repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tools/tests/test_util.py
7
16721
import os import locale import codecs import nose import numpy as np from numpy import iinfo import pandas as pd from pandas import (date_range, Index, _np_version_under1p9) import pandas.util.testing as tm from pandas.tools.util import cartesian_product, to_numeric CURRENT_LOCALE = locale.getlocale() LOCALE_OVERRIDE = os.environ.get('LOCALE_OVERRIDE', None) class TestCartesianProduct(tm.TestCase): def test_simple(self): x, y = list('ABC'), [1, 22] result1, result2 = cartesian_product([x, y]) expected1 = np.array(['A', 'A', 'B', 'B', 'C', 'C']) expected2 = np.array([1, 22, 1, 22, 1, 22]) tm.assert_numpy_array_equal(result1, expected1) tm.assert_numpy_array_equal(result2, expected2) def test_datetimeindex(self): # regression test for GitHub issue #6439 # make sure that the ordering on datetimeindex is consistent x = date_range('2000-01-01', periods=2) result1, result2 = [Index(y).day for y in cartesian_product([x, x])] expected1 = np.array([1, 1, 2, 2], dtype=np.int32) expected2 = np.array([1, 2, 1, 2], dtype=np.int32) tm.assert_numpy_array_equal(result1, expected1) tm.assert_numpy_array_equal(result2, expected2) def test_empty(self): # product of empty factors X = [[], [0, 1], []] Y = [[], [], ['a', 'b', 'c']] for x, y in zip(X, Y): expected1 = np.array([], dtype=np.asarray(x).dtype) expected2 = np.array([], dtype=np.asarray(y).dtype) result1, result2 = cartesian_product([x, y]) tm.assert_numpy_array_equal(result1, expected1) tm.assert_numpy_array_equal(result2, expected2) # empty product (empty input): result = cartesian_product([]) expected = [] tm.assert_equal(result, expected) def test_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] msg = "Input must be a list-like of list-likes" for X in invalid_inputs: tm.assertRaisesRegexp(TypeError, msg, cartesian_product, X=X) class TestLocaleUtils(tm.TestCase): @classmethod def setUpClass(cls): super(TestLocaleUtils, cls).setUpClass() cls.locales = tm.get_locales() if not cls.locales: raise nose.SkipTest("No locales found") tm._skip_if_windows() @classmethod def tearDownClass(cls): super(TestLocaleUtils, cls).tearDownClass() del cls.locales def test_get_locales(self): # all systems should have at least a single locale assert len(tm.get_locales()) > 0 def test_get_locales_prefix(self): if len(self.locales) == 1: raise nose.SkipTest("Only a single locale found, no point in " "trying to test filtering locale prefixes") first_locale = self.locales[0] assert len(tm.get_locales(prefix=first_locale[:2])) > 0 def test_set_locale(self): if len(self.locales) == 1: raise nose.SkipTest("Only a single locale found, no point in " "trying to test setting another locale") if LOCALE_OVERRIDE is None: lang, enc = 'it_CH', 'UTF-8' elif LOCALE_OVERRIDE == 'C': lang, enc = 'en_US', 'ascii' else: lang, enc = LOCALE_OVERRIDE.split('.') enc = codecs.lookup(enc).name new_locale = lang, enc if not tm._can_set_locale(new_locale): with tm.assertRaises(locale.Error): with tm.set_locale(new_locale): pass else: with tm.set_locale(new_locale) as normalized_locale: new_lang, new_enc = normalized_locale.split('.') new_enc = codecs.lookup(enc).name normalized_locale = new_lang, new_enc self.assertEqual(normalized_locale, new_locale) current_locale = locale.getlocale() self.assertEqual(current_locale, CURRENT_LOCALE) class TestToNumeric(tm.TestCase): def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) msg = 'Unable to parse string "apple" at position 2' with tm.assertRaisesRegexp(ValueError, msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) s = pd.Series(['orange', 1, -3.14, 'apple']) msg = 'Unable to parse string "orange" at position 0' with tm.assertRaisesRegexp(ValueError, msg): to_numeric(s, errors='raise') def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) msg = 'Unable to parse string "apple" at position 2' with tm.assertRaisesRegexp(ValueError, msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s, dtype=np.int64)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) def test_type_check(self): # GH 11776 df = pd.DataFrame({'a': [1, -3.14, 7], 'b': ['4', '5', '6']}) with tm.assertRaisesRegexp(TypeError, "1-d array"): to_numeric(df) for errors in ['ignore', 'raise', 'coerce']: with tm.assertRaisesRegexp(TypeError, "1-d array"): to_numeric(df, errors=errors) def test_scalar(self): self.assertEqual(pd.to_numeric(1), 1) self.assertEqual(pd.to_numeric(1.1), 1.1) self.assertEqual(pd.to_numeric('1'), 1) self.assertEqual(pd.to_numeric('1.1'), 1.1) with tm.assertRaises(ValueError): to_numeric('XX', errors='raise') self.assertEqual(to_numeric('XX', errors='ignore'), 'XX') self.assertTrue(np.isnan(to_numeric('XX', errors='coerce'))) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) def test_datetimelike(self): for tz in [None, 'US/Eastern', 'Asia/Tokyo']: idx = pd.date_range('20130101', periods=3, tz=tz, name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_timedelta(self): idx = pd.timedelta_range('1 days', periods=3, freq='D', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_period(self): idx = pd.period_range('2011-01', periods=3, freq='M', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) # ToDo: enable when we can support native PeriodDtype # res = pd.to_numeric(pd.Series(idx, name='xxx')) # tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) def test_non_hashable(self): # Test for Bug #13324 s = pd.Series([[10.0, 2], 1.0, 'apple']) res = pd.to_numeric(s, errors='coerce') tm.assert_series_equal(res, pd.Series([np.nan, 1.0, np.nan])) res = pd.to_numeric(s, errors='ignore') tm.assert_series_equal(res, pd.Series([[10.0, 2], 1.0, 'apple'])) with self.assertRaisesRegexp(TypeError, "Invalid object type"): pd.to_numeric(s) def test_downcast(self): # see gh-13352 mixed_data = ['1', 2, 3] int_data = [1, 2, 3] date_data = np.array(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[D]') invalid_downcast = 'unsigned-integer' msg = 'invalid downcasting method provided' smallest_int_dtype = np.dtype(np.typecodes['Integer'][0]) smallest_uint_dtype = np.dtype(np.typecodes['UnsignedInteger'][0]) # support below np.float32 is rare and far between float_32_char = np.dtype(np.float32).char smallest_float_dtype = float_32_char for data in (mixed_data, int_data, date_data): with self.assertRaisesRegexp(ValueError, msg): pd.to_numeric(data, downcast=invalid_downcast) expected = np.array([1, 2, 3], dtype=np.int64) res = pd.to_numeric(data) tm.assert_numpy_array_equal(res, expected) res = pd.to_numeric(data, downcast=None) tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_int_dtype) for signed_downcast in ('integer', 'signed'): res = pd.to_numeric(data, downcast=signed_downcast) tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_uint_dtype) res = pd.to_numeric(data, downcast='unsigned') tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_float_dtype) res = pd.to_numeric(data, downcast='float') tm.assert_numpy_array_equal(res, expected) # if we can't successfully cast the given # data to a numeric dtype, do not bother # with the downcast parameter data = ['foo', 2, 3] expected = np.array(data, dtype=object) res = pd.to_numeric(data, errors='ignore', downcast='unsigned') tm.assert_numpy_array_equal(res, expected) # cannot cast to an unsigned integer because # we have a negative number data = ['-1', 2, 3] expected = np.array([-1, 2, 3], dtype=np.int64) res = pd.to_numeric(data, downcast='unsigned') tm.assert_numpy_array_equal(res, expected) # cannot cast to an integer (signed or unsigned) # because we have a float number data = ['1.1', 2, 3] expected = np.array([1.1, 2, 3], dtype=np.float64) for downcast in ('integer', 'signed', 'unsigned'): res = pd.to_numeric(data, downcast=downcast) tm.assert_numpy_array_equal(res, expected) # the smallest integer dtype need not be np.(u)int8 data = ['256', 257, 258] for downcast, expected_dtype in zip( ['integer', 'signed', 'unsigned'], [np.int16, np.int16, np.uint16]): expected = np.array([256, 257, 258], dtype=expected_dtype) res = pd.to_numeric(data, downcast=downcast) tm.assert_numpy_array_equal(res, expected) def test_downcast_limits(self): # Test the limits of each downcast. Bug: #14401. # Check to make sure numpy is new enough to run this test. if _np_version_under1p9: raise nose.SkipTest("Numpy version is under 1.9") i = 'integer' u = 'unsigned' dtype_downcast_min_max = [ ('int8', i, [iinfo(np.int8).min, iinfo(np.int8).max]), ('int16', i, [iinfo(np.int16).min, iinfo(np.int16).max]), ('int32', i, [iinfo(np.int32).min, iinfo(np.int32).max]), ('int64', i, [iinfo(np.int64).min, iinfo(np.int64).max]), ('uint8', u, [iinfo(np.uint8).min, iinfo(np.uint8).max]), ('uint16', u, [iinfo(np.uint16).min, iinfo(np.uint16).max]), ('uint32', u, [iinfo(np.uint32).min, iinfo(np.uint32).max]), # Test will be skipped until there is more uint64 support. # ('uint64', u, [iinfo(uint64).min, iinfo(uint64).max]), ('int16', i, [iinfo(np.int8).min, iinfo(np.int8).max + 1]), ('int32', i, [iinfo(np.int16).min, iinfo(np.int16).max + 1]), ('int64', i, [iinfo(np.int32).min, iinfo(np.int32).max + 1]), ('int16', i, [iinfo(np.int8).min - 1, iinfo(np.int16).max]), ('int32', i, [iinfo(np.int16).min - 1, iinfo(np.int32).max]), ('int64', i, [iinfo(np.int32).min - 1, iinfo(np.int64).max]), ('uint16', u, [iinfo(np.uint8).min, iinfo(np.uint8).max + 1]), ('uint32', u, [iinfo(np.uint16).min, iinfo(np.uint16).max + 1]), # Test will be skipped until there is more uint64 support. # ('uint64', u, [iinfo(np.uint32).min, iinfo(np.uint32).max + 1]), ] for dtype, downcast, min_max in dtype_downcast_min_max: series = pd.to_numeric(pd.Series(min_max), downcast=downcast) tm.assert_equal(series.dtype, dtype) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
roxana-lafuente/CursoAA
clase5.py
1
2001
from sklearn.metrics import accuracy_score, precision_score, recall_score from sklearn.cross_validation import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.datasets import load_iris import matplotlib.pyplot as plt import pandas as pd import numpy as np # Cargar conjunto de datos. dataset = load_iris() # Transformar a pandas dataframe para ver un resumen de los datos. data = pd.DataFrame(dataset.data, columns=dataset.feature_names) data['target'] = dataset['target'] data_train, data_test = train_test_split(data, test_size=0.3) X = data_train[[u'sepal length (cm)', u'sepal width (cm)']] y = data_train[u'target'] # Crear la figura title = "Regularization vs No regularization" fig = plt.figure(title) ax = fig.add_subplot(1, 2, 1) ax.set_title("No regularization") h = .02 # Separacion entre los valores a generar # No uso regularization model = LogisticRegression(multi_class='ovr') # Entrenamos nuestro clasificador con len(X) observaciones, cada una con su target y model.fit(X, y) x_min, x_max = X[u'sepal length (cm)'].min() - 0.05, X[u'sepal length (cm)'].max() + 0.05 y_min, y_max = X[u'sepal width (cm)'].min() - 0.05, X[u'sepal width (cm)'].max() + 0.05 # Generar valores entre N1 y N2 con separacion de h usando np.arange. # Luego usar meshgrid: xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot plt.scatter(X[u'sepal length (cm)'], X[u'sepal width (cm)'], c=y, cmap=plt.cm.Oranges) # Nombrar los ejes para entender mejor la figura. plt.xlabel('Sepal length') plt.ylabel('Sepal width') # Real values ax = fig.add_subplot(1, 2, 2) ax.set_title("Regularization") # TODO: Agregar el codigo para predecir con regularization. # Probar con diferentes C. # Nombrar los ejes para entender mejor la figura. plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show()
gpl-3.0
StuartLittlefair/astropy
astropy/visualization/wcsaxes/tests/test_misc.py
3
17207
# Licensed under a 3-clause BSD style license - see LICENSE.rst from packaging.version import Version import pytest import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.contour import QuadContourSet from astropy import units as u from astropy.wcs import WCS from astropy.io import fits from astropy.coordinates import SkyCoord from astropy.utils.data import get_pkg_data_filename from astropy.visualization.wcsaxes.core import WCSAxes from astropy.visualization.wcsaxes.frame import ( EllipticalFrame, RectangularFrame, RectangularFrame1D) from astropy.visualization.wcsaxes.utils import get_coord_meta from astropy.visualization.wcsaxes.transforms import CurvedTransform ft_version = Version(matplotlib.ft2font.__freetype_version__) FREETYPE_261 = ft_version == Version("2.6.1") TEX_UNAVAILABLE = not matplotlib.checkdep_usetex(True) def teardown_function(function): plt.close('all') def test_grid_regression(ignore_matplotlibrc): # Regression test for a bug that meant that if the rc parameter # axes.grid was set to True, WCSAxes would crash upon initalization. plt.rc('axes', grid=True) fig = plt.figure(figsize=(3, 3)) WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) def test_format_coord_regression(ignore_matplotlibrc, tmpdir): # Regression test for a bug that meant that if format_coord was called by # Matplotlib before the axes were drawn, an error occurred. fig = plt.figure(figsize=(3, 3)) ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) assert ax.format_coord(10, 10) == "" assert ax.coords[0].format_coord(10) == "" assert ax.coords[1].format_coord(10) == "" fig.savefig(tmpdir.join('nothing').strpath) assert ax.format_coord(10, 10) == "10.0 10.0 (world)" assert ax.coords[0].format_coord(10) == "10.0" assert ax.coords[1].format_coord(10) == "10.0" TARGET_HEADER = fits.Header.fromstring(""" NAXIS = 2 NAXIS1 = 200 NAXIS2 = 100 CTYPE1 = 'RA---MOL' CRPIX1 = 500 CRVAL1 = 180.0 CDELT1 = -0.4 CUNIT1 = 'deg ' CTYPE2 = 'DEC--MOL' CRPIX2 = 400 CRVAL2 = 0.0 CDELT2 = 0.4 CUNIT2 = 'deg ' COORDSYS= 'icrs ' """, sep='\n') @pytest.mark.parametrize('grid_type', ['lines', 'contours']) def test_no_numpy_warnings(ignore_matplotlibrc, tmpdir, grid_type): ax = plt.subplot(1, 1, 1, projection=WCS(TARGET_HEADER)) ax.imshow(np.zeros((100, 200))) ax.coords.grid(color='white', grid_type=grid_type) with pytest.warns(None) as warning_lines: plt.savefig(tmpdir.join('test.png').strpath) # There should be no warnings raised if some pixels are outside WCS # (since this is normal). # BUT catch_warning was ignoring some warnings before, so now we # have to catch it. Otherwise, the pytest filterwarnings=error # setting in setup.cfg will fail this test. # There are actually multiple warnings but they are all similar. for w in warning_lines: w_msg = str(w.message) assert ('converting a masked element to nan' in w_msg or 'No contour levels were found within the data range' in w_msg or 'np.asscalar(a) is deprecated since NumPy v1.16' in w_msg or 'PY_SSIZE_T_CLEAN will be required' in w_msg) def test_invalid_frame_overlay(ignore_matplotlibrc): # Make sure a nice error is returned if a frame doesn't exist ax = plt.subplot(1, 1, 1, projection=WCS(TARGET_HEADER)) with pytest.raises(ValueError) as exc: ax.get_coords_overlay('banana') assert exc.value.args[0] == 'Frame banana not found' with pytest.raises(ValueError) as exc: get_coord_meta('banana') assert exc.value.args[0] == 'Unknown frame: banana' def test_plot_coord_transform(ignore_matplotlibrc): twoMASS_k_header = get_pkg_data_filename('data/2MASS_k_header') twoMASS_k_header = fits.Header.fromtextfile(twoMASS_k_header) fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.15, 0.15, 0.8, 0.8], projection=WCS(twoMASS_k_header), aspect='equal') ax.set_xlim(-0.5, 720.5) ax.set_ylim(-0.5, 720.5) c = SkyCoord(359.76045223*u.deg, 0.26876217*u.deg) with pytest.raises(TypeError): ax.plot_coord(c, 'o', transform=ax.get_transform('galactic')) def test_set_label_properties(ignore_matplotlibrc): # Regression test to make sure that arguments passed to # set_xlabel/set_ylabel are passed to the underlying coordinate helpers ax = plt.subplot(1, 1, 1, projection=WCS(TARGET_HEADER)) ax.set_xlabel('Test x label', labelpad=2, color='red') ax.set_ylabel('Test y label', labelpad=3, color='green') assert ax.coords[0].axislabels.get_text() == 'Test x label' assert ax.coords[0].axislabels.get_minpad('b') == 2 assert ax.coords[0].axislabels.get_color() == 'red' assert ax.coords[1].axislabels.get_text() == 'Test y label' assert ax.coords[1].axislabels.get_minpad('l') == 3 assert ax.coords[1].axislabels.get_color() == 'green' assert ax.get_xlabel() == 'Test x label' assert ax.get_ylabel() == 'Test y label' GAL_HEADER = fits.Header.fromstring(""" SIMPLE = T / conforms to FITS standard BITPIX = -32 / array data type NAXIS = 3 / number of array dimensions NAXIS1 = 31 NAXIS2 = 2881 NAXIS3 = 480 EXTEND = T CTYPE1 = 'DISTMOD ' CRVAL1 = 3.5 CDELT1 = 0.5 CRPIX1 = 1.0 CTYPE2 = 'GLON-CAR' CRVAL2 = 180.0 CDELT2 = -0.125 CRPIX2 = 1.0 CTYPE3 = 'GLAT-CAR' CRVAL3 = 0.0 CDELT3 = 0.125 CRPIX3 = 241.0 """, sep='\n') def test_slicing_warnings(ignore_matplotlibrc, tmpdir): # Regression test to make sure that no warnings are emitted by the tick # locator for the sliced axis when slicing a cube. # Scalar case wcs3d = WCS(naxis=3) wcs3d.wcs.ctype = ['x', 'y', 'z'] wcs3d.wcs.cunit = ['deg', 'deg', 'km/s'] wcs3d.wcs.crpix = [614.5, 856.5, 333] wcs3d.wcs.cdelt = [6.25, 6.25, 23] wcs3d.wcs.crval = [0., 0., 1.] with pytest.warns(None) as warning_lines: plt.subplot(1, 1, 1, projection=wcs3d, slices=('x', 'y', 1)) plt.savefig(tmpdir.join('test.png').strpath) # For easy debugging if there are indeed warnings for warning in warning_lines: # https://github.com/astropy/astropy/issues/9690 if 'PY_SSIZE_T_CLEAN' not in str(warning.message): raise AssertionError(f'Unexpected warning: {warning}') # Angle case wcs3d = WCS(GAL_HEADER) with pytest.warns(None) as warning_lines: plt.subplot(1, 1, 1, projection=wcs3d, slices=('x', 'y', 2)) plt.savefig(tmpdir.join('test.png').strpath) # For easy debugging if there are indeed warnings for warning in warning_lines: # https://github.com/astropy/astropy/issues/9690 if 'PY_SSIZE_T_CLEAN' not in str(warning.message): raise AssertionError(f'Unexpected warning: {warning}') def test_plt_xlabel_ylabel(tmpdir): # Regression test for a bug that happened when using plt.xlabel # and plt.ylabel with Matplotlib 3.0 plt.subplot(projection=WCS()) plt.xlabel('Galactic Longitude') plt.ylabel('Galactic Latitude') plt.savefig(tmpdir.join('test.png').strpath) def test_grid_type_contours_transform(tmpdir): # Regression test for a bug that caused grid_type='contours' to not work # with custom transforms class CustomTransform(CurvedTransform): # We deliberately don't define the inverse, and has_inverse should # default to False. def transform(self, values): return values * 1.3 transform = CustomTransform() coord_meta = {'type': ('scalar', 'scalar'), 'unit': (u.m, u.s), 'wrap': (None, None), 'name': ('x', 'y')} fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8], transform=transform, coord_meta=coord_meta) fig.add_axes(ax) ax.grid(grid_type='contours') fig.savefig(tmpdir.join('test.png').strpath) def test_plt_imshow_origin(): # Regression test for a bug that caused origin to be set to upper when # plt.imshow was called. ax = plt.subplot(projection=WCS()) plt.imshow(np.ones((2, 2))) assert ax.get_xlim() == (-0.5, 1.5) assert ax.get_ylim() == (-0.5, 1.5) def test_ax_imshow_origin(): # Regression test for a bug that caused origin to be set to upper when # ax.imshow was called with no origin ax = plt.subplot(projection=WCS()) ax.imshow(np.ones((2, 2))) assert ax.get_xlim() == (-0.5, 1.5) assert ax.get_ylim() == (-0.5, 1.5) def test_grid_contour_large_spacing(tmpdir): # Regression test for a bug that caused a crash when grid was called and # didn't produce grid lines (due e.g. to too large spacing) and was then # called again. filename = tmpdir.join('test.png').strpath ax = plt.subplot(projection=WCS()) ax.set_xlim(-0.5, 1.5) ax.set_ylim(-0.5, 1.5) ax.coords[0].set_ticks(values=[] * u.one) ax.coords[0].grid(grid_type='contours') plt.savefig(filename) ax.coords[0].grid(grid_type='contours') plt.savefig(filename) def test_contour_return(): # Regression test for a bug that caused contour and contourf to return None # instead of the contour object. fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) cset = ax.contour(np.arange(16).reshape(4, 4), transform=ax.get_transform('world')) assert isinstance(cset, QuadContourSet) cset = ax.contourf(np.arange(16).reshape(4, 4), transform=ax.get_transform('world')) assert isinstance(cset, QuadContourSet) def test_contour_empty(): # Regression test for a bug that caused contour to crash if no contours # were present. fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) with pytest.warns(UserWarning, match='No contour levels were found within the data range'): ax.contour(np.zeros((4, 4)), transform=ax.get_transform('world')) def test_iterate_coords(ignore_matplotlibrc, tmpdir): # Regression test for a bug that caused ax.coords to return too few axes wcs3d = WCS(naxis=3) wcs3d.wcs.ctype = ['x', 'y', 'z'] wcs3d.wcs.cunit = ['deg', 'deg', 'km/s'] wcs3d.wcs.crpix = [614.5, 856.5, 333] wcs3d.wcs.cdelt = [6.25, 6.25, 23] wcs3d.wcs.crval = [0., 0., 1.] ax = plt.subplot(1, 1, 1, projection=wcs3d, slices=('x', 'y', 1)) x, y, z = ax.coords def test_invalid_slices_errors(ignore_matplotlibrc): # Make sure that users get a clear message when specifying a WCS with # >2 dimensions without giving the 'slices' argument, or if the 'slices' # argument has too many/few elements. wcs3d = WCS(naxis=3) wcs3d.wcs.ctype = ['x', 'y', 'z'] plt.subplot(1, 1, 1, projection=wcs3d, slices=('x', 'y', 1)) with pytest.raises(ValueError) as exc: plt.subplot(1, 1, 1, projection=wcs3d) assert exc.value.args[0] == ("WCS has more than 2 pixel dimensions, so " "'slices' should be set") with pytest.raises(ValueError) as exc: plt.subplot(1, 1, 1, projection=wcs3d, slices=('x', 'y', 1, 2)) assert exc.value.args[0] == ("'slices' should have as many elements as " "WCS has pixel dimensions (should be 3)") wcs2d = WCS(naxis=2) wcs2d.wcs.ctype = ['x', 'y'] ax = plt.subplot(1, 1, 1, projection=wcs2d) assert ax.frame_class is RectangularFrame ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=('x', 'y')) assert ax.frame_class is RectangularFrame ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=('y', 'x')) assert ax.frame_class is RectangularFrame ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=['x', 'y']) assert ax.frame_class is RectangularFrame ax = plt.subplot(1, 1, 1, projection=wcs2d, slices=(1, 'x')) assert ax.frame_class is RectangularFrame1D wcs1d = WCS(naxis=1) wcs1d.wcs.ctype = ['x'] ax = plt.subplot(1, 1, 1, projection=wcs1d) assert ax.frame_class is RectangularFrame1D with pytest.raises(ValueError): plt.subplot(1, 1, 1, projection=wcs2d, slices=(1, 'y')) EXPECTED_REPR_1 = """ <CoordinatesMap with 3 world coordinates: index aliases type unit wrap format_unit visible ----- ------------------------------ --------- ---- ---- ----------- ------- 0 distmod dist scalar None no 1 pos.galactic.lon glon-car glon longitude deg 360 deg yes 2 pos.galactic.lat glat-car glat latitude deg None deg yes > """.strip() EXPECTED_REPR_2 = """ <CoordinatesMap with 3 world coordinates: index aliases type unit wrap format_unit visible ----- ------------------------------ --------- ---- ---- ----------- ------- 0 distmod dist scalar None yes 1 pos.galactic.lon glon-car glon longitude deg 360 deg yes 2 pos.galactic.lat glat-car glat latitude deg None deg yes > """.strip() def test_repr(ignore_matplotlibrc): # Unit test to make sure __repr__ looks as expected wcs3d = WCS(GAL_HEADER) # Cube header has world coordinates as distance, lon, lat, so start off # by slicing in a way that we select just lon,lat: ax = plt.subplot(1, 1, 1, projection=wcs3d, slices=(1, 'x', 'y')) assert repr(ax.coords) == EXPECTED_REPR_1 # Now slice in a way that all world coordinates are still present: ax = plt.subplot(1, 1, 1, projection=wcs3d, slices=('x', 'y', 1)) assert repr(ax.coords) == EXPECTED_REPR_2 @pytest.fixture def time_spectral_wcs_2d(): wcs = WCS(naxis=2) wcs.wcs.ctype = ['FREQ', 'TIME'] wcs.wcs.set() return wcs def test_time_wcs(time_spectral_wcs_2d): # Regression test for a bug that caused WCSAxes to error when using a WCS # with a time axis. plt.subplot(projection=time_spectral_wcs_2d) @pytest.mark.skipif('TEX_UNAVAILABLE') def test_simplify_labels_usetex(ignore_matplotlibrc, tmpdir): """Regression test for https://github.com/astropy/astropy/issues/8004.""" plt.rc('text', usetex=True) header = { 'NAXIS': 2, 'NAXIS1': 360, 'NAXIS2': 180, 'CRPIX1': 180.5, 'CRPIX2': 90.5, 'CRVAL1': 180.0, 'CRVAL2': 0.0, 'CDELT1': -2 * np.sqrt(2) / np.pi, 'CDELT2': 2 * np.sqrt(2) / np.pi, 'CTYPE1': 'RA---MOL', 'CTYPE2': 'DEC--MOL', 'RADESYS': 'ICRS'} wcs = WCS(header) fig, ax = plt.subplots( subplot_kw=dict(frame_class=EllipticalFrame, projection=wcs)) ax.set_xlim(-0.5, header['NAXIS1'] - 0.5) ax.set_ylim(-0.5, header['NAXIS2'] - 0.5) ax.coords[0].set_ticklabel(exclude_overlapping=True) ax.coords[1].set_ticklabel(exclude_overlapping=True) ax.coords[0].set_ticks(spacing=45 * u.deg) ax.coords[1].set_ticks(spacing=30 * u.deg) ax.grid() fig.savefig(tmpdir / 'plot.png') @pytest.mark.parametrize('frame_class', [RectangularFrame, EllipticalFrame]) def test_set_labels_with_coords(ignore_matplotlibrc, frame_class): """Test if ``axis.set_xlabel()`` calls the correct ``coords[i]_set_axislabel()`` in a WCS plot. Regression test for https://github.com/astropy/astropy/issues/10435. """ labels = ['RA', 'Declination'] header = { 'NAXIS': 2, 'NAXIS1': 360, 'NAXIS2': 180, 'CRPIX1': 180.5, 'CRPIX2': 90.5, 'CRVAL1': 180.0, 'CRVAL2': 0.0, 'CDELT1': -2 * np.sqrt(2) / np.pi, 'CDELT2': 2 * np.sqrt(2) / np.pi, 'CTYPE1': 'RA---AIT', 'CTYPE2': 'DEC--AIT'} wcs = WCS(header) fig, ax = plt.subplots( subplot_kw=dict(frame_class=frame_class, projection=wcs)) ax.set_xlabel(labels[0]) ax.set_ylabel(labels[1]) assert ax.get_xlabel() == labels[0] assert ax.get_ylabel() == labels[1] for i in range(2): assert ax.coords[i].get_axislabel() == labels[i] @pytest.mark.parametrize('atol', [0.2, 1.0e-8]) def test_bbox_size(atol): # Test for the size of a WCSAxes bbox (only have Matplotlib >= 3.0 now) extents = [11.38888888888889, 3.5, 576.0, 432.0] fig = plt.figure() ax = WCSAxes(fig, [0.1, 0.1, 0.8, 0.8]) fig.add_axes(ax) fig.canvas.draw() renderer = fig.canvas.renderer ax_bbox = ax.get_tightbbox(renderer) # Enforce strict test only with reference Freetype version if atol < 0.1 and not FREETYPE_261: pytest.xfail("Exact BoundingBox dimensions are only ensured with FreeType 2.6.1") assert np.allclose(ax_bbox.extents, extents, atol=atol)
bsd-3-clause
ywcui1990/htmresearch
htmresearch/frameworks/union_temporal_pooling/activation/plotExciteDecayFunctions.py
12
1957
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt import numpy """ This script plots different activation and decay functions and saves the resulting figures to a pdf document "excitation_decay_functions.pdf" """ with PdfPages('excitation_decay_functions.pdf') as pdf: plt.figure() plt.subplot(2,2,1) from union_temporal_pooling.activation.excite_functions.excite_functions_all import ( LogisticExciteFunction) self = LogisticExciteFunction() self.plot() plt.xlabel('Predicted Input #') from union_temporal_pooling.activation.decay_functions.decay_functions_all import ( ExponentialDecayFunction) plt.subplot(2,2,2) self = ExponentialDecayFunction(10.0) self.plot() pdf.savefig() plt.close() # from union_temporal_pooling.activation.decay_functions.logistic_decay_function import ( # LogisticDecayFunction) # plt.figure() # self = LogisticDecayFunction(10.0) # self.plot() # pdf.savefig() # plt.close()
agpl-3.0
Obus/scikit-learn
sklearn/tests/test_lda.py
71
5883
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.datasets import make_blobs from sklearn import lda # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct values # for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = lda.LDA(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = lda.LDA(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = lda.LDA(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = lda.LDA(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = lda.LDA(solver="svd") clf_lda_lsqr = lda.LDA(solver="lsqr") clf_lda_eigen = lda.LDA(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = lda.LDA(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = lda.LDA(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = lda.LDA(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = lda.LDA(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver)
bsd-3-clause
iyounus/incubator-systemml
src/main/python/tests/test_mllearn_df.py
4
5381
#!/usr/bin/python #------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- # To run: # - Python 2: `PYSPARK_PYTHON=python2 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # - Python 3: `PYSPARK_PYTHON=python3 spark-submit --master local[*] --driver-class-path SystemML.jar test_mllearn_df.py` # Make the `systemml` package importable import os import sys path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../") sys.path.insert(0, path) import unittest import numpy as np from pyspark.context import SparkContext from pyspark.ml import Pipeline from pyspark.ml.feature import HashingTF, Tokenizer from pyspark.sql import SparkSession from sklearn import datasets, metrics, neighbors from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import linear_model from sklearn.metrics import accuracy_score, r2_score from systemml.mllearn import LinearRegression, LogisticRegression, NaiveBayes, SVM sc = SparkContext() sparkSession = SparkSession.builder.getOrCreate() # Currently not integrated with JUnit test # ~/spark-1.6.1-scala-2.11/bin/spark-submit --master local[*] --driver-class-path SystemML.jar test.py class TestMLLearn(unittest.TestCase): def test_logistic_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] # Convert to DataFrame for i/o: current way to transfer data logistic = LogisticRegression(sparkSession, transferUsingDF=True) logistic.fit(X_train, y_train) mllearn_predicted = logistic.predict(X_test) sklearn_logistic = linear_model.LogisticRegression() sklearn_logistic.fit(X_train, y_train) self.failUnless(accuracy_score(sklearn_logistic.predict(X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='direct-solve', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_linear_regression_cg(self): diabetes = datasets.load_diabetes() diabetes_X = diabetes.data[:, np.newaxis, 2] diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] regr = LinearRegression(sparkSession, solver='newton-cg', transferUsingDF=True) regr.fit(diabetes_X_train, diabetes_y_train) mllearn_predicted = regr.predict(diabetes_X_test) sklearn_regr = linear_model.LinearRegression() sklearn_regr.fit(diabetes_X_train, diabetes_y_train) self.failUnless(r2_score(sklearn_regr.predict(diabetes_X_test), mllearn_predicted) > 0.95) # We are comparable to a similar algorithm in scikit learn def test_svm_sk2(self): digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target n_samples = len(X_digits) X_train = X_digits[:int(.9 * n_samples)] y_train = y_digits[:int(.9 * n_samples)] X_test = X_digits[int(.9 * n_samples):] y_test = y_digits[int(.9 * n_samples):] svm = SVM(sparkSession, is_multi_class=True, transferUsingDF=True) mllearn_predicted = svm.fit(X_train, y_train).predict(X_test) from sklearn import linear_model, svm clf = svm.LinearSVC() sklearn_predicted = clf.fit(X_train, y_train).predict(X_test) self.failUnless(accuracy_score(sklearn_predicted, mllearn_predicted) > 0.95 ) if __name__ == '__main__': unittest.main()
apache-2.0
pianomania/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
320
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
rspavel/spack
var/spack/repos/builtin/packages/geopm/package.py
5
5196
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Geopm(AutotoolsPackage): """GEOPM is an extensible power management framework targeting HPC. The GEOPM package provides libgeopm, libgeopmpolicy and applications geopmctl and geopmpolicy, as well as tools for postprocessing. GEOPM is designed to be extended for new control algorithms and new hardware power management features via its plugin infrastructure. Note: GEOPM interfaces with hardware using Model Specific Registers (MSRs). For propper usage make sure MSRs are made available directly or via the msr-safe kernel module by your administrator.""" homepage = "https://geopm.github.io" url = "https://github.com/geopm/geopm/releases/download/v1.0.0/geopm-1.0.0.tar.gz" git = "https://github.com/geopm/geopm.git" # Add additional proper versions and checksums here. "spack checksum geopm" version('develop', branch='dev') version('master', branch='master') version('1.1.0', sha256='5f9a4df37ef0d64c53d64829d46736803c9fe614afd8d2c70fe7a5ebea09f88e') version('1.0.0', sha256='24fe72265a7e44d62bdfe49467c49f0b7a649131ddda402d763c00a49765e1cb') version('0.6.1', sha256='0ca42853f90885bf213df190c3462b8675c143cc843aee0d8b8a0e30802b55a9') version('0.6.0', sha256='95ccf256c2b7cb35838978152479569d154347c3065af1639ed17be1399182d3') version('0.5.1', sha256='db247af55f7000b6e4628af099956349b68a637500b9d4fe8d8fb13687124d53') version('0.5.0', sha256='cdc123ea68b6d918dcc578a39a7a38275a5d711104364eb889abed15029f4060') version('0.4.0', sha256='7d165f5a5fe0f19ca586bd81a4631202effb542e9d762cc9cc86ad6ef7afcad9') version('0.3.0', sha256='73b45d36e7d2431d308038fc8c50a521a1d214c5ce105a17fba440f28509d907') # Variants reflecting most ./configure --help options variant('debug', default=False, description='Enable debug.') variant('coverage', default=False, description='Enable test coverage support, enables debug by default.') variant('overhead', default=False, description='Enable GEOPM to calculate and display time spent in GEOPM API calls.') variant('procfs', default=True, description='Enable procfs (disable for OSes not using procfs).') variant('mpi', default=True, description='Enable MPI dependent components.') variant('fortran', default=True, description='Build fortran interface.') variant('doc', default=True, description='Create man pages with ruby-ronn.') variant('openmp', default=True, description='Build with OpenMP.') variant('ompt', default=False, description='Use OpenMP Tools Interface.') variant('gnu-ld', default=False, description='Assume C compiler uses gnu-ld.') # Added dependencies. depends_on('ruby-ronn', type='build', when='+doc') depends_on('doxygen', type='build', when='+doc') depends_on('[email protected]:', when='+mpi') depends_on('m4', type='build') depends_on('autoconf', type='build') depends_on('automake', type='build') depends_on('libtool', type='build') depends_on('ruby-ronn', type='build', when='+doc') depends_on('doxygen', type='build', when='+doc') depends_on('numactl', when="@:1.0.0-rc2") depends_on('mpi', when='+mpi') depends_on('[email protected]', when='@:0.5.1+hwloc') depends_on('json-c', when='@:0.9.9') depends_on('[email protected]:', when="@1.0.0:", type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:3.5.2', when="@1.0.0:", type=('build', 'run')) depends_on('[email protected]:', when="@1.1.0:", type=('build', 'run')) depends_on('[email protected]:', when="@1.1.0:", type=('build', 'run')) depends_on('[email protected]:', when="@1.1.0:", type=('build', 'run')) depends_on('[email protected]:', when="@1.1.0:", type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', when="@1.0.0:", type='build') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', when="@1.0.0:", type=('build', 'run')) depends_on('[email protected]:', when="@1.1.0:", type=('build', 'run')) depends_on('[email protected]', when="@:1.0.0-rc2", type=('build', 'run')) depends_on('[email protected]:', when="@1.1.0:", type=('build', 'run')) parallel = False def autoreconf(self, spec, prefix): bash = which("bash") bash('./autogen.sh') def configure_args(self): args = [] args.extend(self.enable_or_disable('debug')) args.extend(self.enable_or_disable('coverage')) args.extend(self.enable_or_disable('overhead')) args.extend(self.enable_or_disable('procfs')) args.extend(self.enable_or_disable('mpi')) args.extend(self.enable_or_disable('fortran')) args.extend(self.enable_or_disable('doc')) args.extend(self.enable_or_disable('openmp')) args.extend(self.enable_or_disable('ompt')) args.extend(self.with_or_without('gnu-ld')) return args
lgpl-2.1
zhenv5/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
218
3893
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.externals.joblib import Memory from sklearn.cross_validation import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(len(y), 2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
mbdebian/ml-playground
real_world_machine_learning/playground/chapter3.py
1
7893
# # Author : Manuel Bernal Llinares # Project : ml-playground # Timestamp : 18-10-2017 16:11 # --- # © 2017 Manuel Bernal Llinares <[email protected]> # All rights reserved. # """ Scratchpad for the chapter 3 from the book """ import pylab import pandas import numpy as np from sklearn.svm import SVC from sklearn.ensemble import RandomForestRegressor from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression, LinearRegression # Helper functions # Categorical-to-numerical function from chapter 2 changed to automatically add column names def cat_to_num(data): categories = np.unique(data) features = {} for cat in categories: binary = (data == cat) features["{}_{}".format(data.name, cat)] = binary.astype("int") return pandas.DataFrame(features) def prepare_data(data): """ Takes a dataframe of raw data and returns ML model features :param data: dataframe of raw data :return: ML model features """ # Initially, we build a model only no the available numerical values features_drop_list = ["PassengerId", "Survived", "Fare", "Name", "Sex", "Ticket", "Cabin", "Embarked"] print("+++> Drop features: {}".format(features_drop_list)) features = data.drop(features_drop_list, axis=1) # Setting missing age values to -1 print("+++> Fix missing 'Age' values, filling them with '-1'") features["Age"] = data["Age"].fillna(-1) # Adding the sqrt of the fare feature print("+++> Change 'Fare' for its square root value") features["sqrt_Fare"] = np.sqrt(data["Fare"]) # Adding gender categorical value print("+++> Convert 'Sex' categorical data") features = features.join(cat_to_num(data["Sex"])) # Adding Embarked categorical value print("+++> Convert 'Embarked' categorical data") features = features.join(cat_to_num(data["Embarked"])) # ML model features are now ready return features # Read the Titanic sample data # The data is English localized, but pandas will fail trying to convert numbers into float because this system is # Spanish localized sample_data_titanic = pandas.read_csv("../book_code/data/titanic.csv") print("---> Sample data - Titanic, #{} entries".format(len(sample_data_titanic))) print("... Sample ...\n" "{}\n" "... END of Sample ...".format(sample_data_titanic[:5])) # Data fix (for numpy 'unique') - We know there is missing 'Embarked' data that, when run through 'unique', is # interpreted as 'float', but 'Embark' is 'str', so we're gonna change that sample_data_titanic['Embarked'].fillna("missing", inplace=True) # We make a 80/20% train/test split of the data data_train = sample_data_titanic[:int(0.8 * len(sample_data_titanic))] data_test = sample_data_titanic[int(0.8 * len(sample_data_titanic)):] # ---> Logistic Regression Model <--- # ML training model ml_training_model = prepare_data(data_train) print("---> ML Training model\n" "... SAMPLE ...\n" "{}\n" "... END of SAMPLE".format(ml_training_model[:5])) model = LogisticRegression() model.fit(ml_training_model, data_train['Survived']) # Make predictions model_predictions_on_test_data = model.predict(prepare_data(data_test)) print("[--- Logistic Regression ---]") print("---> Model predictions on test data:\n{}".format(model_predictions_on_test_data)) # Compute the accuracy of the model on the test data model_score_on_test_data = model.score(prepare_data(data_test), data_test['Survived']) print("---> Model Accuracy on test data:\n{}".format(model_score_on_test_data)) # ---> Non-linear model with Support Vector Machines <--- print("[--- SVC ---]") model_svc = SVC() model_svc.fit(ml_training_model, data_train['Survived']) model_svc_score_on_test_data = model_svc.score(prepare_data(data_test), data_test['Survived']) print("---> Model Accuracy on test data:\n{}".format(model_svc_score_on_test_data)) # ---> Classification with multiple classes: hand-written digits <--- print("[--- MNIST Small Dataset (KNN Classifier) ---]") mnist_dataset = pandas.read_csv("../book_code/data/mnist_small.csv") mnist_train = mnist_dataset[:int(0.8 * len(mnist_dataset))] mnist_test = mnist_dataset[int(0.8 * len(mnist_dataset)):] print("---> MNIST dataset contains #{} entries, #{} for training and #{} for testing" .format(len(mnist_dataset), len(mnist_train), len(mnist_test))) # Instantiate the classifier print("+++> Get an instance of the classifier, n_neighbors = 10") knn = KNeighborsClassifier(n_neighbors=10) # Train the classifier by dropping the 'label' column (which is the classification target) print("+++> Fit the classifier") knn.fit(mnist_train.drop('label', axis=1), mnist_train['label']) # Predictions knn_mnist_predictions = knn.predict(mnist_test.drop('label', axis=1)) print("---> Classifier Predictions for test data\n{}".format(knn_mnist_predictions)) # Predictions with probabilities knn_mnist_predictions_with_probabilities = knn.predict_proba(mnist_test.drop('label', axis=1)) knn_mnist_predictions_with_probabilities_sample = \ pandas.DataFrame(knn_mnist_predictions_with_probabilities[:20], index=["Digit {}".format(i + 1) for i in range(20)]) print("---> Classifier Predictions for test data\n{}".format(knn_mnist_predictions_with_probabilities_sample)) # Compute the KNN Classifier score print("---> Classifier Score on the test data, {}" .format(knn.score(mnist_test.drop('label', axis=1), mnist_test['label']))) # ---> Predicting numerical values with a regression model <--- print("[--- Auto MPG Dataset (Linear Regression) ---]") auto_dataset = pandas.read_csv("../book_code/data/auto-mpg.csv") # Convert origin from categorical to numerical auto = auto_dataset.join(cat_to_num(auto_dataset['origin'])) auto = auto.drop('origin', axis=1) # Split train / test auto_train = auto[:int(0.8 * len(auto))] auto_test = auto[int(0.8 * len(auto)):] print("---> Auto MPG Dataset contains #{} entries, #{} for training and #{} for testing" .format(len(auto), len(auto_train), len(auto_test))) print("---> Auto MPG Dataset Sample\n{}".format(auto[:20])) linear_regression = LinearRegression() print("+++> Fit the linear regressor") linear_regression.fit(auto_train.drop('mpg', axis=1), auto_train['mpg']) # Predictions from the linear regressor print("+++> Compute predictions with the linear regressor") linear_regression_predictions = linear_regression.predict(auto_test.drop('mpg', axis=1)) print("---> Linear regressor predictions sample\n{}".format(linear_regression_predictions[:10])) print("---> Linear regressor accuracy: {}" .format(linear_regression.score(auto_test.drop('mpg', axis=1), auto_test.mpg))) print("---> Min MPG (test dataset) {}, Max MPG (test dataset) {}".format(np.min(auto_test.mpg), np.max(auto_test.mpg))) # Plotting the prediction from the linear regressor pylab.plot(auto_test.mpg, linear_regression_predictions, 'o') x = pylab.linspace(10, 40, 5) pylab.plot(x, x, '-') # Now with Random Forest print("[--- Auto MPG Dataset (Random Forest Regression) ---]") random_forest_regressor = RandomForestRegressor() print("+++> Fit the random forest regressor") random_forest_regressor.fit(auto_train.drop('mpg', axis=1), auto_train['mpg']) print("+++> Compute predictions with the random forest regressor") random_forest_regressor_predictions = random_forest_regressor.predict(auto_test.drop('mpg', axis=1)) print("---> Random Forest regressor predictions sample\n{}".format(random_forest_regressor_predictions[:10])) print("---> Random Fores accuracy: {}" .format(random_forest_regressor.score(auto_test.drop('mpg', axis=1), auto_test.mpg))) pylab.figure() pylab.plot(auto_test.mpg, random_forest_regressor_predictions, 'o') x = pylab.linspace(10, 40, 5) pylab.plot(x, x, '-') # Show all plots pylab.show() print("<{} END {}>".format("-" * 20, "-" * 20))
apache-2.0
