])) if self.pickDim == 2: self.maxEntryY.setText(str(pos[3])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 0) self.father.current.peakPick = self.pickDim self.applyFunc() def applyFunc(self, calc=True): dataLength = self.father.current.len() inp = safeEval(self.minEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Centre of Mass: invalid range") minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minEntry.setText(str(minimum)) inp = safeEval(self.maxEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Centre of Mass: invalid range") maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxEntry.setText(str(maximum)) #For contour if self.pickDim == 2: dataLengthY = self.father.current.len(-2) inp = safeEval(self.minEntryY.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Centre of Mass: invalid range") minimumY = int(round(inp)) if minimumY < 0: minimumY = 0 elif minimumY > dataLengthY: minimumY = dataLengthY self.minEntryY.setText(str(minimumY)) inp = safeEval(self.maxEntryY.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Centre of Mass: invalid range") maximumY = int(round(inp)) if maximumY < 0: maximumY = 0 elif maximumY > dataLengthY: maximumY = dataLengthY self.maxEntryY.setText(str(maximumY)) if calc: if self.pickDim == 1: self.comEntry.setText(str(self.father.current.COM([minimum], [maximum], [self.unitDrop.currentIndex()])[0])) elif self.pickDim == 2: com = self.father.current.COM([minimum, minimumY], [maximum, maximumY], [self.unitDrop.currentIndex(), self.unitDropY.currentIndex()]) self.comEntry.setText(str(com[0])) self.comEntryY.setText(str(com[1])) ########################################################################################## class IntegralsWindow(wc.ToolWindow): NAME = "Integrals" CANCELNAME = "&Close" OKNAME = "C&alc" APPLYANDCLOSE = False def __init__(self, parent): super(IntegralsWindow, self).__init__(parent) self.pickDim = 1 if isinstance(self.father.current, views.CurrentContour): self.pickDim = 2 self.grid.addWidget(wc.QLabel("Start index X:"), 0, 0) self.grid.addWidget(wc.QLabel("End index X:"), 0, 1) if self.pickDim == 2: self.grid.addWidget(wc.QLabel("Start index Y:"), 0, 2) self.grid.addWidget(wc.QLabel("End index Y:"), 0, 3) self.grid.addWidget(wc.QLabel("Integral:"), 0, 4) self.scaling = 1 self.num = 0 self.pickType = 0 self.minEntries = [] self.maxEntries = [] self.minEntriesY = [] self.maxEntriesY = [] self.intEntries = [] self.intValues = [] self.xValues = [] self.yValues = [] self.datMax = 0 self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = self.pickDim def picked(self, pos): if self.pickDim == 2: posY = str(pos[3]) pos = str(pos[0]) if self.pickType == 0: self.minEntries.append(wc.QLineEdit(pos, self.applyFunc)) self.maxEntries.append(wc.QLineEdit('', self.applyFunc)) self.intEntries.append(wc.QLineEdit('', (lambda n: lambda: self.setScaling(n))(self.num))) self.intValues.append(None) self.xValues.append(None) self.yValues.append(None) self.intEntries[-1].setMinimumWidth(120) self.grid.addWidget(self.minEntries[-1], self.num+1, 0) self.grid.addWidget(self.maxEntries[-1], self.num+1, 1) self.grid.addWidget(self.intEntries[-1], self.num+1, 4) if self.pickDim == 2: self.minEntriesY.append(wc.QLineEdit(posY, self.applyFunc)) self.maxEntriesY.append(wc.QLineEdit('', self.applyFunc)) self.grid.addWidget(self.minEntriesY[-1], self.num+1, 2) self.grid.addWidget(self.maxEntriesY[-1], self.num+1, 3) self.pickType = 1 elif self.pickType == 1: self.maxEntries[-1].setText(pos) if self.pickDim == 2: self.maxEntriesY[-1].setText(posY) self.num += 1 self.applyFunc() self.pickType = 0 self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = self.pickDim def preview(self): if self.pickDim == 1: self.father.current.integralsPreview(self.xValues, self.yValues, self.datMax) self.father.current.peakPick = True self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) if self.pickDim == 2: xMin = [int(x.text()) for x in self.minEntries] xMax = [int(x.text()) for x in self.maxEntries] yMin = [int(x.text()) for x in self.minEntriesY] yMax = [int(x.text()) for x in self.maxEntriesY] self.father.current.integralsPreview(xMin, xMax, yMin, yMax) def setScaling(self, num): inp = safeEval(self.intEntries[num].text(), length=self.father.current.len(), Type='FI') int = self.intValues[num] if inp is None: return else: self.scaling = int / inp self.applyFunc() def applyFunc(self): dataLength = [self.father.current.shape()[-1] - 1] Parts = [[self.minEntries], [self.maxEntries]] if self.pickDim == 2: dataLength.append(self.father.current.shape()[-2] - 1) Parts[0].append(self.minEntriesY) Parts[1].append(self.maxEntriesY) for num in range(len(self.minEntries)): results = [[], []] #The min/max results ok = [] for place, _ in enumerate(Parts): for i, part in enumerate(Parts[place]): inp = safeEval(part[num].text(), length=dataLength, Type='FI') if inp is None: part[num].setText('') ok.append(False) else: ok.append(True) tmp = int(round(inp)) tmp = min(max(tmp, 0), dataLength[i]) #makes sure that 0 < value < Length results[place].append(tmp) part[num].setText(str(tmp)) if all(ok): self.intValues[num], self.xValues[num], self.yValues[num], self.datMax = self.father.current.Integrals(*results) self.intEntries[num].setText('%#.7g' % (self.intValues[num] / self.scaling)) else: self.intEntries[num].setText('') self.intValues[num] = None self.preview() ########################################################################################## class ReorderWindow(wc.ToolWindow): NAME = "Reorder" def __init__(self, parent): super(ReorderWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Positions of the spectra:"), 0, 0) self.valEntry = wc.QLineEdit('', self.preview) self.grid.addWidget(self.valEntry, 1, 0) fileButton = QtWidgets.QPushButton("&Browse") fileButton.clicked.connect(self.getPosFromFile) self.grid.addWidget(fileButton, 2, 0) self.grid.addWidget(wc.QLabel("Length of dimension:"), 3, 0) self.lengthEntry = wc.QLineEdit('', self.preview) self.grid.addWidget(self.lengthEntry, 4, 0) def preview(self, *args): pass def getPosFromFile(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open File', self.father.father.lastLocation) if isinstance(filename, tuple): filename = filename[0] if filename: # if not cancelled self.father.father.lastLocation = os.path.dirname(filename) # Save used path if not filename: return self.valEntry.setText(repr(np.loadtxt(filename, dtype=int))) def applyFunc(self): newLength = self.lengthEntry.text() if newLength == '': newLength = None else: newLength = safeEval(self.lengthEntry.text(), length=self.father.current.len(), Type='FI') if newLength is None: raise SsnakeException("Reorder: `Length' input is not valid") val = safeEval(self.valEntry.text(), length=int(self.father.current.len())) if not isinstance(val, (list, np.ndarray)): raise SsnakeException("Reorder: `Positions' input is not a list or array") if len(val) != self.father.current.len(): raise SsnakeException("Reorder: length of input does not match length of data") val = np.array(val, dtype=int) check = self.father.current.reorder(val, newLength) if check is False: raise SsnakeException("Reorder: error during applying") ########################################################################################## class RegridWindow(wc.ToolWindow): NAME = "Regrid" def __init__(self, parent): super(RegridWindow, self).__init__(parent) self.typeDrop = QtWidgets.QComboBox(parent=self) self.typeDrop.addItems(["Min/max input"]) self.grid.addWidget(self.typeDrop, 0, 0, 1, 2) # Get unit if self.father.current.spec() == 1: if self.father.masterData.shape()[self.father.current.axes[-1]] == 1: self.closeEvent() raise SsnakeException("Regrid: Regrid not possible with size 1") if self.father.current.getppm(): self.unit = 'ppm' else: axType = self.father.current.getAxType() if axType == 0: self.unit = 'Hz' elif axType == 1: self.unit = 'kHz' elif axType == 2: self.unit = 'MHz' elif axType == 3: self.unit = 'ppm' maxVal = self.father.current.xax()[-1] minVal = self.father.current.xax()[0] if self.unit == 'kHz': maxVal /= 1e3 minVal /= 1e3 elif self.unit == 'MHz': maxVal /= 1e6 minVal /= 1e6 elif self.unit == 'ppm': maxVal /= self.father.masterData.ref[self.father.current.axes[-1]] / 1e6 minVal /= self.father.masterData.ref[self.father.current.axes[-1]] / 1e6 self.maxValue = wc.QLineEdit(maxVal) self.maxValue.setMinimumWidth(150) self.maxLabel = wc.QLeftLabel('Max [' + self.unit + ']:') self.minValue = wc.QLineEdit(minVal) self.minLabel = wc.QLeftLabel('Min [' + self.unit + ']:') self.points = wc.QLineEdit(self.father.masterData.shape()[self.father.current.axes[-1]]) self.pointsLabel = wc.QLeftLabel('# of points:') self.grid.addWidget(self.minValue, 1, 1) self.grid.addWidget(self.minLabel, 1, 0) self.grid.addWidget(self.maxValue, 2, 1) self.grid.addWidget(self.maxLabel, 2, 0) self.grid.addWidget(self.pointsLabel, 3, 0) self.grid.addWidget(self.points, 3, 1) else: self.closeEvent() def applyFunc(self): maxVal = safeEval(self.maxValue.text(), length=self.father.current.len(), Type='FI') if maxVal is None: raise SsnakeException("Regrid: 'Max' input not valid") minVal = safeEval(self.minValue.text(), length=self.father.current.len(), Type='FI') if minVal is None: raise SsnakeException("Regrid: 'Min' input not valid") numPoints = safeEval(self.points.text(), length=self.father.current.len(), Type='FI') if numPoints is None or numPoints == 1: raise SsnakeException("Regrid: '# of points' input not valid") numPoints = int(numPoints) # Convert to Hz/s if self.unit == 'kHz': maxVal *= 1e3 minVal *= 1e3 elif self.unit == 'MHz': maxVal *= 1e6 minVal *= 1e6 elif self.unit == 'ppm': maxVal *= self.father.masterData.ref[self.father.current.axes[-1]] / 1e6 minVal *= self.father.masterData.ref[self.father.current.axes[-1]] / 1e6 self.father.current.regrid([minVal, maxVal], numPoints) ########################################################################################## class FFMWindow(wc.ToolWindow): NAME = "FFM" def __init__(self, parent): super(FFMWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Positions of the spectra:"), 0, 0) self.valEntry = wc.QLineEdit('', self.preview) self.grid.addWidget(self.valEntry, 1, 0) fileButton = QtWidgets.QPushButton("&Browse") fileButton.clicked.connect(self.getPosFromFile) self.grid.addWidget(fileButton, 2, 0) self.grid.addWidget(wc.QLabel("Type of the position list:"), 3, 0) self.typeDrop = QtWidgets.QComboBox(parent=self) self.typeDrop.addItems(["Complex", "States/States-TPPI", "TPPI"]) self.grid.addWidget(self.typeDrop, 4, 0) self.grid.addWidget(wc.QLabel("Reconstruction may take a while"), 5, 0) def preview(self, *args): pass def getPosFromFile(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open File', self.father.father.lastLocation) if isinstance(filename, tuple): filename = filename[0] if filename: # if not cancelled self.father.father.lastLocation = os.path.dirname(filename) # Save used path if not filename: return self.valEntry.setText(repr(np.loadtxt(filename, dtype=int))) def applyFunc(self): val = safeEval(self.valEntry.text(), length=self.father.current.len()) if not isinstance(val, (list, np.ndarray)): raise SsnakeException("FFM: 'Positions' is not a list or array") val = np.array(val, dtype=int) check = self.father.current.ffm(val, self.typeDrop.currentIndex()) if check is False: raise SsnakeException("FFM: error") ########################################################################################## class CLEANWindow(wc.ToolWindow): NAME = "CLEAN" def __init__(self, parent): super(CLEANWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Positions of the spectra:"), 0, 0) self.valEntry = wc.QLineEdit('', self.preview) self.grid.addWidget(self.valEntry, 1, 0) fileButton = QtWidgets.QPushButton("&Browse") fileButton.clicked.connect(self.getPosFromFile) self.grid.addWidget(fileButton, 2, 0) self.grid.addWidget(wc.QLabel("Type of the position list:"), 3, 0) self.typeDrop = QtWidgets.QComboBox(parent=self) self.typeDrop.addItems(["Complex", "States/States-TPPI", "TPPI"]) self.grid.addWidget(self.typeDrop, 4, 0) self.grid.addWidget(wc.QLabel("Gamma:"), 5, 0) self.gammaEntry = wc.QLineEdit("0.2") self.grid.addWidget(self.gammaEntry, 6, 0) self.grid.addWidget(wc.QLabel("Threshold:"), 7, 0) self.thresholdEntry = wc.QLineEdit("2.0") self.grid.addWidget(self.thresholdEntry, 8, 0) self.grid.addWidget(wc.QLabel("Max. iterations:"), 11, 0) self.maxIterEntry = wc.QLineEdit("2000") self.grid.addWidget(self.maxIterEntry, 12, 0) def preview(self, *args): pass def getPosFromFile(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open File', self.father.father.lastLocation) if isinstance(filename, tuple): filename = filename[0] if filename: # if not cancelled self.father.father.lastLocation = os.path.dirname(filename) # Save used path if not filename: return self.valEntry.setText(repr(np.loadtxt(filename, dtype=int))) def applyFunc(self): val = safeEval(self.valEntry.text(), length=self.father.current.len()) if not isinstance(val, (list, np.ndarray)): raise SsnakeException("CLEAN: 'Positions' is not a list or array") val = np.array(val, dtype=int) gamma = safeEval(self.gammaEntry.text(), length=self.father.current.len(), Type='FI') if gamma is None: raise SsnakeException("CLEAN: 'Gamma' input is not valid") threshold = safeEval(self.thresholdEntry.text(), length=self.father.current.len(), Type='FI') if threshold is None: raise SsnakeException("CLEAN: 'Threshold' input is not valid") threshold = threshold maxIter = safeEval(self.maxIterEntry.text(), length=self.father.current.len(), Type='FI') if maxIter is None: raise SsnakeException("CLEAN: 'Max. iter.' is not valid") maxIter = int(maxIter) check = self.father.current.clean(val, self.typeDrop.currentIndex(), gamma, threshold, maxIter) if check is False: raise SsnakeException("CLEAN: error") ################################################################ class ISTWindow(wc.ToolWindow): NAME = "IST" def __init__(self, parent): super(ISTWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Positions of the spectra:"), 0, 0) self.valEntry = wc.QLineEdit('', self.preview) self.grid.addWidget(self.valEntry, 1, 0) fileButton = QtWidgets.QPushButton("&Browse") fileButton.clicked.connect(self.getPosFromFile) self.grid.addWidget(fileButton, 2, 0) self.grid.addWidget(wc.QLabel("Type of the position list:"), 3, 0) self.typeDrop = QtWidgets.QComboBox(parent=self) self.typeDrop.addItems(["Complex", "States/States-TPPI", "TPPI"]) self.grid.addWidget(self.typeDrop, 4, 0) self.grid.addWidget(wc.QLabel("Threshold:"), 5, 0) self.thresholdEntry = wc.QLineEdit("0.9") self.grid.addWidget(self.thresholdEntry, 6, 0) self.grid.addWidget(wc.QLabel("Max. iterations:"), 7, 0) self.maxIterEntry = wc.QLineEdit("100") self.grid.addWidget(self.maxIterEntry, 8, 0) self.grid.addWidget(wc.QLabel("Stop when residual below (% of ND max):"), 9, 0) self.tracelimitEntry = wc.QLineEdit("2.0") self.grid.addWidget(self.tracelimitEntry, 10, 0) def preview(self, *args): pass def getPosFromFile(self): filename = QtWidgets.QFileDialog.getOpenFileName(self, 'Open File', self.father.father.lastLocation) if isinstance(filename, tuple): filename = filename[0] if filename: # if not cancelled self.father.father.lastLocation = os.path.dirname(filename) # Save used path if not filename: return self.valEntry.setText(repr(np.loadtxt(filename, dtype=int))) def applyFunc(self): val = safeEval(self.valEntry.text(), length=self.father.current.len()) if not isinstance(val, (list, np.ndarray)): raise SsnakeException("IST: 'Positions' input is not a list or array") val = np.array(val, dtype=int) tracelimit = safeEval(self.tracelimitEntry.text(), length=self.father.current.len(), Type='FI') if tracelimit is None: raise SsnakeException("IST: 'Residual' input is not valid") tracelimit /= 100 threshold = safeEval(self.thresholdEntry.text(), length=self.father.current.len(), Type='FI') if threshold is None: raise SsnakeException("IST: 'Threshold' input is not valid") maxIter = safeEval(self.maxIterEntry.text(), length=self.father.current.len(), Type='FI') if maxIter is None: raise SsnakeException("IST: 'Max. iter.' input is not valid") maxIter = int(maxIter) check = self.father.current.ist(val, self.typeDrop.currentIndex(), threshold, maxIter, tracelimit) if check is False: raise SsnakeException("IST: error") ################################################################ class ShearingWindow(wc.ToolWindow): NAME = "Shearing" def __init__(self, parent): super(ShearingWindow, self).__init__(parent) options = list(map(str, range(1, self.father.masterData.ndim() + 1))) self.grid.addWidget(wc.QLabel("Shearing constant:"), 0, 0) self.shearDropdown = QtWidgets.QComboBox() self.shearDropdown.addItems(['User Defined', 'Spin 3/2, -3Q (7/9)', 'Spin 5/2, 3Q (19/12)', 'Spin 5/2, -5Q (25/12)', 'Spin 7/2, 3Q (101/45)', 'Spin 7/2, 5Q (11/9)', 'Spin 7/2, -7Q (161/45)', 'Spin 9/2, 3Q (91/36)', 'Spin 9/2, 5Q (95/36)', 'Spin 9/2, 7Q (7/18)', 'Spin 9/2, -9Q (31/6)']) self.shearDropdown.activated.connect(self.dropdownChanged) self.shearList = [0, 7.0 / 9.0, 19.0 / 12.0, 25.0 / 12.0, 101.0 / 45.0, 11.0 / 9.0, 161.0 / 45.0, 91.0 / 36.0, 95.0 / 36.0, 7.0 / 18.0, 31.0 / 6.0] self.grid.addWidget(self.shearDropdown, 1, 0) self.shearEntry = wc.QLineEdit("0.0", self.shearPreview) self.grid.addWidget(self.shearEntry, 3, 0) self.grid.addWidget(wc.QLabel("Shearing direction:"), 4, 0) self.dirEntry = QtWidgets.QComboBox() self.dirEntry.addItems(options) self.dirEntry.setCurrentIndex(self.father.masterData.ndim() - 2) self.grid.addWidget(self.dirEntry, 5, 0) self.grid.addWidget(wc.QLabel("Shearing axis:"), 6, 0) self.axEntry = QtWidgets.QComboBox() self.axEntry.addItems(options) self.axEntry.setCurrentIndex(self.father.masterData.ndim() - 1) self.grid.addWidget(self.axEntry, 7, 0) self.toRefCheck = QtWidgets.QCheckBox("Relative to Reference") self.grid.addWidget(self.toRefCheck, 8, 0) def dropdownChanged(self): index = self.shearDropdown.currentIndex() self.shearEntry.setText("%.9f" % self.shearList[index]) def shearPreview(self, *args): shear = safeEval(self.shearEntry.text(), length=self.father.current.len(), Type='FI') if shear is not None: self.shearEntry.setText(str(float(shear))) def applyFunc(self): shear = safeEval(self.shearEntry.text(), length=self.father.current.len(), Type='FI') if shear is None: raise SsnakeException("Shearing: 'constant' not a valid value") axis = self.dirEntry.currentIndex() axis2 = self.axEntry.currentIndex() if axis == axis2: raise SsnakeException("Shearing: axes cannot be the same for shearing") self.father.current.shearing(float(shear), axis, axis2, self.toRefCheck.isChecked()) ########################################################################################## class MultiplyWindow(wc.ToolWindow): NAME = "Multiply" SINGLESLICE = True def __init__(self, parent): super(MultiplyWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Values:"), 0, 0) self.valEntry = wc.QLineEdit('', self.preview) self.grid.addWidget(self.valEntry, 1, 0) def preview(self, *args): val = safeEval(self.valEntry.text(), length=self.father.current.len()) if val is None: raise SsnakeException("Multiply: input not valid") self.father.current.multiplyPreview(np.array(val)) def applyFunc(self): val = safeEval(self.valEntry.text(), length=self.father.current.len()) if val is None: raise SsnakeException("Multiply: input not valid") self.father.current.multiply(np.array(val), self.singleSlice.isChecked()) ########################################################################################## class NormalizeWindow(wc.ToolWindow): NAME = "Normalize" SINGLESLICE = True def __init__(self, parent): super(NormalizeWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Start index:"), 0, 0) self.minEntry = wc.QLineEdit("0", self.checkValues) self.grid.addWidget(self.minEntry, 1, 0) self.grid.addWidget(wc.QLabel("End index:"), 2, 0) self.maxEntry = wc.QLineEdit(parent.current.len(), self.checkValues) self.grid.addWidget(self.maxEntry, 3, 0) self.grid.addWidget(wc.QLabel("Type:"), 4, 0) self.typeDrop = QtWidgets.QComboBox() self.typeDrop.addItems(['Integral', 'Maximum', 'Minimum']) self.typeDrop.setCurrentIndex(0) self.typeDrop.currentIndexChanged.connect(self.checkValues) self.grid.addWidget(self.typeDrop, 5, 0) self.grid.addWidget(wc.QLabel("Multiplier:"), 6, 0) self.valEntry = wc.QLineEdit("1.0") self.grid.addWidget(self.valEntry, 7, 0) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def picked(self, pos, num=0): if num == 0: self.minEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 1) self.father.current.peakPick = True elif num == 1: self.maxEntry.setText(str(pos[0])) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos, 0) self.father.current.peakPick = True #self.applyFunc() def checkValues(self, *args): dataLength = self.father.current.len() inp = safeEval(self.minEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minEntry.setText(str(minimum)) inp = safeEval(self.maxEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: return maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxEntry.setText(str(maximum)) #self.applyFunc() def applyFunc(self): dataLength = self.father.current.len() inp = safeEval(self.minEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Normalize: invalid range") minimum = int(round(inp)) if minimum < 0: minimum = 0 elif minimum > dataLength: minimum = dataLength self.minEntry.setText(str(minimum)) inp = safeEval(self.maxEntry.text(), length=self.father.current.len(), Type='FI') if inp is None: raise SsnakeException("Normalize: invalid range") maximum = int(round(inp)) if maximum < 0: maximum = 0 elif maximum > dataLength: maximum = dataLength self.maxEntry.setText(str(maximum)) try: scale = safeEval(self.valEntry.text(), length=self.father.current.len(), Type='FI') except Exception: raise SsnakeException("Normalize: invalid multiplier") type = self.typeDrop.currentIndex() if type == 0: val, xValues, yValues, datMax = self.father.current.Integrals([minimum], [maximum]) elif type == 1: val = self.father.current.MaxMin(minimum, maximum, type='max') elif type == 2: val = self.father.current.MaxMin(minimum, maximum, type='min') self.father.current.normalize( 1.0 / val, scale, type, self.singleSlice.isChecked()) ########################################################################################## class XaxWindow(wc.ToolWindow): RESIZABLE = True NAME = "User defined x-axis" def __init__(self, parent): super(XaxWindow, self).__init__(parent) self.axisSize = self.father.current.len() self.grid.addWidget(wc.QLabel("Input x-axis values:"), 0, 0, 1, 2) self.typeDropdown = QtWidgets.QComboBox() self.typeDropdown.addItems(['Expression', 'Linear', 'Logarithmic']) self.typeDropdown.activated.connect(self.typeChanged) self.grid.addWidget(self.typeDropdown, 1, 0, 1, 2) self.exprEntry = wc.QLineEdit('', self.xaxPreview) self.grid.addWidget(self.exprEntry, 2, 0, 1, 2) # Linear self.linStartLabel = wc.QLeftLabel("Start [s]:") self.linStopLabel = wc.QLeftLabel("Stop [s]:") self.linStartLabel.hide() self.linStopLabel.hide() self.grid.addWidget(self.linStartLabel, 3, 0, 1, 1) self.grid.addWidget(self.linStopLabel, 4, 0, 1, 1) self.linStartEntry = wc.QLineEdit('', self.xaxPreview) self.linStartEntry.setMaximumWidth(120) self.linStartEntry.hide() self.grid.addWidget(self.linStartEntry, 3, 1, 1, 1) self.linStopEntry = wc.QLineEdit('', self.xaxPreview) self.linStopEntry.setMaximumWidth(120) self.linStopEntry.hide() self.grid.addWidget(self.linStopEntry, 4, 1, 1, 1) # Log self.logStartLabel = wc.QLeftLabel("Start [s]:") self.logStopLabel = wc.QLeftLabel("Stop [s]:") self.logStartLabel.hide() self.logStopLabel.hide() self.grid.addWidget(self.logStartLabel, 5, 0, 1, 1) self.grid.addWidget(self.logStopLabel, 6, 0, 1, 1) self.logStartEntry = wc.QLineEdit('', self.xaxPreview) self.logStartEntry.setMaximumWidth(120) self.logStartEntry.hide() self.grid.addWidget(self.logStartEntry, 5, 1, 1, 1) self.logStopEntry = wc.QLineEdit('', self.xaxPreview) self.logStopEntry.setMaximumWidth(120) self.logStopEntry.hide() self.grid.addWidget(self.logStopEntry, 6, 1, 1, 1) self.table = QtWidgets.QTableWidget(self.axisSize, 2) self.table.setHorizontalHeaderLabels(['Index', 'Value [s]']) self.table.verticalHeader().hide() for val in range(self.axisSize): item = QtWidgets.QTableWidgetItem(str(val)) item.setFlags(QtCore.Qt.ItemIsEnabled) self.table.setItem(int(val), 0, item) item2 = QtWidgets.QTableWidgetItem('') item2.setFlags(QtCore.Qt.ItemIsEnabled) self.table.setItem(int(val), 1, item2) # self.table.setVerticalHeaderLabels([str(a) for a in range(self.axisSize)]) self.grid.addWidget(self.table, 12, 0, 1, 2) self.resize(250, 500) def typeChanged(self, index): if index == 0: # If expr self.exprEntry.show() self.linStartLabel.hide() self.linStopLabel.hide() self.linStartEntry.hide() self.linStopEntry.hide() self.logStartLabel.hide() self.logStopLabel.hide() self.logStartEntry.hide() self.logStopEntry.hide() elif index == 1: self.exprEntry.hide() self.linStartLabel.show() self.linStopLabel.show() self.linStartEntry.show() self.linStopEntry.show() self.logStartLabel.hide() self.logStopLabel.hide() self.logStartEntry.hide() self.logStopEntry.hide() elif index == 2: self.exprEntry.hide() self.linStartLabel.hide() self.linStopLabel.hide() self.linStartEntry.hide() self.linStopEntry.hide() self.logStartLabel.show() self.logStopLabel.show() self.logStartEntry.show() self.logStopEntry.show() def getValues(self): if self.typeDropdown.currentIndex() == 0: env = vars(np).copy() env['length'] = self.father.current.len() # so length can be used to in equations env['euro'] = lambda fVal, num=self.axisSize: func.euro(fVal, num) try: val = np.array(eval(self.exprEntry.text(), env),dtype=float) # find a better solution, also add catch for exceptions except SyntaxError: try: val = np.fromstring(self.exprEntry.text(), sep=' ') val2 = np.fromstring(self.exprEntry.text(), sep=',') if len(val2) > len(val): val = val2 except Exception as e: raise SsnakeException(str(e)) except Exception as e: raise SsnakeException(str(e)) if not isinstance(val, (list, np.ndarray)): raise SsnakeException("X-axis: Input is not a list or array") if len(val) != self.father.current.len(): raise SsnakeException("X-axis: Length of input does not match length of data") if not all(isinstance(x, (int, float)) for x in val): raise SsnakeException("X-axis: Array is not all of int or float type") elif self.typeDropdown.currentIndex() == 1: start = safeEval(self.linStartEntry.text(), Type='FI') stop = safeEval(self.linStopEntry.text(), Type='FI') if start is None: raise SsnakeException("X-axis: linear start value is not valid") if stop is None: raise SsnakeException("X-axis: linear stop value is not valid") val = np.linspace(start, stop, self.axisSize) elif self.typeDropdown.currentIndex() == 2: start = safeEval(self.logStartEntry.text(), Type='FI') stop = safeEval(self.logStopEntry.text(), Type='FI') if start is None or start <= 0.0: raise SsnakeException("X-axis: logarithmic start value is not valid") if stop is None or stop <= 0.0: raise SsnakeException("X-axis: logarithmic stop value is not valid") val = np.logspace(np.log10(start), np.log10(stop), self.axisSize) return val def xaxPreview(self, *args): val = self.getValues() if val is None: # if error return. Messages are handled by the called function return for i in range(self.axisSize): item = QtWidgets.QTableWidgetItem('{:.6g}'.format(val[i])) item.setFlags(QtCore.Qt.ItemIsEnabled) self.table.setItem(i, 1, item) self.father.current.setXaxPreview(np.array(val)) def applyFunc(self): val = self.getValues() if val is None: # if error return. Messages are handled by the called function return self.father.current.setXax(np.array(val)) ########################################################################################## class RefWindow(wc.ToolWindow): NAME = "Reference" def __init__(self, parent): super(RefWindow, self).__init__(parent) # Secondary reference definitions file = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + "References.txt" with open(file) as refFile: refList = [line.strip().split('\t') for line in refFile] secRefNames = ["User Defined"] secRefValues = ["0.0"] for entry in refList: secRefNames.append(entry[0]) secRefValues.append(entry[1]) self.secRefNames = secRefNames self.secRefValues = secRefValues if parent.current.spec() == 0: self.closeEvent() raise SsnakeException('Setting ppm is only available for frequency data') self.grid.addWidget(wc.QLabel("Name:"), 0, 0) self.refName = wc.QLineEdit() self.grid.addWidget(self.refName, 1, 0) self.grid.addWidget(wc.QLabel("Frequency [MHz]:"), 2, 0) self.freqEntry = wc.QLineEdit(("%.7f" % (self.father.current.ref() * 1e-6)), self.preview) self.grid.addWidget(self.freqEntry, 3, 0) self.grid.addWidget(wc.QLabel("Secondary Reference:"), 4, 0) self.refSecond = QtWidgets.QComboBox(parent=self) self.refSecond.addItems(self.secRefNames) self.refSecond.activated.connect(self.fillSecondaryRef) self.grid.addWidget(self.refSecond, 5, 0) self.grid.addWidget(wc.QLabel("Reference [ppm]:"), 6, 0) self.refEntry = wc.QLineEdit("0.0", self.preview) self.grid.addWidget(self.refEntry, 7, 0) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True def preview(self, *args): freq = safeEval(self.freqEntry.text(), length=self.father.current.len(), Type='FI') ref = safeEval(self.refEntry.text(), length=self.father.current.len(), Type='FI') if freq is None or ref is None: return self.freqEntry.setText("%.7f" % (freq)) self.refEntry.setText(str(ref)) def fillSecondaryRef(self): self.refEntry.setText(self.secRefValues[self.refSecond.currentIndex()]) def applyAndClose(self): self.father.current.peakPickReset() freq = safeEval(self.freqEntry.text(), length=self.father.current.len(), Type='FI') ref = safeEval(self.refEntry.text(), length=self.father.current.len(), Type='FI') if freq is None or ref is None: raise SsnakeException("Not a valid value") freq = freq * 1e6 reffreq = freq / (1.0 + ref * 1e-6) givenname = self.refName.text() nameOK = True if givenname: # If name is filled in if givenname in self.father.father.referenceName: # if exists self.father.father.dispMsg("Reference name '" + givenname + "' already exists") nameOK = False else: self.father.father.referenceAdd(reffreq, givenname) if nameOK: self.father.current.setRef(reffreq) self.father.bottomframe.upd() self.closeEvent() def picked(self, pos): self.freqEntry.setText("%.7f" % ((self.father.current.ref() + self.father.current.xax()[pos[0]]) * 1e-6)) self.father.current.peakPickFunc = lambda pos, self=self: self.picked(pos) self.father.current.peakPick = True ########################################################################################## class HistoryWindow(wc.ToolWindow): NAME = "Processing history" RESIZABLE = True MENUDISABLE = True def __init__(self, parent): super(HistoryWindow, self).__init__(parent) self.cancelButton.hide() self.valEntry = QtWidgets.QTextEdit() self.valEntry.setReadOnly(True) self.valEntry.setLineWrapMode(QtWidgets.QTextEdit.NoWrap) self.valEntry.setText(self.father.masterData.getHistory()) self.grid.addWidget(self.valEntry, 1, 0) self.resize(550, 700) ######################################################################################### class OrigListWidget(QtWidgets.QListWidget): def __init__(self, parent=None, dest=None): super(OrigListWidget, self).__init__(parent) self.setDragDropMode(QtWidgets.QAbstractItemView.DragDrop) self.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.setAcceptDrops(True) self.dest = dest def dropEvent(self, event): if event.source() == self: pass else: if self.dest is not None: for item in self.dest.selectedItems(): self.dest.takeItem(self.dest.row(item)) def mouseDoubleClickEvent(self, event): for item in self.selectedItems(): QtWidgets.QListWidgetItem(item.text(), self.dest) ######################################################################################### class DestListWidget(QtWidgets.QListWidget): def __init__(self, parent=None): super(DestListWidget, self).__init__(parent) self.setDragDropMode(QtWidgets.QAbstractItemView.DragDrop) self.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection) self.setAcceptDrops(True) def dropEvent(self, event): if event.source() == self: event.setDropAction(QtCore.Qt.MoveAction) super(DestListWidget, self).dropEvent(event) else: event.setDropAction(QtCore.Qt.CopyAction) super(DestListWidget, self).dropEvent(event) def keyPressEvent(self, event): if event.key() == QtCore.Qt.Key_Delete: self.deleteSelected() def deleteSelected(self): for item in self.selectedItems(): self.takeItem(self.row(item)) def moveSelection(self,direction = 'up'): #Get selected items index = [self.row(item) for item in self.selectedItems()] items = [item for item in self.selectedItems()] #Sort items based on index, to get move order right items = [x for _,x in sorted(zip(index,items))] if direction == 'up': check = 0 step = -1 elif direction == 'down': check = self.count() - 1 step = +1 items = items[::-1] #Invert move order if check in index: #If one item already at limit return #If not, move one line for item in items: row = self.row(item) currentItem = self.takeItem(row) self.insertItem(row + step, currentItem) #Reselect the items for item in items: item.setSelected(True) def mouseDoubleClickEvent(self, event): self.deleteSelected() ########################################################################################## class CombineWorkspaceWindow(wc.ToolWindow): NAME = "Combine workspaces" RESIZABLE = True def __init__(self, parent): super(CombineWorkspaceWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Workspaces:"), 0, 0) self.grid.addWidget(wc.QLabel("Combined spectrum:"), 0, 2) self.listB = DestListWidget(self) self.listA = OrigListWidget(self, self.listB) for i in self.father.workspaceNames: QtWidgets.QListWidgetItem(i, self.listA).setToolTip(i) self.grid.addWidget(self.listA, 1, 0, 2, 1) self.grid.addWidget(self.listB, 1, 2, 2, 1) self.rightPush = QtWidgets.QPushButton(u"\u2192", self) self.leftPush = QtWidgets.QPushButton(u"\u2190", self) self.downPush = QtWidgets.QPushButton(u"\u2193", self) self.upPush = QtWidgets.QPushButton(u"\u2191", self) self.rightPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.leftPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.downPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.upPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.grid.addWidget(self.rightPush, 1, 1) self.grid.addWidget(self.leftPush, 2, 1) self.grid.addWidget(self.upPush, 1, 3) self.grid.addWidget(self.downPush, 2, 3) self.leftPush.clicked.connect(self.right2left) self.rightPush.clicked.connect(self.left2right) self.upPush.clicked.connect(self.moveUp) self.downPush.clicked.connect(self.moveDown) self.resize(500, 400) def right2left(self): self.listB.deleteSelected() def left2right(self): for item in self.listA.selectedItems(): self.listB.addItem(item.text()) def moveUp(self): self.listB.moveSelection('up') def moveDown(self): self.listB.moveSelection('down') def applyFunc(self, *args): items = [] for index in range(self.listB.count()): items.append(self.listB.item(index).text()) if not items: raise SsnakeException("Please select at least one workspace to combine") self.father.combineWorkspace(items) def closeEvent(self, *args): if self.MENUDISABLE: self.father.menuEnable(True) self.deleteLater() ########################################################################################## class CombineLoadWindow(wc.ToolWindow): NAME = "Open & Combine" BROWSE = True RESIZABLE = True MENUDISABLE = False def __init__(self, parent): super(CombineLoadWindow, self).__init__(parent) self.setAcceptDrops(True) self.grid.addWidget(wc.QLabel("Data to be Combined:"), 0, 0) self.specList = DestListWidget(self) self.grid.addWidget(self.specList, 1, 0) def dragEnterEvent(self, event): if event.mimeData().hasUrls: event.accept() else: event.ignore() def dropEvent(self, event): for url in event.mimeData().urls(): name = url.toLocalFile() self.specList.addItem(name) def browse(self): fileList = QtWidgets.QFileDialog.getOpenFileNames(self, 'Open File', self.father.lastLocation) if isinstance(fileList, tuple): fileList = fileList[0] for filePath in fileList: if filePath: # if not cancelled self.father.lastLocation = os.path.dirname(filePath) # Save used path if not filePath: return self.specList.addItem(filePath) def applyFunc(self, *args): items = [] for index in range(self.specList.count()): items.append(self.specList.item(index).text()) if not items: raise SsnakeException("Please select at least one workspace to combine") self.father.loadAndCombine(items) def closeEvent(self, *args): self.deleteLater() ########################################################################################## class MonitorWindow(QtWidgets.QWidget): def __init__(self, parent): super(MonitorWindow, self).__init__(parent) self.setWindowFlags(QtCore.Qt.Window | QtCore.Qt.Tool) self.father = parent self.setWindowTitle("Monitor") layout = QtWidgets.QGridLayout(self) grid = QtWidgets.QGridLayout() fileName = self.father.masterData.filePath[0][0] if len(fileName) > 58: fileName = fileName[:55] + '...' fileLabel = wc.QLabel("File: " + fileName) fileLabel.setToolTip(self.father.masterData.filePath[0][0]) layout.addWidget(fileLabel, 0, 0, 1, 3) layout.addLayout(grid, 1, 0, 1, 3) grid.addWidget(wc.QLabel("Macros:"), 0, 0) grid.addWidget(wc.QLabel("Apply after loading:"), 0, 1) self.listB = DestListWidget(self) for i in self.father.monitorMacros: QtWidgets.QListWidgetItem(i, self.listB).setToolTip(i) self.listA = OrigListWidget(self, self.listB) for i in self.father.father.macros.keys(): QtWidgets.QListWidgetItem(i, self.listA).setToolTip(i) grid.addWidget(self.listA, 1, 0) grid.addWidget(self.listB, 1, 1) grid.addWidget(wc.QLabel("Delay [s]:"), 2, 0) self.delTime = wc.SsnakeDoubleSpinBox() self.delTime.setMaximum(10000) self.delTime.setMinimum(0) self.delTime.setSingleStep(0.1) self.delTime.setValue(0.5) grid.addWidget(self.delTime, 2, 1) cancelButton = QtWidgets.QPushButton("&Close") cancelButton.clicked.connect(self.closeEvent) watchButton = QtWidgets.QPushButton("&Watch") watchButton.clicked.connect(self.applyAndClose) unwatchButton = QtWidgets.QPushButton("&Unwatch") unwatchButton.clicked.connect(self.stopAndClose) box = QtWidgets.QDialogButtonBox() box.addButton(cancelButton, QtWidgets.QDialogButtonBox.RejectRole) box.addButton(watchButton, QtWidgets.QDialogButtonBox.ActionRole) box.addButton(unwatchButton, QtWidgets.QDialogButtonBox.ActionRole) layout.addWidget(box, 3, 0) layout.setColumnStretch(4, 1) self.show() self.setFixedSize(self.size()) self.father.menuEnable(False) self.setGeometry(self.frameSize().width() - self.geometry().width(), self.frameSize().height() - self.geometry().height(), 0, 0) def applyAndClose(self, *args): self.father.stopMonitor() items = [] for index in range(self.listB.count()): items.append(self.listB.item(index).text()) delay = self.delTime.value() self.father.startMonitor(items, delay) self.closeEvent() def stopAndClose(self, *args): self.father.stopMonitor() self.closeEvent() def closeEvent(self, *args): self.father.menuEnable(True) self.deleteLater() ############################################################################## class PlotSettingsWindow(wc.ToolWindow): NAME = "Preferences" def __init__(self, parent): super(PlotSettingsWindow, self).__init__(parent) tabWidget = QtWidgets.QTabWidget() tab1 = QtWidgets.QWidget() tab2 = QtWidgets.QWidget() tab3 = QtWidgets.QWidget() tabWidget.addTab(tab1, "Plot") tabWidget.addTab(tab2, "Contour") tabWidget.addTab(tab3, "2D Colour") grid1 = QtWidgets.QGridLayout() grid2 = QtWidgets.QGridLayout() grid3 = QtWidgets.QGridLayout() tab1.setLayout(grid1) tab2.setLayout(grid2) tab3.setLayout(grid3) grid1.setColumnStretch(10, 1) grid1.setRowStretch(10, 1) grid2.setColumnStretch(10, 1) grid2.setRowStretch(10, 1) grid3.setColumnStretch(10, 1) grid3.setRowStretch(10, 1) grid1.addWidget(QtWidgets.QLabel("Linewidth:"), 1, 0) self.lwSpinBox = wc.SsnakeDoubleSpinBox() self.lwSpinBox.setSingleStep(0.1) self.lwSpinBox.setValue(self.father.current.viewSettings["linewidth"]) self.lwSpinBox.valueChanged.connect(self.preview) grid1.addWidget(self.lwSpinBox, 1, 1) self.color = self.father.current.viewSettings["color"] lineColorButton = QtWidgets.QPushButton("Line colour") lineColorButton.clicked.connect(self.setColor) grid1.addWidget(lineColorButton, 2, 0) grid1.addWidget(QtWidgets.QLabel("Colour range:"), 3, 0) self.crEntry = QtWidgets.QComboBox(self) self.crEntry.addItems(views.COLORRANGELIST) self.crEntry.setCurrentIndex(self.father.current.getColorRange()) self.crEntry.currentIndexChanged.connect(self.preview) grid1.addWidget(self.crEntry, 3, 1) self.xgridCheck = QtWidgets.QCheckBox("x-grid") self.xgridCheck.setChecked(self.father.current.viewSettings["grids"][0]) self.xgridCheck.stateChanged.connect(self.preview) grid1.addWidget(self.xgridCheck, 4, 0, 1, 2) self.ygridCheck = QtWidgets.QCheckBox("y-grid") self.ygridCheck.setChecked(self.father.current.viewSettings["grids"][1]) grid1.addWidget(self.ygridCheck, 5, 0, 1, 2) self.ygridCheck.stateChanged.connect(self.preview) grid1.addWidget(QtWidgets.QLabel("Min X Ticks:"), 6, 0) self.xTicksSpinBox = wc.SsnakeSpinBox() self.xTicksSpinBox.setValue(self.father.current.viewSettings["minXTicks"]) self.xTicksSpinBox.valueChanged.connect(self.preview) grid1.addWidget(self.xTicksSpinBox, 6, 1) grid1.addWidget(QtWidgets.QLabel("Min Y Ticks:"), 7, 0) self.yTicksSpinBox = wc.SsnakeSpinBox() self.yTicksSpinBox.setValue(self.father.current.viewSettings["minYTicks"]) self.yTicksSpinBox.valueChanged.connect(self.preview) grid1.addWidget(self.yTicksSpinBox, 7, 1) grid2.addWidget(QtWidgets.QLabel("Colourmap:"), 0, 0) self.cmEntry = QtWidgets.QComboBox(self) self.cmEntry.addItems(views.COLORMAPLIST) self.cmEntry.setCurrentIndex(self.father.current.getColorMap()) self.cmEntry.currentIndexChanged.connect(self.preview) grid2.addWidget(self.cmEntry, 0, 1) self.constColorCheck = QtWidgets.QCheckBox("Constant colours") self.constColorCheck.setChecked(self.father.current.viewSettings["contourConst"]) grid2.addWidget(self.constColorCheck, 1, 0) self.constColorCheck.stateChanged.connect(self.preview) self.posColor = self.father.current.viewSettings["contourColors"][0] posColorButton = QtWidgets.QPushButton("Positive colour") posColorButton.clicked.connect(self.setPosColor) grid2.addWidget(posColorButton, 2, 0) self.negColor = self.father.current.viewSettings["contourColors"][1] negColorButton = QtWidgets.QPushButton("Negative colour") negColorButton.clicked.connect(self.setNegColor) grid2.addWidget(negColorButton, 3, 0) grid3.addWidget(QtWidgets.QLabel("Colourmap:"), 0, 0) self.cmEntry2D = QtWidgets.QComboBox(self) self.cmEntry2D.addItems(views.COLORMAPLIST) self.cmEntry2D.setCurrentIndex(self.father.current.getPColorMap()) self.cmEntry2D.currentIndexChanged.connect(self.preview) grid3.addWidget(self.cmEntry2D, 0, 1) self.grid.addWidget(tabWidget, 0, 0) def preview(self, *args): tmpLw = self.father.current.viewSettings["linewidth"] self.father.current.setLw(self.lwSpinBox.value()) tmpXTicks = self.father.current.viewSettings["minXTicks"] tmpYTicks = self.father.current.viewSettings["minYTicks"] self.father.current.setTickNum(self.xTicksSpinBox.value(), self.yTicksSpinBox.value()) tmpColor = self.father.current.viewSettings["color"] self.father.current.setColor(self.color) tmpColorRange = self.father.current.getColorRange() self.father.current.setColorRange(self.crEntry.currentIndex()) tmpColorMap = self.father.current.getColorMap() self.father.current.setColorMap(self.cmEntry.currentIndex()) tmpGrids = self.father.current.viewSettings["grids"] self.father.current.setGrids([self.xgridCheck.isChecked(), self.ygridCheck.isChecked()]) tmpContourConst = self.father.current.viewSettings["contourConst"] self.father.current.setContourConst(self.constColorCheck.isChecked()) tmpContourColors = self.father.current.viewSettings["contourColors"] tmpColorMap2D = self.father.current.getPColorMap() self.father.current.setPColorMap(self.cmEntry2D.currentIndex()) self.father.current.setContourColors([self.posColor, self.negColor]) self.father.current.showFid() self.father.current.setLw(tmpLw) self.father.current.setTickNum(tmpXTicks, tmpYTicks) self.father.current.setColor(tmpColor) self.father.current.setColorRange(tmpColorRange) self.father.current.setColorMap(tmpColorMap) self.father.current.setGrids(tmpGrids) self.father.current.setContourConst(tmpContourConst) self.father.current.setContourColors(tmpContourColors) self.father.current.setPColorMap(tmpColorMap2D) def setColor(self, *args): tmp = QtWidgets.QColorDialog.getColor(QtGui.QColor(self.color)) if tmp.isValid(): self.color = tmp.name() self.preview() def setPosColor(self, *args): tmp = QtWidgets.QColorDialog.getColor(QtGui.QColor(self.posColor)) if tmp.isValid(): self.posColor = tmp.name() self.preview() def setNegColor(self, *args): tmp = QtWidgets.QColorDialog.getColor(QtGui.QColor(self.negColor)) if tmp.isValid(): self.negColor = tmp.name() self.preview() def applyFunc(self, *args): self.father.current.setColor(self.color) self.father.current.setLw(self.lwSpinBox.value()) self.father.current.setTickNum(self.xTicksSpinBox.value(), self.yTicksSpinBox.value()) self.father.current.setGrids([self.xgridCheck.isChecked(), self.ygridCheck.isChecked()]) self.father.current.setColorRange(self.crEntry.currentIndex()) self.father.current.setColorMap(self.cmEntry.currentIndex()) self.father.current.setContourConst(self.constColorCheck.isChecked()) self.father.current.setContourColors([self.posColor, self.negColor]) self.father.current.setPColorMap(self.cmEntry2D.currentIndex()) ############################################################################## class errorWindow(wc.ToolWindow): NAME = "Error Messages" RESIZABLE = True MENUDISABLE = False def __init__(self, parent): super(errorWindow, self).__init__(parent) self.cancelButton.hide() self.errorQList = QtWidgets.QListWidget(self) self.errorQList.currentRowChanged.connect(self.rowChange) for error in self.father.errors: if len(error[1]) == 3: tmp = QtWidgets.QListWidgetItem(error[0] + ': Program error. Please report.', self.errorQList) tmp.setForeground(QtGui.QBrush(QtGui.QColor('red'))) elif len(error[1]) == 1: QtWidgets.QListWidgetItem(error[0] + ': ' + error[1][0], self.errorQList) self.errorEdit = QtWidgets.QTextEdit(self) self.errorEdit.setReadOnly(True) errorText = '' self.errorEdit.setHtml(errorText) self.grid.addWidget(self.errorQList, 0, 0, 1, 3) self.grid.addWidget(self.errorEdit, 1, 0, 1, 3) self.resize(550, 700) def rowChange(self, row): errorText = '' error = self.father.errors[row] if len(error[1]) == 3: errorText = errorText + error[0] + '<br>' for line in tb.format_exception(error[1][0], error[1][1], error[1][2]): errorText = errorText + line + '<br>' self.errorEdit.setHtml(errorText) def closeEvent(self, *args): self.deleteLater() ############################################################################## class PreferenceWindow(QtWidgets.QWidget): def __init__(self, parent): super(PreferenceWindow, self).__init__(parent) self.setWindowFlags(QtCore.Qt.Window | QtCore.Qt.Tool) self.father = parent self.setWindowTitle("Preferences") tabWidget = QtWidgets.QTabWidget() tab1 = QtWidgets.QWidget() tab2 = QtWidgets.QWidget() tab3 = QtWidgets.QWidget() tab4 = QtWidgets.QWidget() tabWidget.addTab(tab1, "Window") tabWidget.addTab(tab2, "Plot") tabWidget.addTab(tab3, "Contour") tabWidget.addTab(tab4, "2D Colour") grid1 = QtWidgets.QGridLayout() grid2 = QtWidgets.QGridLayout() grid3 = QtWidgets.QGridLayout() grid4 = QtWidgets.QGridLayout() tab1.setLayout(grid1) tab2.setLayout(grid2) tab3.setLayout(grid3) tab4.setLayout(grid4) grid1.setColumnStretch(10, 1) grid1.setRowStretch(10, 1) grid2.setColumnStretch(10, 1) grid2.setRowStretch(10, 1) grid3.setColumnStretch(10, 1) grid3.setRowStretch(10, 1) grid4.setColumnStretch(10, 1) grid4.setRowStretch(10, 1) # grid1.addWidget(wc.QLabel("Window size:"), 0, 0, 1, 2) grid1.addWidget(wc.QLabel("Width:"), 1, 0) self.widthSpinBox = wc.SsnakeSpinBox() self.widthSpinBox.setMaximum(100000) self.widthSpinBox.setMinimum(1) self.widthSpinBox.setValue(self.father.defaultWidth) grid1.addWidget(self.widthSpinBox, 1, 1) grid1.addWidget(wc.QLabel("Height:"), 2, 0) self.heightSpinBox = wc.SsnakeSpinBox() self.heightSpinBox.setMaximum(100000) self.heightSpinBox.setMinimum(1) self.heightSpinBox.setValue(self.father.defaultHeight) grid1.addWidget(self.heightSpinBox, 2, 1) self.maximizedCheck = QtWidgets.QCheckBox("Open maximized") self.maximizedCheck.setChecked(self.father.defaultMaximized) grid1.addWidget(self.maximizedCheck, 3, 0, 1, 2) self.askNameCheck = QtWidgets.QCheckBox("Ask workspace name when loading") self.askNameCheck.setChecked(self.father.defaultAskName) grid1.addWidget(self.askNameCheck, 4, 0, 1, 2) self.toolbarCheck = QtWidgets.QCheckBox("Show Shortcut Toolbar") self.toolbarCheck.setChecked(self.father.defaultToolBar) grid1.addWidget(self.toolbarCheck, 5, 0, 1, 2) self.tooltipCheck = QtWidgets.QCheckBox("Show Tooltips") self.tooltipCheck.setChecked(self.father.defaultTooltips) grid1.addWidget(self.tooltipCheck, 7, 0, 1, 2) editToolbarButton = QtWidgets.QPushButton("Edit Toolbar") editToolbarButton.clicked.connect(lambda: ToolbarWindow(self)) grid1.addWidget(editToolbarButton, 6, 0, 1, 2) self.currentToolbar = self.father.defaultToolbarActionList self.startupgroupbox = QtWidgets.QGroupBox("Startup Directory") self.startupgroupbox.setCheckable(True) self.startupgroupbox.setChecked(self.father.defaultStartupBool) grid1.addWidget(self.startupgroupbox, 8, 0, 1, 2) startupgrid = QtWidgets.QGridLayout() self.startupgroupbox.setLayout(startupgrid) self.startupDirEntry = QtWidgets.QLineEdit(self) self.startupDirEntry.setText(self.father.defaultStartupDir) startupgrid.addWidget(self.startupDirEntry, 0, 0) self.startupDirButton = QtWidgets.QPushButton("Browse", self) self.startupDirButton.clicked.connect(self.browseStartup) startupgrid.addWidget(self.startupDirButton, 0, 1) # grid2 definitions grid2.addWidget(QtWidgets.QLabel("Linewidth:"), 1, 0) self.lwSpinBox = wc.SsnakeDoubleSpinBox() self.lwSpinBox.setSingleStep(0.1) self.lwSpinBox.setValue(self.father.defaultLinewidth) grid2.addWidget(self.lwSpinBox, 1, 1) self.color = self.father.defaultColor lineColorButton = QtWidgets.QPushButton("Line colour") lineColorButton.clicked.connect(self.setColor) grid2.addWidget(lineColorButton, 2, 0) grid2.addWidget(QtWidgets.QLabel("Colour range:"), 3, 0) self.crEntry = QtWidgets.QComboBox(self) self.crEntry.addItems(views.COLORRANGELIST) self.crEntry.setCurrentIndex(views.COLORRANGELIST.index(self.father.defaultColorRange)) grid2.addWidget(self.crEntry, 3, 1) self.xgridCheck = QtWidgets.QCheckBox("x-grid") self.xgridCheck.setChecked(self.father.defaultGrids[0]) grid2.addWidget(self.xgridCheck, 4, 0, 1, 2) self.ygridCheck = QtWidgets.QCheckBox("y-grid") self.ygridCheck.setChecked(self.father.defaultGrids[1]) grid2.addWidget(self.ygridCheck, 5, 0, 1, 2) grid2.addWidget(QtWidgets.QLabel("Min X Ticks:"), 6, 0) self.xTicksSpinBox = wc.SsnakeSpinBox() self.xTicksSpinBox.setValue(self.father.defaultMinXTicks) grid2.addWidget(self.xTicksSpinBox, 6, 1) grid2.addWidget(QtWidgets.QLabel("Min Y Ticks:"), 7, 0) self.yTicksSpinBox = wc.SsnakeSpinBox() self.yTicksSpinBox.setValue(self.father.defaultMinYTicks) grid2.addWidget(self.yTicksSpinBox, 7, 1) grid2.addWidget(QtWidgets.QLabel("Units:"), 8, 0) self.unitGroup = QtWidgets.QButtonGroup() button = QtWidgets.QRadioButton("s/Hz") self.unitGroup.addButton(button, 0) grid2.addWidget(button, 9, 1) button = QtWidgets.QRadioButton("ms/kHz") self.unitGroup.addButton(button, 1) grid2.addWidget(button, 10, 1) button = QtWidgets.QRadioButton(u"μs/MHz") self.unitGroup.addButton(button, 2) grid2.addWidget(button, 11, 1) self.unitGroup.button(self.father.defaultUnits).setChecked(True) self.ppmCheck = QtWidgets.QCheckBox("ppm") self.ppmCheck.setChecked(self.father.defaultPPM) grid2.addWidget(self.ppmCheck, 12, 1) self.zeroScrollCheck = QtWidgets.QCheckBox("Scroll y-axis from zero") self.zeroScrollCheck.setChecked(self.father.defaultZeroScroll) grid2.addWidget(self.zeroScrollCheck, 13, 0, 1, 2) grid2.addWidget(QtWidgets.QLabel("Zoom step:"), 14, 0) self.ZoomStepSpinBox = wc.SsnakeDoubleSpinBox() self.ZoomStepSpinBox.setSingleStep(0.1) self.ZoomStepSpinBox.setValue(self.father.defaultZoomStep) grid2.addWidget(self.ZoomStepSpinBox, 14, 1) self.showTitleCheck = QtWidgets.QCheckBox("Show title in plot") self.showTitleCheck.setChecked(self.father.defaultShowTitle) grid2.addWidget(self.showTitleCheck, 15, 0, 1, 2) # grid3 definitions grid3.addWidget(QtWidgets.QLabel("Colourmap:"), 0, 0) self.cmEntry = QtWidgets.QComboBox(self) self.cmEntry.addItems(views.COLORMAPLIST) self.cmEntry.setCurrentIndex(views.COLORMAPLIST.index(self.father.defaultColorMap)) grid3.addWidget(self.cmEntry, 0, 1) self.constColorCheck = QtWidgets.QCheckBox("Constant colours") self.constColorCheck.setChecked(self.father.defaultContourConst) grid3.addWidget(self.constColorCheck, 1, 0) self.posColor = self.father.defaultPosColor posColorButton = QtWidgets.QPushButton("Positive colour") posColorButton.clicked.connect(self.setPosColor) grid3.addWidget(posColorButton, 2, 0) self.negColor = self.father.defaultNegColor negColorButton = QtWidgets.QPushButton("Negative colour") negColorButton.clicked.connect(self.setNegColor) grid3.addWidget(negColorButton, 3, 0) grid3.addWidget(QtWidgets.QLabel("Width ratio:"), 4, 0) self.WRSpinBox = wc.SsnakeDoubleSpinBox() self.WRSpinBox.setSingleStep(0.1) self.WRSpinBox.setValue(self.father.defaultWidthRatio) grid3.addWidget(self.WRSpinBox, 4, 1) grid3.addWidget(QtWidgets.QLabel("Height ratio:"), 5, 0) self.HRSpinBox = wc.SsnakeDoubleSpinBox() self.HRSpinBox.setSingleStep(0.1) self.HRSpinBox.setValue(self.father.defaultHeightRatio) grid3.addWidget(self.HRSpinBox, 5, 1) # 2D Colour defs grid4.addWidget(QtWidgets.QLabel("Colourmap:"), 0, 0) self.cmEntry2D = QtWidgets.QComboBox(self) self.cmEntry2D.addItems(views.COLORMAPLIST) self.cmEntry2D.setCurrentIndex(views.COLORMAPLIST.index(self.father.defaultPColorMap)) grid4.addWidget(self.cmEntry2D, 0, 1) # Others layout = QtWidgets.QGridLayout(self) layout.addWidget(tabWidget, 0, 0, 1, 4) cancelButton = QtWidgets.QPushButton("&Cancel") cancelButton.clicked.connect(self.closeEvent) okButton = QtWidgets.QPushButton("&Store") okButton.clicked.connect(self.applyAndClose) resetButton = QtWidgets.QPushButton("&Reset") resetButton.clicked.connect(self.reset) box = QtWidgets.QDialogButtonBox() box.addButton(cancelButton, QtWidgets.QDialogButtonBox.RejectRole) box.addButton(okButton, QtWidgets.QDialogButtonBox.ActionRole) box.addButton(resetButton, QtWidgets.QDialogButtonBox.ActionRole) layout.addWidget(box, 1,0) layout.setColumnStretch(3, 1) self.show() def browseStartup(self, *args): newDir = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select Directory', self.father.lastLocation, QtWidgets.QFileDialog.ShowDirsOnly) if newDir: self.startupDirEntry.setText(newDir) def setColor(self, *args): tmp = QtWidgets.QColorDialog.getColor(QtGui.QColor(self.color)) if tmp.isValid(): self.color = tmp.name() def setPosColor(self, *args): tmp = QtWidgets.QColorDialog.getColor(QtGui.QColor(self.posColor)) if tmp.isValid(): self.posColor = tmp.name() def setNegColor(self, *args): tmp = QtWidgets.QColorDialog.getColor(QtGui.QColor(self.negColor)) if tmp.isValid(): self.negColor = tmp.name() def applyAndClose(self, *args): self.father.defaultUnits = self.unitGroup.checkedId() self.father.defaultPPM = self.ppmCheck.isChecked() self.father.defaultWidth = self.widthSpinBox.value() self.father.defaultHeight = self.heightSpinBox.value() self.father.defaultMaximized = self.maximizedCheck.isChecked() self.father.defaultAskName = self.askNameCheck.isChecked() self.father.defaultToolBar = self.toolbarCheck.isChecked() self.father.defaultTooltips = self.tooltipCheck.isChecked() self.father.defaultToolbarActionList = self.currentToolbar self.father.defaultStartupBool = self.startupgroupbox.isChecked() self.father.defaultStartupDir = self.startupDirEntry.text() self.father.defaultLinewidth = self.lwSpinBox.value() self.father.defaultMinXTicks = self.xTicksSpinBox.value() self.father.defaultMinYTicks = self.yTicksSpinBox.value() self.father.defaultColor = self.color self.father.defaultColorRange = self.crEntry.currentText() self.father.defaultGrids[0] = self.xgridCheck.isChecked() self.father.defaultGrids[1] = self.ygridCheck.isChecked() self.father.defaultZeroScroll = self.zeroScrollCheck.isChecked() self.father.defaultShowTitle = self.showTitleCheck.isChecked() self.father.defaultZoomStep = self.ZoomStepSpinBox.value() self.father.defaultColorMap = self.cmEntry.currentText() self.father.defaultContourConst = self.constColorCheck.isChecked() self.father.defaultPosColor = self.posColor self.father.defaultNegColor = self.negColor self.father.defaultWidthRatio = self.WRSpinBox.value() self.father.defaultHeightRatio = self.HRSpinBox.value() self.father.defaultPColorMap = self.cmEntry2D.currentText() self.father.saveDefaults() self.closeEvent() def reset(self, *args): self.father.resetDefaults() self.father.saveDefaults() self.closeEvent() def closeEvent(self, *args): self.deleteLater() ############################################################################## class ToolbarWindow(wc.ToolWindow): NAME = "Change Toolbar" RESIZABLE = True MENUDISABLE = False def __init__(self, parent): super(ToolbarWindow, self).__init__(parent) self.grid.addWidget(wc.QLabel("Actions:"), 0, 0) self.grid.addWidget(wc.QLabel("Toolbar Actions:"), 0, 1) self.listB = DestListWidget(self) for i in self.father.father.defaultToolbarActionList: QtWidgets.QListWidgetItem(i, self.listB).setToolTip(i) self.listA = OrigListWidget(self, self.listB) for i in self.father.father.allActionsList: QtWidgets.QListWidgetItem(i[0], self.listA).setToolTip(i[0]) self.grid.addWidget(self.listA, 1, 0, 2, 1) self.grid.addWidget(self.listB, 1, 2, 2, 1) self.rightPush = QtWidgets.QPushButton(u"\u2192", self) self.leftPush = QtWidgets.QPushButton(u"\u2190", self) self.downPush = QtWidgets.QPushButton(u"\u2193", self) self.upPush = QtWidgets.QPushButton(u"\u2191", self) self.rightPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.leftPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.downPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.upPush.setSizePolicy( QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding) self.grid.addWidget(self.rightPush, 1, 1) self.grid.addWidget(self.leftPush, 2, 1) self.grid.addWidget(self.upPush, 1, 3) self.grid.addWidget(self.downPush, 2, 3) self.leftPush.clicked.connect(self.right2left) self.rightPush.clicked.connect(self.left2right) self.upPush.clicked.connect(self.moveUp) self.downPush.clicked.connect(self.moveDown) self.resize(650, 500) def right2left(self): self.listB.deleteSelected() def left2right(self): for item in self.listA.selectedItems(): self.listB.addItem(item.text()) def moveUp(self): self.listB.moveSelection('up') def moveDown(self): self.listB.moveSelection('down') def applyAndClose(self, *args): items = [] for index in range(self.listB.count()): items.append(self.listB.item(index).text()) self.father.currentToolbar = items self.closeEvent() def closeEvent(self, *args): self.deleteLater() ############################################################################## class aboutWindow(wc.ToolWindow): NAME = "About ssNake" RESIZABLE = True MENUDISABLE = False def __init__(self, parent): super(aboutWindow, self).__init__(parent) self.cancelButton.hide() self.logo = QtWidgets.QLabel(self) self.logo.setPixmap(QtGui.QPixmap(os.path.dirname(os.path.realpath(__file__)) + "/Icons/logo.gif")) self.tabs = QtWidgets.QTabWidget(self) self.text = QtWidgets.QTextBrowser(self) self.text.setOpenExternalLinks(True) self.license = QtWidgets.QTextBrowser(self) self.license.setOpenExternalLinks(True) licenseText = '' with open(os.path.dirname(os.path.realpath(__file__)) + os.path.sep + 'licenseHtml.txt') as f: licenseText = f.read() self.license.setHtml(licenseText) pythonVersion = sys.version pythonVersion = pythonVersion[:pythonVersion.index(' ')] from scipy import __version__ as scipyVersion self.text.setText('<p><b>ssNake ' + VERSION + '</b></p>' + '<p>Copyright (&copy;) 2016&ndash;2020 Bas van Meerten & Wouter Franssen</p>' + '<p>Email: <a href="mailto:[email protected]" >[email protected]</a></p>' + '<p>Publication: <a href="https://doi.org/10.1016/j.jmr.2019.02.006" >https://doi.org/10.1016/j.jmr.2019.02.006</a></p>' + '<b>Library versions</b>:<br>Python ' + pythonVersion + '<br>numpy ' + np.__version__ + '<br>SciPy ' + scipyVersion + '<br>matplotlib ' + matplotlib.__version__ + '<br>PyQt ' + QtCore.PYQT_VERSION_STR + '<br>Qt ' + QtCore.QT_VERSION_STR) self.thanks = QtWidgets.QTextEdit(self) self.thanks.setReadOnly(True) self.thanks.setHtml('<p><b>The ssNake team wishes to thank:</b></p>Prof. Arno Kentgens<br>Koen Tijssen<br>Ole Brauckmann<br>Merijn Blaakmeer<br>Vincent Breukels<br>Ernst van Eck<br>Fleur van Zelst<br>Sander Lambregts<br>Dr. Andreas Brinkmann') self.tabs.addTab(self.text, 'Version') self.tabs.addTab(self.thanks, 'Thanks') self.tabs.addTab(self.license, 'License') self.grid.addWidget(self.logo, 0, 0, 1, 3, QtCore.Qt.AlignHCenter) self.grid.addWidget(self.tabs, 1, 0, 1, 3) self.resize(550, 700) def closeEvent(self, *args): self.deleteLater() ############################################################################## class shiftConversionWindow(wc.ToolWindow): NAME = "Chemical Shift Conversions" MENUDISABLE = False RESIZABLE = True def __init__(self, parent): super(shiftConversionWindow, self).__init__(parent) self.standardGroup = QtWidgets.QGroupBox('Standard Convention:') self.standardFrame = QtWidgets.QGridLayout() D11label = wc.QLabel(u'δ' + '<sub>11</sub> [ppm]') self.standardFrame.addWidget(D11label, 0, 1) D22label = wc.QLabel(u'δ' + '<sub>22</sub> [ppm]') self.standardFrame.addWidget(D22label, 0, 2) D33label = wc.QLabel(u'δ' + '<sub>33</sub> [ppm]') self.standardFrame.addWidget(D33label, 0, 3) standardGO = QtWidgets.QPushButton("Go") standardGO.setMinimumWidth(100) self.standardFrame.addWidget(standardGO, 1, 0) standardGO.clicked.connect(lambda: self.shiftCalc(0)) self.D11 = wc.QLineEdit("0") self.D11.setMinimumWidth(100) self.standardFrame.addWidget(self.D11, 1, 1) self.D22 = wc.QLineEdit("0") self.D22.setMinimumWidth(100) self.standardFrame.addWidget(self.D22, 1, 2) self.D33 = wc.QLineEdit("0") self.D33.setMinimumWidth(100) self.standardFrame.addWidget(self.D33, 1, 3) self.standardGroup.setLayout(self.standardFrame) self.grid.addWidget(self.standardGroup, 0, 0, 1, 3) # xyz Convention self.xyzGroup = QtWidgets.QGroupBox('xyz Convention:') self.xyzFrame = QtWidgets.QGridLayout() dxxlabel = wc.QLabel(u'δ' + '<sub>xx</sub> [ppm]') self.xyzFrame.addWidget(dxxlabel, 3, 1) dyylabel = wc.QLabel(u'δ' + '<sub>yy</sub> [ppm]') self.xyzFrame.addWidget(dyylabel, 3, 2) dzzlabel = wc.QLabel(u'δ' + '<sub>zz</sub> [ppm]') self.xyzFrame.addWidget(dzzlabel, 3, 3) xyzGO = QtWidgets.QPushButton("Go") xyzGO.setMinimumWidth(100) self.xyzFrame.addWidget(xyzGO, 4, 0) xyzGO.clicked.connect(lambda: self.shiftCalc(1)) self.dxx = wc.QLineEdit("0") self.dxx.setMinimumWidth(100) self.xyzFrame.addWidget(self.dxx, 4, 1) self.dyy = wc.QLineEdit("0") self.dyy.setMinimumWidth(100) self.xyzFrame.addWidget(self.dyy, 4, 2) self.dzz = wc.QLineEdit("0") self.dzz.setMinimumWidth(100) self.xyzFrame.addWidget(self.dzz, 4, 3) self.xyzGroup.setLayout(self.xyzFrame) self.grid.addWidget(self.xyzGroup, 1, 0, 1, 3) # Haeberlen Convention self.haebGroup = QtWidgets.QGroupBox('Haeberlen Convention') self.haebFrame = QtWidgets.QGridLayout() disolabel = wc.QLabel(u'δ' + '<sub>iso</sub> [ppm]') self.haebFrame.addWidget(disolabel, 6, 1) danisolabel = wc.QLabel(u'δ' + '<sub>aniso</sub> [ppm]') self.haebFrame.addWidget(danisolabel, 6, 2) etalabel = wc.QLabel(u'η') self.haebFrame.addWidget(etalabel, 6, 3) haeberGO = QtWidgets.QPushButton("Go") haeberGO.setMinimumWidth(100) self.haebFrame.addWidget(haeberGO, 7, 0) haeberGO.clicked.connect(lambda: self.shiftCalc(2)) self.diso = wc.QLineEdit("0") self.diso.setMinimumWidth(100) self.haebFrame.addWidget(self.diso, 7, 1) self.daniso = wc.QLineEdit("0") self.daniso.setMinimumWidth(100) self.haebFrame.addWidget(self.daniso, 7, 2) self.eta = wc.QLineEdit("0") self.eta.setMinimumWidth(100) self.haebFrame.addWidget(self.eta, 7, 3) self.haebGroup.setLayout(self.haebFrame) self.grid.addWidget(self.haebGroup, 2, 0, 1, 3) # Hertzfeld berger self.hbGroup = QtWidgets.QGroupBox('Hertzfeld-Berger Convention') self.hbFrame = QtWidgets.QGridLayout() hbdisolabel = wc.QLabel(u'δ' + '<sub>iso</sub> [ppm]') self.hbFrame.addWidget(hbdisolabel, 9, 1) omegalabel = wc.QLabel(u'Ω [ppm]') self.hbFrame.addWidget(omegalabel, 9, 2) skewlabel = wc.QLabel(u'κ') self.hbFrame.addWidget(skewlabel, 9, 3) hbGO = QtWidgets.QPushButton("Go") hbGO.setMinimumWidth(100) self.hbFrame.addWidget(hbGO, 10, 0) hbGO.clicked.connect(lambda: self.shiftCalc(3)) self.hbdiso = wc.QLineEdit("0") self.hbdiso.setMinimumWidth(100) self.hbFrame.addWidget(self.hbdiso, 10, 1) self.hbdaniso = wc.QLineEdit("0") self.hbdaniso.setMinimumWidth(100) self.hbFrame.addWidget(self.hbdaniso, 10, 2) self.hbskew = wc.QLineEdit("0") self.hbskew.setMinimumWidth(100) self.hbFrame.addWidget(self.hbskew, 10, 3) self.hbGroup.setLayout(self.hbFrame) self.grid.addWidget(self.hbGroup, 3, 0, 1, 3) # Reset self.cancelButton.setText("Close") self.cancelButton.clicked.disconnect() self.cancelButton.clicked.connect(self.closeEvent) self.okButton.setText("Reset") self.okButton.clicked.disconnect() self.okButton.clicked.connect(self.valueReset) def shiftCalc(self, Type): if Type == 0: # If from standard try: delta11 = float(safeEval(self.D11.text(), Type='FI')) delta22 = float(safeEval(self.D22.text(), Type='FI')) delta33 = float(safeEval(self.D33.text(), Type='FI')) Values = [delta11, delta22, delta33] except Exception: raise SsnakeException("Shift Conversion: Invalid input in Standard Convention") if Type == 1: # If from xyz try: delta11 = float(safeEval(self.dxx.text(), Type='FI')) # Treat xyz as 123, as it reorders them anyway delta22 = float(safeEval(self.dyy.text(), Type='FI')) delta33 = float(safeEval(self.dzz.text(), Type='FI')) Values = [delta11, delta22, delta33] except Exception: raise SsnakeException("Shift Conversion: Invalid input in xyz Convention") if Type == 2: # From haeberlen try: eta = float(safeEval(self.eta.text(), Type='FI')) delta = float(safeEval(self.daniso.text(), Type='FI')) iso = float(safeEval(self.diso.text(), Type='FI')) Values = [iso, delta, eta] except Exception: raise SsnakeException("Shift Conversion: Invalid input in Haeberlen Convention") if Type == 3: # From Hertzfeld-Berger try: iso = float(safeEval(self.hbdiso.text(), Type='FI')) span = float(safeEval(self.hbdaniso.text(), Type='FI')) skew = float(safeEval(self.hbskew.text(), Type='FI')) Values = [iso, span, skew] except Exception: raise SsnakeException("Shift Conversion: Invalid input in Hertzfeld-Berger Convention") Results = func.shiftConversion(Values, Type) # Do the actual conversion # Standard convention self.D11.setText('%#.4g' % Results[0][0]) self.D22.setText('%#.4g' % Results[0][1]) self.D33.setText('%#.4g' % Results[0][2]) # Convert to haeberlen convention and xxyyzz self.dxx.setText('%#.4g' % Results[1][0]) self.dyy.setText('%#.4g' % Results[1][1]) self.dzz.setText('%#.4g' % Results[1][2]) # Haeberlen def self.diso.setText('%#.4g' % Results[2][0]) self.daniso.setText('%#.4g' % Results[2][1]) try: # If a number self.eta.setText('%#.4g' % Results[2][2]) except Exception: self.eta.setText('ND') # Convert to Herzfeld-Berger Convention self.hbdiso.setText('%#.4g' % Results[3][0]) self.hbdaniso.setText('%#.4g' % Results[3][1]) try: self.hbskew.setText('%#.4g' % Results[3][2]) except Exception: self.hbskew.setText('ND') def valueReset(self): # Resets all the boxes to 0 self.D11.setText('0') self.D22.setText('0') self.D33.setText('0') self.dxx.setText('0') self.dyy.setText('0') self.dzz.setText('0') self.eta.setText('0') self.diso.setText('0') self.daniso.setText('0') self.hbskew.setText('0') self.hbdiso.setText('0') self.hbdaniso.setText('0') def closeEvent(self, *args): self.deleteLater() ############################################################################## class quadConversionWindow(wc.ToolWindow): Ioptions = ['1', '3/2', '2', '5/2', '3', '7/2', '4', '9/2', '5', '6', '7'] Ivalues = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0] NAME = "Quadrupolar Coupling Conversions" RESIZABLE = True MENUDISABLE = False def __init__(self, parent): super(quadConversionWindow, self).__init__(parent) self.comGroup = QtWidgets.QGroupBox("Common Parameters:") self.comFrame = QtWidgets.QGridLayout() nucLabel = wc.QLabel("Nucleus:") self.comFrame.addWidget(nucLabel, 0, 0) qindex = [x for (x, val) in enumerate(ISOTOPES['q']) if val is not None and ISOTOPES['spin'][x] != 0.5] self.names = ['User'] + [val for (x, val) in enumerate(ISOTOPES['formatName']) if x in qindex] self.I = [0.0] + [val for (x, val) in enumerate(ISOTOPES['spin']) if x in qindex] self.Qvalues = [0.0] + [val for (x, val) in enumerate(ISOTOPES['q']) if x in qindex] self.nucDrop = QtWidgets.QComboBox() self.nucDrop.addItems(self.names) self.nucDrop.currentIndexChanged.connect(self.setNuc) self.comFrame.addWidget(self.nucDrop, 1, 0) Itext = wc.QLabel("I:") self.comFrame.addWidget(Itext, 0, 1) self.IEntry = QtWidgets.QComboBox() self.IEntry.addItems(self.Ioptions) self.IEntry.setCurrentIndex(0) self.IEntry.activated.connect(self.userChange) self.comFrame.addWidget(self.IEntry, 1, 1) etalabel = wc.QLabel(u'η:') self.comFrame.addWidget(etalabel, 0, 3) self.Eta = wc.QLineEdit("0") self.Eta.setMinimumWidth(100) self.comFrame.addWidget(self.Eta, 1, 3) momentlabel = wc.QLabel('Q [fm<sup>2</sup>]:') self.comFrame.addWidget(momentlabel, 0, 2) self.Moment = wc.QLineEdit("ND") self.Moment.setMinimumWidth(100) self.Moment.textEdited.connect(self.userChange) self.comFrame.addWidget(self.Moment, 1, 2) self.comGroup.setLayout(self.comFrame) self.grid.addWidget(self.comGroup, 1, 0, 1, 3) self.CqGroup = QtWidgets.QGroupBox("C_Q Convention:") self.CqFrame = QtWidgets.QGridLayout() Cqlabel = wc.QLabel(u'C' + u'<sub>Q</sub>/2π [MHz:]') self.CqFrame.addWidget(Cqlabel, 3, 1) CqGO = QtWidgets.QPushButton("Go") self.CqFrame.addWidget(CqGO, 4, 0) CqGO.clicked.connect(lambda: self.quadCalc(0)) self.Cq = wc.QLineEdit("0") self.Cq.setMinimumWidth(100) self.CqFrame.addWidget(self.Cq, 4, 1) self.CqGroup.setLayout(self.CqFrame) self.grid.addWidget(self.CqGroup, 3, 0, 1, 2) self.WqGroup = QtWidgets.QGroupBox(u"ω_Q Convention:") self.WqFrame = QtWidgets.QGridLayout() Wqlabel = wc.QLabel(u'ω' + u'<sub>Q</sub>/2π [MHz]:') self.WqFrame.addWidget(Wqlabel, 6, 1) WqGO = QtWidgets.QPushButton("Go") self.WqFrame.addWidget(WqGO, 7, 0) WqGO.clicked.connect(lambda: self.quadCalc(1)) self.Wq = wc.QLineEdit("0") self.Wq.setMinimumWidth(100) self.WqFrame.addWidget(self.Wq, 7, 1) self.WqGroup.setLayout(self.WqFrame) self.grid.addWidget(self.WqGroup, 7, 0, 1, 2) self.fieldGroup = QtWidgets.QGroupBox('Field Gradients:') self.fieldFrame = QtWidgets.QGridLayout() Vxxlabel = wc.QLabel('V<sub>xx</sub> [V/m<sup>2</sup>]:') self.fieldFrame.addWidget(Vxxlabel, 9, 1) VGO = QtWidgets.QPushButton("Go") self.fieldFrame.addWidget(VGO, 10, 0) VGO.clicked.connect(lambda: self.quadCalc(2)) self.Vxx = wc.QLineEdit("ND") self.Vxx.setMinimumWidth(100) self.fieldFrame.addWidget(self.Vxx, 10, 1) Vyylabel = wc.QLabel('V<sub>yy</sub> [V/m<sup>2</sup>]:') self.fieldFrame.addWidget(Vyylabel, 9, 2) self.Vyy = wc.QLineEdit("ND") self.Vyy.setMinimumWidth(100) self.fieldFrame.addWidget(self.Vyy, 10, 2) Vzzlabel = wc.QLabel('V<sub>zz</sub> [V/m<sup>2</sup>]:') self.fieldFrame.addWidget(Vzzlabel, 9, 3) self.Vzz = wc.QLineEdit("ND") self.Vzz.setMinimumWidth(100) self.fieldFrame.addWidget(self.Vzz, 10, 3) self.fieldGroup.setLayout(self.fieldFrame) self.grid.addWidget(self.fieldGroup, 8, 0, 1, 4) # Reset self.cancelButton.setText("Close") self.cancelButton.clicked.disconnect() self.cancelButton.clicked.connect(self.closeEvent) self.okButton.setText("Reset") self.okButton.clicked.disconnect() self.okButton.clicked.connect(self.valueReset) def setNuc(self, index): I = self.I[index] if int(I * 2) > 0: self.IEntry.setCurrentIndex(int(I * 2 - 2)) self.Moment.setText(str(self.Qvalues[index])) def userChange(self, index=None): self.nucDrop.setCurrentIndex(0) def quadCalc(self, Type): I = self.Ivalues[self.IEntry.currentIndex()] if Type == 0: # Cq as input # Czz is equal to Cq, via same definition (scale) Cxx and Cyy can be found try: Cq = float(safeEval(self.Cq.text(), Type='FI')) Eta = float(safeEval(self.Eta.text(), Type='FI')) Values = [Cq, Eta] except Exception: raise SsnakeException("Quad Conversion: Invalid input in Cq definition") if Type == 1: try: Wq = float(safeEval(self.Wq.text(), Type='FI')) Eta = float(safeEval(self.Eta.text(), Type='FI')) Values = [Wq, Eta] except Exception: raise SsnakeException("Quad Conversion: Invalid input in Wq definition") if Type == 2: try: Vxx = float(safeEval(self.Vxx.text(), Type='FI')) Vyy = float(safeEval(self.Vyy.text(), Type='FI')) Vzz = float(safeEval(self.Vzz.text(), Type='FI')) Values = [Vxx, Vyy, Vzz] except Exception: raise SsnakeException("Quad Conversion: Invalid input in field gradients") try: Q = float(safeEval(self.Moment.text(), Type='FI')) * 1e-30 # get moment and convert from fm^2 except Exception: if Type in (0, 1): Q = None else: raise SsnakeException("Quad Conversion: Invalid input in quadrupole moment Q") #Do conversion Result = func.quadConversion(Values, I, Type, Q) if Result[0][1] is None: self.Eta.setText('ND') else: self.Eta.setText('%#.4g' % Result[0][1]) self.Cq.setText('%#.4g' % Result[0][0]) self.Wq.setText('%#.4g' % Result[1][0]) if Result[2][0] is None: self.Moment.setText('ND') self.Vxx.setText('ND') self.Vyy.setText('ND') self.Vzz.setText('ND') else: self.Vxx.setText('%#.4g' % Result[2][0]) self.Vyy.setText('%#.4g' % Result[2][1]) self.Vzz.setText('%#.4g' % Result[2][2]) def valueReset(self): # Resets all the boxes to 0 self.Cq.setText('0') self.Eta.setText('0') self.Wq.setText('0') self.Moment.setText('ND') self.Vxx.setText('ND') self.Vyy.setText('ND') self.Vzz.setText('ND') def closeEvent(self, *args): self.deleteLater() ############################################################################## class dipolarDistanceWindow(wc.ToolWindow): NAME = "Dipolar Distance Calculation" RESIZABLE = True MENUDISABLE = False def __init__(self, parent): super(dipolarDistanceWindow, self).__init__(parent) self.comGroup = QtWidgets.QGroupBox("Gyromagnetic Ratios:") self.comFrame = QtWidgets.QGridLayout() gamma1label = wc.QLabel(u'γ<sub>1</sub> [10<sup>7</sup> rad/s/T]:') self.comFrame.addWidget(gamma1label, 0, 0) gammaindex = [x for (x, val) in enumerate(ISOTOPES['gamma']) if val is not None] self.gammaValues = [0.0] + [val for (x, val) in enumerate(ISOTOPES['gamma']) if x in gammaindex] self.names = ['User'] + [val for (x, val) in enumerate(ISOTOPES['formatName']) if x in gammaindex] self.gamma1Drop = QtWidgets.QComboBox() self.gamma1Drop.addItems(self.names) self.gamma1Drop.currentIndexChanged.connect(self.setGamma1) self.comFrame.addWidget(self.gamma1Drop, 1, 0) self.gamma2Drop = QtWidgets.QComboBox() self.gamma2Drop.addItems(self.names) self.gamma2Drop.currentIndexChanged.connect(self.setGamma2) self.comFrame.addWidget(self.gamma2Drop, 1, 1) self.gamma1 = wc.QLineEdit("0.0") self.gamma1.setMinimumWidth(100) self.gamma1.textEdited.connect(self.gamma1Changed) self.comFrame.addWidget(self.gamma1, 2, 0) gamma2label = wc.QLabel(u'γ<sub>2</sub> [10<sup>7</sup> rad/s/T]:') self.comFrame.addWidget(gamma2label, 0, 1) self.gamma2 = wc.QLineEdit("0.0") self.gamma2.setMinimumWidth(100) self.gamma2.textEdited.connect(self.gamma2Changed) self.comFrame.addWidget(self.gamma2, 2, 1) self.comGroup.setLayout(self.comFrame) self.grid.addWidget(self.comGroup, 1, 0, 1, 3) self.distanceGroup = QtWidgets.QGroupBox("Distance:") self.distanceFrame = QtWidgets.QGridLayout() distancelabel = wc.QLabel(u'r [Å]') self.distanceFrame.addWidget(distancelabel, 3, 1) distanceGO = QtWidgets.QPushButton("Go") self.distanceFrame.addWidget(distanceGO, 4, 0) distanceGO.clicked.connect(lambda: self.Calc(0)) self.distance = wc.QLineEdit("0") self.distance.setMinimumWidth(100) self.distanceFrame.addWidget(self.distance, 4, 1) self.distanceGroup.setLayout(self.distanceFrame) self.grid.addWidget(self.distanceGroup, 3, 0, 1, 2) self.dipolarGroup = QtWidgets.QGroupBox("Dipolar Coupling:") self.dipolarFrame = QtWidgets.QGridLayout() dipolarlabel = wc.QLabel(u'D [kHz]') self.dipolarFrame.addWidget(dipolarlabel, 3, 1) dipolarGO = QtWidgets.QPushButton("Go") self.dipolarFrame.addWidget(dipolarGO, 4, 0) dipolarGO.clicked.connect(lambda: self.Calc(1)) self.dipolar = wc.QLineEdit("0") self.dipolar.setMinimumWidth(100) self.dipolarFrame.addWidget(self.dipolar, 4, 1) self.dipolarGroup.setLayout(self.dipolarFrame) self.grid.addWidget(self.dipolarGroup, 4, 0, 1, 2) # Reset self.cancelButton.setText("Close") self.cancelButton.clicked.disconnect() self.cancelButton.clicked.connect(self.closeEvent) self.okButton.setText("Reset") self.okButton.clicked.disconnect() self.okButton.clicked.connect(self.valueReset) def gamma1Changed(self): self.gamma1Drop.setCurrentIndex(0) def gamma2Changed(self): self.gamma2Drop.setCurrentIndex(0) def setGamma1(self, index): if index != 0: self.gamma1.setText(str(self.gammaValues[index])) def setGamma2(self, index): if index != 0: self.gamma2.setText(str(self.gammaValues[index])) def Calc(self, Type): try: gamma1 = float(safeEval(self.gamma1.text(), Type='FI')) * 1e7 gamma2 = float(safeEval(self.gamma2.text(), Type='FI')) * 1e7 except Exception: raise SsnakeException("Dipolar Distance: Invalid input in gamma values") if Type == 0: # Distance as input try: r = abs(float(safeEval(self.distance.text(), Type='FI'))) except Exception: raise SsnakeException("Dipolar Distance: Invalid input in r") if Type == 1: try: D = abs(float(safeEval(self.dipolar.text(), Type='FI'))) except Exception: raise SsnakeException("Dipolar Distance: Invalid input in D") hbar = 1.054573e-34 if Type == 0: if r == 0.0: D = np.inf else: D = abs(- 1e-7 * gamma1 * gamma2 * hbar / (r * 10**-10) **3 / (2 * np.pi)) D /= 1000 if Type == 1: if D == 0.0: r = np.inf else: r = 1 / abs(D * 1000 /gamma1 / gamma2 / hbar / 1e-7 * (2 * np.pi))**(1.0/3) r *= 1e10 self.dipolar.setText('%#.5g' % D) self.distance.setText('%#.5g' % r) def valueReset(self): # Resets all the boxes to 0 self.dipolar.setText('0.0') self.distance.setText('0.0') self.gamma1.setText('0.0') self.gamma2.setText('0.0') self.gamma1Drop.setCurrentIndex(0) self.gamma2Drop.setCurrentIndex(0) def closeEvent(self, *args): self.deleteLater() ############################################################################## class tempCalWindow(QtWidgets.QWidget): #[minTemp, maxTemp, shiftToTemp, tempToShift, Delta0, T0, RefName] METHANOL = [178,330, lambda Delta: 409.0 - 36.54 * Delta - 21.85 * Delta**2, lambda Temp: (36.54 - np.sqrt(36.54**2 - 4 * -21.85 * (409.0 - Temp))) / (2 * -21.85), 'absShift',None,None,'Ammann et al., JMR, 46, 319 (1982)'] ETH_GLYCOL = [273,416, lambda Delta: 466.5 - 102.00 * Delta, lambda Temp: (Temp - 466.5) / -102.0, 'absShift',None,None,'Ammann et al., JMR, 46, 319 (1982)'] PBNO3 = [143, 423, lambda Delta, Delta0, T0: (Delta0 - Delta) / 0.753 + T0 , lambda T, Delta0, T0: (T0 - T) * 0.753 + Delta0 , 'relShift','-3473','293','Bielecki et al., JMR, 116, 215 (1995)'] KBR = [170, 320, lambda Delta, Delta0, T0: (Delta0 - Delta) / 0.0250 + T0 , lambda T, Delta0, T0: (T0 - T) * 0.0250 + Delta0 , 'relShift','0','293','Thurber et al., JMR, 196, 84 (2009)'] DEFINITIONS = [METHANOL, ETH_GLYCOL, PBNO3 ,KBR] TEXTLIST = ['1H: Methanol (178 K < T < 330 K)', '1H: Ethylene Glycol (273 K < T < 416 K)', '207Pb: Lead Nitrate (143 K < T < 423 K)','79Br: KBr (170 K < T < 320 K)'] T1_KBr = [20,296, lambda Relax: optimize.brentq(lambda T,T1: 0.0145 + 5330/T**2 + 1.42e7/T**4 + 2.48e9/T**6 - T1, 20, 296 ,args=(Relax,)), lambda T: 0.0145 + 5330/T**2 + 1.42e7/T**4 + 2.48e9/T**6, 'Thurber et al., JMR, 196, 84 (2009)'] T1_CsI = [8,104, lambda Relax: optimize.brentq(lambda T,T1: -1.6e-3 + 1.52e3/T**2 + 0.387e6/T**4 + 0.121e9/T**6 - T1, 8, 104 ,args=(Relax,)), lambda T: -1.6e-3 + 1.52e3/T**2 + 0.387e6/T**4 + 0.121e9/T**6, 'Sarkar et al., JMR, 212, 460 (2011)'] T1_DEFINITIONS = [T1_KBr, T1_CsI] T1_TEXTLIST = ['79Br: KBr (20 K < T < 296 K, 9.4 T)', '127I: CsI (8 K < T < 104 K, 9.4 T)'] def __init__(self, parent): super(tempCalWindow, self).__init__(parent) self.setWindowFlags(QtCore.Qt.Window | QtCore.Qt.Tool) self.father = parent self.setWindowTitle("Temperature Calibration") tabWidget = QtWidgets.QTabWidget() tab1 = QtWidgets.QWidget() tabWidget.addTab(tab1, "Chemical Shift Based") grid1 = QtWidgets.QGridLayout() tab1.setLayout(grid1) # Shift based self.typeDrop = QtWidgets.QComboBox() self.typeDrop.addItems(self.TEXTLIST) grid1.addWidget(self.typeDrop, 0, 0) self.typeDrop.currentIndexChanged.connect(self.changeType) self.RefGroup = QtWidgets.QGroupBox("Relative to:") self.RefFrame = QtWidgets.QGridLayout() self.Delta0Label = wc.QLabel(u'δ [ppm]') self.RefFrame.addWidget(self.Delta0Label, 0, 0) self.Delta0 = wc.QLineEdit("") self.Delta0.setMinimumWidth(100) self.RefFrame.addWidget(self.Delta0, 1, 0) self.T0Label = wc.QLabel(u'T [K]') self.RefFrame.addWidget(self.T0Label, 0, 1) self.T0 = wc.QLineEdit("") self.T0.setMinimumWidth(100) self.RefFrame.addWidget(self.T0, 1, 1) self.RefGroup.setLayout(self.RefFrame) grid1.addWidget(self.RefGroup, 1, 0) self.RefGroup.hide() self.DeltaGroup = QtWidgets.QGroupBox("Shift to Temperature:") self.DeltaFrame = QtWidgets.QGridLayout() self.DeltaLabel = wc.QLabel(u'Δδ [ppm]') self.DeltaFrame.addWidget(self.DeltaLabel, 0, 1) DeltaGO = QtWidgets.QPushButton("Go") self.DeltaFrame.addWidget(DeltaGO, 1, 0) DeltaGO.clicked.connect(self.shiftToTemp) self.Delta = wc.QLineEdit("") self.Delta.setMinimumWidth(100) self.DeltaFrame.addWidget(self.Delta, 1, 1) self.DeltaGroup.setLayout(self.DeltaFrame) grid1.addWidget(self.DeltaGroup, 2, 0) self.TempGroup = QtWidgets.QGroupBox("Temperature to Shift:") self.TempFrame = QtWidgets.QGridLayout() TempLabel = wc.QLabel(u'Temperature [K]') self.TempFrame.addWidget(TempLabel, 0, 1) TempGO = QtWidgets.QPushButton("Go") TempGO.clicked.connect(self.tempToShift) self.TempFrame.addWidget(TempGO, 1, 0) self.Temp = wc.QLineEdit("") self.Temp.setMinimumWidth(100) self.TempFrame.addWidget(self.Temp, 1, 1) self.TempGroup.setLayout(self.TempFrame) grid1.addWidget(self.TempGroup, 3, 0) self.refname = wc.QLabel(self.DEFINITIONS[0][7]) grid1.addWidget(self.refname, 4, 0) # T1 based tab2 = QtWidgets.QWidget() tabWidget.addTab(tab2, "T1 Based") grid2 = QtWidgets.QGridLayout() tab2.setLayout(grid2) self.T1typeDrop = QtWidgets.QComboBox() self.T1typeDrop.addItems(self.T1_TEXTLIST) grid2.addWidget(self.T1typeDrop, 0, 0) self.T1typeDrop.currentIndexChanged.connect(self.changeTypeT1) self.T1Group = QtWidgets.QGroupBox("T1 to Temperature:") self.T1Frame = QtWidgets.QGridLayout() self.T1Label = wc.QLabel(u'T1 [s]') self.T1Frame.addWidget(self.T1Label, 0, 1) T1GO = QtWidgets.QPushButton("Go") self.T1Frame.addWidget(T1GO, 1, 0) T1GO.clicked.connect(self.t1ToTemp) self.T1 = wc.QLineEdit("") self.T1.setMinimumWidth(100) self.T1Frame.addWidget(self.T1, 1, 1) self.T1Group.setLayout(self.T1Frame) grid2.addWidget(self.T1Group, 2, 0) self.TempT1Group = QtWidgets.QGroupBox("Temperature to T1:") self.TempT1Frame = QtWidgets.QGridLayout() TempT1Label = wc.QLabel(u'Temperature [K]') self.TempT1Frame.addWidget(TempT1Label, 0, 1) TempT1GO = QtWidgets.QPushButton("Go") TempT1GO.clicked.connect(self.tempToT1) self.TempT1Frame.addWidget(TempT1GO, 1, 0) self.TempT1 = wc.QLineEdit("") self.TempT1.setMinimumWidth(100) self.TempT1Frame.addWidget(self.TempT1, 1, 1) self.TempT1Group.setLayout(self.TempT1Frame) grid2.addWidget(self.TempT1Group, 3, 0) self.refnameT1 = wc.QLabel(self.T1_DEFINITIONS[0][4]) grid2.addWidget(self.refnameT1, 4, 0) layout = QtWidgets.QGridLayout(self) layout.addWidget(tabWidget, 0, 0, 1, 4) cancelButton = QtWidgets.QPushButton("&Close") cancelButton.clicked.connect(self.closeEvent) box = QtWidgets.QDialogButtonBox() box.addButton(cancelButton, QtWidgets.QDialogButtonBox.RejectRole) layout.addWidget(box, 1, 0, 1, 4) layout.setColumnStretch(3, 1) # layout.setRowStretch(3, 1) self.show() self.setFixedSize(self.size()) def changeType(self, index): self.Temp.setText('') self.Delta.setText('') self.refname.setText(self.DEFINITIONS[index][7]) if self.DEFINITIONS[self.typeDrop.currentIndex()][4] == 'absShift': self.DeltaLabel.setText(u'Δδ [ppm]') self.RefGroup.hide() self.Delta0.setText('') self.T0.setText('') elif self.DEFINITIONS[self.typeDrop.currentIndex()][4] == 'relShift': self.DeltaLabel.setText(u'δ [ppm]') self.RefGroup.show() self.Delta0.setText(self.DEFINITIONS[self.typeDrop.currentIndex()][5]) self.T0.setText(self.DEFINITIONS[self.typeDrop.currentIndex()][6]) self.father.root.processEvents() self.setFixedSize(self.sizeHint()) def changeTypeT1(self, index): self.refnameT1.setText(self.T1_DEFINITIONS[index][4]) self.father.root.processEvents() self.setFixedSize(self.sizeHint()) def tempToT1(self): Data = self.T1_DEFINITIONS[self.T1typeDrop.currentIndex()] try: Temp = float(safeEval(self.TempT1.text(), Type='FI')) except Exception: self.T1.setText('?') raise SsnakeException("Temperature Calibration: Invalid input in Temp value") T1 = Data[3](Temp) if Temp < Data[0] or Temp > Data[1]: self.T1.setText('?') raise SsnakeException("Temperature Calibration: Temperature outside calibration range") self.T1.setText('%#.6g' % T1) def t1ToTemp(self): Data = self.T1_DEFINITIONS[self.T1typeDrop.currentIndex()] try: T1 = float(safeEval(self.T1.text(), Type='FI')) except Exception: self.TempT1.setText('?') raise SsnakeException("Temperature Calibration: Invalid input in Temp value") try: Temp = Data[2](T1) except Exception: self.TempT1.setText('?') raise SsnakeException("Temperature Calibration: Temperature outside calibration range") self.TempT1.setText('%#.6g' % Temp) def shiftToTemp(self): Data = self.DEFINITIONS[self.typeDrop.currentIndex()] try: Delta = float(safeEval(self.Delta.text(), Type='FI')) except Exception: self.Temp.setText('?') raise SsnakeException("Temperature Calibration: Invalid input in Delta value") if Data[4] == 'relShift': try: Delta0 = float(safeEval(self.Delta0.text(), Type='FI')) T0 = float(safeEval(self.T0.text(), Type='FI')) except Exception: self.Temp.setText('?') raise SsnakeException("Temperature Calibration: Invalid input in References values") Temp = Data[2](Delta, Delta0, T0) else: Temp = Data[2](Delta) if Temp < Data[0] or Temp > Data[1]: self.Temp.setText('?') raise SsnakeException("Temperature Calibration: Temperature outside calibration range") self.Temp.setText('%#.6g' % Temp) def tempToShift(self): Data = self.DEFINITIONS[self.typeDrop.currentIndex()] try: Temp = float(safeEval(self.Temp.text(), Type='FI')) except Exception: self.Delta.setText('?') raise SsnakeException("Temperature Calibration: Invalid input in Temp value") if Data[4] == 'relShift': try: Delta0 = float(safeEval(self.Delta0.text(), Type='FI')) T0 = float(safeEval(self.T0.text(), Type='FI')) except Exception: self.Delta.setText('?') raise SsnakeException("Temperature Calibration: Invalid input in References values") Delta = Data[3](Temp, Delta0, T0) else: Delta = Data[3](Temp) if Temp < Data[0] or Temp > Data[1]: self.Delta.setText('?') raise SsnakeException("Temperature Calibration: Temperature outside calibration range") self.Delta.setText('%#.6g' % Delta) def closeEvent(self, *args): self.deleteLater() ############################################################################## class mqmasExtractWindow(wc.ToolWindow): Ioptions = ['3/2','5/2', '7/2', '9/2'] Ivalues = [1.5, 2.5, 3.5, 4.5] z = [680.0/27.0, 8500.0/81.0, 6664.0/27.0, 1360.0/3.0] BdevA = [1.0/68.0, 3.0/850.0, 5.0/3332.0, 1.0/1224.0] NAME = "MQMAS" RESIZABLE = True MENUDISABLE = False def __init__(self, parent): super(mqmasExtractWindow, self).__init__(parent) self.comGroup = QtWidgets.QGroupBox() self.comFrame = QtWidgets.QGridLayout() self.comFrame.addWidget(wc.QLabel("I:"), 0, 0) self.IEntry = QtWidgets.QComboBox() self.IEntry.addItems(self.Ioptions) self.IEntry.setCurrentIndex(0) self.comFrame.addWidget(self.IEntry, 0, 1) self.comFrame.addWidget(wc.QLabel(u'ν' + '<sub>0</sub> [MHz]'), 1, 0) self.nu0 = wc.QLineEdit("0.0") self.comFrame.addWidget(self.nu0, 1, 1) self.comGroup.setLayout(self.comFrame) self.grid.addWidget(self.comGroup, 0, 0, 2, 2) self.onetwoGroup = QtWidgets.QGroupBox("δ1/δ2:") self.onetwoFrame = QtWidgets.QGridLayout() self.onetwoFrame.addWidget(wc.QLabel(u'δ' + '<sub>1</sub> [ppm]'), 2, 0) self.onetwoFrame.addWidget(wc.QLabel(u'δ' + '<sub>2</sub> [ppm]'), 3, 0) self.delta1 = wc.QLineEdit("0.0") self.onetwoFrame.addWidget(self.delta1, 2, 1) self.delta2 = wc.QLineEdit("0.0") self.onetwoFrame.addWidget(self.delta2, 3, 1) self.delta1.setMinimumWidth(200) self.calcIsoPqButton = QtWidgets.QPushButton("Calc δiso/PQ", self) self.calcIsoPqButton.clicked.connect(self.calcIsoPq) self.onetwoFrame.addWidget(self.calcIsoPqButton, 4, 0, 1, 2) self.onetwoGroup.setLayout(self.onetwoFrame) self.grid.addWidget(self.onetwoGroup, 2, 0, 4, 2) self.isopqGroup = QtWidgets.QGroupBox("δiso/PQ:") self.isopqFrame = QtWidgets.QGridLayout() self.isopqFrame.addWidget(wc.QLabel(u'δ' + '<sub>iso</sub> [ppm]'), 6, 0) self.deltaIso = wc.QLineEdit("0.0") self.isopqFrame.addWidget(self.deltaIso, 6, 1) self.isopqFrame.addWidget(wc.QLabel('P<sub>Q</sub> [MHz]'), 7, 0) self.pq = wc.QLineEdit("0.0") self.isopqFrame.addWidget(self.pq, 7, 1) self.calc12Button = QtWidgets.QPushButton("Calc δ1/δ2", self) self.calc12Button.clicked.connect(self.calc12) self.isopqFrame.addWidget(self.calc12Button, 8, 0, 1, 2) self.isopqGroup.setLayout(self.isopqFrame) self.grid.addWidget(self.isopqGroup, 6, 0, 4, 2) self.cancelButton.setText("Close") self.cancelButton.clicked.disconnect() self.cancelButton.clicked.connect(self.closeEvent) self.okButton.setText("Reset") self.okButton.clicked.disconnect() self.okButton.clicked.connect(self.valueReset) def calcIsoPq(self): nu0 = safeEval(self.nu0.text(), Type='FI') wrong = False if nu0 is None: self.father.dispMsg("MQMAS Extract: Invalid input in V0") wrong = True delta1 = safeEval(self.delta1.text(), Type='FI') if delta1 is None and wrong is False: self.father.dispMsg("MQMAS Extract: Invalid input in Delta1") wrong = True delta2 = safeEval(self.delta2.text(), Type='FI') if delta2 is None and wrong is False: self.father.dispMsg("MQMAS Extract: Invalid input in Delta2") wrong = True zval = self.z[self.IEntry.currentIndex()] if wrong is False and delta1 is not None and delta2 is not None: if delta1 - delta2 < 0.0: self.father.dispMsg("MQMAS Extract: Delta1 should be larger than Delta2!") wrong = True if wrong: self.deltaIso.setText('-') self.pq.setText('-') return iso = (17.0 * delta1 + 10.0 * delta2) / 27 self.deltaIso.setText(str(iso)) pq = np.sqrt(zval * 1e-6 * (nu0 * 1e6)**2 * (delta1 - delta2)) / 1e6 self.pq.setText(str(pq)) def calc12(self): nu0 = safeEval(self.nu0.text(), Type='FI') wrong = False if nu0 is None or nu0 == 0.0: self.father.dispMsg("MQMAS Extract: Invalid input in V0") wrong = True iso = safeEval(self.deltaIso.text(), Type='FI') if iso is None and wrong is False: self.father.dispMsg("MQMAS Extract: Invalid input in DeltaIso") wrong = True pq = safeEval(self.pq.text(), Type='FI') if pq is None and wrong is False: self.father.dispMsg("MQMAS Extract: Invalid input in PQ") wrong = True if wrong: self.delta1.setText('-') self.delta2.setText('-') return BdevA = self.BdevA[self.IEntry.currentIndex()] delta1 = iso + BdevA * pq**2/nu0**2 * 1e6 self.delta1.setText(str(delta1)) delta2 = (27 * iso - 17 * delta1) / 10 self.delta2.setText(str(delta2)) def valueReset(self): # Resets all the boxes to 0 self.nu0.setText('0') self.delta1.setText('0') self.delta2.setText('0') self.deltaIso.setText('0') self.pq.setText('0') self.IEntry.setCurrentIndex(0) def closeEvent(self, *args): self.deleteLater() def libVersionChecker(version,needed): """Compares a two library version strings ('1.2.3' format) First compares major, then minor, etc. If version is lower than needed, False is returned """ current = [int(x) for x in version.split('.')] required = [int(x) for x in needed.split('.')] check = True if current[0] < required[0]: check = False elif current[0] == required[0]: if current[1] < required[1]: check = False elif current[1] == required[1]: if len(current) > 2 and len(required) > 2: if current[2] < required[2]: check = False return check def checkVersions(): """Checks versions of relevant python libraries Compares specified versions of libraries against the loaded version. If the values are to low, an error message is returned. """ from scipy import __version__ as scipyVersion # Scipy is not fully imported, so only load version libs = [['numpy', np.__version__, NPVERSION], ['matplotlib', matplotlib.__version__, MPLVERSION], ['scipy', scipyVersion, SPVERSION]] if sys.version_info.major == 3: libs.append(['python', str(sys.version_info.major) + '.' + str(sys.version_info.minor), PY3VERSION]) elif sys.version_info.major == 2: libs.append(['python', str(sys.version_info.major) + '.' + str(sys.version_info.minor), PY2VERSION]) messages = [] error = False for elem in libs: check = libVersionChecker(elem[1], elem[2]) if not check: error = True messages.append('"' + elem[0] + '" version is too low (need "' + elem[2] + '" have "' + elem[1] +'")') return error, messages def popupVersionError(messages): """Gives a message window displaying version issues Input is a list of strings """ msg = "" for elem in messages: msg = msg + elem + '\n' reply = QtWidgets.QMessageBox.warning(QtWidgets.QWidget(), 'Invalid software version', msg, QtWidgets.QMessageBox.Ignore, QtWidgets.QMessageBox.Abort) quit = False if reply == QtWidgets.QMessageBox.Abort: quit = True return quit def openRefMan(): file = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + '..' + os.path.sep + 'ReferenceManual.pdf' if sys.platform.startswith('linux'): os.system("xdg-open " + '"' + file + '"') elif sys.platform.startswith('darwin'): os.system("open " + '"' + file + '"') elif sys.platform.startswith('win'): os.startfile(file) def openTutorial(): path = os.path.dirname(os.path.realpath(__file__)) + os.path.sep + '..' + os.path.sep + '/Tutorial' if sys.platform.startswith('linux'): os.system("xdg-open " + '"' + path + '"') elif sys.platform.startswith('darwin'): os.system("open " + '"' + path + '"') elif sys.platform.startswith('win'): os.startfile(path) if __name__ == '__main__': error, messages = checkVersions() quit = False if error: splash.close() quit = popupVersionError(messages) if not quit: mainProgram = MainProgram(root) mainProgram.setWindowTitle("ssNake - " + VERSION) mainProgram.show() if not error: splash.finish(mainProgram) sys._excepthook = sys.excepthook if len(sys.argv) > 1: mainProgram.loadData(sys.argv[1:]) def exception_hook(exctype, value, traceback): if not isinstance(value, Exception): # Do not catch keyboard interrupts sys._excepthook(exctype, value, traceback) elif isinstance(value, (sc.SpectrumException, hc.HComplexException, sim.SimException)): mainProgram.dispMsg(str(value)) else: mainProgram.dispError([exctype, value, traceback]) sys.excepthook = exception_hook sys.exit(root.exec_())
gpl-3.0
deepesch/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
yosefm/tracer
examples/tower_gui.py
1
4835
""" Yet another MayaVi example: a heliostat field. In this example we also use an embedded Matplotlib figure to show the flux map on request. """ import traits.api as t_api import traitsui.api as tui from tracer.mayavi_ui.scene_view import TracerScene import numpy as N from scipy.constants import degree from tracer.ray_bundle import RayBundle from tracer.sources import pillbox_sunshape_directions from tracer.assembly import Assembly from tracer.spatial_geometry import roty, rotation_to_z from tracer.tracer_engine import TracerEngine from tracer.models.one_sided_mirror import one_sided_receiver from tracer.models.heliostat_field import HeliostatField, radial_stagger, solar_vector # For the embedded flux map: from matplotlib.figure import Figure from embedded_figure import MPLFigureEditor import wx class TowerScene(TracerScene): # Location of the sun: sun_az = t_api.Range(0, 180, 90, label="Sun azimuth") sun_elev = t_api.Range(0, 90, 45, label="Sun elevation") # Heliostat placement distance: radial_res = t_api.Float(1., label="Radial distance") ang_res = t_api.Float(N.pi/8, lable="Angular distance") # Flux map figure: fmap = t_api.Instance(Figure) fmap_btn = t_api.Button(label="Update flux map") def __init__(self): self.gen_plant() TracerScene.__init__(self, self.plant, self.gen_rays()) self.aim_field() self.set_background((0., 0.5, 1.)) def gen_rays(self): sun_vec = solar_vector(self.sun_az*degree, self.sun_elev*degree) rpos = (self.pos + sun_vec).T direct = N.tile(-sun_vec, (self.pos.shape[0], 1)).T rays = RayBundle(rpos, direct, energy=N.ones(self.pos.shape[0])) return rays def gen_plant(self): xy = radial_stagger(-N.pi/4, N.pi/4 + 0.0001, self.ang_res, 5, 20, self.radial_res) self.pos = N.hstack((xy, N.zeros((xy.shape[0], 1)))) self.field = HeliostatField(self.pos, 0.5, 0.5, 0, 10) self.rec, recobj = one_sided_receiver(1., 1.) rec_trans = roty(N.pi/2) rec_trans[2,3] = 10 recobj.set_transform(rec_trans) self.plant = Assembly(objects=[recobj], subassemblies=[self.field]) @t_api.on_trait_change('sun_az, sun_elev') def aim_field(self): self.clear_scene() rays = self.gen_rays() self.field.aim_to_sun(self.sun_az*degree, self.sun_elev*degree) self.set_assembly(self.plant) # Q&D example. self.set_source(rays) @t_api.on_trait_change('radial_res, ang_res') def replace_plant(self): self.gen_plant() self.aim_field() @t_api.on_trait_change('_scene.activated') def initialize_camere(self): self._scene.mlab.view(0, -90) self._scene.mlab.roll(90) def _fmap_btn_fired(self): """Generate a flux map using much more rays than drawn""" # Generate a large ray bundle using a radial stagger much denser # than the field. sun_vec = solar_vector(self.sun_az*degree, self.sun_elev*degree) hstat_rays = 1000 num_rays = hstat_rays*len(self.field.get_heliostats()) rot_sun = rotation_to_z(-sun_vec) direct = N.dot(rot_sun, pillbox_sunshape_directions(num_rays, 0.00465)) xy = N.random.uniform(low=-0.25, high=0.25, size=(2, num_rays)) base_pos = N.tile(self.pos, (hstat_rays, 1)).T base_pos += N.dot(rot_sun[:,:2], xy) base_pos -= direct rays = RayBundle(base_pos, direct, energy=N.ones(num_rays)) # Perform the trace: self.rec.get_optics_manager().reset() e = TracerEngine(self.plant) e.ray_tracer(rays, 1000, 0.05) # Show a histogram of hits: energy, pts = self.rec.get_optics_manager().get_all_hits() x, y = self.rec.global_to_local(pts)[:2] rngx = 0.5 rngy = 0.5 bins = 50 H, xbins, ybins = N.histogram2d(x, y, bins, \ range=([-rngx,rngx], [-rngy,rngy]), weights=energy) self.fmap.axes[0].images=[] self.fmap.axes[0].imshow(H, aspect='auto') wx.CallAfter(self.fmap.canvas.draw) def _fmap_default(self): figure = Figure() figure.add_axes([0.05, 0.04, 0.9, 0.92]) return figure # Parameters of the form that is shown to the user: view = tui.View(tui.HGroup(tui.VGroup( TracerScene.scene_view_item(500, 500), tui.HGroup('-', 'sun_az', 'sun_elev'), tui.HGroup('radial_res', 'ang_res'), tui.Item('fmap_btn', show_label=False)), tui.Item('fmap', show_label=False, editor=MPLFigureEditor()))) if __name__ == '__main__': scene = TowerScene() scene.configure_traits()
gpl-3.0
lisaleemcb/sncosmo_lc_analysis
analyzeSN/snanaio.py
1
5412
from __future__ import absolute_import, print_function, division import fitsio import pandas as pd import numpy as np import os from astropy.table import Table, Column class SNANASims(object): """ Class to represent SNANA simulations of a particular class of objects, ie. Ia or Non_Ia """ def __init__(self, headFile, photFile, coerce_inds2int=True): """ Parameters --------- headFile : string, mandatory absolute path to head file of simulation photFile : string, mandatory absolute path to phot file of simulation coerce_inds2int : Bool, optional, defaults to True if true, converts SNID from string to int """ self.headFile = headFile self.photFile = photFile self.headData = self.get_headData(self.headFile, coerce_inds2int=coerce_inds2int) self.phot = fitsio.FITS(photFile) @classmethod def fromSNANAfileroot(cls, snanafileroot, location='./', coerce_inds2int=False): """ Class constructor from a root file and a location Parameters ---------- snanafileroot : string, mandatory root file name for the SNANA which is the prefix to '_HEAD.FITS', or '_PHOT.FITS' location : string, optional defaults to current working directory './' Relative or absolute path to the directory where the head and phot files are located snids : integer/string, optional defaults to None if not None, only SN observations corresponding to SNID snid are loaded n : Integer, defaults to None if not None, only the first n SN light curves are loaded """ headfile = cls.snanadatafile(snanafileroot, filetype='head', location=location) photfile = cls.snanadatafile(snanafileroot, filetype='phot', location=location) return cls(headFile=headfile, photFile=photfile, coerce_inds2int=coerce_inds2int) @staticmethod def snanadatafile(snanafileroot, filetype='head', location='./'): ''' obtain the name of the head or phot file of an SNANA simulation and dataset Parameters ---------- snanafileroot : string, mandatory root file name for the SNANA which is the prefix to '_HEAD.FITS', or '_PHOT.FITS' filetype : string, optional defaults to 'head' 'head' or 'phot' depending on whether a summary file or a photometry file is being used. location : string, optional defaults to current working directory './' relative or absolute path to the directory in which the file is located Returns ------- string : absolute path to the SNANA file ''' desiredfiletype = ['head', 'phot'] filetype = filetype.lower() if not filetype in desiredfiletype: raise ValueError( 'filetype should be one of "head" or "phot"', filetype) location = os.path.abspath(location) suffix = '_HEAD.FITS' if filetype.lower() == 'phot': suffix = '_PHOT.FITS' fname = snanafileroot + suffix return os.path.join(location, fname) @staticmethod def get_headData(headFile, coerce_inds2int=False): """ read the headData of a SNANA simulation and return a dataframe representing the simulation Parameters ---------- headFile : coerce_inds2int : """ _head = Table.read(headFile) if _head['SNID'].dtype.type is np.string_: data = _head['SNID'].data name = _head['SNID'].name dtype = _head['SNID'].dtype if coerce_inds2int: arr = list(np.int(x) for x in data) dtype=int else: arr = list(x.strip().lower() for x in data) col = Column(data=arr, name=name, dtype=dtype) _head.remove_columns('SNID') _head.add_column(col, index=0) return _head.to_pandas().set_index('SNID') def get_photrows(self, row=None, snid=None): """ return rows of the photometry table corresponding to a SN as listed in the head table. Parameters ---------- row : snid : """ if row is not None: ptrs = self.headData.iloc[row][['PTROBS_MIN', 'PTROBS_MAX']] elif snid is not None: ptrs = self.headData.ix[snid][['PTROBS_MIN', 'PTROBS_MAX']] else: raise ValueError('Both {0} and {1} cannot be None simulataneously'.format('snid', 'row')) ptrs = ptrs.astype('int').values ptrs[0] -= 1 return ptrs def get_SNANA_photometry(self, snid=None, ptrs=None): """ return the photometry table corresponding to a SN with snid (from the head table) or the photometry table within the range of row numbers indicated by ptrs """ if ptrs is not None: assert np.shape(ptrs) == (2,) elif snid is not None: ptrs = self.get_photrows(snid=snid.strip().lower()) else: raise ValueError('Both {0} and {1} cannot be None simulataneously'.format('snid', 'row')) lcData = self.phot[1][ptrs[0]: ptrs[1]].byteswap().newbyteorder() return pd.DataFrame(lcData)
mit
brentjm/Impurity-Predictions
server/package/desiccant.py
1
4140
""" Desiccant class Brent Maranzano 2016-04-16 """ import pandas as pd class Desiccant(object): """ Define the desiccant inside the container (e.g. type, amount, water...etc). Class Attributes ID : string - unique identification number to lookup parameters name : string - Desiccant material. mass : float - mass of desiccant (g) water_content : float - mass fraction of water contained in the desiccant (mass water (mg) / mass dry desiccant (g)) GAB_parameters : dictionary - {Wm, C, K} GAB constants from lookup file. density: float - density of dry desiccant (g/cm^3) water : float - total mass of water (g) Class Methods set_properties : Set the properties of the desiccant refresh : Refresh the desiccant to a new water content equilibrate : Equilibrate the deisccant to a provided RH and set the water content. calc_water_content: Calculate the water content from GAB and passed water activity """ def __init__(self, ID, mass, **kwargs): self.set_properties(ID, mass, **kwargs) def set_properties(self, ID, mass, density=1.0, **kwargs): """ Set the properties of the desiccant. Parameters ID : string - Unique identification of the desiccant for the lookup. mass : float - Mass of the desiccant. optional kwargs water_content : float - mass fraction of water in desiccant (mass water (mg) / mass dry desiccant (g)) density : float - density of dry desiccant (g) """ store = pd.HDFStore("simulation_constants.hdf", mode="r") GAB_constants = store["GAB_constants"] store.close() if ID in GAB_constants.index.values: self.ID = ID self.name = GAB_constants.loc["material"]["name"] self.GAB_parameters = GAB_constants.loc[ID][["C", "K", "Wm"]].to_dict() else: raise ValueError("Desiccant type {} is not defined".format(ID)) self.mass = float(mass) if "water_content" in kwargs: self.water_content = float(kwargs["water_content"]) elif "initial_water_activity" in kwargs: self.water_content = \ self.calc_water_content(kwargs["initial_water_activity"]) * 1.e3 else: self.water_content = 20. self.density = float(density) self.water = self.water_content * self.mass * 1.e-3 def refresh(self, water_content=20., initial_activity=None): """ Refresh the desiccant (e.g. replace with equivalent desiccant mass with lower water content). Specify either new water content (water_content), or initial water activity of the desiccant (initial_activity). Parameters water_content: float - Water content of the fresh desiccant (mg water / g dry desiccant) initial_activity: float - Water activity of the fresh desiccant (unitless) """ if initial_activity is None: self.water_content = float(water_content) else: self.water_content = \ self.calc_water_content(float(initial_activity)) self.water = self.water_content * self.mass * 1.e-3 def equilibrate(self, aw): """ Equilibrate the desiccant to a new water activity. Parameters aw: float - Water activity to equilibrate desiccant. """ self.water_content = self.calc_water_content(aw) self.water = self.water_content * self.mass * 1.e-3 def calc_water_content(self, aw): """ Calculate the water content from the GAB parameters at the provided water activity. Parameters aw : float - Water activity return: water_content (mg water / g desiccant) """ aw = float(aw) Wm = self.GAB_parameters["Wm"] C = self.GAB_parameters["C"] K = self.GAB_parameters["K"] water_content = (Wm*C*K*aw) / ((1-K*aw) * (1-K*aw+C*K*aw)) * 1.e3 return water_content
bsd-2-clause
thesuperzapper/tensorflow
tensorflow/contrib/keras/python/keras/callbacks.py
25
33691
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras callbacks: utilities called at certain points during model training. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import deque from collections import Iterable from collections import OrderedDict import csv import json import os import time import warnings import numpy as np from tensorflow.contrib.keras.python.keras import backend as K from tensorflow.contrib.keras.python.keras.utils.generic_utils import Progbar from tensorflow.contrib.tensorboard.plugins import projector from tensorflow.python.ops import array_ops from tensorflow.python.summary import summary as tf_summary from tensorflow.python.training import saver as saver_lib # pylint: disable=g-import-not-at-top try: import requests except ImportError: requests = None # pylint: enable=g-import-not-at-top class CallbackList(object): """Container abstracting a list of callbacks. Arguments: callbacks: List of `Callback` instances. queue_length: Queue length for keeping running statistics over callback execution time. """ def __init__(self, callbacks=None, queue_length=10): callbacks = callbacks or [] self.callbacks = [c for c in callbacks] self.queue_length = queue_length def append(self, callback): self.callbacks.append(callback) def set_params(self, params): for callback in self.callbacks: callback.set_params(params) def set_model(self, model): for callback in self.callbacks: callback.set_model(model) def on_epoch_begin(self, epoch, logs=None): """Called at the start of an epoch. Arguments: epoch: integer, index of epoch. logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_epoch_begin(epoch, logs) self._delta_t_batch = 0. self._delta_ts_batch_begin = deque([], maxlen=self.queue_length) self._delta_ts_batch_end = deque([], maxlen=self.queue_length) def on_epoch_end(self, epoch, logs=None): """Called at the end of an epoch. Arguments: epoch: integer, index of epoch. logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_epoch_end(epoch, logs) def on_batch_begin(self, batch, logs=None): """Called right before processing a batch. Arguments: batch: integer, index of batch within the current epoch. logs: dictionary of logs. """ logs = logs or {} t_before_callbacks = time.time() for callback in self.callbacks: callback.on_batch_begin(batch, logs) self._delta_ts_batch_begin.append(time.time() - t_before_callbacks) delta_t_median = np.median(self._delta_ts_batch_begin) if (self._delta_t_batch > 0. and delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1): warnings.warn( 'Method on_batch_begin() is slow compared ' 'to the batch update (%f). Check your callbacks.' % delta_t_median) self._t_enter_batch = time.time() def on_batch_end(self, batch, logs=None): """Called at the end of a batch. Arguments: batch: integer, index of batch within the current epoch. logs: dictionary of logs. """ logs = logs or {} if not hasattr(self, '_t_enter_batch'): self._t_enter_batch = time.time() self._delta_t_batch = time.time() - self._t_enter_batch t_before_callbacks = time.time() for callback in self.callbacks: callback.on_batch_end(batch, logs) self._delta_ts_batch_end.append(time.time() - t_before_callbacks) delta_t_median = np.median(self._delta_ts_batch_end) if (self._delta_t_batch > 0. and (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)): warnings.warn( 'Method on_batch_end() is slow compared ' 'to the batch update (%f). Check your callbacks.' % delta_t_median) def on_train_begin(self, logs=None): """Called at the beginning of training. Arguments: logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_train_begin(logs) def on_train_end(self, logs=None): """Called at the end of training. Arguments: logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_train_end(logs) def __iter__(self): return iter(self.callbacks) class Callback(object): """Abstract base class used to build new callbacks. # Properties params: dict. Training parameters (eg. verbosity, batch size, number of epochs...). model: instance of `keras.models.Model`. Reference of the model being trained. The `logs` dictionary that callback methods take as argument will contain keys for quantities relevant to the current batch or epoch. Currently, the `.fit()` method of the `Sequential` model class will include the following quantities in the `logs` that it passes to its callbacks: on_epoch_end: logs include `acc` and `loss`, and optionally include `val_loss` (if validation is enabled in `fit`), and `val_acc` (if validation and accuracy monitoring are enabled). on_batch_begin: logs include `size`, the number of samples in the current batch. on_batch_end: logs include `loss`, and optionally `acc` (if accuracy monitoring is enabled). """ def __init__(self): self.validation_data = None def set_params(self, params): self.params = params def set_model(self, model): self.model = model def on_epoch_begin(self, epoch, logs=None): pass def on_epoch_end(self, epoch, logs=None): pass def on_batch_begin(self, batch, logs=None): pass def on_batch_end(self, batch, logs=None): pass def on_train_begin(self, logs=None): pass def on_train_end(self, logs=None): pass class BaseLogger(Callback): """Callback that accumulates epoch averages of metrics. This callback is automatically applied to every Keras model. """ def on_epoch_begin(self, epoch, logs=None): self.seen = 0 self.totals = {} def on_batch_end(self, batch, logs=None): logs = logs or {} batch_size = logs.get('size', 0) self.seen += batch_size for k, v in logs.items(): if k in self.totals: self.totals[k] += v * batch_size else: self.totals[k] = v * batch_size def on_epoch_end(self, epoch, logs=None): if logs is not None: for k in self.params['metrics']: if k in self.totals: # Make value available to next callbacks. logs[k] = self.totals[k] / self.seen class ProgbarLogger(Callback): """Callback that prints metrics to stdout. Arguments: count_mode: One of "steps" or "samples". Whether the progress bar should count samples seens or steps (batches) seen. Raises: ValueError: In case of invalid `count_mode`. """ def __init__(self, count_mode='samples'): super(ProgbarLogger, self).__init__() if count_mode == 'samples': self.use_steps = False elif count_mode == 'steps': self.use_steps = True else: raise ValueError('Unknown `count_mode`: ' + str(count_mode)) def on_train_begin(self, logs=None): self.verbose = self.params['verbose'] self.epochs = self.params['epochs'] def on_epoch_begin(self, epoch, logs=None): if self.verbose: print('Epoch %d/%d' % (epoch + 1, self.epochs)) if self.use_steps: target = self.params['steps'] else: target = self.params['samples'] self.target = target self.progbar = Progbar(target=self.target, verbose=self.verbose) self.seen = 0 def on_batch_begin(self, batch, logs=None): if self.seen < self.target: self.log_values = [] def on_batch_end(self, batch, logs=None): logs = logs or {} batch_size = logs.get('size', 0) if self.use_steps: self.seen += 1 else: self.seen += batch_size for k in self.params['metrics']: if k in logs: self.log_values.append((k, logs[k])) # Skip progbar update for the last batch; # will be handled by on_epoch_end. if self.verbose and self.seen < self.target: self.progbar.update(self.seen, self.log_values) def on_epoch_end(self, epoch, logs=None): logs = logs or {} for k in self.params['metrics']: if k in logs: self.log_values.append((k, logs[k])) if self.verbose: self.progbar.update(self.seen, self.log_values, force=True) class History(Callback): """Callback that records events into a `History` object. This callback is automatically applied to every Keras model. The `History` object gets returned by the `fit` method of models. """ def on_train_begin(self, logs=None): self.epoch = [] self.history = {} def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epoch.append(epoch) for k, v in logs.items(): self.history.setdefault(k, []).append(v) class ModelCheckpoint(Callback): """Save the model after every epoch. `filepath` can contain named formatting options, which will be filled the value of `epoch` and keys in `logs` (passed in `on_epoch_end`). For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`, then the model checkpoints will be saved with the epoch number and the validation loss in the filename. Arguments: filepath: string, path to save the model file. monitor: quantity to monitor. verbose: verbosity mode, 0 or 1. save_best_only: if `save_best_only=True`, the latest best model according to the quantity monitored will not be overwritten. mode: one of {auto, min, max}. If `save_best_only=True`, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. For `val_acc`, this should be `max`, for `val_loss` this should be `min`, etc. In `auto` mode, the direction is automatically inferred from the name of the monitored quantity. save_weights_only: if True, then only the model's weights will be saved (`model.save_weights(filepath)`), else the full model is saved (`model.save(filepath)`). period: Interval (number of epochs) between checkpoints. """ def __init__(self, filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1): super(ModelCheckpoint, self).__init__() self.monitor = monitor self.verbose = verbose self.filepath = filepath self.save_best_only = save_best_only self.save_weights_only = save_weights_only self.period = period self.epochs_since_last_save = 0 if mode not in ['auto', 'min', 'max']: warnings.warn('ModelCheckpoint mode %s is unknown, ' 'fallback to auto mode.' % (mode), RuntimeWarning) mode = 'auto' if mode == 'min': self.monitor_op = np.less self.best = np.Inf elif mode == 'max': self.monitor_op = np.greater self.best = -np.Inf else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater self.best = -np.Inf else: self.monitor_op = np.less self.best = np.Inf def on_epoch_end(self, epoch, logs=None): logs = logs or {} self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 filepath = self.filepath.format(epoch=epoch, **logs) if self.save_best_only: current = logs.get(self.monitor) if current is None: warnings.warn('Can save best model only with %s available, ' 'skipping.' % (self.monitor), RuntimeWarning) else: if self.monitor_op(current, self.best): if self.verbose > 0: print('Epoch %05d: %s improved from %0.5f to %0.5f,' ' saving model to %s' % (epoch, self.monitor, self.best, current, filepath)) self.best = current if self.save_weights_only: self.model.save_weights(filepath, overwrite=True) else: self.model.save(filepath, overwrite=True) else: if self.verbose > 0: print('Epoch %05d: %s did not improve' % (epoch, self.monitor)) else: if self.verbose > 0: print('Epoch %05d: saving model to %s' % (epoch, filepath)) if self.save_weights_only: self.model.save_weights(filepath, overwrite=True) else: self.model.save(filepath, overwrite=True) class EarlyStopping(Callback): """Stop training when a monitored quantity has stopped improving. Arguments: monitor: quantity to be monitored. min_delta: minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than min_delta, will count as no improvement. patience: number of epochs with no improvement after which training will be stopped. verbose: verbosity mode. mode: one of {auto, min, max}. In `min` mode, training will stop when the quantity monitored has stopped decreasing; in `max` mode it will stop when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. """ def __init__(self, monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto'): super(EarlyStopping, self).__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.min_delta = min_delta self.wait = 0 self.stopped_epoch = 0 if mode not in ['auto', 'min', 'max']: warnings.warn('EarlyStopping mode %s is unknown, ' 'fallback to auto mode.' % (self.mode), RuntimeWarning) mode = 'auto' if mode == 'min': self.monitor_op = np.less elif mode == 'max': self.monitor_op = np.greater else: if 'acc' in self.monitor or self.monitor.startswith('fmeasure'): self.monitor_op = np.greater else: self.monitor_op = np.less if self.monitor_op == np.greater: self.min_delta *= 1 else: self.min_delta *= -1 def on_train_begin(self, logs=None): self.wait = 0 # Allow instances to be re-used self.best = np.Inf if self.monitor_op == np.less else -np.Inf def on_epoch_end(self, epoch, logs=None): current = logs.get(self.monitor) if current is None: warnings.warn('Early stopping requires %s available!' % (self.monitor), RuntimeWarning) if self.monitor_op(current - self.min_delta, self.best): self.best = current self.wait = 0 else: if self.wait >= self.patience: self.stopped_epoch = epoch self.model.stop_training = True self.wait += 1 def on_train_end(self, logs=None): if self.stopped_epoch > 0 and self.verbose > 0: print('Epoch %05d: early stopping' % (self.stopped_epoch)) class RemoteMonitor(Callback): """Callback used to stream events to a server. Requires the `requests` library. Events are sent to `root + '/publish/epoch/end/'` by default. Calls are HTTP POST, with a `data` argument which is a JSON-encoded dictionary of event data. Arguments: root: String; root url of the target server. path: String; path relative to `root` to which the events will be sent. field: String; JSON field under which the data will be stored. headers: Dictionary; optional custom HTTP headers. Defaults to: `{'Accept': 'application/json', 'Content-Type': 'application/json'}` """ def __init__(self, root='http://localhost:9000', path='/publish/epoch/end/', field='data', headers=None): super(RemoteMonitor, self).__init__() if headers is None: headers = { 'Accept': 'application/json', 'Content-Type': 'application/json' } self.root = root self.path = path self.field = field self.headers = headers def on_epoch_end(self, epoch, logs=None): if requests is None: raise ImportError('RemoteMonitor requires ' 'the `requests` library.') logs = logs or {} send = {} send['epoch'] = epoch for k, v in logs.items(): send[k] = v try: requests.post( self.root + self.path, {self.field: json.dumps(send)}, headers=self.headers) except requests.exceptions.RequestException: warnings.warn('Warning: could not reach RemoteMonitor ' 'root server at ' + str(self.root)) class LearningRateScheduler(Callback): """Learning rate scheduler. Arguments: schedule: a function that takes an epoch index as input (integer, indexed from 0) and returns a new learning rate as output (float). """ def __init__(self, schedule): super(LearningRateScheduler, self).__init__() self.schedule = schedule def on_epoch_begin(self, epoch, logs=None): if not hasattr(self.model.optimizer, 'lr'): raise ValueError('Optimizer must have a "lr" attribute.') lr = self.schedule(epoch) if not isinstance(lr, (float, np.float32, np.float64)): raise ValueError('The output of the "schedule" function ' 'should be float.') K.set_value(self.model.optimizer.lr, lr) class TensorBoard(Callback): # pylint: disable=line-too-long """Tensorboard basic visualizations. This callback writes a log for TensorBoard, which allows you to visualize dynamic graphs of your training and test metrics, as well as activation histograms for the different layers in your model. Arguments: log_dir: the path of the directory where to save the log files to be parsed by Tensorboard. histogram_freq: frequency (in epochs) at which to compute activation histograms for the layers of the model. If set to 0, histograms won't be computed. write_graph: whether to visualize the graph in Tensorboard. The log file can become quite large when write_graph is set to True. write_images: whether to write model weights to visualize as image in Tensorboard. embeddings_freq: frequency (in epochs) at which selected embedding layers will be saved. embeddings_layer_names: a list of names of layers to keep eye on. If None or empty list all the embedding layer will be watched. embeddings_metadata: a dictionary which maps layer name to a file name in which metadata for this embedding layer is saved. See the [details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional) about metadata files format. In case if the same metadata file is used for all embedding layers, string can be passed. """ # pylint: enable=line-too-long def __init__(self, log_dir='./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None): super(TensorBoard, self).__init__() self.log_dir = log_dir self.histogram_freq = histogram_freq self.merged = None self.write_graph = write_graph self.write_images = write_images self.embeddings_freq = embeddings_freq self.embeddings_layer_names = embeddings_layer_names self.embeddings_metadata = embeddings_metadata or {} def set_model(self, model): self.model = model self.sess = K.get_session() if self.histogram_freq and self.merged is None: for layer in self.model.layers: for weight in layer.weights: tf_summary.histogram(weight.name, weight) if self.write_images: w_img = array_ops.squeeze(weight) shape = w_img.get_shape() if len(shape) > 1 and shape[0] > shape[1]: w_img = array_ops.transpose(w_img) if len(shape) == 1: w_img = array_ops.expand_dims(w_img, 0) w_img = array_ops.expand_dims(array_ops.expand_dims(w_img, 0), -1) tf_summary.image(weight.name, w_img) if hasattr(layer, 'output'): tf_summary.histogram('{}_out'.format(layer.name), layer.output) self.merged = tf_summary.merge_all() if self.write_graph: self.writer = tf_summary.FileWriter(self.log_dir, self.sess.graph) else: self.writer = tf_summary.FileWriter(self.log_dir) if self.embeddings_freq: self.saver = saver_lib.Saver() embeddings_layer_names = self.embeddings_layer_names if not embeddings_layer_names: embeddings_layer_names = [ layer.name for layer in self.model.layers if type(layer).__name__ == 'Embedding' ] embeddings = { layer.name: layer.weights[0] for layer in self.model.layers if layer.name in embeddings_layer_names } embeddings_metadata = {} if not isinstance(self.embeddings_metadata, str): embeddings_metadata = self.embeddings_metadata else: embeddings_metadata = { layer_name: self.embeddings_metadata for layer_name in embeddings.keys() } config = projector.ProjectorConfig() self.embeddings_logs = [] for layer_name, tensor in embeddings.items(): embedding = config.embeddings.add() embedding.tensor_name = tensor.name self.embeddings_logs.append( os.path.join(self.log_dir, layer_name + '.ckpt')) if layer_name in embeddings_metadata: embedding.metadata_path = embeddings_metadata[layer_name] projector.visualize_embeddings(self.writer, config) def on_epoch_end(self, epoch, logs=None): logs = logs or {} if self.validation_data and self.histogram_freq: if epoch % self.histogram_freq == 0: # TODO(fchollet): implement batched calls to sess.run # (current call will likely go OOM on GPU) if self.model.uses_learning_phase: cut_v_data = len(self.model.inputs) val_data = self.validation_data[:cut_v_data] + [0] tensors = self.model.inputs + [K.learning_phase()] else: val_data = self.validation_data tensors = self.model.inputs feed_dict = dict(zip(tensors, val_data)) result = self.sess.run([self.merged], feed_dict=feed_dict) summary_str = result[0] self.writer.add_summary(summary_str, epoch) if self.embeddings_freq and self.embeddings_logs: if epoch % self.embeddings_freq == 0: for log in self.embeddings_logs: self.saver.save(self.sess, log, epoch) for name, value in logs.items(): if name in ['batch', 'size']: continue summary = tf_summary.Summary() summary_value = summary.value.add() summary_value.simple_value = value.item() summary_value.tag = name self.writer.add_summary(summary, epoch) self.writer.flush() def on_train_end(self, _): self.writer.close() class ReduceLROnPlateau(Callback): """Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Example: ```python reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.001) model.fit(X_train, Y_train, callbacks=[reduce_lr]) ``` Arguments: monitor: quantity to be monitored. factor: factor by which the learning rate will be reduced. new_lr = lr * factor patience: number of epochs with no improvement after which learning rate will be reduced. verbose: int. 0: quiet, 1: update messages. mode: one of {auto, min, max}. In `min` mode, lr will be reduced when the quantity monitored has stopped decreasing; in `max` mode it will be reduced when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. epsilon: threshold for measuring the new optimum, to only focus on significant changes. cooldown: number of epochs to wait before resuming normal operation after lr has been reduced. min_lr: lower bound on the learning rate. """ def __init__(self, monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=1e-4, cooldown=0, min_lr=0): super(ReduceLROnPlateau, self).__init__() self.monitor = monitor if factor >= 1.0: raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.') self.factor = factor self.min_lr = min_lr self.epsilon = epsilon self.patience = patience self.verbose = verbose self.cooldown = cooldown self.cooldown_counter = 0 # Cooldown counter. self.wait = 0 self.best = 0 self.mode = mode self.monitor_op = None self._reset() def _reset(self): """Resets wait counter and cooldown counter. """ if self.mode not in ['auto', 'min', 'max']: warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, ' 'fallback to auto mode.' % (self.mode), RuntimeWarning) self.mode = 'auto' if (self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor)): self.monitor_op = lambda a, b: np.less(a, b - self.epsilon) self.best = np.Inf else: self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon) self.best = -np.Inf self.cooldown_counter = 0 self.wait = 0 self.lr_epsilon = self.min_lr * 1e-4 def on_train_begin(self, logs=None): self._reset() def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr) current = logs.get(self.monitor) if current is None: warnings.warn('Learning Rate Plateau Reducing requires %s available!' % self.monitor, RuntimeWarning) else: if self.in_cooldown(): self.cooldown_counter -= 1 self.wait = 0 if self.monitor_op(current, self.best): self.best = current self.wait = 0 elif not self.in_cooldown(): if self.wait >= self.patience: old_lr = float(K.get_value(self.model.optimizer.lr)) if old_lr > self.min_lr + self.lr_epsilon: new_lr = old_lr * self.factor new_lr = max(new_lr, self.min_lr) K.set_value(self.model.optimizer.lr, new_lr) if self.verbose > 0: print('\nEpoch %05d: reducing learning rate to %s.' % (epoch, new_lr)) self.cooldown_counter = self.cooldown self.wait = 0 self.wait += 1 def in_cooldown(self): return self.cooldown_counter > 0 class CSVLogger(Callback): """Callback that streams epoch results to a csv file. Supports all values that can be represented as a string, including 1D iterables such as np.ndarray. Example: ```python csv_logger = CSVLogger('training.log') model.fit(X_train, Y_train, callbacks=[csv_logger]) ``` Arguments: filename: filename of the csv file, e.g. 'run/log.csv'. separator: string used to separate elements in the csv file. append: True: append if file exists (useful for continuing training). False: overwrite existing file, """ def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = filename self.append = append self.writer = None self.keys = None self.append_header = True super(CSVLogger, self).__init__() def on_train_begin(self, logs=None): if self.append: if os.path.exists(self.filename): with open(self.filename) as f: self.append_header = not bool(len(f.readline())) self.csv_file = open(self.filename, 'a') else: self.csv_file = open(self.filename, 'w') def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, Iterable) and not is_zero_dim_ndarray: return '"[%s]"' % (', '.join(map(str, k))) else: return k if not self.writer: self.keys = sorted(logs.keys()) class CustomDialect(csv.excel): delimiter = self.sep self.writer = csv.DictWriter( self.csv_file, fieldnames=['epoch'] + self.keys, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = OrderedDict({'epoch': epoch}) row_dict.update((key, handle_value(logs[key])) for key in self.keys) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None class LambdaCallback(Callback): """Callback for creating simple, custom callbacks on-the-fly. This callback is constructed with anonymous functions that will be called at the appropriate time. Note that the callbacks expects positional arguments, as: - `on_epoch_begin` and `on_epoch_end` expect two positional arguments: `epoch`, `logs` - `on_batch_begin` and `on_batch_end` expect two positional arguments: `batch`, `logs` - `on_train_begin` and `on_train_end` expect one positional argument: `logs` Arguments: on_epoch_begin: called at the beginning of every epoch. on_epoch_end: called at the end of every epoch. on_batch_begin: called at the beginning of every batch. on_batch_end: called at the end of every batch. on_train_begin: called at the beginning of model training. on_train_end: called at the end of model training. Example: ```python # Print the batch number at the beginning of every batch. batch_print_callback = LambdaCallback( on_batch_begin=lambda batch,logs: print(batch)) # Plot the loss after every epoch. import numpy as np import matplotlib.pyplot as plt plot_loss_callback = LambdaCallback( on_epoch_end=lambda epoch, logs: plt.plot(np.arange(epoch), logs['loss'])) # Terminate some processes after having finished model training. processes = ... cleanup_callback = LambdaCallback( on_train_end=lambda logs: [ p.terminate() for p in processes if p.is_alive()]) model.fit(..., callbacks=[batch_print_callback, plot_loss_callback, cleanup_callback]) ``` """ def __init__(self, on_epoch_begin=None, on_epoch_end=None, on_batch_begin=None, on_batch_end=None, on_train_begin=None, on_train_end=None, **kwargs): super(LambdaCallback, self).__init__() self.__dict__.update(kwargs) if on_epoch_begin is not None: self.on_epoch_begin = on_epoch_begin else: self.on_epoch_begin = lambda epoch, logs: None if on_epoch_end is not None: self.on_epoch_end = on_epoch_end else: self.on_epoch_end = lambda epoch, logs: None if on_batch_begin is not None: self.on_batch_begin = on_batch_begin else: self.on_batch_begin = lambda batch, logs: None if on_batch_end is not None: self.on_batch_end = on_batch_end else: self.on_batch_end = lambda batch, logs: None if on_train_begin is not None: self.on_train_begin = on_train_begin else: self.on_train_begin = lambda logs: None if on_train_end is not None: self.on_train_end = on_train_end else: self.on_train_end = lambda logs: None
apache-2.0
dongjoon-hyun/neon
examples/fast-rcnn/demo.py
2
5520