jungla/ICOM-fluidity-toolbox
2D/U/plot_drate_z_resolutions.py
1
6030
import os, sys import myfun import numpy as np import matplotlib as mpl mpl.use('ps') import matplotlib.pyplot as plt import lagrangian_stats ## READ archive (too many points... somehow) # args: name, dayi, dayf, days label = 'm_50_6f' label_50 = 'm_50_6f' label_25 = 'm_25_1' label_10 = 'm_10_1' basename = 'mli' dayi = 24 dayf = 49 days = 1 #label = sys.argv[1] #basename = sys.argv[2] #dayi = int(sys.argv[3]) #dayf = int(sys.argv[4]) #days = int(sys.argv[5]) path = './Velocity_CG/' # dimensions archives # ML exp Xlist_50 = np.linspace(0,2000,41) Ylist_50 = np.linspace(0,2000,41) Xlist_25 = np.linspace(0,2000,81) Ylist_25 = np.linspace(0,2000,81) Xlist_10 = np.linspace(0,2000,161) Ylist_10 = np.linspace(0,2000,161) Zlist = np.linspace(0,-50,51) dl = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1] Zlist = -1*np.cumsum(dl) xn_50 = len(Xlist_50) yn_50 = len(Ylist_50) xn_25 = len(Xlist_25) yn_25 = len(Ylist_25) xn_10 = len(Xlist_10) yn_10 = len(Ylist_10) zn = len(Zlist) dx_50 = np.gradient(Xlist_50) dx_25 = np.gradient(Xlist_25) dx_10 = np.gradient(Xlist_10) dz_50 = np.gradient(Zlist) dz_25 = np.gradient(Zlist) dz_10 = np.gradient(Zlist) time = range(dayi,dayf,days) FW_50 = np.zeros((yn_50,xn_50,zn,len(range(dayi,dayf,days)))) FW_25 = np.zeros((yn_25,xn_25,zn,len(range(dayi,dayf,days)))) FW_10 = np.zeros((yn_10,xn_10,zn,len(range(dayi,dayf,days)))) mld_50 = np.zeros(len(range(dayi,dayf,days))) mld_25 = np.zeros(len(range(dayi,dayf,days))) mld_10 = np.zeros(len(range(dayi,dayf,days))) for t in range(len(time)): print 'time:', time[t] tlabel = str(time[t]) while len(tlabel) < 3: tlabel = '0'+tlabel #Velocity_CG_m_50_6e_9.csv file0_50 = path+'Velocity_CG_0_'+label_50+'_'+str(time[t])+'.csv' file0_25 = path+'Velocity_CG_0_'+label_25+'_'+str(time[t])+'.csv' file0_10 = path+'Velocity_CG_0_'+label_10+'_'+str(time[t])+'.csv' file1 = 'drate_'+label+'_'+str(time[t]) file1_50 = 'drate_'+label_50 file1_25 = 'drate_'+label_25 file1_10 = 'drate_'+label_10 W_50 = lagrangian_stats.read_Scalar(file0_50,zn,yn_50,xn_50) W_25 = lagrangian_stats.read_Scalar(file0_25,zn,yn_25,xn_25) W_10 = lagrangian_stats.read_Scalar(file0_10,zn,yn_10,xn_10) for i in range(len(Xlist_50)): for j in range(len(Ylist_50)): FW_50[j,i,:,t] = (np.gradient(W_50[:,j,i])/dz_50)**2 for i in range(len(Xlist_25)): for j in range(len(Ylist_25)): FW_25[j,i,:,t] = (np.gradient(W_25[:,j,i])/dz_25)**2 for i in range(len(Xlist_10)): for j in range(len(Ylist_10)): FW_10[j,i,:,t] = (np.gradient(W_10[:,j,i])/dz_10)**2 plt.figure(figsize=(4,8)) FW_t50 = np.mean(np.mean(FW_50,0),0) FW_t25 = np.mean(np.mean(FW_25,0),0) FW_t10 = np.mean(np.mean(FW_10,0),0) p50, = plt.semilogx(7.5*0.05*FW_t50[:,t],Zlist,'k-',linewidth=2) p25, = plt.semilogx(7.5*0.05*FW_t25[:,t],Zlist,'k--',linewidth=2) p10, = plt.semilogx(7.5*0.05*FW_t10[:,t],Zlist,'k.-',linewidth=2) plt.legend([p50,p25,p10],['50m','25m','10m'],loc=4) plt.ylabel(r'depth $[m]$',fontsize=18) plt.xlabel(r'$\epsilon [m^2s^{-2}]$',fontsize=18) plt.yticks(fontsize=16) plt.xticks(fontsize=16) plt.savefig('./plot/'+label+'/'+file1+'.eps',bbox_inches='tight') print './plot/'+label+'/'+file1+'.eps' plt.close() # path_T = '../RST/Temperature_CG/' file0_50 = path_T+'Temperature_CG_'+label_50+'_'+str(time[t])+'.csv' file0_25 = path_T+'Temperature_CG_'+label_25+'_'+str(time[t])+'.csv' file0_10 = path_T+'Temperature_CG_'+label_10+'_'+str(time[t])+'.csv' T_10 = lagrangian_stats.read_Scalar(file0_10,zn,yn_10,xn_10) T_25 = lagrangian_stats.read_Scalar(file0_25,zn,yn_25,xn_25) T_50 = lagrangian_stats.read_Scalar(file0_50,zn,yn_50,xn_50) mld_t = [] for x in range(len(Xlist_50)): for y in range(len(Ylist_50)): ml = T_50[:,x,y] mls = np.cumsum(ml)/range(1,len(ml)+1) mlst, = np.where(mls>=ml) mld_t.append(Zlist[mlst[len(mlst)-1]]) mld_50[t] = np.mean(mld_t) mld_t = [] for x in range(len(Xlist_25)): for y in range(len(Ylist_25)): ml = T_25[:,x,y] mls = np.cumsum(ml)/range(1,len(ml)+1) mlst, = np.where(mls>=ml) mld_t.append(Zlist[mlst[len(mlst)-1]]) mld_25[t] = np.mean(mld_t) mld_t = [] for x in range(len(Xlist_10)): for y in range(len(Ylist_10)): ml = T_10[:,x,y] mls = np.cumsum(ml)/range(1,len(ml)+1) mlst, = np.where(mls>=ml) mld_t.append(Zlist[mlst[len(mlst)-1]]) mld_10[t] = np.mean(mld_t) FW_m = -9 FW_M = -5 plt.figure(figsize=(8,4)) plt.contourf(time,Zlist,np.log10(FW_t50),np.linspace(FW_m,FW_M,30),extend='both') plt.colorbar() plt.plot(time,mld_50,'k') plt.xlabel('Time',fontsize=18) plt.ylabel('Depth',fontsize=18) plt.xlim([24,48]) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) #plt.yticks(fontsize=16) plt.savefig('./plot/'+label+'/'+file1_50+'.eps',bbox_inches='tight') print './plot/'+label+'/'+file1_50+'.eps' plt.close() ### plt.figure(figsize=(8,4)) plt.contourf(time,Zlist,np.log10(FW_t25),np.linspace(FW_m,FW_M,30),extend='both') plt.colorbar() plt.plot(time,mld_25,'k') plt.xlabel('Time',fontsize=18) plt.ylabel('Depth',fontsize=18) plt.xlim([24,48]) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) #plt.yticks(fontsize=16) plt.savefig('./plot/'+label+'/'+file1_25+'.eps',bbox_inches='tight') print './plot/'+label+'/'+file1_25+'.eps' plt.close() plt.figure(figsize=(8,4)) plt.contourf(time,Zlist,np.log10(FW_t10),np.linspace(FW_m,FW_M,30),extend='both') plt.colorbar() plt.plot(time,mld_10,'k') plt.xlabel('Time',fontsize=18) plt.ylabel('Depth',fontsize=18) plt.xlim([24,48]) #plt.xticks(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7),np.round(np.linspace(np.min(w[w>0]),np.max(w[w>0]),7)*360000)/100,fontsize=16) #plt.yticks(fontsize=16) plt.savefig('./plot/'+label+'/'+file1_10+'.eps',bbox_inches='tight') print './plot/'+label+'/'+file1_10+'.eps' plt.close()
gpl-2.0
Adai0808/scikit-learn
sklearn/manifold/tests/test_t_sne.py
162
9771
import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises_regexp from sklearn.utils import check_random_state from sklearn.manifold.t_sne import _joint_probabilities from sklearn.manifold.t_sne import _kl_divergence from sklearn.manifold.t_sne import _gradient_descent from sklearn.manifold.t_sne import trustworthiness from sklearn.manifold.t_sne import TSNE from sklearn.manifold._utils import _binary_search_perplexity from scipy.optimize import check_grad from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform def test_gradient_descent_stops(): # Test stopping conditions of gradient descent. class ObjectiveSmallGradient: def __init__(self): self.it = -1 def __call__(self, _): self.it += 1 return (10 - self.it) / 10.0, np.array([1e-5]) def flat_function(_): return 0.0, np.ones(1) # Gradient norm old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=1e-5, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 1.0) assert_equal(it, 0) assert("gradient norm" in out) # Error difference old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=100, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.2, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.9) assert_equal(it, 1) assert("error difference" in out) # Maximum number of iterations without improvement old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( flat_function, np.zeros(1), 0, n_iter=100, n_iter_without_progress=10, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=-1.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 11) assert("did not make any progress" in out) # Maximum number of iterations old_stdout = sys.stdout sys.stdout = StringIO() try: _, error, it = _gradient_descent( ObjectiveSmallGradient(), np.zeros(1), 0, n_iter=11, n_iter_without_progress=100, momentum=0.0, learning_rate=0.0, min_gain=0.0, min_grad_norm=0.0, min_error_diff=0.0, verbose=2) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert_equal(error, 0.0) assert_equal(it, 10) assert("Iteration 10" in out) def test_binary_search(): # Test if the binary search finds Gaussians with desired perplexity. random_state = check_random_state(0) distances = random_state.randn(50, 2) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) desired_perplexity = 25.0 P = _binary_search_perplexity(distances, desired_perplexity, verbose=0) P = np.maximum(P, np.finfo(np.double).eps) mean_perplexity = np.mean([np.exp(-np.sum(P[i] * np.log(P[i]))) for i in range(P.shape[0])]) assert_almost_equal(mean_perplexity, desired_perplexity, decimal=3) def test_gradient(): # Test gradient of Kullback-Leibler divergence. random_state = check_random_state(0) n_samples = 50 n_features = 2 n_components = 2 alpha = 1.0 distances = random_state.randn(n_samples, n_features) distances = distances.dot(distances.T) np.fill_diagonal(distances, 0.0) X_embedded = random_state.randn(n_samples, n_components) P = _joint_probabilities(distances, desired_perplexity=25.0, verbose=0) fun = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[0] grad = lambda params: _kl_divergence(params, P, alpha, n_samples, n_components)[1] assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0, decimal=5) def test_trustworthiness(): # Test trustworthiness score. random_state = check_random_state(0) # Affine transformation X = random_state.randn(100, 2) assert_equal(trustworthiness(X, 5.0 + X / 10.0), 1.0) # Randomly shuffled X = np.arange(100).reshape(-1, 1) X_embedded = X.copy() random_state.shuffle(X_embedded) assert_less(trustworthiness(X, X_embedded), 0.6) # Completely different X = np.arange(5).reshape(-1, 1) X_embedded = np.array([[0], [2], [4], [1], [3]]) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 0.2) def test_preserve_trustworthiness_approximately(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) for init in ('random', 'pca'): tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, init=init, random_state=0) X_embedded = tsne.fit_transform(X) assert_almost_equal(trustworthiness(X, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_fit_csr_matrix(): # X can be a sparse matrix. random_state = check_random_state(0) X = random_state.randn(100, 2) X[(np.random.randint(0, 100, 50), np.random.randint(0, 2, 50))] = 0.0 X_csr = sp.csr_matrix(X) tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, random_state=0) X_embedded = tsne.fit_transform(X_csr) assert_almost_equal(trustworthiness(X_csr, X_embedded, n_neighbors=1), 1.0, decimal=1) def test_preserve_trustworthiness_approximately_with_precomputed_distances(): # Nearest neighbors should be preserved approximately. random_state = check_random_state(0) X = random_state.randn(100, 2) D = squareform(pdist(X), "sqeuclidean") tsne = TSNE(n_components=2, perplexity=10, learning_rate=100.0, metric="precomputed", random_state=0) X_embedded = tsne.fit_transform(D) assert_almost_equal(trustworthiness(D, X_embedded, n_neighbors=1, precomputed=True), 1.0, decimal=1) def test_early_exaggeration_too_small(): # Early exaggeration factor must be >= 1. tsne = TSNE(early_exaggeration=0.99) assert_raises_regexp(ValueError, "early_exaggeration .*", tsne.fit_transform, np.array([[0.0]])) def test_too_few_iterations(): # Number of gradient descent iterations must be at least 200. tsne = TSNE(n_iter=199) assert_raises_regexp(ValueError, "n_iter .*", tsne.fit_transform, np.array([[0.0]])) def test_non_square_precomputed_distances(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed") assert_raises_regexp(ValueError, ".* square distance matrix", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_init_not_available(): # 'init' must be 'pca' or 'random'. assert_raises_regexp(ValueError, "'init' must be either 'pca' or 'random'", TSNE, init="not available") def test_distance_not_available(): # 'metric' must be valid. tsne = TSNE(metric="not available") assert_raises_regexp(ValueError, "Unknown metric not available.*", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_pca_initialization_not_compatible_with_precomputed_kernel(): # Precomputed distance matrices must be square matrices. tsne = TSNE(metric="precomputed", init="pca") assert_raises_regexp(ValueError, "The parameter init=\"pca\" cannot be " "used with metric=\"precomputed\".", tsne.fit_transform, np.array([[0.0], [1.0]])) def test_verbose(): random_state = check_random_state(0) tsne = TSNE(verbose=2) X = random_state.randn(5, 2) old_stdout = sys.stdout sys.stdout = StringIO() try: tsne.fit_transform(X) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[t-SNE]" in out) assert("Computing pairwise distances" in out) assert("Computed conditional probabilities" in out) assert("Mean sigma" in out) assert("Finished" in out) assert("early exaggeration" in out) assert("Finished" in out) def test_chebyshev_metric(): # t-SNE should allow metrics that cannot be squared (issue #3526). random_state = check_random_state(0) tsne = TSNE(metric="chebyshev") X = random_state.randn(5, 2) tsne.fit_transform(X) def test_reduction_to_one_component(): # t-SNE should allow reduction to one component (issue #4154). random_state = check_random_state(0) tsne = TSNE(n_components=1) X = random_state.randn(5, 2) X_embedded = tsne.fit(X).embedding_ assert(np.all(np.isfinite(X_embedded)))
bsd-3-clause
badele/SDRHunter
SDRHunter/SDRHunter.py
2
28783
#!/usr/bin/env python # -*- coding: utf-8 -*- __authors__ = 'Bruno Adelé <[email protected]>' __copyright__ = 'Copyright (C) 2014 Bruno Adelé' __description__ = """Tools for searching the radio of signal""" __license__ = 'GPL' __version__ = '0.0.1' import os import sys import json import shlex import time import pprint import argparse import subprocess #from collections import OrderedDict #import matplotlib.pyplot as plt import numpy as np import scipy.signal as signal from tabulate import tabulate import commons # Todo: In searchstations, save after Nb Loop # TODO: rename range into freqs_range # TODO: search best bandwith for windows and 1s # TODO: Optimise call function, ex: scan,zoomedscan, gensummaries, etc ...as # TODO: Analyse if zoomedscan must merge with scan function # Unit conversion HzUnities = {'M': 1e6, 'k': 1e3} secUnities = {'s': 1, 'm': 60, 'h': 3600} # Class for terminal Color class tcolor: DEFAULT = "\033[0m" BOLD = "\033[1m" RED = "\033[0;1;31;40m" GREEN = "\033[0;1;32;40m" BLUE = "\033[0;1;36;40m" ORANGE = "\033[0;1;33;40m" MAGENTA = "\033[0;1;36;40m" RESET = "\033[2J\033[H" BELL = "\a" def showVerbose(config, mess): if config['global']['verbose']: print mess def loadJSON(filename): exists = os.path.isfile(filename) if exists: configlines = open(filename).read() content = json.loads(configlines) return content return None def saveJSON(filename,content): with open(filename, 'w') as f: jsontext = json.dumps( content, sort_keys=True, indent=4, separators=(',', ': ') ) f.write(jsontext) f.close() def loadStations(filename): stations = loadJSON(filename) if not stations: stations = {'stations': []} return stations def calcFilename(scanlevel, start, gain): filename = "%sHz-%sHz-%07.2fdB-%sHz-%s-%s" % ( commons.float2Hz(start, 3, True), commons.float2Hz(start + scanlevel['windows'], 3, True), gain, commons.float2Hz(scanlevel['binsize'], 3, True), commons.float2Sec(scanlevel['interval']), commons.float2Sec(scanlevel['quitafter']) ) fullname = os.path.join(scanlevel['scandir'], filename) return fullname def createScanInfoFile(cmdargs, config, scanlevel, start, gain): filename = calcFilename(scanlevel, start, gain) scaninfofilename = "%s.scaninfo" % filename scaninfo = {} scaninfo['arguments'] = config['arguments'] scaninfo['global'] = config['global'] scaninfo['scanlevel'] = scanlevel saveJSON(scaninfofilename, scaninfo) def executeShell(cmd, directory=None): p = subprocess.Popen(cmd, shell=True, cwd=directory, stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, errors = p.communicate() if p.returncode: print 'Failed running %s' % cmd raise Exception(output) else: pass return output def executeRTLPower(cmdargs, config, scanlevel, start): # Create directory if not exists if not os.path.isdir(scanlevel['scandir']): print "executeRTLPower SCANDIR: %s" % scanlevel['scandir'] os.makedirs(scanlevel['scandir']) for gain in scanlevel['gains']: filename = calcFilename(scanlevel, start, gain) # Ignore call rtl_power if file already exist csv_filename = "%s.csv" % filename exists = os.path.isfile(csv_filename) if exists: showVerbose( config, "%sScan '%s' : %shz-%shz already exists%s" % ( tcolor.GREEN, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), tcolor.DEFAULT ) ) return else: running_filename = "%s.running" % filename exists = os.path.isfile(running_filename) if exists: print "%sScan '%s' : delete old running file %shz-%shz" % ( tcolor.DEFAULT, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), ) os.remove(running_filename) print "%sScan '%s' : %shz-%shz with %s gain / Begin: %s / Finish in: ~%s" % ( tcolor.DEFAULT, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), gain, time.strftime("%H:%M:%S", time.localtime()), commons.float2Sec(scanlevel['quitafter']), ) cmddir = None if os.name == "nt": cmddir = "C:\\SDRHunter\\rtl-sdr-release\\x32" cmd = "rtl_power -p %s -g %s -f %s:%s:%s -i %s -e %s \"%s\"" % ( config['global']['ppm'], gain, start, start + scanlevel['windows'], scanlevel['binsize'], scanlevel['interval'], scanlevel['quitafter'], running_filename ) # Create Scan info file createScanInfoFile(cmdargs, config, scanlevel, start, gain) # Call rtl_power shell command executeShell(cmd, cmddir) # Rename file os.rename(running_filename, csv_filename) def loadOrGenerateSummaryFile(csv_filename): (filename, ext) = os.path.splitext(csv_filename) summary_filename = '%s%s' % (filename, '.summary') sdrdatas = commons.SDRDatas(csv_filename) sdrdatas.genSummarizeSignal() saveJSON(summary_filename, sdrdatas.summaries) def executeSumarizeSignals(cmdargs, config, scanlevel, start): for gain in scanlevel['gains']: filename = calcFilename(scanlevel, start, gain) # ignore if rtl_power file not exists csv_filename = "%s.csv" % filename exists = os.path.isfile(csv_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, csv_filename, tcolor.DEFAULT, ) ) continue # Ignore call summary if file already exist summary_filename = "%s.summary" % filename exists = os.path.isfile(summary_filename) if exists: showVerbose( config, "%sSummarize '%s' : %shz-%shz%s for %s gain" % ( tcolor.GREEN, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), gain, tcolor.DEFAULT, ) ) continue print "%sSummarize '%s' : %shz-%shz for %s gain" % ( tcolor.DEFAULT, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), gain ) sdrdatas = commons.SDRDatas(csv_filename) sdrdatas.genSummarizeSignal() saveJSON(summary_filename, sdrdatas.summaries) def executeSearchStations(config, stations, scanlevel, start): filename = calcFilename(scanlevel, start) # ignore if rtl_power file not exists csv_filename = "%s.csv" % filename exists = os.path.isfile(csv_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, csv_filename, tcolor.DEFAULT, ) ) return # Ignore if call summary not exist summary_filename = "%s.summary" % filename exists = os.path.isfile(summary_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, summary_filename, tcolor.DEFAULT, ) ) return summaries = loadJSON(summary_filename) print "%sFind stations '%s' : %shz-%shz" % ( tcolor.DEFAULT, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), ) smooth_max = commons.smooth(np.array(summaries['max']['signal']),10, 'flat') limitmin = summaries['min']['peak']['min']['mean'] - summaries['min']['peak']['min']['std'] limitmax = summaries['max']['mean'] + summaries['max']['std'] searchStation(scanlevel, stations, summaries, smooth_max, limitmin, limitmax) def executeHeatmapParameters(cmdargs, config, scanlevel, start): for gain in scanlevel['gains']: filename = calcFilename(scanlevel, start, gain) # Ignore if summary file not exists summary_filename = "%s.summary" % filename exists = os.path.isfile(summary_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, summary_filename, tcolor.DEFAULT, ) ) continue summaries = loadJSON(summary_filename) params_filename = "%s.hparam" % filename exists = os.path.isfile(params_filename) if exists: showVerbose( config, "%sHeatmap Parameter '%s' : %shz-%shz%s" % ( tcolor.GREEN, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), tcolor.DEFAULT, ) ) continue print "%sHeatmap Parameter '%s' : %shz-%shz for % gain" % ( tcolor.DEFAULT, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), gain, ) parameters = {} parameters['reversetextorder'] = True # Db #parameters['db'] = {} ##parameters['db']['mean'] = summaries['avg']['mean'] #parameters['db']['min'] = summaries['avg']['min'] #parameters['db']['max'] = summaries['avg']['max'] # Text parameters['texts'] = [] parameters['texts'].append({'text': "Min signal: %.2f" % summaries['avg']['min']}) parameters['texts'].append({'text': "Max signal: %.2f" % summaries['avg']['max']}) parameters['texts'].append({'text': "Mean signal: %.2f" % summaries['avg']['mean']}) parameters['texts'].append({'text': "Std signal: %.2f" % summaries['avg']['std']}) parameters['texts'].append({'text': ""}) parameters['texts'].append({'text': "avg min %.2f" % summaries['avg']['min']}) parameters['texts'].append({'text': "std min %.2f" % summaries['avg']['std']}) # Add sscanlevel stations name in legends if 'stationsfilename' in scanlevel or 'heatmap' in config['global']: parameters['legends'] = [] if 'stationsfilename' in scanlevel: parameters['legends'].append(scanlevel['stationsfilename']) if 'heatmap' in config['global']: # Add global stations name in legends if 'heatmap' in config['global'] and "stationsfilenames" in config['global']['heatmap']: for stationsfilename in config['global']['heatmap']['stationsfilenames']: parameters['legends'].append(stationsfilename) saveJSON(params_filename, parameters) def executeHeatmap(cmdargs, config, scanlevel, start): for gain in scanlevel['gains']: filename = calcFilename(scanlevel, start, gain) csv_filename = "%s.csv" % filename exists = os.path.isfile(csv_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, csv_filename, tcolor.DEFAULT, ) ) continue params_filename = "%s.hparam" % filename exists = os.path.isfile(params_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, params_filename, tcolor.DEFAULT, ) ) continue # Check if scan exist img_filename = "%s_heatmap.png" % filename exists = os.path.isfile(img_filename) if exists: showVerbose( config, "%sHeatmap '%s' : %shz-%shz%s" % ( tcolor.GREEN, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), tcolor.DEFAULT ) ) continue print "%sHeatmap '%s' : %shz-%shz for %s gain" % ( tcolor.DEFAULT, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), gain, ) print "CSV: %s" % csv_filename datas = commons.SDRDatas(csv_filename) for line in datas.samples: print len(line) print "" # # Check calc or check if Heatmap paramters exists # cmd = "python heatmap.py --parameters %s %s %s" % ( # params_filename, # csv_filename, # img_filename # ) # print cmd # # # Call heatmap.py shell command # executeShell(cmd, config['global']['heatmap']['dirname']) def executeSpectre(cmdargs, config, scanlevel, start): for gain in scanlevel['gains']: filename = calcFilename(scanlevel, start, gain) csv_filename = "%s.csv" % filename exists = os.path.isfile(csv_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, csv_filename, tcolor.DEFAULT, ) ) return # Ignore if summary file not exists summary_filename = "%s.summary" % filename exists = os.path.isfile(summary_filename) if not exists: showVerbose( config, "%s %s not exist%s" % ( tcolor.RED, summary_filename, tcolor.DEFAULT, ) ) return summaries = loadJSON(summary_filename) # Check if scan exist img_filename = "%s_spectre.png" % filename exists = os.path.isfile(img_filename) if exists: showVerbose( config, "%sSpectre '%s' : %shz-%shz%s" % ( tcolor.GREEN, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), tcolor.DEFAULT ) ) return print "%sSpectre '%s' : %shz-%shz" % ( tcolor.DEFAULT, scanlevel['name'], commons.float2Hz(start), commons.float2Hz(start + scanlevel['windows']), ) plt.figure(figsize=(15,10)) plt.grid() freqs = np.linspace(summaries['freq']['start'], summaries['freq']['end'], num=summaries['samples']['nbsamplescolumn']) limitmin = summaries['min']['peak']['min']['mean'] - summaries['min']['peak']['min']['std'] limitmax = summaries['max']['mean'] + summaries['max']['std'] limits = np.linspace(limitmin, limitmax, 5) # Max for limit in limits: plt.axhline(limit, color='blue') smooth_max = commons.smooth(np.array(summaries['max']['signal']),10, 'flat') plt.plot(freqs, smooth_max[:len(freqs)],color='red') # Set X Limit locs, labels = plt.xticks() for idx in range(len(labels)): labels[idx] = commons.float2Hz(locs[idx]) plt.xticks(locs, labels) plt.xlabel('Freq in Hz') # Set Y Limit # plt.ylim(summary['groundsignal'], summary['maxsignal']) plt.ylabel('Power density in dB') plt.savefig(img_filename) plt.close() def showInfo(config, args): # Show config result_scan = [] if 'configs' in config: for configname in config['configs']: result_scan.append( [ configname, config['configs'][configname]['location'], config['configs'][configname]['antenna'], ] ) header = ['Config name', 'Location','Antenna'] print tabulate(result_scan, headers=header, stralign="right") print "" # Show the scan information table result_scan = [] if 'scans' in config: for scanlevel in config['scans']: result_scan.append( [ "%sHz" % commons.float2Hz(scanlevel['freq_start']), "%sHz" % commons.float2Hz(scanlevel['freq_end']), "%sHz" % commons.float2Hz(scanlevel['windows']), commons.float2Sec(scanlevel['interval']), scanlevel['nbsamples_lines'], commons.float2Sec(commons.sec2Float(scanlevel['interval']) * scanlevel['nbsamples_lines']), # scanlevel['quitafter'], scanlevel['maxlevel_legend'], ] ) header = [ 'Freq. Start', 'Freq. End', 'Windows', 'Interval', 'Nb lines', 'Total time', 'Max legend level' ] print tabulate(result_scan, headers=header, stralign="right") # Show global config if 'global' in config: pprint.pprint(config['global'],indent=2) def searchStation(scanlevel, stations, summaries, samples, limitmin, limitmax): #search_limit = sorted(limit_list) freqstep = summaries['freq']['step'] stations['stations'] = sorted(stations['stations'], key=lambda x: commons.hz2Float(x['freq_center']) - commons.hz2Float((x['bw']))) bwmin = commons.hz2Float(scanlevel['minscanbw']) bwmax = commons.hz2Float(scanlevel['maxscanbw']) limits = np.linspace(limitmin, limitmax, 5) for limit in limits: # Search peak upper than limit startup = -1 foundlower = False for idx in np.arange(len(samples)): powerdb = samples[idx] isup = powerdb > limit # Search first lower limit signal if not foundlower: if not isup: foundlower = True else: continue # Find first upper if startup == -1: if isup: startup = idx maxidx = startup maxdb = powerdb else: # If upper, check if db is upper if isup: if powerdb > maxdb: maxdb = powerdb maxidx = idx # If lower, calc bandwidth and max db else: endup = idx - 1 bw_nbstep = endup - startup bw = bw_nbstep * freqstep freqidx = startup + int(bw_nbstep / 2) # TODO: compare with freqidx, set % error ? freq_center = summaries['freq']['start'] + (maxidx * freqstep) freq_center = summaries['freq']['start'] + (freqidx * freqstep) freq_left = freq_center - bw deltadb = (maxdb - limit) if bwmin <= bw <= bwmax and deltadb > scanlevel['minrelativedb']: print "Freq:%s / Bw:%s / Abs: %s dB / From ground:%.2f dB" % (commons.float2Hz(freq_center), commons.float2Hz(bw), maxdb, maxdb - limitmax) found = False for station in stations['stations']: if freq_center >= commons.hz2Float(station['freq_center']) - bw and freq_center <= commons.hz2Float(station['freq_center']) + bw: found = True break if not found: stations['stations'].append( {'freq_center': commons.float2Hz(freq_center), 'bw': commons.float2Hz(bw), 'powerdb': float("%.2f" % maxdb), 'relativedb': float("%.2f" % (maxdb - limitmin)) } ) stations['stations'] = sorted(stations['stations'], key=lambda x: commons.hz2Float(x['freq_center']) - commons.hz2Float(x['bw'])) startup = -1 def scan(config, args): if 'scans' in config: for scanlevel in config['scans']: if not scanlevel['scanfromstations']: range = np.linspace(scanlevel['freq_start'],scanlevel['freq_end'], num=scanlevel['nbstep'], endpoint=False) for left_freq in range: executeRTLPower(args, config, scanlevel, left_freq) def zoomedscan(config, args): if 'scans' in config: for scanlevel in config['scans']: if scanlevel['scanfromstations']: stations = loadJSON(scanlevel['stationsfilename']) confirmed_station = [] for station in stations['stations']: if 'name' in station: confirmed_station.append(station) for station in confirmed_station: freq_left = commons.hz2Float(station['freq_center']) - commons.hz2Float(scanlevel['windows'] / 2) executeRTLPower(args, config, scanlevel, freq_left) def generateSummaries(config, args): if 'scans' in config: for scanlevel in config['scans']: range = np.linspace(scanlevel['freq_start'],scanlevel['freq_end'], num=scanlevel['nbstep'], endpoint=False) for left_freq in range: executeSumarizeSignals(args, config, scanlevel, left_freq) # For scanlevel with stationsfilename if 'stationsfilename' in scanlevel: stations = loadJSON(scanlevel['stationsfilename']) if stations: confirmed_station = [] for station in stations['stations']: if 'name' in station: confirmed_station.append(station) for station in confirmed_station: freq_left = commons.hz2Float(station['freq_center']) - commons.hz2Float(scanlevel['windows'] / 2) executeSumarizeSignals(args, config, scanlevel, freq_left) def searchStations(config, args): if 'scans' in config: for scanlevel in config['scans']: stations_filename = os.path.join(config['global']['rootdir'], args.location, "scanresult.json") stations = loadStations(stations_filename) range = np.linspace(scanlevel['freq_start'],scanlevel['freq_end'], num=scanlevel['nbstep'], endpoint=False) for left_freq in range: executeSearchStations(config, stations, scanlevel, left_freq) saveJSON(stations_filename, stations) def generateHeatmapParameters(config, args): if 'scans' in config: for scanlevel in config['scans']: range = np.linspace(scanlevel['freq_start'],scanlevel['freq_end'], num=scanlevel['nbstep'], endpoint=False) for left_freq in range: executeHeatmapParameters(args, config, scanlevel, left_freq) # For scanlevel with stationsfilename if 'stationsfilename' in scanlevel: stations = loadJSON(scanlevel['stationsfilename']) confirmed_station = [] for station in stations['stations']: if 'name' in station: confirmed_station.append(station) for station in confirmed_station: freq_left = commons.hz2Float(station['freq_center']) - commons.hz2Float(scanlevel['windows'] / 2) executeHeatmapParameters(args, config, scanlevel, freq_left) def generateHeatmaps(config, args): if 'scans' in config: for scanlevel in config['scans']: range = np.linspace(scanlevel['freq_start'],scanlevel['freq_end'], num=scanlevel['nbstep'], endpoint=False) for left_freq in range: executeHeatmap(args, config, scanlevel, left_freq) # For scanlevel with stationsfilename if 'stationsfilename' in scanlevel: stations = loadJSON(scanlevel['stationsfilename']) confirmed_station = [] for station in stations['stations']: if 'name' in station: confirmed_station.append(station) for station in confirmed_station: freq_left = commons.hz2Float(station['freq_center']) - commons.hz2Float(scanlevel['windows'] / 2) executeHeatmap(args, config, scanlevel, freq_left) def generateSpectres(config, args): if 'scans' in config: for scanlevel in config['scans']: range = np.linspace(scanlevel['freq_start'],scanlevel['freq_end'], num=scanlevel['nbstep'], endpoint=False) for left_freq in range: executeSpectre(args, config, scanlevel, left_freq) # For scanlevel with stationsfilename if 'stationsfilename' in scanlevel: stations = loadJSON(scanlevel['stationsfilename']) confirmed_station = [] for station in stations['stations']: if 'name' in station: confirmed_station.append(station) for station in confirmed_station: freq_left = commons.hz2Float(station['freq_center']) - commons.hz2Float(scanlevel['windows'] / 2) executeSpectre(args, config, scanlevel, freq_left) def parse_arguments(cmdline=""): """Parse the arguments""" parser = argparse.ArgumentParser( description=__description__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( '-a', '--action', action='store', dest='action', default='infos', choices=[ 'infos', 'scan', 'zoomedscan', 'gensummaries', 'searchstations', 'genheatmapparameters', 'genheatmaps', 'genspectres' ], help='Action' ) parser.add_argument( '-l', '--location', action='store', dest='location', required=True, help='Scan location' ) parser.add_argument( '-f', '--filename', action='store', dest='filename', default='sdrhunter.json', help='JSON config filename' ) parser.add_argument( '-c', '--configname', action='store', dest='configname', default=None, help='Config name' ) parser.add_argument( '-v', '--version', action='version', version='%(prog)s {version}'.format(version=__version__) ) a = parser.parse_args(cmdline) return a def main(): # Parse arguments args = parse_arguments(sys.argv[1:]) # pragma: no cover # Load JSON config config = commons.loadConfigFile(commons.getJSONConfigFilename(), args) if not config: raise Exception("No infos found in %s" % args.filename) # Execute successive action if args.action: if 'infos' == args.action: showInfo(config, args) if 'scan' == args.action: scan(config, args) if 'zoomedscan' == args.action: zoomedscan(config, args) if 'gensummaries' == args.action: generateSummaries(config, args) if 'searchstations' == args.action: searchStations(config, args) if 'genheatmapparameters' == args.action: generateHeatmapParameters(config, args) if 'genheatmaps' == args.action: generateHeatmaps(config, args) if 'genspectres' == args.action: generateSpectres(config, args) if __name__ == '__main__': main() # pragma: no cover
gpl-3.0
pratyakshs/pgmpy
pgmpy/tests/test_models/test_BayesianModel.py
3
15775
import unittest import networkx as nx import pandas as pd import numpy as np import numpy.testing as np_test from pgmpy.models import BayesianModel import pgmpy.tests.help_functions as hf from pgmpy.factors import TabularCPD class TestBaseModelCreation(unittest.TestCase): def setUp(self): self.G = BayesianModel() def test_class_init_without_data(self): self.assertIsInstance(self.G, nx.DiGraph) def test_class_init_with_data_string(self): self.g = BayesianModel([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.g.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.g.edges()), [['a', 'b'], ['b', 'c']]) def test_class_init_with_data_nonstring(self): BayesianModel([(1, 2), (2, 3)]) def test_add_node_string(self): self.G.add_node('a') self.assertListEqual(self.G.nodes(), ['a']) def test_add_node_nonstring(self): self.G.add_node(1) def test_add_nodes_from_string(self): self.G.add_nodes_from(['a', 'b', 'c', 'd']) self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c', 'd']) def test_add_nodes_from_non_string(self): self.G.add_nodes_from([1, 2, 3, 4]) def test_add_edge_string(self): self.G.add_edge('d', 'e') self.assertListEqual(sorted(self.G.nodes()), ['d', 'e']) self.assertListEqual(self.G.edges(), [('d', 'e')]) self.G.add_nodes_from(['a', 'b', 'c']) self.G.add_edge('a', 'b') self.assertListEqual(hf.recursive_sorted(self.G.edges()), [['a', 'b'], ['d', 'e']]) def test_add_edge_nonstring(self): self.G.add_edge(1, 2) def test_add_edge_selfloop(self): self.assertRaises(ValueError, self.G.add_edge, 'a', 'a') def test_add_edge_result_cycle(self): self.G.add_edges_from([('a', 'b'), ('a', 'c')]) self.assertRaises(ValueError, self.G.add_edge, 'c', 'a') def test_add_edges_from_string(self): self.G.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.G.edges()), [['a', 'b'], ['b', 'c']]) self.G.add_nodes_from(['d', 'e', 'f']) self.G.add_edges_from([('d', 'e'), ('e', 'f')]) self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c', 'd', 'e', 'f']) self.assertListEqual(hf.recursive_sorted(self.G.edges()), hf.recursive_sorted([('a', 'b'), ('b', 'c'), ('d', 'e'), ('e', 'f')])) def test_add_edges_from_nonstring(self): self.G.add_edges_from([(1, 2), (2, 3)]) def test_add_edges_from_self_loop(self): self.assertRaises(ValueError, self.G.add_edges_from, [('a', 'a')]) def test_add_edges_from_result_cycle(self): self.assertRaises(ValueError, self.G.add_edges_from, [('a', 'b'), ('b', 'c'), ('c', 'a')]) def test_update_node_parents_bm_constructor(self): self.g = BayesianModel([('a', 'b'), ('b', 'c')]) self.assertListEqual(self.g.predecessors('a'), []) self.assertListEqual(self.g.predecessors('b'), ['a']) self.assertListEqual(self.g.predecessors('c'), ['b']) def test_update_node_parents(self): self.G.add_nodes_from(['a', 'b', 'c']) self.G.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertListEqual(self.G.predecessors('a'), []) self.assertListEqual(self.G.predecessors('b'), ['a']) self.assertListEqual(self.G.predecessors('c'), ['b']) def tearDown(self): del self.G class TestBayesianModelMethods(unittest.TestCase): def setUp(self): self.G = BayesianModel([('a', 'd'), ('b', 'd'), ('d', 'e'), ('b', 'c')]) def test_moral_graph(self): moral_graph = self.G.moralize() self.assertListEqual(sorted(moral_graph.nodes()), ['a', 'b', 'c', 'd', 'e']) for edge in moral_graph.edges(): self.assertTrue(edge in [('a', 'b'), ('a', 'd'), ('b', 'c'), ('d', 'b'), ('e', 'd')] or (edge[1], edge[0]) in [('a', 'b'), ('a', 'd'), ('b', 'c'), ('d', 'b'), ('e', 'd')]) def test_moral_graph_with_edge_present_over_parents(self): G = BayesianModel([('a', 'd'), ('d', 'e'), ('b', 'd'), ('b', 'c'), ('a', 'b')]) moral_graph = G.moralize() self.assertListEqual(sorted(moral_graph.nodes()), ['a', 'b', 'c', 'd', 'e']) for edge in moral_graph.edges(): self.assertTrue(edge in [('a', 'b'), ('c', 'b'), ('d', 'a'), ('d', 'b'), ('d', 'e')] or (edge[1], edge[0]) in [('a', 'b'), ('c', 'b'), ('d', 'a'), ('d', 'b'), ('d', 'e')]) def tearDown(self): del self.G class TestBayesianModelCPD(unittest.TestCase): def setUp(self): self.G = BayesianModel([('d', 'g'), ('i', 'g'), ('g', 'l'), ('i', 's')]) def test_active_trail_nodes(self): self.assertEqual(sorted(self.G.active_trail_nodes('d')), ['d', 'g', 'l']) self.assertEqual(sorted(self.G.active_trail_nodes('i')), ['g', 'i', 'l', 's']) def test_active_trail_nodes_args(self): self.assertEqual(sorted(self.G.active_trail_nodes('d', observed='g')), ['d', 'i', 's']) self.assertEqual(sorted(self.G.active_trail_nodes('l', observed='g')), ['l']) self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['i', 'l'])), ['s']) self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['d', 'l'])), ['g', 'i', 's']) def test_is_active_trail_triplets(self): self.assertTrue(self.G.is_active_trail('d', 'l')) self.assertTrue(self.G.is_active_trail('g', 's')) self.assertFalse(self.G.is_active_trail('d', 'i')) self.assertTrue(self.G.is_active_trail('d', 'i', observed='g')) self.assertFalse(self.G.is_active_trail('d', 'l', observed='g')) self.assertFalse(self.G.is_active_trail('i', 'l', observed='g')) self.assertTrue(self.G.is_active_trail('d', 'i', observed='l')) self.assertFalse(self.G.is_active_trail('g', 's', observed='i')) def test_is_active_trail(self): self.assertFalse(self.G.is_active_trail('d', 's')) self.assertTrue(self.G.is_active_trail('s', 'l')) self.assertTrue(self.G.is_active_trail('d', 's', observed='g')) self.assertFalse(self.G.is_active_trail('s', 'l', observed='g')) def test_is_active_trail_args(self): self.assertFalse(self.G.is_active_trail('s', 'l', 'i')) self.assertFalse(self.G.is_active_trail('s', 'l', 'g')) self.assertTrue(self.G.is_active_trail('d', 's', 'l')) self.assertFalse(self.G.is_active_trail('d', 's', ['i', 'l'])) def test_get_cpds(self): cpd_d = TabularCPD('d', 2, np.random.rand(2, 1)) cpd_i = TabularCPD('i', 2, np.random.rand(2, 1)) cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2]) cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2) cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2) self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s) self.assertEqual(self.G.get_cpds('d').variable, 'd') def test_get_cpds1(self): self.model = BayesianModel([('A', 'AB')]) cpd_a = TabularCPD('A', 2, np.random.rand(2, 1)) cpd_ab = TabularCPD('AB', 2, np.random.rand(2, 2), evidence=['A'], evidence_card=[2]) self.model.add_cpds(cpd_a, cpd_ab) self.assertEqual(self.model.get_cpds('A').variable, 'A') self.assertEqual(self.model.get_cpds('AB').variable, 'AB') def test_add_single_cpd(self): from pgmpy.factors import TabularCPD cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2) self.G.add_cpds(cpd_s) self.assertListEqual(self.G.get_cpds(), [cpd_s]) def test_add_multiple_cpds(self): from pgmpy.factors import TabularCPD cpd_d = TabularCPD('d', 2, np.random.rand(2, 1)) cpd_i = TabularCPD('i', 2, np.random.rand(2, 1)) cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2]) cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2) cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2) self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s) self.assertEqual(self.G.get_cpds('d'), cpd_d) self.assertEqual(self.G.get_cpds('i'), cpd_i) self.assertEqual(self.G.get_cpds('g'), cpd_g) self.assertEqual(self.G.get_cpds('l'), cpd_l) self.assertEqual(self.G.get_cpds('s'), cpd_s) def tearDown(self): del self.G class TestBayesianModelFitPredict(unittest.TestCase): def setUp(self): self.model_disconnected = BayesianModel() self.model_disconnected.add_nodes_from(['A', 'B', 'C', 'D', 'E']) self.model_connected = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')]) def test_disconnected_fit(self): values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), columns=['A', 'B', 'C', 'D', 'E']) self.model_disconnected.fit(values) for node in ['A', 'B', 'C', 'D', 'E']: cpd = self.model_disconnected.get_cpds(node) self.assertEqual(cpd.variable, node) np_test.assert_array_equal(cpd.cardinality, np.array([2])) value = (values.ix[:, node].value_counts() / values.ix[:, node].value_counts().sum()).values np_test.assert_array_equal(cpd.values, value) def test_connected_predict(self): np.random.seed(42) values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)), columns=['A', 'B', 'C', 'D', 'E']) fit_data = values[:800] predict_data = values[800:].copy() self.model_connected.fit(fit_data) self.assertRaises(ValueError, self.model_connected.predict, predict_data) predict_data.drop('E', axis=1, inplace=True) e_predict = self.model_connected.predict(predict_data) np_test.assert_array_equal(e_predict.values.ravel(), np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0])) def tearDown(self): del self.model_connected del self.model_disconnected class TestDirectedGraphCPDOperations(unittest.TestCase): def setUp(self): self.graph = BayesianModel() def test_add_single_cpd(self): cpd = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd) self.assertListEqual(self.graph.get_cpds(), [cpd]) def test_add_multiple_cpds(self): cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1)) cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1)) cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd1, cpd2, cpd3) self.assertListEqual(self.graph.get_cpds(), [cpd1, cpd2, cpd3]) def test_remove_single_cpd(self): cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1)) cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1)) cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd1, cpd2, cpd3) self.graph.remove_cpds(cpd1) self.assertListEqual(self.graph.get_cpds(), [cpd2, cpd3]) def test_remove_multiple_cpds(self): cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1)) cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1)) cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd1, cpd2, cpd3) self.graph.remove_cpds(cpd1, cpd3) self.assertListEqual(self.graph.get_cpds(), [cpd2]) def test_remove_single_cpd_string(self): cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1)) cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1)) cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd1, cpd2, cpd3) self.graph.remove_cpds('diff') self.assertListEqual(self.graph.get_cpds(), [cpd2, cpd3]) def test_remove_multiple_cpds_string(self): cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1)) cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1)) cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd1, cpd2, cpd3) self.graph.remove_cpds('diff', 'grade') self.assertListEqual(self.graph.get_cpds(), [cpd2]) def test_get_cpd_for_node(self): cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1)) cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1)) cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd1, cpd2, cpd3) self.assertEqual(self.graph.get_cpds('diff'), cpd1) self.assertEqual(self.graph.get_cpds('intel'), cpd2) self.assertEqual(self.graph.get_cpds('grade'), cpd3) def test_get_cpd_raises_error(self): cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1)) cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1)) cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4), ['diff', 'intel'], [2, 2]) self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.graph.add_cpds(cpd1, cpd2, cpd3) self.assertRaises(ValueError, self.graph.get_cpds, 'sat') def tearDown(self): del self.graph