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright 2015 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- """ Demo a trained Fast-RCNN model to do object detection using PASCAL VOC dataset. This demo currently runs 1 image at a time. Reference: "Fast R-CNN" http://arxiv.org/pdf/1504.08083v2.pdf https://github.com/rbgirshick/fast-rcnn Usage: python examples/fast-rcnn/demo.py --model_file frcn_vgg.pkl Notes: 1. For VGG16 based Fast R-CNN model, we can support testing with batch size as 1 images. The testing consumes about 7G memory. 2. During demo, all the selective search ROIs will be used to go through the network, so the inference time varies based on how many ROIs in each image. For PASCAL VOC 2007, the average number of SelectiveSearch ROIs is around 2000. 3. The dataset will cache the preprocessed file and re-use that if the same configuration of the dataset is used again. The cached file by default is in ~/nervana/data/VOCDevkit/VOC<year>/train_< >.pkl or ~/nervana/data/VOCDevkit/VOC<year>/inference_< >.pkl """ import os import numpy as np from PIL import Image from neon.data.pascal_voc import PASCAL_VOC_CLASSES from neon.data import PASCALVOCInference from neon.util.argparser import NeonArgparser from util import create_frcn_model do_plots = True try: import matplotlib.pyplot as plt plt.switch_backend('agg') except ImportError: print('matplotlib needs to be installed manually to generate plots needed ' 'for this example. Skipping plot generation') do_plots = False # parse the command line arguments parser = NeonArgparser(__doc__) parser.add_argument('--img_prefix', type=str, help='prefix for the saved image file names. If None, use ' 'the model file name') args = parser.parse_args(gen_be=True) assert args.model_file is not None, "need a model file to do Fast R-CNN testing" if args.img_prefix is None: args.img_prefix = os.path.splitext(os.path.basename(args.model_file))[0] output_dir = os.path.join(args.data_dir, 'frcn_output') if not os.path.isdir(output_dir): os.mkdir(output_dir) # hyperparameters args.batch_size = 1 n_mb = 40 img_per_batch = args.batch_size rois_per_img = 5403 # setup dataset image_set = 'test' image_year = '2007' valid_set = PASCALVOCInference(image_set, image_year, path=args.data_dir, n_mb=n_mb, rois_per_img=rois_per_img, shuffle=False) # setup model model = create_frcn_model() model.load_params(args.model_file) model.initialize(dataset=valid_set) CONF_THRESH = 0.8 NMS_THRESH = 0.3 # iterate through minibatches of the dataset for mb_idx, (x, db) in enumerate(valid_set): im = np.array(Image.open(db['img_file'])) # This is RGB order print db['img_id'] outputs = model.fprop(x, inference=True) scores, boxes = valid_set.post_processing(outputs, db) # Visualize detections for each class if do_plots: fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for cls in PASCAL_VOC_CLASSES[1:]: # pick out scores and bboxes replated to this class cls_ind = PASCAL_VOC_CLASSES.index(cls) cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] cls_scores = scores[cls_ind] # only keep that ones with high enough scores keep = np.where(cls_scores >= CONF_THRESH)[0] if len(keep) == 0: continue # with these, do nonmaximum suppression cls_boxes = cls_boxes[keep] cls_scores = cls_scores[keep] keep = valid_set.nonmaximum_suppression(cls_boxes, cls_scores, NMS_THRESH) # keep these after nms cls_boxes = cls_boxes[keep] cls_scores = cls_scores[keep] # Draw detected bounding boxes inds = np.where(cls_scores >= CONF_THRESH)[0] if len(inds) == 0: continue print 'detect {}'.format(cls) if do_plots: for i in inds: bbox = cls_boxes[i] score = cls_scores[i] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(cls, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') plt.axis('off') plt.tight_layout() if do_plots: fname = os.path.join(output_dir, '{}_{}_{}_{}.png'.format( args.img_prefix, image_set, image_year, db['img_id'])) plt.savefig(fname) plt.close()
apache-2.0
HIPS/pgmult
examples/multinomial_gp.py
1
8439
""" 1D GP with multinomial observations """ import os import time from collections import namedtuple import numpy as np from GPy.kern import RBF # np.random.seed(1122122122) from pgmult.gp import MultinomialGP, LogisticNormalGP, EmpiricalStickBreakingGPModel from pgmult.utils import psi_to_pi, compute_uniform_mean_psi import matplotlib.pyplot as plt import brewer2mpl colors = brewer2mpl.get_map("Set1", "Qualitative", 9).mpl_colors K = 4 # Size of output observations N_max = 10 # Number of observations per input def initialize_test(N_max=10, true_model_class=MultinomialGP): D = 1 # Input dimensionality M_train = 100 # Number of observed training datapoints M_test = 20 # Number of observed test datapoints M = M_train + M_test l = 10.0 # Length scale of GP L = 120.0 # Length of observation sequence v = 1.0 # Variance of the GP # Initialize a grid of points at which to observe GP N = N_max * np.ones(M, dtype=np.int32) Z = np.linspace(0,L,M)[:,None] # Initialize the kernel kernel = RBF(1, lengthscale=l, variance=v) # Sample a GP true_model = true_model_class(K, kernel, D=D) X, psi = true_model.generate(Z=Z, N=N, full_output=True) pi = np.array([psi_to_pi(p) for p in psi]) # Split the data into training and test Dataset = namedtuple("Dataset", ["K", "kernel", "Z", "X", "psi", "pi"]) train = Dataset(K, kernel, Z[:M_train], X[:M_train], psi[:M_train], pi[:M_train]) test = Dataset(K, kernel, Z[M_train:], X[M_train:], psi[M_train:], pi[M_train:]) return train, test def initialize_interactive_plot(model, train, test): plot_K = isinstance(model, LogisticNormalGP) # Make predictions at the training and testing data pi_train, psi_train, _ = \ model.collapsed_predict(train.Z) pi_test, psi_test, _ = \ model.collapsed_predict(test.Z) lim = 5 # PLOT! plt.ion() fig, axs = plt.subplots(train.K, 2) lns = np.zeros((train.K,4), dtype=object) for k in range(train.K): if k == train.K-1 and not plot_K: pass else: ax = axs[k,0] # Plot the training data ax.plot(train.Z, train.psi[:,k], '-b', lw=2) lns[k,0] = ax.plot(train.Z, psi_train[:,k], '--b', lw=2)[0] # Plot the testing data ax.plot(test.Z, test.psi[:,k], '-r', lw=2) lns[k,1] = ax.plot(test.Z, psi_test[:,k], '--r', lw=2)[0] # Plot the zero line ax.plot(train.Z, np.zeros_like(train.Z), ':k') ax.plot(test.Z, np.zeros_like(test.Z), ':k') # ax.set_xlim(0, L) ax.set_ylim(-lim, lim) ax.set_title("$\psi_%d$" % (k+1)) ax = axs[k,1] pi_emp_train = train.X / train.X.sum(axis=1).astype(np.float)[:,None] ax.bar(train.Z, pi_emp_train[:,k], width=1, color='k') ax.plot(train.Z, train.pi[:,k], '-b', lw=2) lns[k,2] = ax.plot(train.Z, pi_train[:,k], '--b', lw=2)[0] pi_emp_test = test.X / test.X.sum(axis=1).astype(np.float)[:,None] ax.bar(test.Z, pi_emp_test[:,k], width=1, color='k') ax.plot(test.Z, test.pi[:,k], '-r', lw=2) lns[k,3] = ax.plot(test.Z, pi_test[:,k], '--r', lw=2)[0] # ax.set_xlim(0,) ax.set_ylim(0,1) ax.set_title("$\pi_%d$" % (k+1)) plt.show() plt.pause(1.0) return lns def update_plot(lns, model, train, test): plot_K = isinstance(model, LogisticNormalGP) # Make predictions at the training and testing data pi_train, psi_train, _ = \ model.collapsed_predict(train.Z) pi_test, psi_test, _ = \ model.collapsed_predict(test.Z) for k in range(K): if k == K-1 and not plot_K: pass else: lns[k,0].set_data(train.Z, psi_train[:,k]) lns[k,1].set_data(test.Z, psi_test[:,k]) lns[k,2].set_data(train.Z, pi_train[:,k]) lns[k,3].set_data(test.Z, pi_test[:,k]) plt.pause(0.001) ### Inference Results = namedtuple("Results", ["lls", "pred_lls", "pred_pis", "pred_psis", "timestamps"]) def fit_model(model, train_data, test_data, N_iter=100, lns=None): if isinstance(model, EmpiricalStickBreakingGPModel): return fit_empirical_model(model, train_data, test_data) lls = [model.log_likelihood()] pred_lls = [model.predictive_log_likelihood(test_data.Z, test_data.X)[0]] pred_pi, pred_psi, _ = model.collapsed_predict(test_data.Z) pred_pis = [pred_pi] pred_psis = [pred_psi] timestamps = [time.clock()] for itr in range(N_iter): print("Iteration ", itr) model.resample_model() # Collect samples lls.append(model.log_likelihood()) pred_lls.append(model.predictive_log_likelihood(test_data.Z, test_data.X)[0]) pred_pi, pred_psi, _ = model.collapsed_predict(test_data.Z) pred_pis.append(pred_pi) pred_psis.append(pred_psi) timestamps.append(time.clock()) # Update plots if lns is not None: update_plot(lns, model, train_data, test_data) # Compute sample mean and std lls = np.array(lls) pred_lls = np.array(pred_lls) pred_pis = np.array(pred_pis) pred_psis = np.array(pred_psis) timestamps = np.array(timestamps) timestamps -= timestamps[0] return Results(lls, pred_lls, pred_pis, pred_psis, timestamps) def fit_empirical_model(model, train, test): empirical_ll, _ = model.predictive_log_likelihood(train.Z, train.X) empirical_pred_ll, _ = model.predictive_log_likelihood(test.Z, test.X) pred_pi, pred_psi, _ = model.collapsed_predict(test.Z) pred_pis = np.array([pred_pi]) pred_psis = np.array([pred_psi]) # return Results(empirical_ll * np.ones(2), # empirical_pred_ll * np.ones(2), [0, 1]) return Results(empirical_ll * np.ones(2), empirical_pred_ll * np.ones(2), pred_pis, pred_psis, [0,1]) if __name__ == "__main__": train, test = initialize_test(N_max=N_max, true_model_class=MultinomialGP) # models = [EmpiricalStickBreakingGPModel, LogisticNormalGP, MultinomialGP] # labels = ["Emp GP", "LN GP", "LSB GP"] models = [EmpiricalStickBreakingGPModel, MultinomialGP] labels = ["Emp GP", "LSB GP"] results = [] do_plot = False N_samples = 200 for model_class in models: # Make a test model model = model_class(train.K, train.kernel, D=1) model.add_data(train.Z, train.X) # Initialize from the data model.initialize_from_data(initialize_to_mle=True) if isinstance(model, MultinomialGP): model.data_list[0]["psi"] = train.psi model.resample_omega() # Initialize plots if do_plot: lns = initialize_interactive_plot(model, train, test) else: lns = None # Inference res = fit_model(model, train, test, N_iter=N_samples, lns=lns) results.append(res) fig, axs = plt.subplots(1,2) T_max = np.amax([np.amax(res.timestamps) for res in results]) for ind, (res, label) in \ enumerate(zip(results, labels)): axs[0].plot(res.timestamps, res.lls, color=colors[ind], label=label) axs[0].plot([0, T_max], res.lls[len(res.lls)//2:].mean() * np.ones(2), linestyle=":", color=colors[ind]) offset = len(res.pred_lls)//2 axs[1].plot(res.timestamps, res.pred_lls, color=colors[ind], label=label) axs[1].plot([0, T_max], res.pred_lls[offset:].mean() * np.ones(2), linestyle=":", color=colors[ind]) # Plot the log-sum-exp of the pred_lls from scipy.misc import logsumexp expected_pred_ll = logsumexp(res.pred_lls[offset:]) - np.log(len(res.pred_lls)-offset) axs[1].plot([0, T_max], expected_pred_ll * np.ones(2), linestyle="--", color=colors[ind]) axs[0].set_xlim(-1, T_max) axs[1].set_xlim(-1, T_max) plt.legend(loc="lower right") axs[0].set_xlabel("Time (s)") axs[0].set_ylabel("Log likelihood") axs[1].set_xlabel("Time (s)") axs[1].set_ylabel("Pred. Log likelihood") plt.ioff() plt.show()
mit
rrahn/gdf_tools
include/seqan/apps/ngs_roi/tool_shed/roi_details.py
18
3825
#!/usr/bin/env python """Generation of detailed ROI reports with larger plots. This report generation works for hundred of ROIs. """ try: import argparse except ImportError: import argparse26 as argparse import math import os.path import sys import Cheetah.Template import matplotlib.pyplot as plt import ngs_roi.app import ngs_roi.argparse import ngs_roi.io PAGE_TPL = """ <html> <head> <title>ROI Table</title> <style type="text/css"> div.plot { float: left; padding: 4px; margin: 2px; width: 420px; } .plot h2 { margin-top: 3px; margin-bottom: 3px; text-align: center; } .plot img { display: block; margin: 0 auto; } </style> </head> <body> <h1>Detailed ROI Report</h1> #for i, roi in enumerate($records) <div class="plot"> <h2>${roi.ref}:${roi.start_pos + 1}-${roi.end_pos+1}</h2> <a href="${href($roi)}" target="dead"><img src="plot_${i}.png" /></a> <p> <b>chr:start-end</b> <a href="${href($roi)}" target="dead">${roi.ref}:${roi.start_pos}-${roi.end_pos} ${roi.strand}</a>; <b>region name</b> ${roi.region_name}; <b>region length</b> ${roi.region_length}; </p> #if $roi.data <p>#for j, key in enumerate($data_keys)#<b>$key:</b> ${roi.data[$j]}; #end for#</p> #end if </div> #end for <iframe name="dead" height="0" width="0"></iframe> <div><code>$args</code></div> </body> </html> """ class DetailedRoiGenerator(ngs_roi.app.App): """Generate detailed ROI report. :ivar args:Arguments from the comment line. """ def __init__(self, args): self.args = args def run(self): """Run report generation, return status code. :return: integer with the result. """ print >>sys.stderr, 'Loading ROI' records = ngs_roi.io.load(self.args.in_file, self.args.max_rois) keys = records[0].data_keys self.writeHtml(keys, records) self.writePlots(records) return 0 def writePlots(self, records): COLOR = 'blue' LINE_WIDTH = .5 LINE_STYLE = '-' TICK_FONT_SIZE = 8 LABEL_FONT_SIZE = 10 for i, roi in enumerate(records): file_name = 'plot_%d.png' % i file_name = os.path.join(self.args.out_dir, file_name) print >>sys.stderr, 'Writing plot %s' % file_name plt.figure(figsize=(4, 2.5)) plt.gcf().subplots_adjust(bottom=0.16, left=0.15) plt.plot(roi.points, color=COLOR, linewidth=LINE_WIDTH, linestyle=LINE_STYLE) plt.ylim(ymin=0) if self.args.max_value: plt.ylim(ymax=self.args.max_value) plt.tick_params(labelsize=TICK_FONT_SIZE) plt.ylabel('coverage', fontsize=LABEL_FONT_SIZE, weight='semibold') plt.xlabel('ROI beginPos', fontsize=LABEL_FONT_SIZE, weight='semibold') plt.savefig(file_name) def writeHtml(self, keys, records): file_name = self.args.out_file print >>sys.stderr, 'Writing HTML file %s' % file_name vals = {'args': self.args, 'records': records, 'data_keys': keys, 'href': lambda x: self.buildHref(x.ref, x.start_pos, x.end_pos)} t = Cheetah.Template.Template(PAGE_TPL, searchList=vals) with open(file_name, 'wb') as f: f.write(str(t)) def main(): parser = argparse.ArgumentParser(description='Plot ROI file.') ngs_roi.argparse.addFileArguments(parser) ngs_roi.argparse.addPlotGridArguments(parser) ngs_roi.argparse.addLinkArguments(parser) args = parser.parse_args() ngs_roi.argparse.applyFileDefaults(args) app = DetailedRoiGenerator(args) return app.run() if __name__ == '__main__': sys.exit(main())
gpl-3.0
lin-credible/scikit-learn
sklearn/setup.py
225
2856
import os from os.path import join import warnings def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration from numpy.distutils.system_info import get_info, BlasNotFoundError import numpy libraries = [] if os.name == 'posix': libraries.append('m') config = Configuration('sklearn', parent_package, top_path) config.add_subpackage('__check_build') config.add_subpackage('svm') config.add_subpackage('datasets') config.add_subpackage('datasets/tests') config.add_subpackage('feature_extraction') config.add_subpackage('feature_extraction/tests') config.add_subpackage('cluster') config.add_subpackage('cluster/tests') config.add_subpackage('covariance') config.add_subpackage('covariance/tests') config.add_subpackage('cross_decomposition') config.add_subpackage('decomposition') config.add_subpackage('decomposition/tests') config.add_subpackage("ensemble") config.add_subpackage("ensemble/tests") config.add_subpackage('feature_selection') config.add_subpackage('feature_selection/tests') config.add_subpackage('utils') config.add_subpackage('utils/tests') config.add_subpackage('externals') config.add_subpackage('mixture') config.add_subpackage('mixture/tests') config.add_subpackage('gaussian_process') config.add_subpackage('gaussian_process/tests') config.add_subpackage('neighbors') config.add_subpackage('neural_network') config.add_subpackage('preprocessing') config.add_subpackage('manifold') config.add_subpackage('metrics') config.add_subpackage('semi_supervised') config.add_subpackage("tree") config.add_subpackage("tree/tests") config.add_subpackage('metrics/tests') config.add_subpackage('metrics/cluster') config.add_subpackage('metrics/cluster/tests') # add cython extension module for isotonic regression config.add_extension( '_isotonic', sources=['_isotonic.c'], include_dirs=[numpy.get_include()], libraries=libraries, ) # some libs needs cblas, fortran-compiled BLAS will not be sufficient blas_info = get_info('blas_opt', 0) if (not blas_info) or ( ('NO_ATLAS_INFO', 1) in blas_info.get('define_macros', [])): config.add_library('cblas', sources=[join('src', 'cblas', '*.c')]) warnings.warn(BlasNotFoundError.__doc__) # the following packages depend on cblas, so they have to be build # after the above. config.add_subpackage('linear_model') config.add_subpackage('utils') # add the test directory config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
cython-testbed/pandas
pandas/tests/plotting/test_hist_method.py
1
15855
# coding: utf-8 """ Test cases for .hist method """ import pytest from pandas import Series, DataFrame import pandas.util.testing as tm import pandas.util._test_decorators as td import numpy as np from numpy.random import randn from pandas.plotting._core import grouped_hist from pandas.plotting._compat import _mpl_ge_2_2_0 from pandas.tests.plotting.common import (TestPlotBase, _check_plot_works) @td.skip_if_no_mpl class TestSeriesPlots(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.ts = tm.makeTimeSeries() self.ts.name = 'ts' @pytest.mark.slow def test_hist_legacy(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month) with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5) fig, ax = self.plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = self.plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with pytest.raises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @pytest.mark.slow def test_hist_bins_legacy(self): df = DataFrame(np.random.randn(10, 2)) ax = df.hist(bins=2)[0][0] assert len(ax.patches) == 2 @pytest.mark.slow def test_hist_layout(self): df = self.hist_df with pytest.raises(ValueError): df.height.hist(layout=(1, 1)) with pytest.raises(ValueError): df.height.hist(layout=[1, 1]) @pytest.mark.slow def test_hist_layout_with_by(self): df = self.hist_df # _check_plot_works adds an `ax` kwarg to the method call # so we get a warning about an axis being cleared, even # though we don't explicing pass one, see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1)) self._check_axes_shape(axes, axes_num=2, layout=(3, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.height.hist, by=df.category, layout=(2, -1)) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.height.hist, by=df.category, layout=(3, -1)) self._check_axes_shape(axes, axes_num=4, layout=(3, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.height.hist, by=df.category, layout=(-1, 4)) self._check_axes_shape(axes, axes_num=4, layout=(1, 4)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.height.hist, by=df.classroom, layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7)) self._check_axes_shape( axes, axes_num=4, layout=(4, 2), figsize=(12, 7)) @pytest.mark.slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.axes if self.mpl_ge_1_5_0 else fig.get_axes() assert len(axes) == 2 @pytest.mark.slow def test_hist_by_no_extra_plots(self): df = self.hist_df axes = df.height.hist(by=df.gender) # noqa assert len(self.plt.get_fignums()) == 1 @pytest.mark.slow def test_plot_fails_when_ax_differs_from_figure(self): from pylab import figure fig1 = figure() fig2 = figure() ax1 = fig1.add_subplot(111) with pytest.raises(AssertionError): self.ts.hist(ax=ax1, figure=fig2) @td.skip_if_no_mpl class TestDataFramePlots(TestPlotBase): @pytest.mark.slow def test_hist_df_legacy(self): from matplotlib.patches import Rectangle with tm.assert_produces_warning(UserWarning): _check_plot_works(self.hist_df.hist) # make sure layout is handled df = DataFrame(randn(100, 3)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, grid=False) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert not axes[1, 1].get_visible() df = DataFrame(randn(100, 1)) _check_plot_works(df.hist) # make sure layout is handled df = DataFrame(randn(100, 6)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, layout=(4, 2)) self._check_axes_shape(axes, axes_num=6, layout=(4, 2)) # make sure sharex, sharey is handled with tm.assert_produces_warning(UserWarning): _check_plot_works(df.hist, sharex=True, sharey=True) # handle figsize arg with tm.assert_produces_warning(UserWarning): _check_plot_works(df.hist, figsize=(8, 10)) # check bins argument with tm.assert_produces_warning(UserWarning): _check_plot_works(df.hist, bins=5) # make sure xlabelsize and xrot are handled ser = df[0] xf, yf = 20, 18 xrot, yrot = 30, 40 axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) self._check_ticks_props(axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) xf, yf = 20, 18 xrot, yrot = 30, 40 axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) self._check_ticks_props(axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) tm.close() # make sure kwargs to hist are handled if _mpl_ge_2_2_0(): kwargs = {"density": True} else: kwargs = {"normed": True} ax = ser.hist(cumulative=True, bins=4, **kwargs) # height of last bin (index 5) must be 1.0 rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] tm.assert_almost_equal(rects[-1].get_height(), 1.0) tm.close() ax = ser.hist(log=True) # scale of y must be 'log' self._check_ax_scales(ax, yaxis='log') tm.close() # propagate attr exception from matplotlib.Axes.hist with pytest.raises(AttributeError): ser.hist(foo='bar') @pytest.mark.slow def test_hist_layout(self): df = DataFrame(randn(100, 3)) layout_to_expected_size = ( {'layout': None, 'expected_size': (2, 2)}, # default is 2x2 {'layout': (2, 2), 'expected_size': (2, 2)}, {'layout': (4, 1), 'expected_size': (4, 1)}, {'layout': (1, 4), 'expected_size': (1, 4)}, {'layout': (3, 3), 'expected_size': (3, 3)}, {'layout': (-1, 4), 'expected_size': (1, 4)}, {'layout': (4, -1), 'expected_size': (4, 1)}, {'layout': (-1, 2), 'expected_size': (2, 2)}, {'layout': (2, -1), 'expected_size': (2, 2)} ) for layout_test in layout_to_expected_size: axes = df.hist(layout=layout_test['layout']) expected = layout_test['expected_size'] self._check_axes_shape(axes, axes_num=3, layout=expected) # layout too small for all 4 plots with pytest.raises(ValueError): df.hist(layout=(1, 1)) # invalid format for layout with pytest.raises(ValueError): df.hist(layout=(1,)) with pytest.raises(ValueError): df.hist(layout=(-1, -1)) @pytest.mark.slow # GH 9351 def test_tight_layout(self): if self.mpl_ge_2_0_1: df = DataFrame(randn(100, 3)) _check_plot_works(df.hist) self.plt.tight_layout() tm.close() @td.skip_if_no_mpl class TestDataFrameGroupByPlots(TestPlotBase): @pytest.mark.slow def test_grouped_hist_legacy(self): from matplotlib.patches import Rectangle df = DataFrame(randn(500, 2), columns=['A', 'B']) df['C'] = np.random.randint(0, 4, 500) df['D'] = ['X'] * 500 axes = grouped_hist(df.A, by=df.C) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) tm.close() axes = df.hist(by=df.C) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) tm.close() # group by a key with single value axes = df.hist(by='D', rot=30) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) self._check_ticks_props(axes, xrot=30) tm.close() # make sure kwargs to hist are handled xf, yf = 20, 18 xrot, yrot = 30, 40 if _mpl_ge_2_2_0(): kwargs = {"density": True} else: kwargs = {"normed": True} axes = grouped_hist(df.A, by=df.C, cumulative=True, bins=4, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot, **kwargs) # height of last bin (index 5) must be 1.0 for ax in axes.ravel(): rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] height = rects[-1].get_height() tm.assert_almost_equal(height, 1.0) self._check_ticks_props(axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) tm.close() axes = grouped_hist(df.A, by=df.C, log=True) # scale of y must be 'log' self._check_ax_scales(axes, yaxis='log') tm.close() # propagate attr exception from matplotlib.Axes.hist with pytest.raises(AttributeError): grouped_hist(df.A, by=df.C, foo='bar') with tm.assert_produces_warning(FutureWarning): df.hist(by='C', figsize='default') @pytest.mark.slow def test_grouped_hist_legacy2(self): n = 10 weight = Series(np.random.normal(166, 20, size=n)) height = Series(np.random.normal(60, 10, size=n)) with tm.RNGContext(42): gender_int = np.random.choice([0, 1], size=n) df_int = DataFrame({'height': height, 'weight': weight, 'gender': gender_int}) gb = df_int.groupby('gender') axes = gb.hist() assert len(axes) == 2 assert len(self.plt.get_fignums()) == 2 tm.close() @pytest.mark.slow def test_grouped_hist_layout(self): df = self.hist_df pytest.raises(ValueError, df.hist, column='weight', by=df.gender, layout=(1, 1)) pytest.raises(ValueError, df.hist, column='height', by=df.category, layout=(1, 3)) pytest.raises(ValueError, df.hist, column='height', by=df.category, layout=(-1, -1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, column='height', by=df.gender, layout=(2, 1)) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, column='height', by=df.gender, layout=(2, -1)) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) axes = df.hist(column='height', by=df.category, layout=(4, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) axes = df.hist(column='height', by=df.category, layout=(-1, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) axes = df.hist(column='height', by=df.category, layout=(4, 2), figsize=(12, 8)) self._check_axes_shape( axes, axes_num=4, layout=(4, 2), figsize=(12, 8)) tm.close() # GH 6769 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.hist, column='height', by='classroom', layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) # without column with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, by='classroom') self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) axes = df.hist(by='gender', layout=(3, 5)) self._check_axes_shape(axes, axes_num=2, layout=(3, 5)) axes = df.hist(column=['height', 'weight', 'category']) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) @pytest.mark.slow def test_grouped_hist_multiple_axes(self): # GH 6970, GH 7069 df = self.hist_df fig, axes = self.plt.subplots(2, 3) returned = df.hist(column=['height', 'weight', 'category'], ax=axes[0]) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) tm.assert_numpy_array_equal(returned, axes[0]) assert returned[0].figure is fig returned = df.hist(by='classroom', ax=axes[1]) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) tm.assert_numpy_array_equal(returned, axes[1]) assert returned[0].figure is fig with pytest.raises(ValueError): fig, axes = self.plt.subplots(2, 3) # pass different number of axes from required axes = df.hist(column='height', ax=axes) @pytest.mark.slow def test_axis_share_x(self): df = self.hist_df # GH4089 ax1, ax2 = df.hist(column='height', by=df.gender, sharex=True) # share x assert ax1._shared_x_axes.joined(ax1, ax2) assert ax2._shared_x_axes.joined(ax1, ax2) # don't share y assert not ax1._shared_y_axes.joined(ax1, ax2) assert not ax2._shared_y_axes.joined(ax1, ax2) @pytest.mark.slow def test_axis_share_y(self): df = self.hist_df ax1, ax2 = df.hist(column='height', by=df.gender, sharey=True) # share y assert ax1._shared_y_axes.joined(ax1, ax2) assert ax2._shared_y_axes.joined(ax1, ax2) # don't share x assert not ax1._shared_x_axes.joined(ax1, ax2) assert not ax2._shared_x_axes.joined(ax1, ax2) @pytest.mark.slow def test_axis_share_xy(self): df = self.hist_df ax1, ax2 = df.hist(column='height', by=df.gender, sharex=True, sharey=True) # share both x and y assert ax1._shared_x_axes.joined(ax1, ax2) assert ax2._shared_x_axes.joined(ax1, ax2) assert ax1._shared_y_axes.joined(ax1, ax2) assert ax2._shared_y_axes.joined(ax1, ax2)
bsd-3-clause
niasand/cool-config
pandas_learn/dataframe_learn.py
1
1262
#coding: utf-8 from pandas import Series, DataFrame import pandas as pd import numpy as np from log_lib import log def frame(): data = {'state':['hubei','sichuan','guangzhou'],'year':[2015,2016,2017],'pop':[6,7,8]} frame = DataFrame(data) log.notice(frame) log.notice(DataFrame(data,columns=['year','state','pop','debt'])) log.notice(frame.columns) log.notice(frame['state']) log.notice(frame['pop']) log.notice(frame['year']) frame['debt'] = 16.5 log.notice(frame) frame['debt'] = np.arange(3.) log.notice(frame) frame2 = DataFrame(data,columns=['year','state','pop','debt'],index=['one','two','three']) log.notice(frame2) val = Series([-1.2,-1.3,-1.4],index=['two','three','one']) frame2['debt'] = val log.notice(frame2) frame2['eastern'] = frame2.state == 'hubei' log.notice(frame2) log.notice(frame2.index) def frame3(): pop = {'hubei':{2001:2.4,2002:2.5}, "guangdong":{2000:2.6,2001:2.7}} frame3 = DataFrame(pop) log.notice(frame3) log.notice(frame3.T) log.notice(DataFrame(pop,index=[2001,2000,2002])) pdata = {'hubei':frame3['hubei'][:-2],'guangdong':frame3['guangdong'][:-2]} log.notice(pdata) if __name__ == '__main__': frame3()
mit
google-research/google-research
caltrain/glm_modeling/analysis.py
1
13115
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GLM modeling main analysis file.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import itertools import json import os import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from six.moves import range from six.moves import zip from caltrain.glm_modeling import beta_fit_data from caltrain.glm_modeling import Datasets from caltrain.glm_modeling import ece_comparison_dir from caltrain.glm_modeling import Folds from caltrain.glm_modeling import glm_fit_data from caltrain.glm_modeling import GLMModels from caltrain.glm_modeling import Guo_et_al_data from caltrain.run_calibration import calibrate def get_glm_fit_data(n=50): """Compute GLM fit across empirical datasets.""" col_dict = collections.defaultdict(list) for dataset_name, dataset_dict in list(Datasets.items()): dataset = dataset_dict[Folds.test] for glm_name, glm_model in list(GLMModels.items()): print((dataset_name, glm_name)) row_idx = pd.MultiIndex.from_tuples([(dataset_name, glm_name)], names=('dataset_name', 'glm_name')) curr_glm_fit_data = dataset.fit_glm_bootstrap(glm_model, n=n) for metric_name, metric_dict in curr_glm_fit_data.items(): for stat_name, stat_dict in metric_dict.items(): col_idx = (metric_name, stat_name, 'value') col_dict[col_idx].append( pd.Series([stat_dict['statistic']], index=row_idx)) col_idx = (metric_name, stat_name, 'lower') col_dict[col_idx].append( pd.Series([stat_dict['minmax'][0]], index=row_idx)) col_idx = (metric_name, stat_name, 'upper') col_dict[col_idx].append( pd.Series([stat_dict['minmax'][1]], index=row_idx)) for key, val in col_dict.items(): col_dict[key] = functools.reduce(lambda x, y: x.append(y), val) df_glm_fit = pd.DataFrame(col_dict) df_glm_fit.columns.names = ['parameter', 'statistic', 'estimate'] def f(): return collections.defaultdict(f) glm_fit_data_dict = collections.defaultdict(f) for curr_ds, glm, parameter, statistic, estimate in itertools.product( Datasets, GLMModels, ['AIC', 'nll', 'b0', 'b1'], ['mean', 'std'], ['value', 'lower', 'upper']): try: datum = df_glm_fit.loc[curr_ds.name, glm.name].loc[parameter, statistic, estimate] except KeyError: continue glm_fit_data_dict[curr_ds.name][ glm.name][parameter][statistic][estimate] = datum glm_fit_data_dict = json.loads(json.dumps(glm_fit_data_dict)) return { 'data': glm_fit_data_dict, 'dataframe': df_glm_fit, 'metadata': { 'N': n } } def recursive_beta_shift_fit(dataset, arange, brange, n_s, result_dict=None, cf=.1, tol=.00001, shift=1e-16): """Compute MLE estimate of beta distribution with recursive brute-force.""" if max(arange[1] - arange[0], brange[1] - brange[0]) < tol: return result_dict result_dict, success = dataset.beta_shift_fit( arange=arange, brange=brange, n_s=n_s, shift=shift) if not success: arange_l = max(arange[0] - ((arange[0] + arange[1]) / 2 - result_dict['a']), 0) arange_r = arange[1] - ((arange[0] + arange[1]) / 2 - result_dict['a']) brange_l = max(brange[0] - ((brange[0] + brange[1]) / 2 - result_dict['b']), 0) brange_r = brange[1] - ((brange[0] + brange[1]) / 2 - result_dict['b']) else: arange_l = (1 - cf) * arange[0] + cf * result_dict['a'] arange_r = (1 - cf) * arange[1] + cf * result_dict['a'] brange_l = (1 - cf) * brange[0] + cf * result_dict['b'] brange_r = (1 - cf) * brange[1] + cf * result_dict['b'] return recursive_beta_shift_fit( dataset, [arange_l, arange_r], [brange_l, brange_r], n_s, result_dict=result_dict, cf=cf, tol=tol, shift=shift) def get_beta_fit_data(): """Perform MLE of Beta distribution of best fit.""" data_dict_beta_fit = collections.defaultdict(list) for dataset_name, dataset_dict in list(Datasets.items()): dataset = dataset_dict[Folds.test] beta_fit_best_param_dict = {'nll': float('inf')} for shift in [1e-16]: print((dataset_name, shift)) beta_fit_p1_dict = recursive_beta_shift_fit( dataset, arange=(0, 200), brange=(0, 50), n_s=11, tol=1e-5, cf=.5, shift=shift) if beta_fit_p1_dict['nll'] < beta_fit_best_param_dict['nll']: beta_fit_best_param_dict = beta_fit_p1_dict data_dict_beta_fit['dataset_name'].append(dataset_name) for key, val in beta_fit_best_param_dict.items(): data_dict_beta_fit[key].append(val) df_beta_fit = pd.DataFrame(data_dict_beta_fit).set_index(['dataset_name']) print(df_beta_fit) def f(): return collections.defaultdict(f) beta_fit_data_dict = collections.defaultdict(f) for curr_ds, parameter in itertools.product(Datasets, ['a', 'b', 'loc', 'scale', 'p1']): datum = df_beta_fit.loc[curr_ds.name, parameter] if isinstance(datum, np.int64): datum = int(datum) beta_fit_data_dict[curr_ds.name][parameter] = datum beta_fit_data_dict = json.loads(json.dumps(beta_fit_data_dict)) return {'data': beta_fit_data_dict, 'dataframe': df_beta_fit} if __name__ == '__main__': # Write glm_fit analyis: data = get_glm_fit_data(n=10) pickle.dump(data, open('glm_fit_data.p', 'wb')) # Write beta_fit analyis: data = get_beta_fit_data() pickle.dump(data, open('beta_fit_data.p', 'wb')) # Write glm_fit summary plot: for curr_Dataset, curr_GLMModel in itertools.product(Datasets, GLMModels): gm = curr_GLMModel.value ds = curr_Dataset.value[Folds.test] save_file_path = os.path.join('glm_fit_figs', curr_Dataset.name) if not os.path.exists(save_file_path): os.mkdir(save_file_path) save_file_name = os.path.join(save_file_path, '{}.png'.format(curr_GLMModel.name)) fig = gm.plot_fit_sequence(ds, figsize_single=3, fontsize=10) fig.savefig(save_file_name) # Write calibration curve plot: fig, ax = plt.subplots(figsize=(5.1, 3.1)) fontsize = 8 clrs = sns.color_palette('husl', n_colors=len(list(Datasets.items()))) LINE_STYLES = ['solid', 'dashed', 'dashdot', 'dotted'] NUM_STYLES = len(LINE_STYLES) for ii, (ds_name, ds_dict) in enumerate(Datasets.items()): ds = ds_dict[Folds.test] gm_name_AIC_dict = { gm_name: glm_fit_data['data'][ds_name][gm_name]['AIC']['mean']['value'] for gm_name, gm in GLMModels.items() } gm_best_name = min(gm_name_AIC_dict, key=gm_name_AIC_dict.get) gm_best = {key: val for key, val in GLMModels.items()}[gm_best_name] gm_best.plot_calibration( ax, ds, plot_yx=ii == 0, color=clrs[ii], linestyle=LINE_STYLES[ii % NUM_STYLES], fontsize=fontsize) ax.set_title('E[Y | f(x)]') ax.set_xlabel('Predicted confidence') ax.set_ylabel('Empirical accuracy') ax.set_xlim([0, 1]) ax.set_ylim([0, 1]) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fontsize) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': fontsize}) fig.tight_layout(pad=.2, rect=[0, 0.03, 1, 0.95], w_pad=.5) fig.savefig('calibration_curve.png') # Write score density plots: for ds_name, ds_dict in Datasets.items(): ds = ds_dict[Folds.test] fig, ax = plt.subplots(1, 1, figsize=[3] * 2) ds.plot_top_score_histogram(ax) fig.tight_layout(pad=.2, rect=[0, 0.03, 1, 0.95], w_pad=.5) save_file_path = os.path.join('density_figs', ds_name) fig.savefig(save_file_path) # Write ECE comparison plots: dataset_list = Datasets N_repeats, n_samples = 100, 1000 fontsize = 8 data = collections.defaultdict(list) for curr_dataset in dataset_list: print((curr_dataset.name, 'L1')) ds = curr_dataset.value[Folds.val] eece = ds.compute_error(ce_type='ew_ece_bin', norm=1) guo_ece = Guo_et_al_data['ECE'][curr_dataset] gm_name_AIC_dict = { gm_name: glm_fit_data['data'][curr_dataset.name][gm_name]['AIC']['mean']['value'] for gm_name, gm in GLMModels.items() } gm_best_name = min(gm_name_AIC_dict, key=gm_name_AIC_dict.get) gm_best = {key: val for key, val in GLMModels.items()}[gm_best_name] tece_best = gm_best.get_calibration_error_beta_dist( ds, n_samples=n_samples, norm='L1') config = { 'dataset': curr_dataset.name, 'split': Folds.test, 'calibration_method': 'no_calibration', 'ce_type': 'ew_ece_bin', 'num_bins': 15, 'bin_method': 'equal_width', 'norm': 1, 'num_samples': n_samples } beta_hat_poly, nll, AIC = ds.fit_glm(gm_best) alpha = beta_fit_data['data'][ds.model]['a'] beta = beta_fit_data['data'][ds.model]['b'] p1 = beta_fit_data['data'][ds.model]['p1'] a = beta_hat_poly[0] b = beta_hat_poly[1] true_dataset = gm_best.get_true_dist( n_samples=n_samples, alpha=alpha, beta=beta, a=a, b=b, p1=p1) sece = np.mean([ calibrate(config, true_dataset=true_dataset) for _ in range(N_repeats) ]) data['dataset'].append(curr_dataset.name) data['eece_L1'].append(eece) data['guo_ece'].append(guo_ece) data['tece_best_L1'].append(tece_best) data['sece_L1'].append(sece / 100) for curr_dataset in dataset_list: print((curr_dataset.name, 'L2')) ds = curr_dataset.value[Folds.val] eece = ds.compute_error(ce_type='ew_ece_bin', norm=2) guo_ece = Guo_et_al_data['ECE'][curr_dataset] gm_name_AIC_dict = { gm_name: glm_fit_data['data'][curr_dataset.name][gm_name]['AIC']['mean']['value'] for gm_name, gm in GLMModels.items() } gm_best_name = min(gm_name_AIC_dict, key=gm_name_AIC_dict.get) gm_best = {key: val for key, val in GLMModels.items()}[gm_best_name] tece_best = gm_best.get_calibration_error_beta_dist( ds, n_samples=n_samples, norm='L2') config = { 'dataset': curr_dataset.name, 'split': Folds.test, 'calibration_method': 'no_calibration', 'ce_type': 'ew_ece_bin', 'num_bins': 15, 'bin_method': 'equal_width', 'norm': 2, 'num_samples': n_samples } beta_hat_poly, nll, AIC = ds.fit_glm(gm_best) alpha = beta_fit_data['data'][ds.model]['a'] beta = beta_fit_data['data'][ds.model]['b'] p1 = beta_fit_data['data'][ds.model]['p1'] a = beta_hat_poly[0] b = beta_hat_poly[1] true_dataset = gm_best.get_true_dist( n_samples=n_samples, alpha=alpha, beta=beta, a=a, b=b, p1=p1) sece = np.mean([ calibrate(config, true_dataset=true_dataset) for _ in range(N_repeats) ]) data['eece_L2'].append(eece) data['tece_best_L2'].append(tece_best) data['sece_L2'].append(sece / 100) df = pd.DataFrame(data) clrs = sns.color_palette('husl', n_colors=len(df)) data_cols = [c for c in df.columns if c != 'dataset'] for xlabel, ylabel in itertools.combinations(data_cols, 2): print((xlabel, ylabel)) fig, ax = plt.subplots(1, 1, figsize=(5, 3)) xmax = max(np.max(df[xlabel]), np.max(df[ylabel])) ax.plot([0, .3], [0, .3], 'r--') for ii, (xi, yi) in enumerate(zip(df[xlabel], df[ylabel])): ax.plot([xi], [yi], '*', color=clrs[ii], label=df.loc[ii]['dataset']) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fontsize) ax.grid(which='both', color='lightgray', linestyle='-') ax.legend( loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': fontsize}) ax.set_xlim([0, .3]) ax.set_ylim([0, .3]) fig.tight_layout(pad=.2, rect=[0, 0.03, 1, 0.95], w_pad=.5) save_file_name = os.path.join(ece_comparison_dir, '{}_{}.png'.format(xlabel, ylabel)) fig.savefig(save_file_name)
apache-2.0
nwhidden/ND101-Deep-Learning
image-classification/helper.py
155
5631
import pickle import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import LabelBinarizer def _load_label_names(): """ Load the label names from file """ return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def load_cfar10_batch(cifar10_dataset_folder_path, batch_id): """ Load a batch of the dataset """ with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file: batch = pickle.load(file, encoding='latin1') features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) labels = batch['labels'] return features, labels def display_stats(cifar10_dataset_folder_path, batch_id, sample_id): """ Display Stats of the the dataset """ batch_ids = list(range(1, 6)) if batch_id not in batch_ids: print('Batch Id out of Range. Possible Batch Ids: {}'.format(batch_ids)) return None features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_id) if not (0 <= sample_id < len(features)): print('{} samples in batch {}. {} is out of range.'.format(len(features), batch_id, sample_id)) return None print('\nStats of batch {}:'.format(batch_id)) print('Samples: {}'.format(len(features))) print('Label Counts: {}'.format(dict(zip(*np.unique(labels, return_counts=True))))) print('First 20 Labels: {}'.format(labels[:20])) sample_image = features[sample_id] sample_label = labels[sample_id] label_names = _load_label_names() print('\nExample of Image {}:'.format(sample_id)) print('Image - Min Value: {} Max Value: {}'.format(sample_image.min(), sample_image.max())) print('Image - Shape: {}'.format(sample_image.shape)) print('Label - Label Id: {} Name: {}'.format(sample_label, label_names[sample_label])) plt.axis('off') plt.imshow(sample_image) def _preprocess_and_save(normalize, one_hot_encode, features, labels, filename): """ Preprocess data and save it to file """ features = normalize(features) labels = one_hot_encode(labels) pickle.dump((features, labels), open(filename, 'wb')) def preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode): """ Preprocess Training and Validation Data """ n_batches = 5 valid_features = [] valid_labels = [] for batch_i in range(1, n_batches + 1): features, labels = load_cfar10_batch(cifar10_dataset_folder_path, batch_i) validation_count = int(len(features) * 0.1) # Prprocess and save a batch of training data _preprocess_and_save( normalize, one_hot_encode, features[:-validation_count], labels[:-validation_count], 'preprocess_batch_' + str(batch_i) + '.p') # Use a portion of training batch for validation valid_features.extend(features[-validation_count:]) valid_labels.extend(labels[-validation_count:]) # Preprocess and Save all validation data _preprocess_and_save( normalize, one_hot_encode, np.array(valid_features), np.array(valid_labels), 'preprocess_validation.p') with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file: batch = pickle.load(file, encoding='latin1') # load the test data test_features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1) test_labels = batch['labels'] # Preprocess and Save all test data _preprocess_and_save( normalize, one_hot_encode, np.array(test_features), np.array(test_labels), 'preprocess_test.p') def batch_features_labels(features, labels, batch_size): """ Split features and labels into batches """ for start in range(0, len(features), batch_size): end = min(start + batch_size, len(features)) yield features[start:end], labels[start:end] def load_preprocess_training_batch(batch_id, batch_size): """ Load the Preprocessed Training data and return them in batches of <batch_size> or less """ filename = 'preprocess_batch_' + str(batch_id) + '.p' features, labels = pickle.load(open(filename, mode='rb')) # Return the training data in batches of size <batch_size> or less return batch_features_labels(features, labels, batch_size) def display_image_predictions(features, labels, predictions): n_classes = 10 label_names = _load_label_names() label_binarizer = LabelBinarizer() label_binarizer.fit(range(n_classes)) label_ids = label_binarizer.inverse_transform(np.array(labels)) fig, axies = plt.subplots(nrows=4, ncols=2) fig.tight_layout() fig.suptitle('Softmax Predictions', fontsize=20, y=1.1) n_predictions = 3 margin = 0.05 ind = np.arange(n_predictions) width = (1. - 2. * margin) / n_predictions for image_i, (feature, label_id, pred_indicies, pred_values) in enumerate(zip(features, label_ids, predictions.indices, predictions.values)): pred_names = [label_names[pred_i] for pred_i in pred_indicies] correct_name = label_names[label_id] axies[image_i][0].imshow(feature) axies[image_i][0].set_title(correct_name) axies[image_i][0].set_axis_off() axies[image_i][1].barh(ind + margin, pred_values[::-1], width) axies[image_i][1].set_yticks(ind + margin) axies[image_i][1].set_yticklabels(pred_names[::-1]) axies[image_i][1].set_xticks([0, 0.5, 1.0])
mit
ContinuumIO/blaze
blaze/compute/pandas.py
3
23992
""" >>> from blaze.expr import symbol >>> from blaze.compute.pandas import compute >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> deadbeats = accounts[accounts['amount'] < 0]['name'] >>> from pandas import DataFrame >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> df = DataFrame(data, columns=['name', 'amount']) >>> compute(deadbeats, df) 1 Bob 2 Charlie Name: name, dtype: object """ from __future__ import absolute_import, division, print_function from datetime import timedelta import fnmatch import itertools from distutils.version import LooseVersion import warnings from collections import defaultdict, Iterable import numpy as np import pandas as pd from pandas.core.generic import NDFrame from pandas import DataFrame, Series from pandas.core.groupby import DataFrameGroupBy, SeriesGroupBy from toolz import merge as merge_dicts from toolz import groupby from toolz.curried import pipe, filter, map, concat import datashape from datashape import to_numpy_dtype from datashape.predicates import isscalar from odo import into try: import dask.dataframe as dd DaskDataFrame = dd.DataFrame DaskSeries = dd.Series except ImportError: dd = None DaskDataFrame = pd.DataFrame DaskSeries = pd.Series from .core import compute, compute_up, base from .varargs import VarArgs from ..compatibility import _inttypes from ..dispatch import dispatch from ..expr import ( Apply, BinOp, Broadcast, By, Ceil, Coalesce, Coerce, Concat, DateTime, DateTimeTruncate, Distinct, ElemWise, Expr, Field, Floor, Head, Interp, IsIn, Join, Label, Like, Map, Merge, Millisecond, Pad, Projection, ReLabel, Reduction, Replace, Round, Sample, seconds, Selection, Shift, Slice, Sort, strftime, Summary, Tail, UTCFromTimestamp, UnaryOp, UnaryStringFunction, common_subexpression, count, isnan, nelements, notnull, nunique, std, summary, symbol, var, StrCat, StrFind, StrSlice, SliceReplace, total_seconds, ) __all__ = [] @dispatch(Projection, (DataFrame, DaskDataFrame)) def compute_up(t, df, **kwargs): return df[list(t.fields)] @dispatch(Field, (DataFrame, DataFrameGroupBy, DaskDataFrame)) def compute_up(t, df, **kwargs): assert len(t.fields) == 1 return df[t.fields[0]] @dispatch(Field, (Series, DaskSeries)) def compute_up(t, data, **kwargs): assert len(t.fields) == 1 if t.fields[0] == data.name: return data else: raise ValueError("Fieldname %r does not match Series name %r" % (t.fields[0], data.name)) @dispatch(Broadcast, (DataFrame, DaskDataFrame)) def compute_up(t, df, **kwargs): return compute(t._full_expr, df, return_type='native') @dispatch(Broadcast, Series) def compute_up(t, s, **kwargs): return compute_up(t, s.to_frame(), **kwargs) @dispatch(Interp, Series) def compute_up(t, data, **kwargs): if isinstance(t.lhs, Expr): return data % t.rhs else: return t.lhs % data @compute_up.register(Interp, Series, (Series, base)) @compute_up.register(Interp, base, Series) def compute_up_pd_interp(t, lhs, rhs, **kwargs): return lhs % rhs @dispatch(BinOp, (Series, DaskSeries)) def compute_up(t, data, **kwargs): if isinstance(t.lhs, Expr): return t.op(data, t.rhs) else: return t.op(t.lhs, data) @compute_up.register(BinOp, (Series, DaskSeries), (Series, base, DaskSeries)) @compute_up.register(BinOp, (Series, base, DaskSeries), (Series, DaskSeries)) def compute_up_binop(t, lhs, rhs, **kwargs): return t.op(lhs, rhs) @dispatch(UnaryOp, NDFrame) def compute_up(t, df, **kwargs): f = getattr(t, 'op', getattr(np, t.symbol, None)) if f is None: raise ValueError('%s is not a valid operation on %s objects' % (t.symbol, type(df).__name__)) return f(df) @dispatch(Selection, (Series, DataFrame, DaskSeries, DaskDataFrame)) def compute_up(expr, df, **kwargs): return compute_up( expr, df, compute(expr.predicate, {expr._child: df}, return_type='native'), **kwargs ) @dispatch(Selection, (Series, DataFrame, DaskSeries, DaskDataFrame), (Series, DaskSeries)) def compute_up(expr, df, predicate, **kwargs): return df[predicate] @dispatch(Join, DataFrame, DataFrame) def compute_up(t, lhs, rhs, **kwargs): """ Join two pandas data frames on arbitrary columns The approach taken here could probably be improved. To join on two columns we force each column to be the index of the dataframe, perform the join, and then reset the index back to the left side's original index. """ result = pd.merge( lhs, rhs, left_on=t.on_left, right_on=t.on_right, how=t.how, suffixes=t.suffixes, ) return result.reset_index()[t.fields] @dispatch(isnan, pd.Series) def compute_up(expr, data, **kwargs): return data.isnull() @dispatch(notnull, pd.Series) def compute_up(expr, data, **kwargs): return data.notnull() pandas_structure = DataFrame, DaskDataFrame, Series, DataFrameGroupBy, SeriesGroupBy @dispatch(Concat, pandas_structure, pandas_structure) def compute_up(t, lhs, rhs, _concat=pd.concat, **kwargs): if not (isinstance(lhs, type(rhs)) or isinstance(rhs, type(lhs))): raise TypeError('lhs and rhs must be the same type') return _concat((lhs, rhs), axis=t.axis, ignore_index=True) def get_scalar(result): # pandas may return an int, numpy scalar or non scalar here so we need to # program defensively so that things are JSON serializable try: return result.item() except (AttributeError, ValueError): if isinstance(result, dd.core.Scalar): return result.compute() return result @dispatch(Reduction, (Series, SeriesGroupBy, DaskSeries)) def compute_up(t, s, **kwargs): result = get_scalar(getattr(s, t.symbol)()) if t.keepdims: result = Series([result], name=s.name) return result @dispatch((std, var), (Series, SeriesGroupBy, DaskSeries)) def compute_up(t, s, **kwargs): measure = t.schema.measure is_timedelta = isinstance( getattr(measure, 'ty', measure), datashape.TimeDelta, ) if is_timedelta: # part 1 of 2 to work around the fact that pandas does not have # timedelta var or std: cast to a double s = s.astype('timedelta64[s]').astype('int64') result = get_scalar(getattr(s, t.symbol)(ddof=t.unbiased)) if t.keepdims: result = Series([result], name=s.name) if is_timedelta: # part 2 of 2 to work around the fact that postgres does not have # timedelta var or std: cast back from seconds by creating a timedelta result = timedelta(seconds=result) return result @dispatch(Distinct, DataFrame) def compute_up(t, df, **kwargs): return df.drop_duplicates(subset=t.on or None).reset_index(drop=True) @dispatch(Distinct, Series) def compute_up(t, s, **kwargs): if t.on: raise ValueError('malformed expression: no columns to distinct on') return s.drop_duplicates().reset_index(drop=True) @dispatch(nunique, DataFrame) def compute_up(expr, data, **kwargs): return compute_up(expr._child.distinct().count(), data, **kwargs) @dispatch(UnaryStringFunction, Series) def compute_up(expr, data, **kwargs): name = type(expr).__name__ return getattr(data.str, name)() @dispatch(Replace, Series) def compute_up(expr, data, **kwargs): max = expr.max is None and -1 or expr.max return data.str.replace(expr.old, expr.new, max) @dispatch(Pad, Series) def compute_up(expr, data, **kwargs): side = expr.side is None and 'left' or expr.side fillchar = expr.fillchar is None and ' ' or expr.fillchar return data.str.pad(expr.width, side, fillchar) @dispatch(StrCat, Series, Series) def compute_up(expr, lhs_data, rhs_data, **kwargs): res = lhs_data.str.cat(rhs_data, sep=expr.sep) return res @dispatch(StrFind, Series) def compute_up(expr, data, **kwargs): return data.str.find(expr.sub) @dispatch(StrSlice, Series) def compute_up(expr, data, **kwargs): if isinstance(expr.slice, tuple): return data.str[slice(*expr.slice)] return data.str[expr.slice] @dispatch(SliceReplace, Series) def compute_up(expr, data, **kwargs): return data.str.slice_replace(expr.start, expr.stop, expr.repl) def unpack(seq): """ Unpack sequence of length one >>> unpack([1, 2, 3]) [1, 2, 3] >>> unpack([1]) 1 """ seq = list(seq) if len(seq) == 1: seq = seq[0] return seq Grouper = ElemWise, Series, list @dispatch(By, list, DataFrame) def get_grouper(c, grouper, df): return grouper @dispatch(By, Expr, NDFrame) def get_grouper(c, grouper, df): g = compute(grouper, {c._child: df}, return_type='native') if isinstance(g, Series): return g if isinstance(g, DataFrame): return [g[col] for col in g.columns] @dispatch(By, (Field, Projection), NDFrame) def get_grouper(c, grouper, df): return grouper.fields @dispatch(By, Reduction, Grouper, NDFrame) def compute_by(t, r, g, df): names = [r._name] preapply = compute(r._child, {t._child: df}, return_type='native') # Pandas and Blaze column naming schemes differ # Coerce DataFrame column names to match Blaze's names preapply = preapply.copy() if isinstance(preapply, Series): preapply.name = names[0] else: preapply.names = names group_df = concat_nodup(df, preapply) gb = group_df.groupby(g) groups = gb[names[0] if isscalar(t.apply._child.dshape.measure) else names] return compute_up(r, groups, return_type='native') # do reduction name_dict = dict() seen_names = set() def _name(expr): """ A unique and deterministic name for an expression """ if expr in name_dict: return name_dict[expr] result = base = expr._name or '_' if result in seen_names: for i in itertools.count(1): result = '%s_%d' % (base, i) if result not in seen_names: break # result is an unseen name seen_names.add(result) name_dict[expr] = result return result def fancify_summary(expr): """ Separate a complex summary into two pieces Helps pandas compute_by on summaries >>> t = symbol('t', 'var * {x: int, y: int}') >>> one, two, three = fancify_summary(summary(a=t.x.sum(), b=t.x.sum() + t.y.count() - 1)) A simpler summary with only raw reductions >>> one summary(x_sum=sum(t.x), y_count=count(t.y)) A mapping of those names to new leaves to use in another compuation >>> two # doctest: +SKIP {'x_sum': x_sum, 'y_count': y_count} A mapping of computations to do for each column >>> three # doctest: +SKIP {'a': x_sum, 'b': (x_sum + y_count) - 1} In this way, ``compute_by`` is able to do simple pandas reductions using groups.agg(...) and then do columnwise arithmetic afterwards. """ seen_names.clear() name_dict.clear() exprs = pipe(expr.values, map(Expr._traverse), concat, filter(lambda x: isinstance(x, Reduction)), set) one = summary(**dict((_name(expr), expr) for expr in exprs)) two = dict((_name(expr), symbol(_name(expr), datashape.var * expr.dshape)) for expr in exprs) d = dict((expr, two[_name(expr)]) for expr in exprs) three = dict((name, value._subs(d)) for name, value in zip(expr.names, expr.values)) return one, two, three @dispatch(By, Summary, Grouper, NDFrame) def compute_by(t, s, g, df): one, two, three = fancify_summary(s) # see above names_columns = list(zip(one.fields, one.values)) func = lambda x: not isinstance(x[1], count) is_field = defaultdict(lambda: iter([]), groupby(func, names_columns)) preapply = DataFrame(dict( zip([name for name, _ in is_field[True]], [compute(col._child, {t._child: df}, return_type='native') for _, col in is_field[True]]) ) ) if list(is_field[False]): emptys = DataFrame([0] * len(df.index), index=df.index, columns=[name for name, _ in is_field[False]]) preapply = concat_nodup(preapply, emptys) if not df.index.equals(preapply.index): df = df.loc[preapply.index] df2 = concat_nodup(df, preapply) groups = df2.groupby(g) d = dict((name, v.symbol) for name, v in zip(one.names, one.values)) result = groups.agg(d) scope = dict((v, result[k]) for k, v in two.items()) cols = [ compute(expr.label(name), scope, return_type='native') for name, expr in three.items() ] result2 = pd.concat(cols, axis=1) # Rearrange columns to match names order result3 = result2[ sorted(result2.columns, key=lambda t, s=s: s.fields.index(t)) ] return result3 @dispatch(Expr, (DataFrame, DaskDataFrame)) def post_compute_by(t, df): return df.reset_index(drop=True) @dispatch((Summary, Reduction), (DataFrame, DaskDataFrame)) def post_compute_by(t, df): return df.reset_index() @dispatch(By, NDFrame) def compute_up(t, df, **kwargs): grouper = get_grouper(t, t.grouper, df) result = compute_by(t, t.apply, grouper, df) result2 = post_compute_by(t.apply, into(DataFrame, result)) if isinstance(result2, DataFrame): result2.columns = t.fields return result2 def concat_nodup(a, b): """ Concatenate two dataframes/series without duplicately named columns >>> df = DataFrame([[1, 'Alice', 100], ... [2, 'Bob', -200], ... [3, 'Charlie', 300]], ... columns=['id','name', 'amount']) >>> concat_nodup(df, df) id name amount 0 1 Alice 100 1 2 Bob -200 2 3 Charlie 300 >>> concat_nodup(df.name, df.amount) name amount 0 Alice 100 1 Bob -200 2 Charlie 300 >>> concat_nodup(df, df.amount + df.id) id name amount 0 0 1 Alice 100 101 1 2 Bob -200 -198 2 3 Charlie 300 303 """ if isinstance(a, DataFrame) and isinstance(b, DataFrame): return pd.concat([a, b[[c for c in b.columns if c not in a.columns]]], axis=1) if isinstance(a, DataFrame) and isinstance(b, Series): if b.name not in a.columns: return pd.concat([a, b], axis=1) else: return a if isinstance(a, Series) and isinstance(b, DataFrame): return pd.concat([a, b[[c for c in b.columns if c != a.name]]], axis=1) if isinstance(a, Series) and isinstance(b, Series): if a.name == b.name: return a else: return pd.concat([a, b], axis=1) pdsort = getattr( pd.DataFrame, 'sort' if LooseVersion(pd.__version__) < '0.17.0' else 'sort_values' ) @dispatch(Sort, DataFrame) def compute_up(t, df, **kwargs): return pdsort(df, t.key, ascending=t.ascending) @dispatch(Sort, Series) def compute_up(t, s, **kwargs): try: return s.sort_values(ascending=t.ascending) except AttributeError: return s.order(ascending=t.ascending) @dispatch(Sample, (Series, DataFrame)) def compute_up(t, df, **kwargs): from math import modf if t.frac is not None: # Work around annoying edge case: Python's round() builtin (which # Pandas' sample() uses) rounds 0.5, 2.5, 4.5, ... down to 0, 2, 4, ..., # while it rounds 1.5, 3.5, 5.5, ... up. This is inconsistent with any # sane implementation of floating point rounding, including SQL's, so # we work around it here. fractional, integral = modf(t.frac * df.shape[0]) n = int(integral + (0 if fractional < 0.5 else 1)) else: n = min(t.n, df.shape[0]) return df.sample(n=n) @dispatch(Sample, (DaskDataFrame, DaskSeries)) def compute_up(t, df, **kwargs): # Dask doesn't support sample(n=...), only sample(frac=...), so we have a # separate dispatch for dask objects. if t.frac is not None: frac = t.frac else: nrows = len(df) frac = float(min(t.n, nrows)) / nrows return df.sample(frac=frac) @dispatch(Head, (Series, DataFrame, DaskDataFrame, DaskSeries)) def compute_up(t, df, **kwargs): return df.head(t.n) @dispatch(Tail, (Series, DataFrame, DaskDataFrame, DaskSeries)) def compute_up(t, df, **kwargs): return df.tail(t.n) @dispatch(Label, DataFrame) def compute_up(t, df, **kwargs): return type(df)(df, columns=[t.label]) @dispatch(Label, Series) def compute_up(t, df, **kwargs): return Series(df, name=t.label) @dispatch(ReLabel, (DataFrame, DaskDataFrame)) def compute_up(t, df, **kwargs): return df.rename(columns=dict(t.labels)) @dispatch(ReLabel, (Series, DaskSeries)) def compute_up(t, s, **kwargs): labels = t.labels if len(labels) > 1: raise ValueError('You can only relabel a Series with a single name') pair, = labels _, replacement = pair return Series(s, name=replacement) @dispatch(Map, DataFrame) def compute_up(t, df, **kwargs): return df.apply(lambda tup: t.func(*tup), axis=1) @dispatch(Map, Series) def compute_up(t, df, **kwargs): result = df.map(t.func) try: result.name = t._name except NotImplementedError: # We don't have a schema, but we should still be able to map result.name = df.name return result @dispatch(Apply, (Series, DataFrame)) def compute_up(t, df, **kwargs): return t.func(df) def _merge(module): """Helper to dispatch merge on both pandas and dask structures while respecting the return type of each. If dask structures are given, a dask structure is returned, if a pandas structure is given, a pandas structure is returned. Parameters ---------- module : module Either ``pandas`` or ``dask``. """ if module is None: return @dispatch(Merge, VarArgs[module.Series, base]) def compute_up(expr, args, **kwargs): """Optimized handler when we know the sequence doesn't contain tabular elements. """ fields = expr.fields return module.DataFrame( dict(zip(fields, args)), # pass the columns explicitly so that the order is correct columns=fields, ) @dispatch(Merge, VarArgs[module.Series, module.DataFrame, base]) def compute_up(expr, args, **kwargs): for arg in args: try: ix = arg.index except AttributeError: pass else: break return module.concat( [ pd.Series(arg, index=ix, name=e._name) if isinstance(arg, base) else arg for e, arg in zip(expr.args, args) ], axis=1, ) _merge(pd) _merge(dd) del _merge @dispatch(Summary, (DataFrame, DaskDataFrame)) def compute_up(expr, data, **kwargs): values = [ compute(val, {expr._child: data}, return_type='native') for val in expr.values ] if expr.keepdims: return type(data)([values], columns=expr.fields) else: return Series(dict(zip(expr.fields, values))) @dispatch(Summary, (Series, DaskSeries)) def compute_up(expr, data, **kwargs): result = tuple( compute(val, {expr._child: data}, return_type='native') for val in expr.values ) if expr.keepdims: result = [result] return result @dispatch(Like, Series) def compute_up(expr, data, **kwargs): return data.str.contains(r'^%s$' % fnmatch.translate(expr.pattern)) def get_date_attr(s, attr, name): try: result = getattr(s.dt, attr) # new in pandas 0.15 except AttributeError: result = getattr(pd.DatetimeIndex(s), attr) result.name = name return result @dispatch(DateTime, Series) def compute_up(expr, s, **kwargs): return get_date_attr(s, expr.attr, expr._name) @dispatch(total_seconds, Series) def compute_up(expr, s, **kwargs): result = s.dt.total_seconds() result.name = expr._name return result @dispatch(UTCFromTimestamp, Series) def compute_up(expr, s, **kwargs): return pd.datetools.to_datetime(s * 1e9, utc=True) @dispatch(Millisecond, Series) def compute_up(expr, s, **kwargs): return get_date_attr(s, 'microsecond', '%s_millisecond' % expr._child._name) // 1000 @dispatch(Round, Series) def compute_up(expr, data, **kwargs): return data.dt.round(expr.freq) @dispatch(Ceil, Series) def compute_up(expr, data, **kwargs): return data.dt.ceil(expr.freq) @dispatch(Floor, Series) def compute_up(expr, data, **kwargs): return data.dt.floor(expr.freq) @dispatch(strftime, Series) def compute_up(expr, data, **kwargs): return data.dt.strftime(expr.format) @dispatch(Slice, (DataFrame, Series)) def compute_up(expr, df, **kwargs): index = expr.index if isinstance(index, tuple) and len(index) == 1: index = index[0] if isinstance(index, _inttypes + (list,)): return df.iloc[index] elif isinstance(index, slice): if index.stop is not None: return df.iloc[index.start:index.stop:index.step] else: return df.iloc[index] else: raise NotImplementedError() @dispatch(count, DataFrame) def compute_up(expr, df, **kwargs): result = df.shape[0] if expr.keepdims: result = Series([result], name=expr._name) return result @dispatch(nelements, (DataFrame, Series)) def compute_up(expr, df, **kwargs): return df.shape[0] @dispatch((count, nelements), (DaskDataFrame, DaskSeries)) def compute_up(expr, df, **kwargs): warnings.warn("Counting the elements of a dask object can be slow.") result = len(df) if expr.keepdims: result = DaskSeries([result], name=expr._name) return result @dispatch(DateTimeTruncate, Series) def compute_up(expr, data, **kwargs): return Series(compute_up(expr, into(np.ndarray, data), **kwargs), name=expr._name) @dispatch(IsIn, (Series, DaskSeries), Iterable) def compute_up(expr, data, keys, **kwargs): return data.isin(keys) @dispatch(Coerce, (Series, DaskSeries)) def compute_up(expr, data, **kwargs): measure = expr.to.measure if measure in {datashape.string, datashape.Option(datashape.string)}: return data.astype(str) elif measure in {datashape.datetime_, datashape.Option(datashape.datetime_)}: return data.astype(np.datetime64) return data.astype(to_numpy_dtype(expr.schema)) @dispatch(Shift, Series) def compute_up(expr, data, **kwargs): return data.shift(expr.n) def array_coalesce(expr, lhs, rhs, wrap=None, **kwargs): res = np.where(pd.isnull(lhs), rhs, lhs) if not expr.dshape.shape: res = res.item() elif wrap: res = wrap(res) return res @compute_up.register( Coalesce, (Series, DaskSeries), (np.ndarray, Series, base, DaskSeries) ) @compute_up.register( Coalesce, (Series, base, DaskSeries), (np.ndarray, Series, DaskSeries) ) def compute_up_coalesce(expr, lhs, rhs, **kwargs): return array_coalesce(expr, lhs, rhs, type(lhs)) @dispatch(Coalesce, (Series, DaskSeries, base)) def compute_up(t, data, **kwargs): if isinstance(t.lhs, Expr): lhs = data rhs = t.rhs else: lhs = t.lhs rhs = data return compute_up_coalesce(t, lhs, rhs)
bsd-3-clause
yarikoptic/pystatsmodels
statsmodels/iolib/tests/test_foreign.py
3
7414
""" Tests for iolib/foreign.py """ import os import warnings from datetime import datetime from numpy.testing import * import numpy as np from pandas import DataFrame, isnull import pandas.util.testing as ptesting from statsmodels.compatnp.py3k import BytesIO, asbytes import statsmodels.api as sm from statsmodels.iolib.foreign import (StataWriter, genfromdta, _datetime_to_stata_elapsed, _stata_elapsed_date_to_datetime) from statsmodels.datasets import macrodata import pandas pandas_old = int(pandas.__version__.split('.')[1]) < 9 # Test precisions DECIMAL_4 = 4 DECIMAL_3 = 3 curdir = os.path.dirname(os.path.abspath(__file__)) def test_genfromdta(): #Test genfromdta vs. results/macrodta.npy created with genfromtxt. #NOTE: Stata handles data very oddly. Round tripping from csv to dta # to ndarray 2710.349 (csv) -> 2510.2491 (stata) -> 2710.34912109375 # (dta/ndarray) #res2 = np.load(curdir+'/results/macrodata.npy') #res2 = res2.view((float,len(res2[0]))) from results.macrodata import macrodata_result as res2 res1 = genfromdta(curdir+'/../../datasets/macrodata/macrodata.dta') #res1 = res1.view((float,len(res1[0]))) assert_array_equal(res1 == res2, True) def test_genfromdta_pandas(): from pandas.util.testing import assert_frame_equal dta = macrodata.load_pandas().data curdir = os.path.dirname(os.path.abspath(__file__)) res1 = sm.iolib.genfromdta(curdir+'/../../datasets/macrodata/macrodata.dta', pandas=True) res1 = res1.astype(float) assert_frame_equal(res1, dta) def test_stata_writer_structured(): buf = BytesIO() dta = macrodata.load().data dtype = dta.dtype dta = dta.astype(np.dtype([('year', int), ('quarter', int)] + dtype.descr[2:])) writer = StataWriter(buf, dta) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) assert_array_equal(dta, dta2) def test_stata_writer_array(): buf = BytesIO() dta = macrodata.load().data dta = DataFrame.from_records(dta) dta.columns = ["v%d" % i for i in range(1,15)] writer = StataWriter(buf, dta.values) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) dta = dta.to_records(index=False) assert_array_equal(dta, dta2) def test_missing_roundtrip(): buf = BytesIO() dta = np.array([(np.nan, np.inf, "")], dtype=[("double_miss", float), ("float_miss", np.float32), ("string_miss", "a1")]) writer = StataWriter(buf, dta) writer.write_file() buf.seek(0) dta = genfromdta(buf, missing_flt=np.nan) assert_(isnull(dta[0][0])) assert_(isnull(dta[0][1])) assert_(dta[0][2] == asbytes("")) dta = genfromdta(os.path.join(curdir, "results/data_missing.dta"), missing_flt=-999) assert_(np.all([dta[0][i] == -999 for i in range(5)])) def test_stata_writer_pandas(): buf = BytesIO() dta = macrodata.load().data dtype = dta.dtype #as of 0.9.0 pandas only supports i8 and f8 dta = dta.astype(np.dtype([('year', 'i8'), ('quarter', 'i8')] + dtype.descr[2:])) dta4 = dta.astype(np.dtype([('year', 'i4'), ('quarter', 'i4')] + dtype.descr[2:])) dta = DataFrame.from_records(dta) dta4 = DataFrame.from_records(dta4) # dta is int64 'i8' given to Stata writer writer = StataWriter(buf, dta) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) dta5 = DataFrame.from_records(dta2) # dta2 is int32 'i4' returned from Stata reader if dta5.dtypes[1] is np.dtype('int64'): ptesting.assert_frame_equal(dta.reset_index(), dta5) else: # don't check index because it has different size, int32 versus int64 ptesting.assert_frame_equal(dta4, dta5[dta5.columns[1:]]) def test_stata_writer_unicode(): # make sure to test with characters outside the latin-1 encoding pass @dec.skipif(pandas_old) def test_genfromdta_datetime(): results = [(datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1)), (datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1))] with warnings.catch_warnings(record=True) as w: dta = genfromdta(os.path.join(curdir, "results/time_series_examples.dta")) assert_(len(w) == 1) # should get a warning for that format. assert_array_equal(dta[0].tolist(), results[0]) assert_array_equal(dta[1].tolist(), results[1]) with warnings.catch_warnings(record=True): dta = genfromdta(os.path.join(curdir, "results/time_series_examples.dta"), pandas=True) assert_array_equal(dta.irow(0).tolist(), results[0]) assert_array_equal(dta.irow(1).tolist(), results[1]) def test_date_converters(): ms = [-1479597200000, -1e6, -1e5, -100, 1e5, 1e6, 1479597200000] days = [-1e5, -1200, -800, -365, -50, 0, 50, 365, 800, 1200, 1e5] weeks = [-1e4, -1e2, -53, -52, -51, 0, 51, 52, 53, 1e2, 1e4] months = [-1e4, -1e3, -100, -13, -12, -11, 0, 11, 12, 13, 100, 1e3, 1e4] quarter = [-100, -50, -5, -4, -3, 0, 3, 4, 5, 50, 100] half = [-50, 40, 30, 10, 3, 2, 1, 0, 1, 2, 3, 10, 30, 40, 50] year = [1, 50, 500, 1000, 1500, 1975, 2075] for i in ms: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tc"), "tc"), i) for i in days: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "td"), "td"), i) for i in weeks: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tw"), "tw"), i) for i in months: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tm"), "tm"), i) for i in quarter: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "tq"), "tq"), i) for i in half: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "th"), "th"), i) for i in year: assert_equal(_datetime_to_stata_elapsed( _stata_elapsed_date_to_datetime(i, "ty"), "ty"), i) @dec.skipif(pandas_old) def test_datetime_roundtrip(): dta = np.array([(1, datetime(2010, 1, 1), 2), (2, datetime(2010, 2, 1), 3), (4, datetime(2010, 3, 1), 5)], dtype=[('var1', float), ('var2', object), ('var3', float)]) buf = BytesIO() writer = StataWriter(buf, dta, {"var2" : "tm"}) writer.write_file() buf.seek(0) dta2 = genfromdta(buf) assert_equal(dta, dta2) dta = DataFrame.from_records(dta) buf = BytesIO() writer = StataWriter(buf, dta, {"var2" : "tm"}) writer.write_file() buf.seek(0) dta2 = genfromdta(buf, pandas=True) ptesting.assert_frame_equal(dta, dta2.drop('index', axis=1)) if __name__ == "__main__": import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb'], exit=False)
bsd-3-clause
DCPROGS/DCQTGUI
dcqtgui/QTtrace.py
1
21209
#! /usr/bin/python """ A simple GUI to display and process single channel record. Depends on pyqt and matplotlib modules. """ import math try: from PySide.QtCore import * from PySide.QtGui import * except: raise ImportError("pyqt module is missing") import numpy as np import dcio import filter class TraceGUI(QMainWindow): def __init__(self, parent=None): super(TraceGUI, self).__init__(parent) self.resize(1000, 700) # width, height in px self.mainFrame = QWidget() self.setWindowTitle('pyPlotsamp') self.setBackgroundRole(QPalette.Base) self.setAutoFillBackground(True) self.painter = QPainter() self.loaded = False self.filtered = False self.line_length = 5.0 # seconds self.page_lines = 5 self.point_every = 50 self.line_separ = 10.0 # pA self.pages = 1 self.page = 1 self.intervals = None self.amplitudes = None self.fc = 1000.0 fileMenu = self.menuBar().addMenu('&File') fileSSDOpenAction = self.createAction("&Open SSD file", self.onSSDFileOpen, None, "ssdfileopen", "File Open") fileABFOpenAction = self.createAction("&Open ABF file", self.onABFFileOpen, None, "abffileopen", "File Open") fileIdealizedClampfitOpenAction = self.createAction( "&Open Clampfit idealised file", self.onClampfitIdealisedOpen, None, "clampfitfileopen", "File Open") fileSaveAsAction = self.createAction("&Save As...", self.onFileSaveAs, None, "filesaveas", "File Save As") self.addActions(fileMenu, (fileSSDOpenAction, fileABFOpenAction, fileIdealizedClampfitOpenAction, fileSaveAsAction)) plotMenu = self.menuBar().addMenu('&Plot') nextPageAction = self.createAction("&Next page", self.onNextPage) prevPageAction = self.createAction("&Previous page", self.onPrevPage) printPageAction = self.createAction("&Print page", self.onPrint) plotOptionsAction = self.createAction("&Plot options", self.onPlotOptions) self.addActions(plotMenu, (nextPageAction, prevPageAction, #printPageAction, plotOptionsAction)) signalMenu = self.menuBar().addMenu('&Signal') filterGausAction = self.createAction("&Gaussian filter", self.onFilterGaus) sliceTraceAction = self.createAction("&Slice trace", self.onSliceTrace) self.addActions(signalMenu, (filterGausAction, sliceTraceAction)) helpMenu = self.menuBar().addMenu('&Help') helpAboutAction = self.createAction("&About", self.onHelpAbout) self.addActions(helpMenu, (helpAboutAction, None)) def createAction(self, text, slot=None, shortcut=None, icon=None, tip=None, checkable=False, signal="triggered()"): """ Create menu actions. """ action = QAction(text, self) if icon is not None: action.setIcon(QIcon(":/%s.png" % icon)) if shortcut is not None: action.setShortcut(shortcut) if tip is not None: action.setToolTip(tip) action.setStatusTip(tip) if slot is not None: self.connect(action, SIGNAL(signal), slot) if checkable: action.setCheckable(True) return action def addActions(self, target, actions): """ Add actions to menu. """ for action in actions: if action is None: target.addSeparator() else: target.addAction(action) def onSSDFileOpen(self): """ """ self.filename, filt = QFileDialog.getOpenFileName(self, "Open Data File...", "", "Consam files (*.ssd *.SSD *.dat *.DAT)") self.h = dcio.ssd_read_header (self.filename) self.trace = dcio.ssd_read_data(self.filename, self.h) self.calfac = self.h['calfac'] self.srate = self.h['srate'] self.sample = 1 / self.h['srate'] self.points_total = self.h['ilen'] / 2 self.ffilter = self.h['filt'] self.file_type = 'ssd' self.loaded = True self.page = 1 self.update() def onABFFileOpen(self): """ """ self.filename, filt = QFileDialog.getOpenFileName(self, "Open Data File...", "", "Axon files (*.abf)") self.h = dcio.abf_read_header(self.filename) self.trace = dcio.abf_read_data(self.filename, self.h) self.points_total = self.h['IActualAcqLength'] / self.h['nADCNumChannels'] self.srate = 1 / (self.h['fADCSampleInterval'] * self.h['nADCNumChannels']) self.sample = self.h['fADCSampleInterval'] * self.h['nADCNumChannels'] / 1e6 self.calfac = (1 / #(6553.6 ((self.h['IADCResolution'] / self.h['fADCRange']) * self.h['fTelegraphAdditGain'][self.h['nADCSamplingSeq'][0]] * self.h['fInstrumentScaleFactor'][self.h['nADCSamplingSeq'][0]])) self.ffilter = float(self.h['fSignalLowpassFilter'][self.h['nADCSamplingSeq'][0]]) self.file_type = 'abf' self.loaded = True self.page = 1 self.update() def onClampfitIdealisedOpen(self): self.filename, filt = QFileDialog.getOpenFileName(self, "Open Data File...", "", "CSV files (*.csv)") self.record = np.genfromtxt(self.filename, skip_header=1, delimiter=',') self.intervals = self.record[:, 8] / 1000.0 # convert from ms to s self.amplitudes = self.record[:, 6] self.record_length = int(self.record[-1, 5] / 1000.0) self.file_type = 'csv' self.loaded = True self.page = 1 self.pages = self.record_length / (self.page_lines * self.line_length) self.remainder = -1 self.remainder_amplitude = 0.0 self.remainder_length = self.line_length / 20.0 self.update() def onFileSaveAs(self): """ """ self.out_filename, filt = QFileDialog.getSaveFileName(self, "Save File As...", "", "Consam file (*.ssd)") if self.file_type == 'ssd': if self.filtered: self.h['ilen'] = self.points_total * 2 self.h['srate'] = self.srate self.h['filt'] = self.ffilter self.h['idt'] = self.sample * 1e6 dcio.ssd_save(self.out_filename, self.h, self.trace) elif self.file_type == 'abf': h_conv = dcio.abf2ssd(self.h) dcio.ssd_save(self.out_filename, h_conv, self.trace) def onSliceTrace(self): """ """ dialog = SliceTraceDlg(self.points_total, self) if dialog.exec_(): first, last = dialog.return_par() self.original_trace = self.trace self.original_points_total = self.points_total self.points_total = last - (first - 1) self.trace = np.zeros(self.points_total, 'h') self.trace = self.original_trace[first-1 : last] self.page = 1 self.update() def onFilterGaus(self): """ """ dialog = FilterOptsDlg(self) if dialog.exec_(): fc = dialog.return_par() self.original_trace = self.trace self.original_ffilter = self.ffilter self.original_srate = self.srate self.original_sample = self.sample self.original_points_total = self.points_total trace_new, srate = filter.filter_trace(self.trace, fc, self.ffilter, self.srate) self.trace = trace_new.copy() self.srate = srate self.ffilter = fc self.sample = 1 / srate self.points_total = self.trace.shape[0] self.filtered = True self.page = 1 self.update() def onPlotOptions(self): """ """ dialog = PlotPageDlg(self) if dialog.exec_(): self.line_length, self.page_lines, self.point_every, self.line_separ = dialog.return_par() self.pages = self.record_length / (self.page_lines * self.line_length) self.page = 1 self.update() def onNextPage(self): """ """ if self.page < self.pages: self.page += 1 self.update() def onPrevPage(self): """ """ if self.page > 1: self.page -= 1 self.update() def onPrint(self): """ """ printer=QPrinter(QPrinter.HighResolution) printer.setOrientation(QPrinter.Landscape) printDialog=QPrintDialog(printer) if (printDialog.exec_() == QDialog.Accepted): self.painter.begin(printer) self.drawSCTrace(self.painter) self.painter.end() def onHelpAbout(self): """ """ pass def paintEvent(self, event): """ """ if self.loaded: self.painter.begin(self) if self.file_type == 'ssd' or self.file_type == 'abf': self.drawSCTrace(self.painter) elif self.file_type == 'csv': self.drawIdealisedTrace(self.painter) self.painter.end() def drawIdealisedTrace(self, event): """ """ average = np.average(self.amplitudes[:2]) yStartDbl = float((self.page_lines +1) * self.line_separ) page_str = (self.filename + "; Page " + str(self.page) + " of " + str(self.pages)) point_str = ("Seconds/line: {0:.3f}; line separation (pA): {1:.3f}". format(self.line_length, self.line_separ)) self.painter.drawText(100, 50, page_str) self.painter.drawText(100, 650, point_str) for j in range(self.page_lines): xDbl1 = 0 yDbl1 = (self.remainder_amplitude - average) + yStartDbl - (j+1)*self.line_separ line_end = False running_length = self.remainder_length while (not line_end) and (self.remainder < len(self.record)-1): if (running_length < self.line_length): xDbl2 = running_length yDbl2 = float((self.remainder_amplitude - average) + yStartDbl - (j+1)*self.line_separ) self.draw_line(xDbl1, yDbl1, xDbl2, yDbl2) self.remainder += 1 if math.isnan(self.intervals[self.remainder]): self.remainder_amplitude = 0.0 self.remainder_length = 0.5 #self.remainder_length = self.record[self.remainder + 1, 4] - self.record[self.remainder - 1, 5] else: self.remainder_length = self.intervals[self.remainder] self.remainder_amplitude = self.amplitudes[self.remainder] running_length += self.remainder_length xDbl1 = xDbl2 yDbl1 = float((self.remainder_amplitude - average) + yStartDbl - (j+1)*self.line_separ) self.draw_line(xDbl1, yDbl2, xDbl1, yDbl1) else: xDbl2 = self.line_length yDbl2 = float((self.remainder_amplitude - average) + yStartDbl - (j+1)*self.line_separ) self.draw_line(xDbl1, yDbl1, xDbl2, yDbl2) line_end = True self.remainder_length = running_length - self.line_length def draw_line(self, xDbl1, yDbl1, xDbl2, yDbl2): xMinPix = int(self.width() * 5 / 100) xMaxPix = int(self.width() * 90 / 100) yMaxPix = int(self.height() * 10 / 100) yMinPix = int(self.height() * 90 / 100) xMinDbl = float(0) xMaxDbl = float(self.line_length) yMinDbl = float(0) yMaxDbl = float(self.page_lines + 2) * self.line_separ xScaleDbl = float(xMaxPix - xMinPix) / float(xMaxDbl - xMinDbl) yScaleDbl = float(yMaxPix - yMinPix) / float(yMaxDbl - yMinDbl) xPix1 = xMinPix + int((xMinDbl) * xScaleDbl) yPix1 = yMinPix + int((yMinDbl) * yScaleDbl) xPix2 = xMinPix + int((xMaxDbl) * xScaleDbl) yPix2 = yMinPix + int((yMaxDbl) * yScaleDbl) xPix1 = xMinPix + int((xDbl1 - xMinDbl) * xScaleDbl) yPix1 = yMinPix + int((yDbl1 - yMinDbl) * yScaleDbl) xPix2 = xMinPix + int((xDbl2 - xMinDbl) * xScaleDbl) yPix2 = yMinPix + int((yDbl2 - yMinDbl) * yScaleDbl) self.painter.drawLine(xPix1, yPix1, xPix2, yPix2) def drawSCTrace(self, event): """ """ line_points = int(self.line_length / self.sample + 1) page_points = line_points * self.page_lines line_points_draw = int(line_points / self.point_every) self.pages = self.points_total / page_points average = np.average(self.trace[:line_points]) page_str = (self.filename + "; Page " + str(self.page) + " of " + str(self.pages)) point_str = ("Points " + str(page_points * (self.page - 1) + 1) + " to " + str(page_points * self.page) + " every " + str(self.point_every) + " point(s); seconds/line: " + str(self.line_length) + "; line separation (pA): " + str(self.line_separ)) self.painter.drawText(100, 50, page_str) self.painter.drawText(100, 650, point_str) xMinPix = int(self.width() * 5 / 100) xMaxPix = int(self.width() * 90 / 100) yMaxPix = int(self.height() * 10 / 100) yMinPix = int(self.height() * 90 / 100) xMinDbl = float(0) xMaxDbl = float(self.line_length) yMinDbl = float(0) yMaxDbl = float(self.page_lines + 2) * self.line_separ yStartDbl = float((self.page_lines +1) * self.line_separ) xScaleDbl = float(xMaxPix - xMinPix) / float(xMaxDbl - xMinDbl) yScaleDbl = float(yMaxPix - yMinPix) / float(yMaxDbl - yMinDbl) xPix1 = xMinPix + int((xMinDbl) * xScaleDbl) yPix1 = yMinPix + int((yMinDbl) * yScaleDbl) xPix2 = xMinPix + int((xMaxDbl) * xScaleDbl) yPix2 = yMinPix + int((yMaxDbl) * yScaleDbl) for j in range(self.page_lines): xDbl1 = 0 yDbl1 = (self.trace[0 + page_points*(self.page-1) + line_points * j] - average) * self.calfac + yStartDbl - (j+1)*self.line_separ for i in range (line_points_draw): xDbl2 = float((i+1) * self.sample * self.point_every) yDbl2 = float((self.trace[0 + page_points*(self.page-1) + line_points * j + (i+1)*self.point_every] - average) * self.calfac + yStartDbl - (j+1)*self.line_separ) xPix1 = xMinPix + int((xDbl1 - xMinDbl) * xScaleDbl) yPix1 = yMinPix + int((yDbl1 - yMinDbl) * yScaleDbl) xPix2 = xMinPix + int((xDbl2 - xMinDbl) * xScaleDbl) yPix2 = yMinPix + int((yDbl2 - yMinDbl) * yScaleDbl) self.painter.drawLine(xPix1, yPix1, xPix2, yPix2) xDbl1 = xDbl2 yDbl1 = yDbl2 class PlotPageDlg(QDialog): """ Dialog to input page plotting parameters. """ def __init__(self, parent=None): super(PlotPageDlg, self).__init__(parent) self.line_length = 5 # seconds self.page_lines = 5 self.point_every = 50 self.line_separ = 10 # pA layoutMain = QVBoxLayout() layoutMain.addWidget(QLabel('Plot layout options')) layout = QHBoxLayout() layout.addWidget(QLabel("Seconds per line:")) self.lengthEdit = QLineEdit(unicode(self.line_length)) self.lengthEdit.setMaxLength(10) self.connect(self.lengthEdit, SIGNAL("editingFinished()"), self.on_par_changed) layout.addWidget(self.lengthEdit) layoutMain.addLayout(layout) layout = QHBoxLayout() layout.addWidget(QLabel("Number of lines per page:")) self.linesEdit = QLineEdit(unicode(self.page_lines)) self.linesEdit.setMaxLength(10) self.connect(self.linesEdit, SIGNAL("editingFinished()"), self.on_par_changed) layout.addWidget(self.linesEdit) layoutMain.addLayout(layout) layout = QHBoxLayout() layout.addWidget(QLabel("Draw every nth point:")) self.everyEdit = QLineEdit(unicode(self.point_every)) self.everyEdit.setMaxLength(10) self.connect(self.everyEdit, SIGNAL("editingFinished()"), self.on_par_changed) layout.addWidget(self.everyEdit) layoutMain.addLayout(layout) layout = QHBoxLayout() layout.addWidget(QLabel("pA between lines:")) self.separEdit = QLineEdit(unicode(self.line_separ)) self.separEdit.setMaxLength(10) self.connect(self.separEdit, SIGNAL("editingFinished()"), self.on_par_changed) layout.addWidget(self.separEdit) layoutMain.addLayout(layout) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok| QDialogButtonBox.Cancel) self.connect(buttonBox, SIGNAL("accepted()"), self, SLOT("accept()")) self.connect(buttonBox, SIGNAL("rejected()"), self, SLOT("reject()")) layoutMain.addWidget(buttonBox) self.setLayout(layoutMain) self.setWindowTitle("Plot layout options...") def on_par_changed(self): """ """ self.line_length = int(self.lengthEdit.text()) self.page_lines = int(self.linesEdit.text()) self.point_every = int(self.everyEdit.text()) self.line_separ = int(self.separEdit.text()) def return_par(self): """ Return parameters on exit. """ return self.line_length, self.page_lines, self.point_every, self.line_separ class FilterOptsDlg(QDialog): """ Dialog to input filter options. """ def __init__(self, parent=None): super(FilterOptsDlg, self).__init__(parent) self.filter = 1000 # Hz layoutMain = QVBoxLayout() layoutMain.addWidget(QLabel('Filter options:')) layout = QHBoxLayout() layout.addWidget(QLabel("Filter with Gaussian filter to have final fc (Hz):")) self.filterEdit = QLineEdit(unicode(self.filter)) self.filterEdit.setMaxLength(10) self.connect(self.filterEdit, SIGNAL("editingFinished()"), self.on_par_changed) layout.addWidget(self.filterEdit) layoutMain.addLayout(layout) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok| QDialogButtonBox.Cancel) self.connect(buttonBox, SIGNAL("accepted()"), self, SLOT("accept()")) self.connect(buttonBox, SIGNAL("rejected()"), self, SLOT("reject()")) layoutMain.addWidget(buttonBox) self.setLayout(layoutMain) self.setWindowTitle("Filter options...") def on_par_changed(self): """ """ self.filter = int(self.filterEdit.text()) def return_par(self): """ Return parameters on exit. """ return self.filter class SliceTraceDlg(QDialog): """ Dialog to input trace slice limits. """ def __init__(self, allpoints, parent=None): super(SliceTraceDlg, self).__init__(parent) self.first = 1 self.last = allpoints layoutMain = QVBoxLayout() layoutMain.addWidget(QLabel('Slice trace:')) # First and last data points to be used layout = QHBoxLayout() layout.addWidget(QLabel("First ")) self.firstEdit = QLineEdit(unicode(self.first)) self.firstEdit.setMaxLength(10) self.connect(self.firstEdit, SIGNAL("editingFinished()"), self.on_par_changed) layout.addWidget(self.firstEdit) layout.addWidget(QLabel(" and last ")) self.lastEdit = QLineEdit(unicode(self.last)) self.lastEdit.setMaxLength(10) self.connect(self.lastEdit, SIGNAL("editingFinished()"), self.on_par_changed) layout.addWidget(self.lastEdit) layout.addWidget(QLabel(" data points to be used.")) layoutMain.addLayout(layout) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok| QDialogButtonBox.Cancel) self.connect(buttonBox, SIGNAL("accepted()"), self, SLOT("accept()")) self.connect(buttonBox, SIGNAL("rejected()"), self, SLOT("reject()")) layoutMain.addWidget(buttonBox) self.setLayout(layoutMain) self.setWindowTitle("Trace slice...") def on_par_changed(self): """ """ self.first = int(self.firstEdit.text()) self.last = int(self.lastEdit.text()) def return_par(self): """ Return parameters on exit. """ return self.first, self.last
gpl-2.0
PrashntS/scikit-learn
examples/cluster/plot_lena_segmentation.py
271
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
mattilyra/scikit-learn
sklearn/cluster/__init__.py
364
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
idlead/scikit-learn
examples/exercises/plot_cv_diabetes.py
19
2613
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import LassoCV from sklearn.linear_model import Lasso from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = Lasso() alphas = np.logspace(-4, -.5, 30) scores = list() scores_std = list() for alpha in alphas: lasso.alpha = alpha this_scores = cross_val_score(lasso, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) plt.figure(figsize=(4, 3)) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = LassoCV(alphas=alphas) k_fold = KFold(3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold.split(X, y)): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
lbishal/scikit-learn
examples/preprocessing/plot_function_transformer.py
158
1993
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() lw = 0 plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw) plt.figure() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, lw=lw, s=60 ) plt.show()
bsd-3-clause
nicoddemus/backtrader
backtrader/plot/plot.py
1
24950
#!/usr/bin/env python # -*- coding: utf-8; py-indent-offset:4 -*- ############################################################################### # # Copyright (C) 2015 Daniel Rodriguez # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### from __future__ import (absolute_import, division, print_function, unicode_literals) import bisect import collections try: from collections import OrderedDict except ImportError: from ..utils.ordereddict import OrderedDict import math import six from six.moves import xrange import matplotlib.dates as mdates import matplotlib.font_manager as mfontmgr import matplotlib.legend as mlegend import matplotlib.pyplot as mpyplot import matplotlib.ticker as mticker from .. import AutoInfoClass, MetaParams, TimeFrame from .finance import plot_candlestick, plot_ohlc, plot_volume, plot_lineonclose from .formatters import (MyVolFormatter, MyDateFormatter, getlocator) from .scheme import PlotScheme from .utils import tag_box_style from .multicursor import MultiCursor class PInfo(object): def __init__(self, sch): self.sch = sch self.nrows = 0 self.row = 0 self.clock = None self.x = None self.xlen = 0 self.sharex = None self.figs = list() self.cursors = list() self.daxis = OrderedDict() self.ldaxis = list() self.zorder = dict() self.coloridx = collections.defaultdict(lambda: -1) self.prop = mfontmgr.FontProperties(size=self.sch.subtxtsize) def newfig(self, numfig): fig = mpyplot.figure(numfig) self.figs.append(fig) self.daxis = OrderedDict() self.ldaxis.append(self.daxis) self.row = 0 self.sharex = None return fig def nextcolor(self, ax): self.coloridx[ax] += 1 return self.coloridx[ax] def color(self, ax): return self.sch.color(self.coloridx[ax]) def zordernext(self, ax): z = self.zorder[ax] if self.sch.zdown: return z * 0.9999 return z * 1.0001 def zordercur(self, ax): return self.zorder[ax] class Plot(six.with_metaclass(MetaParams, object)): params = (('scheme', PlotScheme()),) def __init__(self, **kwargs): for pname, pvalue in kwargs.items(): setattr(self.p.scheme, pname, pvalue) def drawtag(self, ax, x, y, facecolor, edgecolor, alpha=0.9, **kwargs): txt = ax.text(x, y, '%.2f' % y, va='center', ha='left', fontsize=self.pinf.sch.subtxtsize, bbox=dict(boxstyle=tag_box_style, facecolor=facecolor, edgecolor=edgecolor, alpha=alpha), # 3.0 is the minimum default for text zorder=self.pinf.zorder[ax] + 3.0, **kwargs) def plot(self, strategy, numfigs=1): if not strategy.datas: return self.pinf = PInfo(self.p.scheme) self.sortdataindicators(strategy) self.calcrows(strategy) slen = len(strategy) d, m = divmod(slen, numfigs) pranges = list() for i in xrange(numfigs): a = d * i if i == (numfigs - 1): d += m # add remainder to last stint b = a + d pranges.append([a, b, d]) for numfig in xrange(numfigs): # prepare a figure fig = self.pinf.newfig(numfig) self.pinf.pstart, self.pinf.pend, self.pinf.psize = pranges[numfig] self.pinf.xstart = self.pinf.pstart self.pinf.xend = self.pinf.pend self.pinf.clock = strategy._clock self.pinf.xreal = strategy._clock.datetime.plot( self.pinf.pstart, self.pinf.psize) self.pinf.xlen = len(self.pinf.xreal) self.pinf.x = list(xrange(self.pinf.xlen)) # Do the plotting # Things that go always at the top (observers) for ptop in self.dplotstop: self.plotind(ptop, subinds=self.dplotsover[ptop]) # Create the rest on a per data basis for data in strategy.datas: for ind in self.dplotsup[data]: self.plotind( ind, subinds=self.dplotsover[ind], upinds=self.dplotsup[ind], downinds=self.dplotsdown[ind]) self.plotdata(data, self.dplotsover[data]) for ind in self.dplotsdown[data]: self.plotind( ind, subinds=self.dplotsover[ind], upinds=self.dplotsup[ind], downinds=self.dplotsdown[ind]) cursor = MultiCursor( fig.canvas, list(self.pinf.daxis.values()), useblit=True, horizOn=True, vertOn=True, horizShared=True, vertShared=False, horizMulti=True, vertMulti=False, color='black', lw=1, ls=':') self.pinf.cursors.append(cursor) lastax = list(self.pinf.daxis.values())[-1] # Date formatting for the x axis - only the last one needs it if False: locator = mticker.AutoLocator() lastax.xaxis.set_major_locator(locator) # lastax.xaxis.set_major_formatter(MyDateFormatter(self.pinf.xreal)) formatter = mdates.IndexDateFormatter(self.pinf.xreal, fmt='%Y-%m-%d') lastax.xaxis.set_major_formatter(formatter) else: self.setlocators(strategy._clock) # Put the subplots as indicated by hspace fig.subplots_adjust(hspace=self.pinf.sch.plotdist, top=0.98, left=0.05, bottom=0.05, right=0.95) # Applying fig.autofmt_xdate if the data axis is the last one # breaks the presentation of the date labels. why? # Applying the manual rotation with setp cures the problem # but the labels from all axis but the last have to be hidden if False: fig.autofmt_xdate(bottom=0.25, rotation=0) elif True: for ax in self.pinf.daxis.values(): mpyplot.setp(ax.get_xticklabels(), visible=False) # ax.autoscale_view(tight=True) mpyplot.setp(lastax.get_xticklabels(), visible=True, rotation=self.pinf.sch.tickrotation) # Things must be tight along the x axis (to fill both ends) axtight = 'x' if not self.pinf.sch.ytight else 'both' mpyplot.autoscale(enable=True, axis=axtight, tight=True) def setlocators(self, data): ax = list(self.pinf.daxis.values())[-1] comp = getattr(data, '_compression', 1) tframe = getattr(data, '_timeframe', TimeFrame.Days) if tframe == TimeFrame.Years: fmtmajor = '%Y' fmtminor = '%Y' fmtdata = '%Y' elif tframe == TimeFrame.Months: fmtmajor = '%Y' fmtminor = '%b' fmtdata = '%b' elif tframe == TimeFrame.Weeks: fmtmajor = '%b' fmtminor = '%d' fmtdata = '%d' elif tframe == TimeFrame.Days: fmtmajor = '%b' fmtminor = '%d' fmtdata = '%Y-%m-%d' elif tframe == TimeFrame.Minutes: fmtmajor = '%d %b' fmtminor = '%H:%M' fmtdata = '%Y-%m-%d %H:%M' fordata = mdates.IndexDateFormatter(self.pinf.xreal, fmt=fmtdata) for dax in self.pinf.daxis.values(): dax.fmt_xdata = fordata locmajor = mticker.AutoLocator() locminor = mticker.AutoMinorLocator() ax.xaxis.set_minor_locator(locminor) ax.xaxis.set_major_locator(locmajor) formajor = mdates.IndexDateFormatter(self.pinf.xreal, fmt=fmtmajor) forminor = mdates.IndexDateFormatter(self.pinf.xreal, fmt=fmtminor) ax.xaxis.set_minor_formatter(forminor) ax.xaxis.set_major_formatter(formajor) def calcrows(self, strategy): # Calculate the total number of rows rowsmajor = self.pinf.sch.rowsmajor rowsminor = self.pinf.sch.rowsminor nrows = 0 # Datas and volumes nrows += len(strategy.datas) * rowsmajor if self.pinf.sch.volume and not self.pinf.sch.voloverlay: nrows += len(strategy.datas) * rowsminor # top indicators/observers nrows += len(self.dplotstop) * rowsminor # indicators above datas nrows += sum(len(v) for v in self.dplotsup.values()) nrows += sum(len(v) for v in self.dplotsdown.values()) self.pinf.nrows = nrows def newaxis(self, obj, rowspan): ax = mpyplot.subplot2grid((self.pinf.nrows, 1), (self.pinf.row, 0), rowspan=rowspan, sharex=self.pinf.sharex) # update the sharex information if not available if self.pinf.sharex is None: self.pinf.sharex = ax # update the row index with the taken rows self.pinf.row += rowspan # save the mapping indicator - axis and return self.pinf.daxis[obj] = ax # Activate grid in all axes if requested ax.yaxis.tick_right() ax.grid(self.pinf.sch.grid, which='both') return ax def plotind(self, ind, subinds=None, upinds=None, downinds=None, masterax=None): ind._plotinit() sch = self.p.scheme # check subind subinds = subinds or [] upinds = upinds or [] downinds = downinds or [] # plot subindicators on self with independent axis above for upind in upinds: self.plotind(upind) # Get an axis for this plot ax = masterax or self.newaxis(ind, rowspan=self.pinf.sch.rowsminor) indlabel = ind.plotlabel() for lineidx in range(ind.size()): line = ind.lines[lineidx] linealias = ind.lines._getlinealias(lineidx) lineplotinfo = getattr(ind.plotlines, '_%d' % lineidx, None) if not lineplotinfo: lineplotinfo = getattr(ind.plotlines, linealias, None) if not lineplotinfo: lineplotinfo = AutoInfoClass() if lineplotinfo._get('_plotskip', False): continue # Legend label only when plotting 1st line if masterax and not ind.plotinfo.plotlinelabels: label = indlabel * (lineidx == 0) or '_nolegend' else: label = lineplotinfo._get('_name', '') or linealias # plot data lplot = line.plotrange(self.pinf.xstart, self.pinf.xend) if not math.isnan(lplot[-1]): label += ' %.2f' % lplot[-1] plotkwargs = dict() linekwargs = lineplotinfo._getkwargs(skip_=True) if linekwargs.get('color', None) is None: if not lineplotinfo._get('_samecolor', False): self.pinf.nextcolor(ax) plotkwargs['color'] = self.pinf.color(ax) plotkwargs.update(dict(aa=True, label=label)) plotkwargs.update(**linekwargs) if ax in self.pinf.zorder: plotkwargs['zorder'] = self.pinf.zordernext(ax) pltmethod = getattr(ax, lineplotinfo._get('_method', 'plot')) plottedline = pltmethod(self.pinf.x, lplot, **plotkwargs) try: plottedline = plottedline[0] except: # Possibly a container of artists (when plotting bars) pass self.pinf.zorder[ax] = plottedline.get_zorder() if not math.isnan(lplot[-1]): # line has valid values, plot a tag for the last value self.drawtag(ax, len(self.pinf.xreal), lplot[-1], facecolor='white', edgecolor=self.pinf.color(ax)) # plot subindicators that were created on self for subind in subinds: self.plotind(subind, subinds=self.dplotsover[subind], masterax=ax) if not masterax: # adjust margin if requested ... general of particular ymargin = ind.plotinfo._get('plotymargin', 0.0) ymargin = max(ymargin, self.pinf.sch.yadjust) if ymargin: ax.margins(y=ymargin) # Set specific or generic ticks yticks = ind.plotinfo._get('plotyticks', []) if not yticks: yticks = ind.plotinfo._get('plotyhlines', []) if yticks: ax.set_yticks(yticks) else: locator = mticker.MaxNLocator(nbins=4, prune='both') ax.yaxis.set_major_locator(locator) # Set specific hlines if asked to hlines = ind.plotinfo._get('plothlines', []) if not hlines: hlines = ind.plotinfo._get('plotyhlines', []) for hline in hlines: ax.axhline(hline, color=self.pinf.sch.hlinescolor, ls=self.pinf.sch.hlinesstyle, lw=self.pinf.sch.hlineswidth) if self.pinf.sch.legendind and \ ind.plotinfo._get('plotlegend', True): handles, labels = ax.get_legend_handles_labels() # Ensure that we have something to show if labels: # Legend done here to ensure it includes all plots legend = ax.legend(loc=self.pinf.sch.legendindloc, numpoints=1, frameon=False, shadow=False, fancybox=False, prop=self.pinf.prop) legend.set_title(indlabel, prop=self.pinf.prop) # hack: if title is set. legend has a Vbox for the labels # which has a default "center" set legend._legend_box.align = 'left' # plot subindicators on self with independent axis below for downind in downinds: self.plotind(downind) def plotvolume(self, data, opens, highs, lows, closes, volumes, label): if self.pinf.sch.voloverlay: rowspan = self.pinf.sch.rowsmajor else: rowspan = self.pinf.sch.rowsminor ax = self.newaxis(data.volume, rowspan=rowspan) if self.pinf.sch.voloverlay: volalpha = self.pinf.sch.voltrans else: volalpha = 1.0 maxvol = volylim = max(volumes) if maxvol: # Plot the volume (no matter if as overlay or standalone) vollabel = label volplot, = plot_volume(ax, self.pinf.x, opens, closes, volumes, colorup=self.pinf.sch.volup, colordown=self.pinf.sch.voldown, alpha=volalpha, label=vollabel) nbins = 6 prune = 'both' if self.pinf.sch.voloverlay: # store for a potential plot over it nbins = int(nbins / self.pinf.sch.volscaling) prune = None volylim /= self.pinf.sch.volscaling ax.set_ylim(0, volylim, auto=True) else: # plot a legend handles, labels = ax.get_legend_handles_labels() if handles: # Legend done here to ensure it includes all plots legend = ax.legend(loc=self.pinf.sch.legendindloc, numpoints=1, frameon=False, shadow=False, fancybox=False, prop=self.pinf.prop) locator = mticker.MaxNLocator(nbins=nbins, prune=prune) ax.yaxis.set_major_locator(locator) ax.yaxis.set_major_formatter(MyVolFormatter(maxvol)) if not maxvol: ax.set_yticks([]) return None return volplot def setxdata(self, data): # only if this data has a master, do something if data.mlen: # this data has a master, get the real length of this data self.pinf.xlen = len(data.mlen) # find the starting point with regards to master start: pstart self.pinf.xstart = bisect.bisect_left( data.mlen, self.pinf.pstart) # find the ending point with regards to master start: pend self.pinf.xend = bisect.bisect_right( data.mlen, self.pinf.pend) # extract the Xs from the subdata self.pinf.x = data.mlen[self.pinf.xstart:self.pinf.xend] # rebase the Xs to the start of the main data point self.pinf.x = [x - self.pinf.pstart for x in self.pinf.x] def plotdata(self, data, indicators): for ind in indicators: upinds = self.dplotsup[ind] for upind in upinds: self.plotind(upind, subinds=self.dplotsover[upind], upinds=self.dplotsup[upind], downinds=self.dplotsdown[upind]) # set the x axis data (if needed) self.setxdata(data) opens = data.open.plotrange(self.pinf.xstart, self.pinf.xend) highs = data.high.plotrange(self.pinf.xstart, self.pinf.xend) lows = data.low.plotrange(self.pinf.xstart, self.pinf.xend) closes = data.close.plotrange(self.pinf.xstart, self.pinf.xend) volumes = data.volume.plotrange(self.pinf.xstart, self.pinf.xend) vollabel = 'Volume' if self.pinf.sch.volume and self.pinf.sch.voloverlay: volplot = self.plotvolume( data, opens, highs, lows, closes, volumes, vollabel) axvol = self.pinf.daxis[data.volume] ax = axvol.twinx() self.pinf.daxis[data] = ax else: ax = self.newaxis(data, rowspan=self.pinf.sch.rowsmajor) datalabel = '' dataname = '' if hasattr(data, '_name') and data._name: datalabel += data._name if hasattr(data, '_compression') and \ hasattr(data, '_timeframe'): tfname = TimeFrame.getname(data._timeframe, data._compression) datalabel += ' (%d %s)' % (data._compression, tfname) datalabel += ' O:%.2f H:%2.f L:%.2f C:%.2f' % \ (opens[-1], highs[-1], lows[-1], closes[-1]) if self.pinf.sch.style.startswith('line'): plotted = plot_lineonclose( ax, self.pinf.x, closes, color=self.pinf.sch.loc, label=datalabel) else: if self.pinf.sch.style.startswith('candle'): plotted = plot_candlestick( ax, self.pinf.x, opens, highs, lows, closes, colorup=self.pinf.sch.barup, colordown=self.pinf.sch.bardown, label=datalabel) elif self.pinf.sch.style.startswith('bar') or True: # final default option -- should be "else" plotted = plot_ohlc( ax, self.pinf.x, opens, highs, lows, closes, colorup=self.pinf.sch.barup, colordown=self.pinf.sch.bardown, label=datalabel) self.pinf.zorder[ax] = plotted[0].get_zorder() # Code to place a label at the right hand side with the last value self.drawtag(ax, len(self.pinf.xreal), closes[-1], facecolor='white', edgecolor=self.pinf.sch.loc) ax.yaxis.set_major_locator(mticker.MaxNLocator(prune='both')) # make sure "over" indicators do not change our scale ax.set_ylim(ax.get_ylim()) if self.pinf.sch.volume: if not self.pinf.sch.voloverlay: self.plotvolume( data, opens, highs, lows, closes, volumes, vollabel) else: # Prepare overlay scaling/pushup or manage own axis if self.pinf.sch.volpushup: # push up overlaid axis by lowering the bottom limit axbot, axtop = ax.get_ylim() axbot *= (1.0 - self.pinf.sch.volpushup) ax.set_ylim(axbot, axtop) for ind in indicators: self.plotind(ind, subinds=self.dplotsover[ind], masterax=ax) handles, labels = ax.get_legend_handles_labels() if handles: # put data and volume legend entries in the 1st positions # because they are "collections" they are considered after Line2D # for the legend entries, which is not our desire if self.pinf.sch.volume and self.pinf.sch.voloverlay: if volplot: # even if volume plot was requested, there may be no volume labels.insert(0, vollabel) handles.insert(0, volplot) didx = labels.index(datalabel) labels.insert(0, labels.pop(didx)) handles.insert(0, handles.pop(didx)) # feed handles/labels to legend to get right order legend = ax.legend(handles, labels, loc='upper left', frameon=False, shadow=False, fancybox=False, prop=self.pinf.prop, numpoints=1, ncol=1) # hack: if title is set. legend has a Vbox for the labels # which has a default "center" set legend._legend_box.align = 'left' for ind in indicators: downinds = self.dplotsdown[ind] for downind in downinds: self.plotind(downind, subinds=self.dplotsover[downind], upinds=self.dplotsup[downind], downinds=self.dplotsdown[downind]) def show(self): mpyplot.show() def sortdataindicators(self, strategy): # These lists/dictionaries hold the subplots that go above each data self.dplotstop = list() self.dplotsup = collections.defaultdict(list) self.dplotsdown = collections.defaultdict(list) self.dplotsover = collections.defaultdict(list) # Sort observers in the different lists/dictionaries for x in strategy.getobservers(): if not x.plotinfo.plot or x.plotinfo.plotskip: continue if x.plotinfo.subplot: self.dplotstop.append(x) else: key = getattr(x._clock, 'owner', x._clock) self.dplotsover[key].append(x) # Sort indicators in the different lists/dictionaries for x in strategy.getindicators(): if not hasattr(x, 'plotinfo'): # no plotting support - so far LineSingle derived classes continue if not x.plotinfo.plot or x.plotinfo.plotskip: continue # support LineSeriesStub which has "owner" to point to the data key = getattr(x._clock, 'owner', x._clock) if getattr(x.plotinfo, 'plotforce', False): if key not in strategy.datas: datas = strategy.datas while True: if key not in strategy.datas: key = key._clock else: break if x.plotinfo.subplot: if x.plotinfo.plotabove: self.dplotsup[key].append(x) else: self.dplotsdown[key].append(x) else: self.dplotsover[key].append(x)
gpl-3.0
mjabri/holoviews
tests/testrenderclass.py
1
3450
# -*- coding: utf-8 -*- """ Test cases for rendering exporters """ from hashlib import sha256 from unittest import SkipTest import numpy as np from holoviews.plotting.mpl.renderer import MPLRenderer from holoviews import HoloMap, Image, ItemTable from holoviews.element.comparison import ComparisonTestCase from nose.plugins.attrib import attr try: # Standardize backend due to random inconsistencies from matplotlib import pyplot pyplot.switch_backend('agg') except: pyplot = None def digest_data(data): hashfn = sha256() hashfn.update(data) return hashfn.hexdigest() @attr(optional=1) class MPLRendererTest(ComparisonTestCase): """ Note if not possible to compare the hashes of SVG and WebM formats as the hashes are not stable across exports. """ def setUp(self): if pyplot is None: raise SkipTest("Matplotlib required to test widgets") self.basename = 'no-file' self.image1 = Image(np.array([[0,1],[2,3]]), label='Image1') self.image2 = Image(np.array([[1,0],[4,-2]]), label='Image2') self.map1 = HoloMap({1:self.image1, 2:self.image2}, label='TestMap') self.unicode_table = ItemTable([('β','Δ1'), ('°C', '3×4')], label='Poincaré', group='α Festkörperphysik') self.renderer = MPLRenderer.instance() def test_simple_export_gif(self): data = self.renderer(self.map1, fmt='gif')[0] self.assertEqual(digest_data(data), '95258c17d10620f20604c9cbd17e6b65e886a6163c96d6574f3eb812e0f149c2') def test_simple_export_gif_double_size(self): data = self.renderer.instance(size=200)(self.map1, fmt='gif')[0] self.assertEqual(digest_data(data), 'fbe6d753df1471315cbd83d370379591af0fdea114601c5ce1a615777749ca91') def test_simple_export_gif_half_fps(self): data = self.renderer.instance(fps=5)(self.map1, fmt='gif', )[0] self.assertEqual(digest_data(data), 'add756aa3caeb4c5f2396cdd5bd0122128c6a1275de9d3a44a0c21a734c4d5f4') def test_simple_export_png1(self): data = self.renderer(self.image1, fmt='png')[0] self.assertEqual(digest_data(data), '08b7d97e79f715f9d8593416b1f6561ebe3e75bb038172ffd6048286ab09e671') def test_simple_export_png1_double_size(self): data = self.renderer.instance(size=200)(self.image1, fmt='png')[0] self.assertEqual(digest_data(data), '0b48a3e366b300fcfea3cba47d6a07631a8fcc02a96860f1291233ef2c976764') def test_simple_export_png2(self): data = self.renderer(self.image2, fmt='png')[0] self.assertEqual(digest_data(data), '2b5f1639584cd4c18c01cfb3f26d26dfa582fff39b869223269c0d941f17cc8b') def test_simple_export_png2_double_size(self): data = self.renderer.instance(size=200)(self.image2, fmt='png')[0] self.assertEqual(digest_data(data), 'ef8e2df9c3d3a27e738ae1ca9f5b0704b6467cb44265f7933a3c137ce8a8a519') def test_simple_export_unicode_table_png(self): "Test that unicode support and rendering is working" data = self.renderer.instance(size=200)(self.unicode_table, fmt='png')[0] self.assertEqual(digest_data(data), 'a3dd68a888de14064cb621c14be5b175d96781cdbc932a3f778def34beaee1ff')
bsd-3-clause
mueller-lab/PyFRAP
pyfrp/subclasses/pyfrp_fit.py
2
30354
#===================================================================================================================================== #Copyright #===================================================================================================================================== #Copyright (C) 2014 Alexander Blaessle, Patrick Mueller and the Friedrich Miescher Laboratory of the Max Planck Society #This software is distributed under the terms of the GNU General Public License. #This file is part of PyFRAP. #PyFRAP is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. #=========================================================================================================================================================================== #Module Description #=========================================================================================================================================================================== """Essential PyFRAP module containing :py:class:`pyfrp.subclasses.pyfrp_fit.fit` class. """ #=========================================================================================================================================================================== #Improting necessary modules #=========================================================================================================================================================================== #Numpy/Scipy import numpy as np #PyFRAP Modules from pyfrp.modules import pyfrp_misc_module from pyfrp.modules import pyfrp_plot_module from pyfrp.modules import pyfrp_fit_module from pyfrp.modules import pyfrp_stats_module from pyfrp.modules.pyfrp_term_module import * #Time import time #=========================================================================================================================================================================== #Class definitions #=========================================================================================================================================================================== class fit: """Main fit class of PyFRAP. The purpose of the fit class is to save all attributes used for fitting PyFRAP simulation results to data analysis results. The main attributes are: * Fitting algorithm specifics: * Fitting algorithm, see also :py:func:`setOptMeth`. * Stopping criteria, see also :py:func:`setMaxfun` and :py:func:`setOptTol`. * Initial guess, see also :py:func:`getX0`. * Boundaries, see also :py:func:`getBounds`. * Fitting options: * ``fitProd``, see also :py:func:`getFitProd`. * ``fitDegr``, see also :py:func:`getFitDegr`. * ``fitPinned``, see also :py:func:`getFitPinned`. * ``equOn``, see also :py:func:`getEqu`. * ``fitCutOffT``, see also :py:func:`getFitCutOffT`. * The ROIs to be fitted, see also :py:func:`getROIsFitted`. * Fitting results, see also :py:func:`printResults`. * Fitted vectors. The most important methods are: * :py:func:`run`: Runs fitting. * :py:func:`addROIByName`: Adds ROI to be used for fitting. * :py:func:`getX0`: Builds and returns current initial guess. * :py:func:`getBounds`: Builds and returns current bounds. * :py:func:`computeStats`: Compares post-fitting statistics. The fit uses simulation and data vectors stored in all :py:class:`pyfrp.subclasses.pyfrp_ROI.ROI` objects defined in ``ROIsFitted`` list to compute the optimal values for ``DOptMu`` (``prodOpt`` or ``degrOpt`` if ``fitProd`` or ``fitDegr`` is selected, respectively). After calling :py:func:`run`, will automatically compute proper ``x0`` via :py:func:`getX0` and :py:func:`getBounds`. Args: embryo (pyfrp.subclasses.pyfrp_embryo.embryo): Embryo object that fit belongs to. name (str): Name of fit. """ #Create new fit object def __init__(self,embryo,name): #General Settings self.name=name self.embryo=embryo #Optimization algorithm settings self.optMeth="Constrained Nelder-Mead" self.maxfun=1000 self.optTol=1e-10 #Dataseries selection self.ROIsFitted=[] #What parameters to fit self.fitProd=False self.fitDegr=False #Equalization and pinning self.equOn=True self.fitPinned=True self.equFacts=[] self.LBEqu=0.1 self.UBEqu=3. #Intial guess self.x0=[10,0,0.] #Bounds self.LBProd=0. self.UBProd=100. self.LBDegr=0. self.UBDegr=100. self.LBD=0.01 self.UBD=300. self.bounds=None #More settings self.kineticTimeScale=1. self.bruteInitD=False #Cutting tvec option self.fitCutOffT=False self.cutOffT=150 self.cutOffStepSim=self.embryo.simulation.stepsSim self.cutOffStepData=self.embryo.nFrames #Fit tracking self.saveTrack=0 self.trackedParms=[] self.trackedFits=[] #Fitted Vectors self.fittedVecs=[] self.tvecFit=None self.dataVecsFitted=[] #Results self.SSD=10000000 self.DOptMu=None self.DOptPx=None self.prodOpt=None self.degrOpt=None self.success=None self.iterations=None self.fcalls=None #Statistics self.Rsq=None self.MeanRsq=None self.RsqByROI={} #Empty result dataseries self.tvecFit=embryo.tvecData def addROI(self,r): """Adds ROI to the list of fitted ROIs. Args: r (pyfrp.subclasses.pyfrp_ROI.ROI): ROI to be used for fitting. Returns: list: Updated list of ROIs used for fitting. """ if r not in self.ROIsFitted: self.ROIsFitted.append(r) self.x0.append(1.) return self.ROIsFitted def addROIByName(self,name): """Adds ROI to the list of fitted ROIs, given a specific name. Args: name (str): Name of ROI to be used for fitting. Returns: list: Updated list of ROIs used for fitting. """ r=self.embryo.getROIByName(name) return self.addROI(r) def addROIById(self,Id): """Adds ROI to the list of fitted ROIs, given a specific ROI Id. Args: Id (int): Id of ROI to be used for fitting. Returns: list: Updated list of ROIs used for fitting. """ r=self.embryo.getROIById(Id) return self.addROI(r) def getROIsFitted(self): """Returns list of ROIs used for fitting. Returns: list: list of ROIs used for fitting. """ return self.ROIsFitted def removeROI(self,r): """Removes ROI from the list of fitted ROIs. Args: r (pyfrp.subclasses.pyfrp_ROI.ROI): ROI to be removed. Returns: list: Updated list of ROIs used for fitting. """ if r in self.ROIsFitted: idx=self.ROIsFitted.index(r) self.x0.pop(3+idx) self.ROIsFitted.remove(r) return self.ROIsFitted def getX0(self): """Returns initial guess of fit in the form that is useful for the call of the optimization algorithm. Copies x0 into local variable to pass to solver, pop entries that are currently not needed since they are turned off via ``fitProd`` or ``fitDegr``. Always appends initial guess for equalization factors, even though they might not been used. .. note:: Always gets executed at the start of ``run``. Returns: list: Currently used x0. """ x0=list(self.x0) if self.fitProd and self.fitDegr: pass elif self.fitProd and not self.fitDegr: x0.pop(2) elif not self.fitProd and self.fitDegr: x0.pop(1) elif not self.fitProd and not self.fitDegr: x0=list(self.x0) x0.pop(2) x0.pop(1) return x0 def reset2DefaultX0(self): """Resets initial guess x0 to its default form. The default form of x0 is >>> [10., 0. ,0. , 1.,1.,1.] The last entries are the initial guess of equlalization factors and is set to be list of of ones of the same length of ``ROIsFitted``. Returns: list: New initial guess x0. """ equFacts=len(self.ROIsFitted)*[1.] self.x0=[10,0,0]+equFacts return self.x0 def getBounds(self): """Generates tuple of boundary tuples, limiting parameters varied during SSD minimization. Will generate exactly the boundary tuple that is currently useful to the optimization algorithm, meaning that only values that are needed since they are turned on via ``fitProd`` or ``fitDegr`` will be included into tuple. Will use values that are stored in ``LBx`` and ``UBx``, where ``x`` is ``D``, ``Prod``, or ``Degr`` for the creation of the tuples. Will also add a tuple of bounds defined via ``LBEqu`` and ``UBEqu`` for each ROI in ``ROIsFitted``. .. note:: Always gets executed at the start of ``run``. Returns: tuple: Boundary value tuple. """ if self.fitProd and self.fitDegr: bnds = [(self.LBD, self.UBD), (self.LBD, self.UBD),(self.LBD,self.UBD)] ranges=[slice(self.LBD,self.UBD,1),slice(self.LBProd,self.UBProd,10),slice(self.LBDegr,self.UBDegr,10)] elif self.fitProd and not self.fitDegr: bnds = [(self.LBD, self.UBD), (self.LBProd, self.UBProd)] ranges=[slice(self.LBD,self.UBD,1),slice(self.LBProd,self.UBProd,10)] elif not self.fitProd and self.fitDegr: bnds = [(self.LBD, self.UBD), (self.LBDegr, self.UBDegr)] ranges=[slice(self.LBD,self.UBD,1),slice(self.LBDegr,self.UBDegr,10)] elif not self.fitProd and not self.fitDegr: bnds = [(self.LBD, self.UBD),] ranges=[1,self.UBD] bnds=bnds+len(self.ROIsFitted)*[(self.LBEqu,self.UBEqu)] ranges=ranges+len(self.ROIsFitted)*[slice(self.LBEqu,self.UBEqu,0.2)] if self.optMeth=='brute': self.bounds=tuple(ranges) else: self.bounds=tuple(bnds) return self.bounds def resultsToVec(self): """Puts results back in vector as optimization algorithm would return it. Returns: list: Result vector. """ x=[self.DOptPx] if self.fitProd: x.append(self.prodOpt) if self.fitDegr: x.append(self.degrOpt) if self.equOn: x=x+list(self.equFacts) return x def getFittedParameterNames(self): """Returns names of parameters that are selected for fitting. Returns: list: Names of parameters fitted. """ x=["DOptPx"] if self.fitProd: x.append("prod") if self.fitDegr: x.append("degr") if self.equOn: for r in self.ROIsFitted: x.append(r.name+" equFact") return x def run(self,debug=False,ax=None): """Runs fit. Fitting is done by passing fit object to :py:func:`pyfrp.modules.pyfrp_fit_module.FRAPFitting`. This function then calls all necessary methods of fit to prepare it for optimization and then passes it to optimization algorithm. .. note:: If ``bruteInitD`` is turned on, will execute :py:func:`runBruteInit` instead. Keyword Args: debug (bool): Print debugging messages. ax (matplotlib.axes): Axes to show debugging plots in. Returns: pyfrp.subclasses.pyfrp_fit.fit: ``self``. """ if self.bruteInitD: self.runBruteInit(debug=debug,ax=ax) else: self=pyfrp_fit_module.FRAPFitting(self,debug=debug,ax=ax) return self def runBruteInit(self,debug=False,ax=None,steps=5,x0Ds=[]): """Runs fit for different initial guesses of the diffusion constant D, then selects the one that actually yielded the minimal SSD. Initially guesses are generated with :py:func:`getBruteInitDArray` if no array ``x0Ds`` is given. Fitting is done by passing fit object to :py:func:`pyfrp.modules.pyfrp_fit_module.FRAPFitting`. This function then calls all necessary methods of fit to prepare it for optimization and then passes it to optimization algorithm. Will select the initial guess that yielded the minimal SSD and then rerun with this x0 again, making sure that everything is updated in fit object. Keyword Args: debug (bool): Print debugging messages. ax (matplotlib.axes): Axes to show debugging plots in. steps (int): How many initial guesses to generate. x0Ds (list): Array with possible initial guesses for D. Returns: pyfrp.subclasses.pyfrp_fit.fit: ``self``. """ if x0Ds==[]: x0Ds=self.getBruteInitDArray(steps=steps) SSDs=[] for x0D in x0Ds: if debug: print "Trying x0(D) = ", x0D self.setX0D(x0D) self=pyfrp_fit_module.FRAPFitting(self,debug=debug,ax=ax) SSDs.append(self.SSD) idxOpt=SSDs.index(min(SSDs)) if debug: print "x0(D) yielding best result = ", x0Ds[idxOpt] self.setX0D(x0Ds[idxOpt]) self=pyfrp_fit_module.FRAPFitting(self,debug=debug,ax=ax) return self def getBruteInitDArray(self,steps=5): """Generates array of different possibilities to be used as initial guess for D. If ``LBD`` and ``UBD`` is given, will simply divide the range between the two in 4 equidistant values. Otherwise will vary around ``x0`` in 2 orders of magnitude. Keyword Args: steps (int): How many initial guesses to generate. Returns: list: Array with possible initial guesses for D. """ if self.LBD!=None: LB=self.LBD else: LB=0.01*self.getX0D() if self.UBD!=None: UB=self.UBD else: UB=100*self.getX0D() x0=np.linspace(LB+1E-10,UB-1E-10,steps) return list(x0) def assignOptParms(self,res): r"""Assigns optimal parameters found by optimization algorithm to attributes in fit object depending on fit options chosen. Args: res (list): Result array from optimization algorithm. Returns: tuple: Tuple containing: * DOptPx (float): Optimal diffusion coefficient in :math:`\frac{\mathrm{px}^2}{s}}`. * prod (float): Optimal production rate in :math:`\frac{\[c\]}{s}}`. * degr (float): Optimal degradation rate in :math:`\frac{1}{s}}`. * DOptMu (float): Optimal diffusion coefficient in :math:`\frac{\mu\mathrm{m}^2}{s}}`. """ if self.fitProd and self.fitDegr: self.DOptPx=res[0] self.prodOpt=res[1]/self.kineticTimeScale self.degrOpt=res[2]/self.kineticTimeScale elif self.fitProd and not self.fitDegr: self.DOptPx=res[0] self.prodOpt=res[1]/self.kineticTimeScale self.degrOpt=self.x0[2]/self.kineticTimeScale elif not self.fitProd and self.fitDegr: self.DOptPx=res[0] self.prodOpt=self.x0[1]/self.kineticTimeScale self.degrOpt=res[1]/self.kineticTimeScale elif not self.fitProd and not self.fitDegr: self.DOptPx=res[0] self.prodOpt=self.x0[1]/self.kineticTimeScale self.degrOpt=self.x0[2]/self.kineticTimeScale self.DOptMu=self.DOptPx*self.embryo.convFact**2 return self.DOptPx, self.prodOpt, self.degrOpt, self.DOptMu def plotFit(self,ax=None,legend=True,title=None,show=True): """Plots fit, showing the result for all fitted ROIs. .. note:: If no ``ax`` is given, will create new one. .. image:: ../imgs/pyfrp_fit/fit.png Keyword Args: ax (matplotlib.axes): Axes used for plotting. legend (bool): Show legend. title (str): Title of plot. show (bool): Show plot. Returns: matplotlib.axes: Axes used for plotting. """ for r in self.ROIsFitted: ax=r.plotFit(self,ax=ax,legend=legend,title=title,show=show) return ax def printResults(self): """Prints out main results of fit.""" printObjAttr('name',self) printObjAttr('DOptMu',self) printObjAttr('DOptPx',self) printObjAttr('prodOpt',self) printObjAttr('degrOpt',self) printObjAttr('equFacts',self) printObjAttr('success',self) printObjAttr('Rsq',self) printObjAttr('MeanRsq',self) printObjAttr('RsqByROI',self) return True def printAllAttr(self): """Prints out all attributes of fit object.""" printAllObjAttr(self) def resultsToDict(self): """Extracts all important results into dictionary, making it easier for printout or csv extraction. """ parms=["DOptMu","DOptPx","prodOpt","degrOpt","success","Rsq","MeanRsq","fitDegr","fitProd","fitPinned","equOn","x0"] dic=pyfrp_misc_module.objAttr2Dict(self,attr=parms) roiNames=pyfrp_misc_module.objAttrToList(self.ROIsFitted,"name") #equFacts=np.asarray(self.equFacts).astype(str) dic["ROIsFitted"]=" , ".join(roiNames) for i in range(len(roiNames)): if self.equOn: dic["equFactor "+roiNames[i]]=self.equFacts[i] else: dic["equFactor "+roiNames[i]]="" dic["Rsq("+roiNames[i]+")"]=self.RsqByROI[roiNames[i]] return dic def setBruteInitD(self,b): """Turns on/off if the initial guess of for the diffusion rate D should be bruteforced. Args: b (bool): Flag value. Returns: bool: Current flag value. """ self.bruteInitD=b return self.bruteInitD def setOptMeth(self,m): """Sets optimization method. Available optimization methods are: * Constrained Nelder-Mead * Nelder-Mead * TNC * L-BFGS-B * SLSQP * brute * BFGS * CG See also http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.minimize.html and http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.brute.html#scipy.optimize.brute . You can find out more about the constrained Nelder-Mead algorithm in the documentation of :py:func:`pyfrp.modules.pyfrp_optimization_module.constrObjFunc`. Args: m (str): New method. """ self.optMeth=m return self.optMeth def getOptMeth(self): """Returns the currently used optimization algorithm. Returns: str: Optimization algorithm. """ return self.optMeth def isFitted(self): """Checks if fit already has been run and succeeded. Returns: bool: ``True`` if success. """ return self.DOptMu!=None def setEqu(self,b): """Turns on/off equalization. Args: b (bool): New flag value. Returns: bool: New flag value. """ self.equOn=b return self.equOn def setFitPinned(self,b): """Turns on/off if pinned series are supposed to be fitted. Args: b (bool): New flag value. Returns: bool: New flag value. """ self.fitPinned=b return self.fitPinned def setFitProd(self,b): """Turns on/off if production is supposed to be considered in fit. Args: b (bool): New flag value. Returns: bool: New flag value. """ self.fitProd=b return self.fitProd def setFitDegr(self,b): """Turns on/off if degradation is supposed to be considered in fit. Args: b (bool): New flag value. Returns: bool: New flag value. """ self.fitDegr=b return self.fitDegr def setSaveTrack(self,b): """Turns on/off if fitting process is supposed to be stored. This then can then be used to following the convergence of the optimization algorithm and possibly to identify local minima. Args: b (bool): New flag value. Returns: bool: New flag value. """ self.saveTrack=b return self.saveTrack def setFitCutOffT(self,b): """Turns on/off if only a certain fraction of the timeseries is supposed to be fitted. .. warning:: This option is currently VERY experimental. Fitting might crash. Args: b (bool): New flag value. Returns: bool: New flag value. """ printWarning("CutOffT Option is currently VERY experimental. Fitting might crash.") self.fitCutOffT=b return self.fitCutOffT def setCutOffT(self,t): self.cutOffT=t return self.cutOffT def setMaxfun(self,m): """Sets maximum number of function evaluations at which optimization algorithm stops. Args: m (int): New maximum number of function evaluations. """ self.maxfun=m return self.maxfun def setOptTol(self,m): """Sets tolerance level at which optimization algorithm stops. Args: m (float): New tolerance level. """ self.optTol=m return self.optTol def setLBD(self,b): """Sets the lower bound for the diffusion rate. Args: b (float): New lower bound for diffusion rate. """ self.LBD=b return self.LBD def setLBProd(self,b): """Sets the lower bound for the production rate. Args: b (float): New lower bound for production rate. """ self.LBProd=b return self.LBProd def setLBDegr(self,b): """Sets the lower bound for the degradation rate. Args: b (float): New lower bound for degradation rate. """ self.LBDegr=b return self.LBDegr def setUBD(self,b): """Sets the upper bound for the diffusion rate. Args: b (float): New upper bound for diffusion rate. """ self.UBD=b return self.UBD def setUBProd(self,b): """Sets the upper bound for the production rate. Args: b (float): New upper bound for production rate. """ self.UBProd=b return self.UBProd def setUBDegr(self,b): """Sets the upper bound for the degradation rate. Args: b (float): New upper bound for degradation rate. """ self.UBDegr=b return self.UBDegr def getEqu(self): """Returns equalization flag. Returns: bool: Current flag value. """ return self.equOn def getFitPinned(self): """Returns flag controlling if pinned timeseries are supposed to be used for fitting. Returns: bool: Current flag value. """ return self.fitPinned def getFitProd(self): """Returns flag controlling if a production term is supposed to be used for fitting. Returns: bool: Current flag value. """ return self.fitProd def getFitDegr(self): """Returns flag controlling if a degredation term is supposed to be used for fitting. Returns: bool: Current flag value. """ return self.fitDegr def getSaveTrack(self): """Returns flag controlling if whole fitting process is supposed to be saved in fit object. Returns: bool: Current flag value. """ return self.saveTrack def getFitCutOffT(self): """Returns flag controlling if only the first ``cutOffT`` timesteps are supposed to be fitted. .. warning:: This option is currently VERY experimental. Fitting might crash. Returns: bool: Current flag value. """ return self.fitCutOffT def getCutOffT(self): """Returns timepoint at which timeseries are cut if ``fitCutOffT`` is turned on. .. warning:: This option is currently VERY experimental. Fitting might crash. Returns: float: Timepoint. """ return self.cutOffT def getMaxfun(self): """Returns maximum number of function evaluations at which optimization algorithm stops. Returns: int: Current maximum number of function evaluations. """ return self.maxfun def getOptTol(self): """Returns tolerance level at which optimization algorithm stops. Returns: float: Current tolerance level. """ return self.optTol def getLBD(self): """Returns the lower bound for the diffusion rate. Returns: float: Current lower bound for diffusion rate. """ return self.LBD def getLBProd(self): """Returns the lower bound for the production rate. Returns: float: Current lower bound for production rate. """ return self.LBProd def getLBDegr(self): """Returns the lower bound for the degradation rate. Returns: float: Current lower bound for degradation rate. """ return self.LBDegr def getUBD(self): """Returns the upper bound for the diffusion rate. Returns: float: Current upper bound for diffusion rate. """ return self.UBD def getUBProd(self): """Returns the upper bound for the production rate. Returns: float: Current upper bound for production rate. """ return self.UBProd def getUBDegr(self): """Returns the upper bound for the degradation rate. Returns: float: Current upper bound for degradation rate. """ return self.UBDegr def setKineticTimeScale(self,s): """Sets the kinetic time scale factor used for fitting. Args: s (float): New kinetic time scale factor. """ self.kineticTimeScale=s return self.kineticTimeScale def getKineticTimeScale(self): """Returns the kinetic time scale factor used for fitting. Returns: float: Current kinetic time scale factor. """ return self.kineticTimeScale def setName(self,s): """Sets name of fit. Args: s (str): New name of fit. """ self.name=s return self.name def getName(self): """Returns name of fit. Returns: str: Name of fit. """ return self.name def setX0Equ(self,x): """Sets the initial guess for the equalization factor. .. note:: Does this for all ROIs in ROIsFitted. Args: x (float): Initial guess for equalization factor. """ for i in range(3,len(self.x0)): self.x0[i]=x return self.x0 def getX0Equ(self,x): """Returns the initial guess for the equalization factor for all ROIs fitted. Returns: list: Initial guess for equalization factor. """ return self.x0[3:] def setX0D(self,x): """Sets the initial guess for the diffusion rate. Args: x (float): Initial guess for diffusion rate. """ self.x0[0]=x return self.x0[0] def setX0Prod(self,x): """Sets the initial guess for the production rate. Args: x (float): Initial guess for production rate. """ self.x0[1]=x return self.x0[1] def setX0Degr(self,x): """Sets the initial guess for the degradation rate. Args: x (float): Initial guess for degradation rate. """ self.x0[2]=x return self.x0[2] def getX0D(self): """Returns the initial guess for the diffusion rate. Returns: float: Initial guess for diffusion rate. """ return self.x0[0] def getX0Prod(self): """Returns the initial guess for the production rate. Returns: float: Initial guess for production rate. """ return self.x0[1] def getX0Degr(self): """Returns the initial guess for the degradation rate. Returns: float: Initial guess for degration rate. """ return self.x0[2] def setX0(self,x): """Sets the initial guess ``x0``. Argument ``x`` needs to have length 3, otherwise it is being rejected. .. note:: If ``fitProd`` or ``fitDegr`` are not chosen, the values in ``x0`` are going to be used as static parameters. Args: x (list): New desired initial guess. Returns: list: New initial guess. """ if len(x)==3: self.x0=x else: printError("Length of x0 is not 3, not going to change it.") return self.x0 def checkPinned(self): """Checks if all ROIs in ``ROIsFitted`` have been pinned. Returns: bool: ``True`` if all ROIs have been pinned, ``False`` else. """ b=True for i,r in enumerate(self.ROIsFitted): b = b + len(self.embryo.tvecData)==len(r.dataVecPinned) + len(self.embryo.simulation.tvecSim)==len(r.simVecPinned) return b def checkSimulated(self): """Checks if all ROIs in ``ROIsFitted`` have been simulated. Returns: bool: ``True`` if all ROIs have been simulated, ``False`` else. """ b=True for r in self.ROIsFitted: b = b + len(r.simVec)==len(self.embryo.simulation.tvecSim) return b def updateVersion(self): """Updates fit object to current version, making sure that it possesses all attributes. Creates a new fit object and compares ``self`` with the new fit object. If the new fit object has a attribute that ``self`` does not have, will add attribute with default value from the new fit object. Returns: pyfrp.subclasses.pyfrp_fit.fit: ``self`` """ fittemp=fit(self.embryo,"temp") pyfrp_misc_module.updateObj(fittemp,self) return self def computeStats(self): """Computes stastics for fit. Statistics include: * ``MeanRsq`` * ``Rsq`` * ``RsqByROI`` """ self=pyfrp_stats_module.computeFitRsq(self) def printRsqByROI(self): """Prints out Rsq value per ROI. """ print "Rsq Values by ROI for fit ", self.name printDict(self.RsqByROI) def getNParmsFitted(self,inclEqu=True): """Returns the number of parameters fitted in this fit. .. note:: If equlalization is turned on, each ROI in ``ROIsFitted`` counts as an extra parameter. Example: We fit production and equalization for 2 ROIs, then we have fitted * D * degradation * equalization ROI 1 * equalization ROI 2 leading to in total 4 fitted parameters. Keyword Args: inclEqu (bool): Include equalization as additional fitted parameter. Returns: int: Number of parameters fitted. """ return 1+int(self.getFitProd())+int(self.getFitDegr())+int(inclEqu)*int(self.getEqu())*len(self.equFacts) def plotLikehoodProfiles(self,epsPerc=0.1,steps=100,debug=False): """Plots likelihood profiles for all fitted parameters. .. warning:: Since we don't yet fit the loglikelihood function, we only plot the SSD. Even though the SSD is proportional to the loglikelihood, it should be used carefully. See also :py:func:`pyfrp.modules.pyfrp_fit_module.plotFitLikehoodProfiles`. Keyword Args: epsPerc (float): Percentage of variation. steps (int): Number of values around optimal parameter value. debug (bool): Show debugging messages Returns: list: List of matplotlib.axes objects used for plotting. """ axes=pyfrp_fit_module.plotFitLikehoodProfiles(self,epsPerc=0.1,steps=100,debug=debug) return axes def setOpts(self,opts): """Sets a list of options. Options are given as a dictionary and then subsequentially set. Args: opts (dict): Options. """ for opt in opts: try: setattr(self,opt,opts[opt]) except AttributeError: printError("Cannot set fit option " + opt +". Option does not exist.")