mit
jdmcbr/geopandas
geopandas/io/tests/test_file.py
1
25477
from collections import OrderedDict import datetime import io import os import pathlib import tempfile import numpy as np import pandas as pd import fiona from shapely.geometry import Point, Polygon, box import geopandas from geopandas import GeoDataFrame, read_file from geopandas.io.file import fiona_env from geopandas.testing import assert_geodataframe_equal, assert_geoseries_equal from geopandas.tests.util import PACKAGE_DIR, validate_boro_df import pytest _CRS = "epsg:4326" @pytest.fixture def df_nybb(): nybb_path = geopandas.datasets.get_path("nybb") df = read_file(nybb_path) return df @pytest.fixture def df_null(): return read_file( os.path.join(PACKAGE_DIR, "geopandas", "tests", "data", "null_geom.geojson") ) @pytest.fixture def file_path(): return os.path.join(PACKAGE_DIR, "geopandas", "tests", "data", "null_geom.geojson") @pytest.fixture def df_points(): N = 10 crs = _CRS df = GeoDataFrame( [ {"geometry": Point(x, y), "value1": x + y, "value2": x * y} for x, y in zip(range(N), range(N)) ], crs=crs, ) return df # ----------------------------------------------------------------------------- # to_file tests # ----------------------------------------------------------------------------- driver_ext_pairs = [("ESRI Shapefile", "shp"), ("GeoJSON", "geojson"), ("GPKG", "gpkg")] @pytest.mark.parametrize("driver,ext", driver_ext_pairs) def test_to_file(tmpdir, df_nybb, df_null, driver, ext): """ Test to_file and from_file """ tempfilename = os.path.join(str(tmpdir), "boros." + ext) df_nybb.to_file(tempfilename, driver=driver) # Read layer back in df = GeoDataFrame.from_file(tempfilename) assert "geometry" in df assert len(df) == 5 assert np.alltrue(df["BoroName"].values == df_nybb["BoroName"]) # Write layer with null geometry out to file tempfilename = os.path.join(str(tmpdir), "null_geom." + ext) df_null.to_file(tempfilename, driver=driver) # Read layer back in df = GeoDataFrame.from_file(tempfilename) assert "geometry" in df assert len(df) == 2 assert np.alltrue(df["Name"].values == df_null["Name"]) @pytest.mark.parametrize("driver,ext", driver_ext_pairs) def test_to_file_pathlib(tmpdir, df_nybb, df_null, driver, ext): """ Test to_file and from_file """ temppath = pathlib.Path(os.path.join(str(tmpdir), "boros." + ext)) df_nybb.to_file(temppath, driver=driver) # Read layer back in df = GeoDataFrame.from_file(temppath) assert "geometry" in df assert len(df) == 5 assert np.alltrue(df["BoroName"].values == df_nybb["BoroName"]) @pytest.mark.parametrize("driver,ext", driver_ext_pairs) def test_to_file_bool(tmpdir, driver, ext): """Test error raise when writing with a boolean column (GH #437).""" tempfilename = os.path.join(str(tmpdir), "temp.{0}".format(ext)) df = GeoDataFrame( { "a": [1, 2, 3], "b": [True, False, True], "geometry": [Point(0, 0), Point(1, 1), Point(2, 2)], } ) df.to_file(tempfilename, driver=driver) result = read_file(tempfilename) if driver == "GeoJSON": # geojson by default assumes epsg:4326 result.crs = None if driver == "ESRI Shapefile": # Shapefile does not support boolean, so is read back as int df["b"] = df["b"].astype("int64") assert_geodataframe_equal(result, df) def test_to_file_datetime(tmpdir): """Test writing a data file with the datetime column type""" tempfilename = os.path.join(str(tmpdir), "test_datetime.gpkg") point = Point(0, 0) now = datetime.datetime.now() df = GeoDataFrame({"a": [1, 2], "b": [now, now]}, geometry=[point, point], crs={}) df.to_file(tempfilename, driver="GPKG") df_read = read_file(tempfilename) assert_geoseries_equal(df.geometry, df_read.geometry) @pytest.mark.parametrize("driver,ext", driver_ext_pairs) def test_to_file_with_point_z(tmpdir, ext, driver): """Test that 3D geometries are retained in writes (GH #612).""" tempfilename = os.path.join(str(tmpdir), "test_3Dpoint." + ext) point3d = Point(0, 0, 500) point2d = Point(1, 1) df = GeoDataFrame({"a": [1, 2]}, geometry=[point3d, point2d], crs=_CRS) df.to_file(tempfilename, driver=driver) df_read = GeoDataFrame.from_file(tempfilename) assert_geoseries_equal(df.geometry, df_read.geometry) @pytest.mark.parametrize("driver,ext", driver_ext_pairs) def test_to_file_with_poly_z(tmpdir, ext, driver): """Test that 3D geometries are retained in writes (GH #612).""" tempfilename = os.path.join(str(tmpdir), "test_3Dpoly." + ext) poly3d = Polygon([[0, 0, 5], [0, 1, 5], [1, 1, 5], [1, 0, 5]]) poly2d = Polygon([[0, 0], [0, 1], [1, 1], [1, 0]]) df = GeoDataFrame({"a": [1, 2]}, geometry=[poly3d, poly2d], crs=_CRS) df.to_file(tempfilename, driver=driver) df_read = GeoDataFrame.from_file(tempfilename) assert_geoseries_equal(df.geometry, df_read.geometry) def test_to_file_types(tmpdir, df_points): """ Test various integer type columns (GH#93) """ tempfilename = os.path.join(str(tmpdir), "int.shp") int_types = [ np.int8, np.int16, np.int32, np.int64, np.intp, np.uint8, np.uint16, np.uint32, np.uint64, ] geometry = df_points.geometry data = dict( (str(i), np.arange(len(geometry), dtype=dtype)) for i, dtype in enumerate(int_types) ) df = GeoDataFrame(data, geometry=geometry) df.to_file(tempfilename) def test_to_file_int64(tmpdir, df_points): tempfilename = os.path.join(str(tmpdir), "int64.shp") geometry = df_points.geometry df = GeoDataFrame(geometry=geometry) df["data"] = pd.array([1, np.nan] * 5, dtype=pd.Int64Dtype()) df.to_file(tempfilename) df_read = GeoDataFrame.from_file(tempfilename) assert_geodataframe_equal(df_read, df, check_dtype=False, check_like=True) def test_to_file_empty(tmpdir): input_empty_df = GeoDataFrame() tempfilename = os.path.join(str(tmpdir), "test.shp") with pytest.raises(ValueError, match="Cannot write empty DataFrame to file."): input_empty_df.to_file(tempfilename) def test_to_file_privacy(tmpdir, df_nybb): tempfilename = os.path.join(str(tmpdir), "test.shp") with pytest.warns(DeprecationWarning): geopandas.io.file.to_file(df_nybb, tempfilename) def test_to_file_schema(tmpdir, df_nybb): """ Ensure that the file is written according to the schema if it is specified """ tempfilename = os.path.join(str(tmpdir), "test.shp") properties = OrderedDict( [ ("Shape_Leng", "float:19.11"), ("BoroName", "str:40"), ("BoroCode", "int:10"), ("Shape_Area", "float:19.11"), ] ) schema = {"geometry": "Polygon", "properties": properties} # Take the first 2 features to speed things up a bit df_nybb.iloc[:2].to_file(tempfilename, schema=schema) with fiona.open(tempfilename) as f: result_schema = f.schema assert result_schema == schema def test_to_file_column_len(tmpdir, df_points): """ Ensure that a warning about truncation is given when a geodataframe with column names longer than 10 characters is saved to shapefile """ tempfilename = os.path.join(str(tmpdir), "test.shp") df = df_points.iloc[:1].copy() df["0123456789A"] = ["the column name is 11 characters"] with pytest.warns( UserWarning, match="Column names longer than 10 characters will be truncated" ): df.to_file(tempfilename, driver="ESRI Shapefile") @pytest.mark.parametrize("driver,ext", driver_ext_pairs) def test_append_file(tmpdir, df_nybb, df_null, driver, ext): """ Test to_file with append mode and from_file """ from fiona import supported_drivers if "a" not in supported_drivers[driver]: return None tempfilename = os.path.join(str(tmpdir), "boros." + ext) df_nybb.to_file(tempfilename, driver=driver) df_nybb.to_file(tempfilename, mode="a", driver=driver) # Read layer back in df = GeoDataFrame.from_file(tempfilename) assert "geometry" in df assert len(df) == (5 * 2) expected = pd.concat([df_nybb] * 2, ignore_index=True) assert_geodataframe_equal(df, expected, check_less_precise=True) # Write layer with null geometry out to file tempfilename = os.path.join(str(tmpdir), "null_geom." + ext) df_null.to_file(tempfilename, driver=driver) df_null.to_file(tempfilename, mode="a", driver=driver) # Read layer back in df = GeoDataFrame.from_file(tempfilename) assert "geometry" in df assert len(df) == (2 * 2) expected = pd.concat([df_null] * 2, ignore_index=True) assert_geodataframe_equal(df, expected, check_less_precise=True) # ----------------------------------------------------------------------------- # read_file tests # ----------------------------------------------------------------------------- with fiona.open(geopandas.datasets.get_path("nybb")) as f: CRS = f.crs["init"] if "init" in f.crs else f.crs_wkt NYBB_COLUMNS = list(f.meta["schema"]["properties"].keys()) def test_read_file(df_nybb): df = df_nybb.rename(columns=lambda x: x.lower()) validate_boro_df(df) assert df.crs == CRS # get lower case columns, and exclude geometry column from comparison lower_columns = [c.lower() for c in NYBB_COLUMNS] assert (df.columns[:-1] == lower_columns).all() @pytest.mark.web def test_read_file_remote_geojson_url(): url = ( "https://raw.githubusercontent.com/geopandas/geopandas/" "master/geopandas/tests/data/null_geom.geojson" ) gdf = read_file(url) assert isinstance(gdf, geopandas.GeoDataFrame) @pytest.mark.web def test_read_file_remote_zipfile_url(): url = ( "https://raw.githubusercontent.com/geopandas/geopandas/" "master/geopandas/datasets/nybb_16a.zip" ) gdf = read_file(url) assert isinstance(gdf, geopandas.GeoDataFrame) def test_read_file_textio(file_path): file_text_stream = open(file_path) file_stringio = io.StringIO(open(file_path).read()) gdf_text_stream = read_file(file_text_stream) gdf_stringio = read_file(file_stringio) assert isinstance(gdf_text_stream, geopandas.GeoDataFrame) assert isinstance(gdf_stringio, geopandas.GeoDataFrame) def test_read_file_bytesio(file_path): file_binary_stream = open(file_path, "rb") file_bytesio = io.BytesIO(open(file_path, "rb").read()) gdf_binary_stream = read_file(file_binary_stream) gdf_bytesio = read_file(file_bytesio) assert isinstance(gdf_binary_stream, geopandas.GeoDataFrame) assert isinstance(gdf_bytesio, geopandas.GeoDataFrame) def test_read_file_raw_stream(file_path): file_raw_stream = open(file_path, "rb", buffering=0) gdf_raw_stream = read_file(file_raw_stream) assert isinstance(gdf_raw_stream, geopandas.GeoDataFrame) def test_read_file_pathlib(file_path): path_object = pathlib.Path(file_path) gdf_path_object = read_file(path_object) assert isinstance(gdf_path_object, geopandas.GeoDataFrame) def test_read_file_tempfile(): temp = tempfile.TemporaryFile() temp.write( b""" { "type": "Feature", "geometry": { "type": "Point", "coordinates": [0, 0] }, "properties": { "name": "Null Island" } } """ ) temp.seek(0) gdf_tempfile = geopandas.read_file(temp) assert isinstance(gdf_tempfile, geopandas.GeoDataFrame) temp.close() def test_read_binary_file_fsspec(): fsspec = pytest.importorskip("fsspec") # Remove the zip scheme so fsspec doesn't open as a zipped file, # instead we want to read as bytes and let fiona decode it. path = geopandas.datasets.get_path("nybb")[6:] with fsspec.open(path, "rb") as f: gdf = read_file(f) assert isinstance(gdf, geopandas.GeoDataFrame) def test_read_text_file_fsspec(file_path): fsspec = pytest.importorskip("fsspec") with fsspec.open(file_path, "r") as f: gdf = read_file(f) assert isinstance(gdf, geopandas.GeoDataFrame) def test_infer_zipped_file(): # Remove the zip scheme so that the test for a zipped file can # check it and add it back. path = geopandas.datasets.get_path("nybb")[6:] gdf = read_file(path) assert isinstance(gdf, geopandas.GeoDataFrame) # Check that it can sucessfully add a zip scheme to a path that already has a scheme gdf = read_file("file+file://" + path) assert isinstance(gdf, geopandas.GeoDataFrame) # Check that it can add a zip scheme for a path that includes a subpath # within the archive. gdf = read_file(path + "!nybb.shp") assert isinstance(gdf, geopandas.GeoDataFrame) def test_allow_legacy_gdal_path(): # Construct a GDAL-style zip path. path = "/vsizip/" + geopandas.datasets.get_path("nybb")[6:] gdf = read_file(path) assert isinstance(gdf, geopandas.GeoDataFrame) def test_read_file_filtered(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") bbox = ( 1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244, ) filtered_df = read_file(nybb_filename, bbox=bbox) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_read_file_filtered__rows(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") filtered_df = read_file(nybb_filename, rows=1) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (1, 5) def test_read_file_filtered__rows_bbox(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") bbox = ( 1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244, ) filtered_df = read_file(nybb_filename, bbox=bbox, rows=slice(-1, None)) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (1, 5) def test_read_file_filtered__rows_bbox__polygon(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") bbox = box( 1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244 ) filtered_df = read_file(nybb_filename, bbox=bbox, rows=slice(-1, None)) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (1, 5) def test_read_file_filtered_rows_invalid(): with pytest.raises(TypeError): read_file(geopandas.datasets.get_path("nybb"), rows="not_a_slice") def test_read_file__ignore_geometry(): pdf = geopandas.read_file( geopandas.datasets.get_path("naturalearth_lowres"), ignore_geometry=True ) assert "geometry" not in pdf.columns assert isinstance(pdf, pd.DataFrame) and not isinstance(pdf, geopandas.GeoDataFrame) def test_read_file__ignore_all_fields(): gdf = geopandas.read_file( geopandas.datasets.get_path("naturalearth_lowres"), ignore_fields=["pop_est", "continent", "name", "iso_a3", "gdp_md_est"], ) assert gdf.columns.tolist() == ["geometry"] def test_read_file_filtered_with_gdf_boundary(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") bbox = geopandas.GeoDataFrame( geometry=[ box( 1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244, ) ], crs=CRS, ) filtered_df = read_file(nybb_filename, bbox=bbox) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_read_file_filtered_with_gdf_boundary__mask(df_nybb): gdf_mask = geopandas.read_file(geopandas.datasets.get_path("naturalearth_lowres")) gdf = geopandas.read_file( geopandas.datasets.get_path("naturalearth_cities"), mask=gdf_mask[gdf_mask.continent == "Africa"], ) filtered_df_shape = gdf.shape assert filtered_df_shape == (50, 2) def test_read_file_filtered_with_gdf_boundary__mask__polygon(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") mask = box( 1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244 ) filtered_df = read_file(nybb_filename, mask=mask) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_read_file_filtered_with_gdf_boundary_mismatched_crs(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") bbox = geopandas.GeoDataFrame( geometry=[ box( 1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244, ) ], crs=CRS, ) bbox.to_crs(epsg=4326, inplace=True) filtered_df = read_file(nybb_filename, bbox=bbox) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_read_file_filtered_with_gdf_boundary_mismatched_crs__mask(df_nybb): full_df_shape = df_nybb.shape nybb_filename = geopandas.datasets.get_path("nybb") mask = geopandas.GeoDataFrame( geometry=[ box( 1031051.7879884212, 224272.49231459625, 1047224.3104931959, 244317.30894023244, ) ], crs=CRS, ) mask.to_crs(epsg=4326, inplace=True) filtered_df = read_file(nybb_filename, mask=mask.geometry) filtered_df_shape = filtered_df.shape assert full_df_shape != filtered_df_shape assert filtered_df_shape == (2, 5) def test_read_file_empty_shapefile(tmpdir): # create empty shapefile meta = { "crs": {}, "crs_wkt": "", "driver": "ESRI Shapefile", "schema": { "geometry": "Point", "properties": OrderedDict([("A", "int:9"), ("Z", "float:24.15")]), }, } fname = str(tmpdir.join("test_empty.shp")) with fiona_env(): with fiona.open(fname, "w", **meta) as _: # noqa pass empty = read_file(fname) assert isinstance(empty, geopandas.GeoDataFrame) assert all(empty.columns == ["A", "Z", "geometry"]) def test_read_file_privacy(tmpdir, df_nybb): with pytest.warns(DeprecationWarning): geopandas.io.file.read_file(geopandas.datasets.get_path("nybb")) class FileNumber(object): def __init__(self, tmpdir, base, ext): self.tmpdir = str(tmpdir) self.base = base self.ext = ext self.fileno = 0 def __repr__(self): filename = "{0}{1:02d}.{2}".format(self.base, self.fileno, self.ext) return os.path.join(self.tmpdir, filename) def __next__(self): self.fileno += 1 return repr(self) @pytest.mark.parametrize( "driver,ext", [("ESRI Shapefile", "shp"), ("GeoJSON", "geojson")] ) def test_write_index_to_file(tmpdir, df_points, driver, ext): fngen = FileNumber(tmpdir, "check", ext) def do_checks(df, index_is_used): # check combinations of index=None|True|False on GeoDataFrame/GeoSeries other_cols = list(df.columns) other_cols.remove("geometry") if driver == "ESRI Shapefile": # ESRI Shapefile will add FID if no other columns exist driver_col = ["FID"] else: driver_col = [] if index_is_used: index_cols = list(df.index.names) else: index_cols = [None] * len(df.index.names) # replicate pandas' default index names for regular and MultiIndex if index_cols == [None]: index_cols = ["index"] elif len(index_cols) > 1 and not all(index_cols): for level, index_col in enumerate(index_cols): if index_col is None: index_cols[level] = "level_" + str(level) # check GeoDataFrame with default index=None to autodetect tempfilename = next(fngen) df.to_file(tempfilename, driver=driver, index=None) df_check = read_file(tempfilename) if len(other_cols) == 0: expected_cols = driver_col[:] else: expected_cols = [] if index_is_used: expected_cols += index_cols expected_cols += other_cols + ["geometry"] assert list(df_check.columns) == expected_cols # similar check on GeoSeries with index=None tempfilename = next(fngen) df.geometry.to_file(tempfilename, driver=driver, index=None) df_check = read_file(tempfilename) if index_is_used: expected_cols = index_cols + ["geometry"] else: expected_cols = driver_col + ["geometry"] assert list(df_check.columns) == expected_cols # check GeoDataFrame with index=True tempfilename = next(fngen) df.to_file(tempfilename, driver=driver, index=True) df_check = read_file(tempfilename) assert list(df_check.columns) == index_cols + other_cols + ["geometry"] # similar check on GeoSeries with index=True tempfilename = next(fngen) df.geometry.to_file(tempfilename, driver=driver, index=True) df_check = read_file(tempfilename) assert list(df_check.columns) == index_cols + ["geometry"] # check GeoDataFrame with index=False tempfilename = next(fngen) df.to_file(tempfilename, driver=driver, index=False) df_check = read_file(tempfilename) if len(other_cols) == 0: expected_cols = driver_col + ["geometry"] else: expected_cols = other_cols + ["geometry"] assert list(df_check.columns) == expected_cols # similar check on GeoSeries with index=False tempfilename = next(fngen) df.geometry.to_file(tempfilename, driver=driver, index=False) df_check = read_file(tempfilename) assert list(df_check.columns) == driver_col + ["geometry"] return # # Checks where index is not used/saved # # index is a default RangeIndex df_p = df_points.copy() df = GeoDataFrame(df_p["value1"], geometry=df_p.geometry) do_checks(df, index_is_used=False) # index is a RangeIndex, starting from 1 df.index += 1 do_checks(df, index_is_used=False) # index is a Int64Index regular sequence from 1 df_p.index = list(range(1, len(df) + 1)) df = GeoDataFrame(df_p["value1"], geometry=df_p.geometry) do_checks(df, index_is_used=False) # index was a default RangeIndex, but delete one row to make an Int64Index df_p = df_points.copy() df = GeoDataFrame(df_p["value1"], geometry=df_p.geometry).drop(5, axis=0) do_checks(df, index_is_used=False) # no other columns (except geometry) df = GeoDataFrame(geometry=df_p.geometry) do_checks(df, index_is_used=False) # # Checks where index is used/saved # # named index df_p = df_points.copy() df = GeoDataFrame(df_p["value1"], geometry=df_p.geometry) df.index.name = "foo_index" do_checks(df, index_is_used=True) # named index, same as pandas' default name after .reset_index(drop=False) df.index.name = "index" do_checks(df, index_is_used=True) # named MultiIndex df_p = df_points.copy() df_p["value3"] = df_p["value2"] - df_p["value1"] df_p.set_index(["value1", "value2"], inplace=True) df = GeoDataFrame(df_p, geometry=df_p.geometry) do_checks(df, index_is_used=True) # partially unnamed MultiIndex df.index.names = ["first", None] do_checks(df, index_is_used=True) # unnamed MultiIndex df.index.names = [None, None] do_checks(df, index_is_used=True) # unnamed Float64Index df_p = df_points.copy() df = GeoDataFrame(df_p["value1"], geometry=df_p.geometry) df.index = df_p.index.astype(float) / 10 do_checks(df, index_is_used=True) # named Float64Index df.index.name = "centile" do_checks(df, index_is_used=True) # index as string df_p = df_points.copy() df = GeoDataFrame(df_p["value1"], geometry=df_p.geometry) df.index = pd.TimedeltaIndex(range(len(df)), "days") # TODO: TimedeltaIndex is an invalid field type df.index = df.index.astype(str) do_checks(df, index_is_used=True) # unnamed DatetimeIndex df_p = df_points.copy() df = GeoDataFrame(df_p["value1"], geometry=df_p.geometry) df.index = pd.TimedeltaIndex(range(len(df)), "days") + pd.DatetimeIndex( ["1999-12-27"] * len(df) ) if driver == "ESRI Shapefile": # Shapefile driver does not support datetime fields df.index = df.index.astype(str) do_checks(df, index_is_used=True) # named DatetimeIndex df.index.name = "datetime" do_checks(df, index_is_used=True)
bsd-3-clause
MJuddBooth/pandas
pandas/tests/util/test_validate_kwargs.py
2
2040
# -*- coding: utf-8 -*- from collections import OrderedDict import pytest from pandas.util._validators import validate_bool_kwarg, validate_kwargs _fname = "func" def test_bad_kwarg(): good_arg = "f" bad_arg = good_arg + "o" compat_args = OrderedDict() compat_args[good_arg] = "foo" compat_args[bad_arg + "o"] = "bar" kwargs = {good_arg: "foo", bad_arg: "bar"} msg = (r"{fname}\(\) got an unexpected " r"keyword argument '{arg}'".format(fname=_fname, arg=bad_arg)) with pytest.raises(TypeError, match=msg): validate_kwargs(_fname, kwargs, compat_args) @pytest.mark.parametrize("i", range(1, 3)) def test_not_all_none(i): bad_arg = "foo" msg = (r"the '{arg}' parameter is not supported " r"in the pandas implementation of {func}\(\)". format(arg=bad_arg, func=_fname)) compat_args = OrderedDict() compat_args["foo"] = 1 compat_args["bar"] = "s" compat_args["baz"] = None kwarg_keys = ("foo", "bar", "baz") kwarg_vals = (2, "s", None) kwargs = dict(zip(kwarg_keys[:i], kwarg_vals[:i])) with pytest.raises(ValueError, match=msg): validate_kwargs(_fname, kwargs, compat_args) def test_validation(): # No exceptions should be raised. compat_args = OrderedDict() compat_args["f"] = None compat_args["b"] = 1 compat_args["ba"] = "s" kwargs = dict(f=None, b=1) validate_kwargs(_fname, kwargs, compat_args) @pytest.mark.parametrize("name", ["inplace", "copy"]) @pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0]) def test_validate_bool_kwarg_fail(name, value): msg = ("For argument \"%s\" expected type bool, received type %s" % (name, type(value).__name__)) with pytest.raises(ValueError, match=msg): validate_bool_kwarg(value, name) @pytest.mark.parametrize("name", ["inplace", "copy"]) @pytest.mark.parametrize("value", [True, False, None]) def test_validate_bool_kwarg(name, value): assert validate_bool_kwarg(value, name) == value
bsd-3-clause
NelisVerhoef/scikit-learn
sklearn/manifold/tests/test_spectral_embedding.py
216
8091
from nose.tools import assert_true from nose.tools import assert_equal from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_raises from nose.plugins.skip import SkipTest from sklearn.manifold.spectral_embedding_ import SpectralEmbedding from sklearn.manifold.spectral_embedding_ import _graph_is_connected from sklearn.manifold import spectral_embedding from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.cluster import KMeans from sklearn.datasets.samples_generator import make_blobs # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_spectral_embedding_two_components(seed=36): # Test spectral embedding with two components random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # Some numpy versions are touchy with types embedded_coordinate = \ se_precomp.fit_transform(affinity.astype(np.float32)) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert_equal(normalized_mutual_info_score(true_label, label_), 1.0) def test_spectral_embedding_precomputed_affinity(seed=36): # Test spectral embedding with precomputed kernel gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal( se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)) def test_spectral_embedding_callable_affinity(seed=36): # Test spectral embedding with callable affinity gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding(n_components=2, affinity=( lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal( se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert_true( _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)) def test_spectral_embedding_amg_solver(seed=36): # Test spectral embedding with amg solver try: from pyamg import smoothed_aggregation_solver except ImportError: raise SkipTest("pyamg not available.") se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)) def test_pipeline_spectral_clustering(seed=36): # Test using pipeline to do spectral clustering random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score( km.labels_, true_labels), 1.0, 2) def test_spectral_embedding_unknown_eigensolver(seed=36): # Test that SpectralClustering fails with an unknown eigensolver se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") assert_raises(ValueError, se.fit, S) def test_spectral_embedding_unknown_affinity(seed=36): # Test that SpectralClustering fails with an unknown affinity type se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) assert_raises(ValueError, se.fit, S) def test_connectivity(seed=36): # Test that graph connectivity test works as expected graph = np.array([[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), False) assert_equal(_graph_is_connected(csr_matrix(graph)), False) assert_equal(_graph_is_connected(csc_matrix(graph)), False) graph = np.array([[1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), True) assert_equal(_graph_is_connected(csr_matrix(graph)), True) assert_equal(_graph_is_connected(csc_matrix(graph)), True) def test_spectral_embedding_deterministic(): # Test that Spectral Embedding is deterministic random_state = np.random.RandomState(36) data = random_state.randn(10, 30) sims = rbf_kernel(data) embedding_1 = spectral_embedding(sims) embedding_2 = spectral_embedding(sims) assert_array_almost_equal(embedding_1, embedding_2)
bsd-3-clause
crichardson17/starburst_atlas
Low_resolution_sims/Dusty_LowRes/Geneva_inst_NoRot/Geneva_inst_NoRot_2/fullgrid/IR.py
30
9364
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith("1.grd"): gridfile1 = file for file in os.listdir('.'): if file.endswith("2.grd"): gridfile2 = file for file in os.listdir('.'): if file.endswith("3.grd"): gridfile3 = file # ------------------------ for file in os.listdir('.'): if file.endswith("1.txt"): Elines1 = file for file in os.listdir('.'): if file.endswith("2.txt"): Elines2 = file for file in os.listdir('.'): if file.endswith("3.txt"): Elines3 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine; will be called later numplots = 12 def add_sub_plot(sub_num): plt.subplot(3,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 9: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 12: plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid1 = []; grid2 = []; grid3 = []; with open(gridfile1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid1.append(row); grid1 = asarray(grid1) with open(gridfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid2.append(row); grid2 = asarray(grid2) with open(gridfile3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid3.append(row); grid3 = asarray(grid3) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines1 = []; dataEmissionlines2 = []; dataEmissionlines3 = []; with open(Elines1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines1.append(row); dataEmissionlines1 = asarray(dataEmissionlines1) with open(Elines2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers2 = csvReader.next() for row in csvReader: dataEmissionlines2.append(row); dataEmissionlines2 = asarray(dataEmissionlines2) with open(Elines3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers3 = csvReader.next() for row in csvReader: dataEmissionlines3.append(row); dataEmissionlines3 = asarray(dataEmissionlines3) print "import files complete" # --------------------------------------------------- #for concatenating grid #pull the phi and hdens values from each of the runs. exclude header lines grid1new = zeros((len(grid1[:,0])-1,2)) grid1new[:,0] = grid1[1:,6] grid1new[:,1] = grid1[1:,7] grid2new = zeros((len(grid2[:,0])-1,2)) x = array(17.00000) grid2new[:,0] = repeat(x,len(grid2[:,0])-1) grid2new[:,1] = grid2[1:,6] grid3new = zeros((len(grid3[:,0])-1,2)) grid3new[:,0] = grid3[1:,6] grid3new[:,1] = grid3[1:,7] grid = concatenate((grid1new,grid2new,grid3new)) hdens_values = grid[:,1] phi_values = grid[:,0] # --------------------------------------------------- #for concatenating Emission lines data Emissionlines = concatenate((dataEmissionlines1[:,1:],dataEmissionlines2[:,1:],dataEmissionlines3[:,1:])) #for lines headers = headers[1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(concatenated_data[0]),4)) # --------------------------------------------------- #constructing grid by scaling #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = concatenated_data[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 # --------------------------------------------------- #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(concatenated_data),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] # --------------------------------------------------- #change desired lines here! line = [75, #AR 3 7135 76, #TOTL 7325 78, #AR 3 7751 79, #6LEV 8446 80, #CA2X 8498 81, #CA2Y 8542 82, #CA2Z 8662 83, #CA 2 8579A 84, #S 3 9069 85, #H 1 9229 86, #S 3 9532 87] #H 1 9546 #create z array for this plot with given lines z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Dusty IR Lines", fontsize=14) # --------------------------------------------------- for i in range(12): add_sub_plot(i) ax1 = plt.subplot(3,4,1) add_patches(ax1) print "figure complete" plt.savefig('Dusty_Near_IR.pdf') plt.clf() print "figure saved"
gpl-2.0
abhishekgahlot/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
142
4761
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n / 2] Y_train = Y[:n / 2] X_test = X[n / 2:] Y_test = Y[n / 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components plt.figure(figsize=(12, 8)) plt.subplot(221) plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.subplot(224) plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y plt.subplot(222) plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") plt.xlabel("X comp. 1") plt.ylabel("X comp. 2") plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.subplot(223) plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") plt.xlabel("Y comp. 1") plt.ylabel("Y comp. 2") plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coefs with B print("Estimated B") print(np.round(pls2.coefs, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of compements exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coefs, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
bsd-3-clause
CamDavidsonPilon/StartupFiles
startup/01-plotting.py
1
1243
# nice plotting functions. # %pyplot, %plt, %plot @register_line_magic('plt') @register_line_magic('plot') #this is just alias: if I type plot, I better plot. @register_line_magic('pyplot') @register_line_magic('pyploy') #common mispelling I make def _pyplot(line): _ip.run_line_magic('matplotlib', line) _ip.run_code("""from matplotlib import pyplot as plt""") # use Bayesian Methods for Hackers plotting style _ip.run_code("""plt.style.use('bmh')""") # better hists def hist_(*args, **kwargs): kwargs.pop('alpha', None) kwargs.pop('histtype', None) kwargs.pop('normed', None) return plt.hist(*args, histtype='stepfilled', alpha=0.85, normed=True, **kwargs) # <3 figsize def figsize(sizex, sizey): """Set the default figure size to be [sizex, sizey]. This is just an easy to remember, convenience wrapper that sets:: matplotlib.rcParams['figure.figsize'] = [sizex, sizey] """ import matplotlib matplotlib.rcParams['figure.figsize'] = [sizex, sizey] # aliases _ip.user_ns['hist_'] = hist_ _ip.user_ns['figsize'] = figsize _ip.user_ns['plot'] = plt.plot _ip.user_ns['subplot'] = plt.subplot del _pyplot
mit
victorbergelin/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
openfisca/openfisca-france-indirect-taxation
openfisca_france_indirect_taxation/param/preprocessing.py
4
25251