gpl-3.0
magic2du/contact_matrix
Contact_maps/mnist_psuedo_ipython_dl_ppi/code/DL_Stacked_Model_Mnist_Psuedo_01_08_2015_02.py
1
24951
# coding: utf-8 # In[1]: # this part imports libs and load data from csv file import sys sys.path.append('../../../libs/') import csv from dateutil import parser from datetime import timedelta from sklearn import svm import numpy as np import pandas as pd import pickle from sklearn.cross_validation import train_test_split from sklearn import preprocessing import sklearn import scipy.stats as ss import cPickle import gzip import os import time import numpy import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams import os.path import IO_class from IO_class import FileOperator from sklearn import cross_validation import sklearn import numpy as np import csv from dateutil import parser from datetime import timedelta from sklearn import svm import numpy as np import pandas as pd import pdb, PIL import pickle import numpy as np from sklearn.cross_validation import train_test_split from sklearn.cross_validation import KFold from sklearn import preprocessing import sklearn import scipy.stats as ss from sklearn.svm import LinearSVC import random from DL_libs import * from itertools import izip #new import math from sklearn.svm import SVC # In[2]: # set settings for this script settings = {} settings['fisher_mode'] = 'FisherM1' settings['with_auc_score'] = False settings['reduce_ratio'] = 1 settings['SVM'] = 1 settings['SVM_RBF'] = 1 settings['SVM_POLY'] = 1 settings['DL'] = 1 settings['Log'] = 1 settings['SAE_SVM'] = 1 settings['SAE_SVM_RBF'] = 1 settings['SAE_SVM_POLY'] = 1 settings['DL_S'] = 1 settings['SAE_S_SVM'] = 1 settings['SAE_S_SVM_RBF'] = 1 settings['SAE_S_SVM_POLY'] = 1 settings['number_iterations'] = 10 settings['finetune_lr'] = 0.1 settings['batch_size'] = 30 settings['pretraining_interations'] = 10002#10000 settings['pretrain_lr'] = 0.001 #settings['training_epochs'] = 300 #300 settings['training_interations'] = 30000 #300 settings['hidden_layers_sizes'] = [200, 200] settings['corruption_levels'] = [0.25, 0.25] settings['number_of_training'] = [10000]#[1000, 2500, 5000, 7500, 10000] settings['test_set_from_test'] = True import logging import time current_date = time.strftime("%m_%d_%Y") logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logname = 'log_DL_handwritten_digits' + current_date + '.log' handler = logging.FileHandler(logname) handler.setLevel(logging.DEBUG) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) #logger.debug('This message should go to the log file') for key, value in settings.items(): logger.info(key +': '+ str(value)) # In[3]: f = gzip.open('mnist.pkl.gz', 'rb') train_set, valid_set, test_set = cPickle.load(f) X_train,y_train = train_set X_valid,y_valid = valid_set X_total=np.vstack((X_train, X_valid)) X_total = np.array(X_total, dtype= theano.config.floatX) print'sample size', X_total.shape y_total = np.concatenate([y_train, y_valid]) # In[5]: ################## generate data from training set################### array_A =[] array_B =[] for i in range(100000): array_A.append(np.random.random_integers(0, 59999)) array_B.append(np.random.random_integers(0, 59999)) pos_index = [] neg_index = [] for index in xrange(100000): if y_total[array_A[index]] - y_total[array_B[index]] == 1: pos_index.append(index) else: neg_index.append(index) print 'number of positive examples', len(pos_index) selected_neg_index= neg_index[ : len(pos_index)] array_A = np.array(array_A) array_B = np.array(array_B) index_for_positive_image_A = array_A[pos_index] index_for_positive_image_B = array_B[pos_index] index_for_neg_image_A = array_A[selected_neg_index] index_for_neg_image_B = array_B[selected_neg_index] X_pos_A = X_total[index_for_positive_image_A] X_pos_B = X_total[index_for_positive_image_B] X_pos_whole = np.hstack((X_pos_A,X_pos_B)) X_neg_A = X_total[index_for_neg_image_A] X_neg_B = X_total[index_for_neg_image_B] X_neg_whole = np.hstack((X_neg_A, X_neg_B)) print X_pos_A.shape, X_pos_B.shape, X_pos_whole.shape print X_neg_A.shape, X_neg_B.shape, X_neg_whole.shape X_whole = np.vstack((X_pos_whole, X_neg_whole)) print X_whole.shape y_pos = np.ones(X_pos_whole.shape[0]) y_neg = np.zeros(X_neg_whole.shape[0]) y_whole = np.concatenate([y_pos,y_neg]) print y_whole # In[7]: #pylab.imshow(imageB.reshape(28, 28), cmap="Greys") # In[8]: def saveAsCsv(with_auc_score, fname, score_dict, arguments): #new newfile = False if os.path.isfile('report_' + fname + '.csv'): pass else: newfile = True csvfile = open('report_' + fname + '.csv', 'a+') writer = csv.writer(csvfile) if newfile == True: writer.writerow(['no.', 'number_of_training', 'method', 'isTest']+ score_dict.keys()) #, 'AUC']) for arg in arguments: writer.writerow([i for i in arg]) csvfile.close() def run_models(settings = None): analysis_scr = [] with_auc_score = settings['with_auc_score'] for subset_no in xrange(1,settings['number_iterations']+1): print("Subset:", subset_no) ################## generate data ################### array_A =[] array_B =[] for i in range(100000): array_A.append(np.random.random_integers(0, 59999)) array_B.append(np.random.random_integers(0, 59999)) pos_index = [] neg_index = [] for index in xrange(100000): if y_total[array_A[index]] - y_total[array_B[index]] == 1: pos_index.append(index) else: neg_index.append(index) print 'number of positive examples', len(pos_index) selected_neg_index= neg_index[ : len(pos_index)] array_A = np.array(array_A) array_B = np.array(array_B) index_for_positive_image_A = array_A[pos_index] index_for_positive_image_B = array_B[pos_index] index_for_neg_image_A = array_A[selected_neg_index] index_for_neg_image_B = array_B[selected_neg_index] X_pos_A = X_total[index_for_positive_image_A] X_pos_B = X_total[index_for_positive_image_B] X_pos_whole = np.hstack((X_pos_A,X_pos_B)) X_neg_A = X_total[index_for_neg_image_A] X_neg_B = X_total[index_for_neg_image_B] X_neg_whole = np.hstack((X_neg_A, X_neg_B)) print X_pos_A.shape, X_pos_B.shape, X_pos_whole.shape print X_neg_A.shape, X_neg_B.shape, X_neg_whole.shape X_whole = np.vstack((X_pos_whole, X_neg_whole)) print X_whole.shape y_pos = np.ones(X_pos_whole.shape[0]) y_neg = np.zeros(X_neg_whole.shape[0]) y_whole = np.concatenate([y_pos,y_neg]) print y_whole.shape x_train_pre_validation, x_test, y_train_pre_validation, y_test = train_test_split(X_whole,y_whole, test_size=0.2, random_state=211) for number_of_training in settings['number_of_training']: x_train, x_validation, y_train, y_validation = train_test_split(x_train_pre_validation[:number_of_training], y_train_pre_validation[:number_of_training],\ test_size=0.2, random_state=21) print x_train.shape, y_train.shape, x_validation.shape, y_validation.shape, x_test.shape, y_test.shape x_train_minmax, x_validation_minmax, x_test_minmax = x_train, x_validation, x_test train_X_reduced = x_train train_y_reduced = y_train test_X = x_test test_y = y_test ###original data### ################ end of data #################### standard_scaler = preprocessing.StandardScaler().fit(train_X_reduced) scaled_train_X = standard_scaler.transform(train_X_reduced) scaled_test_X = standard_scaler.transform(test_X) if settings['SVM']: print "SVM" Linear_SVC = LinearSVC(C=1, penalty="l2") Linear_SVC.fit(scaled_train_X, y_train) predicted_test_y = Linear_SVC.predict(scaled_test_X) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SVM', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = Linear_SVC.predict(scaled_train_X) isTest = False; #new analysis_scr.append(( subset_no,number_of_training, 'SVM', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SVM_RBF']: print "SVM_RBF" L1_SVC_RBF_Selector = SVC(C=1, gamma=0.01, kernel='rbf').fit(scaled_train_X, y_train) predicted_test_y = L1_SVC_RBF_Selector.predict(scaled_test_X) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SVM_RBF', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(scaled_train_X) isTest = False; #new analysis_scr.append((subset_no,number_of_training, 'SVM_RBF', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SVM_POLY']: print "SVM_POLY" L1_SVC_POLY_Selector = SVC(C=1, kernel='poly').fit(scaled_train_X, train_y_reduced) predicted_test_y = L1_SVC_POLY_Selector.predict(scaled_test_X) isTest = True; #new analysis_scr.append(( subset_no, number_of_training,'SVM_POLY', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_POLY_Selector.predict(scaled_train_X) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'SVM_POLY', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['Log']: print "Log" log_clf_l2 = sklearn.linear_model.LogisticRegression(C=1, penalty='l2') log_clf_l2.fit(scaled_train_X, train_y_reduced) predicted_test_y = log_clf_l2.predict(scaled_test_X) isTest = True; #new analysis_scr.append((subset_no,number_of_training, 'Log', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = log_clf_l2.predict(scaled_train_X) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'Log', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) # direct deep learning finetune_lr = settings['finetune_lr'] batch_size = settings['batch_size'] pretraining_epochs = cal_epochs(settings['pretraining_interations'], x_train_minmax, batch_size = batch_size) #pretrain_lr=0.001 pretrain_lr = settings['pretrain_lr'] training_epochs = cal_epochs(settings['training_interations'], x_train_minmax, batch_size = batch_size) hidden_layers_sizes = settings['hidden_layers_sizes'] corruption_levels = settings['corruption_levels'] if settings['DL']: print "direct deep learning" sda = trainSda(x_train_minmax, y_train, x_validation_minmax, y_validation, x_test_minmax, test_y, hidden_layers_sizes = hidden_layers_sizes, corruption_levels = corruption_levels, batch_size = batch_size , \ training_epochs = training_epochs, pretraining_epochs = pretraining_epochs, pretrain_lr = pretrain_lr, finetune_lr=finetune_lr ) print 'hidden_layers_sizes:', hidden_layers_sizes print 'corruption_levels:', corruption_levels test_predicted = sda.predict(x_test_minmax) isTest = True; #new analysis_scr.append((subset_no,number_of_training, 'DL', isTest) + tuple(performance_score(y_test, test_predicted).values())) training_predicted = sda.predict(x_train_minmax) isTest = False; #new analysis_scr.append((subset_no,number_of_training, 'DL', isTest) + tuple(performance_score(y_train, training_predicted).values())) ####transformed original data#### x = train_X_reduced a_MAE_original = train_a_MultipleAEs(x, pretraining_epochs=pretraining_epochs, pretrain_lr=pretrain_lr, batch_size=batch_size, hidden_layers_sizes =hidden_layers_sizes, corruption_levels=corruption_levels) new_x_train_minmax_A = a_MAE_original.transform(train_X_reduced) new_x_test_minmax_A = a_MAE_original.transform(x_test_minmax) standard_scaler = preprocessing.StandardScaler().fit(new_x_train_minmax_A) new_x_train_scaled = standard_scaler.transform(new_x_train_minmax_A) new_x_test_scaled = standard_scaler.transform(new_x_test_minmax_A) new_x_train_combo = np.hstack((scaled_train_X, new_x_train_scaled)) new_x_test_combo = np.hstack((scaled_test_X, new_x_test_scaled)) if settings['SAE_SVM']: # SAE_SVM print 'SAE followed by SVM' Linear_SVC = LinearSVC(C=1, penalty="l2") Linear_SVC.fit(new_x_train_scaled, train_y_reduced) predicted_test_y = Linear_SVC.predict(new_x_test_scaled) isTest = True; #new analysis_scr.append(( subset_no, number_of_training,'SAE_SVM', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = Linear_SVC.predict(new_x_train_scaled) isTest = False; #new analysis_scr.append(( subset_no, number_of_training,'SAE_SVM', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SAE_SVM_RBF']: # SAE_SVM print 'SAE followed by SVM RBF' L1_SVC_RBF_Selector = SVC(C=1, gamma=0.01, kernel='rbf').fit(new_x_train_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SAE_SVM_RBF', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training, 'SAE_SVM_RBF', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) if settings['SAE_SVM_POLY']: # SAE_SVM print 'SAE followed by SVM POLY' L1_SVC_RBF_Selector = SVC(C=1, kernel='poly').fit(new_x_train_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training,'SAE_SVM_POLY', isTest) + tuple(performance_score(test_y, predicted_test_y).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training, 'SAE_SVM_POLY', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y).values())) #### separated transformed data #### y_test = test_y print 'deep learning using split network' # get the new representation for A set. first 784-D pretraining_epochs = cal_epochs(settings['pretraining_interations'], x_train_minmax, batch_size = batch_size) x = x_train_minmax[:, :x_train_minmax.shape[1]/2] print "original shape for A", x.shape a_MAE_A = train_a_MultipleAEs(x, pretraining_epochs=pretraining_epochs, pretrain_lr=pretrain_lr, batch_size=batch_size, hidden_layers_sizes = [x/2 for x in hidden_layers_sizes], corruption_levels=corruption_levels) new_x_train_minmax_A = a_MAE_A.transform(x_train_minmax[:, :x_train_minmax.shape[1]/2]) x = x_train_minmax[:, x_train_minmax.shape[1]/2:] print "original shape for B", x.shape a_MAE_B = train_a_MultipleAEs(x, pretraining_epochs=pretraining_epochs, pretrain_lr=pretrain_lr, batch_size=batch_size, hidden_layers_sizes = [x/2 for x in hidden_layers_sizes], corruption_levels=corruption_levels) new_x_train_minmax_B = a_MAE_B.transform(x_train_minmax[:, x_train_minmax.shape[1]/2:]) new_x_test_minmax_A = a_MAE_A.transform(x_test_minmax[:, :x_test_minmax.shape[1]/2]) new_x_test_minmax_B = a_MAE_B.transform(x_test_minmax[:, x_test_minmax.shape[1]/2:]) new_x_validation_minmax_A = a_MAE_A.transform(x_validation_minmax[:, :x_validation_minmax.shape[1]/2]) new_x_validation_minmax_B = a_MAE_B.transform(x_validation_minmax[:, x_validation_minmax.shape[1]/2:]) new_x_train_minmax_whole = np.hstack((new_x_train_minmax_A, new_x_train_minmax_B)) new_x_test_minmax_whole = np.hstack((new_x_test_minmax_A, new_x_test_minmax_B)) new_x_validationt_minmax_whole = np.hstack((new_x_validation_minmax_A, new_x_validation_minmax_B)) standard_scaler = preprocessing.StandardScaler().fit(new_x_train_minmax_whole) new_x_train_minmax_whole_scaled = standard_scaler.transform(new_x_train_minmax_whole) new_x_test_minmax_whole_scaled = standard_scaler.transform(new_x_test_minmax_whole) if settings['DL_S']: # deep learning using split network sda_transformed = trainSda(new_x_train_minmax_whole, y_train, new_x_validationt_minmax_whole, y_validation , new_x_test_minmax_whole, y_test, hidden_layers_sizes = hidden_layers_sizes, corruption_levels = corruption_levels, batch_size = batch_size , \ training_epochs = training_epochs, pretraining_epochs = pretraining_epochs, pretrain_lr = pretrain_lr, finetune_lr=finetune_lr ) print 'hidden_layers_sizes:', hidden_layers_sizes print 'corruption_levels:', corruption_levels predicted_test_y = sda_transformed.predict(new_x_test_minmax_whole) y_test = test_y isTest = True; #new analysis_scr.append((subset_no, number_of_training,'DL_S', isTest) + tuple(performance_score(y_test, predicted_test_y, with_auc_score).values())) training_predicted = sda_transformed.predict(new_x_train_minmax_whole) isTest = False; #new analysis_scr.append((subset_no,number_of_training, 'DL_S', isTest) + tuple(performance_score(y_train, training_predicted, with_auc_score).values())) if settings['SAE_S_SVM']: print 'SAE_S followed by SVM' Linear_SVC = LinearSVC(C=1, penalty="l2") Linear_SVC.fit(new_x_train_minmax_whole_scaled, train_y_reduced) predicted_test_y = Linear_SVC.predict(new_x_test_minmax_whole_scaled) isTest = True; #new analysis_scr.append(( subset_no, number_of_training,'SAE_S_SVM', isTest) + tuple(performance_score(test_y, predicted_test_y, with_auc_score).values())) #new predicted_train_y = Linear_SVC.predict(new_x_train_minmax_whole_scaled) isTest = False; #new analysis_scr.append(( subset_no,number_of_training, 'SAE_S_SVM', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y, with_auc_score).values())) if settings['SAE_S_SVM_RBF']: print 'SAE S followed by SVM RBF' L1_SVC_RBF_Selector = SVC(C=1, gamma=0.01, kernel='rbf').fit(new_x_train_minmax_whole_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_minmax_whole_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training, 'SAE_S_SVM_RBF', isTest) + tuple(performance_score(test_y, predicted_test_y, with_auc_score).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_minmax_whole_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'SAE_S_SVM_RBF', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y, with_auc_score).values())) if settings['SAE_S_SVM_POLY']: # SAE_SVM print 'SAE S followed by SVM POLY' L1_SVC_RBF_Selector = SVC(C=1, kernel='poly').fit(new_x_train_minmax_whole_scaled, train_y_reduced) predicted_test_y = L1_SVC_RBF_Selector.predict(new_x_test_minmax_whole_scaled) isTest = True; #new analysis_scr.append((subset_no, number_of_training,'SAE_S_SVM_POLY', isTest) + tuple(performance_score(test_y, predicted_test_y, with_auc_score).values())) #new predicted_train_y = L1_SVC_RBF_Selector.predict(new_x_train_minmax_whole_scaled) isTest = False; #new analysis_scr.append((subset_no, number_of_training,'SAE_S_SVM_POLY', isTest) + tuple(performance_score(train_y_reduced, predicted_train_y, with_auc_score).values())) report_name = 'DL_handwritten_digits' + '_size_'.join(map(str, hidden_layers_sizes)) + '_' + str(pretrain_lr) + '_' + str(finetune_lr) + '_' + '_' + str(settings['pretraining_interations']) + '_' + current_date saveAsCsv(with_auc_score, report_name, performance_score(test_y, predicted_test_y, with_auc_score), analysis_scr) return sda, a_MAE_original, a_MAE_A, a_MAE_B, analysis_scr # In[9]: sda, a_MAE_original, a_MAE_A, a_MAE_B, analysis_scr = run_models(settings) # In[48]: # save objects sda, a_MAE_original, a_MAE_A, a_MAE_B, analysis_scr with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+'_'+'sda.pickle', 'wb') as handle: pickle.dump(sda, handle) with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+'_'+'a_MAE_original.pickle', 'wb') as handle: pickle.dump(a_MAE_original, handle) with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+'_'+'a_MAE_A.pickle', 'wb') as handle: pickle.dump(a_MAE_A, handle) with open('_'.join(map(str, settings['hidden_layers_sizes'])) +'_'.join(map(str, settings['corruption_levels']))+'_'+'a_MAE_B.pickle', 'wb') as handle: pickle.dump(a_MAE_B, handle) x = logging._handlers.copy() for i in x: log.removeHandler(i) i.flush() i.close() # In[ ]: # In[31]: ''' weights_map_to_input_space = [] StackedNNobject = sda image_dimension_x = 28*2 image_dimension_y = 28 if isinstance(StackedNNobject, SdA) or isinstance(StackedNNobject, MultipleAEs): weights_product = StackedNNobject.dA_layers[0].W.get_value(borrow=True) image = PIL.Image.fromarray(tile_raster_images( X=weights_product.T, img_shape=(image_dimension_x, image_dimension_y), tile_shape=(10, 10), tile_spacing=(1, 1))) sample_image_path = 'hidden_0_layer_weights.png' image.save(sample_image_path) weights_map_to_input_space.append(weights_product) for i_layer in range(1, len(StackedNNobject.dA_layers)): i_weigths = StackedNNobject.dA_layers[i_layer].W.get_value(borrow=True) weights_product = np.dot(weights_product, i_weigths) weights_map_to_input_space.append(weights_product) image = PIL.Image.fromarray(tile_raster_images( X=weights_product.T, img_shape=(image_dimension_x, image_dimension_y), tile_shape=(10, 10), tile_spacing=(1, 1))) sample_image_path = 'hidden_'+ str(i_layer)+ '_layer_weights.png' image.save(sample_image_path) ''' # In[18]:
gpl-2.0
AaronWatters/inferelator_ng
inferelator_ng/tests/test_design_response.py
1
10286
import unittest, os import pandas as pd import numpy as np import pdb from .. import design_response_translation from .. import utils my_dir = os.path.dirname(__file__) class TestDR(unittest.TestCase): """ Superclass for common methods """ def calculate_design_and_response(self): #drd = design_response_R.DRDriver() drd = design_response_translation.PythonDRDriver() target = drd.target_directory = os.path.join(my_dir, "artifacts") if not os.path.exists(target): os.makedirs(target) drd.delTmin = self.delT_min drd.delTmax = self.delT_max drd.tau = self.tau (self.design, self.response) = drd.run(self.exp, self.meta) class TestSpecialCharacter(TestDR): def setUp(self): spchrs='~!@#$%^&*()_-+=|\}]{[;:/?.><\\' self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True, True, False] self.meta['is1stLast'] = ['f','m','m','l','e'] self.meta['prevCol'] = ['NA','ts1'+spchrs,'ts2'+spchrs,'ts3'+spchrs, 'NA'] self.meta['del.t'] = ['NA', 3, 2, 5, 'NA'] self.meta['condName'] = ['ts1'+spchrs,'ts2'+spchrs,'ts3'+spchrs,'ts4'+spchrs,'ss'] self.exp = pd.DataFrame(np.reshape(range(10), (2,5)) + 1, index = ['gene' + str(i + 1) + spchrs for i in range(2)], columns = ['ts' + str(i + 1) + spchrs for i in range(4)] + ['ss']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() def testspecialcharacter(self): spchrs='~!@#$%^&*()_-+=|\}]{[;:/?.><\\' ds, resp = (self.design, self.response) expression_1 = np.array(list(self.exp['ts1' + spchrs])) expression_2 = np.array(list(self.exp['ts2' + spchrs])) expected_response_1 = (expression_1 + self.tau * (expression_2 - expression_1) / (float(self.meta['del.t'][1]))) expression_3 = np.array(list(self.exp['ts3' + spchrs])) expected_response_2 = expression_2 + self.tau * (expression_3 - expression_2) / (float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1' + spchrs]), expected_response_1) np.testing.assert_almost_equal(np.array(resp['ts2' + spchrs]), expected_response_2) class TestDRModelOrganisms(TestDR): def test_on_bsubtilis(self): self.exp = utils.df_from_tsv('data/bsubtilis/expression.tsv') self.meta = utils.df_from_tsv('data/bsubtilis/meta_data.tsv', has_index=False) expected_design = utils.df_from_tsv('data/bsubtilis/bsubtilis_design_matrix.tsv') expected_response = utils.df_from_tsv('data/bsubtilis/bsubtilis_response_matrix.tsv') self.delT_min = 0 self.delT_max = 110 self.tau = 45 self.calculate_design_and_response() np.testing.assert_allclose(self.response.values, expected_response.values, atol=1e-15) self.assertEqual(len(set(expected_response.columns)), len(set(self.response.columns))) self.assertEqual(expected_response.columns.tolist(), self.response.columns.tolist()) self.assertEqual(expected_response.index.tolist(), self.response.index.tolist()) self.assertTrue(pd.DataFrame.equals(expected_design, self.design)) class TestDRAboveDeltMax(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True, True, False] self.meta['is1stLast'] = ['f','m','m','l','e'] self.meta['prevCol'] = ['NA','ts1','ts2','ts3', 'NA'] self.meta['del.t'] = ['NA', 3, 2, 5, 'NA'] self.meta['condName'] = ['ts1','ts2','ts3','ts4','ss'] self.exp = pd.DataFrame(np.reshape(range(10), (2,5)) + 1, index = ['gene' + str(i + 1) for i in range(2)], columns = ['ts' + str(i + 1) for i in range(4)] + ['ss']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() def test_design_matrix_above_delt_max(self): # Set up variables ds, resp = (self.design, self.response) self.assertEqual(ds.shape, (2, 4)) self.assertEqual(list(ds.columns), ['ts4', 'ss', 'ts1', 'ts2'], msg = "Guarantee that the ts3 condition is dropped, " "since its delT of 5 is greater than delt_max of 4") for col in ds: self.assertEqual(list(ds[col]), list(self.exp[col]), msg = ('{} column in the design matrix should be equal ' 'to that column in the expression matrix').format(col)) self.assertEqual(list(ds['ss']), [5, 10]) self.assertEqual(list(ds['ss']), list(resp['ss']), msg = 'Steady State design and response should be equal') self.assertTrue((resp['ts2'].values == [3, 8]).all()) def test_response_matrix_steady_state_above_delt_max(self): ds, resp = (self.design, self.response) self.assertEqual(list(resp.columns), ['ts4', 'ss', 'ts1', 'ts2']) self.assertEqual(list(resp['ts4']), list(self.exp['ts4'])) self.assertEqual(list(resp['ss']), list(self.exp['ss'])) def test_response_matrix_time_series_above_delt_max(self): ds, resp = (self.design, self.response) expression_1 = np.array(list(self.exp['ts1'])) expression_2 = np.array(list(self.exp['ts2'])) expected_response_1 = (expression_1 + self.tau * (expression_2 - expression_1) / ( float(self.meta['del.t'][1]))) expression_3 = np.array(list(self.exp['ts3'])) expected_response_2 = expression_2 + self.tau * (expression_3 - expression_2) / ( float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1']), expected_response_1) np.testing.assert_almost_equal(np.array(resp['ts2']), expected_response_2) class TestDRMicro(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[False, False] self.meta['is1stLast'] = ['e','e'] self.meta['prevCol'] = ['NA','NA'] self.meta['del.t'] = ['NA', 'NA'] self.meta['condName'] = ['ss1', 'ss2'] self.exp = pd.DataFrame( np.reshape(range(4), (2, 2)) + 1, index=['gene' + str(i + 1) for i in range(2)], columns=['ss1', 'ss2']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() def test_micro(self): ds, resp = (self.design, self.response) self.assertEqual(ds.shape, (2, 2)) self.assertTrue((ds['ss1'].values == [1, 3]).all()) self.assertTrue((ds['ss2'].values == [2, 4]).all()) # In steady state, expect design and response to be identical self.assertTrue(ds.equals(resp)) class TestDRBelowDeltMin(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True, True, False] self.meta['is1stLast'] = ['f','m','m','l','e'] self.meta['prevCol'] = ['NA','ts1','ts2','ts3', 'NA'] self.meta['del.t'] = ['NA', 1, 2, 3, 'NA'] self.meta['condName'] = ['ts1', 'ts2', 'ts3', 'ts4', 'ss'] self.exp = pd.DataFrame( np.reshape(range(10), (2, 5)) + 1, index=['gene' + str(i + 1) for i in range(2)], columns=['ts' + str(i + 1) for i in range(4)] + ['ss']) self.delT_min = 2 self.delT_max = 4 self.tau = 2 self.calculate_design_and_response() def test_response_matrix_below_delt_min(self): ds, resp = (self.design, self.response) expression_1 = np.array(list(self.exp['ts1'])) expression_3 = np.array(list(self.exp['ts3'])) expected_response_1 = expression_1 + self.tau * (expression_3 - expression_1) / (float(self.meta['del.t'][1]) + float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1']), expected_response_1) #pdb.set_trace() @unittest.skip("skipping until we've determined if we want to modify the legacy R code") def test_design_matrix_headers_below_delt_min(self): ds, resp = (self.design, self.response) print(ds.columns) self.assertEqual(list(ds.columns), ['ss', 'ts1', 'ts2', 'ts3'], msg = "Guarantee that the ts4 condition is dropped, since its the last in the time series") class TestBranchingTimeSeries(TestDR): def setUp(self): self.meta = pd.DataFrame() self.meta['isTs']=[True, True, True] self.meta['is1stLast'] = ['f','l','l'] self.meta['prevCol'] = ['NA','ts1','ts1'] self.meta['del.t'] = ['NA', 2, 2] self.meta['condName'] = ['ts1','ts2','ts3'] self.exp = pd.DataFrame(np.reshape(range(9), (3,3)) + 1, index = ['gene' + str(i + 1) for i in range(3)], columns = ['ts' + str(i + 1) for i in range(3)]) self.delT_min = 1 self.delT_max = 4 self.tau = 1 self.calculate_design_and_response() def test_design_matrix_branching_time_series(self): ds, resp = (self.design, self.response) self.assertEqual(ds.shape, (3, 2)) self.assertEqual(list(ds.columns), ['ts1_dupl01', 'ts1_dupl02'], msg = 'This is how the R code happens to name branching time series') for col in ds: self.assertEqual(list(ds[col]), list(self.exp['ts1']), msg = '{} column in the design matrix should be equal to the branching source, ts1, in the exp matrix'.format(col)) def test_response_matrix_branching_time_series(self): ds, resp = (self.design, self.response) self.assertEqual(resp.shape, (3, 2)) expression_1 = np.array(list(self.exp['ts1'])) expression_2 = np.array(list(self.exp['ts2'])) expected_response_1 = (expression_1 + self.tau * (expression_2 - expression_1) / float(self.meta['del.t'][1])) expression_3 = np.array(list(self.exp['ts3'])) expected_response_2 = (expression_1 + self.tau * (expression_3 - expression_1) / float(self.meta['del.t'][2])) np.testing.assert_almost_equal(np.array(resp['ts1_dupl01']), expected_response_1) np.testing.assert_almost_equal(np.array(resp['ts1_dupl02']), expected_response_2)
bsd-2-clause
tpoy0099/option_calculator
gui_impl/mw_calculator.py
1
12599
#coding=utf8 import threading as THD import datetime as DT import matplotlib.pyplot as PLT from gui_impl.qt_mvc_impl import MatrixModel, AutoFormDelegate from gui_impl.position_editor import PosEditor from gui_impl.qtableview_utility import getSelectedRows from engine_algorithm.calculate_engine import Engine from utility.messager import MessageQueue from utility.self_defined_types import MessageTypes, XAxisType from engine_algorithm.database_adaptor import OPTION_DF_HEADERS from engine_algorithm.database_adaptor import STOCK_DF_HEADERS from engine_algorithm.database_adaptor import PORTFOLIO_DF_HEADERS from PyQt4.QtCore import * from PyQt4.QtGui import * #ui created by qt designer from qt_ui.ui_main_window import Ui_MainWindow ############################################################################# def decorateAndPlot(sp, x_ls, y_ls, title=None, central_x=0): sp.plot(x_ls, y_ls, color="green", linewidth=2, linestyle="-") sp.plot([central_x,central_x], sp.get_ylim(), color="blue", linewidth=0.5, linestyle="--") if title: sp.set_title(title) sp.grid(True) return def plotZeroLine(sp): sp.plot(sp.get_xlim(), [0,0], color="blue", linewidth=0.5, linestyle="-") ############################################################################# class OptionCalculator(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super(OptionCalculator, self).__init__(parent) self.setupUi(self) #show self.show() #define signal&slot self.connect(self.fresh_quotes_button, SIGNAL('clicked()'), self.__onRefreshQuoteBtClicked) self.connect(self.edit_position_button, SIGNAL('clicked()'), self.__onEditPosBtClicked) self.connect(self.plot_button, SIGNAL('clicked()'), self.__onPlotBtClicked) self.connect(self, SIGNAL('PLOT_SENSIBILITY'), self.__plotGreeksSensibility) self.connect(self, SIGNAL('PLOT_EXERCISE_CURVE'), self.__plotExerciseCurve) self.connect(self, SIGNAL('SET_ETF_DISPLAY'), self.__setEtfDataDisplay) self.connect(self, SIGNAL('SET_CENTRAL_DISPLAY'), self.__setCentralTableDisplay) self.connect(self, SIGNAL('ENGINE_ERROR'), self.__notifyErrorOccur) #init position vtable self.option_data = MatrixModel(self) self.pos_deleg = AutoFormDelegate(self) self.position_vtable.setItemDelegate(self.pos_deleg) self.position_vtable.setModel(self.option_data) self.option_data.setSize(0, OPTION_DF_HEADERS) #init stock_position vtable self.stock_data = MatrixModel(self) self.stpos_deleg = AutoFormDelegate(self) self.stock_position_vtable.setItemDelegate(self.stpos_deleg) self.stock_position_vtable.setModel(self.stock_data) self.stock_data.setSize(0, STOCK_DF_HEADERS) #init portfolio vtable self.portfolio_data = MatrixModel(self) self.ptf_deleg = AutoFormDelegate(self) self.portfolio_vtable.setItemDelegate(self.ptf_deleg) self.portfolio_vtable.setModel(self.portfolio_data) self.portfolio_data.setSize(0, PORTFOLIO_DF_HEADERS) #gui communication self.msg = None self.msg_event = None self.msg_thread = None #data engine self.engine = None #flow control self.is_updating = False self.auto_refresh_timer = None #qt child self.edit_dialog = PosEditor(self) self.edit_dialog.setControler(self) return def start(self): #gui communication self.msg = MessageQueue() self.msg_event = THD.Event() self.msg_thread = THD.Thread(target=self.__handleMessage) self.msg_thread.start() #data engine self.engine = Engine(self) self.__startAutoRefresh(True) self.engine.qryEtfQuoteFeed() self.engine.qryTableDataFeed() def quit(self): if not self.auto_refresh_timer is None: self.auto_refresh_timer.cancel() if not self.engine is None: self.engine.quit() if not self.msg_thread is None: self.__pushMsg(MessageTypes.QUIT) self.msg_thread.join() return def closeEvent(self, event): rtn = QMessageBox.question(self, 'Save & exit', 'Save positions to csv?', QMessageBox.Save, QMessageBox.No, QMessageBox.Cancel) if rtn == QMessageBox.Cancel: event.ignore() return if rtn == QMessageBox.Save: self.onSavePosition2Csv() self.quit() #close super(OptionCalculator, self).closeEvent(event) return #------------------------------------------------------------------------- def onEngineError(self, err): with open(r'./logs.txt', 'a') as fid: err_info = '\n>>%s\n%s' % (str(DT.datetime.now()), str(err)) fid.write(err_info) self.emit(SIGNAL('ENGINE_ERROR')) return def onRepTableFeed(self, option_data, stock_data, ptf_data): self.__pushMsg(MessageTypes.REPLY_TABLE_FEED, (option_data, stock_data, ptf_data)) def onRepEtfQuoteFeed(self, etf_data): self.__pushMsg(MessageTypes.REPLY_ETF_QUOTE_FEED, etf_data) def onRepCalGreeksSensibility(self, plot_data, x_axis_type): self.__pushMsg(MessageTypes.REPLY_CAL_SENSI, (plot_data, x_axis_type)) def onRepCalExerciseCurve(self, plot_data): self.__pushMsg(MessageTypes.REPLY_EXERCISE_CURVE, plot_data) def onRepPositionBasedataFeed(self, positions): self.__pushMsg(MessageTypes.REPLY_POSITION_BASEDATA_FEED, positions) def __handleMessage(self): while True: msg = self.msg.getMsg() if msg is None: self.msg_event.wait() self.msg_event.clear() #received data for display elif msg.type is MessageTypes.REPLY_TABLE_FEED: self.emit(SIGNAL('SET_CENTRAL_DISPLAY'), msg.content[0], msg.content[1], msg.content[2]) elif msg.type is MessageTypes.REPLY_ETF_QUOTE_FEED: self.emit(SIGNAL('SET_ETF_DISPLAY'), msg.content) elif msg.type is MessageTypes.REPLY_CAL_SENSI: self.emit(SIGNAL('PLOT_SENSIBILITY'), msg.content[0], msg.content[1]) elif msg.type is MessageTypes.REPLY_EXERCISE_CURVE: self.emit(SIGNAL('PLOT_EXERCISE_CURVE'), msg.content) elif msg.type is MessageTypes.REPLY_POSITION_BASEDATA_FEED: self.__updatePosEditorData(msg.content) elif msg.type is MessageTypes.QUIT: break return def __pushMsg(self, msg_type, content=None): self.msg.pushMsg(msg_type, content) self.msg_event.set() #---------------------------------------------------------------------- def onEditorClickBtSaveAll(self, position_data): self.engine.qryReloadPositions(position_data) self.__queryUpdateData() def onEditorClickBtReloadPosition(self): self.engine.qryReloadPositions() self.engine.qryPositionBasedata() self.__queryUpdateData() def onSavePosition2Csv(self): self.engine.qrySavePositionCsv() #---------------------------------------------------------------------- def __onRefreshQuoteBtClicked(self): self.__queryUpdateData() def __onEditPosBtClicked(self): self.edit_dialog.wakeupEditor() self.engine.qryPositionBasedata() def __onPlotBtClicked(self): x_axis_type = self.greeks_x_axis_combobox.currentIndex() #pass group id list if self.portfolio_checkBox.isChecked(): #collect group id group_ids = list() for r in getSelectedRows(self.portfolio_vtable): item = self.portfolio_data.getValueByHeader(r, 'group') try: group_ids.append(int(item)) except: pass if group_ids: if x_axis_type == 0: self.engine.qryCalGreeksSensibilityByGroup(group_ids, group_ids, XAxisType.PRICE) elif x_axis_type == 1: self.engine.qryCalGreeksSensibilityByGroup(group_ids, group_ids, XAxisType.VOLATILITY) elif x_axis_type == 2: self.engine.qryCalGreeksSensibilityByGroup(group_ids, group_ids, XAxisType.TIME) elif x_axis_type == 3: self.engine.qryExerciseCurveByGroup(group_ids, group_ids) #pass row numbers list else: option_idx = getSelectedRows(self.position_vtable) stock_idx = getSelectedRows(self.stock_position_vtable) if option_idx or stock_idx: if x_axis_type == 0: self.engine.qryCalGreeksSensibilityByPosition(option_idx, stock_idx, XAxisType.PRICE) elif x_axis_type == 1: self.engine.qryCalGreeksSensibilityByPosition(option_idx, stock_idx, XAxisType.VOLATILITY) elif x_axis_type == 2: self.engine.qryCalGreeksSensibilityByPosition(option_idx, stock_idx, XAxisType.TIME) elif x_axis_type == 3: self.engine.qryExerciseCurveByPosition(option_idx, stock_idx) return #------------------------------------------------------------------- def __startAutoRefresh(self, onInit=False): self.auto_refresh_timer = THD.Timer(300, self.__startAutoRefresh) self.auto_refresh_timer.start() if not onInit: self.__queryUpdateData() return def __queryUpdateData(self): if not self.is_updating: self.is_updating = True self.engine.qryUpdateData() self.engine.qryEtfQuoteFeed() self.engine.qryTableDataFeed() def __setEtfDataDisplay(self, etf_data): self.update_time_label.setText('%s' % etf_data.getByHeader(0, 'update_time').strftime(r'%H:%M:%S')) self.etf_openprice_label.setText('open: %.3f' % etf_data.getByHeader(0, 'open_price')) self.etf_highprice_label.setText('high: %.3f' % etf_data.getByHeader(0, 'high_price')) self.etf_lowprice_label.setText('low: %.3f' % etf_data.getByHeader(0, 'low_price')) self.etf_lastprice_label.setText('last: %.3f' % etf_data.getByHeader(0, 'last_price')) def __setCentralTableDisplay(self, option_data, stock_data, portfolio_data): self.option_data.setTableContent(option_data) self.stock_data.setTableContent(stock_data) self.portfolio_data.setTableContent(portfolio_data) #notify_updating_completed self.is_updating = False return def __updatePosEditorData(self, pos_table_handler): self.edit_dialog.setEditTableContent(pos_table_handler) def __plotGreeksSensibility(self, p_data, x_axis_type): if x_axis_type == XAxisType.PRICE: figure_name = 'by price' elif x_axis_type == XAxisType.VOLATILITY: figure_name = 'by volatility' elif x_axis_type == XAxisType.TIME: figure_name = 'by time' else: figure_name = '' fig = PLT.figure() fig.suptitle(figure_name) sp = fig.add_subplot(2, 2, 1) decorateAndPlot(sp, p_data['ax_x'], p_data['delta'], title='delta', central_x=p_data['central_x']) sp = fig.add_subplot(2, 2, 2) decorateAndPlot(sp, p_data['ax_x'], p_data['gamma'], title='gamma', central_x=p_data['central_x']) sp = fig.add_subplot(2, 2, 3) decorateAndPlot(sp, p_data['ax_x'], p_data['vega'], title='vega', central_x=p_data['central_x']) sp = fig.add_subplot(2, 2, 4) decorateAndPlot(sp, p_data['ax_x'], p_data['theta'], title='theta', central_x=p_data['central_x']) PLT.show() return def __plotExerciseCurve(self, plot_data): fig = PLT.figure() fig.suptitle('Theoretical earnings curve') sp = fig.add_subplot(1, 1, 1) decorateAndPlot(sp, plot_data['ax_x'], plot_data['exercise_profit'], central_x=plot_data['central_x']) plotZeroLine(sp) PLT.show() return def __notifyErrorOccur(self): QMessageBox.question(self, 'Error', 'engine error occurs, restart manually ...', QMessageBox.Yes)
gpl-2.0
LohithBlaze/scikit-learn
examples/feature_selection/plot_feature_selection.py
249
2827
""" =============================== Univariate Feature Selection =============================== An example showing univariate feature selection. Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights. In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, svm from sklearn.feature_selection import SelectPercentile, f_classif ############################################################################### # import some data to play with # The iris dataset iris = datasets.load_iris() # Some noisy data not correlated E = np.random.uniform(0, 0.1, size=(len(iris.data), 20)) # Add the noisy data to the informative features X = np.hstack((iris.data, E)) y = iris.target ############################################################################### plt.figure(1) plt.clf() X_indices = np.arange(X.shape[-1]) ############################################################################### # Univariate feature selection with F-test for feature scoring # We use the default selection function: the 10% most significant features selector = SelectPercentile(f_classif, percentile=10) selector.fit(X, y) scores = -np.log10(selector.pvalues_) scores /= scores.max() plt.bar(X_indices - .45, scores, width=.2, label=r'Univariate score ($-Log(p_{value})$)', color='g') ############################################################################### # Compare to the weights of an SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) svm_weights = (clf.coef_ ** 2).sum(axis=0) svm_weights /= svm_weights.max() plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='r') clf_selected = svm.SVC(kernel='linear') clf_selected.fit(selector.transform(X), y) svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0) svm_weights_selected /= svm_weights_selected.max() plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected, width=.2, label='SVM weights after selection', color='b') plt.title("Comparing feature selection") plt.xlabel('Feature number') plt.yticks(()) plt.axis('tight') plt.legend(loc='upper right') plt.show()
bsd-3-clause
mrgloom/HPOlib
HPOlib/Plotting/plotOptimizerOverhead.py
5
8458
#!/usr/bin/env python ## # wrapping: A program making it easy to use hyperparameter # optimization software. # Copyright (C) 2013 Katharina Eggensperger and Matthias Feurer # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from argparse import ArgumentParser import cPickle import itertools import sys import matplotlib.pyplot as plt import matplotlib.gridspec import numpy as np from HPOlib.Plotting import plot_util __authors__ = ["Katharina Eggensperger", "Matthias Feurer"] __contact__ = "automl.org" def plot_time_trace(time_dict, name_list, title="", log=True, save="", y_max=0, y_min=0): colors = plot_util.get_plot_colors() markers = plot_util.get_plot_markers() linestyles = itertools.cycle(['-']) size = 5 ratio = 5 gs = matplotlib.gridspec.GridSpec(ratio, 1) fig = plt.figure(1, dpi=100) fig.suptitle(title, fontsize=16) ax1 = plt.subplot(gs[0:ratio, :]) ax1.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) min_val = sys.maxint max_val = -sys.maxint max_trials = 0 trial_list_means = list() trial_list_std = list() num_runs_list = list() # Get mean and std for all times and optimizers for entry in name_list: k = entry[0] trial_list_std.append(np.std(np.array(time_dict[k]), axis=0)) if log: trial_list_means.append(np.log10(np.mean(np.array(time_dict[k]), axis=0))) else: trial_list_means.append(np.mean(np.array(time_dict[k]), axis=0)) num_runs_list.append(len(time_dict[k])) for k in range(len(name_list)): # Plot mean and std for optimizer duration c = colors.next() m = markers.next() x = range(len(trial_list_means[k])) l = linestyles.next() ax1.fill_between(x, trial_list_means[k] - trial_list_std[k], trial_list_means[k] + trial_list_std[k], facecolor=c, alpha=0.3, edgecolor=c) ax1.plot(x, trial_list_means[k], color=c, linewidth=size, label=name_list[k][0], linestyle=l, marker=m) # Plot number of func evals for this experiment if min(trial_list_means[k] - trial_list_std[k]) < min_val: min_val = min(trial_list_means[k] - trial_list_std[k]) if max(trial_list_means[k] + trial_list_std[k]) > max_val: max_val = max(trial_list_means[k] + trial_list_std[k]) if len(trial_list_means[k]) > max_trials: max_trials = len(trial_list_means[k]) # Descript and label the stuff fig.suptitle(title, fontsize=16) leg = ax1.legend(loc='best', fancybox=True) leg.get_frame().set_alpha(0.5) if log: ax1.set_ylabel("log10(Optimizer time in [sec])") else: ax1.set_ylabel("Optimizer time in [sec]") if y_max == y_min: ax1.set_ylim([min_val-2, max_val+2]) else: ax1.set_ylim([y_min, y_max]) ax1.set_xlim([0, max_trials]) plt.tight_layout() plt.subplots_adjust(top=0.85) if save != "": plt.savefig(save, dpi=100, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, format=None, transparent=False, bbox_inches="tight", pad_inches=0.1) else: plt.show() def main(pkl_list, name_list, autofill, title="", log=False, save="", y_min=0, y_max=0, cut=sys.maxint): times_dict = dict() for exp in range(len(name_list)): times_dict[name_list[exp][0]] = list() for pkl in pkl_list[exp]: fh = open(pkl, "r") trials = cPickle.load(fh) fh.close() # Get all variables from the trials object cv_starttime = trials["cv_starttime"][:cut] cv_endtime = trials["cv_endtime"][:cut] # Get optimizer duration times time_list = list() # First duration time_list.append(cv_starttime[0] - trials["starttime"][0]) time_idx = 0 for i in range(len(cv_starttime[1:])): # Is there a next restored run? # if yes, does next cvstart belong to a restored run? if len(trials["endtime"]) > time_idx and \ cv_starttime[i+1] > trials["endtime"][time_idx]: # Check whether run crashed/terminated during cv # Equals means that the run crashed if cv_endtime[i] < trials["endtime"][time_idx]: # No .. everything is fine time_list.append((trials["endtime"][time_idx] - cv_endtime[i])) time_list.append((cv_starttime[i + 1] - trials["starttime"][time_idx+1])) elif trials["endtime"][time_idx] == cv_endtime[i]: # Yes, but BBoM managed to set an endtime pass else: # Yes ... trouble print "Help" print trials["endtime"][time_idx] print cv_endtime[i] time_idx += 1 # everything ... else: time_list.append(cv_starttime[i + 1] - cv_endtime[i]) times_dict[name_list[exp][0]].append(time_list) for key in times_dict.keys(): max_len = max([len(ls) for ls in times_dict[key]]) for t in range(len(times_dict[key])): if len(times_dict[key][t]) < max_len and autofill: diff = max_len - len(times_dict[key][t]) # noinspection PyUnusedLocal times_dict[key][t] = np.append(times_dict[key][t], [times_dict[key][t][-1] for x in range(diff)]) elif len(times_dict[key][t]) < max_len and not autofill: raise ValueError("(%s != %s), Traces do not have the same length, please use -a" % (str(max_len), str(len(times_dict[key][t])))) plot_time_trace(times_dict, name_list, title=title, log=log, save=save, y_min=y_min, y_max=y_max) if save != "": sys.stdout.write("Saved plot to " + save + "\n") else: sys.stdout.write("..Done\n") if __name__ == "__main__": prog = "python plotOptimizerOverhead.py WhatIsThis <oneOrMorePickles> [WhatIsThis <oneOrMorePickles>]" description = "Plot a Trace with std for multiple experiments" parser = ArgumentParser(description=description, prog=prog) # General Options parser.add_argument("-c", "--cut", type=int, default=sys.maxint, help="Cut the experiment pickle length.") parser.add_argument("-l", "--log", action="store_true", dest="log", default=False, help="Plot on log scale") parser.add_argument("--max", type=float, dest="max", default=0, help="Maximum of the plot") parser.add_argument("--min", type=float, dest="min", default=0, help="Minimum of the plot") parser.add_argument("-s", "--save", dest="save", default="", help="Where to save plot instead of showing it?") parser.add_argument("-t", "--title", dest="title", default="", help="Choose a supertitle for the plot") # Options which are available only for this plot parser.add_argument("-a", "--autofill", action="store_true", dest="autofill", default=False, help="Fill trace automatically") args, unknown = parser.parse_known_args() sys.stdout.write("\nFound " + str(len(unknown)) + " arguments\n") pkl_list_main, name_list_main = plot_util.get_pkl_and_name_list(unknown) main(pkl_list_main, name_list_main, autofill=args.autofill, title=args.title, log=args.log, save=args.save, y_min=args.min, y_max=args.max, cut=args.cut)
gpl-3.0
rkmaddox/mne-python
mne/fixes.py
4
35959
"""Compatibility fixes for older versions of libraries If you add content to this file, please give the version of the package at which the fix is no longer needed. # originally copied from scikit-learn """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck <[email protected]> # License: BSD from distutils.version import LooseVersion import functools import inspect from math import log import os from pathlib import Path import warnings import numpy as np ############################################################################### # Misc def _median_complex(data, axis): """Compute marginal median on complex data safely. Can be removed when numpy introduces a fix. See: https://github.com/scipy/scipy/pull/12676/. """ # np.median must be passed real arrays for the desired result if np.iscomplexobj(data): data = (np.median(np.real(data), axis=axis) + 1j * np.median(np.imag(data), axis=axis)) else: data = np.median(data, axis=axis) return data # helpers to get function arguments def _get_args(function, varargs=False): params = inspect.signature(function).parameters args = [key for key, param in params.items() if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)] if varargs: varargs = [param.name for param in params.values() if param.kind == param.VAR_POSITIONAL] if len(varargs) == 0: varargs = None return args, varargs else: return args def _safe_svd(A, **kwargs): """Wrapper to get around the SVD did not converge error of death""" # Intel has a bug with their GESVD driver: # https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049 # noqa: E501 # For SciPy 0.18 and up, we can work around it by using # lapack_driver='gesvd' instead. from scipy import linalg if kwargs.get('overwrite_a', False): raise ValueError('Cannot set overwrite_a=True with this function') try: return linalg.svd(A, **kwargs) except np.linalg.LinAlgError as exp: from .utils import warn if 'lapack_driver' in _get_args(linalg.svd): warn('SVD error (%s), attempting to use GESVD instead of GESDD' % (exp,)) return linalg.svd(A, lapack_driver='gesvd', **kwargs) else: raise def _csc_matrix_cast(x): from scipy.sparse import csc_matrix return csc_matrix(x) ############################################################################### # Backporting nibabel's read_geometry def _get_read_geometry(): """Get the geometry reading function.""" try: import nibabel as nib has_nibabel = True except ImportError: has_nibabel = False if has_nibabel: from nibabel.freesurfer import read_geometry else: read_geometry = _read_geometry return read_geometry def _read_geometry(filepath, read_metadata=False, read_stamp=False): """Backport from nibabel.""" from .surface import _fread3, _fread3_many volume_info = dict() TRIANGLE_MAGIC = 16777214 QUAD_MAGIC = 16777215 NEW_QUAD_MAGIC = 16777213 with open(filepath, "rb") as fobj: magic = _fread3(fobj) if magic in (QUAD_MAGIC, NEW_QUAD_MAGIC): # Quad file nvert = _fread3(fobj) nquad = _fread3(fobj) (fmt, div) = (">i2", 100.) if magic == QUAD_MAGIC else (">f4", 1.) coords = np.fromfile(fobj, fmt, nvert * 3).astype(np.float64) / div coords = coords.reshape(-1, 3) quads = _fread3_many(fobj, nquad * 4) quads = quads.reshape(nquad, 4) # # Face splitting follows # faces = np.zeros((2 * nquad, 3), dtype=np.int64) nface = 0 for quad in quads: if (quad[0] % 2) == 0: faces[nface] = quad[0], quad[1], quad[3] nface += 1 faces[nface] = quad[2], quad[3], quad[1] nface += 1 else: faces[nface] = quad[0], quad[1], quad[2] nface += 1 faces[nface] = quad[0], quad[2], quad[3] nface += 1 elif magic == TRIANGLE_MAGIC: # Triangle file create_stamp = fobj.readline().rstrip(b'\n').decode('utf-8') fobj.readline() vnum = np.fromfile(fobj, ">i4", 1)[0] fnum = np.fromfile(fobj, ">i4", 1)[0] coords = np.fromfile(fobj, ">f4", vnum * 3).reshape(vnum, 3) faces = np.fromfile(fobj, ">i4", fnum * 3).reshape(fnum, 3) if read_metadata: volume_info = _read_volume_info(fobj) else: raise ValueError("File does not appear to be a Freesurfer surface") coords = coords.astype(np.float64) ret = (coords, faces) if read_metadata: if len(volume_info) == 0: warnings.warn('No volume information contained in the file') ret += (volume_info,) if read_stamp: ret += (create_stamp,) return ret ############################################################################### # Triaging FFT functions to get fast pocketfft (SciPy 1.4) @functools.lru_cache(None) def _import_fft(name): single = False if not isinstance(name, tuple): name = (name,) single = True try: from scipy.fft import rfft # noqa analysis:ignore except ImportError: from numpy import fft # noqa else: from scipy import fft # noqa out = [getattr(fft, n) for n in name] if single: out = out[0] return out ############################################################################### # NumPy Generator (NumPy 1.17) def rng_uniform(rng): """Get the unform/randint from the rng.""" # prefer Generator.integers, fall back to RandomState.randint return getattr(rng, 'integers', getattr(rng, 'randint', None)) def _validate_sos(sos): """Helper to validate a SOS input""" sos = np.atleast_2d(sos) if sos.ndim != 2: raise ValueError('sos array must be 2D') n_sections, m = sos.shape if m != 6: raise ValueError('sos array must be shape (n_sections, 6)') if not (sos[:, 3] == 1).all(): raise ValueError('sos[:, 3] should be all ones') return sos, n_sections ############################################################################### # Misc utilities # get_fdata() requires knowing the dtype ahead of time, so let's triage on our # own instead def _get_img_fdata(img): data = np.asanyarray(img.dataobj) dtype = np.complex128 if np.iscomplexobj(data) else np.float64 return data.astype(dtype) def _read_volume_info(fobj): """An implementation of nibabel.freesurfer.io._read_volume_info, since old versions of nibabel (<=2.1.0) don't have it. """ volume_info = dict() head = np.fromfile(fobj, '>i4', 1) if not np.array_equal(head, [20]): # Read two bytes more head = np.concatenate([head, np.fromfile(fobj, '>i4', 2)]) if not np.array_equal(head, [2, 0, 20]): warnings.warn("Unknown extension code.") return volume_info volume_info['head'] = head for key in ['valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras', 'zras', 'cras']: pair = fobj.readline().decode('utf-8').split('=') if pair[0].strip() != key or len(pair) != 2: raise IOError('Error parsing volume info.') if key in ('valid', 'filename'): volume_info[key] = pair[1].strip() elif key == 'volume': volume_info[key] = np.array(pair[1].split()).astype(int) else: volume_info[key] = np.array(pair[1].split()).astype(float) # Ignore the rest return volume_info def _serialize_volume_info(volume_info): """An implementation of nibabel.freesurfer.io._serialize_volume_info, since old versions of nibabel (<=2.1.0) don't have it.""" keys = ['head', 'valid', 'filename', 'volume', 'voxelsize', 'xras', 'yras', 'zras', 'cras'] diff = set(volume_info.keys()).difference(keys) if len(diff) > 0: raise ValueError('Invalid volume info: %s.' % diff.pop()) strings = list() for key in keys: if key == 'head': if not (np.array_equal(volume_info[key], [20]) or np.array_equal( volume_info[key], [2, 0, 20])): warnings.warn("Unknown extension code.") strings.append(np.array(volume_info[key], dtype='>i4').tobytes()) elif key in ('valid', 'filename'): val = volume_info[key] strings.append('{} = {}\n'.format(key, val).encode('utf-8')) elif key == 'volume': val = volume_info[key] strings.append('{} = {} {} {}\n'.format( key, val[0], val[1], val[2]).encode('utf-8')) else: val = volume_info[key] strings.append('{} = {:0.10g} {:0.10g} {:0.10g}\n'.format( key.ljust(6), val[0], val[1], val[2]).encode('utf-8')) return b''.join(strings) ############################################################################## # adapted from scikit-learn def is_classifier(estimator): """Returns True if the given estimator is (probably) a classifier. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a classifier and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Returns True if the given estimator is (probably) a regressor. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "regressor" _DEFAULT_TAGS = { 'non_deterministic': False, 'requires_positive_X': False, 'requires_positive_y': False, 'X_types': ['2darray'], 'poor_score': False, 'no_validation': False, 'multioutput': False, "allow_nan": False, 'stateless': False, 'multilabel': False, '_skip_test': False, '_xfail_checks': False, 'multioutput_only': False, 'binary_only': False, 'requires_fit': True, 'preserves_dtype': [np.float64], 'requires_y': False, 'pairwise': False, } class BaseEstimator(object): """Base class for all estimators in scikit-learn. Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). """ @classmethod def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = inspect.signature(init) # Consider the constructor parameters excluding 'self' parameters = [p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError("scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature)) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters]) def get_params(self, deep=True): """Get parameters for this estimator. Parameters ---------- deep : bool, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Parameters ---------- **params : dict Parameters. Returns ------- inst : instance The object. """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in params.items(): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): from sklearn.base import _pprint class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False), offset=len(class_name),),) # __getstate__ and __setstate__ are omitted because they only contain # conditionals that are not satisfied by our objects (e.g., # ``if type(self).__module__.startswith('sklearn.')``. def _more_tags(self): return _DEFAULT_TAGS def _get_tags(self): collected_tags = {} for base_class in reversed(inspect.getmro(self.__class__)): if hasattr(base_class, '_more_tags'): # need the if because mixins might not have _more_tags # but might do redundant work in estimators # (i.e. calling more tags on BaseEstimator multiple times) more_tags = base_class._more_tags(self) collected_tags.update(more_tags) return collected_tags # newer sklearn deprecates importing from sklearn.metrics.scoring, # but older sklearn does not expose check_scoring in sklearn.metrics. def _get_check_scoring(): try: from sklearn.metrics import check_scoring # noqa except ImportError: from sklearn.metrics.scorer import check_scoring # noqa return check_scoring def _check_fit_params(X, fit_params, indices=None): """Check and validate the parameters passed during `fit`. Parameters ---------- X : array-like of shape (n_samples, n_features) Data array. fit_params : dict Dictionary containing the parameters passed at fit. indices : array-like of shape (n_samples,), default=None Indices to be selected if the parameter has the same size as `X`. Returns ------- fit_params_validated : dict Validated parameters. We ensure that the values support indexing. """ try: from sklearn.utils.validation import \ _check_fit_params as _sklearn_check_fit_params return _sklearn_check_fit_params(X, fit_params, indices) except ImportError: from sklearn.model_selection import _validation fit_params_validated = \ {k: _validation._index_param_value(X, v, indices) for k, v in fit_params.items()} return fit_params_validated ############################################################################### # Copied from sklearn to simplify code paths def empirical_covariance(X, assume_centered=False): """Computes the Maximum likelihood covariance estimator Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate assume_centered : Boolean If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) Empirical covariance (Maximum Likelihood Estimator). """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) if X.shape[0] == 1: warnings.warn("Only one sample available. " "You may want to reshape your data array") if assume_centered: covariance = np.dot(X.T, X) / X.shape[0] else: covariance = np.cov(X.T, bias=1) if covariance.ndim == 0: covariance = np.array([[covariance]]) return covariance class EmpiricalCovariance(BaseEstimator): """Maximum likelihood covariance estimator Read more in the :ref:`User Guide <covariance>`. Parameters ---------- store_precision : bool Specifies if the estimated precision is stored. assume_centered : bool If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False (default), data are centered before computation. Attributes ---------- covariance_ : 2D ndarray, shape (n_features, n_features) Estimated covariance matrix precision_ : 2D ndarray, shape (n_features, n_features) Estimated pseudo-inverse matrix. (stored only if store_precision is True) """ def __init__(self, store_precision=True, assume_centered=False): self.store_precision = store_precision self.assume_centered = assume_centered def _set_covariance(self, covariance): """Saves the covariance and precision estimates Storage is done accordingly to `self.store_precision`. Precision stored only if invertible. Parameters ---------- covariance : 2D ndarray, shape (n_features, n_features) Estimated covariance matrix to be stored, and from which precision is computed. """ from scipy import linalg # covariance = check_array(covariance) # set covariance self.covariance_ = covariance # set precision if self.store_precision: self.precision_ = linalg.pinvh(covariance) else: self.precision_ = None def get_precision(self): """Getter for the precision matrix. Returns ------- precision_ : array-like, The precision matrix associated to the current covariance object. """ from scipy import linalg if self.store_precision: precision = self.precision_ else: precision = linalg.pinvh(self.covariance_) return precision def fit(self, X, y=None): """Fit the Maximum Likelihood Estimator covariance model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : ndarray | None Not used, present for API consistency. Returns ------- self : object Returns self. """ # noqa: E501 # X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) covariance = empirical_covariance( X, assume_centered=self.assume_centered) self._set_covariance(covariance) return self def score(self, X_test, y=None): """Compute the log-likelihood of a Gaussian dataset. Uses ``self.covariance_`` as an estimator of its covariance matrix. Parameters ---------- X_test : array-like, shape = [n_samples, n_features] Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering). y : ndarray | None Not used, present for API consistency. Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix. """ # compute empirical covariance of the test set test_cov = empirical_covariance( X_test - self.location_, assume_centered=True) # compute log likelihood res = log_likelihood(test_cov, self.get_precision()) return res def error_norm(self, comp_cov, norm='frobenius', scaling=True, squared=True): """Computes the Mean Squared Error between two covariance estimators. Parameters ---------- comp_cov : array-like, shape = [n_features, n_features] The covariance to compare with. norm : str The type of norm used to compute the error. Available error types: - 'frobenius' (default): sqrt(tr(A^t.A)) - 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``. scaling : bool If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. squared : bool Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. Returns ------- The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators. """ from scipy import linalg # compute the error error = comp_cov - self.covariance_ # compute the error norm if norm == "frobenius": squared_norm = np.sum(error ** 2) elif norm == "spectral": squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error))) else: raise NotImplementedError( "Only spectral and frobenius norms are implemented") # optionally scale the error norm if scaling: squared_norm = squared_norm / error.shape[0] # finally get either the squared norm or the norm if squared: result = squared_norm else: result = np.sqrt(squared_norm) return result def mahalanobis(self, observations): """Computes the squared Mahalanobis distances of given observations. Parameters ---------- observations : array-like, shape = [n_observations, n_features] The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. Returns ------- mahalanobis_distance : array, shape = [n_observations,] Squared Mahalanobis distances of the observations. """ precision = self.get_precision() # compute mahalanobis distances centered_obs = observations - self.location_ mahalanobis_dist = np.sum( np.dot(centered_obs, precision) * centered_obs, 1) return mahalanobis_dist def log_likelihood(emp_cov, precision): """Computes the sample mean of the log_likelihood under a covariance model computes the empirical expected log-likelihood (accounting for the normalization terms and scaling), allowing for universal comparison (beyond this software package) Parameters ---------- emp_cov : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- sample mean of the log-likelihood """ p = precision.shape[0] log_likelihood_ = - np.sum(emp_cov * precision) + _logdet(precision) log_likelihood_ -= p * np.log(2 * np.pi) log_likelihood_ /= 2. return log_likelihood_ # sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues def _logdet(A): """Compute the log det of a positive semidefinite matrix.""" from scipy import linalg vals = linalg.eigvalsh(A) # avoid negative (numerical errors) or zero (semi-definite matrix) values tol = vals.max() * vals.size * np.finfo(np.float64).eps vals = np.where(vals > tol, vals, tol) return np.sum(np.log(vals)) def _infer_dimension_(spectrum, n_samples, n_features): """Infers the dimension of a dataset of shape (n_samples, n_features) The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() def _assess_dimension_(spectrum, rank, n_samples, n_features): from scipy.special import gammaln if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the" " dataset") pu = -rank * log(2.) for i in range(rank): pu += (gammaln((n_features - i) / 2.) - log(np.pi) * (n_features - i) / 2.) pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2. if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2. m = n_features * rank - rank * (rank + 1.) / 2. pp = log(2. * np.pi) * (m + rank + 1.) / 2. pa = 0. spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log((spectrum[i] - spectrum[j]) * (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples) ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2. return ll def svd_flip(u, v, u_based_decision=True): if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, np.arange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[np.arange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08): """Use high precision for cumsum and check that final value matches sum Parameters ---------- arr : array-like To be cumulatively summed as flat axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. rtol : float Relative tolerance, see ``np.allclose`` atol : float Absolute tolerance, see ``np.allclose`` """ out = np.cumsum(arr, axis=axis, dtype=np.float64) expected = np.sum(arr, axis=axis, dtype=np.float64) if not np.all(np.isclose(out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True)): warnings.warn('cumsum was found to be unstable: ' 'its last element does not correspond to sum', RuntimeWarning) return out # This shim can be removed once NumPy 1.19.0+ is required (1.18.4 has sign bug) def svd(a, hermitian=False): if hermitian: # faster s, u = np.linalg.eigh(a) sgn = np.sign(s) s = np.abs(s) sidx = np.argsort(s)[..., ::-1] sgn = np.take_along_axis(sgn, sidx, axis=-1) s = np.take_along_axis(s, sidx, axis=-1) u = np.take_along_axis(u, sidx[..., None, :], axis=-1) # singular values are unsigned, move the sign into v vt = (u * sgn[..., np.newaxis, :]).swapaxes(-2, -1).conj() np.abs(s, out=s) return u, s, vt else: return np.linalg.svd(a) ############################################################################### # From nilearn def _crop_colorbar(cbar, cbar_vmin, cbar_vmax): """ crop a colorbar to show from cbar_vmin to cbar_vmax Used when symmetric_cbar=False is used. """ import matplotlib if (cbar_vmin is None) and (cbar_vmax is None): return cbar_tick_locs = cbar.locator.locs if cbar_vmax is None: cbar_vmax = cbar_tick_locs.max() if cbar_vmin is None: cbar_vmin = cbar_tick_locs.min() new_tick_locs = np.linspace(cbar_vmin, cbar_vmax, len(cbar_tick_locs)) # matplotlib >= 3.2.0 no longer normalizes axes between 0 and 1 # See https://matplotlib.org/3.2.1/api/prev_api_changes/api_changes_3.2.0.html # _outline was removed in # https://github.com/matplotlib/matplotlib/commit/03a542e875eba091a027046d5ec652daa8be6863 # so we use the code from there if LooseVersion(matplotlib.__version__) >= LooseVersion("3.2.0"): cbar.ax.set_ylim(cbar_vmin, cbar_vmax) X, _ = cbar._mesh() X = np.array([X[0], X[-1]]) Y = np.array([[cbar_vmin, cbar_vmin], [cbar_vmax, cbar_vmax]]) N = X.shape[0] ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0] x = X.T.reshape(-1)[ii] y = Y.T.reshape(-1)[ii] xy = (np.column_stack([y, x]) if cbar.orientation == 'horizontal' else np.column_stack([x, y])) cbar.outline.set_xy(xy) else: cbar.ax.set_ylim(cbar.norm(cbar_vmin), cbar.norm(cbar_vmax)) outline = cbar.outline.get_xy() outline[:2, 1] += cbar.norm(cbar_vmin) outline[2:6, 1] -= (1. - cbar.norm(cbar_vmax)) outline[6:, 1] += cbar.norm(cbar_vmin) cbar.outline.set_xy(outline) cbar.set_ticks(new_tick_locs, update_ticks=True) ############################################################################### # Numba (optional requirement) # Here we choose different defaults to speed things up by default try: import numba if LooseVersion(numba.__version__) < LooseVersion('0.40'): raise ImportError prange = numba.prange def jit(nopython=True, nogil=True, fastmath=True, cache=True, **kwargs): # noqa return numba.jit(nopython=nopython, nogil=nogil, fastmath=fastmath, cache=cache, **kwargs) except ImportError: has_numba = False else: has_numba = (os.getenv('MNE_USE_NUMBA', 'true').lower() == 'true') if not has_numba: def jit(**kwargs): # noqa def _jit(func): return func return _jit prange = range bincount = np.bincount mean = np.mean else: @jit() def bincount(x, weights, minlength): # noqa: D103 out = np.zeros(minlength) for idx, w in zip(x, weights): out[idx] += w return out # fix because Numba does not support axis kwarg for mean @jit() def _np_apply_along_axis(func1d, axis, arr): assert arr.ndim == 2 assert axis in [0, 1] if axis == 0: result = np.empty(arr.shape[1]) for i in range(len(result)): result[i] = func1d(arr[:, i]) else: result = np.empty(arr.shape[0]) for i in range(len(result)): result[i] = func1d(arr[i, :]) return result @jit() def mean(array, axis): return _np_apply_along_axis(np.mean, axis, array) ############################################################################### # workaround: plt.close() doesn't spawn close_event on Agg backend # (check MPL github issue #18609; scheduled to be fixed by MPL 3.4) def _close_event(fig): """Force calling of the MPL figure close event.""" try: fig.canvas.close_event() except ValueError: # old mpl with Qt pass # pragma: no cover def _is_last_row(ax): try: return ax.get_subplotspec().is_last_row() # 3.4+ except AttributeError: return ax.is_last_row() return ax.get_subplotspec().is_last_row() ############################################################################### # SciPy deprecation of pinv + pinvh rcond (never worked properly anyway) in 1.7 def pinvh(a, rtol=None): """Compute a pseudo-inverse of a Hermitian matrix.""" from scipy.linalg.decomp import _asarray_validated s, u = np.linalg.eigh(a) del a if rtol is None: rtol = s.size * np.finfo(s.dtype).eps maxS = np.max(np.abs(s)) above_cutoff = (abs(s) > maxS * rtol) psigma_diag = 1.0 / s[above_cutoff] u = u[:, above_cutoff] return (u * psigma_diag) @ u.conj().T def pinv(a, rtol=None): """Compute a pseudo-inverse of a matrix.""" u, s, vh = np.linalg.svd(a, full_matrices=False) del a maxS = np.max(s) if rtol is None: rtol = max(vh.shape + u.shape) * np.finfo(u.dtype).eps rank = np.sum(s > maxS * rtol) u = u[:, :rank] u /= s[:rank] return (u @ vh[:rank]).conj().T
bsd-3-clause
cbertinato/pandas
doc/source/conf.py
1
23864
# # pandas documentation build configuration file, created by # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import inspect import importlib import logging import jinja2 from sphinx.ext.autosummary import _import_by_name from numpydoc.docscrape import NumpyDocString logger = logging.getLogger(__name__) # https://github.com/sphinx-doc/sphinx/pull/2325/files # Workaround for sphinx-build recursion limit overflow: # pickle.dump(doctree, f, pickle.HIGHEST_PROTOCOL) # RuntimeError: maximum recursion depth exceeded while pickling an object # # Python's default allowed recursion depth is 1000. sys.setrecursionlimit(5000) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.append(os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../sphinxext')) sys.path.extend([ # numpy standard doc extensions os.path.join(os.path.dirname(__file__), '..', '../..', 'sphinxext') ]) # -- General configuration ----------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. # sphinxext. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.extlinks', 'sphinx.ext.todo', 'numpydoc', # handle NumPy documentation formatted docstrings 'IPython.sphinxext.ipython_directive', 'IPython.sphinxext.ipython_console_highlighting', 'matplotlib.sphinxext.plot_directive', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.linkcode', 'nbsphinx', 'contributors', # custom pandas extension ] exclude_patterns = ['**.ipynb_checkpoints'] try: import nbconvert except ImportError: logger.warn('nbconvert not installed. Skipping notebooks.') exclude_patterns.append('**/*.ipynb') else: try: nbconvert.utils.pandoc.get_pandoc_version() except nbconvert.utils.pandoc.PandocMissing: logger.warn('Pandoc not installed. Skipping notebooks.') exclude_patterns.append('**/*.ipynb') # sphinx_pattern can be '-api' to exclude the API pages, # the path to a file, or a Python object # (e.g. '10min.rst' or 'pandas.DataFrame.head') source_path = os.path.dirname(os.path.abspath(__file__)) pattern = os.environ.get('SPHINX_PATTERN') if pattern: for dirname, dirs, fnames in os.walk(source_path): for fname in fnames: if os.path.splitext(fname)[-1] in ('.rst', '.ipynb'): fname = os.path.relpath(os.path.join(dirname, fname), source_path) if (fname == 'index.rst' and os.path.abspath(dirname) == source_path): continue elif pattern == '-api' and dirname == 'reference': exclude_patterns.append(fname) elif pattern != '-api' and fname != pattern: exclude_patterns.append(fname) with open(os.path.join(source_path, 'index.rst.template')) as f: t = jinja2.Template(f.read()) with open(os.path.join(source_path, 'index.rst'), 'w') as f: f.write(t.render(include_api=pattern is None, single_doc=(pattern if pattern is not None and pattern != '-api' else None))) autosummary_generate = True if pattern is None else ['index'] # numpydoc numpydoc_attributes_as_param_list = False # matplotlib plot directive plot_include_source = True plot_formats = [("png", 90)] plot_html_show_formats = False plot_html_show_source_link = False plot_pre_code = """import numpy as np import pandas as pd""" # Add any paths that contain templates here, relative to this directory. templates_path = ['../_templates'] # The suffix of source filenames. source_suffix = [ '.rst', ] # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = 'pandas' copyright = '2008-2014, the pandas development team' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import pandas # version = '%s r%s' % (pandas.__version__, svn_version()) version = str(pandas.__version__) # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. # unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'nature_with_gtoc' # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. # html_style = 'statsmodels.css' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = os.path.join(html_static_path[0], 'favicon.ico') # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # Add redirect for previously existing API pages # each item is like `(from_old, to_new)` # To redirect a class and all its methods, see below # https://github.com/pandas-dev/pandas/issues/16186 moved_api_pages = [ ('pandas.core.common.isnull', 'pandas.isna'), ('pandas.core.common.notnull', 'pandas.notna'), ('pandas.core.reshape.get_dummies', 'pandas.get_dummies'), ('pandas.tools.merge.concat', 'pandas.concat'), ('pandas.tools.merge.merge', 'pandas.merge'), ('pandas.tools.pivot.pivot_table', 'pandas.pivot_table'), ('pandas.tseries.tools.to_datetime', 'pandas.to_datetime'), ('pandas.io.clipboard.read_clipboard', 'pandas.read_clipboard'), ('pandas.io.excel.ExcelFile.parse', 'pandas.ExcelFile.parse'), ('pandas.io.excel.read_excel', 'pandas.read_excel'), ('pandas.io.gbq.read_gbq', 'pandas.read_gbq'), ('pandas.io.html.read_html', 'pandas.read_html'), ('pandas.io.json.read_json', 'pandas.read_json'), ('pandas.io.parsers.read_csv', 'pandas.read_csv'), ('pandas.io.parsers.read_fwf', 'pandas.read_fwf'), ('pandas.io.parsers.read_table', 'pandas.read_table'), ('pandas.io.pickle.read_pickle', 'pandas.read_pickle'), ('pandas.io.pytables.HDFStore.append', 'pandas.HDFStore.append'), ('pandas.io.pytables.HDFStore.get', 'pandas.HDFStore.get'), ('pandas.io.pytables.HDFStore.put', 'pandas.HDFStore.put'), ('pandas.io.pytables.HDFStore.select', 'pandas.HDFStore.select'), ('pandas.io.pytables.read_hdf', 'pandas.read_hdf'), ('pandas.io.sql.read_sql', 'pandas.read_sql'), ('pandas.io.sql.read_frame', 'pandas.read_frame'), ('pandas.io.sql.write_frame', 'pandas.write_frame'), ('pandas.io.stata.read_stata', 'pandas.read_stata'), ] # Again, tuples of (from_old, to_new) moved_classes = [ ('pandas.tseries.resample.Resampler', 'pandas.core.resample.Resampler'), ('pandas.formats.style.Styler', 'pandas.io.formats.style.Styler'), ] for old, new in moved_classes: # the class itself... moved_api_pages.append((old, new)) mod, classname = new.rsplit('.', 1) klass = getattr(importlib.import_module(mod), classname) methods = [x for x in dir(klass) if not x.startswith('_') or x in ('__iter__', '__array__')] for method in methods: # ... and each of its public methods moved_api_pages.append( ("{old}.{method}".format(old=old, method=method), "{new}.{method}".format(new=new, method=method)) ) if pattern is None: html_additional_pages = { 'generated/' + page[0]: 'api_redirect.html' for page in moved_api_pages } header = """\ .. currentmodule:: pandas .. ipython:: python :suppress: import numpy as np import pandas as pd randn = np.random.randn np.random.seed(123456) np.set_printoptions(precision=4, suppress=True) pd.options.display.max_rows = 15 import os os.chdir(r'{}') """.format(os.path.dirname(os.path.dirname(__file__))) html_context = { 'redirects': {old: new for old, new in moved_api_pages}, 'header': header } # If false, no module index is generated. html_use_modindex = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'pandas' # -- Options for nbsphinx ------------------------------------------------ nbsphinx_allow_errors = True # -- Options for LaTeX output -------------------------------------------- latex_elements = {} # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples (source start # file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pandas.tex', 'pandas: powerful Python data analysis toolkit', r'Wes McKinney\n\& PyData Development Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_use_modindex = True if pattern is None: intersphinx_mapping = { 'dateutil': ("https://dateutil.readthedocs.io/en/latest/", None), 'matplotlib': ('https://matplotlib.org/', None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'pandas-gbq': ('https://pandas-gbq.readthedocs.io/en/latest/', None), 'py': ('https://pylib.readthedocs.io/en/latest/', None), 'python': ('https://docs.python.org/3/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None), 'statsmodels': ('http://www.statsmodels.org/devel/', None), } # extlinks alias extlinks = {'issue': ('https://github.com/pandas-dev/pandas/issues/%s', 'GH'), 'wiki': ('https://github.com/pandas-dev/pandas/wiki/%s', 'wiki ')} ipython_warning_is_error = False ipython_exec_lines = [ 'import numpy as np', 'import pandas as pd', # This ensures correct rendering on system with console encoding != utf8 # (windows). It forces pandas to encode its output reprs using utf8 # wherever the docs are built. The docs' target is the browser, not # the console, so this is fine. 'pd.options.display.encoding="utf8"' ] # Add custom Documenter to handle attributes/methods of an AccessorProperty # eg pandas.Series.str and pandas.Series.dt (see GH9322) import sphinx from sphinx.util import rpartition from sphinx.ext.autodoc import ( Documenter, MethodDocumenter, AttributeDocumenter) from sphinx.ext.autosummary import Autosummary class AccessorDocumenter(MethodDocumenter): """ Specialized Documenter subclass for accessors. """ objtype = 'accessor' directivetype = 'method' # lower than MethodDocumenter so this is not chosen for normal methods priority = 0.6 def format_signature(self): # this method gives an error/warning for the accessors, therefore # overriding it (accessor has no arguments) return '' class AccessorLevelDocumenter(Documenter): """ Specialized Documenter subclass for objects on accessor level (methods, attributes). """ # This is the simple straightforward version # modname is None, base the last elements (eg 'hour') # and path the part before (eg 'Series.dt') # def resolve_name(self, modname, parents, path, base): # modname = 'pandas' # mod_cls = path.rstrip('.') # mod_cls = mod_cls.split('.') # # return modname, mod_cls + [base] def resolve_name(self, modname, parents, path, base): if modname is None: if path: mod_cls = path.rstrip('.') else: mod_cls = None # if documenting a class-level object without path, # there must be a current class, either from a parent # auto directive ... mod_cls = self.env.temp_data.get('autodoc:class') # ... or from a class directive if mod_cls is None: mod_cls = self.env.temp_data.get('py:class') # ... if still None, there's no way to know if mod_cls is None: return None, [] # HACK: this is added in comparison to ClassLevelDocumenter # mod_cls still exists of class.accessor, so an extra # rpartition is needed modname, accessor = rpartition(mod_cls, '.') modname, cls = rpartition(modname, '.') parents = [cls, accessor] # if the module name is still missing, get it like above if not modname: modname = self.env.temp_data.get('autodoc:module') if not modname: if sphinx.__version__ > '1.3': modname = self.env.ref_context.get('py:module') else: modname = self.env.temp_data.get('py:module') # ... else, it stays None, which means invalid return modname, parents + [base] class AccessorAttributeDocumenter(AccessorLevelDocumenter, AttributeDocumenter): objtype = 'accessorattribute' directivetype = 'attribute' # lower than AttributeDocumenter so this is not chosen for normal # attributes priority = 0.6 class AccessorMethodDocumenter(AccessorLevelDocumenter, MethodDocumenter): objtype = 'accessormethod' directivetype = 'method' # lower than MethodDocumenter so this is not chosen for normal methods priority = 0.6 class AccessorCallableDocumenter(AccessorLevelDocumenter, MethodDocumenter): """ This documenter lets us removes .__call__ from the method signature for callable accessors like Series.plot """ objtype = 'accessorcallable' directivetype = 'method' # lower than MethodDocumenter; otherwise the doc build prints warnings priority = 0.5 def format_name(self): return MethodDocumenter.format_name(self).rstrip('.__call__') class PandasAutosummary(Autosummary): """ This alternative autosummary class lets us override the table summary for Series.plot and DataFrame.plot in the API docs. """ def _replace_pandas_items(self, display_name, sig, summary, real_name): # this a hack: ideally we should extract the signature from the # .__call__ method instead of hard coding this if display_name == 'DataFrame.plot': sig = '([x, y, kind, ax, ....])' summary = 'DataFrame plotting accessor and method' elif display_name == 'Series.plot': sig = '([kind, ax, figsize, ....])' summary = 'Series plotting accessor and method' return (display_name, sig, summary, real_name) @staticmethod def _is_deprecated(real_name): try: obj, parent, modname = _import_by_name(real_name) except ImportError: return False doc = NumpyDocString(obj.__doc__ or '') summary = ''.join(doc['Summary'] + doc['Extended Summary']) return '.. deprecated::' in summary def _add_deprecation_prefixes(self, items): for item in items: display_name, sig, summary, real_name = item if self._is_deprecated(real_name): summary = '(DEPRECATED) %s' % summary yield display_name, sig, summary, real_name def get_items(self, names): items = Autosummary.get_items(self, names) items = [self._replace_pandas_items(*item) for item in items] items = list(self._add_deprecation_prefixes(items)) return items # based on numpy doc/source/conf.py def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except AttributeError: return None try: # inspect.unwrap() was added in Python version 3.4 if sys.version_info >= (3, 5): fn = inspect.getsourcefile(inspect.unwrap(obj)) else: fn = inspect.getsourcefile(obj) except TypeError: fn = None if not fn: return None try: source, lineno = inspect.getsourcelines(obj) except OSError: lineno = None if lineno: linespec = "#L{:d}-L{:d}".format(lineno, lineno + len(source) - 1) else: linespec = "" fn = os.path.relpath(fn, start=os.path.dirname(pandas.__file__)) if '+' in pandas.__version__: return ("http://github.com/pandas-dev/pandas/blob/master/pandas/" "{}{}".format(fn, linespec)) else: return ("http://github.com/pandas-dev/pandas/blob/" "v{}/pandas/{}{}".format(pandas.__version__, fn, linespec)) # remove the docstring of the flags attribute (inherited from numpy ndarray) # because these give doc build errors (see GH issue 5331) def remove_flags_docstring(app, what, name, obj, options, lines): if what == "attribute" and name.endswith(".flags"): del lines[:] def process_class_docstrings(app, what, name, obj, options, lines): """ For those classes for which we use :: :template: autosummary/class_without_autosummary.rst the documented attributes/methods have to be listed in the class docstring. However, if one of those lists is empty, we use 'None', which then generates warnings in sphinx / ugly html output. This "autodoc-process-docstring" event connector removes that part from the processed docstring. """ if what == "class": joined = '\n'.join(lines) templates = [ """.. rubric:: Attributes .. autosummary:: :toctree: None """, """.. rubric:: Methods .. autosummary:: :toctree: None """ ] for template in templates: if template in joined: joined = joined.replace(template, '') lines[:] = joined.split('\n') suppress_warnings = [ # We "overwrite" autosummary with our PandasAutosummary, but # still want the regular autosummary setup to run. So we just # suppress this warning. 'app.add_directive' ] if pattern: # When building a single document we don't want to warn because references # to other documents are unknown, as it's expected suppress_warnings.append('ref.ref') def rstjinja(app, docname, source): """ Render our pages as a jinja template for fancy templating goodness. """ # http://ericholscher.com/blog/2016/jul/25/integrating-jinja-rst-sphinx/ # Make sure we're outputting HTML if app.builder.format != 'html': return src = source[0] rendered = app.builder.templates.render_string( src, app.config.html_context ) source[0] = rendered def setup(app): app.connect("source-read", rstjinja) app.connect("autodoc-process-docstring", remove_flags_docstring) app.connect("autodoc-process-docstring", process_class_docstrings) app.add_autodocumenter(AccessorDocumenter) app.add_autodocumenter(AccessorAttributeDocumenter) app.add_autodocumenter(AccessorMethodDocumenter) app.add_autodocumenter(AccessorCallableDocumenter) app.add_directive('autosummary', PandasAutosummary)
bsd-3-clause