# -*- coding: utf-8 -*- # OpenFisca -- A versatile microsimulation software # By: OpenFisca Team <[email protected]> # # Copyright (C) 2011, 2012, 2013, 2014, 2015 OpenFisca Team # https://github.com/openfisca # # This file is part of OpenFisca. # # OpenFisca is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # OpenFisca is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from openfisca_core import reforms def preprocess_legislation(legislation_json): ''' Preprocess the legislation parameters to add prices and amounts from national accounts ''' import os import pkg_resources import pandas as pd # Add fuel prices to the tree default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) prix_annuel_carburants = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'prix', 'prix_annuel_carburants.csv' ), sep =';' ) prix_annuel_carburants['Date'] = prix_annuel_carburants['Date'].astype(int) prix_annuel_carburants = prix_annuel_carburants.set_index('Date') all_values = {} prix_carburants = { "@type": "Node", "description": "prix des carburants en euros par hectolitre", "children": {}, } # For super_95_e10, we need to use the price of super_95 between 2009 and 2012 included, # because we don't have the data. We use super_95 because it is very close and won't affect the results too much prix_annuel = prix_annuel_carburants['super_95_e10_ttc'] all_values['super_95_e10_ttc'] = [] for year in range(1990, 2009): values1 = dict() values1['start'] = u'{}-01-01'.format(year) values1['stop'] = u'{}-12-31'.format(year) values1['value'] = prix_annuel.loc[year] * 100 all_values['super_95_e10_ttc'].append(values1) prix_annuel = prix_annuel_carburants['super_95_ttc'] for year in range(2009, 2013): values2 = dict() values2['start'] = u'{}-01-01'.format(year) values2['stop'] = u'{}-12-31'.format(year) values2['value'] = prix_annuel.loc[year] * 100 all_values['super_95_e10_ttc'].append(values2) prix_annuel = prix_annuel_carburants['super_95_e10_ttc'] for year in range(2013, 2015): values3 = dict() values3['start'] = u'{}-01-01'.format(year) values3['stop'] = u'{}-12-31'.format(year) values3['value'] = prix_annuel.loc[year] * 100 all_values['super_95_e10_ttc'].append(values3) prix_carburants['children']['super_95_e10_ttc'] = { "@type": "Parameter", "description": 'super_95_e10_ttc'.replace('_', ' '), "format": "float", "values": all_values['super_95_e10_ttc'] } for element in ['diesel_ht', 'diesel_ttc', 'super_95_ht', 'super_95_ttc', 'super_98_ht', 'super_98_ttc', 'super_95_e10_ht', 'gplc_ht', 'gplc_ttc', 'super_plombe_ht', 'super_plombe_ttc']: assert element in prix_annuel_carburants.columns prix_annuel = prix_annuel_carburants[element] all_values[element] = [] for year in range(1990, 2015): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = prix_annuel.loc[year] * 100 all_values[element].append(values) prix_carburants['children'][element] = { "@type": "Parameter", "description": element.replace('_', ' '), "format": "float", "values": all_values[element] } legislation_json['children']['imposition_indirecte']['children']['prix_carburants'] = prix_carburants # Add the number of vehicle in circulation to the tree default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) parc_annuel_moyen_vp = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'quantites', 'parc_annuel_moyen_vp.csv' ), sep =';' ) parc_annuel_moyen_vp = parc_annuel_moyen_vp.set_index('Unnamed: 0') values_parc = {} parc_vp = { "@type": "Node", "description": "taille moyenne du parc automobile en France métropolitaine en milliers de véhicules", "children": {}, } for element in ['diesel', 'essence']: taille_parc = parc_annuel_moyen_vp[element] values_parc[element] = [] for year in range(1990, 2014): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = taille_parc.loc[year] values_parc[element].append(values) parc_vp['children'][element] = { "@type": "Parameter", "description": "nombre de véhicules particuliers immatriculés en France à motorisation " + element, "format": "float", "values": values_parc[element] } legislation_json['children']['imposition_indirecte']['children']['parc_vp'] = parc_vp # Add the total quantity of fuel consumed per year to the tree default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) quantite_carbu_vp_france = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'quantites', 'quantite_carbu_vp_france.csv' ), sep =';' ) quantite_carbu_vp_france = quantite_carbu_vp_france.set_index('Unnamed: 0') values_quantite = {} quantite_carbu_vp = { "@type": "Node", "description": "quantite de carburants consommés en France métropolitaine", "children": {}, } for element in ['diesel', 'essence']: quantite_carburants = quantite_carbu_vp_france[element] values_quantite[element] = [] for year in range(1990, 2014): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = quantite_carburants.loc[year] values_quantite[element].append(values) quantite_carbu_vp['children'][element] = { "@type": "Parameter", "description": "consommation totale de " + element + " en France", "format": "float", "values": values_quantite[element] } legislation_json['children']['imposition_indirecte']['children']['quantite_carbu_vp'] = quantite_carbu_vp # Add the shares of each type of supercabrurant (SP95, SP98, E10, etc.) among supercarburants default_config_files_directory = os.path.join( pkg_resources.get_distribution('openfisca_france_indirect_taxation').location) part_des_types_de_supercarburants = pd.read_csv( os.path.join( default_config_files_directory, 'openfisca_france_indirect_taxation', 'assets', 'part_des_types_de_supercarburants.csv' ), sep =';' ) del part_des_types_de_supercarburants['Source'] part_des_types_de_supercarburants = \ part_des_types_de_supercarburants[part_des_types_de_supercarburants['annee'] > 0].copy() part_des_types_de_supercarburants['annee'] = part_des_types_de_supercarburants['annee'].astype(int) part_des_types_de_supercarburants = part_des_types_de_supercarburants.set_index('annee') # delete share of e_85 because we have no data for its price # When the sum of all shares is not one, need to multiply each share by the same coefficient cols = part_des_types_de_supercarburants.columns for element in cols: part_des_types_de_supercarburants[element] = ( part_des_types_de_supercarburants[element] / (part_des_types_de_supercarburants['somme'] - part_des_types_de_supercarburants['sp_e85']) ) del part_des_types_de_supercarburants['sp_e85'] del part_des_types_de_supercarburants['somme'] cols = part_des_types_de_supercarburants.columns part_des_types_de_supercarburants['somme'] = 0 for element in cols: part_des_types_de_supercarburants['somme'] += part_des_types_de_supercarburants[element] assert (part_des_types_de_supercarburants['somme'] == 1).any(), "The weighting of the shares did not work" values_part_supercarburants = {} part_type_supercaburant = { "@type": "Node", "description": "part de la consommation totale d'essence de chaque type supercarburant", "children": {}, } for element in ['super_plombe', 'sp_95', 'sp_98', 'sp_e10']: part_par_carburant = part_des_types_de_supercarburants[element] values_part_supercarburants[element] = [] for year in range(2000, 2015): values = dict() values['start'] = u'{}-01-01'.format(year) values['stop'] = u'{}-12-31'.format(year) values['value'] = part_par_carburant.loc[year] values_part_supercarburants[element].append(values) part_type_supercaburant['children'][element] = { "@type": "Parameter", "description": "part de " + element + " dans la consommation totale d'essences", "format": "float", "values": values_part_supercarburants[element] } legislation_json['children']['imposition_indirecte']['children']['part_type_supercarburants'] = \ part_type_supercaburant # Add data from comptabilite national about alcohol alcool_conso_et_vin = { "@type": "Node", "description": "alcools", "children": {}, } alcool_conso_et_vin['children']['vin'] = { "@type": "Node", "description": "Pour calculer le taux de taxation implicite sur le vin", "children": { "droit_cn_vin": { "@type": "Parameter", "description": u"Masse droit vin, vin mousseux, cidres et poirés selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 129}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 130}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 129}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 132}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 133}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 127}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 127}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 127}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 127}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 125}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 117}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 119}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 117}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 114}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 117}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 119}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 118}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 120}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 122}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, "masse_conso_cn_vin": { "@type": "Parameter", "description": u"Masse consommation vin, vin mousseux, cidres et poirés selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 7191}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 7419}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 7636}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 8025}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 8451}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 8854}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 9168}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 9476}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 9695}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 9985}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 9933}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 10002}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 10345}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 10461}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 10728}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 11002}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 11387}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 11407}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 11515}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, }, } alcool_conso_et_vin['children']['biere'] = { "@type": "Node", "description": "Pour calculer le taux de taxation implicite sur la bière", "children": { "droit_cn_biere": { "@type": "Parameter", "description": "Masse droit biere selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 361}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 366}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 364}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 365}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 380}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 359}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 364}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 361}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 370}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 378}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 364}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 396}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 382}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 375}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 376}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 375}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 393}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 783}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 897}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, "masse_conso_cn_biere": { "@type": "Parameter", "description": u"Masse consommation biere selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 2111}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 2144}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 2186}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 2291}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 2334}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 2290}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 2327}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 2405}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 2554}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 2484}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 2466}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 2486}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 2458}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 2287}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 2375}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 2461}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 2769}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 2868}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 3321}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, }, } alcool_conso_et_vin['children']['alcools_forts'] = { "@type": "Node", "description": "Pour calculer le taux de taxation implicite sur alcools forts", "children": { "droit_cn_alcools": { "@type": "Parameter", "description": "Masse droit alcool selon comptabilité nationale sans droits sur les produits intermediaires et cotisation spéciale alcool fort", "format": "float", "values": [ {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 1872}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 1957}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 1932}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 1891}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 1908}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 1842}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 1954}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 1990}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 2005}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 2031}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 2111}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 2150}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 2225}, # TODO: Problème pour les alcools forts chiffres différents entre les deux bases excel ! ], }, "droit_cn_alcools_total": { "@type": "Parameter", "description": u"Masse droit alcool selon comptabilité nationale avec les differents droits", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 2337}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 2350}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 2366}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 2369}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 2385}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 2416}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 2514}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 2503}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 2453}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 2409}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 2352}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 2477}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 2516}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 2528}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 2629}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 2734}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 3078}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 2718}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 3022}, # {'start': u'2014-01-01', 'stop': u'2014-12-31', 'value': }, ], }, "masse_conso_cn_alcools": { "@type": "Parameter", "description": u"Masse consommation alcool selon comptabilité nationale", "format": "float", "values": [ {'start': u'1995-01-01', 'stop': u'1995-12-31', 'value': 4893}, {'start': u'1996-01-01', 'stop': u'1996-12-31', 'value': 5075}, {'start': u'1997-01-01', 'stop': u'1997-12-31', 'value': 5065}, {'start': u'1998-01-01', 'stop': u'1998-12-31', 'value': 5123}, {'start': u'1999-01-01', 'stop': u'1999-12-31', 'value': 5234}, {'start': u'2000-01-01', 'stop': u'2000-12-31', 'value': 5558}, {'start': u'2001-01-01', 'stop': u'2001-12-31', 'value': 5721}, {'start': u'2002-01-01', 'stop': u'2002-12-31', 'value': 5932}, {'start': u'2003-01-01', 'stop': u'2003-12-31', 'value': 5895}, {'start': u'2004-01-01', 'stop': u'2004-12-31', 'value': 5967}, {'start': u'2005-01-01', 'stop': u'2005-12-31', 'value': 5960}, {'start': u'2006-01-01', 'stop': u'2006-12-31', 'value': 6106}, {'start': u'2007-01-01', 'stop': u'2007-12-31', 'value': 6142}, {'start': u'2008-01-01', 'stop': u'2008-12-31', 'value': 6147}, {'start': u'2009-01-01', 'stop': u'2009-12-31', 'value': 6342}, {'start': u'2010-01-01', 'stop': u'2010-12-31', 'value': 6618}, {'start': u'2011-01-01', 'stop': u'2011-12-31', 'value': 6680}, {'start': u'2012-01-01', 'stop': u'2012-12-31', 'value': 6996}, {'start': u'2013-01-01', 'stop': u'2013-12-31', 'value': 7022}, ], }, }, } legislation_json['children']['imposition_indirecte']['children']['alcool_conso_et_vin'] = alcool_conso_et_vin # Make the change from francs to euros for excise taxes in ticpe keys_ticpe = legislation_json['children']['imposition_indirecte']['children']['ticpe']['children'].keys() for element in keys_ticpe: get_values = \ legislation_json['children']['imposition_indirecte']['children']['ticpe']['children'][element]['values'] for each_value in get_values: get_character = '{}'.format(each_value['start']) year = int(get_character[:4]) if year < 2002: each_value['value'] = each_value['value'] / 6.55957 else: each_value['value'] = each_value['value'] return legislation_json
agpl-3.0
vhte/cefetdiss
hipervolume.py
1
3179
# -*- coding: utf-8 -*- # Copyright (C) 2010 Simon Wessing # TU Dortmund University # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. #http://pythonhosted.org/inspyred/reference.html # setcover metric - % um melhor que outra import inspyred import numpy as np import matplotlib as plt from pylab import * from copy import copy # Qual grupo de nao-dominados grupoNSGAII = 'multi_nsgaII_SED_' grupoSPEA2 = 'multi_spea2_SED_' # ic 0: NSGA-II 1: SPEA2 x = [[],[]] # preco 0: NSGA-II 1: SPEA2 y = [[],[]] for i in range(1,31): # Abrindo os NSGA-II with open(grupoNSGAII+str(i), 'r') as f: searchlines = f.readlines() for j,line in enumerate(searchlines): if "ic = " in line: exec(line) if "preco = " in line: exec(line) x[0] = x[0] + ic y[0] = y[0] + preco with open(grupoSPEA2+str(i), 'r') as f: searchlines = f.readlines() for j,line in enumerate(searchlines): if "ic = " in line: exec(line) if "custo = " in line: exec(line) x[1] = x[1] + ic y[1] = y[1] + custo xReal = copy(x) yReal = copy(y) ############################ Há 30x300(população/arquivo) #print len(x[0]) i = 0 j = 0 y[0] = map(lambda d: d*(-1),y[0]) # Porque hypervolume do inspyred é para max() y[1] = map(lambda d: d*(-1),y[1]) smetric = [[],[]] # 0 NSGA 1 SPEA for i in range(0,30): # 9000 (30x300) # Cria combinação x e y de cada execução i c0 = zip(x[0][j:j+299],y[0][j:j+299]) c1 = zip(x[1][j:j+299],y[1][j:j+299]) j = j+300 smetric[0].append(inspyred.ec.analysis.hypervolume(c0)) smetric[1].append(inspyred.ec.analysis.hypervolume(c1)) data_to_plot = [smetric[0],smetric[1]] # Create a figure instance boxplot(data_to_plot) #grid(True) xticks([1, 2], ['NSGA-II', 'SPEA2']) """ frontNSGA = 1 frontSPEA = 1 referencePointNSGA = [16.7282,-614.12282223 ] referencePointSPEA = [5,2836, -1078.5961772] #AlimGra #referencePoint = [10, 1205] #AlimSED #referencePoint = [460, 3135] print inspyred.ec.analysis.hypervolume(frontNSGA) print inspyred.ec.analysis.hypervolume(frontSPEA) print len(frontNSGA) """ ############ SET COVER METRIC ########### # Pergunta: Entre[0,1] quantos pontos de NSGA são dominados por SPEA cont = 0 for i in range(0,len(x[1])): print 'Verificando solucao %d/%d' % (i,len(x[1])) for j in range(0,len(x[0])): if x[1][i] >= x[0][j] and y[1][i] <= y[0][j]: cont = cont + 1 break res = cont/float(len(x[0])) print 'C(SPEA2, NSGA-II) = %f' % (res)
mit
zorroblue/scikit-learn
examples/model_selection/plot_validation_curve.py
141
1931
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show()
bsd-3-clause
ricsatjr/mplstereonet
examples/contour_angelier_data.py
2
2304
""" Reproduce Figure 5 from Vollmer, 1995 to illustrate different density contouring methods. """ import matplotlib.pyplot as plt import mplstereonet import parse_angelier_data def plot(ax, strike, dip, rake, **kwargs): ax.rake(strike, dip, rake, 'ko', markersize=2) ax.density_contour(strike, dip, rake, measurement='rakes', **kwargs) # Load data from Angelier, 1979 strike, dip, rake = parse_angelier_data.load() # Setup a subplot grid fig, axes = mplstereonet.subplots(nrows=3, ncols=4) # Hide azimuth tick labels for ax in axes.flat: ax.set_azimuth_ticks([]) contours = [range(2, 18, 2), range(1,21,2), range(1,22,2)] # "Standard" Kamb contouring with different confidence levels. for sigma, ax, contour in zip([3, 2, 1], axes[:,0], contours): # We're reducing the gridsize to more closely match a traditional # hand-contouring grid, similar to Kamb's original work and Vollmer's # Figure 5. `gridsize=10` produces a 10x10 grid of density estimates. plot(ax, strike, dip, rake, method='kamb', sigma=sigma, levels=contour, gridsize=10) # Kamb contouring with inverse-linear smoothing (after Vollmer, 1995) for sigma, ax, contour in zip([3, 2, 1], axes[:,1], contours): plot(ax, strike, dip, rake, method='linear_kamb', sigma=sigma, levels=contour) template = r'$E={}\sigma$ Contours: ${}\sigma,{}\sigma,\ldots$' ax.set_xlabel(template.format(sigma, *contour[:2])) # Kamb contouring with exponential smoothing (after Vollmer, 1995) for sigma, ax, contour in zip([3, 2, 1], axes[:,2], contours): plot(ax, strike, dip, rake, method='exponential_kamb', sigma=sigma, levels=contour) # Title the different methods methods = ['Kamb', 'Linear\nSmoothing', 'Exponential\nSmoothing'] for ax, title in zip(axes[0,:], methods): ax.set_title(title) # Hide top-right axis... (Need to implement Diggle & Fisher's method) axes[0,-1].set_visible(False) # Schmidt contouring (a.k.a. 1%) plot(axes[1,-1], strike, dip, rake, method='schmidt', gridsize=25, levels=range(3,20,3)) axes[1,-1].set_title('Schmidt') axes[1, -1].set_xlabel('Contours: $3\%,6\%,\ldots$') # Raw data. axes[-1,-1].set_azimuth_ticks([]) axes[-1,-1].rake(strike, dip, rake, 'ko', markersize=2) axes[-1,-1].set_xlabel('N={}'.format(len(strike))) plt.show()
mit
LumPenPacK/NetworkExtractionFromImages
osx_build/nefi2_osx_amd64_xcode_2015/site-packages/networkx/convert_matrix.py
10
33329
"""Functions to convert NetworkX graphs to and from numpy/scipy matrices. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. Examples -------- Create a 10 node random graph from a numpy matrix >>> import numpy >>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10)) >>> D = nx.DiGraph(a) or equivalently >>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph()) See Also -------- nx_agraph, nx_pydot """ # Copyright (C) 2006-2014 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import warnings import itertools import networkx as nx from networkx.convert import _prep_create_using from networkx.utils import not_implemented_for __author__ = """\n""".join(['Aric Hagberg <[email protected]>', 'Pieter Swart ([email protected])', 'Dan Schult([email protected])']) __all__ = ['from_numpy_matrix', 'to_numpy_matrix', 'from_pandas_dataframe', 'to_pandas_dataframe', 'to_numpy_recarray', 'from_scipy_sparse_matrix', 'to_scipy_sparse_matrix'] def to_pandas_dataframe(G, nodelist=None, multigraph_weight=sum, weight='weight', nonedge=0.0): """Return the graph adjacency matrix as a Pandas DataFrame. Parameters ---------- G : graph The NetworkX graph used to construct the Pandas DataFrame. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). multigraph_weight : {sum, min, max}, optional An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. weight : string or None, optional The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. nonedge : float, optional The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. Returns ------- df : Pandas DataFrame Graph adjacency matrix Notes ----- The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the 'multigraph_weight' parameter. The default is to sum the weight attributes for each of the parallel edges. When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Pandas DataFrame can be modified as follows: >>> import pandas as pd >>> import numpy as np >>> G = nx.Graph([(1,1)]) >>> df = nx.to_pandas_dataframe(G) >>> df 1 1 1 >>> df.values[np.diag_indices_from(df)] *= 2 >>> df 1 1 2 Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> nx.to_pandas_dataframe(G, nodelist=[0,1,2]) 0 1 2 0 0 2 0 1 1 0 0 2 0 0 4 """ import pandas as pd M = to_numpy_matrix(G, nodelist, None, None, multigraph_weight, weight, nonedge) if nodelist is None: nodelist = G.nodes() nodeset = set(nodelist) df = pd.DataFrame(data=M, index = nodelist ,columns = nodelist) return df def from_pandas_dataframe(df, source, target, edge_attr=None, create_using=None): """Return a graph from Pandas DataFrame. The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node attributes. Each row will be processed as one edge instance. Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example. Parameters ---------- df : Pandas DataFrame An edge list representation of a graph source : str or int A valid column name (string or iteger) for the source nodes (for the directed case). target : str or int A valid column name (string or iteger) for the target nodes (for the directed case). edge_attr : str or int, iterable, True A valid column name (str or integer) or list of column names that will be used to retrieve items from the row and add them to the graph as edge attributes. If `True`, all of the remaining columns will be added. create_using : NetworkX graph Use specified graph for result. The default is Graph() See Also -------- to_pandas_dataframe Examples -------- Simple integer weights on edges: >>> import pandas as pd >>> import numpy as np >>> r = np.random.RandomState(seed=5) >>> ints = r.random_integers(1, 10, size=(3,2)) >>> a = ['A', 'B', 'C'] >>> b = ['D', 'A', 'E'] >>> df = pd.DataFrame(ints, columns=['weight', 'cost']) >>> df[0] = a >>> df['b'] = b >>> df weight cost 0 b 0 4 7 A D 1 7 1 B A 2 10 9 C E >>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost']) >>> G['E']['C']['weight'] 10 >>> G['E']['C']['cost'] 9 """ g = _prep_create_using(create_using) # Index of source and target src_i = df.columns.get_loc(source) tar_i = df.columns.get_loc(target) if edge_attr: # If all additional columns requested, build up a list of tuples # [(name, index),...] if edge_attr is True: # Create a list of all columns indices, ignore nodes edge_i = [] for i, col in enumerate(df.columns): if col is not source and col is not target: edge_i.append((col, i)) # If a list or tuple of name is requested elif isinstance(edge_attr, (list, tuple)): edge_i = [(i, df.columns.get_loc(i)) for i in edge_attr] # If a string or int is passed else: edge_i = [(edge_attr, df.columns.get_loc(edge_attr)),] # Iteration on values returns the rows as Numpy arrays for row in df.values: g.add_edge(row[src_i], row[tar_i], {i:row[j] for i, j in edge_i}) # If no column names are given, then just return the edges. else: for row in df.values: g.add_edge(row[src_i], row[tar_i]) return g def to_numpy_matrix(G, nodelist=None, dtype=None, order=None, multigraph_weight=sum, weight='weight', nonedge=0.0): """Return the graph adjacency matrix as a NumPy matrix. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in ``nodelist``. If ``nodelist`` is None, then the ordering is produced by G.nodes(). dtype : NumPy data type, optional A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. multigraph_weight : {sum, min, max}, optional An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. weight : string or None optional (default = 'weight') The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. nonedge : float (default = 0.0) The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. Returns ------- M : NumPy matrix Graph adjacency matrix See Also -------- to_numpy_recarray, from_numpy_matrix Notes ----- The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the ``multigraph_weight`` parameter. The default is to sum the weight attributes for each of the parallel edges. When ``nodelist`` does not contain every node in ``G``, the matrix is built from the subgraph of ``G`` that is induced by the nodes in ``nodelist``. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Numpy matrix can be modified as follows: >>> import numpy as np >>> G = nx.Graph([(1, 1)]) >>> A = nx.to_numpy_matrix(G) >>> A matrix([[ 1.]]) >>> A.A[np.diag_indices_from(A)] *= 2 >>> A matrix([[ 2.]]) Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> nx.to_numpy_matrix(G, nodelist=[0,1,2]) matrix([[ 0., 2., 0.], [ 1., 0., 0.], [ 0., 0., 4.]]) """ import numpy as np if nodelist is None: nodelist = G.nodes() nodeset = set(nodelist) if len(nodelist) != len(nodeset): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) nlen=len(nodelist) undirected = not G.is_directed() index=dict(zip(nodelist,range(nlen))) # Initially, we start with an array of nans. Then we populate the matrix # using data from the graph. Afterwards, any leftover nans will be # converted to the value of `nonedge`. Note, we use nans initially, # instead of zero, for two reasons: # # 1) It can be important to distinguish a real edge with the value 0 # from a nonedge with the value 0. # # 2) When working with multi(di)graphs, we must combine the values of all # edges between any two nodes in some manner. This often takes the # form of a sum, min, or max. Using the value 0 for a nonedge would # have undesirable effects with min and max, but using nanmin and # nanmax with initially nan values is not problematic at all. # # That said, there are still some drawbacks to this approach. Namely, if # a real edge is nan, then that value is a) not distinguishable from # nonedges and b) is ignored by the default combinator (nansum, nanmin, # nanmax) functions used for multi(di)graphs. If this becomes an issue, # an alternative approach is to use masked arrays. Initially, every # element is masked and set to some `initial` value. As we populate the # graph, elements are unmasked (automatically) when we combine the initial # value with the values given by real edges. At the end, we convert all # masked values to `nonedge`. Using masked arrays fully addresses reason 1, # but for reason 2, we would still have the issue with min and max if the # initial values were 0.0. Note: an initial value of +inf is appropriate # for min, while an initial value of -inf is appropriate for max. When # working with sum, an initial value of zero is appropriate. Ideally then, # we'd want to allow users to specify both a value for nonedges and also # an initial value. For multi(di)graphs, the choice of the initial value # will, in general, depend on the combinator function---sensible defaults # can be provided. if G.is_multigraph(): # Handle MultiGraphs and MultiDiGraphs M = np.zeros((nlen, nlen), dtype=dtype, order=order) + np.nan # use numpy nan-aware operations operator={sum:np.nansum, min:np.nanmin, max:np.nanmax} try: op=operator[multigraph_weight] except: raise ValueError('multigraph_weight must be sum, min, or max') for u,v,attrs in G.edges_iter(data=True): if (u in nodeset) and (v in nodeset): i, j = index[u], index[v] e_weight = attrs.get(weight, 1) M[i,j] = op([e_weight, M[i,j]]) if undirected: M[j,i] = M[i,j] else: # Graph or DiGraph, this is much faster than above M = np.zeros((nlen,nlen), dtype=dtype, order=order) + np.nan for u,nbrdict in G.adjacency_iter(): for v,d in nbrdict.items(): try: M[index[u],index[v]] = d.get(weight,1) except KeyError: # This occurs when there are fewer desired nodes than # there are nodes in the graph: len(nodelist) < len(G) pass M[np.isnan(M)] = nonedge M = np.asmatrix(M) return M def from_numpy_matrix(A, parallel_edges=False, create_using=None): """Return a graph from numpy matrix. The numpy matrix is interpreted as an adjacency matrix for the graph. Parameters ---------- A : numpy matrix An adjacency matrix representation of a graph parallel_edges : Boolean If this is ``True``, ``create_using`` is a multigraph, and ``A`` is an integer matrix, then entry *(i, j)* in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is ``False``, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. create_using : NetworkX graph Use specified graph for result. The default is Graph() Notes ----- If ``create_using`` is an instance of :class:`networkx.MultiGraph` or :class:`networkx.MultiDiGraph`, ``parallel_edges`` is ``True``, and the entries of ``A`` are of type ``int``, then this function returns a multigraph (of the same type as ``create_using``) with parallel edges. If ``create_using`` is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix `A` will be added to the graph. If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type. If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph. See Also -------- to_numpy_matrix, to_numpy_recarray Examples -------- Simple integer weights on edges: >>> import numpy >>> A=numpy.matrix([[1, 1], [2, 1]]) >>> G=nx.from_numpy_matrix(A) If ``create_using`` is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} If ``create_using`` is a multigraph and the matrix has only integer entries but ``parallel_edges`` is ``True``, then the entries will be interpreted as the number of parallel edges joining those two vertices: >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> temp = nx.MultiGraph() >>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} User defined compound data type on edges: >>> import numpy >>> dt = [('weight', float), ('cost', int)] >>> A = numpy.matrix([[(1.0, 2)]], dtype = dt) >>> G = nx.from_numpy_matrix(A) >>> G.edges() [(0, 0)] >>> G[0][0]['cost'] 2 >>> G[0][0]['weight'] 1.0 """ # This should never fail if you have created a numpy matrix with numpy... import numpy as np kind_to_python_type={'f':float, 'i':int, 'u':int, 'b':bool, 'c':complex, 'S':str, 'V':'void'} try: # Python 3.x blurb = chr(1245) # just to trigger the exception kind_to_python_type['U']=str except ValueError: # Python 2.6+ kind_to_python_type['U']=unicode G=_prep_create_using(create_using) n,m=A.shape if n!=m: raise nx.NetworkXError("Adjacency matrix is not square.", "nx,ny=%s"%(A.shape,)) dt=A.dtype try: python_type=kind_to_python_type[dt.kind] except: raise TypeError("Unknown numpy data type: %s"%dt) # Make sure we get even the isolated nodes of the graph. G.add_nodes_from(range(n)) # Get a list of all the entries in the matrix with nonzero entries. These # coordinates will become the edges in the graph. edges = zip(*(np.asarray(A).nonzero())) # handle numpy constructed data type if python_type is 'void': # Sort the fields by their offset, then by dtype, then by name. fields = sorted((offset, dtype, name) for name, (dtype, offset) in A.dtype.fields.items()) triples = ((u, v, {name: kind_to_python_type[dtype.kind](val) for (_, dtype, name), val in zip(fields, A[u, v])}) for u, v in edges) # If the entries in the adjacency matrix are integers, the graph is a # multigraph, and parallel_edges is True, then create parallel edges, each # with weight 1, for each entry in the adjacency matrix. Otherwise, create # one edge for each positive entry in the adjacency matrix and set the # weight of that edge to be the entry in the matrix. elif python_type is int and G.is_multigraph() and parallel_edges: chain = itertools.chain.from_iterable # The following line is equivalent to: # # for (u, v) in edges: # for d in range(A[u, v]): # G.add_edge(u, v, weight=1) # triples = chain(((u, v, dict(weight=1)) for d in range(A[u, v])) for (u, v) in edges) else: # basic data type triples = ((u, v, dict(weight=python_type(A[u, v]))) for u, v in edges) # If we are creating an undirected multigraph, only add the edges from the # upper triangle of the matrix. Otherwise, add all the edges. This relies # on the fact that the vertices created in the # ``_generated_weighted_edges()`` function are actually the row/column # indices for the matrix ``A``. # # Without this check, we run into a problem where each edge is added twice # when ``G.add_edges_from()`` is invoked below. if G.is_multigraph() and not G.is_directed(): triples = ((u, v, d) for u, v, d in triples if u <= v) G.add_edges_from(triples) return G @not_implemented_for('multigraph') def to_numpy_recarray(G,nodelist=None, dtype=[('weight',float)], order=None): """Return the graph adjacency matrix as a NumPy recarray. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). dtype : NumPy data-type, optional A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. Returns ------- M : NumPy recarray The graph with specified edge data as a Numpy recarray Notes ----- When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. Examples -------- >>> G = nx.Graph() >>> G.add_edge(1,2,weight=7.0,cost=5) >>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)]) >>> print(A.weight) [[ 0. 7.] [ 7. 0.]] >>> print(A.cost) [[0 5] [5 0]] """ import numpy as np if nodelist is None: nodelist = G.nodes() nodeset = set(nodelist) if len(nodelist) != len(nodeset): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) nlen=len(nodelist) undirected = not G.is_directed() index=dict(zip(nodelist,range(nlen))) M = np.zeros((nlen,nlen), dtype=dtype, order=order) names=M.dtype.names for u,v,attrs in G.edges_iter(data=True): if (u in nodeset) and (v in nodeset): i,j = index[u],index[v] values=tuple([attrs[n] for n in names]) M[i,j] = values if undirected: M[j,i] = M[i,j] return M.view(np.recarray) def to_scipy_sparse_matrix(G, nodelist=None, dtype=None, weight='weight', format='csr'): """Return the graph adjacency matrix as a SciPy sparse matrix. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). dtype : NumPy data-type, optional A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used. weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1. format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'} The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See [1]_ for details. Returns ------- M : SciPy sparse matrix Graph adjacency matrix. Notes ----- The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1. For multiple edges the matrix values are the sums of the edge weights. When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. Uses coo_matrix format. To convert to other formats specify the format= keyword. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows: >>> import scipy as sp >>> G = nx.Graph([(1,1)]) >>> A = nx.to_scipy_sparse_matrix(G) >>> print(A.todense()) [[1]] >>> A.setdiag(A.diagonal()*2) >>> print(A.todense()) [[2]] Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2]) >>> print(S.todense()) [[0 2 0] [1 0 0] [0 0 4]] References ---------- .. [1] Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html """ from scipy import sparse if nodelist is None: nodelist = G nlen = len(nodelist) if nlen == 0: raise nx.NetworkXError("Graph has no nodes or edges") if len(nodelist) != len(set(nodelist)): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) index = dict(zip(nodelist,range(nlen))) if G.number_of_edges() == 0: row,col,data=[],[],[] else: row,col,data = zip(*((index[u],index[v],d.get(weight,1)) for u,v,d in G.edges_iter(nodelist, data=True) if u in index and v in index)) if G.is_directed(): M = sparse.coo_matrix((data,(row,col)), shape=(nlen,nlen), dtype=dtype) else: # symmetrize matrix d = data + data r = row + col c = col + row # selfloop entries get double counted when symmetrizing # so we subtract the data on the diagonal selfloops = G.selfloop_edges(data=True) if selfloops: diag_index,diag_data = zip(*((index[u],-d.get(weight,1)) for u,v,d in selfloops if u in index and v in index)) d += diag_data r += diag_index c += diag_index M = sparse.coo_matrix((d, (r, c)), shape=(nlen,nlen), dtype=dtype) try: return M.asformat(format) except AttributeError: raise nx.NetworkXError("Unknown sparse matrix format: %s"%format) def _csr_gen_triples(A): """Converts a SciPy sparse matrix in **Compressed Sparse Row** format to an iterable of weighted edge triples. """ nrows = A.shape[0] data, indices, indptr = A.data, A.indices, A.indptr for i in range(nrows): for j in range(indptr[i], indptr[i+1]): yield i, indices[j], data[j] def _csc_gen_triples(A): """Converts a SciPy sparse matrix in **Compressed Sparse Column** format to an iterable of weighted edge triples. """ ncols = A.shape[1] data, indices, indptr = A.data, A.indices, A.indptr for i in range(ncols): for j in range(indptr[i], indptr[i+1]): yield indices[j], i, data[j] def _coo_gen_triples(A): """Converts a SciPy sparse matrix in **Coordinate** format to an iterable of weighted edge triples. """ row, col, data = A.row, A.col, A.data return zip(row, col, data) def _dok_gen_triples(A): """Converts a SciPy sparse matrix in **Dictionary of Keys** format to an iterable of weighted edge triples. """ for (r, c), v in A.items(): yield r, c, v def _generate_weighted_edges(A): """Returns an iterable over (u, v, w) triples, where u and v are adjacent vertices and w is the weight of the edge joining u and v. `A` is a SciPy sparse matrix (in any format). """ if A.format == 'csr': return _csr_gen_triples(A) if A.format == 'csc': return _csc_gen_triples(A) if A.format == 'dok': return _dok_gen_triples(A) # If A is in any other format (including COO), convert it to COO format. return _coo_gen_triples(A.tocoo()) def from_scipy_sparse_matrix(A, parallel_edges=False, create_using=None, edge_attribute='weight'): """Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. Parameters ---------- A: scipy sparse matrix An adjacency matrix representation of a graph parallel_edges : Boolean If this is ``True``, `create_using` is a multigraph, and `A` is an integer matrix, then entry *(i, j)* in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is ``False``, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. create_using: NetworkX graph Use specified graph for result. The default is Graph() edge_attribute: string Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)). Notes ----- If `create_using` is an instance of :class:`networkx.MultiGraph` or :class:`networkx.MultiDiGraph`, `parallel_edges` is ``True``, and the entries of `A` are of type ``int``, then this function returns a multigraph (of the same type as `create_using`) with parallel edges. In this case, `edge_attribute` will be ignored. If `create_using` is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix `A` will be added to the graph. Examples -------- >>> import scipy.sparse >>> A = scipy.sparse.eye(2,2,1) >>> G = nx.from_scipy_sparse_matrix(A) If `create_using` is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} If `create_using` is a multigraph and the matrix has only integer entries but `parallel_edges` is ``True``, then the entries will be interpreted as the number of parallel edges joining those two vertices: >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True, ... create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} """ G = _prep_create_using(create_using) n,m = A.shape if n != m: raise nx.NetworkXError(\ "Adjacency matrix is not square. nx,ny=%s"%(A.shape,)) # Make sure we get even the isolated nodes of the graph. G.add_nodes_from(range(n)) # Create an iterable over (u, v, w) triples and for each triple, add an # edge from u to v with weight w. triples = _generate_weighted_edges(A) # If the entries in the adjacency matrix are integers, the graph is a # multigraph, and parallel_edges is True, then create parallel edges, each # with weight 1, for each entry in the adjacency matrix. Otherwise, create # one edge for each positive entry in the adjacency matrix and set the # weight of that edge to be the entry in the matrix. if A.dtype.kind in ('i', 'u') and G.is_multigraph() and parallel_edges: chain = itertools.chain.from_iterable # The following line is equivalent to: # # for (u, v) in edges: # for d in range(A[u, v]): # G.add_edge(u, v, weight=1) # triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples) # If we are creating an undirected multigraph, only add the edges from the # upper triangle of the matrix. Otherwise, add all the edges. This relies # on the fact that the vertices created in the # ``_generated_weighted_edges()`` function are actually the row/column # indices for the matrix ``A``. # # Without this check, we run into a problem where each edge is added twice # when `G.add_weighted_edges_from()` is invoked below. if G.is_multigraph() and not G.is_directed(): triples = ((u, v, d) for u, v, d in triples if u <= v) G.add_weighted_edges_from(triples, weight=edge_attribute) return G # fixture for nose tests def setup_module(module): from nose import SkipTest try: import numpy except: raise SkipTest("NumPy not available") try: import scipy except: raise SkipTest("SciPy not available") try: import pandas except: raise SkipTest("Pandas not available")
bsd-2-clause
TheCoSMoCompany/biopredyn
Prototype/scripts/solver_comparison.py
1
1947
#!/usr/bin/env python # coding=utf-8 import libsbml import libsbmlsim import numpy as np import matplotlib.pyplot as plt from biopredyn import result # Simulation conditions model_file = "FEBS_antimony.xml" start = 0.0 end = 20.0 steps = 100.0 step = (end - start) / steps # Open SBML file reader = libsbml.SBMLReader() doc = reader.readSBMLFromFile(model_file) # Simulate model with stiff solver r_stiff = libsbmlsim.simulateSBMLFromString( doc.toSBML(), end, step, 1, 0, libsbmlsim.MTHD_RUNGE_KUTTA, 0) stiff_result = result.TimeSeries() stiff_result.import_from_libsbmlsim(r_stiff, 0.0) # Simulate model with non-stiff solver r_non_stiff = libsbmlsim.simulateSBMLFromString( doc.toSBML(), end, step, 1, 0, libsbmlsim.MTHD_ADAMS_MOULTON_2, 0) non_stiff_result = result.TimeSeries() names = non_stiff_result.import_from_libsbmlsim(r_non_stiff, 0.0) # Plot results - for each species, time series produced # by both solvers are plotted time = np.array(stiff_result.get_time_steps()) # Same for all plots plt.figure(1) for s in range(len(names)): if not str.lower(names[s]).__contains__("time"): plt.subplot(2,2,s) plt.title(str(names[s])) stiff = stiff_result.get_quantities_per_species(names[s]) non_stiff = non_stiff_result.get_quantities_per_species(names[s]) plt.plot(time, stiff, label='stiff_solver') plt.plot(time, non_stiff, label='non_stiff_solver') plt.legend() # Plot difference between stiff and non-stiff solutions plt.figure(2) plt.title("Absolute difference between stiff and non-stiff simulations") for s in range(len(names)): if not str.lower(names[s]).__contains__("time"): stiff = np.array(stiff_result.get_quantities_per_species(names[s])) non_stiff = np.array(non_stiff_result.get_quantities_per_species(names[s])) diff = abs(stiff - non_stiff) plt.plot(time, diff, label=str(names[s])) plt.legend() plt.show()
bsd-3-clause
google-research/google-research
graph_embedding/watch_your_step/graph_attention_learning.py
1
15473
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Graph attention method to learn the correct context over random walks. Reference implementation for the NIPS 2018 paper: Watch Your Step: Learning Graph Embeddings Through Attention Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, Alex Alemi https://arxiv.org/abs/1710.09599 Example Usage: ============== 1. First, install relevant requirements # From google-research/ pip install -r graph_embedding/watch_your_step/requirements.txt 2. Second download datasets from [Abu-El-Haija et al, CIKM'17]: # From google-research/ curl http://sami.haija.org/graph/datasets.tgz > datasets.tgz tar zxvf datasets.tgz export DATA_DIR=~datasets ** Second, run the code: # From google-research/ python -m graph_embedding.watch_your_step.graph_attention_learning --dataset_dir ${DATA_DIR}/wiki-vote #pylint: disable=line-too-long To save the output, please use --output_dir. Consider other flags for options. Output file will contain train/test metrics, embeddings, as well as learned context distributions. """ import json import os import pickle from absl import app from absl import flags from absl import logging import numpy from sklearn import metrics import tensorflow.compat.v1 as tf from tensorflow.contrib import slim as contrib_slim flags.DEFINE_integer('max_number_of_steps', 100, 'The maximum number of gradient steps.') flags.DEFINE_float('learning_rate', 0.2, 'PercentDelta learning rate.') flags.DEFINE_string( 'dataset_dir', None, 'Directory where all dataset files live. All data files ' 'must be located here. Including {train,test}.txt.npy and ' '{train,test}.neg.txt.npy. ') flags.mark_flag_as_required('dataset_dir') flags.DEFINE_string('output_dir', None, 'If set, output metrics will be written.') flags.DEFINE_integer('d', 4, 'embedding dimensions') flags.DEFINE_integer( 'transition_powers', 5, 'Highest power of normalized adjacency (transition) ' 'matrix.') flags.DEFINE_float( 'context_regularizer', 0.1, 'Regularization co-efficient to the context distribution ' 'parameters.') flags.DEFINE_string('objective', 'nlgl', 'Choices are "rmse" or "nlgl" (neg. Log Graph Likelihood)') flags.DEFINE_bool( 'share_embeddings', False, 'If set, left and right embedding dictionary will be shared.') FLAGS = flags.FLAGS NUM_NODES = 0 IS_DIRECTED = None def IsDirected(): global IS_DIRECTED if IS_DIRECTED is not None: return IS_DIRECTED IS_DIRECTED = os.path.exists( os.path.join(FLAGS.dataset_dir, 'test.directed.neg.txt.npy')) return IS_DIRECTED def GetNumNodes(): global NUM_NODES if NUM_NODES == 0: index = pickle.load( open(os.path.join(FLAGS.dataset_dir, 'index.pkl'), 'rb')) NUM_NODES = len(index['index']) return NUM_NODES def Description(): return 'ds.%s.e.%i.o.%s' % (os.path.basename(FLAGS.dataset_dir), FLAGS.d, FLAGS.objective) def GetOrMakeAdjacencyMatrix(): """Creates Adjacency matrix and caches it on disk with name a.npy.""" a_file = os.path.join(FLAGS.dataset_dir, 'a.npy') if os.path.exists(a_file): return numpy.load(open(a_file, 'rb')) num_nodes = GetNumNodes() a = numpy.zeros(shape=(num_nodes, num_nodes), dtype='float32') train_edges = numpy.load( open(os.path.join(FLAGS.dataset_dir, 'train.txt.npy'), 'rb')) a[train_edges[:, 0], train_edges[:, 1]] = 1.0 if not IsDirected(): a[train_edges[:, 1], train_edges[:, 0]] = 1.0 numpy.save(open(a_file, 'wb'), a) return a def GetPowerTransitionPairs(highest_power): return list(IterPowerTransitionPairs(highest_power)) def IterPowerTransitionPairs(highest_power): """Yields powers of transition matrix (T, T*T, T*T*T, ...). It caches them on disk as t_<i>.npy, where <i> is the power. The first power (i = 1) is not cached as it is trivially computed from the adjacency matrix. Args: highest_power: integer representing the highest power of the transition matrix. This will be the number of yields. """ num_nodes = GetNumNodes() for i in range(highest_power): if i == 0: a = GetOrMakeAdjacencyMatrix() transition = a.T degree = transition.sum(axis=0) transition /= degree + 0.0000001 power_array = transition else: power_filename = os.path.join(FLAGS.dataset_dir, 't_%i.npy' % (i + 1)) if os.path.exists(power_filename): power_array = numpy.load(open(power_filename, 'rb')) else: power_array = power_array.dot(transition) print('Computing T^%i ...' % (i + 1)) # pylint: disable=superfluous-parens numpy.save(open(power_filename, 'wb'), power_array) print(' ... Saved T^%i' % (i + 1)) # pylint: disable=superfluous-parens placeholder = tf.placeholder(tf.float32, shape=(num_nodes, num_nodes)) yield (placeholder, power_array) def GetParametrizedExpectation(references): r"""Calculates E[D; q_1, q_2, ...]: a parametrized (tensor) matrix D. Which is defined as: E[D; q] = P_0 * (Q_1*T + Q_2*T^2 + Q_3*T^3 + ...) where Q_1, Q_2, ... = softmax(q_1, q_2, ...) and vector (q_1, q_2, ...) is created as a "trainable variable". Args: references: Dict that will be populated as key-value pairs: 'combination': \sum_j Q_j T^j (i.e. E[D] excluding P_0). 'normed': The vector Q_1, Q_2, ... (sums to 1). 'mults': The vector q_1, q_2, ... (Before softmax, does not sum to 1). Returns: Tuple (E[D; q], feed_dict) where the first entry contains placeholders and the feed_dict contains is a dictionary from the placeholders to numpy arrays of the transition powers. """ feed_dict = {} n = FLAGS.transition_powers regularizer = FLAGS.context_regularizer a = GetOrMakeAdjacencyMatrix() transition = a.T degree = transition.sum(axis=0) # transition /= degree + 0.0000001 # transition_pow_n = transition convex_combination = [] # vector q mults = tf.Variable(numpy.ones(shape=(n), dtype='float32')) # vector Q (output of softmax) normed = tf.squeeze(tf.nn.softmax(tf.expand_dims(mults, 0)), 0) references['mults'] = mults references['normed'] = normed transition_powers = GetPowerTransitionPairs(n) for k, (placeholder, transition_pow) in enumerate(transition_powers): feed_dict[placeholder] = transition_pow convex_combination.append(normed[k] * placeholder) d_sum = tf.add_n(convex_combination) d_sum *= degree tf.losses.add_loss(tf.reduce_mean(mults**2) * regularizer) references['combination'] = convex_combination return tf.transpose(d_sum) * GetNumNodes() * 80, feed_dict # Helper function 1/3 for PercentDelta. def GetPD(target_num_steps): global_step = tf.train.get_or_create_global_step() global_step = tf.cast(global_step, tf.float32) # gs = 0, target = 1 # gs = num_steps, target = 0.01 # Solve: y = mx + c # gives: c = 1 # m = dy / dx = (1 - 0.01) / (0 - num_steps) = - 0.99 / num_steps # Therefore, y = 1 - (0.99/num_steps) * x return -global_step * 0.99 / target_num_steps + 1 # Helper function 2/3 for PercentDelta. def PlusEpsilon(x, eps=1e-5): """Returns x+epsilon, without changing element-wise sign of x.""" return x + (tf.cast(x < 0, tf.float32) * -eps) + ( tf.cast(x >= 0, tf.float32) * eps) # Helper function 3/3 for PercentDelta. def CreateGradMultipliers(loss): """Returns a gradient multiplier so that SGD becomes PercentDelta.""" variables = tf.trainable_variables() # tf.global_variables() gradients = tf.gradients(loss, variables) multipliers = {} target_pd = GetPD(FLAGS.max_number_of_steps) for v, g in zip(variables, gradients): if g is None: continue multipliers[v] = target_pd / PlusEpsilon( tf.reduce_mean(tf.abs(g / PlusEpsilon(v)))) return multipliers def CreateEmbeddingDictionary(side, size): num_nodes = GetNumNodes() embeddings = numpy.array( numpy.random.uniform(low=-0.1, high=0.1, size=(num_nodes, size)), dtype='float32') embeddings = tf.Variable(embeddings, name=side + 'E') tf.losses.add_loss(tf.reduce_mean(embeddings**2) * 1e-6) return embeddings def CreateObjective(g, target_matrix): """Returns the objective function (can be nlgl or rmse).""" if FLAGS.objective == 'nlgl': # Negative log likelihood # target_matrix is E[D; q], which is used in the "positive part" of the # likelihood objective. We use true adjacency for the "negative part", as # described in our paper. true_adjacency = tf.Variable( GetOrMakeAdjacencyMatrix(), name='adjacency', trainable=False) logistic = tf.sigmoid(g) return -tf.reduce_mean( tf.multiply(target_matrix, tf.log(PlusEpsilon(logistic))) + tf.multiply(1 - true_adjacency, tf.log(PlusEpsilon(1 - logistic)))) elif FLAGS.objective == 'rmse': # Root mean squared error return tf.reduce_mean((g - target_matrix)**2) else: logging.fatal('unknown objective "%s".', FLAGS.objective) def CreateGFn(net_l, net_r): return tf.matmul(net_l, tf.transpose(net_r)) def LogMsg(msg): logging.info(msg) def Write(eval_metrics): if FLAGS.output_dir: out_json = os.path.join(FLAGS.output_dir, Description() + '.json') open(out_json, 'w').write(json.dumps(eval_metrics)) BEST_EVAL = None BEST_TF_PARAMS = None def RunEval(sess, g, test_pos_arr, test_neg_arr, train_pos_arr, train_neg_arr, i, v_total_loss, v_objective_loss, eval_metrics, feed_dict): """Calls sess.run(g) and computes AUC metric for test and train.""" scores = sess.run(g, feed_dict=feed_dict) # Compute test auc: test_pos_prods = scores[test_pos_arr[:, 0], test_pos_arr[:, 1]] test_neg_prods = scores[test_neg_arr[:, 0], test_neg_arr[:, 1]] test_y = [0] * len(test_neg_prods) + [1] * len(test_pos_prods) test_y_pred = numpy.concatenate([test_neg_prods, test_pos_prods], 0) test_auc = metrics.roc_auc_score(test_y, test_y_pred) # Compute train auc: train_pos_prods = scores[train_pos_arr[:, 0], train_pos_arr[:, 1]] train_neg_prods = scores[train_neg_arr[:, 0], train_neg_arr[:, 1]] train_y = [0] * len(train_neg_prods) + [1] * len(train_pos_prods) train_y_pred = numpy.concatenate([train_neg_prods, train_pos_prods], 0) train_auc = metrics.roc_auc_score(train_y, train_y_pred) LogMsg('@%i test/train auc=%f/%f obj.loss=%f total.loss=%f' % (i, test_auc, train_auc, v_objective_loss, v_total_loss)) # Populate metrics. eval_metrics['train auc'].append(float(train_auc)) eval_metrics['test auc'].append(float(test_auc)) eval_metrics['i'].append(i) eval_metrics['total loss'].append(float(v_total_loss)) eval_metrics['objective loss'].append(float(v_objective_loss)) if train_auc > eval_metrics['best train auc']: eval_metrics['best train auc'] = float(train_auc) eval_metrics['test auc at best train'] = float(test_auc) eval_metrics['i at best train'] = i return train_auc def main(argv=()): del argv # Unused. if FLAGS.output_dir and not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) references = {} net_l = CreateEmbeddingDictionary('L', FLAGS.d) if FLAGS.share_embeddings: net_r = net_l else: net_r = CreateEmbeddingDictionary('R', FLAGS.d) g = CreateGFn(net_l, net_r) target_matrix, feed_dict = GetParametrizedExpectation(references) if not isinstance(target_matrix, tf.Tensor): target_matrix = tf.Variable(target_matrix, name='target', trainable=False) objective_loss = CreateObjective(g, target_matrix) tf.losses.add_loss(objective_loss) loss = tf.losses.get_total_loss() optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate) # Set up training. grad_mults = CreateGradMultipliers(loss) train_op = contrib_slim.learning.create_train_op( loss, optimizer, gradient_multipliers=grad_mults) if IsDirected(): test_neg_file = os.path.join(FLAGS.dataset_dir, 'test.directed.neg.txt.npy') test_neg_arr = numpy.load(open(test_neg_file, 'rb')) else: test_neg_file = os.path.join(FLAGS.dataset_dir, 'test.neg.txt.npy') test_neg_arr = numpy.load(open(test_neg_file, 'rb')) test_pos_file = os.path.join(FLAGS.dataset_dir, 'test.txt.npy') test_pos_arr = numpy.load(open(test_pos_file, 'rb')) train_pos_file = os.path.join(FLAGS.dataset_dir, 'train.txt.npy') train_neg_file = os.path.join(FLAGS.dataset_dir, 'train.neg.txt.npy') train_pos_arr = numpy.load(open(train_pos_file, 'rb')) train_neg_arr = numpy.load(open(train_neg_file, 'rb')) sess = tf.Session() coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) sess.run(tf.global_variables_initializer()) eval_metrics = { 'train auc': [], 'test auc': [], 'i': [], 'i at best train': 0, 'best train auc': 0, 'test auc at best train': 0, 'total loss': [], 'objective loss': [], 'mults': [], 'normed_mults': [], } # IPython.embed() all_variables = tf.trainable_variables() + ( [tf.train.get_or_create_global_step()]) best_train_values = None best_train_auc = 0 for i in range(FLAGS.max_number_of_steps): # import pdb; pdb.set_trace() _, v_total_loss, v_objective_loss = sess.run( (train_op, loss, objective_loss), feed_dict=feed_dict) if 'update' in references: references['update'](sess) if i % 4 == 0: # Compute eval every 4th step. train_auc = RunEval(sess, g, test_pos_arr, test_neg_arr, train_pos_arr, train_neg_arr, i, v_total_loss, v_objective_loss, eval_metrics, feed_dict) if 'mults' in references: mults, normed_mults = sess.run((references['mults'], references['normed'])) eval_metrics['mults'].append(list(map(float, list(mults)))) eval_metrics['normed_mults'].append( list(map(float, list(normed_mults)))) if train_auc > best_train_auc: # Found new best. best_train_auc = train_auc # Memorize variables. best_train_values = sess.run(all_variables) if i % 100 == 0: Write(eval_metrics) if i - 100 > eval_metrics['i at best train']: LogMsg('Reached peak a while ago. Terminating...') break Write(eval_metrics) if FLAGS.output_dir: # Write trained parameters. last_params = os.path.join(FLAGS.output_dir, Description() + '.last.pkl') best_params = os.path.join(FLAGS.output_dir, Description() + '.best.pkl') names = [v.name for v in all_variables] last_train_values = sess.run(all_variables) pickle.dump(list(zip(names, last_train_values)), open(last_params, 'wb')) pickle.dump(list(zip(names, best_train_values)), open(best_params, 'wb')) return 0 if __name__ == '__main__': app.run(main)
apache-2.0
ofgulban/scikit-image
skimage/io/manage_plugins.py
14
10495
"""Handle image reading, writing and plotting plugins. To improve performance, plugins are only loaded as needed. As a result, there can be multiple states for a given plugin: available: Defined in an *ini file located in `skimage.io._plugins`. See also `skimage.io.available_plugins`. partial definition: Specified in an *ini file, but not defined in the corresponding plugin module. This will raise an error when loaded. available but not on this system: Defined in `skimage.io._plugins`, but a dependent library (e.g. Qt, PIL) is not available on your system. This will raise an error when loaded. loaded: The real availability is determined when it's explicitly loaded, either because it's one of the default plugins, or because it's loaded explicitly by the user. """ import sys if sys.version.startswith('3'): from configparser import ConfigParser # Python 3 else: from ConfigParser import ConfigParser # Python 2 import os.path from glob import glob from .collection import imread_collection_wrapper __all__ = ['use_plugin', 'call_plugin', 'plugin_info', 'plugin_order', 'reset_plugins', 'find_available_plugins', 'available_plugins'] # The plugin store will save a list of *loaded* io functions for each io type # (e.g. 'imread', 'imsave', etc.). Plugins are loaded as requested. plugin_store = None # Dictionary mapping plugin names to a list of functions they provide. plugin_provides = {} # The module names for the plugins in `skimage.io._plugins`. plugin_module_name = {} # Meta-data about plugins provided by *.ini files. plugin_meta_data = {} # For each plugin type, default to the first available plugin as defined by # the following preferences. preferred_plugins = { # Default plugins for all types (overridden by specific types below). 'all': ['pil', 'matplotlib', 'qt', 'freeimage'], 'imshow': ['matplotlib'], 'imshow_collection': ['matplotlib'] } def _clear_plugins(): """Clear the plugin state to the default, i.e., where no plugins are loaded """ global plugin_store plugin_store = {'imread': [], 'imsave': [], 'imshow': [], 'imread_collection': [], 'imshow_collection': [], '_app_show': []} _clear_plugins() def _load_preferred_plugins(): # Load preferred plugin for each io function. io_types = ['imsave', 'imshow', 'imread_collection', 'imshow_collection', 'imread'] for p_type in io_types: _set_plugin(p_type, preferred_plugins['all']) plugin_types = (p for p in preferred_plugins.keys() if p != 'all') for p_type in plugin_types: _set_plugin(p_type, preferred_plugins[p_type]) def _set_plugin(plugin_type, plugin_list): for plugin in plugin_list: if plugin not in available_plugins: continue try: use_plugin(plugin, kind=plugin_type) break except (ImportError, RuntimeError, OSError): pass def reset_plugins(): _clear_plugins() _load_preferred_plugins() def _parse_config_file(filename): """Return plugin name and meta-data dict from plugin config file.""" parser = ConfigParser() parser.read(filename) name = parser.sections()[0] meta_data = {} for opt in parser.options(name): meta_data[opt] = parser.get(name, opt) return name, meta_data def _scan_plugins(): """Scan the plugins directory for .ini files and parse them to gather plugin meta-data. """ pd = os.path.dirname(__file__) config_files = glob(os.path.join(pd, '_plugins', '*.ini')) for filename in config_files: name, meta_data = _parse_config_file(filename) plugin_meta_data[name] = meta_data provides = [s.strip() for s in meta_data['provides'].split(',')] valid_provides = [p for p in provides if p in plugin_store] for p in provides: if not p in plugin_store: print("Plugin `%s` wants to provide non-existent `%s`." " Ignoring." % (name, p)) # Add plugins that provide 'imread' as provider of 'imread_collection'. need_to_add_collection = ('imread_collection' not in valid_provides and 'imread' in valid_provides) if need_to_add_collection: valid_provides.append('imread_collection') plugin_provides[name] = valid_provides plugin_module_name[name] = os.path.basename(filename)[:-4] _scan_plugins() def find_available_plugins(loaded=False): """List available plugins. Parameters ---------- loaded : bool If True, show only those plugins currently loaded. By default, all plugins are shown. Returns ------- p : dict Dictionary with plugin names as keys and exposed functions as values. """ active_plugins = set() for plugin_func in plugin_store.values(): for plugin, func in plugin_func: active_plugins.add(plugin) d = {} for plugin in plugin_provides: if not loaded or plugin in active_plugins: d[plugin] = [f for f in plugin_provides[plugin] if not f.startswith('_')] return d available_plugins = find_available_plugins() def call_plugin(kind, *args, **kwargs): """Find the appropriate plugin of 'kind' and execute it. Parameters ---------- kind : {'imshow', 'imsave', 'imread', 'imread_collection'} Function to look up. plugin : str, optional Plugin to load. Defaults to None, in which case the first matching plugin is used. *args, **kwargs : arguments and keyword arguments Passed to the plugin function. """ if not kind in plugin_store: raise ValueError('Invalid function (%s) requested.' % kind) plugin_funcs = plugin_store[kind] if len(plugin_funcs) == 0: msg = ("No suitable plugin registered for %s.\n\n" "You may load I/O plugins with the `skimage.io.use_plugin` " "command. A list of all available plugins are shown in the " "`skimage.io` docstring.") raise RuntimeError(msg % kind) plugin = kwargs.pop('plugin', None) if plugin is None: _, func = plugin_funcs[0] else: _load(plugin) try: func = [f for (p, f) in plugin_funcs if p == plugin][0] except IndexError: raise RuntimeError('Could not find the plugin "%s" for %s.' % (plugin, kind)) return func(*args, **kwargs) def use_plugin(name, kind=None): """Set the default plugin for a specified operation. The plugin will be loaded if it hasn't been already. Parameters ---------- name : str Name of plugin. kind : {'imsave', 'imread', 'imshow', 'imread_collection', 'imshow_collection'}, optional Set the plugin for this function. By default, the plugin is set for all functions. See Also -------- available_plugins : List of available plugins Examples -------- To use Matplotlib as the default image reader, you would write: >>> from skimage import io >>> io.use_plugin('matplotlib', 'imread') To see a list of available plugins run ``io.available_plugins``. Note that this lists plugins that are defined, but the full list may not be usable if your system does not have the required libraries installed. """ if kind is None: kind = plugin_store.keys() else: if not kind in plugin_provides[name]: raise RuntimeError("Plugin %s does not support `%s`." % (name, kind)) if kind == 'imshow': kind = [kind, '_app_show'] else: kind = [kind] _load(name) for k in kind: if not k in plugin_store: raise RuntimeError("'%s' is not a known plugin function." % k) funcs = plugin_store[k] # Shuffle the plugins so that the requested plugin stands first # in line funcs = [(n, f) for (n, f) in funcs if n == name] + \ [(n, f) for (n, f) in funcs if n != name] plugin_store[k] = funcs def _inject_imread_collection_if_needed(module): """Add `imread_collection` to module if not already present.""" if not hasattr(module, 'imread_collection') and hasattr(module, 'imread'): imread = getattr(module, 'imread') func = imread_collection_wrapper(imread) setattr(module, 'imread_collection', func) def _load(plugin): """Load the given plugin. Parameters ---------- plugin : str Name of plugin to load. See Also -------- plugins : List of available plugins """ if plugin in find_available_plugins(loaded=True): return if not plugin in plugin_module_name: raise ValueError("Plugin %s not found." % plugin) else: modname = plugin_module_name[plugin] plugin_module = __import__('skimage.io._plugins.' + modname, fromlist=[modname]) provides = plugin_provides[plugin] for p in provides: if p == 'imread_collection': _inject_imread_collection_if_needed(plugin_module) elif not hasattr(plugin_module, p): print("Plugin %s does not provide %s as advertised. Ignoring." % (plugin, p)) continue store = plugin_store[p] func = getattr(plugin_module, p) if not (plugin, func) in store: store.append((plugin, func)) def plugin_info(plugin): """Return plugin meta-data. Parameters ---------- plugin : str Name of plugin. Returns ------- m : dict Meta data as specified in plugin ``.ini``. """ try: return plugin_meta_data[plugin] except KeyError: raise ValueError('No information on plugin "%s"' % plugin) def plugin_order(): """Return the currently preferred plugin order. Returns ------- p : dict Dictionary of preferred plugin order, with function name as key and plugins (in order of preference) as value. """ p = {} for func in plugin_store: p[func] = [plugin_name for (plugin_name, f) in plugin_store[func]] return p
bsd-3-clause
GraphProcessor/CommunityDetectionCodes
Prensentation/algorithms/dynamics/problem_vis.py
1
1390
import networkx as nx import matplotlib.pyplot as plt from networkx.drawing.nx_agraph import graphviz_layout idx = 0 def vis_post_output(graph, node_dict, name): global idx color_dict = {1: 'red', 2: 'green', 3: 'blue', 4: 'yellow', 5: 'pink', 6: 'purple', 7: 'black', 8: 'orange', 9: 'cyan'} pos = nx.circular_layout(graph) nx.draw(graph, with_labels=True, pos=pos, font_size=20, node_size=2000, alpha=0.8, width=4, edge_color='grey', node_color='white') for node in node_dict: nx.draw_networkx_nodes(graph, pos=pos, nodelist=[node], node_size=2000, alpha=0.4, node_color=color_dict[node_dict[node]]) plt.axis('off') plt.savefig('./output_graph' + name + str(idx) + '.png', bbox_inches='tight', pad_inches=0, transparent=True) plt.show() idx += 1 if __name__ == '__main__': graph = nx.read_edgelist('example_edge_list.txt', nodetype=int) print graph.edges(data=True) # vis of async label propagation with open('async_lp_res0.txt') as ifs: dict_list = ifs.readlines() for my_dict in dict_list: vis_post_output(graph, eval(my_dict), '_async') with open('sync_lp_res0.txt') as ifs: dict_list = ifs.readlines() for my_dict in dict_list: vis_post_output(graph, eval(my_dict), '_sync')
gpl-2.0
SuLab/RASLseqAligner
src/RASLseqAlign.py
1
4792
import random import pandas as pd import os import sys def rasl_probe_blast(read_file_path, blastn_path, db_path, print_on=False): """ This function returns blast results from queries optimized for rasl-seq conditions and outputs a custom format Parameters ---------- read_file_path: str, path to temp blast input file Specifies where temporary blast input file has been written blastn_path: str, path to blastn executable Specifies full path to blastn executable db_path: str, path to target BLAST database Specifies path to on_off_target BLAST database Returns ------- Pandas Blast Results dataframe index = qseqid, rasl_probe sequence cols = ['qseqid','mismatch','evalue','sseqid','qlen', 'length','qseq','qstart','sseq','sstart','send'] """ #SETTING WRITE PATH FOR BLAST OUTPUT write_path = read_file_path.rstrip(".txt") + "_blast_output.txt" db = " -db " + db_path #SETTING BLAST WORD SIZE wordsize = "-word_size 8 " blast_run = os.system(blastn_path+"/blastn" + " -task blastn-short -query " \ + read_file_path +" -evalue 1e-6 "+ wordsize + db +" -max_target_seqs 1" +" -strand 'plus' -xdrop_gap 7 -num_threads 12" \ + " -outfmt '6 -outfmt qseqid -outfmt mismatch -outfmt evalue -outfmt sseqid -outfmt qlen -outfmt length -outfmt qseq -outfmt qstart -outfmt sseq -outfmt sstart -outfmt send' >"+ write_path) # Evlaue of 20 was used to account for a cutoff of 13mer matching if print_on: print "BLAST COMMAND\n" + blastn_path + " -task blastn-short -query " \ + read_file_path +" -evalue 1e-6 "+ wordsize + db +" -max_target_seqs 1" +" -strand 'plus' -xdrop_gap 7 -num_threads 12" \ + " -outfmt '6 -outfmt qseqid -outfmt mismatch -outfmt evalue -outfmt sseqid -outfmt qlen -outfmt length -outfmt qseq -outfmt qstart -outfmt sseq -outfmt sstart -outfmt send' >"+ write_path #CONVERTING BLAST OUTPUT INTO DATAFRAME bl_results = pd.read_table(write_path, header=None) bl_results.columns=['qseqid','mismatch','evalue','sseqid','qlen', 'length','qseq','qstart','sseq','sstart','send'] bl_results['probe'] = bl_results.sseqid.apply(lambda x: "_".join(x.split("_"))) bl_results.ix[0] bl_results.set_index('qseqid',drop=False,inplace=True) #REMOVING INPUT/OUTPUT BLAST FILES os.system('rm ' + read_file_path) os.system('rm '+ write_path) os.system('rm ' + db_path + ".*") return bl_results def get_blast_alignments(collapsed_read_df, blastn_path, db_path, print_on=False): ''' This function returns the rasl_probe sequence blast alignments Parameters ---------- collapsed_read_df: pandas dataframe, must contain columns ['rasl_probe'] collapsed_read_df['rasl_probe'] - fastq sequence observed between rasl adaptor sequences blastn_path: str, path to blastn executable Specifies full path to blastn executable db_path: str, path to target BLAST database Specifies path to on_off_target BLAST database Returns ------- Pandas Blast Results dataframe index = qseqid #which is the ~40 nt rasl_probe sequence cols = ['qseqid','mismatch','evalue','sseqid','qlen', 'length','qseq','qstart','sseq','sstart','send'] ''' #CREATING BLAST INPUT FILE random_file_handle = str(random.randrange(0,1000000)) #setting random seed for temp file writing blast_write_path = db_path + 'temp_blast_' + random_file_handle +".txt" #WRITING TEMP BLAST INPUT FILE blast_input = open(blast_write_path,"w") for items in collapsed_read_df.rasl_probe.unique(): #only blasting unique perfect matches blast_input.write(">"+items + "\n" + items + "\n") blast_input.flush() blast_input.close() #ARGUMENTS FOR BLAST FUNCTION bl_results = rasl_probe_blast(blast_write_path, blastn_path, db_path, print_on=False) return bl_results ##PASS AN OBJECT (RASLseqReads) WITH ALL OF THESE ATTRIBUTES OR PASS THE INDIVIDUAL OBJECTS? def get_rasl_blast_df(collapsed_read_df, blastn_path, db_path, print_on=False): #PASS OBJECT #BLAST RASL_PROBE SEQ AGAINST ALL COMBINATIONS OF ACCEPTOR AND DONOR PROBES bl_results = get_blast_alignments(collapsed_read_df, blastn_path, db_path, print_on=False) #JOINING BLAST RESULTS WITH COLLAPSED_READ_DF collapsed_read_df.set_index('rasl_probe',inplace=True,drop=False) collapsed_read_df = collapsed_read_df.join(bl_results,how='inner') return collapsed_read_df
mit
aba1476/spark-timeseries
python/sparkts/utils.py
4
1401
import sys import os import logging import pandas as pd from glob import glob def add_pyspark_path(): """Add PySpark to the library path based on the value of SPARK_HOME. """ try: spark_home = os.environ['SPARK_HOME'] sys.path.append(os.path.join(spark_home, 'python')) py4j_src_zip = glob(os.path.join(spark_home, 'python', 'lib', 'py4j-*-src.zip')) if len(py4j_src_zip) == 0: raise ValueError('py4j source archive not found in %s' % os.path.join(spark_home, 'python', 'lib')) else: py4j_src_zip = sorted(py4j_src_zip)[::-1] sys.path.append(py4j_src_zip[0]) except KeyError: logging.error("""SPARK_HOME was not set. please set it. e.g. SPARK_HOME='/home/...' ./bin/pyspark [program]""") exit(-1) except ValueError as e: logging.error(str(e)) exit(-1) def quiet_py4j(): logger = logging.getLogger('py4j') logger.setLevel(logging.INFO) def datetime_to_millis(dt): """ Accept a string, Pandas Timestamp, or long, and return millis since the epoch. """ if isinstance(dt, pd.Timestamp): return dt.value / 1000000 elif isinstance(dt, str): return pd.Timestamp(dt).value / 1000000 elif isinstance(dt, long): return dt raise ValueError
apache-2.0
cpcloud/blaze
blaze/compute/tests/test_mysql_compute.py
3
1619
from __future__ import absolute_import, print_function, division from getpass import getuser import pytest sa = pytest.importorskip('sqlalchemy') pytest.importorskip('pymysql') from odo import odo, drop, discover import pandas as pd from blaze import symbol, compute from blaze.utils import example, normalize @pytest.yield_fixture(scope='module') def data(): try: t = odo( example('nyc.csv'), 'mysql+pymysql://%s@localhost/test::nyc' % getuser() ) except sa.exc.OperationalError as e: pytest.skip(str(e)) else: try: yield t.bind finally: drop(t) @pytest.fixture def db(data): return symbol('test', discover(data)) def test_agg_sql(db, data): subset = db.nyc[['pickup_datetime', 'dropoff_datetime', 'passenger_count']] expr = subset[subset.passenger_count < 4].passenger_count.min() result = compute(expr, data) expected = """ select min(alias.passenger_count) as passenger_count_min from (select nyc.passenger_count as passenger_count from nyc where nyc.passenger_count < %s) as alias """ assert normalize(str(result)) == normalize(expected) def test_agg_compute(db, data): subset = db.nyc[['pickup_datetime', 'dropoff_datetime', 'passenger_count']] expr = subset[subset.passenger_count < 4].passenger_count.min() result = compute(expr, data) passenger_count = odo(compute(db.nyc.passenger_count, {db: data}), pd.Series) assert passenger_count[passenger_count < 4].min() == result.scalar()
bsd-3-clause
nikitasingh981/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
33
20167
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hierarchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hierarchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering_wrong_arg_memory(): # Test either if an error is raised when memory is not # either a str or a joblib.Memory instance rng = np.random.RandomState(0) n_samples = 100 X = rng.randn(n_samples, 50) memory = 5 clustering = AgglomerativeClustering(memory=memory) assert_raises(ValueError, clustering.fit, X) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
pv/scikit-learn
sklearn/utils/tests/test_multiclass.py
72
15350
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from functools import partial from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_label_indicator_matrix from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import is_sequence_of_sequences from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formated as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multilabel-sequences': [ [[0, 1]], [[0], [1]], [[1, 2, 3]], [[1, 2, 1]], # duplicate values, why not? [[1], [2], [0, 1]], [[1], [2]], [[]], [()], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), # not currently supported sequence of sequences np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabels assert_array_equal(assert_warns(DeprecationWarning, unique_labels, [(0, 1, 2), (0,), tuple(), (2, 1)]), np.arange(3)) assert_array_equal(assert_warns(DeprecationWarning, unique_labels, [[0, 1, 2], [0], list(), [2, 1]]), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) # Some tests with strings input assert_array_equal(unique_labels(["a", "b", "c"], ["d"]), ["a", "b", "c", "d"]) assert_array_equal(assert_warns(DeprecationWarning, unique_labels, [["a", "b"], ["c"]], [["d"]]), ["a", "b", "c", "d"]) @ignore_warnings def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-sequences", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) @ignore_warnings def test_unique_labels_mixed_types(): # Mix of multilabel-indicator and multilabel-sequences mix_multilabel_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multilabel-sequences"]) for y_multilabel, y_multiclass in mix_multilabel_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"] + EXAMPLES["multilabel-sequences"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) # Mix string and number input type assert_raises(ValueError, unique_labels, [[1, 2], [3]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [3]]) assert_array_equal(unique_labels([(2,), (0, 2,)], [(), ()]), [0, 2]) assert_array_equal(unique_labels([("2",), ("0", "2",)], [(), ()]), ["0", "2"]) @ignore_warnings def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group.startswith('multilabel'): assert_, exp = assert_true, 'True' else: assert_, exp = assert_false, 'False' for example in group_examples: assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, exp)) def test_is_label_indicator_matrix(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_label_indicator_matrix(exmpl_sparse), msg=('is_label_indicator_matrix(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_label_indicator_matrix(example), msg='is_label_indicator_matrix(%r) should be %s' % (example, dense_exp)) def test_is_sequence_of_sequences(): for group, group_examples in iteritems(EXAMPLES): if group == 'multilabel-sequences': assert_, exp = assert_true, 'True' check = partial(assert_warns, DeprecationWarning, is_sequence_of_sequences) else: assert_, exp = assert_false, 'False' check = is_sequence_of_sequences for example in group_examples: assert_(check(example), msg='is_sequence_of_sequences(%r) should be %s' % (example, exp)) @ignore_warnings def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg='type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example))) for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
xubenben/scikit-learn
examples/ensemble/plot_gradient_boosting_regression.py
227
2520
""" ============================ Gradient Boosting regression ============================ Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error ############################################################################### # Load data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=13) X = X.astype(np.float32) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] ############################################################################### # Fit regression model params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.01, 'loss': 'ls'} clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) ############################################################################### # Plot training deviance # compute test set deviance test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, boston.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show()
bsd-3-clause
jniediek/combinato
tools/plot_thr_and_artifacts.py
1
4805
# -*- encoding: utf-8 -*- # JN 2015-05-11 # what do I want in this script? # * extraction thresholds in each region # (and regression line, or other measure of variability) # * rationale it's interesting to see whether highly variable channels are # in one macro # * firing rate stability for non-artifacts (correlated with threshold?) # * percentage of artifacts of each category (correlated within region?) # structure of the script # region -> find channels -> plot extraction thr and firing rates # -> write down artifact criteria """ plot extraction thresholds and spike counts over time """ from __future__ import print_function, division import os import numpy as np # pylint: disable=E1101 import tables import matplotlib.pyplot as mpl import matplotlib.cm as cm from combinato import SortingManagerGrouped, get_regions, artifact_id_to_name print(artifact_id_to_name) FIGSIZE = (7, 6) REGIONS = ('A', 'AH', 'MH', 'PH', 'EC', 'PHC', 'I') LEFT_COLORS = cm.spectral(np.linspace(0, 1, len(REGIONS))) RIGHT_COLORS = cm.summer(np.linspace(0, 1, len(REGIONS))) NUM_COLORS = cm.winter(np.linspace(0, 1, 8)) COLORDICT = {} for i, region in enumerate(REGIONS): COLORDICT['L' + region] = LEFT_COLORS[i] COLORDICT['R' + region] = RIGHT_COLORS[i] for i in range(1, 9): COLORDICT[str(i)] = NUM_COLORS[i-1] JOBS = ('thr', 'arti') def plotthr(thrplot, fireplot, thr, times, color='r'): """ plot the threshold data """ xdata = thr[:, :2].ravel() xdata -= xdata[0] xdata /= 6e4 xlim = xdata[[0, -1]] thrs = np.vstack((thr[:, 2], thr[:, 2])).T.ravel() thrplot.plot(xdata, thrs, color=color) thrplot.set_xlim(xlim) xtimes = (times - times[0])/6e4 # countdata = np.linspace(0, 1, len(xtimes)) # fireplot.plot(xtimes, countdata, color=color) # fireplot.set_xlim(xlim) bins = np.append(thr[:, 0], thr[-1, 1]) # bins /= 1e3 spcount, _ = np.histogram(times, bins=bins) spcount = spcount.astype(float) spcount /= times.shape[0] print(spcount) spplotdata = np.vstack((spcount, spcount)).T.ravel() fireplot.plot(xdata, spplotdata, color=color) def create_plots(): fig = mpl.figure(figsize=FIGSIZE) plot = fig.add_subplot(1, 2, 1) plot.set_ylabel(u'µV') plot.set_xlabel(u'min') plot.set_title(u'Extraction threshold over time') plot2 = fig.add_subplot(1, 2, 2) # plot2 = plot.twinx() plot2.set_xlabel(u'min') plot2.set_ylabel('% fired') plot2.set_title('Spike count over time') return plot, plot2 def plotarti(artifacts): """ plots artifact statistics """ tot = len(artifacts) for artid, name in artifact_id_to_name: perc = (artifacts == artid).sum()/tot print('{}: {:.1%}'.format(name, perc)) def main(fnames, sign='pos', title=''): """ opens the file, calls plot """ thrplot, fireplot = create_plots() thrplot.set_title(title) thr_legend_handles = {} for fname in fnames: if os.path.isdir(fname): fname = os.path.join(fname, 'data_' + fname + '.h5') man = SortingManagerGrouped(fname) thr = man.h5datafile.root.thr[:] times = man.h5datafile.get_node('/' + sign, 'times')[:] if not len(times): continue try: artifacts = man.h5datafile.get_node('/' + sign, 'artifacts')[:] except tables.NoSuchNodeError: print('No artifacts defined') artifacts = None if man.header is not None: entname = man.header['AcqEntName'] print(entname[-1]) color = COLORDICT[entname[-1]] entname = entname[-1] else: color = 'k' entname = 'unknown region' del man if 'thr' in JOBS: plotthr(thrplot, fireplot, thr, times, color) if entname not in thr_legend_handles: thr_legend_handles[entname] = mpl.Line2D([0], [0], color=color, label=entname) if 'arti' in JOBS: if artifacts is not None: plotarti(artifacts) # thrplot.legend(handles=thr_legend_handles.values()) def loop_over_regions(path): """ do the plots by region """ from collections import defaultdict regions = get_regions(path) regions_to_fnames = defaultdict(list) for reg in regions: ncsfiles = regions[reg] for fname in ncsfiles: if os.path.isdir(fname[:-4]): regions_to_fnames[reg].append(os.path.basename(fname[:-4])) for reg in regions_to_fnames: main(regions_to_fnames[reg], 'pos', reg) if __name__ == "__main__": loop_over_regions(os.getcwd()) mpl.show()
mit
yonglehou/scikit-learn
sklearn/cluster/tests/test_birch.py
342
5603
""" Tests for the birch clustering algorithm. """ from scipy import sparse import numpy as np from sklearn.cluster.tests.common import generate_clustered_data from sklearn.cluster.birch import Birch from sklearn.cluster.hierarchical import AgglomerativeClustering from sklearn.datasets import make_blobs from sklearn.linear_model import ElasticNet from sklearn.metrics import pairwise_distances_argmin, v_measure_score from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns def test_n_samples_leaves_roots(): # Sanity check for the number of samples in leaves and roots X, y = make_blobs(n_samples=10) brc = Birch() brc.fit(X) n_samples_root = sum([sc.n_samples_ for sc in brc.root_.subclusters_]) n_samples_leaves = sum([sc.n_samples_ for leaf in brc._get_leaves() for sc in leaf.subclusters_]) assert_equal(n_samples_leaves, X.shape[0]) assert_equal(n_samples_root, X.shape[0]) def test_partial_fit(): # Test that fit is equivalent to calling partial_fit multiple times X, y = make_blobs(n_samples=100) brc = Birch(n_clusters=3) brc.fit(X) brc_partial = Birch(n_clusters=None) brc_partial.partial_fit(X[:50]) brc_partial.partial_fit(X[50:]) assert_array_equal(brc_partial.subcluster_centers_, brc.subcluster_centers_) # Test that same global labels are obtained after calling partial_fit # with None brc_partial.set_params(n_clusters=3) brc_partial.partial_fit(None) assert_array_equal(brc_partial.subcluster_labels_, brc.subcluster_labels_) def test_birch_predict(): # Test the predict method predicts the nearest centroid. rng = np.random.RandomState(0) X = generate_clustered_data(n_clusters=3, n_features=3, n_samples_per_cluster=10) # n_samples * n_samples_per_cluster shuffle_indices = np.arange(30) rng.shuffle(shuffle_indices) X_shuffle = X[shuffle_indices, :] brc = Birch(n_clusters=4, threshold=1.) brc.fit(X_shuffle) centroids = brc.subcluster_centers_ assert_array_equal(brc.labels_, brc.predict(X_shuffle)) nearest_centroid = pairwise_distances_argmin(X_shuffle, centroids) assert_almost_equal(v_measure_score(nearest_centroid, brc.labels_), 1.0) def test_n_clusters(): # Test that n_clusters param works properly X, y = make_blobs(n_samples=100, centers=10) brc1 = Birch(n_clusters=10) brc1.fit(X) assert_greater(len(brc1.subcluster_centers_), 10) assert_equal(len(np.unique(brc1.labels_)), 10) # Test that n_clusters = Agglomerative Clustering gives # the same results. gc = AgglomerativeClustering(n_clusters=10) brc2 = Birch(n_clusters=gc) brc2.fit(X) assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_) assert_array_equal(brc1.labels_, brc2.labels_) # Test that the wrong global clustering step raises an Error. clf = ElasticNet() brc3 = Birch(n_clusters=clf) assert_raises(ValueError, brc3.fit, X) # Test that a small number of clusters raises a warning. brc4 = Birch(threshold=10000.) assert_warns(UserWarning, brc4.fit, X) def test_sparse_X(): # Test that sparse and dense data give same results X, y = make_blobs(n_samples=100, centers=10) brc = Birch(n_clusters=10) brc.fit(X) csr = sparse.csr_matrix(X) brc_sparse = Birch(n_clusters=10) brc_sparse.fit(csr) assert_array_equal(brc.labels_, brc_sparse.labels_) assert_array_equal(brc.subcluster_centers_, brc_sparse.subcluster_centers_) def check_branching_factor(node, branching_factor): subclusters = node.subclusters_ assert_greater_equal(branching_factor, len(subclusters)) for cluster in subclusters: if cluster.child_: check_branching_factor(cluster.child_, branching_factor) def test_branching_factor(): # Test that nodes have at max branching_factor number of subclusters X, y = make_blobs() branching_factor = 9 # Purposefully set a low threshold to maximize the subclusters. brc = Birch(n_clusters=None, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) brc = Birch(n_clusters=3, branching_factor=branching_factor, threshold=0.01) brc.fit(X) check_branching_factor(brc.root_, branching_factor) # Raises error when branching_factor is set to one. brc = Birch(n_clusters=None, branching_factor=1, threshold=0.01) assert_raises(ValueError, brc.fit, X) def check_threshold(birch_instance, threshold): """Use the leaf linked list for traversal""" current_leaf = birch_instance.dummy_leaf_.next_leaf_ while current_leaf: subclusters = current_leaf.subclusters_ for sc in subclusters: assert_greater_equal(threshold, sc.radius) current_leaf = current_leaf.next_leaf_ def test_threshold(): # Test that the leaf subclusters have a threshold lesser than radius X, y = make_blobs(n_samples=80, centers=4) brc = Birch(threshold=0.5, n_clusters=None) brc.fit(X) check_threshold(brc, 0.5) brc = Birch(threshold=5.0, n_clusters=None) brc.fit(X) check_threshold(brc, 5.)