jangorecki/h2o-3
h2o-py/tests/testdir_misc/pyunit_as_data_frame.py
6
1667
import sys sys.path.insert(1,"../../") import h2o from tests import pyunit_utils def pyunit_as_data_frame(): smallbike = h2o.import_file(pyunit_utils.locate("smalldata/jira/citibike_head.csv")) ##use_pandas = False small_bike_list = smallbike.as_data_frame(use_pandas=False) assert isinstance(small_bike_list, list) assert len(small_bike_list[0]) == smallbike.ncol assert len(small_bike_list) == smallbike.nrow + 1 #one extra for header smallbike_noheader = smallbike.as_data_frame(use_pandas=False, header=False) assert len(smallbike_noheader) == smallbike.nrow head_small_bike = smallbike.head(rows=5, cols=2) tail_small_bike = smallbike.tail(rows=5, cols=2) assert len(head_small_bike[0]) == len(tail_small_bike[0]) == 5 assert len(head_small_bike) == len(tail_small_bike) == 5 # assert head_small_bike[1][-1] == tail_small_bike[1][1] # TODO ##use_pandas = True small_bike_pandas = smallbike.as_data_frame(use_pandas=True) assert small_bike_pandas.__class__.__name__ == "DataFrame" assert small_bike_pandas.shape == (smallbike.nrow, smallbike.ncol) head_small_bike_pandas = smallbike.head(rows=5).as_data_frame(True) tail_small_bike_pandas = smallbike.tail(rows=5).as_data_frame(True) assert head_small_bike_pandas.shape == tail_small_bike_pandas.shape == (5,smallbike.ncol) assert head_small_bike_pandas.loc[1][2] == small_bike_pandas.loc[1][2] assert tail_small_bike_pandas.loc[2][3] == small_bike_pandas.loc[6][3] assert head_small_bike_pandas.loc[4][0] == tail_small_bike_pandas.loc[0][0] if __name__ == "__main__": pyunit_utils.standalone_test(pyunit_as_data_frame) else: pyunit_as_data_frame()
apache-2.0
amolkahat/pandas
pandas/core/computation/expressions.py
2
7043
""" Expressions ----------- Offer fast expression evaluation through numexpr """ import warnings import numpy as np import pandas.core.common as com from pandas.core.computation.check import _NUMEXPR_INSTALLED from pandas.core.config import get_option if _NUMEXPR_INSTALLED: import numexpr as ne _TEST_MODE = None _TEST_RESULT = None _USE_NUMEXPR = _NUMEXPR_INSTALLED _evaluate = None _where = None # the set of dtypes that we will allow pass to numexpr _ALLOWED_DTYPES = { 'evaluate': {'int64', 'int32', 'float64', 'float32', 'bool'}, 'where': {'int64', 'float64', 'bool'} } # the minimum prod shape that we will use numexpr _MIN_ELEMENTS = 10000 def set_use_numexpr(v=True): # set/unset to use numexpr global _USE_NUMEXPR if _NUMEXPR_INSTALLED: _USE_NUMEXPR = v # choose what we are going to do global _evaluate, _where if not _USE_NUMEXPR: _evaluate = _evaluate_standard _where = _where_standard else: _evaluate = _evaluate_numexpr _where = _where_numexpr def set_numexpr_threads(n=None): # if we are using numexpr, set the threads to n # otherwise reset if _NUMEXPR_INSTALLED and _USE_NUMEXPR: if n is None: n = ne.detect_number_of_cores() ne.set_num_threads(n) def _evaluate_standard(op, op_str, a, b, **eval_kwargs): """ standard evaluation """ if _TEST_MODE: _store_test_result(False) with np.errstate(all='ignore'): return op(a, b) def _can_use_numexpr(op, op_str, a, b, dtype_check): """ return a boolean if we WILL be using numexpr """ if op_str is not None: # required min elements (otherwise we are adding overhead) if np.prod(a.shape) > _MIN_ELEMENTS: # check for dtype compatibility dtypes = set() for o in [a, b]: if hasattr(o, 'get_dtype_counts'): s = o.get_dtype_counts() if len(s) > 1: return False dtypes |= set(s.index) elif isinstance(o, np.ndarray): dtypes |= {o.dtype.name} # allowed are a superset if not len(dtypes) or _ALLOWED_DTYPES[dtype_check] >= dtypes: return True return False def _evaluate_numexpr(op, op_str, a, b, truediv=True, reversed=False, **eval_kwargs): result = None if _can_use_numexpr(op, op_str, a, b, 'evaluate'): try: # we were originally called by a reversed op # method if reversed: a, b = b, a a_value = getattr(a, "values", a) b_value = getattr(b, "values", b) result = ne.evaluate('a_value {op} b_value'.format(op=op_str), local_dict={'a_value': a_value, 'b_value': b_value}, casting='safe', truediv=truediv, **eval_kwargs) except ValueError as detail: if 'unknown type object' in str(detail): pass if _TEST_MODE: _store_test_result(result is not None) if result is None: result = _evaluate_standard(op, op_str, a, b) return result def _where_standard(cond, a, b): return np.where(com.values_from_object(cond), com.values_from_object(a), com.values_from_object(b)) def _where_numexpr(cond, a, b): result = None if _can_use_numexpr(None, 'where', a, b, 'where'): try: cond_value = getattr(cond, 'values', cond) a_value = getattr(a, 'values', a) b_value = getattr(b, 'values', b) result = ne.evaluate('where(cond_value, a_value, b_value)', local_dict={'cond_value': cond_value, 'a_value': a_value, 'b_value': b_value}, casting='safe') except ValueError as detail: if 'unknown type object' in str(detail): pass except Exception as detail: raise TypeError(str(detail)) if result is None: result = _where_standard(cond, a, b) return result # turn myself on set_use_numexpr(get_option('compute.use_numexpr')) def _has_bool_dtype(x): try: return x.dtype == bool except AttributeError: try: return 'bool' in x.dtypes except AttributeError: return isinstance(x, (bool, np.bool_)) def _bool_arith_check(op_str, a, b, not_allowed=frozenset(('/', '//', '**')), unsupported=None): if unsupported is None: unsupported = {'+': '|', '*': '&', '-': '^'} if _has_bool_dtype(a) and _has_bool_dtype(b): if op_str in unsupported: warnings.warn("evaluating in Python space because the {op!r} " "operator is not supported by numexpr for " "the bool dtype, use {alt_op!r} instead" .format(op=op_str, alt_op=unsupported[op_str])) return False if op_str in not_allowed: raise NotImplementedError("operator {op!r} not implemented for " "bool dtypes".format(op=op_str)) return True def evaluate(op, op_str, a, b, use_numexpr=True, **eval_kwargs): """ evaluate and return the expression of the op on a and b Parameters ---------- op : the actual operand op_str: the string version of the op a : left operand b : right operand use_numexpr : whether to try to use numexpr (default True) """ use_numexpr = use_numexpr and _bool_arith_check(op_str, a, b) if use_numexpr: return _evaluate(op, op_str, a, b, **eval_kwargs) return _evaluate_standard(op, op_str, a, b) def where(cond, a, b, use_numexpr=True): """ evaluate the where condition cond on a and b Parameters ---------- cond : a boolean array a : return if cond is True b : return if cond is False use_numexpr : whether to try to use numexpr (default True) """ if use_numexpr: return _where(cond, a, b) return _where_standard(cond, a, b) def set_test_mode(v=True): """ Keeps track of whether numexpr was used. Stores an additional ``True`` for every successful use of evaluate with numexpr since the last ``get_test_result`` """ global _TEST_MODE, _TEST_RESULT _TEST_MODE = v _TEST_RESULT = [] def _store_test_result(used_numexpr): global _TEST_RESULT if used_numexpr: _TEST_RESULT.append(used_numexpr) def get_test_result(): """get test result and reset test_results""" global _TEST_RESULT res = _TEST_RESULT _TEST_RESULT = [] return res
bsd-3-clause
jlegendary/scikit-learn
sklearn/cluster/setup.py
263
1449
# Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.cpp'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical', sources=['_hierarchical.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension( '_k_means', libraries=cblas_libs, sources=['_k_means.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info ) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
darcamo/pyphysim
apps/ia/ia_SINRs_and_capacity.py
1
5134
#!/usr/bin/env python """module docstring""" try: import cPickle as pickle except ImportError as e: # pragma: no cover import pickle import numpy as np from matplotlib import pyplot as plt from pandas import DataFrame import pyphysim.channels.multiuser from pyphysim.ia.algorithms import (AlternatingMinIASolver, MaxSinrIASolver, MMSEIASolver) from pyphysim.progressbar import ProgressbarText from pyphysim.util.conversion import dB2Linear def calc_SINRs_and_capacity(solver): """ Calculates the SINRs. Parameters ---------- solver : T < IASolverBaseClass The IA solver. """ SINRs = solver.calc_SINR_in_dB() sinrs = solver.calc_SINR() calc_capacity = lambda sirn: np.sum(np.log2(1 + sirn)) capacity = np.array(list(map(calc_capacity, sinrs))) sum_capacity = np.sum(capacity) return SINRs, capacity, sum_capacity if __name__ == '__main__': # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx K = 3 Nr = 4 Nt = 4 Ns = 2 SNR = 5 max_iterations = 2000 P = 1.0 initialize_with = 'alt_min' # --------------------------------------------------------------------- noise_var = 1. / dB2Linear(SNR) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx multiuserchannel = pyphysim.channels.multiuser.MultiUserChannelMatrix() multiuserchannel.randomize(Nr, Nt, K) multiuserchannel.noise_var = noise_var alt_min_solver = AlternatingMinIASolver(multiuserchannel) alt_min_solver.max_iterations = max_iterations # alt_min_solver.noise_var = noise_var max_sinr_solver = MaxSinrIASolver(multiuserchannel) max_sinr_solver.max_iterations = max_iterations # max_sinr_solver.noise_var = noise_var max_sinr_solver.initialize_with = 'alt_min' mmse_solver = MMSEIASolver(multiuserchannel) mmse_solver.max_iterations = max_iterations # mmse_solver.noise_var = noise_var mmse_solver.initialize_with = 'alt_min' # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx calc_capacity = lambda sirn: np.sum(np.log2(1 + sirn)) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx rep_max = 100 alt_min_SINRs = np.empty(rep_max, dtype=np.ndarray) max_sinr_SINRs = np.empty(rep_max, dtype=np.ndarray) mmse_SINRs = np.empty(rep_max, dtype=np.ndarray) alt_min_capacity = np.empty(rep_max, dtype=np.ndarray) max_sinr_capacity = np.empty(rep_max, dtype=np.ndarray) mmse_capacity = np.empty(rep_max, dtype=np.ndarray) alt_min_sum_capacity = np.empty(rep_max, dtype=float) max_sinr_sum_capacity = np.empty(rep_max, dtype=float) mmse_sum_capacity = np.empty(rep_max, dtype=float) alt_min_runned_iterations = np.empty(rep_max, dtype=int) max_sinr_runned_iterations = np.empty(rep_max, dtype=int) mmse_runned_iterations = np.empty(rep_max, dtype=int) pbar = ProgressbarText(rep_max, message="Simulating for SNR: {0}".format(SNR)) for rep in range(rep_max): multiuserchannel.randomize(Nr, Nt, K) alt_min_solver.clear() max_sinr_solver.clear() mmse_solver.clear() alt_min_runned_iterations[rep] = alt_min_solver.solve(Ns, P) max_sinr_runned_iterations[rep] = max_sinr_solver.solve(Ns, P) mmse_runned_iterations[rep] = mmse_solver.solve(Ns, P) mmse_solver.calc_sum_capacity() # print "Alt Min" (alt_min_SINRs[rep], alt_min_capacity[rep], alt_min_sum_capacity[rep]) = calc_SINRs_and_capacity(alt_min_solver) # print "SINRs:\n{0}".format(alt_min_SINRs[rep]) # print "Capacity:\n{0}".format(alt_min_capacity[rep]) # print "Sum_Capacity: {0}".format(alt_min_sum_capacity[rep]) # print "\nMax SINR" (max_sinr_SINRs[rep], max_sinr_capacity[rep], max_sinr_sum_capacity[rep]) = calc_SINRs_and_capacity(max_sinr_solver) # print "SINRs:\n{0}".format(max_sinr_SINRs[rep]) # print "Capacity:\n{0}".format(max_sinr_capacity[rep]) # print "Sum_Capacity: {0}".format(max_sinr_sum_capacity[rep]) # print "\nMMSE" (mmse_SINRs[rep], mmse_capacity[rep], mmse_sum_capacity[rep]) = calc_SINRs_and_capacity(mmse_solver) # print "SINRs:\n{0}".format(mmse_SINRs[rep]) # print "Capacity:\n{0}".format(mmse_capacity[rep]) # print "Sum_Capacity: {0}".format(mmse_sum_capacity[rep]) pbar.progress(rep) df = DataFrame({ 'Min. Leakage': alt_min_sum_capacity, 'Max SINR': max_sinr_sum_capacity, 'MMSE': mmse_sum_capacity }) df.to_csv( 'sum_capacity_{Nr}x{Nt}_{Ns}_SNR_{SNR}_{initialize_with}_init.txt'. format(Nr=Nr, Ns=Ns, Nt=Nt, SNR=SNR, initialize_with=initialize_with), index_label="Index") plt.plot([sum(alt_min_capacity[a]) for a in range(50)]) plt.plot([sum(max_sinr_capacity[a]) for a in range(50)]) plt.plot([sum(mmse_capacity[a]) for a in range(50)]) plt.legend(["Min Leakage", "Max SINR", "MMSE"])
gpl-2.0
great-expectations/great_expectations
great_expectations/expectations/metrics/column_map_metrics/column_values_match_regex_list.py
1
2995
import logging import pandas as pd from great_expectations.execution_engine import ( PandasExecutionEngine, SparkDFExecutionEngine, ) from great_expectations.execution_engine.sqlalchemy_execution_engine import ( SqlAlchemyExecutionEngine, ) from great_expectations.expectations.metrics.import_manager import sa from great_expectations.expectations.metrics.map_metric import ( ColumnMapMetricProvider, column_condition_partial, ) from great_expectations.expectations.metrics.util import get_dialect_regex_expression logger = logging.getLogger(__name__) class ColumnValuesMatchRegexList(ColumnMapMetricProvider): condition_metric_name = "column_values.match_regex_list" condition_value_keys = ( "regex_list", "match_on", ) default_kwarg_values = {"match_on": "any"} @column_condition_partial(engine=PandasExecutionEngine) def _pandas(cls, column, regex_list, match_on, **kwargs): regex_matches = [] for regex in regex_list: regex_matches.append(column.astype(str).str.contains(regex)) regex_match_df = pd.concat(regex_matches, axis=1, ignore_index=True) if match_on == "any": result = regex_match_df.any(axis="columns") elif match_on == "all": result = regex_match_df.all(axis="columns") else: raise ValueError("match_on must be either 'any' or 'all'") return result @column_condition_partial(engine=SqlAlchemyExecutionEngine) def _sqlalchemy(cls, column, regex_list, match_on, _dialect, **kwargs): if match_on not in ["any", "all"]: raise ValueError("match_on must be any or all") if len(regex_list) == 0: raise ValueError("At least one regex must be supplied in the regex_list.") regex_expression = get_dialect_regex_expression(column, regex_list[0], _dialect) if regex_expression is None: logger.warning("Regex is not supported for dialect %s" % str(_dialect)) raise NotImplementedError if match_on == "any": condition = sa.or_( *[ get_dialect_regex_expression(column, regex, _dialect) for regex in regex_list ] ) else: condition = sa.and_( *[ get_dialect_regex_expression(column, regex, _dialect) for regex in regex_list ] ) return condition @column_condition_partial(engine=SparkDFExecutionEngine) def _spark(cls, column, regex_list, match_on, **kwargs): if match_on == "any": return column.rlike("|".join(regex_list)) elif match_on == "all": formatted_regex_list = ["(?={})".format(regex) for regex in regex_list] return column.rlike("".join(formatted_regex_list)) else: raise ValueError("match_on must be either 'any' or 'all'")
apache-2.0
kaiodt/nanook
controlador_trajetoria/senoide_klancar_odometria/plot_trajetoria_senoide_klancar_odometria.py
1
6383
#! /usr/bin/env python # coding: utf-8 ########################################################################################### ########################################################################################### ## Projeto: Nanook UFC ## Autor: Kaio Douglas Teófilo Rocha ## Email: [email protected] ########################################################################################### ## Arquivo: Plotter de Ensaios do Controlador de Trajetória (Senoide - Klancar - Odometria) ########################################################################################### ########################################################################################### from os.path import expanduser import matplotlib.pyplot as plt ########################################################################################### ### INICIALIZAÇÃO ########################################################################################### # Número do ensaio ensaio = int(raw_input('Número do Ensaio: ')) # Arquivo com os dados home = expanduser('~') path = home + '/ros_catkin_ws/src/nanook/controlador_trajetoria' path += '/senoide_klancar_odometria/resultados/ensaio_%d.txt' % ensaio # Abertura do arquivo data_file = open(path, 'r') # Listas com os dados de cada variável coletada samples = [] # Amostra time_list = [] # Tempo [s] x_ref_list = [] # Referência de posição no eixo x [m] y_ref_list = [] # Referência de posição no eixo y [m] theta_ref_list = [] # Referência de orientação [rad] v_ref_list = [] # Referência de velocidade linear da base [m/s] w_ref_list = [] # Referência de velocidade angular da base [rad/s] x_real_list = [] # Posição real no eixo x [m] y_real_list = [] # Posição real no eixo y [m] theta_real_list = [] # Orientação real [rad] x_est_list = [] # Posição estimada no eixo x [m] y_est_list = [] # Posição estimada no eixo y [m] theta_est_list = [] # Orientação estimada [rad] v_list = [] # Velocidade linear da base [m/s] w_list = [] # Velocidade angular da base [rad/s] u_v_list = [] # Comando de velocidade linear da base [m/s] u_w_list = [] # Comando de velocidade angulat da base [rad/s] x_error_list = [] # Erro de posição no eixo x [m] y_error_list = [] # Erro de posição no eixo y [m] theta_error_list = [] # Erro de orientação [rad] ########################################################################################### ### LEITURA DO ARQUIVO ########################################################################################### # Exibição das linhas com informações (iniciadas com #) e armazenamento de linhas # com dados (iniciadas com *) nas respectivas listas for line in data_file: if '*' not in line: # Linha com informações do ensaio print line else: # Linha com dados line = line.split() samples.append(int(line[1])) time_list.append(float(line[2])) x_ref_list.append(float(line[3])) y_ref_list.append(float(line[4])) theta_ref_list.append(float(line[5])) v_ref_list.append(float(line[6])) w_ref_list.append(float(line[7])) x_real_list.append(float(line[8])) y_real_list.append(float(line[9])) theta_real_list.append(float(line[10])) x_est_list.append(float(line[11])) y_est_list.append(float(line[12])) theta_est_list.append(float(line[13])) v_list.append(float(line[14])) w_list.append(float(line[15])) u_v_list.append(float(line[16])) u_w_list.append(float(line[17])) x_error_list.append(float(line[18])) y_error_list.append(float(line[19])) theta_error_list.append(float(line[20])) # Fechamento do arquivo data_file.close() ########################################################################################### ### GERAÇÃO DE GRÁFICOS ########################################################################################### plt.close('all') # Pose plt.figure(1) # Posição no eixo y [m] | Posição no eixo x [m] plt.subplot(2, 2, 1) plt.plot(x_ref_list, y_ref_list, 'r--', x_est_list, y_est_list, 'b-', x_real_list, y_real_list, 'g-.') plt.title('Trajetoria XY') plt.xlabel('x (m)') plt.ylabel('y (m)') plt.grid('on') # Posição no eixo x [m] | Tempo [s] plt.subplot(2, 2, 2) plt.plot(time_list, x_ref_list, 'r--', time_list, x_est_list, 'b-', time_list, x_real_list, 'g-.') plt.title('Posicao no Eixo X') plt.xlabel('Tempo (s)') plt.ylabel('x (m)') plt.grid('on') # Orientação [rad] | Tempo [s] plt.subplot(2, 2, 3) plt.plot(time_list, theta_ref_list, 'r--', time_list, theta_est_list, 'b-', time_list, theta_real_list, 'g-.') plt.title('Orientacao') plt.xlabel('Tempo (s)') plt.ylabel('theta (rad)') plt.grid('on') # Posição no eixo y [m] | Tempo [s] plt.subplot(2, 2, 4) plt.plot(time_list, y_ref_list, 'r--', time_list, y_est_list, 'b-', time_list, y_real_list, 'g-.') plt.title('Posicao no Eixo Y') plt.xlabel('Tempo (s)') plt.ylabel('y (m)') plt.grid('on') # Velocidade plt.figure(2) # Velocidade linear [m/s] | Tempo [s] plt.subplot(1, 2, 1) plt.plot(time_list, u_v_list, 'r--', time_list, v_list, 'b-') plt.title('Velocidade Linear') plt.xlabel('Tempo (s)') plt.ylabel('v (m/s)') plt.grid('on') # Velocidade angular [rad/s] | Tempo [s] plt.subplot(1, 2, 2) plt.plot(time_list, u_w_list, 'r--', time_list, w_list, 'b-') plt.title('Velocidade Angular') plt.xlabel('Tempo (s)') plt.ylabel('w (rad/s)') plt.grid('on') # Erros plt.figure(3) # Erro de posição no eixo x [m] | Tempo [s] plt.subplot(2, 2, 1) plt.plot(time_list, x_error_list, 'b-') plt.title('Erro de Posicao no Eixo x') plt.xlabel('Tempo (s)') plt.ylabel('erro_x (m)') plt.grid('on') # Erro de posição no eixo y [m] | Tempo [s] plt.subplot(2, 2, 2) plt.plot(time_list, y_error_list, 'b-') plt.title('Erro de Posicao no Eixo y') plt.xlabel('Tempo (s)') plt.ylabel('erro_y (m)') plt.grid('on') # Erro de orientação [rad] | Tempo [s] plt.subplot(2, 2, 3) plt.plot(time_list, theta_error_list, 'b-') plt.title('Erro de Orientacao') plt.xlabel('Tempo (s)') plt.ylabel('erro_theta (rad)') plt.grid('on') # Mostrar gráficos plt.show()
gpl-3.0
cjayb/mne-python
examples/preprocessing/plot_shift_evoked.py
29
1245
""" ================================== Shifting time-scale in evoked data ================================== """ # Author: Mainak Jas <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.viz import tight_layout from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading evoked data condition = 'Left Auditory' evoked = mne.read_evokeds(fname, condition=condition, baseline=(None, 0), proj=True) ch_names = evoked.info['ch_names'] picks = mne.pick_channels(ch_names=ch_names, include=["MEG 2332"]) # Create subplots f, (ax1, ax2, ax3) = plt.subplots(3) evoked.plot(exclude=[], picks=picks, axes=ax1, titles=dict(grad='Before time shifting'), time_unit='s') # Apply relative time-shift of 500 ms evoked.shift_time(0.5, relative=True) evoked.plot(exclude=[], picks=picks, axes=ax2, titles=dict(grad='Relative shift: 500 ms'), time_unit='s') # Apply absolute time-shift of 500 ms evoked.shift_time(0.5, relative=False) evoked.plot(exclude=[], picks=picks, axes=ax3, titles=dict(grad='Absolute shift: 500 ms'), time_unit='s') tight_layout()
bsd-3-clause
cosmoharrigan/pylearn2
pylearn2/scripts/datasets/browse_small_norb.py
44
6901
#!/usr/bin/env python import sys import argparse import pickle import warnings import exceptions import numpy try: from matplotlib import pyplot except ImportError as import_error: warnings.warn("Can't use this script without matplotlib.") pyplot = None from pylearn2.datasets import norb warnings.warn("This script is deprecated. Please use ./browse_norb.py " "instead. It is kept around as a tester for deprecated class " "datasets.norb.SmallNORB", exceptions.DeprecationWarning) def main(): def parse_args(): parser = argparse.ArgumentParser( description="Browser for SmallNORB dataset.") parser.add_argument('--which_set', default='train', help="'train', 'test', or the path to a .pkl file") parser.add_argument('--zca', default=None, help=("if --which_set points to a .pkl " "file storing a ZCA-preprocessed " "NORB dataset, you can optionally " "enter the preprocessor's .pkl " "file path here to undo the " "ZCA'ing for visualization " "purposes.")) return parser.parse_args() def get_data(args): if args.which_set in ('train', 'test'): dataset = norb.SmallNORB(args.which_set, True) else: with open(args.which_set) as norb_file: dataset = pickle.load(norb_file) if len(dataset.y.shape) < 2 or dataset.y.shape[1] == 1: print("This viewer does not support NORB datasets that " "only have classification labels.") sys.exit(1) if args.zca is not None: with open(args.zca) as zca_file: zca = pickle.load(zca_file) dataset.X = zca.inverse(dataset.X) num_examples = dataset.X.shape[0] topo_shape = ((num_examples, ) + tuple(dataset.view_converter.shape)) assert topo_shape[-1] == 1 topo_shape = topo_shape[:-1] values = dataset.X.reshape(topo_shape) labels = numpy.array(dataset.y, 'int') return values, labels, dataset.which_set args = parse_args() values, labels, which_set = get_data(args) # For programming convenience, internally remap the instance labels to be # 0-4, and the azimuth labels to be 0-17. The user will still only see the # original, unmodified label values. instance_index = norb.SmallNORB.label_type_to_index['instance'] def remap_instances(which_set, labels): if which_set == 'train': new_to_old_instance = [4, 6, 7, 8, 9] elif which_set == 'test': new_to_old_instance = [0, 1, 2, 3, 5] num_instances = len(new_to_old_instance) old_to_new_instance = numpy.ndarray(10, 'int') old_to_new_instance.fill(-1) old_to_new_instance[new_to_old_instance] = numpy.arange(num_instances) instance_slice = numpy.index_exp[:, instance_index] old_instances = labels[instance_slice] new_instances = old_to_new_instance[old_instances] labels[instance_slice] = new_instances azimuth_index = norb.SmallNORB.label_type_to_index['azimuth'] azimuth_slice = numpy.index_exp[:, azimuth_index] labels[azimuth_slice] = labels[azimuth_slice] / 2 return new_to_old_instance new_to_old_instance = remap_instances(which_set, labels) def get_new_azimuth_degrees(scalar_label): return 20 * scalar_label # Maps a label vector to the corresponding index in <values> num_labels_by_type = numpy.array(norb.SmallNORB.num_labels_by_type, 'int') num_labels_by_type[instance_index] = len(new_to_old_instance) label_to_index = numpy.ndarray(num_labels_by_type, 'int') label_to_index.fill(-1) for i, label in enumerate(labels): label_to_index[tuple(label)] = i assert not numpy.any(label_to_index == -1) # all elements have been set figure, axes = pyplot.subplots(1, 2, squeeze=True) figure.canvas.set_window_title('Small NORB dataset (%sing set)' % which_set) # shift subplots down to make more room for the text figure.subplots_adjust(bottom=0.05) num_label_types = len(norb.SmallNORB.num_labels_by_type) current_labels = numpy.zeros(num_label_types, 'int') current_label_type = [0, ] label_text = figure.suptitle("title text", x=0.1, horizontalalignment="left") def redraw(redraw_text, redraw_images): if redraw_text: cl = current_labels lines = [ 'category: %s' % norb.SmallNORB.get_category(cl[0]), 'instance: %d' % new_to_old_instance[cl[1]], 'elevation: %d' % norb.SmallNORB.get_elevation_degrees(cl[2]), 'azimuth: %d' % get_new_azimuth_degrees(cl[3]), 'lighting: %d' % cl[4]] lt = current_label_type[0] lines[lt] = '==> ' + lines[lt] text = ('Up/down arrows choose label, left/right arrows change it' '\n\n' + '\n'.join(lines)) label_text.set_text(text) if redraw_images: index = label_to_index[tuple(current_labels)] image_pair = values[index, :, :, :] for i in range(2): axes[i].imshow(image_pair[i, :, :], cmap='gray') figure.canvas.draw() def on_key_press(event): def add_mod(arg, step, size): return (arg + size + step) % size def incr_label_type(step): current_label_type[0] = add_mod(current_label_type[0], step, num_label_types) def incr_label(step): lt = current_label_type[0] num_labels = num_labels_by_type[lt] current_labels[lt] = add_mod(current_labels[lt], step, num_labels) if event.key == 'up': incr_label_type(-1) redraw(True, False) elif event.key == 'down': incr_label_type(1) redraw(True, False) elif event.key == 'left': incr_label(-1) redraw(True, True) elif event.key == 'right': incr_label(1) redraw(True, True) elif event.key == 'q': sys.exit(0) figure.canvas.mpl_connect('key_press_event', on_key_press) redraw(True, True) pyplot.show() if __name__ == '__main__': main()
bsd-3-clause
sperka/shogun
applications/easysvm/tutpaper/svm_params.py
26
12935
#from matplotlib import rc #rc('text', usetex=True) fontsize = 16 contourFontsize = 12 showColorbar = False xmin = -1 xmax = 1 ymin = -1.05 ymax = 1 import sys,os import numpy import shogun from shogun.Kernel import GaussianKernel, LinearKernel, PolyKernel from shogun.Features import RealFeatures, BinaryLabels from shogun.Classifier import LibSVM from numpy import arange import matplotlib from matplotlib import pylab pylab.rcParams['contour.negative_linestyle'] = 'solid' def features_from_file(fileName) : fileHandle = open(fileName) fileHandle.readline() features = [] labels = [] for line in fileHandle : tokens = line.split(',') labels.append(float(tokens[1])) features.append([float(token) for token in tokens[2:]]) return RealFeatures(numpy.transpose(numpy.array(features))), features, BinaryLabels(numpy.array(labels,numpy.float)) def create_kernel(kname, features, kparam=None) : if kname == 'gauss' : kernel = GaussianKernel(features, features, kparam) elif kname == 'linear': kernel = LinearKernel(features, features) elif kname == 'poly' : kernel = PolyKernel(features, features, kparam, True, False) return kernel def svm_train(kernel, labels, C1, C2=None): """Trains a SVM with the given kernel""" num_threads = 1 kernel.io.disable_progress() svm = LibSVM(C1, kernel, labels) if C2: svm.set_C(C1, C2) svm.parallel.set_num_threads(num_threads) svm.io.disable_progress() svm.train() return svm def svm_test(svm, kernel, features_train, features_test) : """predicts on the test examples""" kernel.init(features_train, features_test) output = svm.apply().get_labels() return output def decision_boundary_plot(svm, features, vectors, labels, kernel, fileName = None, **args) : title = None if 'title' in args : title = args['title'] xlabel = None if 'xlabel' in args : xlabel = args['xlabel'] ylabel = None if 'ylabel' in args : ylabel = args['ylabel'] fontsize = 'medium' if 'fontsize' in args : fontsize = args['fontsize'] contourFontsize = 10 if 'contourFontsize' in args : contourFontsize = args['contourFontsize'] showColorbar = True if 'showColorbar' in args : showColorbar = args['showColorbar'] show = True if fileName is not None : show = False if 'show' in args : show = args['show'] # setting up the grid delta = 0.005 x = arange(xmin, xmax, delta) y = arange(ymin, ymax, delta) Z = numpy.zeros((len(x), len(y)), numpy.float_) gridX = numpy.zeros((len(x) *len(y), 2), numpy.float_) n = 0 for i in range(len(x)) : for j in range(len(y)) : gridX[n][0] = x[i] gridX[n][1] = y[j] n += 1 if kernel.get_name() == 'Linear' and 'customwandb' in args: kernel.init_optimization_svm(svm) b=svm.get_bias() w=kernel.get_w() kernel.set_w(args['customwandb'][0]) svm.set_bias(args['customwandb'][1]) if kernel.get_name() == 'Linear' and 'drawarrow' in args: kernel.init_optimization_svm(svm) b=svm.get_bias() w=kernel.get_w() s=1.0/numpy.dot(w,w)/1.17 pylab.arrow(0,-b/w[1], w[0]*s,s*w[1], width=0.01, fc='#dddddd', ec='k') grid_features = RealFeatures(numpy.transpose(gridX)) results = svm_test(svm, kernel, features, grid_features) n = 0 for i in range(len(x)) : for j in range(len(y)) : Z[i][j] = results[n] n += 1 cdict = {'red' :((0.0, 0.6, 0.6),(0.5, 0.8, 0.8),(1.0, 1.0, 1.0)), 'green':((0.0, 0.6, 0.6),(0.5, 0.8, 0.8),(1.0, 1.0, 1.0)), 'blue' :((0.0, 0.6, 0.6),(0.5, 0.8, 0.8),(1.0, 1.0, 1.0)), } my_cmap = matplotlib.colors.LinearSegmentedColormap('lightgray',cdict,256) im = pylab.imshow(numpy.transpose(Z), interpolation='bilinear', origin='lower', cmap=my_cmap, extent=(xmin,xmax,ymin,ymax) ) if 'decisionboundaryonly' in args: C1 = pylab.contour(numpy.transpose(Z), [0], origin='lower', linewidths=(3), colors = ['k'], extent=(xmin,xmax,ymin,ymax)) else: C1 = pylab.contour(numpy.transpose(Z), [-1,0,1], origin='lower', linewidths=(1,3,1), colors = ['k','k'], extent=(xmin,xmax,ymin,ymax)) pylab.clabel(C1, inline=1, fmt='%1.1f', fontsize=contourFontsize) # plot the data lab=labels.get_labels() vec=numpy.array(vectors) idx=numpy.where(lab==-1)[0] pylab.scatter(vec[idx,0], vec[idx,1], s=300, c='#4444ff', marker='o', alpha=0.8, zorder=100) idx=numpy.where(lab==+1)[0] pylab.scatter(vec[idx,0], vec[idx,1], s=500, c='#ff4444', marker='s', alpha=0.8, zorder=100) # plot SVs if not 'decisionboundaryonly' in args: training_outputs = svm_test(svm, kernel, features, features) sv_idx=numpy.where(abs(training_outputs)<=1.01)[0] pylab.scatter(vec[sv_idx,0], vec[sv_idx,1], s=100, c='k', marker='o', alpha=0.8, zorder=100) if 'showmovedpoint' in args: x=-0.779838709677 y=-0.1375 pylab.scatter([x], [y], s=300, c='#4e4e61', marker='o', alpha=1, zorder=100, edgecolor='#454548') pylab.arrow(x,y-0.1, 0, -0.8/1.5, width=0.01, fc='#dddddd', ec='k') #pylab.show() if title is not None : pylab.title(title, fontsize=fontsize) if ylabel: pylab.ylabel(ylabel,fontsize=fontsize) if xlabel: pylab.xlabel(xlabel,fontsize=fontsize) if showColorbar : pylab.colorbar(im) # colormap: pylab.hot() if fileName is not None : pylab.savefig(fileName) if show : pylab.show() def add_percent_ticks(): ticks=pylab.getp(pylab.gca(),'xticks') ticklabels=len(ticks)*[''] ticklabels[0]='0%' ticklabels[-1]='100%' pylab.setp(pylab.gca(), xticklabels=ticklabels) pylab.setp(pylab.gca(), yticklabels=['0%','100%']) ticks=pylab.getp(pylab.gca(),'yticks') ticklabels=len(ticks)*[''] #ticklabels[0]='0%' ticklabels[-1]='100%' pylab.setp(pylab.gca(), yticklabels=ticklabels) xticklabels = pylab.getp(pylab.gca(), 'xticklabels') yticklabels = pylab.getp(pylab.gca(), 'yticklabels') pylab.setp(xticklabels, fontsize=fontsize) pylab.setp(yticklabels, fontsize=fontsize) def create_figures(extension = 'pdf', directory = '../../tex/figures') : if extension[0] != '.' : extension = '.' + extension dpi=90 # data and linear decision boundary features,vectors,labels = features_from_file('data/small_gc_toy.data') kernel = create_kernel('linear', features) svm = svm_train(kernel, labels, 0.7) pylab.figure(figsize=(8,6), dpi=dpi) decision_boundary_plot(svm, features, vectors, labels, kernel, fontsize=fontsize, contourFontsize=contourFontsize, title="Linear Separation", customwandb=(numpy.array([-0.05, -1.0]), -0.3), ylabel="GC Content Before 'AG'",xlabel="GC Content After 'AG'", show=False, showColorbar=showColorbar, decisionboundaryonly=True) add_percent_ticks() pylab.savefig(os.path.join(directory, 'data_and_linear_classifier' + extension)) pylab.close() ##################################################################################### # data and svm decision boundary features,vectors,labels = features_from_file('data/small_gc_toy.data') kernel = create_kernel('linear', features) svm = svm_train(kernel, labels, 100) pylab.figure(figsize=(8,6), dpi=dpi) decision_boundary_plot(svm, features, vectors, labels, kernel, fontsize=fontsize, contourFontsize=contourFontsize, title="Maximum Margin Separation", drawarrow=True, ylabel="GC Content Before 'AG'",xlabel="GC Content After 'AG'", show=False, showColorbar=showColorbar) add_percent_ticks() pylab.savefig(os.path.join(directory, 'data_and_svm_classifier' + extension)) pylab.close() ##################################################################################### # the effect of C on the decision surface: features,vectors,labels = features_from_file('data/small_gc_toy_outlier.data') pylab.figure(figsize=(16,6), dpi=dpi) pylab.subplot(121) kernel = create_kernel('linear', features) svm = svm_train(kernel, labels, 200) decision_boundary_plot(svm, features, vectors, labels, kernel, title = 'Soft-Margin with C=200', ylabel="GC Content Before 'AG'", xlabel="GC Content After 'AG'", fontsize=fontsize, contourFontsize=contourFontsize, show=False, showmovedpoint=True, showColorbar=showColorbar) add_percent_ticks() pylab.subplot(122) kernel = create_kernel('linear', features) svm = svm_train(kernel, labels, 2) decision_boundary_plot(svm, features, vectors, labels, kernel, title = 'Soft-Margin with C=2', ylabel="GC Content Before 'AG'",xlabel="GC Content After 'AG'", fontsize=fontsize, contourFontsize=contourFontsize, show=False, showColorbar=showColorbar) add_percent_ticks() #pylab.subplots_adjust(bottom=0.05, top=0.95) pylab.savefig(os.path.join(directory, 'effect_of_c' + extension)) pylab.close() #################################################################################### # playing with nonlinear data: # the effect of kernel parameters features,vectors,labels = features_from_file('data/small_gc_toy_outlier.data') pylab.figure(figsize=(24,6), dpi=dpi) pylab.subplot(131) kernel = create_kernel('linear', features) svm = svm_train(kernel, labels, 100) decision_boundary_plot(svm, features, vectors, labels, kernel, title = 'Linear Kernel', ylabel="GC Content Before 'AG'", fontsize=fontsize, contourFontsize=contourFontsize, show=False,showColorbar=showColorbar) add_percent_ticks() pylab.subplot(132) kernel = create_kernel('poly', features, 2) svm = svm_train(kernel, labels, 100) decision_boundary_plot(svm, features, vectors, labels, kernel, title='Polynomial Kernel d=2', xlabel="GC Content After 'AG'", fontsize=fontsize, contourFontsize=contourFontsize, show=False,showColorbar=showColorbar) add_percent_ticks() pylab.subplot(133) kernel = create_kernel('poly', features, 5) svm = svm_train(kernel, labels, 10) decision_boundary_plot(svm, features, vectors, labels, kernel, title='Polynomial Kernel d=5', fontsize=fontsize, contourFontsize=contourFontsize, show=False,showColorbar=showColorbar) add_percent_ticks() #pylab.subplots_adjust(bottom=0.05, top=0.95) pylab.savefig(os.path.join(directory, 'params_polynomial' + extension)) pylab.close() #################################################################################### #effects of sigma pylab.figure(figsize=(24,6), dpi=dpi) pylab.subplot(131) gamma = 0.1 sigma = 20.0 kernel = create_kernel('gauss', features, sigma) svm = svm_train(kernel, labels, 100) decision_boundary_plot(svm, features, vectors, labels, kernel, title='Gaussian Kernel Sigma=20', ylabel="GC Content Before 'AG'", fontsize=fontsize, contourFontsize=contourFontsize, show=False,showColorbar=showColorbar) add_percent_ticks() pylab.subplot(132) sigma = 1.0 kernel = create_kernel('gauss', features, sigma) svm = svm_train(kernel, labels, 100) decision_boundary_plot(svm, features, vectors, labels, kernel, title='Gaussian Kernel Sigma=1', xlabel="GC Content After 'AG'", fontsize=fontsize, contourFontsize=contourFontsize, show=False,showColorbar=showColorbar) add_percent_ticks() pylab.subplot(133) sigma = 0.05 kernel = create_kernel('gauss', features, sigma) svm = svm_train(kernel, labels, 100) decision_boundary_plot(svm, features, vectors, labels, kernel, title='Gaussian Kernel Sigma=0.05', fontsize=fontsize, contourFontsize=contourFontsize, show=False,showColorbar=showColorbar) add_percent_ticks() #pylab.subplots_adjust(bottom=0.05, top=0.95) pylab.savefig(os.path.join(directory, 'params_gaussian' + extension)) pylab.close() #################################################################################### if __name__ == '__main__' : extension = 'pdf' if len(sys.argv) > 1 : extension = sys.argv[1] pylab.ioff() create_figures(extension)
gpl-3.0
themrmax/scikit-learn
sklearn/cluster/k_means_.py
8
60187
"""K-means clustering""" # Authors: Gael Varoquaux <[email protected]> # Thomas Rueckstiess <[email protected]> # James Bergstra <[email protected]> # Jan Schlueter <[email protected]> # Nelle Varoquaux # Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, ClusterMixin, TransformerMixin from ..metrics.pairwise import euclidean_distances from ..metrics.pairwise import pairwise_distances_argmin_min from ..utils.extmath import row_norms, squared_norm, stable_cumsum from ..utils.sparsefuncs_fast import assign_rows_csr from ..utils.sparsefuncs import mean_variance_axis from ..utils import check_array from ..utils import check_random_state from ..utils import as_float_array from ..utils import gen_batches from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.six import string_types from . import _k_means from ._k_means_elkan import k_means_elkan ############################################################################### # Initialization heuristic def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None): """Init n_clusters seeds according to k-means++ Parameters ----------- X : array or sparse matrix, shape (n_samples, n_features) The data to pick seeds for. To avoid memory copy, the input data should be double precision (dtype=np.float64). n_clusters : integer The number of seeds to choose x_squared_norms : array, shape (n_samples,) Squared Euclidean norm of each data point. random_state : numpy.RandomState The generator used to initialize the centers. n_local_trials : integer, optional The number of seeding trials for each center (except the first), of which the one reducing inertia the most is greedily chosen. Set to None to make the number of trials depend logarithmically on the number of seeds (2+log(k)); this is the default. Notes ----- Selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. see: Arthur, D. and Vassilvitskii, S. "k-means++: the advantages of careful seeding". ACM-SIAM symposium on Discrete algorithms. 2007 Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip, which is the implementation used in the aforementioned paper. """ n_samples, n_features = X.shape centers = np.empty((n_clusters, n_features), dtype=X.dtype) assert x_squared_norms is not None, 'x_squared_norms None in _k_init' # Set the number of local seeding trials if none is given if n_local_trials is None: # This is what Arthur/Vassilvitskii tried, but did not report # specific results for other than mentioning in the conclusion # that it helped. n_local_trials = 2 + int(np.log(n_clusters)) # Pick first center randomly center_id = random_state.randint(n_samples) if sp.issparse(X): centers[0] = X[center_id].toarray() else: centers[0] = X[center_id] # Initialize list of closest distances and calculate current potential closest_dist_sq = euclidean_distances( centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms, squared=True) current_pot = closest_dist_sq.sum() # Pick the remaining n_clusters-1 points for c in range(1, n_clusters): # Choose center candidates by sampling with probability proportional # to the squared distance to the closest existing center rand_vals = random_state.random_sample(n_local_trials) * current_pot candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq), rand_vals) # Compute distances to center candidates distance_to_candidates = euclidean_distances( X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True) # Decide which candidate is the best best_candidate = None best_pot = None best_dist_sq = None for trial in range(n_local_trials): # Compute potential when including center candidate new_dist_sq = np.minimum(closest_dist_sq, distance_to_candidates[trial]) new_pot = new_dist_sq.sum() # Store result if it is the best local trial so far if (best_candidate is None) or (new_pot < best_pot): best_candidate = candidate_ids[trial] best_pot = new_pot best_dist_sq = new_dist_sq # Permanently add best center candidate found in local tries if sp.issparse(X): centers[c] = X[best_candidate].toarray() else: centers[c] = X[best_candidate] current_pot = best_pot closest_dist_sq = best_dist_sq return centers ############################################################################### # K-means batch estimation by EM (expectation maximization) def _validate_center_shape(X, n_centers, centers): """Check if centers is compatible with X and n_centers""" if len(centers) != n_centers: raise ValueError('The shape of the initial centers (%s) ' 'does not match the number of clusters %i' % (centers.shape, n_centers)) if centers.shape[1] != X.shape[1]: raise ValueError( "The number of features of the initial centers %s " "does not match the number of features of the data %s." % (centers.shape[1], X.shape[1])) def _tolerance(X, tol): """Return a tolerance which is independent of the dataset""" if sp.issparse(X): variances = mean_variance_axis(X, axis=0)[1] else: variances = np.var(X, axis=0) return np.mean(variances) * tol def k_means(X, n_clusters, init='k-means++', precompute_distances='auto', n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs=1, algorithm="auto", return_n_iter=False): """K-means clustering algorithm. Read more in the :ref:`User Guide <k_means>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) The observations to cluster. n_clusters : int The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init : {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances tol : float, optional The relative increment in the results before declaring convergence. verbose : boolean, optional Verbosity mode. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. copy_x : boolean, optional When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. return_n_iter : bool, optional Whether or not to return the number of iterations. Returns ------- centroid : float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label : integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). best_n_iter : int Number of iterations corresponding to the best results. Returned only if `return_n_iter` is set to True. """ if n_init <= 0: raise ValueError("Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError('Number of iterations should be a positive number,' ' got %d instead' % max_iter) X = as_float_array(X, copy=copy_x) tol = _tolerance(X, tol) # If the distances are precomputed every job will create a matrix of shape # (n_clusters, n_samples). To stop KMeans from eating up memory we only # activate this if the created matrix is guaranteed to be under 100MB. 12 # million entries consume a little under 100MB if they are of type double. if precompute_distances == 'auto': n_samples = X.shape[0] precompute_distances = (n_clusters * n_samples) < 12e6 elif isinstance(precompute_distances, bool): pass else: raise ValueError("precompute_distances should be 'auto' or True/False" ", but a value of %r was passed" % precompute_distances) # Validate init array if hasattr(init, '__array__'): init = check_array(init, dtype=X.dtype.type, copy=True) _validate_center_shape(X, n_clusters, init) if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in k-means instead of n_init=%d' % n_init, RuntimeWarning, stacklevel=2) n_init = 1 # subtract of mean of x for more accurate distance computations if not sp.issparse(X): X_mean = X.mean(axis=0) # The copy was already done above X -= X_mean if hasattr(init, '__array__'): init -= X_mean # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) best_labels, best_inertia, best_centers = None, None, None if n_clusters == 1: # elkan doesn't make sense for a single cluster, full will produce # the right result. algorithm = "full" if algorithm == "auto": algorithm = "full" if sp.issparse(X) else 'elkan' if algorithm == "full": kmeans_single = _kmeans_single_lloyd elif algorithm == "elkan": kmeans_single = _kmeans_single_elkan else: raise ValueError("Algorithm must be 'auto', 'full' or 'elkan', got" " %s" % str(algorithm)) if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # run a k-means once labels, inertia, centers, n_iter_ = kmeans_single( X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, precompute_distances=precompute_distances, tol=tol, x_squared_norms=x_squared_norms, random_state=random_state) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia best_n_iter = n_iter_ else: # parallelisation of k-means runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(kmeans_single)(X, n_clusters, max_iter=max_iter, init=init, verbose=verbose, tol=tol, precompute_distances=precompute_distances, x_squared_norms=x_squared_norms, # Change seed to ensure variety random_state=seed) for seed in seeds) # Get results with the lowest inertia labels, inertia, centers, n_iters = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_n_iter = n_iters[best] if not sp.issparse(X): if not copy_x: X += X_mean best_centers += X_mean if return_n_iter: return best_centers, best_labels, best_inertia, best_n_iter else: return best_centers, best_labels, best_inertia def _kmeans_single_elkan(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): if sp.issparse(X): raise ValueError("algorithm='elkan' not supported for sparse input X") X = check_array(X, order="C") random_state = check_random_state(random_state) if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) centers = np.ascontiguousarray(centers) if verbose: print('Initialization complete') centers, labels, n_iter = k_means_elkan(X, n_clusters, centers, tol=tol, max_iter=max_iter, verbose=verbose) inertia = np.sum((X - centers[labels]) ** 2, dtype=np.float64) return labels, inertia, centers, n_iter def _kmeans_single_lloyd(X, n_clusters, max_iter=300, init='k-means++', verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True): """A single run of k-means, assumes preparation completed prior. Parameters ---------- X : array-like of floats, shape (n_samples, n_features) The observations to cluster. n_clusters : int The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional, default 300 Maximum number of iterations of the k-means algorithm to run. init : {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. If an ndarray is passed, it should be of shape (k, p) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a random state and return an initialization. tol : float, optional The relative increment in the results before declaring convergence. verbose : boolean, optional Verbosity mode x_squared_norms : array Precomputed x_squared_norms. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- centroid : float ndarray with shape (k, n_features) Centroids found at the last iteration of k-means. label : integer ndarray with shape (n_samples,) label[i] is the code or index of the centroid the i'th observation is closest to. inertia : float The final value of the inertia criterion (sum of squared distances to the closest centroid for all observations in the training set). n_iter : int Number of iterations run. """ random_state = check_random_state(random_state) best_labels, best_inertia, best_centers = None, None, None # init centers = _init_centroids(X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms) if verbose: print("Initialization complete") # Allocate memory to store the distances for each sample to its # closer center for reallocation in case of ties distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype) # iterations for i in range(max_iter): centers_old = centers.copy() # labels assignment is also called the E-step of EM labels, inertia = \ _labels_inertia(X, x_squared_norms, centers, precompute_distances=precompute_distances, distances=distances) # computation of the means is also called the M-step of EM if sp.issparse(X): centers = _k_means._centers_sparse(X, labels, n_clusters, distances) else: centers = _k_means._centers_dense(X, labels, n_clusters, distances) if verbose: print("Iteration %2d, inertia %.3f" % (i, inertia)) if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia center_shift_total = squared_norm(centers_old - centers) if center_shift_total <= tol: if verbose: print("Converged at iteration %d: " "center shift %e within tolerance %e" % (i, center_shift_total, tol)) break if center_shift_total > 0: # rerun E-step in case of non-convergence so that predicted labels # match cluster centers best_labels, best_inertia = \ _labels_inertia(X, x_squared_norms, best_centers, precompute_distances=precompute_distances, distances=distances) return best_labels, best_inertia, best_centers, i + 1 def _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances): """Compute labels and inertia using a full distance matrix. This will overwrite the 'distances' array in-place. Parameters ---------- X : numpy array, shape (n_sample, n_features) Input data. x_squared_norms : numpy array, shape (n_samples,) Precomputed squared norms of X. centers : numpy array, shape (n_clusters, n_features) Cluster centers which data is assigned to. distances : numpy array, shape (n_samples,) Pre-allocated array in which distances are stored. Returns ------- labels : numpy array, dtype=np.int, shape (n_samples,) Indices of clusters that samples are assigned to. inertia : float Sum of distances of samples to their closest cluster center. """ n_samples = X.shape[0] # Breakup nearest neighbor distance computation into batches to prevent # memory blowup in the case of a large number of samples and clusters. # TODO: Once PR #7383 is merged use check_inputs=False in metric_kwargs. labels, mindist = pairwise_distances_argmin_min( X=X, Y=centers, metric='euclidean', metric_kwargs={'squared': True}) # cython k-means code assumes int32 inputs labels = labels.astype(np.int32) if n_samples == distances.shape[0]: # distances will be changed in-place distances[:] = mindist inertia = mindist.sum() return labels, inertia def _labels_inertia(X, x_squared_norms, centers, precompute_distances=True, distances=None): """E step of the K-means EM algorithm. Compute the labels and the inertia of the given samples and centers. This will compute the distances in-place. Parameters ---------- X : float64 array-like or CSR sparse matrix, shape (n_samples, n_features) The input samples to assign to the labels. x_squared_norms : array, shape (n_samples,) Precomputed squared euclidean norm of each data point, to speed up computations. centers : float array, shape (k, n_features) The cluster centers. precompute_distances : boolean, default: True Precompute distances (faster but takes more memory). distances : float array, shape (n_samples,) Pre-allocated array to be filled in with each sample's distance to the closest center. Returns ------- labels : int array of shape(n) The resulting assignment inertia : float Sum of distances of samples to their closest cluster center. """ n_samples = X.shape[0] # set the default value of centers to -1 to be able to detect any anomaly # easily labels = -np.ones(n_samples, np.int32) if distances is None: distances = np.zeros(shape=(0,), dtype=X.dtype) # distances will be changed in-place if sp.issparse(X): inertia = _k_means._assign_labels_csr( X, x_squared_norms, centers, labels, distances=distances) else: if precompute_distances: return _labels_inertia_precompute_dense(X, x_squared_norms, centers, distances) inertia = _k_means._assign_labels_array( X, x_squared_norms, centers, labels, distances=distances) return labels, inertia def _init_centroids(X, k, init, random_state=None, x_squared_norms=None, init_size=None): """Compute the initial centroids Parameters ---------- X : array, shape (n_samples, n_features) k : int number of centroids init : {'k-means++', 'random' or ndarray or callable} optional Method for initialization random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. x_squared_norms : array, shape (n_samples,), optional Squared euclidean norm of each data point. Pass it if you have it at hands already to avoid it being recomputed here. Default: None init_size : int, optional Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than k. Returns ------- centers : array, shape(k, n_features) """ random_state = check_random_state(random_state) n_samples = X.shape[0] if x_squared_norms is None: x_squared_norms = row_norms(X, squared=True) if init_size is not None and init_size < n_samples: if init_size < k: warnings.warn( "init_size=%d should be larger than k=%d. " "Setting it to 3*k" % (init_size, k), RuntimeWarning, stacklevel=2) init_size = 3 * k init_indices = random_state.randint(0, n_samples, init_size) X = X[init_indices] x_squared_norms = x_squared_norms[init_indices] n_samples = X.shape[0] elif n_samples < k: raise ValueError( "n_samples=%d should be larger than k=%d" % (n_samples, k)) if isinstance(init, string_types) and init == 'k-means++': centers = _k_init(X, k, random_state=random_state, x_squared_norms=x_squared_norms) elif isinstance(init, string_types) and init == 'random': seeds = random_state.permutation(n_samples)[:k] centers = X[seeds] elif hasattr(init, '__array__'): # ensure that the centers have the same dtype as X # this is a requirement of fused types of cython centers = np.array(init, dtype=X.dtype) elif callable(init): centers = init(X, k, random_state=random_state) centers = np.asarray(centers, dtype=X.dtype) else: raise ValueError("the init parameter for the k-means should " "be 'k-means++' or 'random' or an ndarray, " "'%s' (type '%s') was passed." % (init, type(init))) if sp.issparse(centers): centers = centers.toarray() _validate_center_shape(X, k, centers) return centers class KMeans(BaseEstimator, ClusterMixin, TransformerMixin): """K-Means clustering Read more in the :ref:`User Guide <k_means>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. max_iter : int, default: 300 Maximum number of iterations of the k-means algorithm for a single run. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init : {'k-means++', 'random' or an ndarray} Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. algorithm : "auto", "full" or "elkan", default="auto" K-means algorithm to use. The classical EM-style algorithm is "full". The "elkan" variation is more efficient by using the triangle inequality, but currently doesn't support sparse data. "auto" chooses "elkan" for dense data and "full" for sparse data. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances tol : float, default: 1e-4 Relative tolerance with regards to inertia to declare convergence n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, default 0 Verbosity mode. copy_x : boolean, default True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point inertia_ : float Sum of distances of samples to their closest cluster center. Examples -------- >>> from sklearn.cluster import KMeans >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 4], [4, 0]]) >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X) >>> kmeans.labels_ array([0, 0, 0, 1, 1, 1], dtype=int32) >>> kmeans.predict([[0, 0], [4, 4]]) array([0, 1], dtype=int32) >>> kmeans.cluster_centers_ array([[ 1., 2.], [ 4., 2.]]) See also -------- MiniBatchKMeans Alternative online implementation that does incremental updates of the centers positions using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much faster than the default batch implementation. Notes ------ The k-means problem is solved using Lloyd's algorithm. The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration. The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii, 'How slow is the k-means method?' SoCG2006) In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in local minima. That's why it can be useful to restart it several times. """ def __init__(self, n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=1e-4, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto'): self.n_clusters = n_clusters self.init = init self.max_iter = max_iter self.tol = tol self.precompute_distances = precompute_distances self.n_init = n_init self.verbose = verbose self.random_state = random_state self.copy_x = copy_x self.n_jobs = n_jobs self.algorithm = algorithm def _check_fit_data(self, X): """Verify that the number of samples given is larger than k""" X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32]) if X.shape[0] < self.n_clusters: raise ValueError("n_samples=%d should be >= n_clusters=%d" % ( X.shape[0], self.n_clusters)) return X def _check_test_data(self, X): X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES) n_samples, n_features = X.shape expected_n_features = self.cluster_centers_.shape[1] if not n_features == expected_n_features: raise ValueError("Incorrect number of features. " "Got %d features, expected %d" % ( n_features, expected_n_features)) return X def fit(self, X, y=None): """Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Training instances to cluster. """ random_state = check_random_state(self.random_state) X = self._check_fit_data(X) self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = \ k_means( X, n_clusters=self.n_clusters, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, precompute_distances=self.precompute_distances, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, algorithm=self.algorithm, return_n_iter=True) return self def fit_predict(self, X, y=None): """Compute cluster centers and predict cluster index for each sample. Convenience method; equivalent to calling fit(X) followed by predict(X). """ return self.fit(X).labels_ def fit_transform(self, X, y=None): """Compute clustering and transform X to cluster-distance space. Equivalent to fit(X).transform(X), but more efficiently implemented. """ # Currently, this just skips a copy of the data if it is not in # np.array or CSR format already. # XXX This skips _check_test_data, which may change the dtype; # we should refactor the input validation. X = self._check_fit_data(X) return self.fit(X)._transform(X) def transform(self, X): """Transform X to a cluster-distance space. In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._transform(X) def _transform(self, X): """guts of transform method; no input validation""" return euclidean_distances(X, self.cluster_centers_) def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0] def score(self, X, y=None): """Opposite of the value of X on the K-means objective. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data. Returns ------- score : float Opposite of the value of X on the K-means objective. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) x_squared_norms = row_norms(X, squared=True) return -_labels_inertia(X, x_squared_norms, self.cluster_centers_)[1] def _mini_batch_step(X, x_squared_norms, centers, counts, old_center_buffer, compute_squared_diff, distances, random_reassign=False, random_state=None, reassignment_ratio=.01, verbose=False): """Incremental update of the centers for the Minibatch K-Means algorithm. Parameters ---------- X : array, shape (n_samples, n_features) The original data array. x_squared_norms : array, shape (n_samples,) Squared euclidean norm of each data point. centers : array, shape (k, n_features) The cluster centers. This array is MODIFIED IN PLACE counts : array, shape (k,) The vector in which we keep track of the numbers of elements in a cluster. This array is MODIFIED IN PLACE distances : array, dtype float, shape (n_samples), optional If not None, should be a pre-allocated array that will be used to store the distances of each sample to its closest center. May not be None when random_reassign is True. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. random_reassign : boolean, optional If True, centers with very low counts are randomly reassigned to observations. reassignment_ratio : float, optional Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more likely to be reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : bool, optional, default False Controls the verbosity. compute_squared_diff : bool If set to False, the squared diff computation is skipped. old_center_buffer : int Copy of old centers for monitoring convergence. Returns ------- inertia : float Sum of distances of samples to their closest cluster center. squared_diff : numpy array, shape (n_clusters,) Squared distances between previous and updated cluster centers. """ # Perform label assignment to nearest centers nearest_center, inertia = _labels_inertia(X, x_squared_norms, centers, distances=distances) if random_reassign and reassignment_ratio > 0: random_state = check_random_state(random_state) # Reassign clusters that have very low counts to_reassign = counts < reassignment_ratio * counts.max() # pick at most .5 * batch_size samples as new centers if to_reassign.sum() > .5 * X.shape[0]: indices_dont_reassign = np.argsort(counts)[int(.5 * X.shape[0]):] to_reassign[indices_dont_reassign] = False n_reassigns = to_reassign.sum() if n_reassigns: # Pick new clusters amongst observations with uniform probability new_centers = random_state.choice(X.shape[0], replace=False, size=n_reassigns) if verbose: print("[MiniBatchKMeans] Reassigning %i cluster centers." % n_reassigns) if sp.issparse(X) and not sp.issparse(centers): assign_rows_csr(X, new_centers.astype(np.intp), np.where(to_reassign)[0].astype(np.intp), centers) else: centers[to_reassign] = X[new_centers] # reset counts of reassigned centers, but don't reset them too small # to avoid instant reassignment. This is a pretty dirty hack as it # also modifies the learning rates. counts[to_reassign] = np.min(counts[~to_reassign]) # implementation for the sparse CSR representation completely written in # cython if sp.issparse(X): return inertia, _k_means._mini_batch_update_csr( X, x_squared_norms, centers, counts, nearest_center, old_center_buffer, compute_squared_diff) # dense variant in mostly numpy (not as memory efficient though) k = centers.shape[0] squared_diff = 0.0 for center_idx in range(k): # find points from minibatch that are assigned to this center center_mask = nearest_center == center_idx count = center_mask.sum() if count > 0: if compute_squared_diff: old_center_buffer[:] = centers[center_idx] # inplace remove previous count scaling centers[center_idx] *= counts[center_idx] # inplace sum with new points members of this cluster centers[center_idx] += np.sum(X[center_mask], axis=0) # update the count statistics for this center counts[center_idx] += count # inplace rescale to compute mean of all points (old and new) # Note: numpy >= 1.10 does not support '/=' for the following # expression for a mixture of int and float (see numpy issue #6464) centers[center_idx] = centers[center_idx] / counts[center_idx] # update the squared diff if necessary if compute_squared_diff: diff = centers[center_idx].ravel() - old_center_buffer.ravel() squared_diff += np.dot(diff, diff) return inertia, squared_diff def _mini_batch_convergence(model, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, context, verbose=0): """Helper function to encapsulate the early stopping logic""" # Normalize inertia to be able to compare values when # batch_size changes batch_inertia /= model.batch_size centers_squared_diff /= model.batch_size # Compute an Exponentially Weighted Average of the squared # diff to monitor the convergence while discarding # minibatch-local stochastic variability: # https://en.wikipedia.org/wiki/Moving_average ewa_diff = context.get('ewa_diff') ewa_inertia = context.get('ewa_inertia') if ewa_diff is None: ewa_diff = centers_squared_diff ewa_inertia = batch_inertia else: alpha = float(model.batch_size) * 2.0 / (n_samples + 1) alpha = 1.0 if alpha > 1.0 else alpha ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha # Log progress to be able to monitor convergence if verbose: progress_msg = ( 'Minibatch iteration %d/%d:' ' mean batch inertia: %f, ewa inertia: %f ' % ( iteration_idx + 1, n_iter, batch_inertia, ewa_inertia)) print(progress_msg) # Early stopping based on absolute tolerance on squared change of # centers position (using EWA smoothing) if tol > 0.0 and ewa_diff <= tol: if verbose: print('Converged (small centers change) at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # Early stopping heuristic due to lack of improvement on smoothed inertia ewa_inertia_min = context.get('ewa_inertia_min') no_improvement = context.get('no_improvement', 0) if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min: no_improvement = 0 ewa_inertia_min = ewa_inertia else: no_improvement += 1 if (model.max_no_improvement is not None and no_improvement >= model.max_no_improvement): if verbose: print('Converged (lack of improvement in inertia)' ' at iteration %d/%d' % (iteration_idx + 1, n_iter)) return True # update the convergence context to maintain state across successive calls: context['ewa_diff'] = ewa_diff context['ewa_inertia'] = ewa_inertia context['ewa_inertia_min'] = ewa_inertia_min context['no_improvement'] = no_improvement return False class MiniBatchKMeans(KMeans): """Mini-Batch K-Means clustering Read more in the :ref:`User Guide <mini_batch_kmeans>`. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional Maximum number of iterations over the complete dataset before stopping independently of any early stopping criterion heuristics. max_no_improvement : int, default: 10 Control early stopping based on the consecutive number of mini batches that does not yield an improvement on the smoothed inertia. To disable convergence detection based on inertia, set max_no_improvement to None. tol : float, default: 0.0 Control early stopping based on the relative center changes as measured by a smoothed, variance-normalized of the mean center squared position changes. This early stopping heuristics is closer to the one used for the batch variant of the algorithms but induces a slight computational and memory overhead over the inertia heuristic. To disable convergence detection based on normalized center change, set tol to 0.0 (default). batch_size : int, optional, default: 100 Size of the mini batches. init_size : int, optional, default: 3 * batch_size Number of samples to randomly sample for speeding up the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by running a batch KMeans on a random subset of the data. This needs to be larger than n_clusters. init : {'k-means++', 'random' or an ndarray}, default: 'k-means++' Method for initialization, defaults to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': choose k observations (rows) at random from data for the initial centroids. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. n_init : int, default=3 Number of random initializations that are tried. In contrast to KMeans, the algorithm is only run once, using the best of the ``n_init`` initializations as measured by inertia. compute_labels : boolean, default=True Compute label assignment and inertia for the complete dataset once the minibatch optimization has converged in fit. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. reassignment_ratio : float, default: 0.01 Control the fraction of the maximum number of counts for a center to be reassigned. A higher value means that low count centers are more easily reassigned, which means that the model will take longer to converge, but should converge in a better clustering. verbose : boolean, optional Verbosity mode. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers labels_ : Labels of each point (if compute_labels is set to True). inertia_ : float The value of the inertia criterion associated with the chosen partition (if compute_labels is set to True). The inertia is defined as the sum of square distances of samples to their nearest neighbor. See also -------- KMeans The classic implementation of the clustering method based on the Lloyd's algorithm. It consumes the whole set of input data at each iteration. Notes ----- See http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf """ def __init__(self, n_clusters=8, init='k-means++', max_iter=100, batch_size=100, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init=3, reassignment_ratio=0.01): super(MiniBatchKMeans, self).__init__( n_clusters=n_clusters, init=init, max_iter=max_iter, verbose=verbose, random_state=random_state, tol=tol, n_init=n_init) self.max_no_improvement = max_no_improvement self.batch_size = batch_size self.compute_labels = compute_labels self.init_size = init_size self.reassignment_ratio = reassignment_ratio def fit(self, X, y=None): """Compute the centroids on X by chunking it into mini-batches. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Training instances to cluster. """ random_state = check_random_state(self.random_state) X = check_array(X, accept_sparse="csr", order='C', dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if n_samples < self.n_clusters: raise ValueError("Number of samples smaller than number " "of clusters.") n_init = self.n_init if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_init != 1: warnings.warn( 'Explicit initial center position passed: ' 'performing only one init in MiniBatchKMeans instead of ' 'n_init=%d' % self.n_init, RuntimeWarning, stacklevel=2) n_init = 1 x_squared_norms = row_norms(X, squared=True) if self.tol > 0.0: tol = _tolerance(X, self.tol) # using tol-based early stopping needs the allocation of a # dedicated before which can be expensive for high dim data: # hence we allocate it outside of the main loop old_center_buffer = np.zeros(n_features, dtype=X.dtype) else: tol = 0.0 # no need for the center buffer if tol-based early stopping is # disabled old_center_buffer = np.zeros(0, dtype=X.dtype) distances = np.zeros(self.batch_size, dtype=X.dtype) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) n_iter = int(self.max_iter * n_batches) init_size = self.init_size if init_size is None: init_size = 3 * self.batch_size if init_size > n_samples: init_size = n_samples self.init_size_ = init_size validation_indices = random_state.randint(0, n_samples, init_size) X_valid = X[validation_indices] x_squared_norms_valid = x_squared_norms[validation_indices] # perform several inits with random sub-sets best_inertia = None for init_idx in range(n_init): if self.verbose: print("Init %d/%d with method: %s" % (init_idx + 1, n_init, self.init)) counts = np.zeros(self.n_clusters, dtype=np.int32) # TODO: once the `k_means` function works with sparse input we # should refactor the following init to use it instead. # Initialize the centers using only a fraction of the data as we # expect n_samples to be very large when using MiniBatchKMeans cluster_centers = _init_centroids( X, self.n_clusters, self.init, random_state=random_state, x_squared_norms=x_squared_norms, init_size=init_size) # Compute the label assignment on the init dataset batch_inertia, centers_squared_diff = _mini_batch_step( X_valid, x_squared_norms[validation_indices], cluster_centers, counts, old_center_buffer, False, distances=None, verbose=self.verbose) # Keep only the best cluster centers across independent inits on # the common validation set _, inertia = _labels_inertia(X_valid, x_squared_norms_valid, cluster_centers) if self.verbose: print("Inertia for init %d/%d: %f" % (init_idx + 1, n_init, inertia)) if best_inertia is None or inertia < best_inertia: self.cluster_centers_ = cluster_centers self.counts_ = counts best_inertia = inertia # Empty context to be used inplace by the convergence check routine convergence_context = {} # Perform the iterative optimization until the final convergence # criterion for iteration_idx in range(n_iter): # Sample a minibatch from the full dataset minibatch_indices = random_state.randint( 0, n_samples, self.batch_size) # Perform the actual update step on the minibatch data batch_inertia, centers_squared_diff = _mini_batch_step( X[minibatch_indices], x_squared_norms[minibatch_indices], self.cluster_centers_, self.counts_, old_center_buffer, tol > 0.0, distances=distances, # Here we randomly choose whether to perform # random reassignment: the choice is done as a function # of the iteration index, and the minimum number of # counts, in order to force this reassignment to happen # every once in a while random_reassign=((iteration_idx + 1) % (10 + self.counts_.min()) == 0), random_state=random_state, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) # Monitor convergence and do early stopping if necessary if _mini_batch_convergence( self, iteration_idx, n_iter, tol, n_samples, centers_squared_diff, batch_inertia, convergence_context, verbose=self.verbose): break self.n_iter_ = iteration_idx + 1 if self.compute_labels: self.labels_, self.inertia_ = self._labels_inertia_minibatch(X) return self def _labels_inertia_minibatch(self, X): """Compute labels and inertia using mini batches. This is slightly slower than doing everything at once but preventes memory errors / segfaults. Parameters ---------- X : array-like, shape (n_samples, n_features) Input data. Returns ------- labels : array, shap (n_samples,) Cluster labels for each point. inertia : float Sum of squared distances of points to nearest cluster. """ if self.verbose: print('Computing label assignment and total inertia') x_squared_norms = row_norms(X, squared=True) slices = gen_batches(X.shape[0], self.batch_size) results = [_labels_inertia(X[s], x_squared_norms[s], self.cluster_centers_) for s in slices] labels, inertia = zip(*results) return np.hstack(labels), np.sum(inertia) def partial_fit(self, X, y=None): """Update k means estimate on a single mini-batch X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Coordinates of the data points to cluster. """ X = check_array(X, accept_sparse="csr") n_samples, n_features = X.shape if hasattr(self.init, '__array__'): self.init = np.ascontiguousarray(self.init, dtype=X.dtype) if n_samples == 0: return self x_squared_norms = row_norms(X, squared=True) self.random_state_ = getattr(self, "random_state_", check_random_state(self.random_state)) if (not hasattr(self, 'counts_') or not hasattr(self, 'cluster_centers_')): # this is the first call partial_fit on this object: # initialize the cluster centers self.cluster_centers_ = _init_centroids( X, self.n_clusters, self.init, random_state=self.random_state_, x_squared_norms=x_squared_norms, init_size=self.init_size) self.counts_ = np.zeros(self.n_clusters, dtype=np.int32) random_reassign = False distances = None else: # The lower the minimum count is, the more we do random # reassignment, however, we don't want to do random # reassignment too often, to allow for building up counts random_reassign = self.random_state_.randint( 10 * (1 + self.counts_.min())) == 0 distances = np.zeros(X.shape[0], dtype=X.dtype) _mini_batch_step(X, x_squared_norms, self.cluster_centers_, self.counts_, np.zeros(0, dtype=X.dtype), 0, random_reassign=random_reassign, distances=distances, random_state=self.random_state_, reassignment_ratio=self.reassignment_ratio, verbose=self.verbose) if self.compute_labels: self.labels_, self.inertia_ = _labels_inertia( X, x_squared_norms, self.cluster_centers_) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, 'cluster_centers_') X = self._check_test_data(X) return self._labels_inertia_minibatch(X)[0]
bsd-3-clause
zzcclp/spark
python/pyspark/pandas/utils.py
9
34052