bsd-3-clause
Myasuka/scikit-learn
benchmarks/bench_covertype.py
154
7296
""" =========================== Covertype dataset benchmark =========================== Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- liblinear 15.9744s 0.0705s 0.2305 GaussianNB 3.0666s 0.3884s 0.4841 SGD 1.0558s 0.1152s 0.2300 CART 79.4296s 0.0523s 0.0469 RandomForest 1190.1620s 0.5881s 0.0243 ExtraTrees 640.3194s 0.6495s 0.0198 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype """ from __future__ import division, print_function # Author: Peter Prettenhofer <[email protected]> # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_covtype, get_data_home from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import zero_one_loss from sklearn.externals.joblib import Memory from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'covertype_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='C', random_state=13): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_covtype(download_if_missing=True, shuffle=True, random_state=random_state) X = check_array(data['data'], dtype=dtype, order=order) y = (data['target'] != 1).astype(np.int) ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 522911 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] ## Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std return X_train, X_test, y_train, y_test ESTIMATORS = { 'GBRT': GradientBoostingClassifier(n_estimators=250), 'ExtraTrees': ExtraTreesClassifier(n_estimators=20), 'RandomForest': RandomForestClassifier(n_estimators=20), 'CART': DecisionTreeClassifier(min_samples_split=5), 'SGD': SGDClassifier(alpha=0.001, n_iter=2), 'GaussianNB': GaussianNB(), 'liblinear': LinearSVC(loss="l2", penalty="l2", C=1000, dual=False, tol=1e-3) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['liblinear', 'GaussianNB', 'SGD', 'CART'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=13, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data( order=args["order"], random_state=args["random_seed"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == 0), int(X_train.nbytes / 1e6))) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == 0), int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) for name in sorted(args["classifiers"], key=error.get): print("%s %s %s %s" % (name.ljust(12), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % error[name]).center(10))) print()
bsd-3-clause
Barmaley-exe/scikit-learn
examples/tree/plot_tree_regression.py
40
1470
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model clf_1 = DecisionTreeRegressor(max_depth=2) clf_2 = DecisionTreeRegressor(max_depth=5) clf_1.fit(X, y) clf_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = clf_1.predict(X_test) y_2 = clf_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="data") plt.plot(X_test, y_1, c="g", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
awsteiner/o2scl
examples/plot/old/ex_nucmass_plot.py
1
1756
""" Plot data from ex_nucmass """ import numpy as np import matplotlib.pyplot as plot import o2sclpy import math gc=o2sclpy.plotter() gc.read('../ex_nucmass_table.o2') gc.canvas_flag=1 Zgrid=range(1,121) Ngrid=range(1,181) sl=np.zeros(shape=(120,180)) labels=['Semi-empirical', 'Moller et al. (1995)', 'HFB 14', 'HFB 21', 'HFB 27', 'AME (2003)', 'Duflo and Zuker (1996)', 'Koura et al. (2005)', 'Dieperink et al. (2009)', 'Wang et al. (2010)', 'Liu et al. (2011)'] names=['se','mnmsk','hfb14','hfb21','hfb27','ame03','dz96', 'ktuy05','dvi','ws32','ws36'] for i in range(0,11): (fig,ax)=o2sclpy.default_plot() # First initialize slice to zero for N in range(0,180): for Z in range(0,120): sl[Z,N]=0 # Now fill with data print('name:',names[i],'nlines:',gc.dset['nlines'][0]) for row in range(0,gc.dset['nlines'][0]): if gc.dset['data/N'][row]>7: if gc.dset['data/Z'][row]>7: val=gc.dset['data/'+names[i]][row] sl[int(gc.dset['data/Z'][row]-0.99), int(gc.dset['data/N'][row]-0.99)]=val # Now plot cax=plot.imshow(sl,interpolation='nearest',origin='lower', extent=[1,180,1,120],aspect='auto',cmap='PuOr') cbar=plot.colorbar(cax,orientation='vertical') ax.text(0.55,-0.08,'N',fontsize=16,va='center',ha='center', transform=ax.transAxes) ax.text(-0.1,0.55,'Z',fontsize=16,va='center',ha='center', transform=ax.transAxes) ax.text(0.55,0.92,labels[i],fontsize=16,va='center',ha='center', transform=ax.transAxes) plot.savefig('ex_nucmass_'+names[i]+'.png') plot.clf()
gpl-3.0
abdulbaqi/ThinkStats2
code/thinkplot.py
75
18140
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import math import matplotlib import matplotlib.pyplot as pyplot import numpy as np import pandas import warnings # customize some matplotlib attributes #matplotlib.rc('figure', figsize=(4, 3)) #matplotlib.rc('font', size=14.0) #matplotlib.rc('axes', labelsize=22.0, titlesize=22.0) #matplotlib.rc('legend', fontsize=20.0) #matplotlib.rc('xtick.major', size=6.0) #matplotlib.rc('xtick.minor', size=3.0) #matplotlib.rc('ytick.major', size=6.0) #matplotlib.rc('ytick.minor', size=3.0) class _Brewer(object): """Encapsulates a nice sequence of colors. Shades of blue that look good in color and can be distinguished in grayscale (up to a point). Borrowed from http://colorbrewer2.org/ """ color_iter = None colors = ['#081D58', '#253494', '#225EA8', '#1D91C0', '#41B6C4', '#7FCDBB', '#C7E9B4', '#EDF8B1', '#FFFFD9'] # lists that indicate which colors to use depending on how many are used which_colors = [[], [1], [1, 3], [0, 2, 4], [0, 2, 4, 6], [0, 2, 3, 5, 6], [0, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6], ] @classmethod def Colors(cls): """Returns the list of colors. """ return cls.colors @classmethod def ColorGenerator(cls, n): """Returns an iterator of color strings. n: how many colors will be used """ for i in cls.which_colors[n]: yield cls.colors[i] raise StopIteration('Ran out of colors in _Brewer.ColorGenerator') @classmethod def InitializeIter(cls, num): """Initializes the color iterator with the given number of colors.""" cls.color_iter = cls.ColorGenerator(num) @classmethod def ClearIter(cls): """Sets the color iterator to None.""" cls.color_iter = None @classmethod def GetIter(cls): """Gets the color iterator.""" if cls.color_iter is None: cls.InitializeIter(7) return cls.color_iter def PrePlot(num=None, rows=None, cols=None): """Takes hints about what's coming. num: number of lines that will be plotted rows: number of rows of subplots cols: number of columns of subplots """ if num: _Brewer.InitializeIter(num) if rows is None and cols is None: return if rows is not None and cols is None: cols = 1 if cols is not None and rows is None: rows = 1 # resize the image, depending on the number of rows and cols size_map = {(1, 1): (8, 6), (1, 2): (14, 6), (1, 3): (14, 6), (2, 2): (10, 10), (2, 3): (16, 10), (3, 1): (8, 10), } if (rows, cols) in size_map: fig = pyplot.gcf() fig.set_size_inches(*size_map[rows, cols]) # create the first subplot if rows > 1 or cols > 1: pyplot.subplot(rows, cols, 1) global SUBPLOT_ROWS, SUBPLOT_COLS SUBPLOT_ROWS = rows SUBPLOT_COLS = cols def SubPlot(plot_number, rows=None, cols=None): """Configures the number of subplots and changes the current plot. rows: int cols: int plot_number: int """ rows = rows or SUBPLOT_ROWS cols = cols or SUBPLOT_COLS pyplot.subplot(rows, cols, plot_number) def _Underride(d, **options): """Add key-value pairs to d only if key is not in d. If d is None, create a new dictionary. d: dictionary options: keyword args to add to d """ if d is None: d = {} for key, val in options.items(): d.setdefault(key, val) return d def Clf(): """Clears the figure and any hints that have been set.""" global LOC LOC = None _Brewer.ClearIter() pyplot.clf() fig = pyplot.gcf() fig.set_size_inches(8, 6) def Figure(**options): """Sets options for the current figure.""" _Underride(options, figsize=(6, 8)) pyplot.figure(**options) def _UnderrideColor(options): if 'color' in options: return options color_iter = _Brewer.GetIter() if color_iter: try: options['color'] = next(color_iter) except StopIteration: # TODO: reconsider whether this should warn # warnings.warn('Warning: Brewer ran out of colors.') _Brewer.ClearIter() return options def Plot(obj, ys=None, style='', **options): """Plots a line. Args: obj: sequence of x values, or Series, or anything with Render() ys: sequence of y values style: style string passed along to pyplot.plot options: keyword args passed to pyplot.plot """ options = _UnderrideColor(options) label = getattr(obj, 'label', '_nolegend_') options = _Underride(options, linewidth=3, alpha=0.8, label=label) xs = obj if ys is None: if hasattr(obj, 'Render'): xs, ys = obj.Render() if isinstance(obj, pandas.Series): ys = obj.values xs = obj.index if ys is None: pyplot.plot(xs, style, **options) else: pyplot.plot(xs, ys, style, **options) def FillBetween(xs, y1, y2=None, where=None, **options): """Plots a line. Args: xs: sequence of x values y1: sequence of y values y2: sequence of y values where: sequence of boolean options: keyword args passed to pyplot.fill_between """ options = _UnderrideColor(options) options = _Underride(options, linewidth=0, alpha=0.5) pyplot.fill_between(xs, y1, y2, where, **options) def Bar(xs, ys, **options): """Plots a line. Args: xs: sequence of x values ys: sequence of y values options: keyword args passed to pyplot.bar """ options = _UnderrideColor(options) options = _Underride(options, linewidth=0, alpha=0.6) pyplot.bar(xs, ys, **options) def Scatter(xs, ys=None, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to pyplot.scatter """ options = _Underride(options, color='blue', alpha=0.2, s=30, edgecolors='none') if ys is None and isinstance(xs, pandas.Series): ys = xs.values xs = xs.index pyplot.scatter(xs, ys, **options) def HexBin(xs, ys, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to pyplot.scatter """ options = _Underride(options, cmap=matplotlib.cm.Blues) pyplot.hexbin(xs, ys, **options) def Pdf(pdf, **options): """Plots a Pdf, Pmf, or Hist as a line. Args: pdf: Pdf, Pmf, or Hist object options: keyword args passed to pyplot.plot """ low, high = options.pop('low', None), options.pop('high', None) n = options.pop('n', 101) xs, ps = pdf.Render(low=low, high=high, n=n) options = _Underride(options, label=pdf.label) Plot(xs, ps, **options) def Pdfs(pdfs, **options): """Plots a sequence of PDFs. Options are passed along for all PDFs. If you want different options for each pdf, make multiple calls to Pdf. Args: pdfs: sequence of PDF objects options: keyword args passed to pyplot.plot """ for pdf in pdfs: Pdf(pdf, **options) def Hist(hist, **options): """Plots a Pmf or Hist with a bar plot. The default width of the bars is based on the minimum difference between values in the Hist. If that's too small, you can override it by providing a width keyword argument, in the same units as the values. Args: hist: Hist or Pmf object options: keyword args passed to pyplot.bar """ # find the minimum distance between adjacent values xs, ys = hist.Render() if 'width' not in options: try: options['width'] = 0.9 * np.diff(xs).min() except TypeError: warnings.warn("Hist: Can't compute bar width automatically." "Check for non-numeric types in Hist." "Or try providing width option." ) options = _Underride(options, label=hist.label) options = _Underride(options, align='center') if options['align'] == 'left': options['align'] = 'edge' elif options['align'] == 'right': options['align'] = 'edge' options['width'] *= -1 Bar(xs, ys, **options) def Hists(hists, **options): """Plots two histograms as interleaved bar plots. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: hists: list of two Hist or Pmf objects options: keyword args passed to pyplot.plot """ for hist in hists: Hist(hist, **options) def Pmf(pmf, **options): """Plots a Pmf or Hist as a line. Args: pmf: Hist or Pmf object options: keyword args passed to pyplot.plot """ xs, ys = pmf.Render() low, high = min(xs), max(xs) width = options.pop('width', None) if width is None: try: width = np.diff(xs).min() except TypeError: warnings.warn("Pmf: Can't compute bar width automatically." "Check for non-numeric types in Pmf." "Or try providing width option.") points = [] lastx = np.nan lasty = 0 for x, y in zip(xs, ys): if (x - lastx) > 1e-5: points.append((lastx, 0)) points.append((x, 0)) points.append((x, lasty)) points.append((x, y)) points.append((x+width, y)) lastx = x + width lasty = y points.append((lastx, 0)) pxs, pys = zip(*points) align = options.pop('align', 'center') if align == 'center': pxs = np.array(pxs) - width/2.0 if align == 'right': pxs = np.array(pxs) - width options = _Underride(options, label=pmf.label) Plot(pxs, pys, **options) def Pmfs(pmfs, **options): """Plots a sequence of PMFs. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: pmfs: sequence of PMF objects options: keyword args passed to pyplot.plot """ for pmf in pmfs: Pmf(pmf, **options) def Diff(t): """Compute the differences between adjacent elements in a sequence. Args: t: sequence of number Returns: sequence of differences (length one less than t) """ diffs = [t[i+1] - t[i] for i in range(len(t)-1)] return diffs def Cdf(cdf, complement=False, transform=None, **options): """Plots a CDF as a line. Args: cdf: Cdf object complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot Returns: dictionary with the scale options that should be passed to Config, Show or Save. """ xs, ps = cdf.Render() xs = np.asarray(xs) ps = np.asarray(ps) scale = dict(xscale='linear', yscale='linear') for s in ['xscale', 'yscale']: if s in options: scale[s] = options.pop(s) if transform == 'exponential': complement = True scale['yscale'] = 'log' if transform == 'pareto': complement = True scale['yscale'] = 'log' scale['xscale'] = 'log' if complement: ps = [1.0-p for p in ps] if transform == 'weibull': xs = np.delete(xs, -1) ps = np.delete(ps, -1) ps = [-math.log(1.0-p) for p in ps] scale['xscale'] = 'log' scale['yscale'] = 'log' if transform == 'gumbel': xs = xp.delete(xs, 0) ps = np.delete(ps, 0) ps = [-math.log(p) for p in ps] scale['yscale'] = 'log' options = _Underride(options, label=cdf.label) Plot(xs, ps, **options) return scale def Cdfs(cdfs, complement=False, transform=None, **options): """Plots a sequence of CDFs. cdfs: sequence of CDF objects complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot """ for cdf in cdfs: Cdf(cdf, complement, transform, **options) def Contour(obj, pcolor=False, contour=True, imshow=False, **options): """Makes a contour plot. d: map from (x, y) to z, or object that provides GetDict pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot imshow: boolean, whether to use pyplot.imshow options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ try: d = obj.GetDict() except AttributeError: d = obj _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) xs, ys = zip(*d.keys()) xs = sorted(set(xs)) ys = sorted(set(ys)) X, Y = np.meshgrid(xs, ys) func = lambda x, y: d.get((x, y), 0) func = np.vectorize(func) Z = func(X, Y) x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) if imshow: extent = xs[0], xs[-1], ys[0], ys[-1] pyplot.imshow(Z, extent=extent, **options) def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options): """Makes a pseudocolor plot. xs: ys: zs: pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ _Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) X, Y = np.meshgrid(xs, ys) Z = zs x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) def Text(x, y, s, **options): """Puts text in a figure. x: number y: number s: string options: keyword args passed to pyplot.text """ options = _Underride(options, fontsize=16, verticalalignment='top', horizontalalignment='left') pyplot.text(x, y, s, **options) LEGEND = True LOC = None def Config(**options): """Configures the plot. Pulls options out of the option dictionary and passes them to the corresponding pyplot functions. """ names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale', 'xticks', 'yticks', 'axis', 'xlim', 'ylim'] for name in names: if name in options: getattr(pyplot, name)(options[name]) # looks like this is not necessary: matplotlib understands text loc specs loc_dict = {'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10, } global LEGEND LEGEND = options.get('legend', LEGEND) if LEGEND: global LOC LOC = options.get('loc', LOC) pyplot.legend(loc=LOC) def Show(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various pyplot functions """ clf = options.pop('clf', True) Config(**options) pyplot.show() if clf: Clf() def Plotly(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various pyplot functions """ clf = options.pop('clf', True) Config(**options) import plotly.plotly as plotly url = plotly.plot_mpl(pyplot.gcf()) if clf: Clf() return url def Save(root=None, formats=None, **options): """Saves the plot in the given formats and clears the figure. For options, see Config. Args: root: string filename root formats: list of string formats options: keyword args used to invoke various pyplot functions """ clf = options.pop('clf', True) Config(**options) if formats is None: formats = ['pdf', 'eps'] try: formats.remove('plotly') Plotly(clf=False) except ValueError: pass if root: for fmt in formats: SaveFormat(root, fmt) if clf: Clf() def SaveFormat(root, fmt='eps'): """Writes the current figure to a file in the given format. Args: root: string filename root fmt: string format """ filename = '%s.%s' % (root, fmt) print('Writing', filename) pyplot.savefig(filename, format=fmt, dpi=300) # provide aliases for calling functons with lower-case names preplot = PrePlot subplot = SubPlot clf = Clf figure = Figure plot = Plot text = Text scatter = Scatter pmf = Pmf pmfs = Pmfs hist = Hist hists = Hists diff = Diff cdf = Cdf cdfs = Cdfs contour = Contour pcolor = Pcolor config = Config show = Show save = Save def main(): color_iter = _Brewer.ColorGenerator(7) for color in color_iter: print(color) if __name__ == '__main__': main()
gpl-3.0
chrsrds/scikit-learn
examples/semi_supervised/plot_label_propagation_structure.py
21
2437
""" ============================================== Label Propagation learning a complex structure ============================================== Example of LabelPropagation learning a complex internal structure to demonstrate "manifold learning". The outer circle should be labeled "red" and the inner circle "blue". Because both label groups lie inside their own distinct shape, we can see that the labels propagate correctly around the circle. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Andreas Mueller <[email protected]> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn.semi_supervised import label_propagation from sklearn.datasets import make_circles # generate ring with inner box n_samples = 200 X, y = make_circles(n_samples=n_samples, shuffle=False) outer, inner = 0, 1 labels = np.full(n_samples, -1.) labels[0] = outer labels[-1] = inner # ############################################################################# # Learn with LabelSpreading label_spread = label_propagation.LabelSpreading(kernel='knn', alpha=0.8) label_spread.fit(X, labels) # ############################################################################# # Plot output labels output_labels = label_spread.transduction_ plt.figure(figsize=(8.5, 4)) plt.subplot(1, 2, 1) plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy', marker='s', lw=0, label="outer labeled", s=10) plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c', marker='s', lw=0, label='inner labeled', s=10) plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange', marker='.', label='unlabeled') plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Raw data (2 classes=outer and inner)") plt.subplot(1, 2, 2) output_label_array = np.asarray(output_labels) outer_numbers = np.where(output_label_array == outer)[0] inner_numbers = np.where(output_label_array == inner)[0] plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy', marker='s', lw=0, s=10, label="outer learned") plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c', marker='s', lw=0, s=10, label="inner learned") plt.legend(scatterpoints=1, shadow=False, loc='upper right') plt.title("Labels learned with Label Spreading (KNN)") plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92) plt.show()
bsd-3-clause
Ginkgo-Biloba/Misc-Python
numpy/Pandas2Excel.py
1
2036
# coding = utf-8 """ (2) 读写 Excel 文件 From: https://github.com/wizardforcel/pandas-official-tutorials-zh/blob/master/3.3.md """ import pandas as pd import matplotlib.pyplot as plt import numpy as np plt.style.use("ggplot") # 设置种子 np.random.seed(111) # 生成测试数据的函数 def CreateDataSet(Number=1): Output = list() for i in range(Number): # 创建按周(周一)的数据范围 rng = pd.date_range(start='2009-01-01', end='2012-12-31', freq='W-MON') # 创建随机数据 data = np.random.randint(low=25,high=1000,size=len(rng)) # 状态池 status = np.array([1,2,3], dtype=np.int32) # 创建状态的随机列表 random_status = status[np.random.randint(low=0, high=len(status), size=len(rng), dtype=np.int32)] # 州池 states = np.array(['GA','FL','fl','NY','NJ','TX'], dtype=np.str) # 创建州的随机列表 random_states = states[np.random.randint(low=0, high=len(states), size=len(rng))] Output.extend(zip(random_states, random_status, data, rng)) return Output # 创建一些数据 dataset = CreateDataSet(4) df = pd.DataFrame(data=dataset, columns=['State','Status','CustomerCount','StatusDate']) df = df.set_index("StatusDate") # 读写 Excel。算了,没装 xlrd xlwt # df.to_excel(__file__.replace("py", "xlsx"), index=False) # df = pd.read_excel(__file__.replace("py", "xlsx"), 0, index_col="StatusDate") """ 此部分尝试清理要分析的数据 1. 确保 State 列全部大写 2. 仅选择帐户状态等于 1 的记录 3. 在 State 列中合并 NJ 和 NY 为 NY 4. 删除任何异常值(数据集中的任何奇怪结果) """ # 清理 State 列,转换为大写 df['State'] = df.State.apply(lambda x: x.upper()) # 仅仅抓取 Status == 1 的值 dfMask = (df.Status == 1) df = df[dfMask] # 将 NJ 变为 NY dfMask = (df.State == 'NJ') df['State'][dfMask] = 'NY' # 查看 CustomerCount # df.CustomerCount.plot(figsize=(10, 7), kind="line") df.CustomerCount.plot.line(figsize=(10, 7)) sortdf = df[df.State == "NY"].sort_index(axis=0)
gpl-3.0
rom1mouret/assortment
gen_dataset/features.py
1
2971
from sklearn.preprocessing import robust_scale from sklearn.linear_model import Ridge from scipy.stats import shapiro from scipy.stats import rankdata import numpy as np def session_features(X, scores): """ assuming X has been scaled properly """ subsample = np.random.choice(np.arange(scores.shape[0]), size=3000) X_small = X[subsample] # average Gaussianity of each feature g = 0 n = 0 for j in range(X.shape[1]): col = X_small[:, j] if np.min(col) != np.max(col): g += shapiro(col)[0] n += 1 if n == 0: m0 = np.nan else: m0 = g/n # from statsmodels.stats.outliers_influence import variance_inflation_factor #print("computing VIF") #vif = [variance_inflation_factor(X_small, col) for col in range(X.shape[1])] #m1 = np.mean(vif) #print("VIF avg", m1) # percentiles of scores m2 = np.percentile(scores, 70) m3 = np.percentile(scores, 90) m4 = np.percentile(scores, 95) # histogram of scores hist, edges = np.histogram(scores, bins=5) hist += 1 hist = np.log(hist) hist /= np.sum(hist) # do scores explain well the data? m5 = score_explanation(X, scores) # TODO: accuracy of KDE or GMM return [m0, m2, m3, m4, m5]+hist.tolist() def score_explanation(X, scores): def regression_error(features, y): #model = RandomForestRegressor()# DecisionTreeRegressor() #Ridge() model = Ridge() model.fit(features, y) return np.mean(np.square(y - model.predict(features))) # resample to speed up the regression, while keeping the alleged anomalies ranks = rankdata(scores) probas = ranks / np.sum(ranks) score_selection = np.random.choice(np.arange(len(scores)), size=7000, p=probas) X = X[score_selection] scores = scores[score_selection] scores = robust_scale(scores.reshape(scores.shape[0], 1)).squeeze() # make room for storing score cubes and score log in the feature matrix scores_cube = np.power(scores, 3) scores_cube_idx = X.shape[1] scores_log = np.log(1 + scores - np.min(scores)) scores_log_idx = scores_cube_idx + 1 scores_tan = np.tanh(scores) + 1 scores_tan_idx = scores_log_idx + 1 extra = ((scores_cube_idx, scores_cube), (scores_log_idx, scores_log), (scores_tan_idx, scores_tan)) X = np.concatenate([X, np.empty((X.shape[0], len(extra)))], axis=1) predictability = 0 for j in range(X.shape[1]): col = X[:, j].copy() X[:, j] = 0 # or np.random.randn(X.shape[0])? for idx, _ in extra: X[:, idx] = 0 no_score = regression_error(X, col) X[:, j] = scores for idx, data in extra: X[:, idx] = data with_score = regression_error(X, col) predictability += np.log(1 + max(0, no_score - with_score)) X[:, j] = col # cancel changes predictability /= X.shape[1] return predictability
apache-2.0
patrickayoup/ebox_checkup
ebox_checkup/reporting/email_reporter.py
1
4239
""" Module for generating and sending email reports. """ import calendar import datetime import logging import io import os from matplotlib import pyplot from pa_pylibs.config.configuration import Configuration from pa_pylibs.email.email_sender import EmailSender, EmailAttachment from ebox_checkup import resources class EmailReporter(object): def __init__(self, notification_emails): """ :param notification_emails: The email addresses to send the report to. :type notification_emails: list """ self._config = Configuration( os.path.join(resources.__path__[0], 'ebox_checkup.conf'), '~/.ebox_checkup/ebox_checkup.conf' ) self._notification_emails = notification_emails self._daily_usage_graph = None self._monthly_totals_graph = None self._daily_target = None def generate_report(self, daily_usage, monthly_sum, total_this_month): """ Generates a report describing your internet usage. :param daily_usage: The usage data for the daily usage in the current month. :type daily_usage: pandas.DataFrame :param monthly_sum: The usage sums on a monthly basis in the current year. :type monthly_sum: pandas.DataFrame :param total_this_month: The usage averages overall in the current month. :type total_this_month: pandas.DataFrame :return: An HTML report describing your internet usage. :rtype: str """ logger = logging.getLogger(__name__) logger.debug('Generating daily usage graph.') self._daily_usage_graph = self._generate_usage_graph(daily_usage, 'Daily Usage') logger.debug('Generating monthly usage graph.') self._monthly_totals_graph = self._generate_usage_graph(monthly_sum, 'Monthly Totals') now = datetime.date.today() remainder = self._config.get_int('plan', 'total_bandwidth') - total_this_month['total'] days_left_in_month = calendar.monthrange(now.year, now.month)[1] - now.day self._daily_target = remainder / days_left_in_month if days_left_in_month != 0 else remainder logger.debug('Daily target is now: {}'.format(self._daily_target)) def send_report(self): """ Sends the HTML report to the required notification email addresses. """ logger = logging.getLogger(__name__) logger.debug('Sending Report') email_sender = EmailSender( self._config.get_str('email', 'smtp_hostport'), self._config.get_str('email', 'username'), self._config.get_str('email', 'password') ) email_sender.send_multipart( self._config.get_str('email', 'from_address'), 'Your Internet Usage', 'You can afford to use: {} GB per day for the rest of the month.'.format(self._daily_target), [ EmailAttachment(self._daily_usage_graph, 'daily_usage.png'), EmailAttachment(self._monthly_totals_graph, 'monthly_usage.png') ], self._notification_emails ) @staticmethod def _generate_usage_graph(usage, title): """ Generates a usage graph. :param usage: The usage data. :type usage: pandas.DataFrame :param title: The graph title. :type title: str :return: The graph representing this data. :rtype: io.BytesIO """ logger = logging.getLogger(__name__) image_buffer = io.BytesIO() with pyplot.style.context('fivethirtyeight'): # Drop the total column. usage = usage.drop('total', axis=1) # Format the dates. usage.index = usage.index.map(lambda t: t.strftime('%Y-%m-%d')) ax = usage.plot.bar(stacked=True, width=1) ax.set_ylabel('Usage (GB)') ax.set_title(title) ax.grid(False) pyplot.tight_layout() logger.debug('Saving graph to memory file.') pyplot.savefig(image_buffer, format='png') image_buffer.seek(0) logger.debug('Clearing plotter.') pyplot.clf() return image_buffer
mit
jakereps/q2-diversity
q2_diversity/tests/test_beta_correlation.py
2
1744
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import skbio import pandas as pd import qiime2 from qiime2 import Artifact from qiime2.plugin.testing import TestPluginBase class BetaCorrelationTests(TestPluginBase): package = 'q2_diversity' def setUp(self): super().setUp() self.beta_correlation = self.plugin.pipelines['beta_correlation'] dm = skbio.DistanceMatrix([[0, 1, 2], [1, 0, 1], [2, 1, 0]], ids=['sample1', 'sample2', 'sample3']) self.dm = Artifact.import_data('DistanceMatrix', dm) self.md = qiime2.NumericMetadataColumn( pd.Series([1, 2, 3], name='number', index=pd.Index(['sample1', 'sample2', 'sample3'], name='id'))) def test_execution(self): # does it run? self.beta_correlation(self.md, self.dm) def test_outputs(self): result = self.beta_correlation(self.md, self.dm) # correct number of outputs? self.assertEqual(2, len(result)) # correct types? self.assertEqual('DistanceMatrix', str(result.metadata_distance_matrix.type)) self.assertEqual('Visualization', str(result.mantel_scatter_visualization.type)) if __name__ == '__main__': unittest.main()
bsd-3-clause
smartscheduling/scikit-learn-categorical-tree
sklearn/cluster/tests/test_k_means.py
7
25794
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_not_mac_os from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(RuntimeWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): # Check that dense and sparse minibatch update give the same results rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) def _has_blas_lib(libname): from numpy.distutils.system_info import get_info return libname in get_info('blas_opt').get('libraries', []) @if_not_mac_os() def test_k_means_plus_plus_init_2_jobs(): if _has_blas_lib('openblas'): raise SkipTest('Multi-process bug with OpenBLAS (see issue #636)') km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_k_means_n_init(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) # two regression tests on bad n_init argument # previous bug: n_init <= 0 threw non-informative TypeError (#3858) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=0).fit, X) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=-1).fit, X) def test_k_means_fortran_aligned_data(): # Check the KMeans will work well, even if X is a fortran-aligned data. X = np.asfortranarray([[0, 0], [0, 1], [0, 1]]) centers = np.array([[0, 0], [0, 1]]) labels = np.array([0, 1, 1]) km = KMeans(n_init=1, init=centers, precompute_distances=False, random_state=42) km.fit(X) assert_array_equal(km.cluster_centers_, centers) assert_array_equal(km.labels_, labels) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): # Check if copy_x=False returns nearly equal X after de-centering. my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): # Check k_means with a bad initialization does not yield a singleton # Starting with bad centers that are quickly ignored should not # result in a repositioning of the centers to the center of mass that # would lead to collapsed centers which in turns make the clustering # dependent of the numerical unstabilities. my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): # Check that increasing the number of init increases the quality n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
bsd-3-clause
finfou/tushare
tushare/stock/trading.py
1
23685
# -*- coding:utf-8 -*- """ 交易数据接口 Created on 2014/07/31 @author: Jimmy Liu @group : waditu @contact: [email protected] """ from __future__ import division import time import json import lxml.html from lxml import etree import pandas as pd import numpy as np from tushare.stock import cons as ct import re from pandas.compat import StringIO from tushare.util import dateu as du try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request def get_hist_data(code=None, start=None, end=None, ktype='D', retry_count=3, pause=0.001): """ 获取个股历史交易记录 Parameters ------ code:string 股票代码 e.g. 600848 start:string 开始日期 format:YYYY-MM-DD 为空时取到API所提供的最早日期数据 end:string 结束日期 format:YYYY-MM-DD 为空时取到最近一个交易日数据 ktype:string 数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 属性:日期 ,开盘价, 最高价, 收盘价, 最低价, 成交量, 价格变动 ,涨跌幅,5日均价,10日均价,20日均价,5日均量,10日均量,20日均量,换手率 """ symbol = _code_to_symbol(code) url = '' if ktype.upper() in ct.K_LABELS: url = ct.DAY_PRICE_URL%(ct.P_TYPE['http'], ct.DOMAINS['ifeng'], ct.K_TYPE[ktype.upper()], symbol) elif ktype in ct.K_MIN_LABELS: url = ct.DAY_PRICE_MIN_URL%(ct.P_TYPE['http'], ct.DOMAINS['ifeng'], symbol, ktype) else: raise TypeError('ktype input error.') for _ in range(retry_count): time.sleep(pause) try: request = Request(url) lines = urlopen(request, timeout = 10).read() if len(lines) < 15: #no data return None except Exception as e: print(e) else: js = json.loads(lines.decode('utf-8') if ct.PY3 else lines) cols = [] if (code in ct.INDEX_LABELS) & (ktype.upper() in ct.K_LABELS): cols = ct.INX_DAY_PRICE_COLUMNS else: cols = ct.DAY_PRICE_COLUMNS if len(js['record'][0]) == 14: cols = ct.INX_DAY_PRICE_COLUMNS df = pd.DataFrame(js['record'], columns=cols) if ktype.upper() in ['D', 'W', 'M']: df = df.applymap(lambda x: x.replace(u',', u'')) df[df==''] = 0 for col in cols[1:]: df[col] = df[col].astype(float) if start is not None: df = df[df.date >= start] if end is not None: df = df[df.date <= end] if (code in ct.INDEX_LABELS) & (ktype in ct.K_MIN_LABELS): df = df.drop('turnover', axis=1) df = df.set_index('date') df = df.sort_index(ascending = False) return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def _parsing_dayprice_json(pageNum=1): """ 处理当日行情分页数据,格式为json Parameters ------ pageNum:页码 return ------- DataFrame 当日所有股票交易数据(DataFrame) """ ct._write_console() request = Request(ct.SINA_DAY_PRICE_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['jv'], pageNum)) text = urlopen(request, timeout=10).read() if text == 'null': return None reg = re.compile(r'\,(.*?)\:') text = reg.sub(r',"\1":', text.decode('gbk') if ct.PY3 else text) text = text.replace('"{symbol', '{"symbol') text = text.replace('{symbol', '{"symbol"') if ct.PY3: jstr = json.dumps(text) else: jstr = json.dumps(text, encoding='GBK') js = json.loads(jstr) df = pd.DataFrame(pd.read_json(js, dtype={'code':object}), columns=ct.DAY_TRADING_COLUMNS) df = df.drop('symbol', axis=1) df = df.ix[df.volume > 0] return df def get_tick_data(code=None, date=None, retry_count=3, pause=0.001): """ 获取分笔数据 Parameters ------ code:string 股票代码 e.g. 600848 date:string 日期 format:YYYY-MM-DD retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:成交时间、成交价格、价格变动,成交手、成交金额(元),买卖类型 """ if code is None or len(code)!=6 or date is None: return None symbol = _code_to_symbol(code) for _ in range(retry_count): time.sleep(pause) try: re = Request(ct.TICK_PRICE_URL % (ct.P_TYPE['http'], ct.DOMAINS['sf'], ct.PAGES['dl'], date, symbol)) lines = urlopen(re, timeout=10).read() lines = lines.decode('GBK') if len(lines) < 100: return None df = pd.read_table(StringIO(lines), names=ct.TICK_COLUMNS, skiprows=[0]) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_sina_dd(code=None, date=None, retry_count=3, pause=0.001): """ 获取sina大单数据 Parameters ------ code:string 股票代码 e.g. 600848 date:string 日期 format:YYYY-MM-DD retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:股票代码 股票名称 交易时间 价格 成交量 前一笔价格 类型(买、卖、中性盘) """ if code is None or len(code)!=6 or date is None: return None symbol = _code_to_symbol(code) for _ in range(retry_count): time.sleep(pause) try: re = Request(ct.SINA_DD % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['sinadd'], symbol, date)) lines = urlopen(re, timeout=10).read() lines = lines.decode('GBK') if len(lines) < 100: return None df = pd.read_csv(StringIO(lines), names=ct.SINA_DD_COLS, skiprows=[0]) if df is not None: df['code'] = df['code'].map(lambda x: x[2:]) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_today_ticks(code=None, retry_count=3, pause=0.001): """ 获取当日分笔明细数据 Parameters ------ code:string 股票代码 e.g. 600848 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:成交时间、成交价格、价格变动,成交手、成交金额(元),买卖类型 """ if code is None or len(code)!=6 : return None symbol = _code_to_symbol(code) date = du.today() for _ in range(retry_count): time.sleep(pause) try: request = Request(ct.TODAY_TICKS_PAGE_URL % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['jv'], date, symbol)) data_str = urlopen(request, timeout=10).read() data_str = data_str.decode('GBK') data_str = data_str[1:-1] data_str = eval(data_str, type('Dummy', (dict,), dict(__getitem__ = lambda s, n:n))()) data_str = json.dumps(data_str) data_str = json.loads(data_str) pages = len(data_str['detailPages']) data = pd.DataFrame() ct._write_head() for pNo in range(1, pages+1): data = data.append(_today_ticks(symbol, date, pNo, retry_count, pause), ignore_index=True) except Exception as er: print(str(er)) else: return data raise IOError(ct.NETWORK_URL_ERROR_MSG) def _today_ticks(symbol, tdate, pageNo, retry_count, pause): ct._write_console() for _ in range(retry_count): time.sleep(pause) try: html = lxml.html.parse(ct.TODAY_TICKS_URL % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['t_ticks'], symbol, tdate, pageNo )) res = html.xpath('//table[@id=\"datatbl\"]/tbody/tr') if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr sarr = sarr.replace('--', '0') df = pd.read_html(StringIO(sarr), parse_dates=False)[0] df.columns = ct.TODAY_TICK_COLUMNS df['pchange'] = df['pchange'].map(lambda x : x.replace('%', '')) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_today_all(): """ 一次性获取最近一个日交易日所有股票的交易数据 return ------- DataFrame 属性:代码,名称,涨跌幅,现价,开盘价,最高价,最低价,最日收盘价,成交量,换手率 """ ct._write_head() df = _parsing_dayprice_json(1) if df is not None: for i in range(2, ct.PAGE_NUM[0]): newdf = _parsing_dayprice_json(i) df = df.append(newdf, ignore_index=True) return df def get_realtime_quotes(symbols=None): """ 获取实时交易数据 getting real time quotes data 用于跟踪交易情况(本次执行的结果-上一次执行的数据) Parameters ------ symbols : string, array-like object (list, tuple, Series). return ------- DataFrame 实时交易数据 属性:0:name,股票名字 1:open,今日开盘价 2:pre_close,昨日收盘价 3:price,当前价格 4:high,今日最高价 5:low,今日最低价 6:bid,竞买价,即“买一”报价 7:ask,竞卖价,即“卖一”报价 8:volumn,成交量 maybe you need do volumn/100 9:amount,成交金额(元 CNY) 10:b1_v,委买一(笔数 bid volume) 11:b1_p,委买一(价格 bid price) 12:b2_v,“买二” 13:b2_p,“买二” 14:b3_v,“买三” 15:b3_p,“买三” 16:b4_v,“买四” 17:b4_p,“买四” 18:b5_v,“买五” 19:b5_p,“买五” 20:a1_v,委卖一(笔数 ask volume) 21:a1_p,委卖一(价格 ask price) ... 30:date,日期; 31:time,时间; """ symbols_list = '' if isinstance(symbols, list) or isinstance(symbols, set) or isinstance(symbols, tuple) or isinstance(symbols, pd.Series): for code in symbols: symbols_list += _code_to_symbol(code) + ',' else: symbols_list = _code_to_symbol(symbols) symbols_list = symbols_list[:-1] if len(symbols_list) > 8 else symbols_list request = Request(ct.LIVE_DATA_URL%(ct.P_TYPE['http'], ct.DOMAINS['sinahq'], _random(), symbols_list)) text = urlopen(request,timeout=10).read() text = text.decode('GBK') reg = re.compile(r'\="(.*?)\";') data = reg.findall(text) regSym = re.compile(r'(?:sh|sz)(.*?)\=') syms = regSym.findall(text) data_list = [] syms_list = [] for index, row in enumerate(data): if len(row)>1: data_list.append([astr for astr in row.split(',')]) syms_list.append(syms[index]) if len(syms_list) == 0: return None df = pd.DataFrame(data_list, columns=ct.LIVE_DATA_COLS) df = df.drop('s', axis=1) df['code'] = syms_list ls = [cls for cls in df.columns if '_v' in cls] for txt in ls: df[txt] = df[txt].map(lambda x : x[:-2]) return df def get_h_data(code, start=None, end=None, autype='qfq', index=False, retry_count=3, pause=0.001, drop_factor=True): ''' 获取历史复权数据 Parameters ------ code:string 股票代码 e.g. 600848 start:string 开始日期 format:YYYY-MM-DD 为空时取当前日期 end:string 结束日期 format:YYYY-MM-DD 为空时取去年今日 autype:string 复权类型,qfq-前复权 hfq-后复权 None-不复权,默认为qfq retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 drop_factor : bool, 默认 True 是否移除复权因子,在分析过程中可能复权因子意义不大,但是如需要先储存到数据库之后再分析的话,有该项目会更加灵活 return ------- DataFrame date 交易日期 (index) open 开盘价 high 最高价 close 收盘价 low 最低价 volume 成交量 amount 成交金额 ''' start = du.today_last_year() if start is None else start end = du.today() if end is None else end qs = du.get_quarts(start, end) qt = qs[0] ct._write_head() data = _parse_fq_data(_get_index_url(index, code, qt), index, retry_count, pause) if len(qs)>1: for d in range(1, len(qs)): qt = qs[d] ct._write_console() df = _parse_fq_data(_get_index_url(index, code, qt), index, retry_count, pause) data = data.append(df, ignore_index=True) if len(data) == 0 or len(data[(data.date>=start)&(data.date<=end)]) == 0: return None data = data.drop_duplicates('date') if index: data = data[(data.date>=start) & (data.date<=end)] data = data.set_index('date') data = data.sort_index(ascending=False) return data if autype == 'hfq': if drop_factor: data = data.drop('factor', axis=1) data = data[(data.date>=start) & (data.date<=end)] for label in ['open', 'high', 'close', 'low']: data[label] = data[label].map(ct.FORMAT) data[label] = data[label].astype(float) data = data.set_index('date') data = data.sort_index(ascending = False) return data else: if autype == 'qfq': if drop_factor: data = data.drop('factor', axis=1) df = _parase_fq_factor(code, start, end) df = df.drop_duplicates('date') df = df.sort('date', ascending=False) frow = df.head(1) rt = get_realtime_quotes(code) if rt is None: return None if ((float(rt['high']) == 0) & (float(rt['low']) == 0)): preClose = float(rt['pre_close']) else: if du.is_holiday(du.today()): preClose = float(rt['price']) else: if (du.get_hour() > 9) & (du.get_hour() < 18): preClose = float(rt['pre_close']) else: preClose = float(rt['price']) rate = float(frow['factor']) / preClose data = data[(data.date >= start) & (data.date <= end)] for label in ['open', 'high', 'low', 'close']: data[label] = data[label] / rate data[label] = data[label].map(ct.FORMAT) data[label] = data[label].astype(float) data = data.set_index('date') data = data.sort_index(ascending = False) return data else: for label in ['open', 'high', 'close', 'low']: data[label] = data[label] / data['factor'] if drop_factor: data = data.drop('factor', axis=1) data = data[(data.date>=start) & (data.date<=end)] for label in ['open', 'high', 'close', 'low']: data[label] = data[label].map(ct.FORMAT) data = data.set_index('date') data = data.sort_index(ascending = False) data = data.astype(float) return data def _parase_fq_factor(code, start, end): symbol = _code_to_symbol(code) request = Request(ct.HIST_FQ_FACTOR_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], symbol)) text = urlopen(request, timeout=10).read() text = text[1:len(text)-1] text = text.decode('utf-8') if ct.PY3 else text text = text.replace('{_', '{"') text = text.replace('total', '"total"') text = text.replace('data', '"data"') text = text.replace(':"', '":"') text = text.replace('",_', '","') text = text.replace('_', '-') text = json.loads(text) df = pd.DataFrame({'date':list(text['data'].keys()), 'factor':list(text['data'].values())}) df['date'] = df['date'].map(_fun_except) # for null case if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') df['factor'] = df['factor'].astype(float) return df def _fun_except(x): if len(x) > 10: return x[-10:] else: return x def _parse_fq_data(url, index, retry_count, pause): for _ in range(retry_count): time.sleep(pause) try: request = Request(url) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath('//table[@id=\"FundHoldSharesTable\"]') if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) df = pd.read_html(sarr, skiprows = [0, 1])[0] if len(df) == 0: return pd.DataFrame() if index: df.columns = ct.HIST_FQ_COLS[0:7] else: df.columns = ct.HIST_FQ_COLS if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_index(): """ 获取大盘指数行情 return ------- DataFrame code:指数代码 name:指数名称 change:涨跌幅 open:开盘价 preclose:昨日收盘价 close:收盘价 high:最高价 low:最低价 volume:成交量(手) amount:成交金额(亿元) """ request = Request(ct.INDEX_HQ_URL%(ct.P_TYPE['http'], ct.DOMAINS['sinahq'])) text = urlopen(request, timeout=10).read() text = text.decode('GBK') text = text.replace('var hq_str_sh', '').replace('var hq_str_sz', '') text = text.replace('";', '').replace('"', '').replace('=', ',') text = '%s%s'%(ct.INDEX_HEADER, text) df = pd.read_csv(StringIO(text), sep=',', thousands=',') df['change'] = (df['close'] / df['preclose'] - 1 ) * 100 df['amount'] = df['amount'] / 100000000 df['change'] = df['change'].map(ct.FORMAT) df['amount'] = df['amount'].map(ct.FORMAT) df = df[ct.INDEX_COLS] df['code'] = df['code'].map(lambda x:str(x).zfill(6)) df['change'] = df['change'].astype(float) df['amount'] = df['amount'].astype(float) return df def _get_index_url(index, code, qt): if index: url = ct.HIST_INDEX_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], code, qt[0], qt[1]) else: url = ct.HIST_FQ_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], code, qt[0], qt[1]) return url def get_hists(symbols, start=None, end=None, ktype='D', retry_count=3, pause=0.001): """ 批量获取历史行情数据,具体参数和返回数据类型请参考get_hist_data接口 """ df = pd.DataFrame() if isinstance(symbols, list) or isinstance(symbols, set) or isinstance(symbols, tuple) or isinstance(symbols, pd.Series): for symbol in symbols: data = get_hist_data(symbol, start=start, end=end, ktype=ktype, retry_count=retry_count, pause=pause) data['code'] = symbol df = df.append(data, ignore_index=True) return df else: return None def _random(n=13): from random import randint start = 10**(n-1) end = (10**n)-1 return str(randint(start, end)) def _code_to_symbol(code): """ 生成symbol代码标志 """ if code in ct.INDEX_LABELS: return ct.INDEX_LIST[code] else: if len(code) != 6 : return '' else: return 'sh%s'%code if code[:1] in ['5', '6', '9'] else 'sz%s'%code
bsd-3-clause
frankinit/ThinkStats2
code/scatter.py
69
4281
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import sys import numpy as np import math import brfss import thinkplot import thinkstats2 def GetHeightWeight(df, hjitter=0.0, wjitter=0.0): """Get sequences of height and weight. df: DataFrame with htm3 and wtkg2 hjitter: float magnitude of random noise added to heights wjitter: float magnitude of random noise added to weights returns: tuple of sequences (heights, weights) """ heights = df.htm3 if hjitter: heights = thinkstats2.Jitter(heights, hjitter) weights = df.wtkg2 if wjitter: weights = thinkstats2.Jitter(weights, wjitter) return heights, weights def ScatterPlot(heights, weights, alpha=1.0): """Make a scatter plot and save it. heights: sequence of float weights: sequence of float alpha: float """ thinkplot.Scatter(heights, weights, alpha=alpha) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def HexBin(heights, weights, bins=None): """Make a hexbin plot and save it. heights: sequence of float weights: sequence of float bins: 'log' or None for linear """ thinkplot.HexBin(heights, weights, bins=bins) thinkplot.Config(xlabel='height (cm)', ylabel='weight (kg)', axis=[140, 210, 20, 200], legend=False) def MakeFigures(df): """Make scatterplots. """ sample = thinkstats2.SampleRows(df, 5000) # simple scatter plot thinkplot.PrePlot(cols=2) heights, weights = GetHeightWeight(sample) ScatterPlot(heights, weights) # scatter plot with jitter thinkplot.SubPlot(2) heights, weights = GetHeightWeight(sample, hjitter=1.3, wjitter=0.5) ScatterPlot(heights, weights) thinkplot.Save(root='scatter1') # with jitter and transparency thinkplot.PrePlot(cols=2) ScatterPlot(heights, weights, alpha=0.1) # hexbin plot thinkplot.SubPlot(2) heights, weights = GetHeightWeight(df, hjitter=1.3, wjitter=0.5) HexBin(heights, weights) thinkplot.Save(root='scatter2') def BinnedPercentiles(df): """Bin the data by height and plot percentiles of weight for eachbin. df: DataFrame """ cdf = thinkstats2.Cdf(df.htm3) print('Fraction between 140 and 200 cm', cdf[200] - cdf[140]) bins = np.arange(135, 210, 5) indices = np.digitize(df.htm3, bins) groups = df.groupby(indices) heights = [group.htm3.mean() for i, group in groups][1:-1] cdfs = [thinkstats2.Cdf(group.wtkg2) for i, group in groups][1:-1] thinkplot.PrePlot(3) for percent in [75, 50, 25]: weights = [cdf.Percentile(percent) for cdf in cdfs] label = '%dth' % percent thinkplot.Plot(heights, weights, label=label) thinkplot.Save(root='scatter3', xlabel='height (cm)', ylabel='weight (kg)') def Correlations(df): print('pandas cov', df.htm3.cov(df.wtkg2)) #print('NumPy cov', np.cov(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Cov', thinkstats2.Cov(df.htm3, df.wtkg2)) print() print('pandas corr', df.htm3.corr(df.wtkg2)) #print('NumPy corrcoef', np.corrcoef(df.htm3, df.wtkg2, ddof=0)) print('thinkstats2 Corr', thinkstats2.Corr(df.htm3, df.wtkg2)) print() print('pandas corr spearman', df.htm3.corr(df.wtkg2, method='spearman')) print('thinkstats2 SpearmanCorr', thinkstats2.SpearmanCorr(df.htm3, df.wtkg2)) print('thinkstats2 SpearmanCorr log wtkg3', thinkstats2.SpearmanCorr(df.htm3, np.log(df.wtkg2))) print() print('thinkstats2 Corr log wtkg3', thinkstats2.Corr(df.htm3, np.log(df.wtkg2))) print() def main(script): thinkstats2.RandomSeed(17) df = brfss.ReadBrfss(nrows=None) df = df.dropna(subset=['htm3', 'wtkg2']) Correlations(df) return MakeFigures(df) BinnedPercentiles(df) if __name__ == '__main__': main(*sys.argv)
gpl-3.0
RayMick/scikit-learn
examples/cluster/plot_ward_structured_vs_unstructured.py
320
3369
""" =========================================================== Hierarchical clustering: structured vs unstructured ward =========================================================== Example builds a swiss roll dataset and runs hierarchical clustering on their position. For more information, see :ref:`hierarchical_clustering`. In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it's a hierarchical clustering with structure prior. Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll. """ # Authors : Vincent Michel, 2010 # Alexandre Gramfort, 2010 # Gael Varoquaux, 2010 # License: BSD 3 clause print(__doc__) import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering from sklearn.datasets.samples_generator import make_swiss_roll ############################################################################### # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise) # Make it thinner X[:, 1] *= .5 ############################################################################### # Compute clustering print("Compute unstructured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(np.float(l) / np.max(label + 1))) plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time) ############################################################################### # Define the structure A of the data. Here a 10 nearest neighbors from sklearn.neighbors import kneighbors_graph connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ############################################################################### # Compute clustering print("Compute structured hierarchical clustering...") st = time.time() ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity, linkage='ward').fit(X) elapsed_time = time.time() - st label = ward.labels_ print("Elapsed time: %.2fs" % elapsed_time) print("Number of points: %i" % label.size) ############################################################################### # Plot result fig = plt.figure() ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(label): ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2], 'o', color=plt.cm.jet(float(l) / np.max(label + 1))) plt.title('With connectivity constraints (time %.2fs)' % elapsed_time) plt.show()
bsd-3-clause
ExaScience/smurff
python/test/test_smurff.py
1
11009
import unittest import numpy as np import pandas as pd import scipy.sparse import smurff import itertools import collections verbose = 0 class TestSmurff(unittest.TestCase): # Python 2.7 @unittest.skip fix __name__ = "TestSmurff" def test_bpmf(self): Y = scipy.sparse.rand(10, 20, 0.2) Y, Ytest = smurff.make_train_test(Y, 0.5) predictions = smurff.smurff(Y, Ytest=Ytest, priors=['normal', 'normal'], num_latent=4, verbose=verbose, burnin=50, nsamples=50) self.assertEqual(Ytest.nnz, len(predictions)) def test_bpmf_numerictest(self): X = scipy.sparse.rand(15, 10, 0.2) Xt = 0.3 X, Xt = smurff.make_train_test(X, Xt) smurff.smurff(X, Ytest=Xt, priors=['normal', 'normal'], num_latent=10, burnin=10, nsamples=15, verbose=verbose) def test_macau(self): Ydense = np.random.rand(10, 20) r = np.random.permutation(10*20)[:40] # 40 random samples from 10*20 matrix side1 = Ydense[:,1:2] side2 = Ydense[1:2,:].transpose() Y = scipy.sparse.coo_matrix(Ydense) # convert to sparse Y = scipy.sparse.coo_matrix( (Y.data[r], (Y.row[r], Y.col[r])), shape=Y.shape ) Y, Ytest = smurff.make_train_test(Y, 0.5) predictions = smurff.smurff(Y, Ytest=Ytest, priors=['macau', 'macau'], side_info=[side1, side2], direct=True, # side_info_noises=[[('fixed', 1.0, None, None, None)], [('adaptive', None, 0.5, 1.0, None)]], num_latent=4, verbose=verbose, burnin=50, nsamples=50) #self.assertEqual(Ytest.nnz, len(predictions)) def test_macau_side_bin(self): X = scipy.sparse.rand(15, 10, 0.2) Xt = scipy.sparse.rand(15, 10, 0.1) F = scipy.sparse.rand(15, 2, 0.5) F.data[:] = 1 smurff.smurff(X, Ytest=Xt, priors=['macau', 'normal'], side_info=[F, None], direct=True, num_latent=5, burnin=10, nsamples=5, verbose=verbose) def test_macau_dense(self): Y = scipy.sparse.rand(15, 10, 0.2) Yt = scipy.sparse.rand(15, 10, 0.1) F = np.random.randn(15, 2) smurff.smurff(Y, Ytest=Yt, priors=['macau', 'normal'], side_info=[F, None], direct=True, num_latent=5, burnin=10, nsamples=5, verbose=verbose) def test_macau_dense_probit(self): A = np.random.randn(25, 2) B = np.random.randn(3, 2) idx = list( itertools.product(np.arange(A.shape[0]), np.arange(B.shape[0])) ) df = pd.DataFrame( np.asarray(idx), columns=["A", "B"]) df["value"] = (np.array([ np.sum(A[i[0], :] * B[i[1], :]) for i in idx ]) > 0.0).astype(np.float64) Ytrain, Ytest = smurff.make_train_test(df, 0.2) threshold = 0.5 # since we sample from mu(0,1) trainSession = smurff.TrainSession(priors=['macau', 'normal'], num_latent=4, threshold=threshold, burnin=200, nsamples=200, verbose=False) trainSession.addTrainAndTest(Ytrain, Ytest, smurff.ProbitNoise(threshold)) trainSession.addSideInfo(0, A, direct=True) predictions = trainSession.run() auc = smurff.calc_auc(predictions, 0.5) self.assertTrue(auc > 0.55, msg="Probit factorization (with dense side) gave AUC below 0.55 (%f)." % auc) def test_macau_univariate(self): Y = scipy.sparse.rand(10, 20, 0.2) Y, Ytest = smurff.make_train_test(Y, 0.5) side1 = scipy.sparse.coo_matrix( np.random.rand(10, 2) ) side2 = scipy.sparse.coo_matrix( np.random.rand(20, 3) ) predictions = smurff.smurff(Y, Ytest=Ytest, priors=['macauone', 'macauone'], side_info=[side1, side2], direct=True, num_latent=4, verbose=verbose, burnin=50, nsamples=50) self.assertEqual(Ytest.nnz, len(predictions)) def test_too_many_sides(self): Y = scipy.sparse.rand(10, 20, 0.2) with self.assertRaises(AssertionError): smurff.smurff(Y, priors=['normal', 'normal', 'normal'], side_info=[None, None, None], verbose = False) def test_bpmf_emptytest(self): X = scipy.sparse.rand(15, 10, 0.2) smurff.smurff(X, priors=['normal', 'normal'], num_latent=10, burnin=10, nsamples=15, verbose=verbose) def test_bpmf_emptytest_probit(self): X = scipy.sparse.rand(15, 10, 0.2) X.data = X.data > 0.5 smurff.smurff(X, priors=['normal', 'normal'], num_latent=10, burnin=10, nsamples=15, verbose=verbose) def test_make_train_test(self): X = scipy.sparse.rand(15, 10, 0.2) Xtr, Xte = smurff.make_train_test(X, 0.5) self.assertEqual(X.nnz, Xtr.nnz + Xte.nnz) diff = np.linalg.norm( (X - Xtr - Xte).todense() ) self.assertEqual(diff, 0.0) def test_make_train_test(self): nnz = 10 * 8 * 3 idx = list( itertools.product(np.arange(10), np.arange(8), np.arange(3) )) df = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"]) df["value"] = np.arange(float(nnz)) Ytr, Yte = smurff.make_train_test(df, 0.4) self.assertEqual(Ytr.nnz, nnz * 0.6) self.assertEqual(Yte.nnz, nnz * 0.4) A1 = np.zeros( (10, 8, 3) ) A2 = np.zeros( (10, 8, 3) ) A1[df.A, df.B, df.C] = df.value A2[Ytr.columns[0], Ytr.columns[1], Ytr.columns[2]] = Ytr.values A2[Yte.columns[0], Yte.columns[1], Yte.columns[2]] = Yte.values self.assertTrue(np.allclose(A1, A2)) def test_bpmf_tensor(self): np.random.seed(1234) shape = [5,4,3] Y = smurff.SparseTensor(pd.DataFrame({ "A": np.random.randint(0, 5, 7), "B": np.random.randint(0, 4, 7), "C": np.random.randint(0, 3, 7), "value": np.random.randn(7) }),shape) Ytest = smurff.SparseTensor(pd.DataFrame({ "A": np.random.randint(0, 5, 5), "B": np.random.randint(0, 4, 5), "C": np.random.randint(0, 3, 5), "value": np.random.randn(5) }),shape) predictions = smurff.smurff(Y, Ytest=Ytest, priors=['normal', 'normal', 'normal'], num_latent=4, verbose=verbose, burnin=50, nsamples=50) def test_bpmf_tensor2(self): A = np.random.randn(15, 2) B = np.random.randn(20, 2) C = np.random.randn(3, 2) idx = list( itertools.product(np.arange(A.shape[0]), np.arange(B.shape[0]), np.arange(C.shape[0])) ) df = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"]) df["value"] = np.array([ np.sum(A[i[0], :] * B[i[1], :] * C[i[2], :]) for i in idx ]) Ytrain, Ytest = smurff.make_train_test(df, 0.2) predictions = smurff.smurff(Ytrain, Ytest=Ytest, priors=['normal', 'normal', 'normal'], num_latent=4, verbose=verbose, burnin=20, nsamples=20) rmse = smurff.calc_rmse(predictions) self.assertTrue(rmse < 0.5, msg="Tensor factorization gave RMSE above 0.5 (%f)." % rmse) def test_bpmf_tensor3(self): A = np.random.randn(15, 2) B = np.random.randn(20, 2) C = np.random.randn(1, 2) idx = list( itertools.product(np.arange(A.shape[0]), np.arange(B.shape[0]), np.arange(C.shape[0])) ) df = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"]) df["value"] = np.array([ np.sum(A[i[0], :] * B[i[1], :] * C[i[2], :]) for i in idx ]) Ytrain, Ytest = smurff.make_train_test(df, 0.2) predictions = smurff.smurff(Ytrain, Ytest=Ytest, priors=['normal', 'normal', 'normal'], num_latent=4, verbose=verbose, burnin=20, nsamples=20) rmse = smurff.calc_rmse(predictions) self.assertTrue(rmse < 0.5, msg="Tensor factorization gave RMSE above 0.5 (%f)." % rmse) def test_macau_tensor_empty(self): A = np.random.randn(30, 2) B = np.random.randn(4, 2) C = np.random.randn(2, 2) idx = list( itertools.product(np.arange(A.shape[0]), np.arange(B.shape[0]), np.arange(C.shape[0])) ) df = pd.DataFrame( np.asarray(idx), columns=["A", "B", "C"]) df["value"] = np.array([ np.sum(A[i[0], :] * B[i[1], :] * C[i[2], :]) for i in idx ]) Acoo = scipy.sparse.coo_matrix(A) predictions = smurff.smurff(smurff.SparseTensor(df), priors=['normal', 'normal', 'normal'], num_latent=2, burnin=5, nsamples=5, verbose=verbose) self.assertFalse(predictions) def test_threads(self): Y = scipy.sparse.rand(10, 20, 0.2) for t in range(7): # 1, 2, 4, 8, 16, 32, 64 smurff.smurff(Y, priors=['normal', 'normal'], num_latent=4, num_threads=2**t, verbose=verbose, burnin=5, nsamples=5) if __name__ == '__main__': unittest.main()
mit
karstenw/nodebox-pyobjc
examples/Extended Application/matplotlib/examples/specialty_plots/anscombe.py
1
2753
""" ================== Anscombe's Quartet ================== """ from __future__ import print_function """ Edward Tufte uses this example from Anscombe to show 4 datasets of x and y that have the same mean, standard deviation, and regression line, but which are qualitatively different. matplotlib fun for a rainy day """ import matplotlib.pyplot as plt import numpy as np # nodebox section if __name__ == '__builtin__': # were in nodebox import os import tempfile W = 800 inset = 20 size(W, 600) plt.cla() plt.clf() plt.close('all') def tempimage(): fob = tempfile.NamedTemporaryFile(mode='w+b', suffix='.png', delete=False) fname = fob.name fob.close() return fname imgx = 20 imgy = 0 def pltshow(plt, dpi=150): global imgx, imgy temppath = tempimage() plt.savefig(temppath, dpi=dpi) dx,dy = imagesize(temppath) w = min(W,dx) image(temppath,imgx,imgy,width=w) imgy = imgy + dy + 20 os.remove(temppath) size(W, HEIGHT+dy+40) else: def pltshow(mplpyplot): mplpyplot.show() # nodebox section end x = np.array([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]) y1 = np.array([8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]) y2 = np.array([9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]) y3 = np.array([7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]) x4 = np.array([8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]) y4 = np.array([6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]) def fit(x): return 3 + 0.5 * x xfit = np.array([np.min(x), np.max(x)]) plt.subplot(221) plt.plot(x, y1, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), xticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.text(3, 12, 'I', fontsize=20) plt.subplot(222) plt.plot(x, y2, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), xticks=(0, 10, 20), xticklabels=[], yticks=(4, 8, 12), yticklabels=[], ) plt.text(3, 12, 'II', fontsize=20) plt.subplot(223) plt.plot(x, y3, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.text(3, 12, 'III', fontsize=20) plt.setp(plt.gca(), yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.subplot(224) xfit = np.array([np.min(x4), np.max(x4)]) plt.plot(x4, y4, 'ks', xfit, fit(xfit), 'r-', lw=2) plt.axis([2, 20, 2, 14]) plt.setp(plt.gca(), yticklabels=[], yticks=(4, 8, 12), xticks=(0, 10, 20)) plt.text(3, 12, 'IV', fontsize=20) # verify the stats pairs = (x, y1), (x, y2), (x, y3), (x4, y4) for x, y in pairs: print('mean=%1.2f, std=%1.2f, r=%1.2f' % (np.mean(y), np.std(y), np.corrcoef(x, y)[0][1])) pltshow(plt)
mit
kaurav/image-process
get.py
1
3532
'''libraries to be imported ''' import cv2 import numpy as np import scipy.ndimage as sy import matplotlib.pylab as py from skimage.measure import regionprops import os #function to find blob of particular shape in binary image ''' getshape take three paramter binary image, orignal image and shape which is to be found''' def getshape1(binary,orignal,shape): r,w=sy.measurements.label(binary) print(w) pro=regionprops(r) cmax={'circle':1,'square':0.84999,'triangle':0.71} cmin={'circle':0.85,'square':0.720,'triangle':0.30} emax={'circle':0.90,'square':1,'triangle':0.70} emin={'circle':0.70,'square':0.90,'triangle':0.30} print('circlularity' ,'extent', 'orientation','aspect ratio', 'eccentricity') for a in range(len(pro)): q=(4*22*pro[a].area)/(7*(pro[a].perimeter**2)) print(q,pro[a].extent, pro[a].orientation,pro[a].eccentricity) if(q>=cmin[shape] and q<=cmax[shape] ): minr, minc, maxr, maxc=pro[a].bbox cv2.rectangle(orignal,(minc,minr),(maxc,maxr),(1,1,1),5) cv2.circle(orignal, (int(pro[a].centroid[1]),int(pro[a].centroid[0])), 1,(1,1,1),5) return orignal #function to find blob of particular shape in binary image using contours def getshape(binary,orignal,shape): contours, hierarchy = cv2.findContours( binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) cmax={'circle':16,'square':8,'triangle':6} for a in contours : epsilon = 0.02*cv2.arcLength(a,True) approx = cv2.approxPolyDP(a,epsilon,True) print(approx.size) if (approx.size == cmax[shape]): cv2.drawContours(orignal,[a],0, (int(40),int(255),int(25)), 3) return orignal,contours '''function to find basic RGB color in image using threshold''' def getcolor1 (img,color,n=0.44): n=float(n) img=chroma(img) B,G,R=cv2.split(img) if(color=='red'): c=R>n c=c*255 if(color=='green'): c=G>n c=c*255 if(color=='blue'): c=B>n c=c*255 c=c.astype('uint8') kernal=np.ones((7,7),np.uint8) c=cv2.morphologyEx( c, cv2.MORPH_OPEN,kernal) c=cv2.morphologyEx( c, cv2.MORPH_CLOSE,kernal) return c '''function to find chromatacity of image''' def chroma(img): img=img.astype('float32') img=img**(22/10) b,g,r=cv2.split(img) Y=r+b+g R=r/Y G=g/Y B=b/Y return cv2.merge([B,G,R]) ''' function to find colors in image using HSV''' def getcolor(img,color): a=chroma(img) a=a*255 a=a.astype('uint8') hsv = cv2.cvtColor(a, cv2.COLOR_BGR2HSV) input=readtxt(color) lower_color = np.array([input[0],input[1],input[2]]) upper_color = np.array([input[3],input[4],input[5]]) mask = cv2.inRange(hsv, lower_color, upper_color) kernal=np.ones((33,33),np.uint8) c=cv2.morphologyEx( mask, cv2.MORPH_OPEN,kernal) kernal=np.ones((5,5),np.uint8) c=cv2.morphologyEx(mask, cv2.MORPH_CLOSE,kernal) if(color == 'Red'): d=getcolor(img,'Red1') c=d+c return c '''function to find homography points for making homograpy matrix''' def gethomograph(img1): c=getcolor(img1,'blue',0.45) r,w=sy.measurements.label(c) pro=regionprops(r) H=np.ones((9, 2), dtype=np.float32) b=0 c=0 for a in range(len(pro)): q=n(4*pi*pro[a].area/pro[a].perimeter^2) H[a][0]=pro[a].centroid[0] H[a][1]=pro[a].centroid[1] cv2.circle(img1,(int(pro[a].centroid[1]),int(pro[a].centroid[0])) ,5,(a,b,c)) return H '''function to read data of color from image''' def readtxt( name ): file = open('getcolor.txt') a = file.readlines() d=[] for c in a: c = c.split(' ' or '/n') c=list(c) if c[0] == name : for e in range(len(c)): if(c[e].isdigit()): d.append(int(c[e])) return d
gpl-2.0
strint/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
2
36442
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools import json import os import tempfile import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib import learn from tensorflow.contrib import lookup from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn import monitors as monitors_lib from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.contrib.testing.python.framework import util_test from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import queue_runner_impl from tensorflow.python.training import session_run_hook from tensorflow.python.util import compat _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat( [labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, variables.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' def _build_estimator_for_export_tests(tmpdir): def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_columns = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] est = linear.LinearRegressor(feature_columns) est.fit(input_fn=_input_fn, steps=20) feature_spec = feature_column_lib.create_feature_spec_for_parsing( feature_columns) serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec) # hack in an op that uses an asset, in order to test asset export. # this is not actually valid, of course. def serving_input_fn_with_asset(): features, labels, inputs = serving_input_fn() vocab_file_name = os.path.join(tmpdir, 'my_vocab_file') vocab_file = gfile.GFile(vocab_file_name, mode='w') vocab_file.write(VOCAB_FILE_CONTENT) vocab_file.close() hashtable = lookup.HashTable( lookup.TextFileStringTableInitializer(vocab_file_name), 'x') features['bogus_lookup'] = hashtable.lookup( math_ops.to_int64(features['feature'])) return input_fn_utils.InputFnOps(features, labels, inputs) return est, serving_input_fn_with_asset class CheckCallsMonitor(monitors_lib.BaseMonitor): def __init__(self, expect_calls): super(CheckCallsMonitor, self).__init__() self.begin_calls = None self.end_calls = None self.expect_calls = expect_calls def begin(self, max_steps): self.begin_calls = 0 self.end_calls = 0 def step_begin(self, step): self.begin_calls += 1 return {} def step_end(self, step, outputs): self.end_calls += 1 return False def end(self): assert (self.end_calls == self.expect_calls and self.begin_calls == self.expect_calls) class EstimatorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=estimator.Estimator(model_fn=linear_model_fn), train_input_fn=boston_input_fn, eval_input_fn=boston_input_fn) exp.test() def testModelFnArgs(self): expected_param = {'some_param': 'some_value'} expected_config = run_config.RunConfig() expected_config.i_am_test = True def _argument_checker(features, labels, mode, params, config): _, _ = features, labels self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_param, params) self.assertTrue(config.i_am_test) return constant_op.constant(0.), constant_op.constant( 0.), constant_op.constant(0.) est = estimator.Estimator( model_fn=_argument_checker, params=expected_param, config=expected_config) est.fit(input_fn=boston_input_fn, steps=1) def testModelFnWithModelDir(self): expected_param = {'some_param': 'some_value'} expected_model_dir = tempfile.mkdtemp() def _argument_checker(features, labels, mode, params, config=None, model_dir=None): _, _, _ = features, labels, config self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_param, params) self.assertEqual(model_dir, expected_model_dir) return constant_op.constant(0.), constant_op.constant( 0.), constant_op.constant(0.) est = estimator.Estimator(model_fn=_argument_checker, params=expected_param, model_dir=expected_model_dir) est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_train_op(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w return None, loss, None est = estimator.Estimator(model_fn=_invalid_model_fn) with self.assertRaisesRegexp(ValueError, 'Missing training_op'): est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_loss(self): def _invalid_model_fn(features, labels, mode): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w train_op = w.assign_add(loss / 100.0) predictions = loss if mode == model_fn.ModeKeys.EVAL: loss = None return predictions, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing loss'): est.evaluate(input_fn=boston_eval_fn, steps=1) def testInvalidModelFn_no_prediction(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w train_op = w.assign_add(loss / 100.0) return None, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.evaluate(input_fn=boston_eval_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict(input_fn=boston_input_fn) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict( input_fn=functools.partial( boston_input_fn, num_epochs=1), as_iterable=True) def testModelFnScaffold(self): self.is_init_fn_called = False def _init_fn(scaffold, session): _, _ = scaffold, session self.is_init_fn_called = True def _model_fn_scaffold(features, labels, mode): _, _ = features, labels return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant(0.), loss=constant_op.constant(0.), train_op=constant_op.constant(0.), scaffold=monitored_session.Scaffold(init_fn=_init_fn)) est = estimator.Estimator(model_fn=_model_fn_scaffold) est.fit(input_fn=boston_input_fn, steps=1) self.assertTrue(self.is_init_fn_called) def testCheckpointSaverHookSuppressesTheDefaultOne(self): saver_hook = test.mock.Mock( spec=basic_session_run_hooks.CheckpointSaverHook) saver_hook.before_run.return_value = None est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1, monitors=[saver_hook]) # test nothing is saved, due to suppressing default saver with self.assertRaises(learn.NotFittedError): est.evaluate(input_fn=boston_input_fn, steps=1) def testCustomConfig(self): test_random_seed = 5783452 class TestInput(object): def __init__(self): self.random_seed = 0 def config_test_input_fn(self): self.random_seed = ops.get_default_graph().seed return constant_op.constant([[1.]]), constant_op.constant([1.]) config = run_config.RunConfig(tf_random_seed=test_random_seed) test_input = TestInput() est = estimator.Estimator(model_fn=linear_model_fn, config=config) est.fit(input_fn=test_input.config_test_input_fn, steps=1) # If input_fn ran, it will have given us the random seed set on the graph. self.assertEquals(test_random_seed, test_input.random_seed) def testRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator(model_fn=linear_model_fn, config=config) self.assertEqual('test_dir', est.config.model_dir) def testModelDirAndRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator(model_fn=linear_model_fn, config=config, model_dir='test_dir') self.assertEqual('test_dir', est.config.model_dir) with self.assertRaises(ValueError): estimator.Estimator(model_fn=linear_model_fn, config=config, model_dir='different_dir') def testCheckInputs(self): est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) # Lambdas so we have to different objects to compare right_features = lambda: np.ones(shape=[7, 8], dtype=np.float32) right_labels = lambda: np.ones(shape=[7, 10], dtype=np.int32) est.fit(right_features(), right_labels(), steps=1) # TODO(wicke): This does not fail for np.int32 because of data_feeder magic. wrong_type_features = np.ones(shape=[7, 8], dtype=np.int64) wrong_size_features = np.ones(shape=[7, 10]) wrong_type_labels = np.ones(shape=[7, 10], dtype=np.float32) wrong_size_labels = np.ones(shape=[7, 11]) est.fit(x=right_features(), y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_type_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_size_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_type_labels, steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_size_labels, steps=1) def testBadInput(self): est = estimator.Estimator(model_fn=linear_model_fn) self.assertRaisesRegexp( ValueError, 'Either x or input_fn must be provided.', est.fit, x=None, input_fn=None, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, x='X', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, y='Y', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and batch_size', est.fit, input_fn=iris_input_fn, batch_size=100, steps=1) self.assertRaisesRegexp( ValueError, 'Inputs cannot be tensors. Please provide input_fn.', est.fit, x=constant_op.constant(1.), steps=1) def testUntrained(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) with self.assertRaises(learn.NotFittedError): _ = est.score(x=boston.data, y=boston.target.astype(np.float64)) with self.assertRaises(learn.NotFittedError): est.predict(x=boston.data) def testContinueTraining(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_fn, model_dir=output_dir)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=50) scores = est.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) del est # Create another estimator object with the same output dir. est2 = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_fn, model_dir=output_dir)) # Check we can evaluate and predict. scores2 = est2.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertAllClose(scores['MSE'], scores2['MSE']) predictions = np.array(list(est2.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, float64_labels) self.assertAllClose(scores['MSE'], other_score) # Check we can keep training. est2.fit(x=boston.data, y=float64_labels, steps=100) scores3 = est2.score( x=boston.data, y=float64_labels, metrics={'MSE': metric_ops.streaming_mean_squared_error}) self.assertLess(scores3['MSE'], scores['MSE']) def testEstimatorParams(self): boston = base.load_boston() est = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_params_fn, params={'learning_rate': 0.01})) est.fit(x=boston.data, y=boston.target, steps=100) def testHooksNotChanged(self): est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) # We pass empty array and expect it to remain empty after calling # fit and evaluate. Requires inside to copy this array if any hooks were # added. my_array = [] est.fit(input_fn=iris_input_fn, steps=100, monitors=my_array) _ = est.evaluate(input_fn=iris_input_fn, steps=1, hooks=my_array) self.assertEqual(my_array, []) def testIrisIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = itertools.islice(iris.target, 100) estimator.SKCompat(est).fit(x_iter, y_iter, steps=20) eval_result = est.evaluate(input_fn=iris_input_fn, steps=1) x_iter_eval = itertools.islice(iris.data, 100) y_iter_eval = itertools.islice(iris.target, 100) score_result = estimator.SKCompat(est).score(x_iter_eval, y_iter_eval) print(score_result) self.assertItemsEqual(eval_result.keys(), score_result.keys()) self.assertItemsEqual(['global_step', 'loss'], score_result.keys()) predictions = estimator.SKCompat(est).predict(x=iris.data)['class'] self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisIteratorArray(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (np.array(x) for x in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisIteratorPlainInt(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (v for v in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisTruncatedIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 50) y_iter = ([np.int32(v)] for v in iris.target) est.fit(x_iter, y_iter, steps=100) def testTrainStepsIsIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, steps=15) self.assertEqual(25, est.get_variable_value('global_step')) def testTrainMaxStepsIsNotIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, max_steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, max_steps=15) self.assertEqual(15, est.get_variable_value('global_step')) def testPredict(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) output = list(est.predict(x=boston.data, batch_size=10)) self.assertEqual(len(output), boston.target.shape[0]) def testWithModelFnOps(self): """Test for model_fn that returns `ModelFnOps`.""" est = estimator.Estimator(model_fn=linear_model_fn_with_model_fn_ops) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) scores = est.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores.keys()) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testWrongInput(self): def other_input_fn(): return { 'other': constant_op.constant([0, 0, 0]) }, constant_op.constant([0, 0, 0]) est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaises(ValueError): est.fit(input_fn=other_input_fn, steps=1) def testMonitorsForFit(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=21, monitors=[CheckCallsMonitor(expect_calls=21)]) def testHooksForEvaluate(self): class CheckCallHook(session_run_hook.SessionRunHook): def __init__(self): self.run_count = 0 def after_run(self, run_context, run_values): self.run_count += 1 est = learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) hook = CheckCallHook() est.evaluate(input_fn=boston_eval_fn, steps=3, hooks=[hook]) self.assertEqual(3, hook.run_count) def testSummaryWriting(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate(input_fn=boston_input_fn, steps=200) loss_summary = util_test.simple_values_from_events( util_test.latest_events(est.model_dir), ['OptimizeLoss/loss']) self.assertEqual(1, len(loss_summary)) def testLossInGraphCollection(self): class _LossCheckerHook(session_run_hook.SessionRunHook): def begin(self): self.loss_collection = ops.get_collection(ops.GraphKeys.LOSSES) hook = _LossCheckerHook() est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200, monitors=[hook]) self.assertTrue(hook.loss_collection) def test_export_returns_exported_dirname(self): expected = '/path/to/some_dir' with test.mock.patch.object(estimator, 'export') as mock_export_module: mock_export_module._export_estimator.return_value = expected est = estimator.Estimator(model_fn=linear_model_fn) actual = est.export('/path/to') self.assertEquals(expected, actual) def test_export_savedmodel(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_export_tests(tmpdir) extra_file_name = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_extra_file')) extra_file = gfile.GFile(extra_file_name, mode='w') extra_file.write(EXTRA_FILE_CONTENT) extra_file.close() assets_extra = {'some/sub/directory/my_extra_file': extra_file_name} export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel( export_dir_base, serving_input_fn, assets_extra=assets_extra) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes( 'saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file')))) self.assertEqual( compat.as_bytes(VOCAB_FILE_CONTENT), compat.as_bytes( gfile.GFile( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file'))).read())) expected_extra_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra/some/sub/directory/my_extra_file')) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra')))) self.assertTrue(gfile.Exists(expected_extra_path)) self.assertEqual( compat.as_bytes(EXTRA_FILE_CONTENT), compat.as_bytes(gfile.GFile(expected_extra_path).read())) expected_vocab_file = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_vocab_file')) # Restore, to validate that the export was well-formed. with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, [tag_constants.SERVING], export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('linear/linear/feature/matmul' in graph_ops) # cleanup gfile.DeleteRecursively(tmpdir) class InferRealValuedColumnsTest(test.TestCase): def testInvalidArgs(self): with self.assertRaisesRegexp(ValueError, 'x or input_fn must be provided'): estimator.infer_real_valued_columns_from_input(None) with self.assertRaisesRegexp(ValueError, 'cannot be tensors'): estimator.infer_real_valued_columns_from_input(constant_op.constant(1.0)) def _assert_single_feature_column(self, expected_shape, expected_dtype, feature_columns): self.assertEqual(1, len(feature_columns)) feature_column = feature_columns[0] self.assertEqual('', feature_column.name) self.assertEqual( { '': parsing_ops.FixedLenFeature( shape=expected_shape, dtype=expected_dtype) }, feature_column.config) def testInt32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.int32)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int32), None)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.int64)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testInt64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int64), None)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testFloat32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.float32)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float32), None)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones( shape=[7, 8], dtype=np.float64)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testFloat64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float64), None)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testBoolInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): estimator.infer_real_valued_columns_from_input( np.array([[False for _ in xrange(8)] for _ in xrange(7)])) def testBoolInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: (constant_op.constant(False, shape=[7, 8], dtype=dtypes.bool), None)) def testStringInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input( np.array([['%d.0' % i for i in xrange(8)] for _ in xrange(7)])) def testStringInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: ( constant_op.constant([['%d.0' % i for i in xrange(8)] for _ in xrange(7)]), None)) def testBostonInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) self._assert_single_feature_column([_BOSTON_INPUT_DIM], dtypes.float64, feature_columns) def testIrisInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( iris_input_fn) self._assert_single_feature_column([_IRIS_INPUT_DIM], dtypes.float64, feature_columns) class ReplicaDeviceSetterTest(test.TestCase): def testVariablesAreOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker', a.device) def testVariablesAreLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('', v.device) self.assertDeviceEqual('', v.initializer.device) self.assertDeviceEqual('', w.device) self.assertDeviceEqual('', w.initializer.device) self.assertDeviceEqual('', a.device) def testMutableHashTableIsOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('/job:ps/task:0', table._table_ref.device) self.assertDeviceEqual('/job:ps/task:0', output.device) def testMutableHashTableIsLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('', table._table_ref.device) self.assertDeviceEqual('', output.device) def testTaskIsSetOnWorkerWhenJobNameIsSet(self): tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0'] }, 'task': { 'type': run_config.TaskType.WORKER, 'index': 3 } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker/task:3', a.device) if __name__ == '__main__': test.main()
apache-2.0
siou83/trading-with-python
lib/interactiveBrokers/histData.py
76
6472
''' Created on May 8, 2013 Copyright: Jev Kuznetsov License: BSD Module for downloading historic data from IB ''' import ib import pandas as pd from ib.ext.Contract import Contract from ib.opt import ibConnection, message import logger as logger from pandas import DataFrame, Index import os import datetime as dt import time from time import sleep from extra import timeFormat, dateFormat class Downloader(object): def __init__(self,debug=False): self._log = logger.getLogger('DLD') self._log.debug('Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pd.__version__,ib.version)) self.tws = ibConnection() self._dataHandler = _HistDataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler,message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self,msg): print '[debug]', msg def requestData(self,contract,endDateTime,durationStr='1 D',barSizeSetting='30 secs',whatToShow='TRADES',useRTH=1,formatDate=1): if isinstance(endDateTime,dt.datetime): # convert to string endDateTime = endDateTime.strftime(timeFormat) self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol,endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(10) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId,contract,endDateTime,durationStr,barSizeSetting,whatToShow,useRTH,formatDate) self._reqId+=1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time()-startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data # def getIntradayData(self,contract, dateTuple ): # ''' get full day data on 1-s interval # date: a tuple of (yyyy,mm,dd) # ''' # # openTime = dt.datetime(*dateTuple)+dt.timedelta(hours=16) # closeTime = dt.datetime(*dateTuple)+dt.timedelta(hours=22) # # timeRange = pd.date_range(openTime,closeTime,freq='30min') # # datasets = [] # # for t in timeRange: # datasets.append(self.requestData(contract,t.strftime(timeFormat))) # # return pd.concat(datasets) def disconnect(self): self.tws.disconnect() class _HistDataHandler(object): ''' handles incoming messages ''' def __init__(self,tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler,message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open':[],'high':[],'low':[],'close':[],'volume':[],'count':[],'WAP':[]} def msgHandler(self,msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return if len(msg.date) > 8: self._timestamp.append(dt.datetime.strptime(msg.date,timeFormat)) else: self._timestamp.append(dt.datetime.strptime(msg.date,dateFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): ''' return downloaded data as a DataFrame ''' df = DataFrame(data=self._data,index=Index(self._timestamp)) return df class TimeKeeper(object): ''' class for keeping track of previous requests, to satify the IB requirements (max 60 requests / 10 min) each time a requiest is made, a timestamp is added to a txt file in the user dir. ''' def __init__(self): self._log = logger.getLogger('TK') dataDir = os.path.expanduser('~')+'/twpData' if not os.path.exists(dataDir): os.mkdir(dataDir) self._timeFormat = "%Y%m%d %H:%M:%S" self.dataFile = os.path.normpath(os.path.join(dataDir,'requests.txt')) # Create file if it's missing if not os.path.exists(self.dataFile): open(self.dataFile,'w').close() self._log.debug('Data file: {0}'.format(self.dataFile)) def addRequest(self): ''' adds a timestamp of current request''' with open(self.dataFile,'a') as f: f.write(dt.datetime.now().strftime(self._timeFormat)+'\n') def nrRequests(self,timeSpan=600): ''' return number of requests in past timespan (s) ''' delta = dt.timedelta(seconds=timeSpan) now = dt.datetime.now() requests = 0 with open(self.dataFile,'r') as f: lines = f.readlines() for line in lines: if now-dt.datetime.strptime(line.strip(),self._timeFormat) < delta: requests+=1 if requests==0: # erase all contents if no requests are relevant open(self.dataFile,'w').close() self._log.debug('past requests: {0}'.format(requests)) return requests if __name__ == '__main__': from extra import createContract dl = Downloader(debug=True) # historic data downloader class contract = createContract('SPY') # create contract using defaults (STK,SMART,USD) data = dl.requestData(contract,"20141208 16:00:00 EST") # request 30-second data bars up till now data.to_csv('SPY.csv') # write data to csv print 'Done'
bsd-3-clause
jtrussell/think-bayes-workspace
src/vendor/AllenDowney/species.py
1
52910
"""This file contains code used in "Think Bayes", by Allen B. Downey, available from greenteapress.com Copyright 2012 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import matplotlib.pyplot as pyplot import thinkplot import numpy import csv import random import shelve import sys import time import thinkbayes import warnings warnings.simplefilter('error', RuntimeWarning) FORMATS = ['pdf', 'eps', 'png'] class Locker(object): """Encapsulates a shelf for storing key-value pairs.""" def __init__(self, shelf_file): self.shelf = shelve.open(shelf_file) def Close(self): """Closes the shelf. """ self.shelf.close() def Add(self, key, value): """Adds a key-value pair.""" self.shelf[str(key)] = value def Lookup(self, key): """Looks up a key.""" return self.shelf.get(str(key)) def Keys(self): """Returns an iterator of keys.""" return self.shelf.iterkeys() def Read(self): """Returns the contents of the shelf as a map.""" return dict(self.shelf) class Subject(object): """Represents a subject from the belly button study.""" def __init__(self, code): """ code: string ID species: sequence of (int count, string species) pairs """ self.code = code self.species = [] self.suite = None self.num_reads = None self.num_species = None self.total_reads = None self.total_species = None self.prev_unseen = None self.pmf_n = None self.pmf_q = None self.pmf_l = None def Add(self, species, count): """Add a species-count pair. It is up to the caller to ensure that species names are unique. species: string species/genus name count: int number of individuals """ self.species.append((count, species)) def Done(self, reverse=False, clean_param=0): """Called when we are done adding species counts. reverse: which order to sort in """ if clean_param: self.Clean(clean_param) self.species.sort(reverse=reverse) counts = self.GetCounts() self.num_species = len(counts) self.num_reads = sum(counts) def Clean(self, clean_param=50): """Identifies and removes bogus data. clean_param: parameter that controls the number of legit species """ def prob_bogus(k, r): """Compute the probability that a species is bogus.""" q = clean_param / r p = (1-q) ** k return p print self.code, clean_param counts = self.GetCounts() r = 1.0 * sum(counts) species_seq = [] for k, species in sorted(self.species): if random.random() < prob_bogus(k, r): continue species_seq.append((k, species)) self.species = species_seq def GetM(self): """Gets number of observed species.""" return len(self.species) def GetCounts(self): """Gets the list of species counts Should be in increasing order, if Sort() has been invoked. """ return [count for count, _ in self.species] def MakeCdf(self): """Makes a CDF of total prevalence vs rank.""" counts = self.GetCounts() counts.sort(reverse=True) cdf = thinkbayes.MakeCdfFromItems(enumerate(counts)) return cdf def GetNames(self): """Gets the names of the seen species.""" return [name for _, name in self.species] def PrintCounts(self): """Prints the counts and species names.""" for count, name in reversed(self.species): print count, name def GetSpecies(self, index): """Gets the count and name of the indicated species. Returns: count-species pair """ return self.species[index] def GetCdf(self): """Returns cumulative prevalence vs number of species. """ counts = self.GetCounts() items = enumerate(counts) cdf = thinkbayes.MakeCdfFromItems(items) return cdf def GetPrevalences(self): """Returns a sequence of prevalences (normalized counts). """ counts = self.GetCounts() total = sum(counts) prevalences = numpy.array(counts, dtype=numpy.float) / total return prevalences def Process(self, low=None, high=500, conc=1, iters=100): """Computes the posterior distribution of n and the prevalences. Sets attribute: self.suite low: minimum number of species high: maximum number of species conc: concentration parameter iters: number of iterations to use in the estimator """ counts = self.GetCounts() m = len(counts) if low is None: low = max(m, 2) ns = range(low, high+1) #start = time.time() self.suite = Species5(ns, conc=conc, iters=iters) self.suite.Update(counts) #end = time.time() #print 'Processing time' end-start def MakePrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attributes pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads curves = self.RunSimulations(num_sims, add_reads) self.pmf_l = self.MakePredictive(curves) def MakeQuickPrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attribute: pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads pmf = thinkbayes.Pmf() _, seen = self.GetSeenSpecies() for _ in range(num_sims): _, observations = self.GenerateObservations(add_reads) all_seen = seen.union(observations) l = len(all_seen) - len(seen) pmf.Incr(l) pmf.Normalize() self.pmf_l = pmf def DistL(self): """Returns the distribution of additional species, l. """ return self.pmf_l def MakeFigures(self): """Makes figures showing distribution of n and the prevalences.""" self.PlotDistN() self.PlotPrevalences() def PlotDistN(self): """Plots distribution of n.""" pmf = self.suite.DistN() print '90% CI for N:', pmf.CredibleInterval(90) pmf.name = self.code thinkplot.Clf() thinkplot.PrePlot(num=1) thinkplot.Pmf(pmf) root = 'species-ndist-%s' % self.code thinkplot.Save(root=root, xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def PlotPrevalences(self, num=5): """Plots dist of prevalence for several species. num: how many species (starting with the highest prevalence) """ thinkplot.Clf() thinkplot.PrePlot(num=5) for rank in range(1, num+1): self.PlotPrevalence(rank) root = 'species-prev-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 1], ) def PlotPrevalence(self, rank=1, cdf_flag=True): """Plots dist of prevalence for one species. rank: rank order of the species to plot. cdf_flag: whether to plot the CDF """ # convert rank to index index = self.GetM() - rank _, mix = self.suite.DistOfPrevalence(index) count, _ = self.GetSpecies(index) mix.name = '%d (%d)' % (rank, count) print '90%% CI for prevalence of species %d:' % rank, print mix.CredibleInterval(90) if cdf_flag: cdf = mix.MakeCdf() thinkplot.Cdf(cdf) else: thinkplot.Pmf(mix) def PlotMixture(self, rank=1): """Plots dist of prevalence for all n, and the mix. rank: rank order of the species to plot """ # convert rank to index index = self.GetM() - rank print self.GetSpecies(index) print self.GetCounts()[index] metapmf, mix = self.suite.DistOfPrevalence(index) thinkplot.Clf() for pmf in metapmf.Values(): thinkplot.Pmf(pmf, color='blue', alpha=0.2, linewidth=0.5) thinkplot.Pmf(mix, color='blue', alpha=0.9, linewidth=2) root = 'species-mix-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 0.3], legend=False) def GetSeenSpecies(self): """Makes a set of the names of seen species. Returns: number of species, set of string species names """ names = self.GetNames() m = len(names) seen = set(SpeciesGenerator(names, m)) return m, seen def GenerateObservations(self, num_reads): """Generates a series of random observations. num_reads: number of reads to generate Returns: number of species, sequence of string species names """ n, prevalences = self.suite.SamplePosterior() names = self.GetNames() name_iter = SpeciesGenerator(names, n) items = zip(name_iter, prevalences) cdf = thinkbayes.MakeCdfFromItems(items) observations = cdf.Sample(num_reads) #for ob in observations: # print ob return n, observations def Resample(self, num_reads): """Choose a random subset of the data (without replacement). num_reads: number of reads in the subset """ t = [] for count, species in self.species: t.extend([species]*count) random.shuffle(t) reads = t[:num_reads] subject = Subject(self.code) hist = thinkbayes.MakeHistFromList(reads) for species, count in hist.Items(): subject.Add(species, count) subject.Done() return subject def Match(self, match): """Match up a rarefied subject with a complete subject. match: complete Subject Assigns attributes: total_reads: total_species: prev_unseen: """ self.total_reads = match.num_reads self.total_species = match.num_species # compute the prevalence of unseen species (at least approximately, # based on all species counts in match _, seen = self.GetSeenSpecies() seen_total = 0.0 unseen_total = 0.0 for count, species in match.species: if species in seen: seen_total += count else: unseen_total += count self.prev_unseen = unseen_total / (seen_total + unseen_total) def RunSimulation(self, num_reads, frac_flag=False, jitter=0.01): """Simulates additional observations and returns a rarefaction curve. k is the number of additional observations num_new is the number of new species seen num_reads: how many new reads to simulate frac_flag: whether to convert to fraction of species seen jitter: size of jitter added if frac_flag is true Returns: list of (k, num_new) pairs """ m, seen = self.GetSeenSpecies() n, observations = self.GenerateObservations(num_reads) curve = [] for i, obs in enumerate(observations): seen.add(obs) if frac_flag: frac_seen = len(seen) / float(n) frac_seen += random.uniform(-jitter, jitter) curve.append((i+1, frac_seen)) else: num_new = len(seen) - m curve.append((i+1, num_new)) return curve def RunSimulations(self, num_sims, num_reads, frac_flag=False): """Runs simulations and returns a list of curves. Each curve is a sequence of (k, num_new) pairs. num_sims: how many simulations to run num_reads: how many samples to generate in each simulation frac_flag: whether to convert num_new to fraction of total """ curves = [self.RunSimulation(num_reads, frac_flag) for _ in range(num_sims)] return curves def MakePredictive(self, curves): """Makes a predictive distribution of additional species. curves: list of (k, num_new) curves Returns: Pmf of num_new """ pred = thinkbayes.Pmf(name=self.code) for curve in curves: _, last_num_new = curve[-1] pred.Incr(last_num_new) pred.Normalize() return pred def MakeConditionals(curves, ks): """Makes Cdfs of the distribution of num_new conditioned on k. curves: list of (k, num_new) curves ks: list of values of k Returns: list of Cdfs """ joint = MakeJointPredictive(curves) cdfs = [] for k in ks: pmf = joint.Conditional(1, 0, k) pmf.name = 'k=%d' % k cdf = pmf.MakeCdf() cdfs.append(cdf) print '90%% credible interval for %d' % k, print cdf.CredibleInterval(90) return cdfs def MakeJointPredictive(curves): """Makes a joint distribution of k and num_new. curves: list of (k, num_new) curves Returns: joint Pmf of (k, num_new) """ joint = thinkbayes.Joint() for curve in curves: for k, num_new in curve: joint.Incr((k, num_new)) joint.Normalize() return joint def MakeFracCdfs(curves, ks): """Makes Cdfs of the fraction of species seen. curves: list of (k, num_new) curves Returns: list of Cdfs """ d = {} for curve in curves: for k, frac in curve: if k in ks: d.setdefault(k, []).append(frac) cdfs = {} for k, fracs in d.iteritems(): cdf = thinkbayes.MakeCdfFromList(fracs) cdfs[k] = cdf return cdfs def SpeciesGenerator(names, num): """Generates a series of names, starting with the given names. Additional names are 'unseen' plus a serial number. names: list of strings num: total number of species names to generate Returns: string iterator """ i = 0 for name in names: yield name i += 1 while i < num: yield 'unseen-%d' % i i += 1 def ReadRarefactedData(filename='journal.pone.0047712.s001.