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Commonly used utils in pandas-on-Spark. """ import functools from collections import OrderedDict from contextlib import contextmanager import os from typing import ( # noqa: F401 (SPARK-34943) Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple, Union, TYPE_CHECKING, cast, no_type_check, overload, ) import warnings from pyspark.sql import functions as F, Column, DataFrame as SparkDataFrame, SparkSession from pyspark.sql.types import DoubleType import pandas as pd from pandas.api.types import is_list_like # For running doctests and reference resolution in PyCharm. from pyspark import pandas as ps # noqa: F401 from pyspark.pandas._typing import Axis, Label, Name, DataFrameOrSeries from pyspark.pandas.spark import functions as SF from pyspark.pandas.typedef.typehints import as_spark_type if TYPE_CHECKING: # This is required in old Python 3.5 to prevent circular reference. from pyspark.pandas.base import IndexOpsMixin # noqa: F401 (SPARK-34943) from pyspark.pandas.frame import DataFrame # noqa: F401 (SPARK-34943) from pyspark.pandas.internal import InternalFrame # noqa: F401 (SPARK-34943) from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) ERROR_MESSAGE_CANNOT_COMBINE = ( "Cannot combine the series or dataframe because it comes from a different dataframe. " "In order to allow this operation, enable 'compute.ops_on_diff_frames' option." ) SPARK_CONF_ARROW_ENABLED = "spark.sql.execution.arrow.pyspark.enabled" def same_anchor( this: Union["DataFrame", "IndexOpsMixin", "InternalFrame"], that: Union["DataFrame", "IndexOpsMixin", "InternalFrame"], ) -> bool: """ Check if the anchors of the given DataFrame or Series are the same or not. """ from pyspark.pandas.base import IndexOpsMixin from pyspark.pandas.frame import DataFrame from pyspark.pandas.internal import InternalFrame if isinstance(this, InternalFrame): this_internal = this else: assert isinstance(this, (DataFrame, IndexOpsMixin)), type(this) this_internal = this._internal if isinstance(that, InternalFrame): that_internal = that else: assert isinstance(that, (DataFrame, IndexOpsMixin)), type(that) that_internal = that._internal return ( this_internal.spark_frame is that_internal.spark_frame and this_internal.index_level == that_internal.index_level and all( spark_column_equals(this_scol, that_scol) for this_scol, that_scol in zip( this_internal.index_spark_columns, that_internal.index_spark_columns ) ) ) def combine_frames( this: "DataFrame", *args: DataFrameOrSeries, how: str = "full", preserve_order_column: bool = False ) -> "DataFrame": """ This method combines `this` DataFrame with a different `that` DataFrame or Series from a different DataFrame. It returns a DataFrame that has prefix `this_` and `that_` to distinct the columns names from both DataFrames It internally performs a join operation which can be expensive in general. So, if `compute.ops_on_diff_frames` option is False, this method throws an exception. """ from pyspark.pandas.config import get_option from pyspark.pandas.frame import DataFrame from pyspark.pandas.internal import ( InternalField, InternalFrame, HIDDEN_COLUMNS, NATURAL_ORDER_COLUMN_NAME, SPARK_INDEX_NAME_FORMAT, ) from pyspark.pandas.series import Series if all(isinstance(arg, Series) for arg in args): assert all( same_anchor(arg, args[0]) for arg in args ), "Currently only one different DataFrame (from given Series) is supported" assert not same_anchor(this, args[0]), "We don't need to combine. All series is in this." that = args[0]._psdf[list(args)] elif len(args) == 1 and isinstance(args[0], DataFrame): assert isinstance(args[0], DataFrame) assert not same_anchor( this, args[0] ), "We don't need to combine. `this` and `that` are same." that = args[0] else: raise AssertionError("args should be single DataFrame or " "single/multiple Series") if get_option("compute.ops_on_diff_frames"): def resolve(internal: InternalFrame, side: str) -> InternalFrame: rename = lambda col: "__{}_{}".format(side, col) internal = internal.resolved_copy sdf = internal.spark_frame sdf = internal.spark_frame.select( *[ scol_for(sdf, col).alias(rename(col)) for col in sdf.columns if col not in HIDDEN_COLUMNS ], *HIDDEN_COLUMNS ) return internal.copy( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, rename(col)) for col in internal.index_spark_column_names ], index_fields=[ field.copy(name=rename(field.name)) for field in internal.index_fields ], data_spark_columns=[ scol_for(sdf, rename(col)) for col in internal.data_spark_column_names ], data_fields=[field.copy(name=rename(field.name)) for field in internal.data_fields], ) this_internal = resolve(this._internal, "this") that_internal = resolve(that._internal, "that") this_index_map = list( zip( this_internal.index_spark_column_names, this_internal.index_names, this_internal.index_fields, ) ) that_index_map = list( zip( that_internal.index_spark_column_names, that_internal.index_names, that_internal.index_fields, ) ) assert len(this_index_map) == len(that_index_map) join_scols = [] merged_index_scols = [] # Note that the order of each element in index_map is guaranteed according to the index # level. this_and_that_index_map = list(zip(this_index_map, that_index_map)) this_sdf = this_internal.spark_frame.alias("this") that_sdf = that_internal.spark_frame.alias("that") # If the same named index is found, that's used. index_column_names = [] index_use_extension_dtypes = [] for ( i, ((this_column, this_name, this_field), (that_column, that_name, that_field)), ) in enumerate(this_and_that_index_map): if this_name == that_name: # We should merge the Spark columns into one # to mimic pandas' behavior. this_scol = scol_for(this_sdf, this_column) that_scol = scol_for(that_sdf, that_column) join_scol = this_scol == that_scol join_scols.append(join_scol) column_name = SPARK_INDEX_NAME_FORMAT(i) index_column_names.append(column_name) index_use_extension_dtypes.append( any(field.is_extension_dtype for field in [this_field, that_field]) ) merged_index_scols.append( F.when(this_scol.isNotNull(), this_scol).otherwise(that_scol).alias(column_name) ) else: raise ValueError("Index names must be exactly matched currently.") assert len(join_scols) > 0, "cannot join with no overlapping index names" joined_df = this_sdf.join(that_sdf, on=join_scols, how=how) if preserve_order_column: order_column = [scol_for(this_sdf, NATURAL_ORDER_COLUMN_NAME)] else: order_column = [] joined_df = joined_df.select( *merged_index_scols, *( scol_for(this_sdf, this_internal.spark_column_name_for(label)) for label in this_internal.column_labels ), *( scol_for(that_sdf, that_internal.spark_column_name_for(label)) for label in that_internal.column_labels ), *order_column ) index_spark_columns = [scol_for(joined_df, col) for col in index_column_names] index_columns = set(index_column_names) new_data_columns = [ col for col in joined_df.columns if col not in index_columns and col != NATURAL_ORDER_COLUMN_NAME ] schema = joined_df.select(*index_spark_columns, *new_data_columns).schema index_fields = [ InternalField.from_struct_field(struct_field, use_extension_dtypes=use_extension_dtypes) for struct_field, use_extension_dtypes in zip( schema.fields[: len(index_spark_columns)], index_use_extension_dtypes ) ] data_fields = [ InternalField.from_struct_field( struct_field, use_extension_dtypes=field.is_extension_dtype ) for struct_field, field in zip( schema.fields[len(index_spark_columns) :], this_internal.data_fields + that_internal.data_fields, ) ] level = max(this_internal.column_labels_level, that_internal.column_labels_level) def fill_label(label: Optional[Label]) -> List: if label is None: return ([""] * (level - 1)) + [None] else: return ([""] * (level - len(label))) + list(label) column_labels = [ tuple(["this"] + fill_label(label)) for label in this_internal.column_labels ] + [tuple(["that"] + fill_label(label)) for label in that_internal.column_labels] column_label_names = ( cast(List[Optional[Label]], [None]) * (1 + level - this_internal.column_labels_level) ) + this_internal.column_label_names return DataFrame( InternalFrame( spark_frame=joined_df, index_spark_columns=index_spark_columns, index_names=this_internal.index_names, index_fields=index_fields, column_labels=column_labels, data_spark_columns=[scol_for(joined_df, col) for col in new_data_columns], data_fields=data_fields, column_label_names=column_label_names, ) ) else: raise ValueError(ERROR_MESSAGE_CANNOT_COMBINE) def align_diff_frames( resolve_func: Callable[ ["DataFrame", List[Label], List[Label]], Iterator[Tuple["Series", Label]] ], this: "DataFrame", that: "DataFrame", fillna: bool = True, how: str = "full", preserve_order_column: bool = False, ) -> "DataFrame": """ This method aligns two different DataFrames with a given `func`. Columns are resolved and handled within the given `func`. To use this, `compute.ops_on_diff_frames` should be True, for now. :param resolve_func: Takes aligned (joined) DataFrame, the column of the current DataFrame, and the column of another DataFrame. It returns an iterable that produces Series. >>> from pyspark.pandas.config import set_option, reset_option >>> >>> set_option("compute.ops_on_diff_frames", True) >>> >>> psdf1 = ps.DataFrame({'a': [9, 8, 7, 6, 5, 4, 3, 2, 1]}) >>> psdf2 = ps.DataFrame({'a': [9, 8, 7, 6, 5, 4, 3, 2, 1]}) >>> >>> def func(psdf, this_column_labels, that_column_labels): ... psdf # conceptually this is A + B. ... ... # Within this function, Series from A or B can be performed against `psdf`. ... this_label = this_column_labels[0] # this is ('a',) from psdf1. ... that_label = that_column_labels[0] # this is ('a',) from psdf2. ... new_series = (psdf[this_label] - psdf[that_label]).rename(str(this_label)) ... ... # This new series will be placed in new DataFrame. ... yield (new_series, this_label) >>> >>> >>> align_diff_frames(func, psdf1, psdf2).sort_index() a 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 >>> reset_option("compute.ops_on_diff_frames") :param this: a DataFrame to align :param that: another DataFrame to align :param fillna: If True, it fills missing values in non-common columns in both `this` and `that`. Otherwise, it returns as are. :param how: join way. In addition, it affects how `resolve_func` resolves the column conflict. - full: `resolve_func` should resolve only common columns from 'this' and 'that' DataFrames. For instance, if 'this' has columns A, B, C and that has B, C, D, `this_columns` and 'that_columns' in this function are B, C and B, C. - left: `resolve_func` should resolve columns including that columns. For instance, if 'this' has columns A, B, C and that has B, C, D, `this_columns` is B, C but `that_columns` are B, C, D. - inner: Same as 'full' mode; however, internally performs inner join instead. :return: Aligned DataFrame """ from pyspark.pandas.frame import DataFrame assert how == "full" or how == "left" or how == "inner" this_column_labels = this._internal.column_labels that_column_labels = that._internal.column_labels common_column_labels = set(this_column_labels).intersection(that_column_labels) # 1. Perform the join given two dataframes. combined = combine_frames(this, that, how=how, preserve_order_column=preserve_order_column) # 2. Apply the given function to transform the columns in a batch and keep the new columns. combined_column_labels = combined._internal.column_labels that_columns_to_apply = [] # type: List[Label] this_columns_to_apply = [] # type: List[Label] additional_that_columns = [] # type: List[Label] columns_to_keep = [] # type: List[Union[Series, Column]] column_labels_to_keep = [] # type: List[Label] for combined_label in combined_column_labels: for common_label in common_column_labels: if combined_label == tuple(["this", *common_label]): this_columns_to_apply.append(combined_label) break elif combined_label == tuple(["that", *common_label]): that_columns_to_apply.append(combined_label) break else: if how == "left" and combined_label in [ tuple(["that", *label]) for label in that_column_labels ]: # In this case, we will drop `that_columns` in `columns_to_keep` but passes # it later to `func`. `func` should resolve it. # Note that adding this into a separate list (`additional_that_columns`) # is intentional so that `this_columns` and `that_columns` can be paired. additional_that_columns.append(combined_label) elif fillna: columns_to_keep.append(SF.lit(None).cast(DoubleType()).alias(str(combined_label))) column_labels_to_keep.append(combined_label) else: columns_to_keep.append(combined._psser_for(combined_label)) column_labels_to_keep.append(combined_label) that_columns_to_apply += additional_that_columns # Should extract columns to apply and do it in a batch in case # it adds new columns for example. if len(this_columns_to_apply) > 0 or len(that_columns_to_apply) > 0: psser_set, column_labels_set = zip( *resolve_func(combined, this_columns_to_apply, that_columns_to_apply) ) columns_applied = list(psser_set) # type: List[Union[Series, Column]] column_labels_applied = list(column_labels_set) # type: List[Label] else: columns_applied = [] column_labels_applied = [] applied = DataFrame( combined._internal.with_new_columns( columns_applied + columns_to_keep, column_labels=column_labels_applied + column_labels_to_keep, ) ) # type: DataFrame # 3. Restore the names back and deduplicate columns. this_labels = OrderedDict() # Add columns in an order of its original frame. for this_label in this_column_labels: for new_label in applied._internal.column_labels: if new_label[1:] not in this_labels and this_label == new_label[1:]: this_labels[new_label[1:]] = new_label # After that, we will add the rest columns. other_labels = OrderedDict() for new_label in applied._internal.column_labels: if new_label[1:] not in this_labels: other_labels[new_label[1:]] = new_label psdf = applied[list(this_labels.values()) + list(other_labels.values())] psdf.columns = psdf.columns.droplevel() return psdf def is_testing() -> bool: """Indicates whether Spark is currently running tests.""" return "SPARK_TESTING" in os.environ def default_session(conf: Optional[Dict[str, Any]] = None) -> SparkSession: if conf is None: conf = dict() builder = SparkSession.builder.appName("pandas-on-Spark") for key, value in conf.items(): builder = builder.config(key, value) # Currently, pandas-on-Spark is dependent on such join due to 'compute.ops_on_diff_frames' # configuration. This is needed with Spark 3.0+. builder.config("spark.sql.analyzer.failAmbiguousSelfJoin", False) if is_testing(): builder.config("spark.executor.allowSparkContext", False) return builder.getOrCreate() @contextmanager def sql_conf(pairs: Dict[str, Any], *, spark: Optional[SparkSession] = None) -> Iterator[None]: """ A convenient context manager to set `value` to the Spark SQL configuration `key` and then restores it back when it exits. """ assert isinstance(pairs, dict), "pairs should be a dictionary." if spark is None: spark = default_session() keys = pairs.keys() new_values = pairs.values() old_values = [spark.conf.get(key, None) for key in keys] for key, new_value in zip(keys, new_values): spark.conf.set(key, new_value) try: yield finally: for key, old_value in zip(keys, old_values): if old_value is None: spark.conf.unset(key) else: spark.conf.set(key, old_value) def validate_arguments_and_invoke_function( pobj: Union[pd.DataFrame, pd.Series], pandas_on_spark_func: Callable, pandas_func: Callable, input_args: Dict, ) -> Any: """ Invokes a pandas function. This is created because different versions of pandas support different parameters, and as a result when we code against the latest version, our users might get a confusing "got an unexpected keyword argument" error if they are using an older version of pandas. This function validates all the arguments, removes the ones that are not supported if they are simply the default value (i.e. most likely the user didn't explicitly specify it). It throws a TypeError if the user explicitly specify an argument that is not supported by the pandas version available. For example usage, look at DataFrame.to_html(). :param pobj: the pandas DataFrame or Series to operate on :param pandas_on_spark_func: pandas-on-Spark function, used to get default parameter values :param pandas_func: pandas function, used to check whether pandas supports all the arguments :param input_args: arguments to pass to the pandas function, often created by using locals(). Make sure locals() call is at the top of the function so it captures only input parameters, rather than local variables. :return: whatever pandas_func returns """ import inspect # Makes a copy since whatever passed in is likely created by locals(), and we can't delete # 'self' key from that. args = input_args.copy() del args["self"] if "kwargs" in args: # explode kwargs kwargs = args["kwargs"] del args["kwargs"] args = {**args, **kwargs} pandas_on_spark_params = inspect.signature(pandas_on_spark_func).parameters pandas_params = inspect.signature(pandas_func).parameters for param in pandas_on_spark_params.values(): if param.name not in pandas_params: if args[param.name] == param.default: del args[param.name] else: raise TypeError( ( "The pandas version [%s] available does not support parameter '%s' " + "for function '%s'." ) % (pd.__version__, param.name, pandas_func.__name__) ) args["self"] = pobj return pandas_func(**args) @no_type_check def lazy_property(fn: Callable[[Any], Any]) -> property: """ Decorator that makes a property lazy-evaluated. Copied from https://stevenloria.com/lazy-properties/ """ attr_name = "_lazy_" + fn.__name__ @property @functools.wraps(fn) def wrapped_lazy_property(self): if not hasattr(self, attr_name): setattr(self, attr_name, fn(self)) return getattr(self, attr_name) def deleter(self): if hasattr(self, attr_name): delattr(self, attr_name) return wrapped_lazy_property.deleter(deleter) def scol_for(sdf: SparkDataFrame, column_name: str) -> Column: """Return Spark Column for the given column name.""" return sdf["`{}`".format(column_name)] def column_labels_level(column_labels: List[Label]) -> int: """Return the level of the column index.""" if len(column_labels) == 0: return 1 else: levels = set(1 if label is None else len(label) for label in column_labels) assert len(levels) == 1, levels return list(levels)[0] def name_like_string(name: Optional[Name]) -> str: """ Return the name-like strings from str or tuple of str Examples -------- >>> name = 'abc' >>> name_like_string(name) 'abc' >>> name = ('abc',) >>> name_like_string(name) 'abc' >>> name = ('a', 'b', 'c') >>> name_like_string(name) '(a, b, c)' """ if name is None: label = ("__none__",) # type: Label elif is_list_like(name): label = tuple([str(n) for n in name]) else: label = (str(name),) return ("(%s)" % ", ".join(label)) if len(label) > 1 else label[0] def is_name_like_tuple(value: Any, allow_none: bool = True, check_type: bool = False) -> bool: """ Check the given tuple is be able to be used as a name. Examples -------- >>> is_name_like_tuple(('abc',)) True >>> is_name_like_tuple((1,)) True >>> is_name_like_tuple(('abc', 1, None)) True >>> is_name_like_tuple(('abc', 1, None), check_type=True) True >>> is_name_like_tuple((1.0j,)) True >>> is_name_like_tuple(tuple()) False >>> is_name_like_tuple((list('abc'),)) False >>> is_name_like_tuple(('abc', 1, None), allow_none=False) False >>> is_name_like_tuple((1.0j,), check_type=True) False """ if value is None: return allow_none elif not isinstance(value, tuple): return False elif len(value) == 0: return False elif not allow_none and any(v is None for v in value): return False elif any(is_list_like(v) or isinstance(v, slice) for v in value): return False elif check_type: return all( v is None or as_spark_type(type(v), raise_error=False) is not None for v in value ) else: return True def is_name_like_value( value: Any, allow_none: bool = True, allow_tuple: bool = True, check_type: bool = False ) -> bool: """ Check the given value is like a name. Examples -------- >>> is_name_like_value('abc') True >>> is_name_like_value(1) True >>> is_name_like_value(None) True >>> is_name_like_value(('abc',)) True >>> is_name_like_value(1.0j) True >>> is_name_like_value(list('abc')) False >>> is_name_like_value(None, allow_none=False) False >>> is_name_like_value(('abc',), allow_tuple=False) False >>> is_name_like_value(1.0j, check_type=True) False """ if value is None: return allow_none elif isinstance(value, tuple): return allow_tuple and is_name_like_tuple( value, allow_none=allow_none, check_type=check_type ) elif is_list_like(value) or isinstance(value, slice): return False elif check_type: return as_spark_type(type(value), raise_error=False) is not None else: return True def validate_axis(axis: Optional[Axis] = 0, none_axis: int = 0) -> int: """Check the given axis is valid.""" # convert to numeric axis axis = cast(Dict[Optional[Axis], int], {None: none_axis, "index": 0, "columns": 1}).get( axis, axis ) if axis in (none_axis, 0, 1): return cast(int, axis) else: raise ValueError("No axis named {0}".format(axis)) def validate_bool_kwarg(value: Any, arg_name: str) -> Optional[bool]: """Ensures that argument passed in arg_name is of type bool.""" if not (isinstance(value, bool) or value is None): raise TypeError( 'For argument "{}" expected type bool, received ' "type {}.".format(arg_name, type(value).__name__) ) return value def validate_how(how: str) -> str: """Check the given how for join is valid.""" if how == "full": warnings.warn( "Warning: While pandas-on-Spark will accept 'full', you should use 'outer' " + "instead to be compatible with the pandas merge API", UserWarning, ) if how == "outer": # 'outer' in pandas equals 'full' in Spark how = "full" if how not in ("inner", "left", "right", "full"): raise ValueError( "The 'how' parameter has to be amongst the following values: ", "['inner', 'left', 'right', 'outer']", ) return how @overload def verify_temp_column_name(df: SparkDataFrame, column_name_or_label: str) -> str: ... @overload def verify_temp_column_name(df: "DataFrame", column_name_or_label: Name) -> Label: ... def verify_temp_column_name( df: Union["DataFrame", SparkDataFrame], column_name_or_label: Union[str, Name] ) -> Union[str, Label]: """ Verify that the given column name does not exist in the given pandas-on-Spark or Spark DataFrame. The temporary column names should start and end with `__`. In addition, `column_name_or_label` expects a single string, or column labels when `df` is a pandas-on-Spark DataFrame. >>> psdf = ps.DataFrame({("x", "a"): ['a', 'b', 'c']}) >>> psdf["__dummy__"] = 0 >>> psdf[("", "__dummy__")] = 1 >>> psdf # doctest: +NORMALIZE_WHITESPACE x __dummy__ a __dummy__ 0 a 0 1 1 b 0 1 2 c 0 1 >>> verify_temp_column_name(psdf, '__tmp__') ('__tmp__', '') >>> verify_temp_column_name(psdf, ('', '__tmp__')) ('', '__tmp__') >>> verify_temp_column_name(psdf, '__dummy__') Traceback (most recent call last): ... AssertionError: ... `(__dummy__, )` ... >>> verify_temp_column_name(psdf, ('', '__dummy__')) Traceback (most recent call last): ... AssertionError: ... `(, __dummy__)` ... >>> verify_temp_column_name(psdf, 'dummy') Traceback (most recent call last): ... AssertionError: ... should be empty or start and end with `__`: ('dummy', '') >>> verify_temp_column_name(psdf, ('', 'dummy')) Traceback (most recent call last): ... AssertionError: ... should be empty or start and end with `__`: ('', 'dummy') >>> internal = psdf._internal.resolved_copy >>> sdf = internal.spark_frame >>> sdf.select(internal.data_spark_columns).show() # doctest: +NORMALIZE_WHITESPACE +------+---------+-------------+ |(x, a)|__dummy__|(, __dummy__)| +------+---------+-------------+ | a| 0| 1| | b| 0| 1| | c| 0| 1| +------+---------+-------------+ >>> verify_temp_column_name(sdf, '__tmp__') '__tmp__' >>> verify_temp_column_name(sdf, '__dummy__') Traceback (most recent call last): ... AssertionError: ... `__dummy__` ... '(x, a)', '__dummy__', '(, __dummy__)', ... >>> verify_temp_column_name(sdf, ('', '__dummy__')) Traceback (most recent call last): ... AssertionError: <class 'tuple'> >>> verify_temp_column_name(sdf, 'dummy') Traceback (most recent call last): ... AssertionError: ... should start and end with `__`: dummy """ from pyspark.pandas.frame import DataFrame if isinstance(df, DataFrame): if isinstance(column_name_or_label, str): column_name = column_name_or_label level = df._internal.column_labels_level column_name_or_label = tuple([column_name_or_label] + ([""] * (level - 1))) else: column_name = name_like_string(column_name_or_label) assert any(len(label) > 0 for label in column_name_or_label) and all( label == "" or (label.startswith("__") and label.endswith("__")) for label in column_name_or_label ), "The temporary column name should be empty or start and end with `__`: {}".format( column_name_or_label ) assert all( column_name_or_label != label for label in df._internal.column_labels ), "The given column name `{}` already exists in the pandas-on-Spark DataFrame: {}".format( name_like_string(column_name_or_label), df.columns ) df = df._internal.resolved_copy.spark_frame else: assert isinstance(column_name_or_label, str), type(column_name_or_label) assert column_name_or_label.startswith("__") and column_name_or_label.endswith( "__" ), "The temporary column name should start and end with `__`: {}".format( column_name_or_label ) column_name = column_name_or_label assert isinstance(df, SparkDataFrame), type(df) assert ( column_name not in df.columns ), "The given column name `{}` already exists in the Spark DataFrame: {}".format( column_name, df.columns ) return column_name_or_label def spark_column_equals(left: Column, right: Column) -> bool: """ Check both `left` and `right` have the same expressions. >>> spark_column_equals(SF.lit(0), SF.lit(0)) True >>> spark_column_equals(SF.lit(0) + 1, SF.lit(0) + 1) True >>> spark_column_equals(SF.lit(0) + 1, SF.lit(0) + 2) False >>> sdf1 = ps.DataFrame({"x": ['a', 'b', 'c']}).to_spark() >>> spark_column_equals(sdf1["x"] + 1, sdf1["x"] + 1) True >>> sdf2 = ps.DataFrame({"x": ['a', 'b', 'c']}).to_spark() >>> spark_column_equals(sdf1["x"] + 1, sdf2["x"] + 1) False """ return left._jc.equals(right._jc) # type: ignore def compare_null_first( left: Column, right: Column, comp: Callable[[Column, Column], Column], ) -> Column: return (left.isNotNull() & right.isNotNull() & comp(left, right)) | ( left.isNull() & right.isNotNull() ) def compare_null_last( left: Column, right: Column, comp: Callable[[Column, Column], Column], ) -> Column: return (left.isNotNull() & right.isNotNull() & comp(left, right)) | ( left.isNotNull() & right.isNull() ) def compare_disallow_null( left: Column, right: Column, comp: Callable[[Column, Column], Column], ) -> Column: return left.isNotNull() & right.isNotNull() & comp(left, right) def compare_allow_null( left: Column, right: Column, comp: Callable[[Column, Column], Column], ) -> Column: return left.isNull() | right.isNull() | comp(left, right) def _test() -> None: import os import doctest import sys from pyspark.sql import SparkSession import pyspark.pandas.utils os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.utils.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]").appName("pyspark.pandas.utils tests").getOrCreate() ) (failure_count, test_count) = doctest.testmod( pyspark.pandas.utils, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
alistairlow/tensorflow
tensorflow/python/estimator/canned/dnn_test.py
31
16390
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dnn.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator.canned import dnn from tensorflow.python.estimator.canned import dnn_testing_utils from tensorflow.python.estimator.canned import prediction_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _dnn_classifier_fn(*args, **kwargs): return dnn.DNNClassifier(*args, **kwargs) class DNNModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNModelFnTest.__init__(self, dnn._dnn_model_fn) class DNNLogitFnTest(dnn_testing_utils.BaseDNNLogitFnTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNLogitFnTest.__init__(self, dnn._dnn_logit_fn_builder) class DNNClassifierEvaluateTest( dnn_testing_utils.BaseDNNClassifierEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierEvaluateTest.__init__( self, _dnn_classifier_fn) class DNNClassifierPredictTest( dnn_testing_utils.BaseDNNClassifierPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierPredictTest.__init__( self, _dnn_classifier_fn) class DNNClassifierTrainTest( dnn_testing_utils.BaseDNNClassifierTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNClassifierTrainTest.__init__( self, _dnn_classifier_fn) def _dnn_regressor_fn(*args, **kwargs): return dnn.DNNRegressor(*args, **kwargs) class DNNRegressorEvaluateTest( dnn_testing_utils.BaseDNNRegressorEvaluateTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorEvaluateTest.__init__( self, _dnn_regressor_fn) class DNNRegressorPredictTest( dnn_testing_utils.BaseDNNRegressorPredictTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorPredictTest.__init__( self, _dnn_regressor_fn) class DNNRegressorTrainTest( dnn_testing_utils.BaseDNNRegressorTrainTest, test.TestCase): def __init__(self, methodName='runTest'): # pylint: disable=invalid-name test.TestCase.__init__(self, methodName) dnn_testing_utils.BaseDNNRegressorTrainTest.__init__( self, _dnn_regressor_fn) def _queue_parsed_features(feature_map): tensors_to_enqueue = [] keys = [] for key, tensor in six.iteritems(feature_map): keys.append(key) tensors_to_enqueue.append(tensor) queue_dtypes = [x.dtype for x in tensors_to_enqueue] input_queue = data_flow_ops.FIFOQueue(capacity=100, dtypes=queue_dtypes) queue_runner.add_queue_runner( queue_runner.QueueRunner( input_queue, [input_queue.enqueue(tensors_to_enqueue)])) dequeued_tensors = input_queue.dequeue() return {keys[i]: dequeued_tensors[i] for i in range(len(dequeued_tensors))} class DNNRegressorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNRegressor( hidden_units=(2, 2), feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predictions = np.array([ x[prediction_keys.PredictionKeys.PREDICTIONS] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return label_dimension = 1 batch_size = 10 data = np.linspace(0., 2., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 batch_size = 10 data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=label_dimension, label_dimension=label_dimension, batch_size=batch_size) class DNNClassifierIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _as_label(self, data_in_float): return np.rint(data_in_float).astype(np.int64) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, n_classes, batch_size): feature_columns = [ feature_column.numeric_column('x', shape=(input_dimension,))] est = dnn.DNNClassifier( hidden_units=(2, 2), feature_columns=feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) # PREDICT predicted_proba = np.array([ x[prediction_keys.PredictionKeys.PROBABILITIES] for x in est.predict(predict_input_fn) ]) self.assertAllEqual((batch_size, n_classes), predicted_proba.shape) # EXPORT feature_spec = feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" n_classes = 3 input_dimension = 2 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) x_data = data.reshape(batch_size, input_dimension) y_data = np.reshape(self._as_label(data[:batch_size]), (batch_size, 1)) # learn y = x train_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, y=y_data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': x_data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return input_dimension = 1 n_classes = 3 batch_size = 10 data = np.linspace(0., n_classes - 1., batch_size, dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(self._as_label(data)) train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 n_classes = 3 batch_size = 10 data = np.linspace( 0., n_classes - 1., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=self._as_label(datum[:1]))), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = _queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, n_classes=n_classes, batch_size=batch_size) if __name__ == '__main__': test.main()
apache-2.0
mattilyra/scikit-learn
sklearn/utils/graph.py
289
6239
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <[email protected]> # Gael Varoquaux <[email protected]> # Jake Vanderplas <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
sebalander/sebaPhD
calibrateRegularCameraIntr.py
2
10632
# -*- coding: utf-8 -*- """ Created on Tue Jul 5 16:30:53 2016 calibrates using fisheye distortion model (polynomial in theta) help in http://docs.opencv.org/ref/master/d9/d0c/group__calib3d.html#ga3207604e4b1a1758aa66acb6ed5aa65d&gsc.tab=0 @author: sebalander """ # %% import cv2 import numpy as np from numpy import zeros import glob import matplotlib.pyplot as plt #from scipy import linalg import poseCalibration as pc from lmfit import minimize, Parameters import poseRationalCalibration as rational # %% ========== ========== RATIONAL PARAMETER HANDLING ========== ========== def formatParametersChessIntrs(rVecs, tVecs, linearCoeffs, distCoeffs): ''' set to vary all parameetrs ''' params = Parameters() for j in range(len(rVecs)): for i in range(3): params.add('rvec%d%d'%(j,i), value=rVecs[j,i,0], vary=True) params.add('tvec%d%d'%(j,i), value=tVecs[j,i,0], vary=True) params.add('fX', value=linearCoeffs[0,0], vary=True) params.add('fY', value=linearCoeffs[1,1], vary=True) params.add('cX', value=linearCoeffs[0,2], vary=True) params.add('cY', value=linearCoeffs[1,2], vary=True) # polynomial coeffs, grade 7 # # (k1,k2,p1,p2[,k3[,k4,k5,k6[,s1,s2,s3,s4[,τx,τy]]]]) #for i in [2,3,8,9,10,11,12,13]: # params.add('distCoeffs%d'%i, # value=distCoeffs[i,0], vary=False) params.add('numDist0', value=distCoeffs[0,0], vary=True) params.add('numDist1', value=distCoeffs[1,0], vary=True) params.add('numDist2', value=distCoeffs[4,0], vary=True) params.add('denomDist0', value=distCoeffs[5,0], vary=True) params.add('denomDist1', value=distCoeffs[6,0], vary=True) params.add('denomDist2', value=distCoeffs[7,0], vary=True) return params # %% def retrieveParametersChess(params): n = len([0 for x in params.iterkeys()])/6 - 3 rvec = zeros((n,3,1)) tvec = zeros((n,3,1)) for j in range(n): for i in range(3): rvec[j,i,0] = params['rvec%d%d'%(j,i)].value tvec[j,i,0] = params['tvec%d%d'%(j,i)].value cameraMatrix = zeros((3,3)) cameraMatrix[0,0] = params['fX'].value cameraMatrix[1,1] = params['fY'].value cameraMatrix[0,2] = params['cX'].value cameraMatrix[1,2] = params['cY'].value cameraMatrix[2,2] = 1 distCoeffs = zeros((14,1)) distCoeffs[0] = params['numDist0'].value distCoeffs[1] = params['numDist1'].value distCoeffs[4] = params['numDist2'].value distCoeffs[5] = params['denomDist0'].value distCoeffs[6] = params['denomDist1'].value distCoeffs[7] = params['denomDist2'].value return rvec, tvec, cameraMatrix, distCoeffs # %% change state of paramters def setDistortionParams(params, state): for i in [0,1,4,5,6,7]: params['distCoeffs%d'%i].vary=state def setLinearParams(params, state): params['cameraMatrix0'].value = state params['cameraMatrix1'].value = state params['cameraMatrix2'].value = state params['cameraMatrix3'].value = state def setExtrinsicParams(params, state): n = len([0 for x in params.iterkeys()])/6 - 3 for j in range(n): for i in range(3): params['rvec%d%d'%(j,i)].vary = state params['tvec%d%d'%(j,i)].vary = state # %% residual def residualDirectChessRatio(params, fiducialPoints, corners): ''' ''' n = len(corners) rVecs, tVecs, linearCoeffs, distCoeffs = retrieveParametersChess(params) E = list() for j in range(n): projectedCorners = rational.direct(fiducialPoints, rVecs[j], tVecs[j], linearCoeffs, distCoeffs) err = projectedCorners[:,0,:] - corners[j,:,0,:] E.append(err) return np.reshape(E,(n*len(fiducialPoints[0]),2)) # %% def calibrateDirectChessRatio(fiducialPoints, corners, rVecs, tVecs, linearCoeffs, distCoeffs): ''' parece que si no se hace por etapas hay inestabilidad numerica. lo veo con la camara plana que en ppio no deberia tener problemas para ajustar y en mucha mayor medida con la fisheye. quiza valga la pena iterar ete ciclo la cantidad de veces que sea necesario hasta que converja. roguemos que converja ''' params = formatParametersChessIntrs(rVecs, tVecs, linearCoeffs, distCoeffs) # generate Parameters obj setDistortionParams(params,False) setLinearParams(params,True) setExtrinsicParams(params,True) out = minimize(residualDirectChessRatio, params, args=(fiducialPoints, corners), xtol=1e-5, # Relative error in the approximate solution ftol=1e-5, # Relative error in the desired sum of squares maxfev=int(1e3)) ''' params = out.params # setDistortionParams(params,False) setLinearParams(params,True) setExtrinsicParams(params,False) out = minimize(residualDirectChessRatio, params, args=(fiducialPoints, corners), xtol=1e-5, # Relative error in the approximate solution ftol=1e-5, # Relative error in the desired sum of squares maxfev=int(1e3)) params = out.params setDistortionParams(params,True) setLinearParams(params,False) # setExtrinsicParams(params,False) out = minimize(residualDirectChessRatio, params, args=(fiducialPoints, corners), xtol=1e-5, # Relative error in the approximate solution ftol=1e-5, # Relative error in the desired sum of squares maxfev=int(1e3)) ''' return out # %% reload(pc) # %% LOAD DATA ### fisheye data imagesFolder = "./resources/fishChessboard/" extension = "*.png" cornersFile = "./resources/fishChessboard/fishCorners.npy" patternFile = "./resources/chessPattern.npy" imgShapeFile = "./resources/fishImgShape.npy" distCoeffsFile = "./resources/fishDistCoeffs.npy" linearCoeffsFile = "./resources/fishLinearCoeffs.npy" rvecsFile = "./resources/fishChessboard/fishRvecs.npy" tvecsFile = "./resources/fishChessboard/fishTvecs.npy" ### ptz data #imagesFolder = "./resources/PTZchessboard/zoom 0.0/" #extension = "*.jpg" #cornersFile = "./resources/PTZchessboard/zoom 0.0/ptzCorners.npy" #patternFile = "./resources/chessPattern.npy" #imgShapeFile = "./resources/ptzImgShape.npy" # #distCoeffsFile = "./resources/PTZchessboard/zoom 0.0/ptzDistCoeffs.npy" #linearCoeffsFile = "./resources/PTZchessboard/zoom 0.0/ptzLinearCoeffs.npy" #rvecsFile = "./resources/PTZchessboard/zoom 0.0/ptzRvecs.npy" #tvecsFile = "./resources/PTZchessboard/zoom 0.0/ptzTvecs.npy" corners = np.load(cornersFile).transpose((0,2,1,3)) fiducialPoints = np.load(patternFile) imgSize = np.load(imgShapeFile) images = glob.glob(imagesFolder+extension) distCoeffsTrue = np.load(distCoeffsFile) linearCoeffsTrue = np.load(linearCoeffsFile) rVecsTrue = np.load(rvecsFile) tVecsTrue = np.load(tvecsFile) # %% # %% from testHomography.py ## use real data #f = 5e2 # proposal of f, can't be estimated from homography # #rVecs, tVecs, Hs = pc.estimateInitialPose(fiducialPoints, corners, f, imgSize) # #pc.plotHomographyToMatch(fiducialPoints, corners[1:3], f, imgSize, images[1:3]) # #pc.plotForwardHomography(fiducialPoints, corners[1:3], f, imgSize, Hs[1:3], images[1:3]) # #pc.plotBackwardHomography(fiducialPoints, corners[1:3], f, imgSize, Hs[1:3]) # %% model= 'rational' f = 1e3 # importa el orden de magnitud aunque no demaisado. # entre 1e2 y 1e3 anda? # %% intrinsic parameters initial conditions linearCoeffsIni = np.array([[f, 0, imgSize[1]/2], [0, f, imgSize[0]/2], [0, 0, 1]]) #distCoeffsIni = np.zeros((14, 1)) # despues hacer generico para todos los modelos #k = 10 # factor en que escalear la distancia focal #linearCoeffsIni = linearCoeffsTrue * [k,k,1] distCoeffsIni = distCoeffsTrue # %% extrinsic parameters initial conditions, from estimated homography rVecsIni, tVecsIni, Hs = pc.estimateInitialPose(fiducialPoints, corners, linearCoeffsIni) #rVecsIni = rVecsTrue #tVecsIni = tVecsTrue # %% from testposecalibration DIRECT GENERIC CALIBRATION i=0 img = plt.imread(images[i]) imageCorners = corners[i] rVec = rVecsIni[i] tVec = tVecsIni[i] linearCoeffs = linearCoeffsIni distCoeffs = distCoeffsIni # direct mapping with initial conditions cornersProjected = pc.direct(fiducialPoints, rVec, tVec, linearCoeffs, distCoeffs, model) # plot corners in image pc.cornerComparison(img, imageCorners, cornersProjected) # %% # format parameters initialParams = formatParametersChessIntrs(rVecsIni, tVecsIni, linearCoeffsIni, distCoeffsIni) # test retrieving parameters # n=10 # retrieveParametersChess(initialParams) # %% #E = residualDirectChessRatio(initialParams, fiducialPoints, corners) out = calibrateDirectChessRatio(fiducialPoints, corners, rVecsIni, tVecsIni, linearCoeffsIni, distCoeffsIni) out.nfev out.message out.lmdif_message (out.residual**2).sum() # %% rVecsOpt, tVecsOpt, cameraMatrixOpt, distCoeffsOpt = retrieveParametersChess(out.params) # %%cameraMatrix0 img = plt.imread(images[i]) imageCorners = corners[i] rVec = rVecsOpt[i] tVec = tVecsOpt[i] linearCoeffs = cameraMatrixOpt distCoeffs = distCoeffsOpt # direct mapping with initial conditions cornersProjected = pc.direct(fiducialPoints, rVec, tVec, linearCoeffs, distCoeffs, model) # plot corners in image pc.cornerComparison(img, imageCorners, cornersProjected) # %% comparar fiteos. true corresponde a lo que da chessboard distCoeffsTrue distCoeffsOpt pc.plotRationalDist(distCoeffsTrue,imgSize, linearCoeffsTrue) pc.plotRationalDist(distCoeffsOpt,imgSize, cameraMatrixOpt) linearCoeffsTrue cameraMatrixOpt rVecsTrue[i] rVecsOpt[i] tVecsTrue[i] tVecsOpt[i] np.linalg.norm(rVecsTrue[9]) np.linalg.norm(rVecsOpt[9]) # %% ver porque el signo cambiado en rVecs, que significa? r1, r2 = rVecsTrue[1,:,0],rVecsOpt[1,:,0] r1 r2 np.linalg.norm(r1), np.linalg.norm(r2) distance = np.array([np.linalg.norm(rVecsTrue[j,:,0] - rVecsOpt[j,:,0]) for j in range(len(rVecsTrue))]) / np.pi / 2 # es por la periodicidad en 2pi plt.figure() plt.plot(distance) ''' pero no quiere decir que la camara apunta hacia donde debe. pero da igual que opencv al menos '''
bsd-3-clause
dennisobrien/bokeh
examples/app/dash/main.py
3
4227
from collections import Counter from math import pi import numpy as np import pandas as pd from bokeh.io import curdoc from bokeh.layouts import column from bokeh.models import ColumnDataSource, DataTable, RangeTool, TableColumn from bokeh.palettes import Spectral11 from bokeh.plotting import figure from bokeh.transform import cumsum from bokeh.sampledata.autompg2 import autompg2 as mpg from bokeh.sampledata.stocks import AAPL # Timeseries dates = np.array(AAPL['date'], dtype=np.datetime64) source = ColumnDataSource(data=dict(date=dates, close=AAPL['adj_close'])) p = figure(plot_height=110, tools="", toolbar_location=None, #name="line", x_axis_type="datetime", x_range=(dates[1500], dates[2500]), sizing_mode="scale_width") p.line('date', 'close', source=source, line_width=2, alpha=0.7) p.yaxis.axis_label = 'Traffic' p.background_fill_color="#f5f5f5" p.grid.grid_line_color="white" select = figure(plot_height=50, plot_width=800, y_range=p.y_range, x_axis_type="datetime", y_axis_type=None, tools="", toolbar_location=None, sizing_mode="scale_width") range_rool = RangeTool(x_range=p.x_range) range_rool.overlay.fill_color = "navy" range_rool.overlay.fill_alpha = 0.2 select.line('date', 'close', source=source) select.ygrid.grid_line_color = None select.add_tools(range_rool) select.toolbar.active_multi = range_rool select.background_fill_color="#f5f5f5" select.grid.grid_line_color="white" select.x_range.range_padding = 0.01 layout = column(p, select, sizing_mode="scale_width", name="line") curdoc().add_root(layout) # Donut chart x = Counter({ 'United States': 157, 'United Kingdom': 93, 'Japan': 89, 'China': 63, 'Germany': 44, 'India': 42, 'Italy': 40, 'Australia': 35, 'Brazil': 32, 'France': 31, 'Taiwan': 31 }) data = pd.DataFrame.from_dict(dict(x), orient='index').reset_index().rename(index=str, columns={0:'value', 'index':'country'}) data['angle'] = data['value']/sum(x.values()) * 2*pi data['color'] = Spectral11 region = figure(plot_height=350, toolbar_location=None, outline_line_color=None, sizing_mode="scale_both", name="region", x_range=(-0.4, 1)) region.annular_wedge(x=-0, y=1, inner_radius=0.2, outer_radius=0.32, start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), line_color="white", fill_color='color', legend='country', source=data) region.axis.axis_label=None region.axis.visible=False region.grid.grid_line_color = None region.legend.label_text_font_size = "0.7em" region.legend.spacing = 1 region.legend.glyph_height = 15 region.legend.label_height = 15 curdoc().add_root(region) # Bar chart plats = ("IOS", "Android", "OSX", "Windows", "Other") values = (35, 22, 13, 26, 4) platform = figure(plot_height=350, toolbar_location=None, outline_line_color=None, sizing_mode="scale_both", name="platform", y_range=list(reversed(plats)), x_axis_location="above") platform.x_range.start = 0 platform.ygrid.grid_line_color = None platform.axis.minor_tick_line_color = None platform.outline_line_color = None platform.hbar(left=0, right=values, y=plats, height=0.8) curdoc().add_root(platform) # Table source = ColumnDataSource(data=mpg[:6]) columns = [ TableColumn(field="cyl", title="Counts"), TableColumn(field="cty", title="Uniques"), TableColumn(field="hwy", title="Rating"), ] table = DataTable(source=source, columns=columns, height=210, width=330, name="table", sizing_mode="scale_both") curdoc().add_root(table) # Setup curdoc().title = "Bokeh Dashboard" curdoc().template_variables['stats_names'] = ['users', 'new_users', 'time', 'sessions', 'sales'] curdoc().template_variables['stats'] = { 'users' : {'icon': 'user', 'value': 11200, 'change': 4 , 'label': 'Total Users'}, 'new_users' : {'icon': 'user', 'value': 350, 'change': 1.2 , 'label': 'New Users'}, 'time' : {'icon': 'clock-o', 'value': 5.6, 'change': -2.3 , 'label': 'Total Time'}, 'sessions' : {'icon': 'user', 'value': 27300, 'change': 0.5 , 'label': 'Total Sessions'}, 'sales' : {'icon': 'dollar-sign', 'value': 8700, 'change': -0.2 , 'label': 'Average Sales'}, }
bsd-3-clause
julienr/vispy
vispy/ext/_bundled/mplexporter.py
17
28160
""" Matplotlib Exporter =================== This submodule contains tools for crawling a matplotlib figure and exporting relevant pieces to a renderer. Copyright (c) 2014, mpld3 All rights reserved. Redistribution and use in source and binary forms, with or without modification, # noqa are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this # noqa list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the {organization} nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # noqa ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import warnings import io from . import mplutils as utils import matplotlib from matplotlib import transforms class Exporter(object): """Matplotlib Exporter Parameters ---------- renderer : Renderer object The renderer object called by the exporter to create a figure visualization. See mplexporter.Renderer for information on the methods which should be defined within the renderer. close_mpl : bool If True (default), close the matplotlib figure as it is rendered. This is useful for when the exporter is used within the notebook, or with an interactive matplotlib backend. """ def __init__(self, renderer, close_mpl=True): self.close_mpl = close_mpl self.renderer = renderer def run(self, fig): """ Run the exporter on the given figure Parmeters --------- fig : matplotlib.Figure instance The figure to export """ # Calling savefig executes the draw() command, putting elements # in the correct place. fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig) @staticmethod def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """ if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code def crawl_fig(self, fig): """Crawl the figure and process all axes""" with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax) def crawl_ax(self, ax): """Crawl the axes and process all elements within""" with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend) def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """ legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not impemented" % child) except NotImplementedError: warnings.warn("Legend element %s not impemented" % child) def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line""" coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line) def draw_text(self, ax, text, force_trans=None, text_type=None): """Process a matplotlib text object and call renderer.draw_text""" content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text) def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path""" vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch) def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): """Process a matplotlib collection and call renderer.draw_collection""" (transform, transOffset, offsets, paths) = collection._prepare_points() offset_coords, offsets = self.process_transform( transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform( transform, ax, force_trans=force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform( transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: # matplotlib 1.3: path_transforms are transform objects. # Convert them to numpy arrays. path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: # matplotlib 1.4: path transforms are already numpy arrays. pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {"data": "before", "screen": "after"} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order=offset_order, styles=styles, mplobj=collection) def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image""" self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image) ############################################################################## # Renderers/base.py import itertools from contextlib import contextmanager import numpy as np from . import _mpl_py3k_compat as py3k class Renderer(object): @staticmethod def ax_zoomable(ax): return bool(ax and ax.get_navigate()) @staticmethod def ax_has_xgrid(ax): return bool(ax and ax.xaxis._gridOnMajor and ax.yaxis.get_gridlines()) @staticmethod def ax_has_ygrid(ax): return bool(ax and ax.yaxis._gridOnMajor and ax.yaxis.get_gridlines()) @property def current_ax_zoomable(self): return self.ax_zoomable(self._current_ax) @property def current_ax_has_xgrid(self): return self.ax_has_xgrid(self._current_ax) @property def current_ax_has_ygrid(self): return self.ax_has_ygrid(self._current_ax) @contextmanager def draw_figure(self, fig, props): if hasattr(self, "_current_fig") and self._current_fig is not None: warnings.warn("figure embedded in figure: something is wrong") self._current_fig = fig self._fig_props = props self.open_figure(fig=fig, props=props) yield self.close_figure(fig=fig) self._current_fig = None self._fig_props = {} @contextmanager def draw_axes(self, ax, props): if hasattr(self, "_current_ax") and self._current_ax is not None: warnings.warn("axes embedded in axes: something is wrong") self._current_ax = ax self._ax_props = props self.open_axes(ax=ax, props=props) yield self.close_axes(ax=ax) self._current_ax = None self._ax_props = {} @contextmanager def draw_legend(self, legend, props): self._current_legend = legend self._legend_props = props self.open_legend(legend=legend, props=props) yield self.close_legend(legend=legend) self._current_legend = None self._legend_props = {} # Following are the functions which should be overloaded in subclasses def open_figure(self, fig, props): """ Begin commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The Figure which will contain the ensuing axes and elements props : dictionary The dictionary of figure properties """ pass def close_figure(self, fig): """ Finish commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The figure which is finished being drawn. """ pass def open_axes(self, ax, props): """ Begin commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which will contain the ensuing axes and elements props : dictionary The dictionary of axes properties """ pass def close_axes(self, ax): """ Finish commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which is finished being drawn. """ pass def open_legend(self, legend, props): """ Beging commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend that will contain the ensuing elements props : dictionary The dictionary of legend properties """ pass def close_legend(self, legend): """ Finish commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend which is finished being drawn """ pass def draw_marked_line(self, data, coordinates, linestyle, markerstyle, label, mplobj=None): """Draw a line that also has markers. If this isn't reimplemented by a renderer object, by default, it will make a call to BOTH draw_line and draw_markers when both markerstyle and linestyle are not None in the same Line2D object. """ if linestyle is not None: self.draw_line(data, coordinates, linestyle, label, mplobj) if markerstyle is not None: self.draw_markers(data, coordinates, markerstyle, label, mplobj) def draw_line(self, data, coordinates, style, label, mplobj=None): """ Draw a line. By default, draw the line via the draw_path() command. Some renderers might wish to override this and provide more fine-grained behavior. In matplotlib, lines are generally created via the plt.plot() command, though this command also can create marker collections. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the line. mplobj : matplotlib object the matplotlib plot element which generated this line """ pathcodes = ['M'] + (data.shape[0] - 1) * ['L'] pathstyle = dict(facecolor='none', **style) pathstyle['edgecolor'] = pathstyle.pop('color') pathstyle['edgewidth'] = pathstyle.pop('linewidth') self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes, style=pathstyle, mplobj=mplobj) @staticmethod def _iter_path_collection(paths, path_transforms, offsets, styles): """Build an iterator over the elements of the path collection""" N = max(len(paths), len(offsets)) if not path_transforms: path_transforms = [np.eye(3)] edgecolor = styles['edgecolor'] if np.size(edgecolor) == 0: edgecolor = ['none'] facecolor = styles['facecolor'] if np.size(facecolor) == 0: facecolor = ['none'] elements = [paths, path_transforms, offsets, edgecolor, styles['linewidth'], facecolor] it = itertools return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N) def draw_path_collection(self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None): """ Draw a collection of paths. The paths, offsets, and styles are all iterables, and the number of paths is max(len(paths), len(offsets)). By default, this is implemented via multiple calls to the draw_path() function. For efficiency, Renderers may choose to customize this implementation. Examples of path collections created by matplotlib are scatter plots, histograms, contour plots, and many others. Parameters ---------- paths : list list of tuples, where each tuple has two elements: (data, pathcodes). See draw_path() for a description of these. path_coordinates: string the coordinates code for the paths, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. path_transforms: array_like an array of shape (*, 3, 3), giving a series of 2D Affine transforms for the paths. These encode translations, rotations, and scalings in the standard way. offsets: array_like An array of offsets of shape (N, 2) offset_coordinates : string the coordinates code for the offsets, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. offset_order : string either "before" or "after". This specifies whether the offset is applied before the path transform, or after. The matplotlib backend equivalent is "before"->"data", "after"->"screen". styles: dictionary A dictionary in which each value is a list of length N, containing the style(s) for the paths. mplobj : matplotlib object the matplotlib plot element which generated this collection """ if offset_order == "before": raise NotImplementedError("offset before transform") for tup in self._iter_path_collection(paths, path_transforms, offsets, styles): (path, path_transform, offset, ec, lw, fc) = tup vertices, pathcodes = path path_transform = transforms.Affine2D(path_transform) vertices = path_transform.transform(vertices) # This is a hack: if path_coordinates == "figure": path_coordinates = "points" style = {"edgecolor": utils.color_to_hex(ec), "facecolor": utils.color_to_hex(fc), "edgewidth": lw, "dasharray": "10,0", "alpha": styles['alpha'], "zorder": styles['zorder']} self.draw_path(data=vertices, coordinates=path_coordinates, pathcodes=pathcodes, style=style, offset=offset, offset_coordinates=offset_coordinates, mplobj=mplobj) def draw_markers(self, data, coordinates, style, label, mplobj=None): """ Draw a set of markers. By default, this is done by repeatedly calling draw_path(), but renderers should generally overload this method to provide a more efficient implementation. In matplotlib, markers are created using the plt.plot() command. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the markers. mplobj : matplotlib object the matplotlib plot element which generated this marker collection """ vertices, pathcodes = style['markerpath'] pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor', 'facecolor', 'zorder', 'edgewidth']) pathstyle['dasharray'] = "10,0" for vertex in data: self.draw_path(data=vertices, coordinates="points", pathcodes=pathcodes, style=pathstyle, offset=vertex, offset_coordinates=coordinates, mplobj=mplobj) def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): """ Draw text on the image. Parameters ---------- text : string The text to draw position : tuple The (x, y) position of the text coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the text. text_type : string or None if specified, a type of text such as "xlabel", "ylabel", "title" mplobj : matplotlib object the matplotlib plot element which generated this text """ raise NotImplementedError() def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): """ Draw a path. In matplotlib, paths are created by filled regions, histograms, contour plots, patches, etc. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, 'figure' for figure (pixel) coordinates, or "points" for raw point coordinates (useful in conjunction with offsets, below). pathcodes : list A list of single-character SVG pathcodes associated with the data. Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't', 'S', 's', 'C', 'c', 'Z', 'z'] See the SVG specification for details. Note that some path codes consume more than one datapoint (while 'Z' consumes none), so in general, the length of the pathcodes list will not be the same as that of the data array. style : dictionary a dictionary specifying the appearance of the line. offset : list (optional) the (x, y) offset of the path. If not given, no offset will be used. offset_coordinates : string (optional) A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. mplobj : matplotlib object the matplotlib plot element which generated this path """ raise NotImplementedError() def draw_image(self, imdata, extent, coordinates, style, mplobj=None): """ Draw an image. Parameters ---------- imdata : string base64 encoded png representation of the image extent : list the axes extent of the image: [xmin, xmax, ymin, ymax] coordinates: string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the image mplobj : matplotlib object the matplotlib plot object which generated this image """ raise NotImplementedError()
bsd-3-clause
kavvkon/enlopy
tests/test_generate.py
1
5438
import numpy as np import pandas as pd from enlopy.utils import make_timeseries from enlopy.generate import (add_noise, gen_daily_stoch_el, gen_load_from_daily_monthly, gen_load_sinus, gen_demand_response, disag_upsample, clean_convert, countweekend_days_per_month, gen_analytical_LDC, gen_load_from_LDC, gen_corr_arrays, gen_gauss_markov) class Test_noise(): def test_ndarray_gauss(self): a = np.random.rand(24) b = np.random.rand(24) / 10 c = gen_gauss_markov(a, b, .9) assert isinstance(c, np.ndarray) def test_ndarray_add_noise_gauss(self): a = np.random.rand(8760) b = add_noise(a, 3, 0.05) # Gauss Markov noise assert isinstance(b, pd.Series) def test_2d_ndarray_add_noise_gauss(self): a = np.random.rand(8760, 2) b = add_noise(a, 3, 0.05) # Gauss Markov noise assert isinstance(b, pd.DataFrame) assert (8760,2) == b.shape def test_ndarray_add_noise_normal(self): a = np.random.rand(8760) b = add_noise(a, 1, 0.05) # Gauss Markov noise assert isinstance(b, pd.Series) def test_2d_ndarray_add_noise_normal(self): a = np.random.rand(8760, 2) b = add_noise(a, 1, 0.05) # Gauss Markov noise assert isinstance(b, pd.DataFrame) assert (8760,2) == b.shape def test_ndarray_add_noise_uniform(self): a = np.random.rand(8760) b = add_noise(a, 2, 0.05) # Gauss Markov noise assert isinstance(b, pd.Series) def test_2d_ndarray_add_noise_uniform(self): a = np.random.rand(8760, 2) b = add_noise(a, 2, 0.05) # Gauss Markov noise assert isinstance(b, pd.DataFrame) assert (8760,2) == b.shape def test_add_noise_not_annual(self): a = np.random.rand(15) b = add_noise(a, 3, 0.05) assert isinstance(b, pd.Series) class Test_gen_monthly_daily(): def test_gen_monthly_daily(self): Weight = .55 # Ratio between working and non-working day load (e.g. 70% - 30% ) ML = 1000 * np.ones(12) # monthly load DWL = np.random.rand(24) * 10 # daily load working DWL = DWL / DWL.sum() # normalized DNWL = np.random.rand(24) * 5 # daily load non working DNWL = DNWL / DNWL.sum() # daily load non working year = 2014 Load1 = gen_load_from_daily_monthly(ML, DWL, DNWL, Weight, year) assert len(Load1) == 8760 assert np.isclose(Load1.sum(), np.sum(ML)) class Test_gen_dummy_load(): def test_gen_dummy(self): a = gen_daily_stoch_el(1500) assert isinstance(a, np.ndarray) assert len(a) == 24 class Test_gen_load_sinus(): def test_gen_sinus(self): Load1 = gen_load_sinus(1,2,3,4,5,6) assert len(Load1) == 8760 class Test_disag(): def test_disag_daily_to_hourly(self): x = np.arange(0, 365) y = (np.cos(2 * np.pi / 364 * x) * 50 + 100) y = make_timeseries(y, freq='d') disag_profile = np.random.rand(24) y_disag = disag_upsample(y, disag_profile) assert np.isclose(np.sum(y_disag), np.sum(y)) # <= 0.001 #FIXME: np test equality assert len(y_disag) == 8760 def test_disag_hourly_to_minutes(self): x = np.arange(0, 8760) y = (np.cos(2 * np.pi / 8759 * x) * 50 + 100) y = make_timeseries(y, freq='h') disag_profile = np.random.rand(60) y_disag = disag_upsample(y, disag_profile, to_offset='t') assert np.isclose(np.sum(y_disag), np.sum(y) ) # <= 0.001 #FIXME: np test equality assert len(y_disag) == 8760*60 class Test_demand_side_management(): def test_load_shifting_small(self): a = np.random.rand(8760) * 100 a = clean_convert(a, force_timed_index=True, always_df=False) b = gen_demand_response(a,.1,.2) assert np.isclose(np.sum(a), np.sum(b)) assert np.max(a) > np.max(b) def test_load_shifting_big(self): a = np.random.rand(8760) * 100 a = clean_convert(a, force_timed_index=True, always_df=False) b = gen_demand_response(a,.15,.5) assert np.isclose(np.sum(a), np.sum(b)) assert np.max(a) > np.max(b) def test_countweekend_days_per_month(): a = make_timeseries(year=2015, length=8760, freq='h') b = countweekend_days_per_month(a.resample('d').mean()) assert len(b) == 12 assert sum(b) == 104 #weekend days in 2015 def test_gen_analytical_LDC(): #Generate a simple LDC with Peak of 1 U = (1, 0.5, 0.2, 8760) LDC = gen_analytical_LDC(U) assert max(LDC[0]) == 1.0 assert min(LDC[0]) == 0.0 assert np.isclose(np.mean(LDC[0]), 0.5) def test_gen_load_from_LDC(): # Only operate 90% of the time. duration_fraction = 0.9 LDC = gen_analytical_LDC((1, 0.5, 0.2, 8760 * duration_fraction)) b = gen_load_from_LDC(LDC) assert b.max() <= 1.0 # According to the defined formula anything below should be zero val_perc = np.percentile(b, (1 - duration_fraction - 0.01) * 100) assert np.isclose(val_perc, 0.0) def test_gen_corr_arrays(): Na = 2 length = 1000 r = 0.85 M = np.array([[1, r], [r, 1]]) A = gen_corr_arrays(Na, length, M) new_r = np.corrcoef(A)[0][1] assert A.shape == (Na, length) #allow some tolerance of convergence.. assert np.abs(new_r - r) <= 0.03
bsd-3-clause
ksiomelo/cubix
spectralmix/SpectralCluster.py
1
23910
#!/usr/bin/env python ## A handler class that that takes input data and performed specified analyses. # A number of possible models are available through this class ### make imports import sys,os,re,time,cPickle import numpy as np from scipy.cluster.vq import kmeans2,kmeans from scipy.cluster.vq import whiten from scipy.spatial.distance import pdist,cdist,squareform import scipy.stats as stats import matplotlib.pyplot as plt from ClusterBase import ClusterBase from DistanceMatrix import DistanceMatrix from GraphingLib import * ## use numpy from numpy.linalg import eig ## use scipy and sparse matrices try: from scipy.sparse.linalg.eigen.arpack import eigen_symmetric, eigen except: "WARNING: scipy.sparse.linalg is not available" sys.path.append(os.path.join('.','MixModel')) try: from GraphingLib import * except: print "WARNING: GraphingLib not available -- is Pygraphviz installed?" ## turn off warning about casting complex numbers to real ones import warnings warnings.simplefilter("ignore", np.ComplexWarning) ### handle warnings import warnings warnings.simplefilter('error', UserWarning) class SpectralCluster(ClusterBase): ''' constructor description this class takes as input a raw matrix consisting of observations and features the observations occupy the rows and the features the are the columns also takes as input a distance matrix or a networkx graph args data - a raw matrix, a distance matrix, an affinity matrix or a networkx graph k - the number of components in the mixture labels - a list of the true labels if available projID - the project id (that may include a path) to be used when saving results dataHeader - are the names of the individual objects to cluster (i.e. [gene1,gene2]) dtype - specifies to the constructor which data type is being input weighted - specifies whether or not a graph-type input is weighted dataMax - this is the maximal value for a given data source with respect to the genome refine - used to specify the method for noise refinement 'kmeans' paramEstimator - 'distortion','silvalue' or 'fscore' sigmaRange - range of sigmas to be searched dmatPath - if raw data are given the dmat will be saved to increase compute speed fileType - specify output file type -- types supported by matplotlib pdf, png, jpg classifyStep - kmeans is the only current option handleExtremeVals - if true extreme values in affinity matrix are mapped to a larger value reweighting - true algorithm: (1) create an affinity matrix using a_ij = exp( d_ij^2 / 2*sigma^2) (2) define the matrix D and create the matrix L (3) create the matrix X using the eigenvectors of L (4) create the normalized matrix Y from X (5) cluster the rows in Y using K-means (6) assign the points to clusters ''' def __init__(self,data,k=None,labels=None,dataHeader=None,projID="generic",dtype='raw',weighted=False,dataMax=None,penalty=False, fileType='pdf',verbose=False,sigma=None,refine=None,paramEstimator='distortion',sigmaRange=None,dmatPath=None, classifyStep='kmeans',handleExtremeVals=False,reweighting=True): if verbose == True: print "INFO: running spectral clustering............." if data == None: print "ERROR: Bad data given" return None ## class-wide variables self.data = data self.k = k self.sigHat=sigma self.verbose = verbose self.dtype = dtype self.projID = projID self.weighted = weighted self.dataMax = dataMax self.fileType = fileType self.refine = refine self.paramEstimator = paramEstimator self.handleExtremeVals = handleExtremeVals self.unusedGenes = [] self.unusedIndices = [] self.clustResults = None self.penalty = penalty self.dmatPath = dmatPath self.noiseValue = 999 self.classifyStep = classifyStep self.reweighting = reweighting ## handle header and labels if dataHeader != None: self.dataHeader = [dat for dat in dataHeader] self.origDataHeader = [odat for odat in dataHeader] else: self.dataHeader = None self.origDataHeader = None if labels != None: self.origLabels = np.array([float(l) for l in labels]) self.labels = np.array([float(l) for l in labels]) else: self.labels = None self.origLabels = None ## set the range of sigma if sigma == None and sigmaRange != None: if type(sigmaRange) == type(np.array([])): self.sigmaRange = sigmaRange else: print "WARNING: Invalid input for sigmaRange must be np.array" elif sigma == None: self.sigmaRange = np.arange(0.01,0.6,0.001) if sigma != None and sigmaRange != None: print "WARNING: both sigma and sigmaRange specified -- ignoring sigmaRange" ## class-wide variables if self.dtype == 'graph': self.G = data if self.dataHeader == None: print "ERROR: header values must be input along with the graph" else: if type(data) != type(np.array([])): return None self.n, self.d = np.shape(data) ## error check gene list if self.verbose == True: print "\tINFO: error checking data..." self._error_check_input_data() ## determine how to run algorithm if self.dtype == 'affinity': self.run_from_affinity_matrix() elif self.sigHat == None: self.run_by_estimating_sigma() else: self.run_with_given_sigma() ## save results s.t. they are easily accessible if self.clustResults != None: self.aMat = self.clustResults['aMat'] self.eigVals = self.clustResults['eigVals'] self.xMat = self.clustResults['xMat'] self.yMat = self.clustResults['yMat'] else: "WARNING: the algorithm returned no results" ## perform evaluation (here we panalize for genes that are thown out by calling them noise) if self.clustResults == None: print "ERROR: ClustResults returned None -skipping evaluation" elif self.labels == None: pass elif self.penalty == True: try: self.evaluation = self.evaluate_cluster_assignments(self.origLabels,self.clustResults['labels']) except: print "ERROR: there was an error in the penalized evaluation" else: try: self.evaluation = self.evaluate_cluster_assignments(self.labels,self.clustResults['labels']) except: print "ERROR: there was an error in the nonpenalized evaluation" ## add final distortion and sil values if self.clustResults != None and self.clustResults['centroids'] != None: self.distortion = self.calculate_distortion_measure(self.clustResults) self.silVals = self.get_silhouette_values(self.clustResults['yMat'],labels=self.clustResults['labels']) else: self.distortion = 0 self.silValus = 0 ## perform inference #self.perform_noise_inference() #################################################################### # # methods to run spectral clustering # #################################################################### ## scan a region for sigma def run_by_estimating_sigma(self): ## run the algorithm for a range of sigma values if self.verbose == True: print "\tfinding sigma..." print "\tusing %s"%self.paramEstimator if self.paramEstimator not in ['distortion','silvalue','fscore']: print "ERROR: Input value for paramEstimator must be 'distortion', silvalue' or 'fscore'" if self.paramEstimator == 'fscore' and self.labels == None: print "ERROR: if estimator is 'fscore' labels must be known" ## prepare progress points progressPercents = np.array([0,0.25,0.50,0.75,1.0]) progress = [int(round(i)) for i in progressPercents * len(self.sigmaRange)] self.fscore = -1e08 self.distortion = 1e08 self.silValue = -1e-08 self.clustResults = None for s in range(len(self.sigmaRange)): sigma = self.sigmaRange[s] clustResults = None numTries = 0 while numTries < 10: try: clustResults = self.run_spectral_clust_ng(sigma) except: clustResults = None if clustResults == None: numTries += 1 else: numTries = 100 ## calculate value for sigma estimator if clustResults == None: continue if self.paramEstimator == 'distortion': distortion = self.calculate_distortion_measure(clustResults) elif self.paramEstimator == 'silvalue': silVals = self.get_silhouette_values(clustResults['yMat'],labels=clustResults['labels']) elif self.paramEstimator == 'fscore': if self.penalty == True: evaluation = self.evaluate_cluster_assignments(self.origLabels,clustResults['labels']) else: evaluation = self.evaluate_cluster_assignments(self.labels,clustResults['labels']) ## report progress if s in progress and self.verbose == True: print progressPercents[progress.index(s)]*100, "%complete" ## error checking if self.paramEstimator == 'distortion' and distortion < 0: continue ## save best results if self.paramEstimator == 'distortion' and distortion < self.distortion: self.distortion = distortion self.clustResults = clustResults self.sigHat = sigma elif self.paramEstimator == 'silvalue' and silVals.mean() > self.silValue: self.silValue = silVals.mean() self.clustResults = clustResults self.sigHat = sigma elif self.paramEstimator == 'fscore' and evaluation['f1score'] > self.fscore: self.fscore = evaluation['f1score'] self.clustResults = clustResults self.sigHat = sigma def run_with_given_sigma(self): ## run the algorithm for the a given sigma value if self.verbose == True: print "\tINFO: running for specified sigma:", self.sigHat self.clustResults = None numTries = 0 while numTries < 10: try: self.clustResults = self.run_spectral_clust_ng(self.sigHat) except: self.clustResults = None if self.clustResults == None: numTries += 1 else: numTries = 100 def run_from_affinity_matrix(self): if self.verbose == True: print "\tINFO:running from affinity matrix" self.clustResults = self.run_spectral_clust_ng(self.sigHat) ############################################## # # main spectral clustering implimentation # ############################################## ## the method that carries out the algorithm for spectral clustering as proposed by Andrew Ng (2001) def run_spectral_clust_ng(self,sigma,plots=False): dmatPickle = 'NotAFile' ## create a distance (similarity) matrix if self.dtype=='raw': self.dMat = self.raw_to_distance_mat(self.data) if self.dtype=='graph': if self.dmatPath != None and os.path.isfile(self.dmatPath) == False: if self.verbose == True: print '...............creating new dMat to be pickled...' self.dMat = self.graph_to_distance_mat(self.G,self.dataHeader,weighted=self.weighted,reweighting=self.reweighting,verbose=self.verbose) cPickle.dump(self.dMat,open(self.dmatPath,'w')) elif self.dmatPath != None and os.path.isfile(self.dmatPath) == True: if self.verbose == True: print '...............using pickled dmat' self.dMat = cPickle.load(open(self.dmatPath,'r')) else: self.dMat = self.graph_to_distance_mat(self.G,self.dataHeader,weighted=self.weighted,reweighting=self.reweighting,verbose=self.verbose) if self.dtype == 'distance': self.dMat = self.data ## handle the affinity matrix if self.dtype == 'affinity': aMat = self.data else: aMat = self.distance_to_affinity_mat(self.dMat,sigma,reshape=self.penalty) ## handle extreme values in affinity matrix if self.handleExtremeVals == True: aMat[np.where(aMat < 0.00001)] = 0.00001 ## create the diagonal matrix D diaMat = self.affinity_to_diagonal_mat(aMat) ## find the matrix L result = np.dot(diaMat,aMat) # multiply A and D^{-1/2} lMat = np.dot(result,diaMat) # multiply the above result times D^{-1/2} # test to make sure lMat is finite and does not contain NaNs testNan = np.where(np.isnan(lMat) == True) testNanResult = [len(z) for z in testNan] testFinite = np.where(np.isfinite(lMat) == False) testFiniteResult = [len(z) for z in testFinite] if np.array(testFiniteResult).sum() > 0 and self.verbose == True: print "WARNING: failed finite check" elif np.array(testNanResult).sum() > 0 and self.verbose == True: print "WARNING: failed nan check" ## find the k largest eigenvectors of L eigVals, eigVecs = eig(lMat) #eigVals, eigVecs = eigen_symmetric(lMat, k=self.k) # use scipy for sparse matrices eigen eigen_symmetric eigVecs = -1.0 * eigVecs sortedEigInds = np.argsort(np.sum(abs(eigVecs),0)) xMat = eigVecs[:,sortedEigInds[-self.k:]] ## compute normalized matrix Y from X n,k = np.shape(xMat) yMat = np.zeros([n,k]) unitLengths = np.sum(xMat**2,axis=0)**(0.5) for col in range(k): yMat[:,col] = xMat[:,col] / unitLengths[col] ## cluster the rows of Y using Kmeans tries = 0 iters = 0 minDistortion = 1e08 bestClusters = None bestKmeanLabels = None ## use kmeans to cluster in eigen space if self.classifyStep == 'kmeans': tries = 0 while tries < 5: try: kmeanResults, kmeanLabels = kmeans2(yMat,self.k) localDistortion = self.calculate_distortion_measure({'centroids':kmeanResults, 'labels':kmeanLabels, 'yMat':yMat}) tries = 100 except: kmeanResults = None tries += 1 if kmeanResults == None: kmeanResults, localDistortion = kmeans(yMat,self.k,iter=25) ### get the labels try: if self.penalty == True: n = len(self.origDataHeader) else: n = self.n kmeanLabels = np.zeros((n),) for o in range(n): minDist = 1e08 lab = None obs = yMat[o,:] for c in range(self.k): centroid = kmeanResults[c,:] dist = np.linalg.norm(obs-centroid) if dist < minDist: minDist = dist lab = c if minDist == 1e08: print 'error: issue when calculating labels in kmeans1 SpectralCluster.py' kmeanLabels[o] = lab except: kmeanLabels = None if kmeanResults == None or kmeanLabels == None: # print 'ERROR: failed at eigenspace clustering step' return None else: return {'centroids':kmeanResults,'labels':kmeanLabels,'aMat':aMat,'yMat':yMat,'xMat':xMat,'eigVals':eigVals} else: print "ERROR: additional classifyStep methods have not been implemented use kmeans" sys.exit() ## permute the newLabels until the difference from true is minimuzed def permute_labels(self,trueLabels,newLabels): permutations = self.permute_list(range(self.k)) minDiff = np.sum(np.abs(trueLabels - newLabels)) for perm in permutations: permLabels = np.array([perm[i] for i in newLabels]) absDiff = np.abs(trueLabels - permLabels) diff = len(np.where(absDiff >= 1)[0]) if diff < minDiff: newLabels = permLabels minDiff = diff return newLabels def permute_list(self,lst): sz = len(lst) if sz <= 1: return [lst] return [p[:i]+[lst[0]]+p[i:] for i in xrange(sz) for p in self.permute_list(lst[1:])] ## evaluate clustering performance (assumes labels are permuted to best match) def evaluate_cluster_assignments(self,trueLabels,newLabels): trueLabels = [int(l) for l in trueLabels] newLabels = [int(l) for l in newLabels] if len(trueLabels) != len(newLabels): print "INPUT ERROR: len of true and new labels must be the same",len(trueLabels),len(newLabels) return None posCalls,allPosCalls,allMadeCalls = 0,0,0 for i in range(len(trueLabels)): for j in range(len(trueLabels)): if j >= i: continue if trueLabels[i] == trueLabels[j]: allPosCalls += 1 if newLabels[i] == newLabels[j]: allMadeCalls += 1 if trueLabels[i] == trueLabels[j] and newLabels[i] == newLabels[j]: posCalls += 1 #print "\t", posCalls, allPosCalls, allMadeCalls, newLabels posCalls,allPosCalls,allMadeCalls = map(float,[posCalls,allPosCalls,allMadeCalls]) recall = posCalls/allPosCalls precision = posCalls/allMadeCalls f1score = 2.0 * (precision*recall) / (precision + recall) return {'recall':recall,'precision':precision,'f1score':f1score} def make_plot(self,plotType,header=None,data=None,labels=None,weighted=False,name='',fileType='pdf',vizThreshold=None,viewNoise=False): if plotType not in ['dMat','aMat','diaMat','lMat','xMat','yMat','scatter','graph','eigenspace']: print "INPUT ERROR: plotType in valid must be 'dMat','aMat','diaMat','lMat','xMat','yMat','scatter','graph'" if plotType != 'graph': self.plt = plt self.fig= self.plt.figure(figsize = (7,7)) self.ax=self.fig.add_subplot(111) if plotType=='eigenspace': self.plt.title(r"Points in eigenvector space - with $\mathbf{\mu}$ estimates") ## plot mean estimates for k in range(self.k): self.plt.plot(self.clustResults['centroids'][k,0],self.clustResults['centroids'][k,1],'kx',markersize=10.0,markeredgewidth=5.0) ## plot data by class if self.k == 2: self._plot_scatter_data(self.yMat,labels=labels) elif self.k == 3: self._plot_scatter_data(self.yMat,labels=labels,use3D=False) ## toggle experimental 3D mode here else: self._plot_scatter_data(self.yMat[:,[0,1]],labels=labels) print "WARNING: plotting not possible for dimesions greater than 3 - using only first 2" elif plotType == 'graph': #self.my_cmap = get_cmap_blues() plot_network_data(self.G,header, labels=labels,name="graph_"+name,layout="neato", nameDict=None,dataMax=self.dataMax,weighted=weighted, viewPlot=False,fileType=fileType,vizThreshold=vizThreshold) elif plotType == 'scatter': if data == None: "ERROR: plot type 'scatter' must have data specified as input.. skipping" else: self._plot_scatter_data(data,labels=labels) elif plotType == 'dMat': self._generate_heatmap(self.dMat,labels=labels) elif plotType == 'aMat': self._generate_heatmap(self.aMat,labels=labels) elif plotType == 'diaMat': self._generate_heatmap(self.diaMat,labels=labels) elif plotType == 'lMat': self._generate_heatmap(self.lMat,labels=labels) elif plotType == 'xMat': self._generate_heatmap(self.xMat,labels=labels) elif plotType == 'yMat': self._generate_heatmap(self.yMat,labels=labels) ## retrun plt if available if plotType != 'graph': plt.savefig(self.projID+"_%s.%s"%(plotType,self.fileType)) return plt def kmeans_inference(self): kmeanData = {} if self.clustResults == None: return None newLabels = self.clustResults['labels'].copy() for k in range(self.k): kmeanData[k] = self.yMat[np.where(self.clustResults['labels']==k)[0],:] ## get the euclidean distances from the centroids criticalVals = {} for k in range(self.k): euclidDist = (kmeanData[k] - kmeanData[k].mean(axis=0))**2.0 euclidDist = np.sqrt(euclidDist.sum(axis=1)) pvals = np.array([np.nan]).repeat(euclidDist.size) #zeros(euclidDist.size,dtype='float') for p in range(euclidDist.size): point = euclidDist[p] ### perform two sided hypothesis test if point < euclidDist.mean(): pvals[p] = 1.0 elif point > euclidDist.mean(): pvals[p] = 1.0 - stats.norm.cdf(point,loc=euclidDist.mean(), scale=euclidDist.std()) if len(np.where(pvals<0.05)) > 0: noiseInds = np.where(self.clustResults['labels']==k)[0][np.where(pvals<0.05)[0]] newLabels[noiseInds] = self.noiseValue return {'labels':newLabels,'criticalVals':criticalVals} def _eigenvalue_plot(self): plt.plot([range(len(self.eigVals))],[self.eigVals], marker='o',color='k',markersize=8.0) plt.ylim([0,1.2]) plt.xlim([-0.5,len(self.eigVals) + 0.5]) return plt
apache-2.0
ChileanVirtualObservatory/ASYDO
src/asydo/factory.py
1
4388
# Create several cubes in parallel, using random parameters from multiprocessing import Pool import multiprocessing from .vu import * from .db import * import math import random import numpy as np import sys import os import time import matplotlib.pyplot as plt import copy import pickle #SPEED_OF_LIGHT = 299792458.0 #KILO = 1000 class IMCConf: def __init__(self,number,dbpath="ASYDO",mol_list="all",mol_prob=0.3,x_pos=0.0,y_pos=0.0,f_pos=300000,spa_pix=5,spe_pix=100,fov=500,bw=2000,rvel=(150,1000),temp=(50,500),semiaxis=(10,300),fwhm=(10,50),angle=(0,math.pi),rot=(50,500),curtosis=(-5,5)): self.rvel=rvel self.number=number self.mol_prob=mol_prob self.mol_list=mol_list self.dbpath=dbpath self.x_pos=x_pos self.y_pos=y_pos self.f_pos=f_pos self.spa_pix=spa_pix self.spe_pix=spe_pix self.bw=bw self.fov=fov self.temp=temp self.semiaxis=semiaxis self.fwhm=fwhm self.rot=rot self.angle=angle self.curtosis=curtosis self.force_list=list() self.ban_list=list() def set_params(self,template): self.rvel =template.rvel self.mol_prob=template.mol_prob self.mol_list=template.mol_list self.dbpath =template.dbpath self.x_pos =template.x_pos self.y_pos =template.y_pos self.f_pos =template.f_pos self.spa_pix =template.spa_pix self.spe_pix =template.spe_pix self.bw =template.bw self.fov =template.fov self.temp =template.temp self.semiaxis=template.semiaxis self.fwhm =template.fwhm self.rot =template.rot self.angle =template.angle self.curtosis=template.curtosis self.force_list=copy.deepcopy(template.force_list) self.ban_list =copy.deepcopy(template.ban_list) def unitary_IMC_cube(conf): def rget(val): if isinstance(val,tuple): return random.uniform(val[0],val[1]) else: return val print("Generating cube", conf.number) dba=db.lineDB(conf.dbpath) dba.connect() try: os.mkdir("logs") except OSError: pass log=open('logs/exp-c'+str(conf.number)+'.log', 'w') univ=Universe(log) xpos=rget(conf.x_pos) ypos=rget(conf.y_pos) univ.create_source('AutoGenCube-'+str(conf.number),xpos,ypos) fpos=rget(conf.f_pos) bw=rget(conf.bw) rv=rget(conf.rvel) lf=(fpos - bw/2.0)*math.sqrt((1 + rv*KILO/SPEED_OF_LIGHT)/(1 - rv*KILO/SPEED_OF_LIGHT)) uf=(fpos + bw/2.0) if (conf.mol_list=="all"): mlist=dba.getMoleculeList(lf,uf) chList=list() for mol in mlist: chList.append(mol[0]) else: chList=conf.mol_list temp=rget(conf.temp) #print chList # HERE Random selection of molecules for chName in chList: if chName in conf.ban_list: log.write("Mol: "+chName+" banned!") continue if not (chName in conf.force_list): if random.random() > conf.mol_prob: continue molist=dba.getSpeciesList(chName,lf,uf) s_x=rget(conf.semiaxis) s_y=rget(conf.semiaxis) angle=rget(conf.angle) rot=rget(conf.rot) fw=rget(conf.fwhm) curt=rget(conf.curtosis) mms="" for mol in molist: if mms!="": mms+="," mms+=str(mol[0]) model=IMCM(log,conf.dbpath,mms,temp,('normal',s_x,s_y,angle),('skew',fw,curt),('linear',angle,rot)) model.set_radial_velocity(rv) univ.add_component('AutoGenCube-'+str(conf.number),model) fov=rget(conf.fov) bw=rget(conf.bw) cube=univ.gen_cube('AutoGenCube-'+str(conf.number),xpos,ypos,fpos,fov/conf.spa_pix,fov,bw/conf.spe_pix,bw) dba.disconnect() log.close() return cube def unitary_IMC(conf): try: cube=unitary_IMC_cube(conf) mstring=pickle.dumps(cube) return mstring except Exception as exp: print(str(conf.number)+": ") print(exp) return exp def gen_IMC_cubes(confs): nproc=multiprocessing.cpu_count() print("### Generating "+str(len(confs))+" cubes using "+str(nproc)+" processors ###") p = Pool(nproc) result=p.map(unitary_IMC,confs) ret=list() for ms in result: ret.append(pickle.loads(ms)) return ret #import cProfile #import re #cProfile.run('unitaryGen(0)')
gpl-2.0
ZenDevelopmentSystems/scikit-learn
sklearn/decomposition/dict_learning.py
104
44632
""" Dictionary learning """ from __future__ import print_function # Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import sys import itertools from math import sqrt, ceil import numpy as np from scipy import linalg from numpy.lib.stride_tricks import as_strided from ..base import BaseEstimator, TransformerMixin from ..externals.joblib import Parallel, delayed, cpu_count from ..externals.six.moves import zip from ..utils import (check_array, check_random_state, gen_even_slices, gen_batches, _get_n_jobs) from ..utils.extmath import randomized_svd, row_norms from ..utils.validation import check_is_fitted from ..linear_model import Lasso, orthogonal_mp_gram, LassoLars, Lars def _sparse_encode(X, dictionary, gram, cov=None, algorithm='lasso_lars', regularization=None, copy_cov=True, init=None, max_iter=1000): """Generic sparse coding Each column of the result is the solution to a Lasso problem. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows. gram: None | array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' gram can be None if method is 'threshold'. cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary * X' algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than regularization from the projection dictionary * data' regularization : int | float The regularization parameter. It corresponds to alpha when algorithm is 'lasso_lars', 'lasso_cd' or 'threshold'. Otherwise it corresponds to n_nonzero_coefs. init: array of shape (n_samples, n_components) Initialization value of the sparse code. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. Returns ------- code: array of shape (n_components, n_features) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ if X.ndim == 1: X = X[:, np.newaxis] n_samples, n_features = X.shape if cov is None and algorithm != 'lasso_cd': # overwriting cov is safe copy_cov = False cov = np.dot(dictionary, X.T) if algorithm == 'lasso_lars': alpha = float(regularization) / n_features # account for scaling try: err_mgt = np.seterr(all='ignore') lasso_lars = LassoLars(alpha=alpha, fit_intercept=False, verbose=False, normalize=False, precompute=gram, fit_path=False) lasso_lars.fit(dictionary.T, X.T, Xy=cov) new_code = lasso_lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'lasso_cd': alpha = float(regularization) / n_features # account for scaling clf = Lasso(alpha=alpha, fit_intercept=False, normalize=False, precompute=gram, max_iter=max_iter, warm_start=True) clf.coef_ = init clf.fit(dictionary.T, X.T, check_input=False) new_code = clf.coef_ elif algorithm == 'lars': try: err_mgt = np.seterr(all='ignore') lars = Lars(fit_intercept=False, verbose=False, normalize=False, precompute=gram, n_nonzero_coefs=int(regularization), fit_path=False) lars.fit(dictionary.T, X.T, Xy=cov) new_code = lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'threshold': new_code = ((np.sign(cov) * np.maximum(np.abs(cov) - regularization, 0)).T) elif algorithm == 'omp': new_code = orthogonal_mp_gram(gram, cov, regularization, None, row_norms(X, squared=True), copy_Xy=copy_cov).T else: raise ValueError('Sparse coding method must be "lasso_lars" ' '"lasso_cd", "lasso", "threshold" or "omp", got %s.' % algorithm) return new_code # XXX : could be moved to the linear_model module def sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=1): """Sparse coding Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output. gram: array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary' * X algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' n_nonzero_coefs: int, 0.1 * n_features by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. alpha: float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threhold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. init: array of shape (n_samples, n_components) Initialization value of the sparse codes. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. n_jobs: int, optional Number of parallel jobs to run. Returns ------- code: array of shape (n_samples, n_components) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ dictionary = check_array(dictionary) X = check_array(X) n_samples, n_features = X.shape n_components = dictionary.shape[0] if gram is None and algorithm != 'threshold': # Transposing product to ensure Fortran ordering gram = np.dot(dictionary, dictionary.T).T if cov is None and algorithm != 'lasso_cd': copy_cov = False cov = np.dot(dictionary, X.T) if algorithm in ('lars', 'omp'): regularization = n_nonzero_coefs if regularization is None: regularization = min(max(n_features / 10, 1), n_components) else: regularization = alpha if regularization is None: regularization = 1. if n_jobs == 1 or algorithm == 'threshold': code = _sparse_encode(X, dictionary, gram, cov=cov, algorithm=algorithm, regularization=regularization, copy_cov=copy_cov, init=init, max_iter=max_iter) # This ensure that dimensionality of code is always 2, # consistant with the case n_jobs > 1 if code.ndim == 1: code = code[np.newaxis, :] return code # Enter parallel code block code = np.empty((n_samples, n_components)) slices = list(gen_even_slices(n_samples, _get_n_jobs(n_jobs))) code_views = Parallel(n_jobs=n_jobs)( delayed(_sparse_encode)( X[this_slice], dictionary, gram, cov[:, this_slice] if cov is not None else None, algorithm, regularization=regularization, copy_cov=copy_cov, init=init[this_slice] if init is not None else None, max_iter=max_iter) for this_slice in slices) for this_slice, this_view in zip(slices, code_views): code[this_slice] = this_view return code def _update_dict(dictionary, Y, code, verbose=False, return_r2=False, random_state=None): """Update the dense dictionary factor in place. Parameters ---------- dictionary: array of shape (n_features, n_components) Value of the dictionary at the previous iteration. Y: array of shape (n_features, n_samples) Data matrix. code: array of shape (n_components, n_samples) Sparse coding of the data against which to optimize the dictionary. verbose: Degree of output the procedure will print. return_r2: bool Whether to compute and return the residual sum of squares corresponding to the computed solution. random_state: int or RandomState Pseudo number generator state used for random sampling. Returns ------- dictionary: array of shape (n_features, n_components) Updated dictionary. """ n_components = len(code) n_samples = Y.shape[0] random_state = check_random_state(random_state) # Residuals, computed 'in-place' for efficiency R = -np.dot(dictionary, code) R += Y R = np.asfortranarray(R) ger, = linalg.get_blas_funcs(('ger',), (dictionary, code)) for k in range(n_components): # R <- 1.0 * U_k * V_k^T + R R = ger(1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) dictionary[:, k] = np.dot(R, code[k, :].T) # Scale k'th atom atom_norm_square = np.dot(dictionary[:, k], dictionary[:, k]) if atom_norm_square < 1e-20: if verbose == 1: sys.stdout.write("+") sys.stdout.flush() elif verbose: print("Adding new random atom") dictionary[:, k] = random_state.randn(n_samples) # Setting corresponding coefs to 0 code[k, :] = 0.0 dictionary[:, k] /= sqrt(np.dot(dictionary[:, k], dictionary[:, k])) else: dictionary[:, k] /= sqrt(atom_norm_square) # R <- -1.0 * U_k * V_k^T + R R = ger(-1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) if return_r2: R **= 2 # R is fortran-ordered. For numpy version < 1.6, sum does not # follow the quick striding first, and is thus inefficient on # fortran ordered data. We take a flat view of the data with no # striding R = as_strided(R, shape=(R.size, ), strides=(R.dtype.itemsize,)) R = np.sum(R) return dictionary, R return dictionary def dict_learning(X, n_components, alpha, max_iter=100, tol=1e-8, method='lars', n_jobs=1, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components: int, Number of dictionary atoms to extract. alpha: int, Sparsity controlling parameter. max_iter: int, Maximum number of iterations to perform. tol: float, Tolerance for the stopping condition. method: {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. n_jobs: int, Number of parallel jobs to run, or -1 to autodetect. dict_init: array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. code_init: array of shape (n_samples, n_components), Initial value for the sparse code for warm restart scenarios. callback: Callable that gets invoked every five iterations. verbose: Degree of output the procedure will print. random_state: int or RandomState Pseudo number generator state used for random sampling. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code: array of shape (n_samples, n_components) The sparse code factor in the matrix factorization. dictionary: array of shape (n_components, n_features), The dictionary factor in the matrix factorization. errors: array Vector of errors at each iteration. n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to True. See also -------- dict_learning_online DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if method not in ('lars', 'cd'): raise ValueError('Coding method %r not supported as a fit algorithm.' % method) method = 'lasso_' + method t0 = time.time() # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init the code and the dictionary with SVD of Y if code_init is not None and dict_init is not None: code = np.array(code_init, order='F') # Don't copy V, it will happen below dictionary = dict_init else: code, S, dictionary = linalg.svd(X, full_matrices=False) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: # True even if n_components=None code = code[:, :n_components] dictionary = dictionary[:n_components, :] else: code = np.c_[code, np.zeros((len(code), n_components - r))] dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] # Fortran-order dict, as we are going to access its row vectors dictionary = np.array(dictionary, order='F') residuals = 0 errors = [] current_cost = np.nan if verbose == 1: print('[dict_learning]', end=' ') # If max_iter is 0, number of iterations returned should be zero ii = -1 for ii in range(max_iter): dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: print ("Iteration % 3i " "(elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)" % (ii, dt, dt / 60, current_cost)) # Update code code = sparse_encode(X, dictionary, algorithm=method, alpha=alpha, init=code, n_jobs=n_jobs) # Update dictionary dictionary, residuals = _update_dict(dictionary.T, X.T, code.T, verbose=verbose, return_r2=True, random_state=random_state) dictionary = dictionary.T # Cost function current_cost = 0.5 * residuals + alpha * np.sum(np.abs(code)) errors.append(current_cost) if ii > 0: dE = errors[-2] - errors[-1] # assert(dE >= -tol * errors[-1]) if dE < tol * errors[-1]: if verbose == 1: # A line return print("") elif verbose: print("--- Convergence reached after %d iterations" % ii) break if ii % 5 == 0 and callback is not None: callback(locals()) if return_n_iter: return code, dictionary, errors, ii + 1 else: return code, dictionary, errors def dict_learning_online(X, n_components=2, alpha=1, n_iter=100, return_code=True, dict_init=None, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=1, method='lars', iter_offset=0, random_state=None, return_inner_stats=False, inner_stats=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem online. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-batches by slicing the input data. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components : int, Number of dictionary atoms to extract. alpha : float, Sparsity controlling parameter. n_iter : int, Number of iterations to perform. return_code : boolean, Whether to also return the code U or just the dictionary V. dict_init : array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. callback : Callable that gets invoked every five iterations. batch_size : int, The number of samples to take in each batch. verbose : Degree of output the procedure will print. shuffle : boolean, Whether to shuffle the data before splitting it in batches. n_jobs : int, Number of parallel jobs to run, or -1 to autodetect. method : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. iter_offset : int, default 0 Number of previous iterations completed on the dictionary used for initialization. random_state : int or RandomState Pseudo number generator state used for random sampling. return_inner_stats : boolean, optional Return the inner statistics A (dictionary covariance) and B (data approximation). Useful to restart the algorithm in an online setting. If return_inner_stats is True, return_code is ignored inner_stats : tuple of (A, B) ndarrays Inner sufficient statistics that are kept by the algorithm. Passing them at initialization is useful in online settings, to avoid loosing the history of the evolution. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code : array of shape (n_samples, n_components), the sparse code (only returned if `return_code=True`) dictionary : array of shape (n_components, n_features), the solutions to the dictionary learning problem n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to `True`. See also -------- dict_learning DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if n_components is None: n_components = X.shape[1] if method not in ('lars', 'cd'): raise ValueError('Coding method not supported as a fit algorithm.') method = 'lasso_' + method t0 = time.time() n_samples, n_features = X.shape # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init V with SVD of X if dict_init is not None: dictionary = dict_init else: _, S, dictionary = randomized_svd(X, n_components, random_state=random_state) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: dictionary = dictionary[:n_components, :] else: dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] if verbose == 1: print('[dict_learning]', end=' ') if shuffle: X_train = X.copy() random_state.shuffle(X_train) else: X_train = X dictionary = check_array(dictionary.T, order='F', dtype=np.float64, copy=False) X_train = check_array(X_train, order='C', dtype=np.float64, copy=False) batches = gen_batches(n_samples, batch_size) batches = itertools.cycle(batches) # The covariance of the dictionary if inner_stats is None: A = np.zeros((n_components, n_components)) # The data approximation B = np.zeros((n_features, n_components)) else: A = inner_stats[0].copy() B = inner_stats[1].copy() # If n_iter is zero, we need to return zero. ii = iter_offset - 1 for ii, batch in zip(range(iter_offset, iter_offset + n_iter), batches): this_X = X_train[batch] dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: if verbose > 10 or ii % ceil(100. / verbose) == 0: print ("Iteration % 3i (elapsed time: % 3is, % 4.1fmn)" % (ii, dt, dt / 60)) this_code = sparse_encode(this_X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs).T # Update the auxiliary variables if ii < batch_size - 1: theta = float((ii + 1) * batch_size) else: theta = float(batch_size ** 2 + ii + 1 - batch_size) beta = (theta + 1 - batch_size) / (theta + 1) A *= beta A += np.dot(this_code, this_code.T) B *= beta B += np.dot(this_X.T, this_code.T) # Update dictionary dictionary = _update_dict(dictionary, B, A, verbose=verbose, random_state=random_state) # XXX: Can the residuals be of any use? # Maybe we need a stopping criteria based on the amount of # modification in the dictionary if callback is not None: callback(locals()) if return_inner_stats: if return_n_iter: return dictionary.T, (A, B), ii - iter_offset + 1 else: return dictionary.T, (A, B) if return_code: if verbose > 1: print('Learning code...', end=' ') elif verbose == 1: print('|', end=' ') code = sparse_encode(X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs) if verbose > 1: dt = (time.time() - t0) print('done (total time: % 3is, % 4.1fmn)' % (dt, dt / 60)) if return_n_iter: return code, dictionary.T, ii - iter_offset + 1 else: return code, dictionary.T if return_n_iter: return dictionary.T, ii - iter_offset + 1 else: return dictionary.T class SparseCodingMixin(TransformerMixin): """Sparse coding mixin""" def _set_sparse_coding_params(self, n_components, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self.n_components = n_components self.transform_algorithm = transform_algorithm self.transform_n_nonzero_coefs = transform_n_nonzero_coefs self.transform_alpha = transform_alpha self.split_sign = split_sign self.n_jobs = n_jobs def transform(self, X, y=None): """Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters ---------- X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data """ check_is_fitted(self, 'components_') # XXX : kwargs is not documented X = check_array(X) n_samples, n_features = X.shape code = sparse_encode( X, self.components_, algorithm=self.transform_algorithm, n_nonzero_coefs=self.transform_n_nonzero_coefs, alpha=self.transform_alpha, n_jobs=self.n_jobs) if self.split_sign: # feature vector is split into a positive and negative side n_samples, n_features = code.shape split_code = np.empty((n_samples, 2 * n_features)) split_code[:, :n_features] = np.maximum(code, 0) split_code[:, n_features:] = -np.minimum(code, 0) code = split_code return code class SparseCoder(BaseEstimator, SparseCodingMixin): """Sparse coding Finds a sparse representation of data against a fixed, precomputed dictionary. Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- dictionary : array, [n_components, n_features] The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data: lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run Attributes ---------- components_ : array, [n_components, n_features] The unchanged dictionary atoms See also -------- DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA sparse_encode """ def __init__(self, dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self._set_sparse_coding_params(dictionary.shape[0], transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.components_ = dictionary def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self class DictionaryLearning(BaseEstimator, SparseCodingMixin): """Dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter max_iter : int, maximum number of iterations to perform tol : float, tolerance for numerical error fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run code_init : array of shape (n_samples, n_components), initial value for the code, for warm restart dict_init : array of shape (n_components, n_features), initial values for the dictionary, for warm restart verbose : degree of verbosity of the printed output random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] dictionary atoms extracted from the data error_ : array vector of errors at each iteration n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, max_iter=1000, tol=1e-8, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.max_iter = max_iter self.tol = tol self.fit_algorithm = fit_algorithm self.code_init = code_init self.dict_init = dict_init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self: object Returns the object itself """ random_state = check_random_state(self.random_state) X = check_array(X) if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components V, U, E, self.n_iter_ = dict_learning( X, n_components, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, code_init=self.code_init, dict_init=self.dict_init, verbose=self.verbose, random_state=random_state, return_n_iter=True) self.components_ = U self.error_ = E return self class MiniBatchDictionaryLearning(BaseEstimator, SparseCodingMixin): """Mini-batch dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter n_iter : int, total number of iterations to perform fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run dict_init : array of shape (n_components, n_features), initial value of the dictionary for warm restart scenarios verbose : degree of verbosity of the printed output batch_size : int, number of samples in each mini-batch shuffle : bool, whether to shuffle the samples before forming batches random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] components extracted from the data inner_stats_ : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid loosing the history of the evolution, but they shouldn't have any use for the end user. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, n_iter=1000, fit_algorithm='lars', n_jobs=1, batch_size=3, shuffle=True, dict_init=None, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.n_iter = n_iter self.fit_algorithm = fit_algorithm self.dict_init = dict_init self.verbose = verbose self.shuffle = shuffle self.batch_size = batch_size self.split_sign = split_sign self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = check_array(X) U, (A, B), self.n_iter_ = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, return_code=False, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=self.dict_init, batch_size=self.batch_size, shuffle=self.shuffle, verbose=self.verbose, random_state=random_state, return_inner_stats=True, return_n_iter=True) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = self.n_iter return self def partial_fit(self, X, y=None, iter_offset=None): """Updates the model using the data in X as a mini-batch. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. iter_offset: integer, optional The number of iteration on data batches that has been performed before this call to partial_fit. This is optional: if no number is passed, the memory of the object is used. Returns ------- self : object Returns the instance itself. """ if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) X = check_array(X) if hasattr(self, 'components_'): dict_init = self.components_ else: dict_init = self.dict_init inner_stats = getattr(self, 'inner_stats_', None) if iter_offset is None: iter_offset = getattr(self, 'iter_offset_', 0) U, (A, B) = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=dict_init, batch_size=len(X), shuffle=False, verbose=self.verbose, return_code=False, iter_offset=iter_offset, random_state=self.random_state_, return_inner_stats=True, inner_stats=inner_stats) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = iter_offset + self.n_iter return self
bsd-3-clause
h2educ/scikit-learn
sklearn/feature_selection/tests/test_feature_select.py
103
22297
""" Todo: cross-check the F-value with stats model """ from __future__ import division import itertools import warnings import numpy as np from scipy import stats, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils import safe_mask from sklearn.datasets.samples_generator import (make_classification, make_regression) from sklearn.feature_selection import (chi2, f_classif, f_oneway, f_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert_true(np.allclose(f, f2)) assert_true(np.allclose(pv, pv2)) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(np.float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(np.int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(np.float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert_true(sparse.issparse(X_r2inv)) support_mask = safe_mask(X_r2inv, support) assert_equal(X_r2inv.shape, X.shape) assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert_equal(X_r2inv.getnnz(), X_r.getnnz()) ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert_equal(X_selected.shape, (20, 0)) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) assert_raises(ValueError, SelectPercentile(percentile=-1).fit, X, y) assert_raises(ValueError, SelectPercentile(percentile=101).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=101).fit, X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 3) def test_select_fdr_regression(): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate for alpha in [0.001, 0.01, 0.1]: for n_informative in [1, 5, 10]: # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(30)]) assert_greater_equal(alpha, false_discovery_rate) # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert_greater(false_discovery_rate, alpha / 10) def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 2) def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([[0, 1, 2]]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: assert_raises(TypeError, SelectFeatures(score_func=10).fit, X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] assert_raises(ValueError, SelectKBest(k=-1).fit, X, y) assert_raises(ValueError, SelectKBest(k=4).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=4).fit, X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert_equal(X_selected.shape, (40, 0))
bsd-3-clause
hrjn/scikit-learn
examples/model_selection/grid_search_digits.py
33
2764
""" ============================================================ Parameter estimation using grid search with cross-validation ============================================================ This examples shows how a classifier is optimized by cross-validation, which is done using the :class:`sklearn.model_selection.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring='%s_macro' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
harisbal/pandas
pandas/tests/indexes/timedeltas/test_scalar_compat.py
1
2421
# -*- coding: utf-8 -*- """ Tests for TimedeltaIndex methods behaving like their Timedelta counterparts """ import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import Index, Series, Timedelta, TimedeltaIndex, timedelta_range class TestVectorizedTimedelta(object): def test_tdi_total_seconds(self): # GH#10939 # test index rng = timedelta_range('1 days, 10:11:12.100123456', periods=2, freq='s') expt = [1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9, 1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456. / 1e9] tm.assert_almost_equal(rng.total_seconds(), Index(expt)) # test Series ser = Series(rng) s_expt = Series(expt, index=[0, 1]) tm.assert_series_equal(ser.dt.total_seconds(), s_expt) # with nat ser[1] = np.nan s_expt = Series([1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456. / 1e9, np.nan], index=[0, 1]) tm.assert_series_equal(ser.dt.total_seconds(), s_expt) # with both nat ser = Series([np.nan, np.nan], dtype='timedelta64[ns]') tm.assert_series_equal(ser.dt.total_seconds(), Series([np.nan, np.nan], index=[0, 1])) def test_tdi_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00')]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) assert elt.round(freq='H') == expected_elt msg = pd._libs.tslibs.frequencies.INVALID_FREQ_ERR_MSG with tm.assert_raises_regex(ValueError, msg): td.round(freq='foo') with tm.assert_raises_regex(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" with tm.assert_raises_regex(ValueError, msg): td.round(freq='M') with tm.assert_raises_regex(ValueError, msg): elt.round(freq='M')
bsd-3-clause
pme1123/pyroots
pyroots/geometry_filters.py
1
18515
# -*- coding: utf-8 -*- """ Created on Sun Dec 11 09:46:19 2016 @author: pme Contents: Various functions for removing candidate objects based on their geometry. - _percentile_filter: Supports diameter filter - diameter_filter: Based on diameter along the medial axis - length_width_filter: Based on length and diameter along the medial axis. - morphology_filter: Based on properties of convex hulls and equivalent ellilpses - hollow_filter: Based on medial axis lengths of original and filled objects """ from scipy import ndimage import pandas as pd import numpy as np from skimage import morphology, measure from pyroots.skeletonization import _axis_length ######################################################################################################################### ######################################################################################################################### ####### ######## ####### Diameter Filter, Percentile Filter ######## ####### ######## ######################################################################################################################### ######################################################################################################################### def _percentile_filter(labels, diameter_image, percentile, value, test_type): """ Function to classify (boolean) image objects based the distribution of pixel values in the object. Acts as either a maximum or minimum filter. Parameters ---------- labels : array the output of ``ndimage.label``, which labels image objects in binary images. For skeletons, use maximum distance rather than manhattan. diameter_image : array skeleton image with pixel values as diameter and background as 0, for example. percentile : float the percentile of pixel values at which to make the decision to keep value : float the threshold at which the classification of an image object switches test_type : str Do the percentiles and values indicate minimum thresholds, or maximum thresholds? Options are "ceiling" or "floor". Returns ------- A binary array See Also -------- ``numpy.percentile``, ``pyroots.diameter_filter`` """ # calculate percentile diameter for each object out = [] for i in range(labels.max()): temp = np.ma.masked_array(diameter_image, labels != i+1) # 0 is background temp = np.percentile(temp.compressed(), percentile) out.append(temp) #select objects that meet diameter criteria at percentile # i=0 is background, therefore i+1 if test_type == "ceiling": out = [i+1 for i, x in enumerate(out) if x < value] elif test_type == "floor": out = [i+1 for i, x in enumerate(out) if x > value] else: print("Test_type should be 'ceiling' or 'floor'!") #translate this to the labels image out = np.in1d(labels, out) # is each pixel value represented in the # list of objects to keep? out = np.reshape(out, labels.shape) # reshape to image return(out) def diameter_filter(skeleton_dictionary, max_diameter=1000, min_diameter=-1, max_percentile=100, min_percentile=None, pixel_level = False): """ Remove objects based on width thresholds. For example, hyphae usually are < 5um diameter, so objects that are mostly >5um are not hyphae, and 'objects' that are composits of debris and hyphae will have parts that are > 5um. This function removes both. It also provides the option to provide a floor for diameter. Requires ``scipy``. Parameters ---------- skeleton_dictionary : dict Standard dictionary of objects returned from ``pyroots.skeleton_with_distance``. Items are: * "objects", a binary image of objects * "length", an ndarray of medial axis, with each pixel representing length * "diameter", an ndarray of medial axis, with each pixel representing diameter * "geometry", a pandas ``DataFrame`` of total length and average diameter for each object. max_percentile : float Of all of the skeleton pixels for a single object, if the ceiling is smaller than the percentile, the entire object is deleted. Feeds into ``numpy.percentile``. Default=100 (effectively no filter). max_diameter : float Cutoff, where true objects have a narrower (exclusive) diameter. In pixels. Default=1000 (effectively no filter). min_percentile : float Of all of the skeleton pixels for a single object, if the floor is larger than the percentile, the entire object is deleted. Feeds into ``numpy.percentile``. Default=``None``. min_diameter : float Cutoff, where true objects have a wider (exclusive) diameter. In pixels. Default=-1 (for no filtering). pixel_level : bool If true, will remove individual pixels with values > ''max_diameter'' and < ''min_diameter''. Returns ------- A list of four objects: * An updated list of image objects * A filtered skeleton array of pixel diameter * A filtered skeleton array of pixel length * A pandas dataframe of updated mean diameter and total length (in pixels) of each object. See Also -------- ``pyroots._percentile_filter``, ``scipy.ndimage.label``, ``pandas`` """ diameter_in = skeleton_dictionary["diameter"] length_in = skeleton_dictionary["length"] objects_in = skeleton_dictionary["objects"] # make sure skeletons for diameter and length are updated with objects diameter = diameter_in * (objects_in > 0) length = length_in * (objects_in > 0) #Label objects for indexing labels, labels_ls= ndimage.label(diameter > 0, # convert float to boolean structure = np.ones((3,3))) #square for skeletons #### Percentile filters #### max_perc_filter = _percentile_filter(labels, diameter, max_percentile, max_diameter, 'ceiling') if min_percentile is not None: min_perc_filter = _percentile_filter(labels, diameter, min_percentile, min_diameter, 'floor') perc_filter = max_perc_filter * min_perc_filter else: perc_filter = max_perc_filter #### Max, min diameter filter #### if pixel_level is True: max_diam_filter = diameter < max_diameter min_diam_filter = diameter > min_diameter diam_filter = max_diam_filter * min_diam_filter * perc_filter else: diam_filter = perc_filter #### Update the skeletons #### new_diam_skeleton = diameter * diam_filter new_len_skeleton = length * diam_filter new_labels = labels * diam_filter #### Update geometry dataframe #### # Re-calculate geometry of each object objects_diameter = ndimage.mean(new_diam_skeleton, new_labels, index=range(new_labels.max()+1)) objects_length = ndimage.sum(new_len_skeleton, new_labels, index=range(new_labels.max()+1)) # Create a new geometry dataframe geom_out = pd.DataFrame({'Length' : objects_length, 'Diameter' : objects_diameter}) geom_out = geom_out[geom_out['Diameter'].notnull()] # subset only present objects #### update the objects #### labels, labels_ls = ndimage.label(objects_in) # make labels or original objects new_objects = np.in1d(labels, np.unique(new_labels)) # only keep labels that were kept new_objects = np.reshape(new_objects, new_labels.shape) * labels > 0 # maintain as binary out = {"objects" : new_objects, "length" : new_len_skeleton, "diameter" : new_diam_skeleton, "geometry" : geom_out} return(out) ######################################################################################################################### ######################################################################################################################### ####### ######## ####### Length-Width Filter ######## ####### ######## ######################################################################################################################### ######################################################################################################################### def length_width_filter(skeleton_dictionary, threshold=5): """ Remove objects based on length:(average) width ratios from skeletonized images. Parameters ---------- skeleton_dictionary : dict Standard dictionary of objects returned from ``pyroots.skeleton_with_distance``. Items are: * "objects", a binary image of objects * "length", an ndarray of medial axis, with each pixel representing length * "diameter", an ndarray of medial axis, with each pixel representing diameter * "geometry", a pandas ``DataFrame`` of total length and average diameter for each object. threshold : float Minimum length:width ratio to keep an object. Default = 5. Returns ------- A list containing two objects. 1) is a binary array with only objects that have a large enough length:width threshold. 2) is the updated geometry dataframe. """ diameter_in = skeleton_dictionary["diameter"] length_in = skeleton_dictionary["length"] objects_in = skeleton_dictionary["objects"] geometry_in = skeleton_dictionary["geometry"] # convert pandas.DataFrame to list geometry = [geometry_in['Diameter'].values, geometry_in['Length'].values] labels, labels_ls = ndimage.label(skeleton_dictionary["objects"]) if labels_ls + 1 != len(geometry_in.index): raise("Incompatible Geometry Array and Image: Image has " + str(labels_ls + 1) + " objects. Geometry DataFrame has " + str(len(geometry_in.index)) + " objects.") # Calculate length:width ratios in the geom array and test whether they pass ratio = geometry_in['Length'] / (geometry_in['Diameter']+0.000001) thresh_test = ratio > threshold # Update geometry dataframe geom_out = geometry_in[thresh_test] geom_out.loc[0] = np.array([0,0]) # re-insert empty space index. geom_out = geom_out.sort_index() # Update objects dataframe. Convert the labels to a boolean by determining whether # the object number is true for thresh_test new_objects = np.array(thresh_test)[labels] new_diam_skeleton = diameter_in * new_objects new_length_skeleton = length_in * new_objects out = {"objects" : new_objects, "length" : new_length_skeleton, "diameter" : new_diam_skeleton, "geometry" : geom_out} return(out) ######################################################################################################################### ######################################################################################################################### ####### ######## ####### Morphology Filter ######## ####### ######## ######################################################################################################################### ######################################################################################################################### def morphology_filter(image, loose_eccentricity=0, loose_solidity=1, strict_eccentricity=0, strict_solidity=1, min_length=None, min_size=None): """ Removes objects based on properties of convex hulls and equivalent ellipses, plus size. Defaults are for no filtering. This algorithm is moderately fast, but time increases with number of objects due to the need for loops. Parameters ---------- image : 2D binary array. Candidate objects loose_eccentricity, loose_solidity : float AND filters. Must pass both levels. strict_eccentricity, strict_solidity : float OR filters. Must pass one of these min_length : int in pixels, of ellipse with equivalent moments to convex hull min_size : int in pixels, of area of candidate object. Returns ------- 2D binary array See Also -------- `skimage.measure.regionprops`, `ndimage.label` """ #### easy stuff first #### # min size if min_size is None: working_image = image.copy() else: working_image = morphology.remove_small_objects(image, min_size=min_size) # min length of major axis labels = ndimage.label(working_image)[0] props = measure.regionprops(labels) if min_length is not None: length = [0] + [i.major_axis_length for i in props] length = np.array(length)[labels] # make an image based on labels working_image = length > min_length #### eccentricity and solidity #### labels = ndimage.label(working_image)[0] props = measure.regionprops(labels) # calculate eccentricity eccentricity = [0] + [i.eccentricity for i in props] eccentricity = np.array(eccentricity)[labels] # make an image based on labels # calculate solidity solidity = [0] + [i.filled_area / i.convex_area for i in props] solidity = np.array(solidity)[labels] # make an image based on labels # loose and strict filters loose = ((solidity < loose_solidity) * (solidity > 0)) * (eccentricity > loose_eccentricity) # AND strict = ((solidity < strict_solidity) * (solidity > 0)) + (eccentricity > strict_eccentricity) # OR # Combine and exit. Must pass all. out = strict * loose * working_image # AND return(out) ######################################################################################################################### ######################################################################################################################### ####### ######## ####### Hollow Filter ######## ####### ######## ######################################################################################################################### ######################################################################################################################### def hollow_filter(image, ratio=1.5, fill_kernel=15, **kwargs): """ For each object, what is the ratio of A to B where: A = medial axis length before filling (~= "perimeter" of hollow objects) B = medial axis length after filling (= true medial of hollow objects) Filters objects based on ratio, which is a ceiling for true objects. Assumes true objects are not hollow. This is a relatively slow algorithm, and should be performed last (time proportional to number of objects due to loops). Parameters ---------- image : 2D binary array input image. ratio : float Maximum of A:B (see above) fill_kernel : int Radius of disk, in pixels, used to fill objects. **kwargs : dict passed on to `pyroots.noise_removal` Returns ------- A 2D binary array See Also -------- `skimage.morphology.binary_closing`, `pyroots.skeleton_with_distance`, `pyroots.noise_removal` """ img = image.copy() # Labels, object slices labels, labels_ls = ndimage.label(img) props = measure.regionprops(labels) # for slicing the image around objects # kernel kernel = morphology.disk(fill_kernel) # Smooth the image. Medial axis is highly sensitive to bumps. # skel = pr.noise_removal(img, **kwargs) # skel = morphology.skeletonize(skel) # pull 'length' medial axis of all original objects test = [0] * (labels_ls + 1) for i in range(labels_ls + 1): # Bounds of slice to only the object of interest a, b, c, d = props[i-1].bbox a = max(a - fill_kernel, 0) # include a buffer. Stay within bounds of image. b = max(b - fill_kernel, 0) c = min(c + fill_kernel, img.shape[1]) d = min(d + fill_kernel, img.shape[0]) temp_object = labels[a:c, b:d] == i # compute original medial axis length open_medial = morphology.skeletonize(temp_object) open_length = _axis_length(open_medial)[1] # length float only #close object and compute new axis length closed_medial = morphology.binary_closing(temp_object, selem=kernel) closed_medial = morphology.skeletonize(closed_medial) closed_length = _axis_length(closed_medial)[1] # Does the ratio pass the threshold? test[i] = open_length/closed_length < ratio # update image out = np.array(test)[labels] * labels > 0 return(out)
apache-2.0
EttusResearch/gnuradio
gr-filter/examples/fir_filter_ccc.py
47
4019
#!/usr/bin/env python # # Copyright 2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, filter from gnuradio import analog from gnuradio import blocks from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_ccc(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = analog.noise_source_c(analog.GR_GAUSSIAN, 1) self.head = blocks.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fir_filter_ccc(self._decim, taps) self.vsnk_src = blocks.vector_sink_c() self.vsnk_out = blocks.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_ccc(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
pombredanne/dask
dask/dataframe/multi.py
2
21152
""" Algorithms that Involve Multiple DataFrames =========================================== The pandas operations ``concat``, ``join``, and ``merge`` combine multiple DataFrames. This module contains analogous algorithms in the parallel case. There are two important cases: 1. We combine along a partitioned index 2. We combine along an unpartitioned index or other column In the first case we know which partitions of each dataframe interact with which others. This lets uss be significantly more clever and efficient. In the second case each partition from one dataset interacts with all partitions from the other. We handle this through a shuffle operation. Partitioned Joins ----------------- In the first case where we join along a partitioned index we proceed in the following stages. 1. Align the partitions of all inputs to be the same. This involves a call to ``dd.repartition`` which will split up and concat existing partitions as necessary. After this step all inputs have partitions that align with each other. This step is relatively cheap. See the function ``align_partitions``. 2. Remove unnecessary partitions based on the type of join we perform (left, right, inner, outer). We can do this at the partition level before any computation happens. We'll do it again on each partition when we call the in-memory function. See the function ``require``. 3. Embarrassingly parallel calls to ``pd.concat``, ``pd.join``, or ``pd.merge``. Now that the data is aligned and unnecessary blocks have been removed we can rely on the fast in-memory Pandas join machinery to execute joins per-partition. We know that all intersecting records exist within the same partition Hash Joins via Shuffle ---------------------- When we join along an unpartitioned index or along an arbitrary column any partition from one input might interact with any partition in another. In this case we perform a hash-join by shuffling data in each input by that column. This results in new inputs with the same partition structure cleanly separated along that column. We proceed with hash joins in the following stages: 1. Shuffle each input on the specified column. See the function ``dask.dataframe.shuffle.shuffle``. 2. Perform embarrassingly parallel join across shuffled inputs. """ from __future__ import absolute_import, division, print_function from bisect import bisect_left, bisect_right from toolz import merge_sorted, unique, partial import toolz import numpy as np import pandas as pd from ..base import tokenize from .core import (_get_return_type, _Frame, Scalar, DataFrame, Index, _maybe_from_pandas) from .io import from_pandas from .shuffle import shuffle from . import utils def bound(seq, left, right): """ Bound sorted list by left and right values >>> bound([1, 3, 4, 5, 8, 10, 12], 4, 10) [4, 5, 8, 10] """ return seq[bisect_left(seq, left): bisect_right(seq, right)] def align_partitions(*dfs): """ Mutually partition and align DataFrame blocks This serves as precursor to multi-dataframe operations like join, concat, or merge. Parameters ---------- dfs: sequence of dd.DataFrame, dd.Series and dd.base.Scalar Sequence of dataframes to be aligned on their index Returns ------- dfs: sequence of dd.DataFrame, dd.Series and dd.base.Scalar These must have consistent divisions with each other divisions: tuple Full divisions sequence of the entire result result: list A list of lists of keys that show which data exist on which divisions """ dfs1 = [df for df in dfs if isinstance(df, _Frame)] if len(dfs) == 0: raise ValueError("dfs contains no DataFrame and Series") divisions = list(unique(merge_sorted(*[df.divisions for df in dfs1]))) dfs2 = [df.repartition(divisions, force=True) if isinstance(df, _Frame) else df for df in dfs] result = list() inds = [0 for df in dfs] for d in divisions[:-1]: L = list() for i, df in enumerate(dfs2): if isinstance(df, _Frame): j = inds[i] divs = df.divisions if j < len(divs) - 1 and divs[j] == d: L.append((df._name, inds[i])) inds[i] += 1 else: L.append(None) else: # Scalar has no divisions L.append(None) result.append(L) return dfs2, tuple(divisions), result def _maybe_align_partitions(args): """ Align DataFrame blocks if divisions are different """ # passed to align_partitions indexer, dasks = zip(*[x for x in enumerate(args) if isinstance(x[1], (_Frame, Scalar))]) # to get current divisions dfs = [df for df in dasks if isinstance(df, _Frame)] if len(dfs) == 0: # no need to align return args divisions = dfs[0].divisions if not all(df.divisions == divisions for df in dfs): dasks, _, _ = align_partitions(*dasks) for i, d in zip(indexer, dasks): args[i] = d return args def require(divisions, parts, required=None): """ Clear out divisions where required components are not present In left, right, or inner joins we exclude portions of the dataset if one side or the other is not present. We can achieve this at the partition level as well >>> divisions = [1, 3, 5, 7, 9] >>> parts = [(('a', 0), None), ... (('a', 1), ('b', 0)), ... (('a', 2), ('b', 1)), ... (None, ('b', 2))] >>> divisions2, parts2 = require(divisions, parts, required=[0]) >>> divisions2 (1, 3, 5, 7) >>> parts2 # doctest: +NORMALIZE_WHITESPACE ((('a', 0), None), (('a', 1), ('b', 0)), (('a', 2), ('b', 1))) >>> divisions2, parts2 = require(divisions, parts, required=[1]) >>> divisions2 (3, 5, 7, 9) >>> parts2 # doctest: +NORMALIZE_WHITESPACE ((('a', 1), ('b', 0)), (('a', 2), ('b', 1)), (None, ('b', 2))) >>> divisions2, parts2 = require(divisions, parts, required=[0, 1]) >>> divisions2 (3, 5, 7) >>> parts2 # doctest: +NORMALIZE_WHITESPACE ((('a', 1), ('b', 0)), (('a', 2), ('b', 1))) """ if not required: return divisions, parts for i in required: present = [j for j, p in enumerate(parts) if p[i] is not None] divisions = tuple(divisions[min(present): max(present) + 2]) parts = tuple(parts[min(present): max(present) + 1]) return divisions, parts required = {'left': [0], 'right': [1], 'inner': [0, 1], 'outer': []} def join_indexed_dataframes(lhs, rhs, how='left', lsuffix='', rsuffix=''): """ Join two partitiond dataframes along their index """ (lhs, rhs), divisions, parts = align_partitions(lhs, rhs) divisions, parts = require(divisions, parts, required[how]) left_empty = lhs._empty_partition right_empty = rhs._empty_partition name = 'join-indexed-' + tokenize(lhs, rhs, how, lsuffix, rsuffix) dsk = dict() for i, (a, b) in enumerate(parts): if a is None and how in ('right', 'outer'): a = left_empty if b is None and how in ('left', 'outer'): b = right_empty dsk[(name, i)] = (pd.DataFrame.join, a, b, None, how, lsuffix, rsuffix) # fake column names j = left_empty.join(right_empty, None, how, lsuffix, rsuffix) return DataFrame(toolz.merge(lhs.dask, rhs.dask, dsk), name, j.columns, divisions) def pdmerge(left, right, how, left_on, right_on, left_index, right_index, suffixes, default_left_columns, default_right_columns): if not len(left): left = pd.DataFrame(columns=default_left_columns) if not len(right): right = pd.DataFrame(columns=default_right_columns) result = pd.merge(left, right, how=how, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, suffixes=suffixes) return result def hash_join(lhs, left_on, rhs, right_on, how='inner', npartitions=None, suffixes=('_x', '_y')): """ Join two DataFrames on particular columns with hash join This shuffles both datasets on the joined column and then performs an embarassingly parallel join partition-by-partition >>> hash_join(a, 'id', rhs, 'id', how='left', npartitions=10) # doctest: +SKIP """ if npartitions is None: npartitions = max(lhs.npartitions, rhs.npartitions) lhs2 = shuffle(lhs, left_on, npartitions) rhs2 = shuffle(rhs, right_on, npartitions) if isinstance(left_on, Index): left_on = None left_index = True else: left_index = False if isinstance(right_on, Index): right_on = None right_index = True else: right_index = False # fake column names left_empty = lhs._empty_partition right_empty = rhs._empty_partition j = pd.merge(left_empty, right_empty, how, None, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, suffixes=suffixes) merger = partial(pdmerge, suffixes=suffixes, default_left_columns=list(lhs.columns), default_right_columns=list(rhs.columns)) if isinstance(left_on, list): left_on = (list, tuple(left_on)) if isinstance(right_on, list): right_on = (list, tuple(right_on)) token = tokenize(lhs, left_on, rhs, right_on, left_index, right_index, how, npartitions, suffixes) name = 'hash-join-' + token dsk = dict(((name, i), (merger, (lhs2._name, i), (rhs2._name, i), how, left_on, right_on, left_index, right_index)) for i in range(npartitions)) divisions = [None] * (npartitions + 1) return DataFrame(toolz.merge(lhs2.dask, rhs2.dask, dsk), name, j.columns, divisions) def _pdconcat(dfs, axis=0, join='outer'): """ Concatenate caring empty Series """ # Concat with empty Series with axis=1 will not affect to the # result. Special handling is needed in each partition if axis == 1: # becahse dfs is a generator, once convert to list dfs = list(dfs) if join == 'outer': # outer concat should keep all empty Series # input must include one non-empty data at least # because of the alignment first = [df for df in dfs if len(df) > 0][0] def _pad(base, fillby): if isinstance(base, pd.Series) and len(base) == 0: # use aligned index to keep index for outer concat return pd.Series([np.nan] * len(fillby), index=fillby.index, name=base.name) else: return base dfs = [_pad(df, first) for df in dfs] else: # inner concat should result in empty if any input is empty if any(len(df) == 0 for df in dfs): dfs = [pd.DataFrame(columns=df.columns) if isinstance(df, pd.DataFrame) else pd.Series(name=df.name) for df in dfs] return pd.concat(dfs, axis=axis, join=join) def concat_indexed_dataframes(dfs, axis=0, join='outer'): """ Concatenate indexed dataframes together along the index """ if join not in ('inner', 'outer'): raise ValueError("'join' must be 'inner' or 'outer'") if not all(isinstance(df, _Frame) for df in dfs): raise ValueError("All inputs must be dd.DataFrame or dd.Series") dfs2, divisions, parts = align_partitions(*dfs) empties = [df._empty_partition for df in dfs] result = pd.concat(empties, axis=axis, join=join) if isinstance(result, pd.Series): columns = result.name else: columns = result.columns.tolist() parts2 = [[df if df is not None else empty for df, empty in zip(part, empties)] for part in parts] name = 'concat-indexed-' + tokenize(join, *dfs) dsk = dict(((name, i), (_pdconcat, part, axis, join)) for i, part in enumerate(parts2)) return_type = _get_return_type(dfs[0], columns) return return_type(toolz.merge(dsk, *[df.dask for df in dfs2]), name, columns, divisions) def merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, suffixes=('_x', '_y'), npartitions=None): if not on and not left_on and not right_on and not left_index and not right_index: on = [c for c in left.columns if c in right.columns] if not on: left_index = right_index = True if on and not left_on and not right_on: left_on = right_on = on on = None if (isinstance(left, (pd.Series, pd.DataFrame)) and isinstance(right, (pd.Series, pd.DataFrame))): return pd.merge(left, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, suffixes=suffixes) # Transform pandas objects into dask.dataframe objects if isinstance(left, (pd.Series, pd.DataFrame)): if right_index and left_on: # change to join on index left = left.set_index(left[left_on]) left_on = False left_index = True left = from_pandas(left, npartitions=1) # turn into DataFrame if isinstance(right, (pd.Series, pd.DataFrame)): if left_index and right_on: # change to join on index right = right.set_index(right[right_on]) right_on = False right_index = True right = from_pandas(right, npartitions=1) # turn into DataFrame # Both sides are now dd.DataFrame or dd.Series objects if left_index and right_index: # Do indexed join return join_indexed_dataframes(left, right, how=how, lsuffix=suffixes[0], rsuffix=suffixes[1]) else: # Do hash join return hash_join(left, left.index if left_index else left_on, right, right.index if right_index else right_on, how, npartitions, suffixes) def _concat_dfs(dfs, name, join='outer'): """ Internal function to concat dask dict and DataFrame.columns """ dsk = dict() i = 0 empties = [df._empty_partition for df in dfs] result = pd.concat(empties, axis=0, join=join) if isinstance(result, pd.Series): columns = result.name else: columns = result.columns.tolist() for df in dfs: if columns != df.columns: df = df[[c for c in columns if c in df.columns]] dsk = toolz.merge(dsk, df.dask) for key in df._keys(): dsk[(name, i)] = key i += 1 return dsk, columns def concat(dfs, axis=0, join='outer', interleave_partitions=False): """ Concatenate DataFrames along rows. - When axis=0 (default), concatenate DataFrames row-wise: - If all divisions are known and ordered, concatenate DataFrames keeping divisions. When divisions are not ordered, specifying interleave_partition=True allows concatenate divisions each by each. - If any of division is unknown, concatenate DataFrames resetting its division to unknown (None) - When axis=1, concatenate DataFrames column-wise: - Allowed if all divisions are known. - If any of division is unknown, it raises ValueError. Parameters ---------- dfs : list List of dask.DataFrames to be concatenated axis : {0, 1, 'index', 'columns'}, default 0 The axis to concatenate along join : {'inner', 'outer'}, default 'outer' How to handle indexes on other axis interleave_partitions : bool, default False Whether to concatenate DataFrames ignoring its order. If True, every divisions are concatenated each by each. Examples -------- If all divisions are known and ordered, divisions are kept. >>> a # doctest: +SKIP dd.DataFrame<x, divisions=(1, 3, 5)> >>> b # doctest: +SKIP dd.DataFrame<y, divisions=(6, 8, 10)> >>> dd.concat([a, b]) # doctest: +SKIP dd.DataFrame<concat-..., divisions=(1, 3, 6, 8, 10)> Unable to concatenate if divisions are not ordered. >>> a # doctest: +SKIP dd.DataFrame<x, divisions=(1, 3, 5)> >>> b # doctest: +SKIP dd.DataFrame<y, divisions=(2, 3, 6)> >>> dd.concat([a, b]) # doctest: +SKIP ValueError: All inputs have known divisions which cannnot be concatenated in order. Specify interleave_partitions=True to ignore order Specify interleave_partitions=True to ignore the division order. >>> dd.concat([a, b], interleave_partitions=True) # doctest: +SKIP dd.DataFrame<concat-..., divisions=(1, 2, 3, 5, 6)> If any of division is unknown, the result division will be unknown >>> a # doctest: +SKIP dd.DataFrame<x, divisions=(None, None)> >>> b # doctest: +SKIP dd.DataFrame<y, divisions=(1, 4, 10)> >>> dd.concat([a, b]) # doctest: +SKIP dd.DataFrame<concat-..., divisions=(None, None, None, None)> """ if not isinstance(dfs, list): dfs = [dfs] if len(dfs) == 0: raise ValueError('Input must be a list longer than 0') if len(dfs) == 1: return dfs[0] if join not in ('inner', 'outer'): raise ValueError("'join' must be 'inner' or 'outer'") axis = DataFrame._validate_axis(axis) dasks = [df for df in dfs if isinstance(df, _Frame)] if all(df.known_divisions for df in dasks): # must be converted here to check whether divisions can be # concatenated dfs = _maybe_from_pandas(dfs) if axis == 1: from .multi import concat_indexed_dataframes return concat_indexed_dataframes(dfs, axis=axis, join=join) else: # each DataFrame's division must be greater than previous one if all(dfs[i].divisions[-1] < dfs[i + 1].divisions[0] for i in range(len(dfs) - 1)): name = 'concat-{0}'.format(tokenize(*dfs)) dsk, columns = _concat_dfs(dfs, name, join=join) divisions = [] for df in dfs[:-1]: # remove last to concatenate with next divisions += df.divisions[:-1] divisions += dfs[-1].divisions return_type = _get_return_type(dfs[0], columns) return return_type(toolz.merge(dsk, *[df.dask for df in dfs]), name, columns, divisions) else: if interleave_partitions: from .multi import concat_indexed_dataframes return concat_indexed_dataframes(dfs, join=join) raise ValueError('All inputs have known divisions which cannnot ' 'be concatenated in order. Specify ' 'interleave_partitions=True to ignore order') else: if axis == 1: raise ValueError('Unable to concatenate DataFrame with unknown ' 'division specifying axis=1') else: # concat will not regard Series as row dfs = _maybe_from_pandas(dfs) name = 'concat-{0}'.format(tokenize(*dfs)) dsk, columns = _concat_dfs(dfs, name, join=join) divisions = [None] * (sum([df.npartitions for df in dfs]) + 1) return_type = _get_return_type(dfs[0], columns) return return_type(toolz.merge(dsk, *[df.dask for df in dfs]), name, columns, divisions) def _append(df, other, divisions): """ Internal function to append 2 dd.DataFrame/Series instances """ # ToDo: might be possible to merge the logic to concat, token = tokenize(df, other) name = '{0}-append--{1}'.format(df._token_prefix, token) dsk = {} npart = df.npartitions for i in range(npart): dsk[(name, i)] = (df._name, i) for j in range(other.npartitions): dsk[(name, npart + j)] = (other._name, j) dsk = toolz.merge(dsk, df.dask, other.dask) dummy = df._empty_partition.append(other._empty_partition) return _Frame(dsk, name, dummy, divisions)
bsd-3-clause
PiscesDream/Ideas
ML/co-evaluate/stage_3.py
1
3508
import cPickle import ann import theano import numpy from createData import plot_all, plot from numpy.random import choice import matplotlib.pyplot as plt import theano.tensor as T def load_data(num = None): data, y = cPickle.load(open('data.dat', 'rb')) less_xx = 0 if less_xx: less = min([(y==i).sum() for i in set(y)]) count = dict(zip(set(y), [0] * len(set(y)))) new_data, new_y = [], [] for ele, eley in zip(data, y): if count[eley] >= less: continue count[eley] += 1 new_data.append(ele) new_y.append(eley) data, y = numpy.array(new_data), numpy.array(new_y) ind = numpy.random.permutation(data.shape[0]) data = data[ind] y = y[ind] ind = int(len(y) * 0.7) train_set, test_set = (data[:ind], y[:ind]), (data[ind:], y[ind:]) plot(*test_set) raw_input('pause') def shared_dataset(data_xy, borrow=True, num = None): data_x, data_y = data_xy if num: data_x = data_x[:num] data_y = data_y[:num] print data_x.shape, data_y.shape shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX), borrow=borrow) shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), borrow=borrow) return shared_x, T.cast(shared_y, 'int32') # valid_set_x, valid_set_y = shared_dataset(valid_set, num = num) train_set_x, train_set_y = shared_dataset(train_set, num = num) test_set_x, test_set_y = shared_dataset(test_set, num = num) rval = [(train_set_x, train_set_y), #(valid_set_x, valid_set_y), (test_set_x, test_set_y)] return rval def plot_in_f2(self): plt.clf() pred = self.pred() plot(self.x.get_value(), pred) plt.draw() def plot_in_f(self): plt.clf() plot_all(self, 10) plt.draw() def test(): plt.ion() plt.show() datasets = load_data() cl = ann.ANN(2, 4, hiddens=[4], lmbd = 0.) cl.fit(datasets, lr = 0.01, batch_size = 100, n_epochs = 1000) print cl.get_neg_log(data, T.cast(y, 'int32')).mean() if __name__ == '__main__': theano.config.exception_verbosity='high' plt.ion() plt.show() # test() data, y = cPickle.load(open('data.dat', 'rb')) y = numpy.asarray(y, dtype = 'int32') total = len(y) size = int(total * 0.05) # data, y = theano.shared(data, borrow = True), T.cast(theano.shared(y, borrow = True), 'int32') #permenant memory memory = numpy.zeros((total,)) #random sample training sample ind = choice(total, size) max_iteration = 10 iteration = 0 while iteration < max_iteration: train_set = (theano.shared(data[ind]), theano.shared(y[ind])) def plot_in_f2(self): plt.clf() pred = self.pred(train_set[0]) plot(train_set[0].get_value(), pred) plt.draw() cl = ann.ANN(2, 4, hiddens=[4], lmbd = 0.) haha = 2000 cl.fit((train_set, train_set), lr = 0.01, batch_size = 100, n_epochs = haha, plot = plot_in_f2, plot_interval = haha) fitness = cl.get_neg_log(data, y) #update the memory memory = fitness #+ memory * 0.71 p = memory/memory.sum() #resample ind = choice(total, size, p = p)
apache-2.0
Adai0808/scikit-learn
examples/ensemble/plot_random_forest_embedding.py
286
3531
""" ========================================================= Hashing feature transformation using Totally Random Trees ========================================================= RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification. The mapping is completely unsupervised and very efficient. This example visualizes the partitions given by several trees and shows how the transformation can also be used for non-linear dimensionality reduction or non-linear classification. Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed representation. This allows to separate two concentric circles simply based on the principal components of the transformed data. In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed space with an ExtraTreesClassifier forests learned on the original data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_circles from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier from sklearn.decomposition import TruncatedSVD from sklearn.naive_bayes import BernoulliNB # make a synthetic dataset X, y = make_circles(factor=0.5, random_state=0, noise=0.05) # use RandomTreesEmbedding to transform data hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3) X_transformed = hasher.fit_transform(X) # Visualize result using PCA pca = TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) # Learn a Naive Bayes classifier on the transformed data nb = BernoulliNB() nb.fit(X_transformed, y) # Learn an ExtraTreesClassifier for comparison trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0) trees.fit(X, y) # scatter plot of original and reduced data fig = plt.figure(figsize=(9, 8)) ax = plt.subplot(221) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_title("Original Data (2d)") ax.set_xticks(()) ax.set_yticks(()) ax = plt.subplot(222) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50) ax.set_title("PCA reduction (2d) of transformed data (%dd)" % X_transformed.shape[1]) ax.set_xticks(()) ax.set_yticks(()) # Plot the decision in original space. For that, we will assign a color to each # point in the mesh [x_min, m_max] x [y_min, y_max]. h = .01 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # transform grid using RandomTreesEmbedding transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()]) y_grid_pred = nb.predict_proba(transformed_grid)[:, 1] ax = plt.subplot(223) ax.set_title("Naive Bayes on Transformed data") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) # transform grid using ExtraTreesClassifier y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] ax = plt.subplot(224) ax.set_title("ExtraTrees predictions") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) plt.tight_layout() plt.show()
bsd-3-clause
fedotovaleksandr/rapier
app/mdx2csv.py
1
1607
# coding: utf-8 import sys import pandas as pd import olap.xmla.xmla as xmla from StringIO import StringIO def xmlamembers2list(itrbl): result = [] for member in itrbl: if isinstance(member, list): label = u'' member_it = iter(member) s = [None] while member_it: try: low_member = next(member_it) if isinstance(low_member, list): s.append(member_it) member_it = iter(low_member) else: label += u'{} '.format(low_member.Caption) except StopIteration: member_it = s.pop() label = label[:-1] else: label = member.Caption result.append(label) return result url = sys.argv[1] user = sys.argv[2] passw = sys.argv[3] catalog = sys.argv[4] mdx_str = sys.argv[5] p = xmla.XMLAProvider() c = None try: c = p.connect(location=url, username=user, password=passw) mdx_res = c.Execute(mdx_str, Catalog=catalog) except: pass if c: try: c.EndSession() except: pass mdx_cols = xmlamembers2list(mdx_res.getAxisTuple(axis=0)) mdx_rows = xmlamembers2list(mdx_res.getAxisTuple(axis=1)) mdx_data = [[x.FmtValue if hasattr(x, 'FmtValue') else '0' for x in cell] for cell in mdx_res.getSlice()] mdx_df = pd.DataFrame(mdx_data, columns=mdx_cols, index=pd.Index(mdx_rows, name='ID')) mdx_csv_str = StringIO() mdx_df.to_csv(mdx_csv_str) print(mdx_csv_str.getvalue())
mit
ajlongart/Tesis-UIP
ColorER_SimpleColorBalanceV.py
1
6974
#!/usr/bin/env python ''' Modulo 2 Toolbox Color Restoration with Simplest Color Balance Tesis Underwater Image Pre-processing Armando Longart 10-10844 [email protected] Descripcion: Modulo implementado para mejorar el color de las imagenes subacuaticas. Se basa en estirar el histograma (histogram stretching) de la imagen haciendo que los colores de la imagen de salida este mejorada. Se uso el modelo de color HSV para el algoritmo. La diferencia de este modulo con el SimpleColorBalance en HSV es que este solo lo hace para el canal V (value) debido a que este indica cuan brillante es o no una imagen. Los otros dos canales H (Hue) y S (Saturation) generan cambios sustanciales en la imagen de salida adulterando el color y agregando blancos respectivamente alterando los resultados. Modulo implementado en Python Variacion del Simple Color Balance (en RGB) de DavidYKay: https://gist.github.com/DavidYKay/9dad6c4ab0d8d7dbf3dc ''' # Python 2/3 compatibility import cv2 import math import numpy as np import sys from matplotlib import pyplot as plt from matplotlib import colors #-----Funciones a Implementar----------------------------------------------------- def apply_mask(matrix, mask, fill_value): ''' Funcion encargada de "crear" la matriz de valores enmascarados. Estos valores son determinados a partir de los valores altos y bajos del la funcion apply_threshold (low_mask, high-mask como mask y de low_value, high_value como fill_value). El orden de ejecucion es Hue, Saturation, Value ''' masked = np.ma.array(matrix,mask=mask,fill_value=fill_value) cv2.imshow("Masked", masked) cv2.imshow("MaskFill", masked.filled()) cv2.imshow("MaskedFill", masked.filled([0])) return masked.filled() def apply_threshold(matrix, low_value, high_value): ''' Esta funcion se encarga de crear una matriz booleana cuyos valores (True, False) dependeran de que los valores HSV de la imagen original sean mayores o menores que los valores umbrales maximos o minimos obtenidos en la funcion sColorBalance. El orden de ejecucion es Hue, Saturation, Value ''' low_mask = matrix<low_value matrix = apply_mask(matrix,low_mask,low_value) cv2.imshow("MatrixL", matrix) high_mask = matrix>high_value matrix = apply_mask(matrix,high_mask,high_value) cv2.imshow("MatrixH", matrix) return matrix def sColorBalance(img_hsv, porcentaje): ''' Funcion encarganda de: Separar los canales HSV de la imagen (split) Ordenar los valores de pixeles y seleccionar los "cuantiles" de la matriz ordenada Obtener los valores max y min de la matriz ordenanda para el canal V (a partir del porcentaje de saturacion) Saturar la imagen para los valores max y min de cada canal Todo esto con el fin de que los colores de la imagen recuperada ocupen el mayor rango posible [0,255] aplicando una transformacion solo al canal V ''' assert img_hsv.shape[2] == 3 assert porcentaje > 0 and porcentaje < 100 mitad_porcentaje = porcentaje/200.0 hueOri,satOri,valOri = cv2.split(img_hsv) #Separa los canales en HSV filas,columnas,canales = img_hsv.shape cv2.imshow("h", hueOri) cv2.imshow("s", satOri) cv2.imshow("v", valOri) salida_canales = [] canal = valOri assert len(canal.shape) == 2 print canal # find the low and high precentile values (based on the input percentile) filas,columnas = canal.shape vec_tam = columnas*filas flat = canal.reshape(vec_tam) assert len(flat.shape) == 1 flat = np.sort(flat) n_cols = flat.shape[0] #Seleccion de los valores minimos y maximos de cada canal HSV de la imagen. Seria el stretching bajo_val = flat[math.floor(n_cols*mitad_porcentaje)] #Calcula el valor bajo del arreglo ordenado de la matriz (img) de entrada para cada canal alto_val = flat[math.ceil(n_cols*(1-mitad_porcentaje))] #Calcula el valor alto del arreglo ordenado de la matriz (img) de entrada para cada canal Alternativa: alto_val = flat[math.ceil(n_cols*(1-mitad_porcentaje)-1)] #Los valores alto y bajo para cada canal HSV. El orden de impresion es Hue, Saturation, Value print "Lowval: ", alto_val print "Highval: ", bajo_val # saturate below the low percentile and above the high percentile thresholded = apply_threshold(canal,bajo_val,alto_val) # scale the canal normalized = cv2.normalize(thresholded,thresholded.copy(), 0, 255, cv2.NORM_MINMAX) print normalized cv2.imshow("Madfe", normalized) salida_canales.append(normalized) img_merge = cv2.merge((hueOri,satOri,normalized)) return img_merge if __name__ == '__main__': imgOriginal = cv2.imread('MVI_0234_Cap1.png') img_hsv = cv2.cvtColor(imgOriginal, cv2.COLOR_BGR2HSV) #Conversion de HSV de la imagen original RGB #-----Llamado a Funcion---------------------------------------------------- imgRecuperada = sColorBalance(img_hsv, 1) #Porcentaje de umbral inferior y superior respecto al histograma de entrada. Este porcentaje puede ser distinto para c/limite del histograma imgRecuperadaRGB = cv2.cvtColor(imgRecuperada,cv2.COLOR_HSV2BGR) #Conversion del canal V de la imagen recuperada a RGB #-----Resultados---------------------------------------------------- cv2.imshow("imgOriginal", imgOriginal) cv2.imshow("imgRecuperadaHSV", imgRecuperada) cv2.imshow("imgRecuperada", imgRecuperadaRGB) #-----Guardado de la imagen Recuperada------------------------------------------- cv2.imwrite('imagenRecuperadaCR_V_RGB.jpg',imgRecuperadaRGB) #-----Calculo de Histograma---------------------------------------------------- ''' Se calcula el histograma de la imagen Original en HSV para conocer el rango para aplicar el algoritmo ''' hue,sat,val = cv2.split(img_hsv) plt.subplot(311) #plot in the first cell plt.subplots_adjust(hspace=.5) plt.title("Hue Original") plt.ylabel('Numero de Pixeles') plt.hist(np.ndarray.flatten(hue), bins=128) plt.xlim([0,180]) plt.subplot(312) #plot in the second cell plt.title("Saturation Original") plt.ylabel('Numero de Pixeles') plt.hist(np.ndarray.flatten(sat), bins=128) plt.xlim([0,256]) plt.subplot(313) #plot in the third cell plt.title("Luminosity Value Original") plt.ylabel('Numero de Pixeles') plt.hist(np.ndarray.flatten(val), bins=128) plt.xlim([0,256]) plt.show() ''' Aqui se calcula el histograma de la imagen Original y la Recuperada en RGB ''' color = ('b','g','r') for i, col in enumerate(color): histcolorOriginal = cv2.calcHist([imgOriginal],[i],None,[256],[0,256]) histcolorRecuperadaRGB = cv2.calcHist([imgRecuperadaRGB],[i],None,[256],[0,256]) plt.subplot(211), plt.plot(histcolorOriginal,color=col) plt.title('Histograma Original') plt.ylabel('Numero de Pixeles') plt.xlim([0,256]) plt.subplot(212), plt.plot(histcolorRecuperadaRGB,color=col) plt.title('Histograma Recuperada') plt.ylabel('Numero de Pixeles') plt.xlabel('Bins') plt.xlim([0,256]) plt.show() cv2.waitKey(0) cv2.destroyAllWindows()
gpl-3.0
rsignell-usgs/notebook
People/Julia/tower_to_netcdf.py
1
2275
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <headingcell level=1> # Save Tower CSV data as NetCDF # <markdowncell> # ### Set local variables # <codecell> url='http://geoport.whoi.edu/thredds/fileServer/usgs/data2/notebook/data/CR3000_SN3557_Table1_MainTowerCR3000_ground_V6.CR3.txt' input_data="data.txt" output_dir="/data" output_file="julia.nc" fillvalue=-9999.9 # <markdowncell> # ### Download the data # <codecell> import urllib urllib.urlretrieve(url, input_data) # <codecell> import pandas as pd df = pd.read_csv(input_data,skiprows=[0,2,3], parse_dates=True, index_col='TIMESTAMP', low_memory=False, na_values=['NAN',''], tupleize_cols=True) df = df.fillna(fillvalue) df.head() # <markdowncell> # ### Simple plot # <codecell> import matplotlib.pyplot as plt %matplotlib inline df[['Tsoil10cmTree_Avg','Tsoil20cmTree_Avg']].plot(figsize=(12,4)); # <markdowncell> # ### Create netCDF file # <codecell> import numpy as np def pd_to_secs(df): # convert a pandas datetime index to seconds since 1970 import calendar return np.asarray([ calendar.timegm(x.timetuple()) for x in df.index ], dtype=np.int64) def cf_safe_name(name): # Create a CF safe name for a group/dimension/variable import re if isinstance(name, basestring): if re.match('^[0-9_]', name): # Add a letter to the front name = "v_{}".format(name) return re.sub(r'[^_a-zA-Z0-9]', "_", name) return name # <codecell> import os out_file = os.path.join(output_dir, output_file) if os.path.isfile(out_file): os.remove(out_file) from pyaxiom.netcdf.sensors import TimeSeries ts = TimeSeries(output_dir, latitude=0.39, longitude=36.7, station_name='urn:ioos:station:edu.princeton.ecohydrolab:MainTower', global_attributes={}, times=pd_to_secs(df), verticals=[10], output_filename=output_file) # <codecell> for c in df.columns[::-1]: # Add units based on column name? var_attributes = dict() ts.add_variable(cf_safe_name(c), df[c].values, attributes=var_attributes, fillvalue=-9999.9) # <codecell>
mit
dhomeier/astropy
examples/template/example-template.py
11
3356
# -*- coding: utf-8 -*- """ ======================== Title of Example ======================== This example <verb> <active tense> <does something>. The example uses <packages> to <do something> and <other package> to <do other thing>. Include links to referenced packages like this: `astropy.io.fits` to show the astropy.io.fits or like this `~astropy.io.fits`to show just 'fits' *By: <names>* *License: BSD* """ ############################################################################## # Make print work the same in all versions of Python, set up numpy, # matplotlib, and use a nicer set of plot parameters: import numpy as np import matplotlib.pyplot as plt from astropy.visualization import astropy_mpl_style plt.style.use(astropy_mpl_style) # uncomment if including figures: # import matplotlib.pyplot as plt # from astropy.visualization import astropy_mpl_style # plt.style.use(astropy_mpl_style) ############################################################################## # This code block is executed, although it produces no output. Lines starting # with a simple hash are code comment and get treated as part of the code # block. To include this new comment string we started the new block with a # long line of hashes. # # The sphinx-gallery parser will assume everything after this splitter and that # continues to start with a **comment hash and space** (respecting code style) # is text that has to be rendered in # html format. Keep in mind to always keep your comments always together by # comment hashes. That means to break a paragraph you still need to commend # that line break. # # In this example the next block of code produces some plotable data. Code is # executed, figure is saved and then code is presented next, followed by the # inlined figure. x = np.linspace(-np.pi, np.pi, 300) xx, yy = np.meshgrid(x, x) z = np.cos(xx) + np.cos(yy) plt.figure() plt.imshow(z) plt.colorbar() plt.xlabel('$x$') plt.ylabel('$y$') ########################################################################### # Again it is possible to continue the discussion with a new Python string. This # time to introduce the next code block generates 2 separate figures. plt.figure() plt.imshow(z, cmap=plt.cm.get_cmap('hot')) plt.figure() plt.imshow(z, cmap=plt.cm.get_cmap('Spectral'), interpolation='none') ########################################################################## # There's some subtle differences between rendered html rendered comment # strings and code comment strings which I'll demonstrate below. (Some of this # only makes sense if you look at the # :download:`raw Python script <plot_notebook.py>`) # # Comments in comment blocks remain nested in the text. def dummy(): """Dummy function to make sure docstrings don't get rendered as text""" pass # Code comments not preceded by the hash splitter are left in code blocks. string = """ Triple-quoted string which tries to break parser but doesn't. """ ############################################################################ # Output of the script is captured: print('Some output from Python') ############################################################################ # Finally, I'll call ``show`` at the end just so someone running the Python # code directly will see the plots; this is not necessary for creating the docs plt.show()
bsd-3-clause
ryfeus/lambda-packs
Tensorflow_LightGBM_Scipy_nightly/source/scipy/stats/_stats_mstats_common.py
10
8685
from collections import namedtuple import numpy as np from . import distributions __all__ = ['_find_repeats', 'linregress', 'theilslopes'] LinregressResult = namedtuple('LinregressResult', ('slope', 'intercept', 'rvalue', 'pvalue', 'stderr')) def linregress(x, y=None): """ Calculate a linear least-squares regression for two sets of measurements. Parameters ---------- x, y : array_like Two sets of measurements. Both arrays should have the same length. If only x is given (and y=None), then it must be a two-dimensional array where one dimension has length 2. The two sets of measurements are then found by splitting the array along the length-2 dimension. Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line rvalue : float correlation coefficient pvalue : float two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statistic. stderr : float Standard error of the estimated gradient. See also -------- :func:`scipy.optimize.curve_fit` : Use non-linear least squares to fit a function to data. :func:`scipy.optimize.leastsq` : Minimize the sum of squares of a set of equations. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> np.random.seed(12345678) >>> x = np.random.random(10) >>> y = np.random.random(10) >>> slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) To get coefficient of determination (r_squared) >>> print("r-squared:", r_value**2) r-squared: 0.080402268539 Plot the data along with the fitted line >>> plt.plot(x, y, 'o', label='original data') >>> plt.plot(x, intercept + slope*x, 'r', label='fitted line') >>> plt.legend() >>> plt.show() """ TINY = 1.0e-20 if y is None: # x is a (2, N) or (N, 2) shaped array_like x = np.asarray(x) if x.shape[0] == 2: x, y = x elif x.shape[1] == 2: x, y = x.T else: msg = ("If only `x` is given as input, it has to be of shape " "(2, N) or (N, 2), provided shape was %s" % str(x.shape)) raise ValueError(msg) else: x = np.asarray(x) y = np.asarray(y) if x.size == 0 or y.size == 0: raise ValueError("Inputs must not be empty.") n = len(x) xmean = np.mean(x, None) ymean = np.mean(y, None) # average sum of squares: ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat r_num = ssxym r_den = np.sqrt(ssxm * ssym) if r_den == 0.0: r = 0.0 else: r = r_num / r_den # test for numerical error propagation if r > 1.0: r = 1.0 elif r < -1.0: r = -1.0 df = n - 2 slope = r_num / ssxm intercept = ymean - slope*xmean if n == 2: # handle case when only two points are passed in if y[0] == y[1]: prob = 1.0 else: prob = 0.0 sterrest = 0.0 else: t = r * np.sqrt(df / ((1.0 - r + TINY)*(1.0 + r + TINY))) prob = 2 * distributions.t.sf(np.abs(t), df) sterrest = np.sqrt((1 - r**2) * ssym / ssxm / df) return LinregressResult(slope, intercept, r, prob, sterrest) def theilslopes(y, x=None, alpha=0.95): r""" Computes the Theil-Sen estimator for a set of points (x, y). `theilslopes` implements a method for robust linear regression. It computes the slope as the median of all slopes between paired values. Parameters ---------- y : array_like Dependent variable. x : array_like or None, optional Independent variable. If None, use ``arange(len(y))`` instead. alpha : float, optional Confidence degree between 0 and 1. Default is 95% confidence. Note that `alpha` is symmetric around 0.5, i.e. both 0.1 and 0.9 are interpreted as "find the 90% confidence interval". Returns ------- medslope : float Theil slope. medintercept : float Intercept of the Theil line, as ``median(y) - medslope*median(x)``. lo_slope : float Lower bound of the confidence interval on `medslope`. up_slope : float Upper bound of the confidence interval on `medslope`. Notes ----- The implementation of `theilslopes` follows [1]_. The intercept is not defined in [1]_, and here it is defined as ``median(y) - medslope*median(x)``, which is given in [3]_. Other definitions of the intercept exist in the literature. A confidence interval for the intercept is not given as this question is not addressed in [1]_. References ---------- .. [1] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau", J. Am. Stat. Assoc., Vol. 63, pp. 1379-1389, 1968. .. [2] H. Theil, "A rank-invariant method of linear and polynomial regression analysis I, II and III", Nederl. Akad. Wetensch., Proc. 53:, pp. 386-392, pp. 521-525, pp. 1397-1412, 1950. .. [3] W.L. Conover, "Practical nonparametric statistics", 2nd ed., John Wiley and Sons, New York, pp. 493. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, num=150) >>> y = x + np.random.normal(size=x.size) >>> y[11:15] += 10 # add outliers >>> y[-5:] -= 7 Compute the slope, intercept and 90% confidence interval. For comparison, also compute the least-squares fit with `linregress`: >>> res = stats.theilslopes(y, x, 0.90) >>> lsq_res = stats.linregress(x, y) Plot the results. The Theil-Sen regression line is shown in red, with the dashed red lines illustrating the confidence interval of the slope (note that the dashed red lines are not the confidence interval of the regression as the confidence interval of the intercept is not included). The green line shows the least-squares fit for comparison. >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, y, 'b.') >>> ax.plot(x, res[1] + res[0] * x, 'r-') >>> ax.plot(x, res[1] + res[2] * x, 'r--') >>> ax.plot(x, res[1] + res[3] * x, 'r--') >>> ax.plot(x, lsq_res[1] + lsq_res[0] * x, 'g-') >>> plt.show() """ # We copy both x and y so we can use _find_repeats. y = np.array(y).flatten() if x is None: x = np.arange(len(y), dtype=float) else: x = np.array(x, dtype=float).flatten() if len(x) != len(y): raise ValueError("Incompatible lengths ! (%s<>%s)" % (len(y), len(x))) # Compute sorted slopes only when deltax > 0 deltax = x[:, np.newaxis] - x deltay = y[:, np.newaxis] - y slopes = deltay[deltax > 0] / deltax[deltax > 0] slopes.sort() medslope = np.median(slopes) medinter = np.median(y) - medslope * np.median(x) # Now compute confidence intervals if alpha > 0.5: alpha = 1. - alpha z = distributions.norm.ppf(alpha / 2.) # This implements (2.6) from Sen (1968) _, nxreps = _find_repeats(x) _, nyreps = _find_repeats(y) nt = len(slopes) # N in Sen (1968) ny = len(y) # n in Sen (1968) # Equation 2.6 in Sen (1968): sigsq = 1/18. * (ny * (ny-1) * (2*ny+5) - np.sum(k * (k-1) * (2*k + 5) for k in nxreps) - np.sum(k * (k-1) * (2*k + 5) for k in nyreps)) # Find the confidence interval indices in `slopes` sigma = np.sqrt(sigsq) Ru = min(int(np.round((nt - z*sigma)/2.)), len(slopes)-1) Rl = max(int(np.round((nt + z*sigma)/2.)) - 1, 0) delta = slopes[[Rl, Ru]] return medslope, medinter, delta[0], delta[1] def _find_repeats(arr): # This function assumes it may clobber its input. if len(arr) == 0: return np.array(0, np.float64), np.array(0, np.intp) # XXX This cast was previously needed for the Fortran implementation, # should we ditch it? arr = np.asarray(arr, np.float64).ravel() arr.sort() # Taken from NumPy 1.9's np.unique. change = np.concatenate(([True], arr[1:] != arr[:-1])) unique = arr[change] change_idx = np.concatenate(np.nonzero(change) + ([arr.size],)) freq = np.diff(change_idx) atleast2 = freq > 1 return unique[atleast2], freq[atleast2]
mit
nicholaschris/landsatpy
project_clouds_2.py
1
3431
import os import models import views import config import count_clouds import utils import cloud_detection # import cloud_shadow_morphology import skimage import numpy as np from numpy import ma from matplotlib import pyplot as plt from math import pi, tan, cos, sin import imp imp.reload(cloud_detection) imp.reload(config) imp.reload(models) imp.reload(utils) data_dir = config.data_dir path = config.path row = config.row time = config.time band_option = config.band_option b = band_option pcp = cloud_detection.calc_pcp() pcl = cloud_detection.calc_pcl(pcp) pcp = None bpcl = bpcl = utils.dilate_boolean_array(pcl) pcl = None bpcl = bpcl == 255 labels, nbr_objects = count_clouds.label_clouds(bpcl,1,2) def get_meta(var): Scene = models.NetcdfVarModel(data_dir, path, row, time, var) bt_10 = Scene.data(var) dimensions= Scene.dimensions theta_v = Scene.theta_v theta_0= Scene.theta_0 phi_v = Scene.phi_v phi_0= Scene.phi_0 return bt_10, dimensions, theta_v, theta_0, phi_v, phi_0 bt_10, dimensions, theta_v, theta_0, phi_v, phi_0 = get_meta('BT_B10') th0 = theta_0 phi0 = pi - phi_0 # 180deg - azimuth angle def max_x_y_offset(th0, phi0): d = 12000/30/4 # cloud_height(label_no)/30 x_offset = - d*tan(th0)*sin(phi0) y_offset = - d*tan(th0)*cos(phi0) return x_offset, y_offset def offset_sign(x_offset, y_offset): if x_offset <= 0: x_offset_neg, x_offset_pos = x_offset, 0 if y_offset <= 0: y_offset_neg, y_offset_pos = y_offset, 0 if x_offset > 0: x_offset_neg, x_offset_pos = 0, x_offset if y_offset > 0: y_offset_neg, y_offset_pos = 0, y_offset return x_offset_neg, x_offset_pos, y_offset_neg, y_offset_pos def create_expanded_zone(labels=labels): x_offset, y_offset = max_x_y_offset(th0, phi0) amxn, amxp, amyn, amyp = offset_sign(x_offset, y_offset) amxn, amxp, amyn, amyp = np.int(amxn), np.int(amxp), np.int(amyn), np.int(amyp) _tmp_shape = -amyn+labels.shape[0]+amyp, -amxn+labels.shape[1]+amxp shadowy = np.zeros(_tmp_shape) return shadowy, _tmp_shape def iter_shadowmaker(labels, nbr_objects): x_offset, y_offset = max_x_y_offset(th0, phi0) amxn, amxp, amyn, amyp = offset_sign(x_offset, y_offset) amxn, amxp, amyn, amyp = np.int(amxn), np.int(amxp), np.int(amyn), np.int(amyp) print(amxn, amxp, amyn, amyp) _tmp_shape = -amyn+labels.shape[0]+amyp, -amxn+labels.shape[1]+amxp shadowy = np.zeros(_tmp_shape) # test = np.zeros(_tmp_shape) for label_no in range(1, (nbr_objects+1)): # nbr_objects+1 cloud_object_inds = np.where(labels==label_no) x_inds = cloud_object_inds[1] - amxn + amxn + amxp y_inds = cloud_object_inds[0] - amyn + amyn + amyp shadowy[y_inds, x_inds] = label_no # test[cloud_object_inds[0], cloud_object_inds[1]] = label_no # return shadowys return shadowy[-amyn:_tmp_shape[0]-amyp, -amxn:_tmp_shape[1]-amxp ] if __name__ == "__main__": shad = iter_shadowmaker(labels, nbr_objects) ''' for cloud in list of clouds: make a bigger area shift cloud required space def shift cloud required space(th0, phi0): distance = 12*tan(th0) # the projection distance x_offset = - d*tan(th0)*sin(phi0) y_offset = - d*tan(th0)*cos(phi0) # the x and y coords in unit terms (check pos neg values) the x and y coords scaled to the projection distance '''
mit
olologin/scikit-learn
examples/cluster/plot_agglomerative_clustering.py
343
2931
""" Agglomerative clustering with and without structure =================================================== This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is simply the graph of 20 nearest neighbors. Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster. Second, when using a connectivity matrix, average and complete linkage are unstable and tend to create a few clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all the distances between two clusters when merging them. The connectivity graph breaks this mechanism. This effect is more pronounced for very sparse graphs (try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known to have this percolation instability. """ # Authors: Gael Varoquaux, Nelle Varoquaux # License: BSD 3 clause import time import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph # Generate sample data n_samples = 1500 np.random.seed(0) t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples)) x = t * np.cos(t) y = t * np.sin(t) X = np.concatenate((x, y)) X += .7 * np.random.randn(2, n_samples) X = X.T # Create a graph capturing local connectivity. Larger number of neighbors # will give more homogeneous clusters to the cost of computation # time. A very large number of neighbors gives more evenly distributed # cluster sizes, but may not impose the local manifold structure of # the data knn_graph = kneighbors_graph(X, 30, include_self=False) for connectivity in (None, knn_graph): for n_clusters in (30, 3): plt.figure(figsize=(10, 4)) for index, linkage in enumerate(('average', 'complete', 'ward')): plt.subplot(1, 3, index + 1) model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=n_clusters) t0 = time.time() model.fit(X) elapsed_time = time.time() - t0 plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.spectral) plt.title('linkage=%s (time %.2fs)' % (linkage, elapsed_time), fontdict=dict(verticalalignment='top')) plt.axis('equal') plt.axis('off') plt.subplots_adjust(bottom=0, top=.89, wspace=0, left=0, right=1) plt.suptitle('n_cluster=%i, connectivity=%r' % (n_clusters, connectivity is not None), size=17) plt.show()
bsd-3-clause
billy-inn/scikit-learn
sklearn/feature_extraction/hashing.py
183
6155
# Author: Lars Buitinck <[email protected]> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default np.float64 Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
andrew0harney/Semantic-encoding-model
ldaUtils.py
1
4140
import glob import re import pickle import numpy as np import pandas as pd import logging from GridRegression import Encoder logging.basicConfig(level=logging.INFO) logger = logging.getLogger('__ldaUtils__') """Utility functions and classes for working with event(epoch) encodings""" __author__ = 'Andrew O\Harney' class LdaEncoding: """Stores LDA encoding results Useful for enabling comparisons of encoding probabilities on a given topic""" name = None values = None topicN = None def __init__(self,name,values,topicN=0): self.name = name self.values = values self.topicN = topicN def __cmp__(self,y,topicN=None): if topicN is None: topicN = self.topicN return np.sign(self.values[topicN]-y.values[topicN]) def __getitem__(self,topicN): return self.values[topicN] def __str__(self,topicN=None): return self.name if topicN is None else self.name + ' ' + str(self.values[topicN]) def setTopicN(self,topicN): #Topic number to compare probabilities of self.topicN = topicN def createLabeledCorpDict(labeledImageDictionaryName,sourceReg,output=None): """Creates labeled dictionary of corpora for referencing Sample running: INFO:__ldaUtils__:Processing .../labeled_image_maps/003770.labels.txt INFO:__ldaUtils__:Processing .../labeled_image_maps/003771.labels.txt INFO:__ldaUtils__:Processing .../labeled_image_maps/003772.labels.txt Sample output: {3770: ['man', 'bull', 'people', 'stadium', 'dirt'], 3771: ['grass', 'sky', 'trees', 'village'], 3772: ['seal', 'rocks']} Keyword arguments: labeledImageDictionaryName -- Name for the dictionary sourceReg -- Regular expression to find labeled image files Output -- Pickle the dictionary {true,false}""" if not glob.glob(labeledImageDictionaryName): docs = dict() for tFile in glob.glob(sourceReg): logger.info('Processing '+str(tFile)) a =open(tFile).read().splitlines() doc=[] for line in a: line = re.findall(r"[\w']+",line) if len(line)>1: for item in line: item = item.lower() elif line != []: item = line[0].lower() doc.append(item) docs[int(re.findall('[0-9]+', tFile)[0])] = list(set(doc)) #docs[ntpath.basename(tFile)] = list(set(doc)) if output is not None: pickle.dump(docs, file(labeledImageDictionaryName,'w')) return docs else: return pickle.load(file(labeledImageDictionaryName,'r')) class LdaEncoder(Encoder): "Class to encapsulate encoding of an event for a given LDA model" # __ldaDict__ = None __ldaModel__= None __docs__ = None __modelWordList__ = None __numClasses__ = None # def __init__(self,ldaDict,docs,lda): # self.__ldaDict__ = ldaDict self.__ldaModel__ = lda self.__numClasses__ = lda.num_topics self.__docs__ = docs self.__modelWordList__ = [self.__ldaModel__.id2word[wordid] for wordid in self.__ldaDict__] #Get valid words for this model # def numClasses(self): return self.__numClasses__ # def __getitem__(self,event,eps=0): #Get stim fname stimName = event['label'] #If it is a stimulus period if stimName >= 0: stimWords = self.__docs__[stimName] #Get the labels for the given stimulus topicProbs= self.model().__getitem__(self.__ldaDict__.doc2bow([word for word in stimWords if word in self.__modelWordList__]),eps=eps) #Get the topic encoding #Series with {topicNum:prob} structure return pd.Series([tprob for (_,tprob) in topicProbs],index=[topicNum for (topicNum,_)in topicProbs]) else: #If it is an isi return np.zeros([self.model().num_topics])
mit
pprett/scikit-learn
sklearn/linear_model/tests/test_perceptron.py
378
1815
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import Perceptron iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) X_csr.sort_indices() class MyPerceptron(object): def __init__(self, n_iter=1): self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): if self.predict(X[i])[0] != y[i]: self.w += y[i] * X[i] self.b += y[i] def project(self, X): return np.dot(X, self.w) + self.b def predict(self, X): X = np.atleast_2d(X) return np.sign(self.project(X)) def test_perceptron_accuracy(): for data in (X, X_csr): clf = Perceptron(n_iter=30, shuffle=False) clf.fit(data, y) score = clf.score(data, y) assert_true(score >= 0.7) def test_perceptron_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 clf1 = MyPerceptron(n_iter=2) clf1.fit(X, y_bin) clf2 = Perceptron(n_iter=2, shuffle=False) clf2.fit(X, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel()) def test_undefined_methods(): clf = Perceptron() for meth in ("predict_proba", "predict_log_proba"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth)
bsd-3-clause