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from http://www.plosone.org/article/ info%3Adoi%2F10.1371%2Fjournal.pone.0047712#s4 filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) _ = reader.next() subject = Subject('') subject_map = {} i = 0 for t in reader: code = t[0] if code != subject.code: # start a new subject subject = Subject(code) subject_map[code] = subject # append a number to the species names so they're unique species = t[1] species = '%s-%d' % (species, i) i += 1 count = int(t[2]) subject.Add(species, count) for code, subject in subject_map.iteritems(): subject.Done(clean_param=clean_param) return subject_map def ReadCompleteDataset(filename='BBB_data_from_Rob.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from personal correspondence with Rob Dunn, received 2-7-13. Converted from xlsx to csv. filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) header = reader.next() header = reader.next() subject_codes = header[1:-1] subject_codes = ['B'+code for code in subject_codes] # create the subject map uber_subject = Subject('uber') subject_map = {} for code in subject_codes: subject_map[code] = Subject(code) # read lines i = 0 for t in reader: otu_code = t[0] if otu_code == '': continue # pull out a species name and give it a number otu_names = t[-1] taxons = otu_names.split(';') species = taxons[-1] species = '%s-%d' % (species, i) i += 1 counts = [int(x) for x in t[1:-1]] # print otu_code, species for code, count in zip(subject_codes, counts): if count > 0: subject_map[code].Add(species, count) uber_subject.Add(species, count) uber_subject.Done(clean_param=clean_param) for code, subject in subject_map.iteritems(): subject.Done(clean_param=clean_param) return subject_map, uber_subject def JoinSubjects(): """Reads both datasets and computers their inner join. Finds all subjects that appear in both datasets. For subjects in the rarefacted dataset, looks up the total number of reads and stores it as total_reads. num_reads is normally 400. Returns: map from code to Subject """ # read the rarefacted dataset sampled_subjects = ReadRarefactedData() # read the complete dataset all_subjects, _ = ReadCompleteDataset() for code, subject in sampled_subjects.iteritems(): if code in all_subjects: match = all_subjects[code] subject.Match(match) return sampled_subjects def JitterCurve(curve, dx=0.2, dy=0.3): """Adds random noise to the pairs in a curve. dx and dy control the amplitude of the noise in each dimension. """ curve = [(x+random.uniform(-dx, dx), y+random.uniform(-dy, dy)) for x, y in curve] return curve def OffsetCurve(curve, i, n, dx=0.3, dy=0.3): """Adds random noise to the pairs in a curve. i is the index of the curve n is the number of curves dx and dy control the amplitude of the noise in each dimension. """ xoff = -dx + 2 * dx * i / (n-1) yoff = -dy + 2 * dy * i / (n-1) curve = [(x+xoff, y+yoff) for x, y in curve] return curve def PlotCurves(curves, root='species-rare'): """Plots a set of curves. curves is a list of curves; each curve is a list of (x, y) pairs. """ thinkplot.Clf() color = '#225EA8' n = len(curves) for i, curve in enumerate(curves): curve = OffsetCurve(curve, i, n) xs, ys = zip(*curve) thinkplot.Plot(xs, ys, color=color, alpha=0.3, linewidth=0.5) thinkplot.Save(root=root, xlabel='# samples', ylabel='# species', formats=FORMATS, legend=False) def PlotConditionals(cdfs, root='species-cond'): """Plots cdfs of num_new conditioned on k. cdfs: list of Cdf root: string filename root """ thinkplot.Clf() thinkplot.PrePlot(num=len(cdfs)) thinkplot.Cdfs(cdfs) thinkplot.Save(root=root, xlabel='# new species', ylabel='Prob', formats=FORMATS) def PlotFracCdfs(cdfs, root='species-frac'): """Plots CDFs of the fraction of species seen. cdfs: map from k to CDF of fraction of species seen after k samples """ thinkplot.Clf() color = '#225EA8' for k, cdf in cdfs.iteritems(): xs, ys = cdf.Render() ys = [1-y for y in ys] thinkplot.Plot(xs, ys, color=color, linewidth=1) x = 0.9 y = 1 - cdf.Prob(x) pyplot.text(x, y, str(k), fontsize=9, color=color, horizontalalignment='center', verticalalignment='center', bbox=dict(facecolor='white', edgecolor='none')) thinkplot.Save(root=root, xlabel='Fraction of species seen', ylabel='Probability', formats=FORMATS, legend=False) class Species(thinkbayes.Suite): """Represents hypotheses about the number of species.""" def __init__(self, ns, conc=1, iters=1000): hypos = [thinkbayes.Dirichlet(n, conc) for n in ns] thinkbayes.Suite.__init__(self, hypos) self.iters = iters def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ # call Update in the parent class, which calls Likelihood thinkbayes.Suite.Update(self, data) # update the next level of the hierarchy for hypo in self.Values(): hypo.Update(data) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo # draw sample Likelihoods from the hypothetical Dirichlet dist # and add them up like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of ways the observed species # might have been chosen from all species m = len(data) like *= thinkbayes.BinomialCoef(dirichlet.n, m) return like def DistN(self): """Computes the distribution of n.""" pmf = thinkbayes.Pmf() for hypo, prob in self.Items(): pmf.Set(hypo.n, prob) return pmf class Species2(object): """Represents hypotheses about the number of species. Combines two layers of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def __init__(self, ns, conc=1, iters=1000): self.ns = ns self.conc = conc self.probs = numpy.ones(len(ns), dtype=numpy.float) self.params = numpy.ones(self.ns[-1], dtype=numpy.float) * conc self.iters = iters self.num_reads = 0 self.m = 0 def Preload(self, data): """Change the initial parameters to fit the data better. Just an experiment. Doesn't work. """ m = len(data) singletons = data.count(1) num = m - singletons print m, singletons, num addend = numpy.ones(num, dtype=numpy.float) * 1 print len(addend) print len(self.params[singletons:m]) self.params[singletons:m] += addend print 'Preload', num def Update(self, data): """Updates the distribution based on data. data: numpy array of counts """ self.num_reads += sum(data) like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() self.m = len(data) #self.params[:self.m] += data * self.conc self.params[:self.m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data for all values of n. Draws one sample from the distribution of prevalences. data: sequence of observed counts Returns: numpy array of m likelihoods """ gammas = numpy.random.gamma(self.params) m = len(data) row = gammas[:m] col = numpy.cumsum(gammas) log_likes = [] for n in self.ns: ps = row / col[n-1] terms = numpy.log(ps) * data log_like = terms.sum() log_likes.append(log_like) log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) coefs = [thinkbayes.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes def DistN(self): """Computes the distribution of n. Returns: new Pmf object """ pmf = thinkbayes.MakePmfFromItems(zip(self.ns, self.probs)) return pmf def RandomN(self): """Returns a random value of n.""" return self.DistN().Random() def DistQ(self, iters=100): """Computes the distribution of q based on distribution of n. Returns: pmf of q """ cdf_n = self.DistN().MakeCdf() sample_n = cdf_n.Sample(iters) pmf = thinkbayes.Pmf() for n in sample_n: q = self.RandomQ(n) pmf.Incr(q) pmf.Normalize() return pmf def RandomQ(self, n): """Returns a random value of q. Based on n, self.num_reads and self.conc. n: number of species Returns: q """ # generate random prevalences dirichlet = thinkbayes.Dirichlet(n, conc=self.conc) prevalences = dirichlet.Random() # generate a simulated sample pmf = thinkbayes.MakePmfFromItems(enumerate(prevalences)) cdf = pmf.MakeCdf() sample = cdf.Sample(self.num_reads) seen = set(sample) # add up the prevalence of unseen species q = 0 for species, prev in enumerate(prevalences): if species not in seen: q += prev return q def MarginalBeta(self, n, index): """Computes the conditional distribution of the indicated species. n: conditional number of species index: which species Returns: Beta object representing a distribution of prevalence. """ alpha0 = self.params[:n].sum() alpha = self.params[index] return thinkbayes.Beta(alpha, alpha0-alpha) def DistOfPrevalence(self, index): """Computes the distribution of prevalence for the indicated species. index: which species Returns: (metapmf, mix) where metapmf is a MetaPmf and mix is a Pmf """ metapmf = thinkbayes.Pmf() for n, prob in zip(self.ns, self.probs): beta = self.MarginalBeta(n, index) pmf = beta.MakePmf() metapmf.Set(pmf, prob) mix = thinkbayes.MakeMixture(metapmf) return metapmf, mix def SamplePosterior(self): """Draws random n and prevalences. Returns: (n, prevalences) """ n = self.RandomN() prevalences = self.SamplePrevalences(n) #print 'Peeking at n_cheat' #n = n_cheat return n, prevalences def SamplePrevalences(self, n): """Draws a sample of prevalences given n. n: the number of species assumed in the conditional Returns: numpy array of n prevalences """ if n == 1: return [1.0] q_desired = self.RandomQ(n) q_desired = max(q_desired, 1e-6) params = self.Unbias(n, self.m, q_desired) gammas = numpy.random.gamma(params) gammas /= gammas.sum() return gammas def Unbias(self, n, m, q_desired): """Adjusts the parameters to achieve desired prev_unseen (q). n: number of species m: seen species q_desired: prevalence of unseen species """ params = self.params[:n].copy() if n == m: return params x = sum(params[:m]) y = sum(params[m:]) a = x + y #print x, y, a, x/a, y/a g = q_desired * a / y f = (a - g * y) / x params[:m] *= f params[m:] *= g return params class Species3(Species2): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observations """ # sample the likelihoods and add them up like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() m = len(data) self.params[:m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data under all hypotheses. data: list of observations """ # get a random sample gammas = numpy.random.gamma(self.params) # row is just the first m elements of gammas m = len(data) row = gammas[:m] # col is the cumulative sum of gammas col = numpy.cumsum(gammas)[self.ns[0]-1:] # each row of the array is a set of ps, normalized # for each hypothetical value of n array = row / col[:, numpy.newaxis] # computing the multinomial PDF under a log transform # take the log of the ps and multiply by the data terms = numpy.log(array) * data # add up the rows log_likes = terms.sum(axis=1) # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) # correct for the number of ways we could see m species # out of a possible n coefs = [thinkbayes.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes class Species4(Species): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ m = len(data) # loop through the species and update one at a time for i in range(m): one = numpy.zeros(i+1) one[i] = data[i] # call the parent class Species.Update(self, one) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. Note: this only works correctly if we update one species at a time. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of unseen species the new one # could have been m = len(data) num_unseen = dirichlet.n - m + 1 like *= num_unseen return like class Species5(Species2): """Represents hypotheses about the number of species. Combines two laters of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies in increasing order """ # loop through the species and update one at a time m = len(data) for i in range(m): self.UpdateOne(i+1, data[i]) self.params[i] += data[i] def UpdateOne(self, i, count): """Updates the suite based on the data. Evaluates the likelihood for all values of n. i: which species was observed (1..n) count: how many were observed """ # how many species have we seen so far self.m = i # how many reads have we seen self.num_reads += count if self.iters == 0: return # sample the likelihoods and add them up likes = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): likes += self.SampleLikelihood(i, count) # correct for the number of unseen species the new one # could have been unseen_species = [n-i+1 for n in self.ns] likes *= unseen_species # multiply the priors by the likelihoods and renormalize self.probs *= likes self.probs /= self.probs.sum() def SampleLikelihood(self, i, count): """Computes the likelihood of the data under all hypotheses. i: which species was observed count: how many were observed """ # get a random sample of p gammas = numpy.random.gamma(self.params) # sums is the cumulative sum of p, for each value of n sums = numpy.cumsum(gammas)[self.ns[0]-1:] # get p for the mth species, for each value of n ps = gammas[i-1] / sums log_likes = numpy.log(ps) * count # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) return likes def MakePosterior(constructor, data, ns, conc=1, iters=1000): """Makes a suite, updates it and returns the posterior suite. Prints the elapsed time. data: observed species and their counts ns: sequence of hypothetical ns conc: concentration parameter iters: how many samples to draw Returns: posterior suite of the given type """ suite = constructor(ns, conc=conc, iters=iters) # print constructor.__name__ start = time.time() suite.Update(data) end = time.time() print 'Processing time', end-start return suite def PlotAllVersions(): """Makes a graph of posterior distributions of N.""" data = [1, 2, 3] m = len(data) n = 20 ns = range(m, n) for constructor in [Species, Species2, Species3, Species4, Species5]: suite = MakePosterior(constructor, data, ns) pmf = suite.DistN() pmf.name = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Save(root='species3', xlabel='Number of species', ylabel='Prob') def PlotMedium(): """Makes a graph of posterior distributions of N.""" data = [1, 1, 1, 1, 2, 3, 5, 9] m = len(data) n = 20 ns = range(m, n) for constructor in [Species, Species2, Species3, Species4, Species5]: suite = MakePosterior(constructor, data, ns) pmf = suite.DistN() pmf.name = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Show() def SimpleDirichletExample(): """Makes a plot showing posterior distributions for three species. This is the case where we know there are exactly three species. """ thinkplot.Clf() thinkplot.PrePlot(3) names = ['lions', 'tigers', 'bears'] data = [3, 2, 1] dirichlet = thinkbayes.Dirichlet(3) for i in range(3): beta = dirichlet.MarginalBeta(i) print 'mean', names[i], beta.Mean() dirichlet.Update(data) for i in range(3): beta = dirichlet.MarginalBeta(i) print 'mean', names[i], beta.Mean() pmf = beta.MakePmf(name=names[i]) thinkplot.Pmf(pmf) thinkplot.Save(root='species1', xlabel='Prevalence', ylabel='Prob', formats=FORMATS, ) def HierarchicalExample(): """Shows the posterior distribution of n for lions, tigers and bears. """ ns = range(3, 30) suite = Species(ns, iters=8000) data = [3, 2, 1] suite.Update(data) thinkplot.Clf() thinkplot.PrePlot(num=1) pmf = suite.DistN() thinkplot.Pmf(pmf) thinkplot.Save(root='species2', xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def CompareHierarchicalExample(): """Makes a graph of posterior distributions of N.""" data = [3, 2, 1] m = len(data) n = 30 ns = range(m, n) constructors = [Species, Species5] iters = [1000, 100] for constructor, iters in zip(constructors, iters): suite = MakePosterior(constructor, data, ns, iters) pmf = suite.DistN() pmf.name = '%s' % (constructor.__name__) thinkplot.Pmf(pmf) thinkplot.Show() def ProcessSubjects(codes): """Process subjects with the given codes and plot their posteriors. code: sequence of string codes """ thinkplot.Clf() thinkplot.PrePlot(len(codes)) subjects = ReadRarefactedData() pmfs = [] for code in codes: subject = subjects[code] subject.Process() pmf = subject.suite.DistN() pmf.name = subject.code thinkplot.Pmf(pmf) pmfs.append(pmf) print 'ProbGreater', thinkbayes.PmfProbGreater(pmfs[0], pmfs[1]) print 'ProbLess', thinkbayes.PmfProbLess(pmfs[0], pmfs[1]) thinkplot.Save(root='species4', xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def RunSubject(code, conc=1, high=500): """Run the analysis for the subject with the given code. code: string code """ subjects = JoinSubjects() subject = subjects[code] subject.Process(conc=conc, high=high, iters=300) subject.MakeQuickPrediction() PrintSummary(subject) actual_l = subject.total_species - subject.num_species cdf_l = subject.DistL().MakeCdf() PrintPrediction(cdf_l, actual_l) subject.MakeFigures() num_reads = 400 curves = subject.RunSimulations(100, num_reads) root = 'species-rare-%s' % subject.code PlotCurves(curves, root=root) num_reads = 800 curves = subject.RunSimulations(500, num_reads) ks = [100, 200, 400, 800] cdfs = MakeConditionals(curves, ks) root = 'species-cond-%s' % subject.code PlotConditionals(cdfs, root=root) num_reads = 1000 curves = subject.RunSimulations(500, num_reads, frac_flag=True) ks = [10, 100, 200, 400, 600, 800, 1000] cdfs = MakeFracCdfs(curves, ks) root = 'species-frac-%s' % subject.code PlotFracCdfs(cdfs, root=root) def PrintSummary(subject): """Print a summary of a subject. subject: Subject """ print subject.code print 'found %d species in %d reads' % (subject.num_species, subject.num_reads) print 'total %d species in %d reads' % (subject.total_species, subject.total_reads) cdf = subject.suite.DistN().MakeCdf() print 'n' PrintPrediction(cdf, 'unknown') def PrintPrediction(cdf, actual): """Print a summary of a prediction. cdf: predictive distribution actual: actual value """ median = cdf.Percentile(50) low, high = cdf.CredibleInterval(75) print 'predicted %0.2f (%0.2f %0.2f)' % (median, low, high) print 'actual', actual def RandomSeed(x): """Initialize random.random and numpy.random. x: int seed """ random.seed(x) numpy.random.seed(x) def GenerateFakeSample(n, r, tr, conc=1): """Generates fake data with the given parameters. n: number of species r: number of reads in subsample tr: total number of reads conc: concentration parameter Returns: hist of all reads, hist of subsample, prev_unseen """ # generate random prevalences dirichlet = thinkbayes.Dirichlet(n, conc=conc) prevalences = dirichlet.Random() prevalences.sort() # generate a simulated sample pmf = thinkbayes.MakePmfFromItems(enumerate(prevalences)) cdf = pmf.MakeCdf() sample = cdf.Sample(tr) # collect the species counts hist = thinkbayes.MakeHistFromList(sample) # extract a subset of the data if tr > r: random.shuffle(sample) subsample = sample[:r] subhist = thinkbayes.MakeHistFromList(subsample) else: subhist = hist # add up the prevalence of unseen species prev_unseen = 0 for species, prev in enumerate(prevalences): if species not in subhist: prev_unseen += prev return hist, subhist, prev_unseen def PlotActualPrevalences(): """Makes a plot comparing actual prevalences with a model. """ # read data subject_map, _ = ReadCompleteDataset() # for subjects with more than 50 species, # PMF of max prevalence, and PMF of max prevalence # generated by a simulation pmf_actual = thinkbayes.Pmf() pmf_sim = thinkbayes.Pmf() # concentration parameter used in the simulation conc = 0.06 for code, subject in subject_map.iteritems(): prevalences = subject.GetPrevalences() m = len(prevalences) if m < 2: continue actual_max = max(prevalences) print code, m, actual_max # incr the PMFs if m > 50: pmf_actual.Incr(actual_max) pmf_sim.Incr(SimulateMaxPrev(m, conc)) # plot CDFs for the actual and simulated max prevalence cdf_actual = pmf_actual.MakeCdf(name='actual') cdf_sim = pmf_sim.MakeCdf(name='sim') thinkplot.Cdfs([cdf_actual, cdf_sim]) thinkplot.Show() def ScatterPrevalences(ms, actual): """Make a scatter plot of actual prevalences and expected values. ms: sorted sequence of in m (number of species) actual: sequence of actual max prevalence """ for conc in [1, 0.5, 0.2, 0.1]: expected = [ExpectedMaxPrev(m, conc) for m in ms] thinkplot.Plot(ms, expected) thinkplot.Scatter(ms, actual) thinkplot.Show(xscale='log') def SimulateMaxPrev(m, conc=1): """Returns random max prevalence from a Dirichlet distribution. m: int number of species conc: concentration parameter of the Dirichlet distribution Returns: float max of m prevalences """ dirichlet = thinkbayes.Dirichlet(m, conc) prevalences = dirichlet.Random() return max(prevalences) def ExpectedMaxPrev(m, conc=1, iters=100): """Estimate expected max prevalence. m: number of species conc: concentration parameter iters: how many iterations to run Returns: expected max prevalence """ dirichlet = thinkbayes.Dirichlet(m, conc) t = [] for _ in range(iters): prevalences = dirichlet.Random() t.append(max(prevalences)) return numpy.mean(t) class Calibrator(object): """Encapsulates the calibration process.""" def __init__(self, conc=0.1): """ """ self.conc = conc self.ps = range(10, 100, 10) self.total_n = numpy.zeros(len(self.ps)) self.total_q = numpy.zeros(len(self.ps)) self.total_l = numpy.zeros(len(self.ps)) self.n_seq = [] self.q_seq = [] self.l_seq = [] def Calibrate(self, num_runs=100, n_low=30, n_high=400, r=400, tr=1200): """Runs calibrations. num_runs: how many runs """ for seed in range(num_runs): self.RunCalibration(seed, n_low, n_high, r, tr) self.total_n *= 100.0 / num_runs self.total_q *= 100.0 / num_runs self.total_l *= 100.0 / num_runs def Validate(self, num_runs=100, clean_param=0): """Runs validations. num_runs: how many runs """ subject_map, _ = ReadCompleteDataset(clean_param=clean_param) i = 0 for match in subject_map.itervalues(): if match.num_reads < 400: continue num_reads = 100 print 'Validate', match.code subject = match.Resample(num_reads) subject.Match(match) n_actual = None q_actual = subject.prev_unseen l_actual = subject.total_species - subject.num_species self.RunSubject(subject, n_actual, q_actual, l_actual) i += 1 if i == num_runs: break self.total_n *= 100.0 / num_runs self.total_q *= 100.0 / num_runs self.total_l *= 100.0 / num_runs def PlotN(self, root='species-n'): """Makes a scatter plot of simulated vs actual prev_unseen (q). """ xs, ys = zip(*self.n_seq) if None in xs: return high = max(xs+ys) thinkplot.Plot([0, high], [0, high], color='gray') thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual n', ylabel='Predicted') def PlotQ(self, root='species-q'): """Makes a scatter plot of simulated vs actual prev_unseen (q). """ thinkplot.Plot([0, 0.2], [0, 0.2], color='gray') xs, ys = zip(*self.q_seq) thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual q', ylabel='Predicted') def PlotL(self, root='species-n'): """Makes a scatter plot of simulated vs actual l. """ thinkplot.Plot([0, 20], [0, 20], color='gray') xs, ys = zip(*self.l_seq) thinkplot.Scatter(xs, ys) thinkplot.Save(root=root, xlabel='Actual l', ylabel='Predicted') def PlotCalibrationCurves(self, root='species5'): """Plots calibration curves""" print self.total_n print self.total_q print self.total_l thinkplot.Plot([0, 100], [0, 100], color='gray', alpha=0.2) if self.total_n[0] >= 0: thinkplot.Plot(self.ps, self.total_n, label='n') thinkplot.Plot(self.ps, self.total_q, label='q') thinkplot.Plot(self.ps, self.total_l, label='l') thinkplot.Save(root=root, axis=[0, 100, 0, 100], xlabel='Ideal percentages', ylabel='Predictive distributions', formats=FORMATS, ) def RunCalibration(self, seed, n_low, n_high, r, tr): """Runs a single calibration run. Generates N and prevalences from a Dirichlet distribution, then generates simulated data. Runs analysis to get the posterior distributions. Generates calibration curves for each posterior distribution. seed: int random seed """ # generate a random number of species and their prevalences # (from a Dirichlet distribution with alpha_i = conc for all i) RandomSeed(seed) n_actual = random.randrange(n_low, n_high+1) hist, subhist, q_actual = GenerateFakeSample( n_actual, r, tr, self.conc) l_actual = len(hist) - len(subhist) print 'Run low, high, conc', n_low, n_high, self.conc print 'Run r, tr', r, tr print 'Run n, q, l', n_actual, q_actual, l_actual # extract the data data = [count for species, count in subhist.Items()] data.sort() print 'data', data # make a Subject and process subject = Subject('simulated') subject.num_reads = r subject.total_reads = tr for species, count in subhist.Items(): subject.Add(species, count) subject.Done() self.RunSubject(subject, n_actual, q_actual, l_actual) def RunSubject(self, subject, n_actual, q_actual, l_actual): """Runs the analysis for a subject. subject: Subject n_actual: number of species q_actual: prevalence of unseen species l_actual: number of new species """ # process and make prediction subject.Process(conc=self.conc, iters=100) subject.MakeQuickPrediction() # extract the posterior suite suite = subject.suite # check the distribution of n pmf_n = suite.DistN() print 'n' self.total_n += self.CheckDistribution(pmf_n, n_actual, self.n_seq) # check the distribution of q pmf_q = suite.DistQ() print 'q' self.total_q += self.CheckDistribution(pmf_q, q_actual, self.q_seq) # check the distribution of additional species pmf_l = subject.DistL() print 'l' self.total_l += self.CheckDistribution(pmf_l, l_actual, self.l_seq) def CheckDistribution(self, pmf, actual, seq): """Checks a predictive distribution and returns a score vector. pmf: predictive distribution actual: actual value seq: which sequence to append (actual, mean) onto """ mean = pmf.Mean() seq.append((actual, mean)) cdf = pmf.MakeCdf() PrintPrediction(cdf, actual) sv = ScoreVector(cdf, self.ps, actual) return sv def ScoreVector(cdf, ps, actual): """Checks whether the actual value falls in each credible interval. cdf: predictive distribution ps: percentages to check (0-100) actual: actual value Returns: numpy array of 0, 0.5, or 1 """ scores = [] for p in ps: low, high = cdf.CredibleInterval(p) score = Score(low, high, actual) scores.append(score) return numpy.array(scores) def Score(low, high, n): """Score whether the actual value falls in the range. Hitting the posts counts as 0.5, -1 is invalid. low: low end of range high: high end of range n: actual value Returns: -1, 0, 0.5 or 1 """ if n is None: return -1 if low < n < high: return 1 if n == low or n == high: return 0.5 else: return 0 def FakeSubject(n=300, conc=0.1, num_reads=400, prevalences=None): """Makes a fake Subject. If prevalences is provided, n and conc are ignored. n: number of species conc: concentration parameter num_reads: number of reads prevalences: numpy array of prevalences (overrides n and conc) """ # generate random prevalences if prevalences is None: dirichlet = thinkbayes.Dirichlet(n, conc=conc) prevalences = dirichlet.Random() prevalences.sort() # generate a simulated sample pmf = thinkbayes.MakePmfFromItems(enumerate(prevalences)) cdf = pmf.MakeCdf() sample = cdf.Sample(num_reads) # collect the species counts hist = thinkbayes.MakeHistFromList(sample) # extract the data data = [count for species, count in hist.Items()] data.sort() # make a Subject and process subject = Subject('simulated') for species, count in hist.Items(): subject.Add(species, count) subject.Done() return subject def PlotSubjectCdf(code=None, clean_param=0): """Checks whether the Dirichlet model can replicate the data. """ subject_map, uber_subject = ReadCompleteDataset(clean_param=clean_param) if code is None: subjects = subject_map.values() subject = random.choice(subjects) code = subject.code elif code == 'uber': subject = uber_subject else: subject = subject_map[code] print subject.code m = subject.GetM() subject.Process(high=m, conc=0.1, iters=0) print subject.suite.params[:m] # plot the cdf options = dict(linewidth=3, color='blue', alpha=0.5) cdf = subject.MakeCdf() thinkplot.Cdf(cdf, **options) options = dict(linewidth=1, color='green', alpha=0.5) # generate fake subjects and plot their CDFs for _ in range(10): prevalences = subject.suite.SamplePrevalences(m) fake = FakeSubject(prevalences=prevalences) cdf = fake.MakeCdf() thinkplot.Cdf(cdf, **options) root = 'species-cdf-%s' % code thinkplot.Save(root=root, xlabel='rank', ylabel='CDF', xscale='log', formats=FORMATS, ) def RunCalibration(flag='cal', num_runs=100, clean_param=50): """Runs either the calibration or validation process. flag: string 'cal' or 'val' num_runs: how many runs clean_param: parameter used for data cleaning """ cal = Calibrator(conc=0.1) if flag == 'val': cal.Validate(num_runs=num_runs, clean_param=clean_param) else: cal.Calibrate(num_runs=num_runs) cal.PlotN(root='species-n-%s' % flag) cal.PlotQ(root='species-q-%s' % flag) cal.PlotL(root='species-l-%s' % flag) cal.PlotCalibrationCurves(root='species5-%s' % flag) def RunTests(): """Runs calibration code and generates some figures.""" RunCalibration(flag='val') RunCalibration(flag='cal') PlotSubjectCdf('B1558.G', clean_param=50) PlotSubjectCdf(None) def main(script): RandomSeed(17) RunSubject('B1242', conc=1, high=100) RandomSeed(17) SimpleDirichletExample() RandomSeed(17) HierarchicalExample() if __name__ == '__main__': main(*sys.argv)
mit
ctherien/pysptools
pysptools/tests/test_pwc.py
1
1780
# #------------------------------------------------------------------------------ # Copyright (c) 2013-2014, Christian Therien # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------ # # test_pwc.py - This file is part of the PySptools package. # """ The following function is tested: bilateral """ from __future__ import print_function import os import os.path as osp import numpy as np import matplotlib.pyplot as plt import pysptools.sigproc as sig def tests(): plt.ioff() data_path = os.environ['PYSPTOOLS_DATA'] home = os.environ['HOME'] result_path = osp.join(home, 'results') if osp.exists(result_path) == False: os.makedirs(result_path) fin = open(os.path.join(data_path, 'dnagwas.txt')) signal_txt = fin.readlines() signal = [float(x) for x in signal_txt] z = sig.bilateral(np.array(signal), 0, 10, 25, display=1, maxiter=5) plt.plot(signal) plt.plot(z, color='r') if os.path.exists(result_path) == False: os.makedirs(result_path) plt.savefig(os.path.join(result_path, 'dnagwas.png')) if __name__ == '__main__': import sys print(sys.version_info) tests()
apache-2.0
srowen/spark
python/pyspark/pandas/tests/test_dataframe_spark_io.py
14
19999
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import unittest import glob import os import numpy as np import pandas as pd import pyarrow as pa from pyspark import pandas as ps from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils class DataFrameSparkIOTest(PandasOnSparkTestCase, TestUtils): """Test cases for big data I/O using Spark.""" @property def test_column_order(self): return ["i32", "i64", "f", "bhello"] @property def test_pdf(self): pdf = pd.DataFrame( { "i32": np.arange(20, dtype=np.int32) % 3, "i64": np.arange(20, dtype=np.int64) % 5, "f": np.arange(20, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=20).astype("O"), }, columns=self.test_column_order, index=np.random.rand(20), ) return pdf def test_parquet_read(self): with self.temp_dir() as tmp: data = self.test_pdf self.spark.createDataFrame(data, "i32 int, i64 long, f double, bhello string").coalesce( 1 ).write.parquet(tmp, mode="overwrite") def check(columns, expected): if LooseVersion("0.21.1") <= LooseVersion(pd.__version__): expected = pd.read_parquet(tmp, columns=columns) actual = ps.read_parquet(tmp, columns=columns) self.assertPandasEqual(expected, actual.to_pandas()) check(None, data) check(["i32", "i64"], data[["i32", "i64"]]) check(["i64", "i32"], data[["i64", "i32"]]) if LooseVersion(pa.__version__) < LooseVersion("1.0.0"): # TODO: `pd.read_parquet()` changed the behavior due to PyArrow 1.0.0. # We might want to adjust the behavior. Let's see how pandas handles it. check(("i32", "i64"), data[["i32", "i64"]]) check(["a", "b", "i32", "i64"], data[["i32", "i64"]]) check([], pd.DataFrame([])) check(["a"], pd.DataFrame([])) check("i32", pd.DataFrame([])) check("float", data[["f"]]) # check with pyspark patch. if LooseVersion("0.21.1") <= LooseVersion(pd.__version__): expected = pd.read_parquet(tmp) else: expected = data actual = ps.read_parquet(tmp) self.assertPandasEqual(expected, actual.to_pandas()) # When index columns are known pdf = self.test_pdf expected = ps.DataFrame(pdf) expected_idx = expected.set_index("bhello")[["f", "i32", "i64"]] actual_idx = ps.read_parquet(tmp, index_col="bhello")[["f", "i32", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) def test_parquet_read_with_pandas_metadata(self): with self.temp_dir() as tmp: expected1 = self.test_pdf path1 = "{}/file1.parquet".format(tmp) expected1.to_parquet(path1) self.assert_eq(ps.read_parquet(path1, pandas_metadata=True), expected1) expected2 = expected1.reset_index() path2 = "{}/file2.parquet".format(tmp) expected2.to_parquet(path2) self.assert_eq(ps.read_parquet(path2, pandas_metadata=True), expected2) expected3 = expected2.set_index("index", append=True) path3 = "{}/file3.parquet".format(tmp) expected3.to_parquet(path3) self.assert_eq(ps.read_parquet(path3, pandas_metadata=True), expected3) def test_parquet_write(self): with self.temp_dir() as tmp: pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.to_parquet(tmp, mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_parquet(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_parquet(tmp, mode="overwrite", partition_cols=["i32", "bhello"]) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_parquet(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) def test_table(self): with self.table("test_table"): pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.spark.to_table("test_table", mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_table("test_table") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_table("test_table", mode="overwrite", partition_cols=["i32", "bhello"]) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_table("test_table") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # When index columns are known expected_idx = expected.set_index("bhello")[["f", "i32", "i64"]] actual_idx = ps.read_table("test_table", index_col="bhello")[["f", "i32", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) expected_idx = expected.set_index(["bhello"])[["f", "i32", "i64"]] actual_idx = ps.read_table("test_table", index_col=["bhello"])[["f", "i32", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) expected_idx = expected.set_index(["i32", "bhello"])[["f", "i64"]] actual_idx = ps.read_table("test_table", index_col=["i32", "bhello"])[["f", "i64"]] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) def test_spark_io(self): with self.temp_dir() as tmp: pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.to_spark_io(tmp, format="json", mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_spark_io(tmp, format="json") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_spark_io( tmp, format="json", mode="overwrite", partition_cols=["i32", "bhello"] ) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_spark_io(path=tmp, format="json") self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # When index columns are known pdf = self.test_pdf expected = ps.DataFrame(pdf) col_order = ["f", "i32", "i64"] expected_idx = expected.set_index("bhello")[col_order] actual_idx = ps.read_spark_io(tmp, format="json", index_col="bhello")[col_order] self.assert_eq( actual_idx.sort_values(by="f").to_spark().toPandas(), expected_idx.sort_values(by="f").to_spark().toPandas(), ) @unittest.skip("openpyxl") def test_read_excel(self): with self.temp_dir() as tmp: path1 = "{}/file1.xlsx".format(tmp) self.test_pdf[["i32"]].to_excel(path1) self.assert_eq(ps.read_excel(open(path1, "rb")), pd.read_excel(open(path1, "rb"))) self.assert_eq( ps.read_excel(open(path1, "rb"), index_col=0), pd.read_excel(open(path1, "rb"), index_col=0), ) self.assert_eq( ps.read_excel(open(path1, "rb"), index_col=0, squeeze=True), pd.read_excel(open(path1, "rb"), index_col=0, squeeze=True), ) self.assert_eq(ps.read_excel(path1), pd.read_excel(path1)) self.assert_eq(ps.read_excel(path1, index_col=0), pd.read_excel(path1, index_col=0)) self.assert_eq( ps.read_excel(path1, index_col=0, squeeze=True), pd.read_excel(path1, index_col=0, squeeze=True), ) self.assert_eq(ps.read_excel(tmp), pd.read_excel(path1)) path2 = "{}/file2.xlsx".format(tmp) self.test_pdf[["i32"]].to_excel(path2) self.assert_eq( ps.read_excel(tmp, index_col=0).sort_index(), pd.concat( [pd.read_excel(path1, index_col=0), pd.read_excel(path2, index_col=0)] ).sort_index(), ) self.assert_eq( ps.read_excel(tmp, index_col=0, squeeze=True).sort_index(), pd.concat( [ pd.read_excel(path1, index_col=0, squeeze=True), pd.read_excel(path2, index_col=0, squeeze=True), ] ).sort_index(), ) with self.temp_dir() as tmp: path1 = "{}/file1.xlsx".format(tmp) with pd.ExcelWriter(path1) as writer: self.test_pdf.to_excel(writer, sheet_name="Sheet_name_1") self.test_pdf[["i32"]].to_excel(writer, sheet_name="Sheet_name_2") sheet_names = [["Sheet_name_1", "Sheet_name_2"], None] pdfs1 = pd.read_excel(open(path1, "rb"), sheet_name=None, index_col=0) pdfs1_squeezed = pd.read_excel( open(path1, "rb"), sheet_name=None, index_col=0, squeeze=True ) for sheet_name in sheet_names: psdfs = ps.read_excel(open(path1, "rb"), sheet_name=sheet_name, index_col=0) self.assert_eq(psdfs["Sheet_name_1"], pdfs1["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1["Sheet_name_2"]) psdfs = ps.read_excel( open(path1, "rb"), sheet_name=sheet_name, index_col=0, squeeze=True ) self.assert_eq(psdfs["Sheet_name_1"], pdfs1_squeezed["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1_squeezed["Sheet_name_2"]) self.assert_eq( ps.read_excel(tmp, index_col=0, sheet_name="Sheet_name_2"), pdfs1["Sheet_name_2"], ) for sheet_name in sheet_names: psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0) self.assert_eq(psdfs["Sheet_name_1"], pdfs1["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1["Sheet_name_2"]) psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0, squeeze=True) self.assert_eq(psdfs["Sheet_name_1"], pdfs1_squeezed["Sheet_name_1"]) self.assert_eq(psdfs["Sheet_name_2"], pdfs1_squeezed["Sheet_name_2"]) path2 = "{}/file2.xlsx".format(tmp) with pd.ExcelWriter(path2) as writer: self.test_pdf.to_excel(writer, sheet_name="Sheet_name_1") self.test_pdf[["i32"]].to_excel(writer, sheet_name="Sheet_name_2") pdfs2 = pd.read_excel(path2, sheet_name=None, index_col=0) pdfs2_squeezed = pd.read_excel(path2, sheet_name=None, index_col=0, squeeze=True) self.assert_eq( ps.read_excel(tmp, sheet_name="Sheet_name_2", index_col=0).sort_index(), pd.concat([pdfs1["Sheet_name_2"], pdfs2["Sheet_name_2"]]).sort_index(), ) self.assert_eq( ps.read_excel( tmp, sheet_name="Sheet_name_2", index_col=0, squeeze=True ).sort_index(), pd.concat( [pdfs1_squeezed["Sheet_name_2"], pdfs2_squeezed["Sheet_name_2"]] ).sort_index(), ) for sheet_name in sheet_names: psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0) self.assert_eq( psdfs["Sheet_name_1"].sort_index(), pd.concat([pdfs1["Sheet_name_1"], pdfs2["Sheet_name_1"]]).sort_index(), ) self.assert_eq( psdfs["Sheet_name_2"].sort_index(), pd.concat([pdfs1["Sheet_name_2"], pdfs2["Sheet_name_2"]]).sort_index(), ) psdfs = ps.read_excel(tmp, sheet_name=sheet_name, index_col=0, squeeze=True) self.assert_eq( psdfs["Sheet_name_1"].sort_index(), pd.concat( [pdfs1_squeezed["Sheet_name_1"], pdfs2_squeezed["Sheet_name_1"]] ).sort_index(), ) self.assert_eq( psdfs["Sheet_name_2"].sort_index(), pd.concat( [pdfs1_squeezed["Sheet_name_2"], pdfs2_squeezed["Sheet_name_2"]] ).sort_index(), ) def test_read_orc(self): with self.temp_dir() as tmp: path = "{}/file1.orc".format(tmp) data = self.test_pdf self.spark.createDataFrame(data, "i32 int, i64 long, f double, bhello string").coalesce( 1 ).write.orc(path, mode="overwrite") # `spark.write.orc` create a directory contains distributed orc files. # But pandas only can read from file, not directory. Therefore, we need orc file path. orc_file_path = glob.glob(os.path.join(path, "*.orc"))[0] expected = data.reset_index()[data.columns] actual = ps.read_orc(path) self.assertPandasEqual(expected, actual.to_pandas()) # columns columns = ["i32", "i64"] expected = data.reset_index()[columns] actual = ps.read_orc(path, columns=columns) self.assertPandasEqual(expected, actual.to_pandas()) # index_col expected = data.set_index("i32") actual = ps.read_orc(path, index_col="i32") self.assert_eq(actual, expected) expected = data.set_index(["i32", "f"]) actual = ps.read_orc(path, index_col=["i32", "f"]) self.assert_eq(actual, expected) # index_col with columns expected = data.set_index("i32")[["i64", "bhello"]] actual = ps.read_orc(path, index_col=["i32"], columns=["i64", "bhello"]) self.assert_eq(actual, expected) expected = data.set_index(["i32", "f"])[["bhello", "i64"]] actual = ps.read_orc(path, index_col=["i32", "f"], columns=["bhello", "i64"]) self.assert_eq(actual, expected) msg = "Unknown column name 'i'" with self.assertRaises(ValueError, msg=msg): ps.read_orc(path, columns="i32") msg = "Unknown column name 'i34'" with self.assertRaises(ValueError, msg=msg): ps.read_orc(path, columns=["i34", "i64"]) def test_orc_write(self): with self.temp_dir() as tmp: pdf = self.test_pdf expected = ps.DataFrame(pdf) # Write out partitioned by one column expected.to_orc(tmp, mode="overwrite", partition_cols="i32") # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_orc(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) # Write out partitioned by two columns expected.to_orc(tmp, mode="overwrite", partition_cols=["i32", "bhello"]) # Reset column order, as once the data is written out, Spark rearranges partition # columns to appear first. actual = ps.read_orc(tmp) self.assertFalse((actual.columns == self.test_column_order).all()) actual = actual[self.test_column_order] self.assert_eq( actual.sort_values(by="f").to_spark().toPandas(), expected.sort_values(by="f").to_spark().toPandas(), ) if __name__ == "__main__": from pyspark.pandas.tests.test_dataframe_spark_io import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
llhe/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/dataframe_test.py
62
3753
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of the DataFrame class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.tests.dataframe import mocks from tensorflow.python.framework import dtypes from tensorflow.python.platform import test def setup_test_df(): """Create a dataframe populated with some test columns.""" df = learn.DataFrame() df["a"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor a", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out1") df["b"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor b", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out2") df["c"] = learn.TransformedSeries( [mocks.MockSeries("foobar", mocks.MockTensor("Tensor c", dtypes.int32))], mocks.MockTwoOutputTransform("iue", "eui", "snt"), "out1") return df class DataFrameTest(test.TestCase): """Test of `DataFrame`.""" def test_create(self): df = setup_test_df() self.assertEqual(df.columns(), frozenset(["a", "b", "c"])) def test_select_columns(self): df = setup_test_df() df2 = df.select_columns(["a", "c"]) self.assertEqual(df2.columns(), frozenset(["a", "c"])) def test_exclude_columns(self): df = setup_test_df() df2 = df.exclude_columns(["a", "c"]) self.assertEqual(df2.columns(), frozenset(["b"])) def test_get_item(self): df = setup_test_df() c1 = df["b"] self.assertEqual( mocks.MockTensor("Mock Tensor 2", dtypes.int32), c1.build()) def test_del_item_column(self): df = setup_test_df() self.assertEqual(3, len(df)) del df["b"] self.assertEqual(2, len(df)) self.assertEqual(df.columns(), frozenset(["a", "c"])) def test_set_item_column(self): df = setup_test_df() self.assertEqual(3, len(df)) col1 = mocks.MockSeries("QuackColumn", mocks.MockTensor("Tensor ", dtypes.int32)) df["quack"] = col1 self.assertEqual(4, len(df)) col2 = df["quack"] self.assertEqual(col1, col2) def test_set_item_column_multi(self): df = setup_test_df() self.assertEqual(3, len(df)) col1 = mocks.MockSeries("QuackColumn", []) col2 = mocks.MockSeries("MooColumn", []) df["quack", "moo"] = [col1, col2] self.assertEqual(5, len(df)) col3 = df["quack"] self.assertEqual(col1, col3) col4 = df["moo"] self.assertEqual(col2, col4) def test_set_item_pandas(self): # TODO(jamieas) pass def test_set_item_numpy(self): # TODO(jamieas) pass def test_build(self): df = setup_test_df() result = df.build() expected = { "a": mocks.MockTensor("Mock Tensor 1", dtypes.int32), "b": mocks.MockTensor("Mock Tensor 2", dtypes.int32), "c": mocks.MockTensor("Mock Tensor 1", dtypes.int32) } self.assertEqual(expected, result) if __name__ == "__main__": test.main()
apache-2.0
annahs/atmos_research
WHI_long_term_v2_GEOSChem_and_meas_histograms_by_HYSPLIT_cluster_for_all_FT_sampling_Junwei_data.py
1
25381
import matplotlib.pyplot as plt import numpy as np import os import sys from pprint import pprint from datetime import datetime from datetime import timedelta import pickle import copy from pyhdf.SD import SD, SDC, SDS timezone = -8 calib_stability_uncertainty = 0.1 #fire times fire_time1 = [datetime.strptime('2009/07/27 00:00', '%Y/%m/%d %H:%M'), datetime.strptime('2009/08/08 00:00', '%Y/%m/%d %H:%M')] #row_datetimes follwing Takahama et al (2011) doi:10.5194/acp-11-6367-2011 #PST fire_time2 = [datetime.strptime('2010/07/26 09:00', '%Y/%m/%d %H:%M'), datetime.strptime('2010/07/28 09:30', '%Y/%m/%d %H:%M')] #jason's BC clear report #PST ##sampling times sampling_times_file = 'C:/Users/Sarah Hanna/Documents/Data/WHI long term record/GOES-Chem/Junwei_runs/WHI_SP2_6h_rBC_mass_concs.txt' sampling_times = [] with open(sampling_times_file,'r') as f: f.readline() for line in f: newline = line.split() sampling_date = newline[0] sampling_time = newline[1] sampling_datetime = datetime(int(sampling_date[0:4]),int(sampling_date[5:7]),int(sampling_date[8:10]),int(sampling_time[0:2])) sampling_times.append(sampling_datetime) #open cluslist and read into a python list cluslist = [] CLUSLIST_file = 'C:/hysplit4/working/WHI/CLUSLIST_10' CLUSLIST_file = 'C:/Users/Sarah Hanna/Documents/Data/WHI long term record/HYSPLIT/clustering/CLUSLIST_10' with open(CLUSLIST_file,'r') as f: for line in f: newline = line.split() cluster_no = int(newline[0]) traj_time = datetime(int(newline[2])+2000,int(newline[3]),int(newline[4]),int(newline[5]))+timedelta(hours = timezone) cluslist.append([traj_time,cluster_no]) # sort cluslist by row_datetime in place cluslist.sort(key=lambda clus_info: clus_info[0]) #make a copy for sorting the GeosChem data cluslist_GC = copy.deepcopy(cluslist) ############Meaurements #get full rBC record (in PST and 10 min binned intervals) and put in dictionaries keyed by date rBC_24h_data = {} #does not include BB data rBC_BB_24h_data = {} rBC_FT_data_cluster_NPac = {} rBC_FT_data_cluster_SPac = {} rBC_FT_data_cluster_Cont = {} rBC_FT_data_cluster_LRT = {} rBC_FT_data_cluster_GBPS = {} rBC_FT_data_cluster_BB = {} with open('C:/Users/Sarah Hanna/Documents/Data/WHI long term record/WHI_rBC_record_2009to2013-spikes_removed.rbcpckl', 'r') as f: #this has only the data of interest, it has been truncated at May 31, 2012 also these row_datetimes are in PST full_rBC_record = pickle.load(f) for row in full_rBC_record: row_datetime = row[0] #in PST row_date = datetime(row_datetime.year, row_datetime.month, row_datetime.day) row_rBC_mass_conc = row[2] row_rBC_mass_conc_LL = row[3] row_rBC_mass_conc_UL = row[4] if np.isnan(row_rBC_mass_conc_LL): row_abs_err = np.nan else: row_abs_err = (row_rBC_mass_conc-row_rBC_mass_conc_LL) #get all 24hr data (could make it less BB times if we this after the BB data extraction code correction_factor_for_massdistr = 1./0.4767 mass_distr_correction_error = 0.016 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if row_date in rBC_24h_data: rBC_24h_data[row_date].append(row_data) else: rBC_24h_data[row_date] = [row_data] #if in a BB time, put this data in BB dict if (fire_time1[0] <= row_datetime <= fire_time1[1]) or (fire_time2[0] <= row_datetime <= fire_time2[1]): correction_factor_for_massdistr = 1./0.4153 mass_distr_correction_error = 0.018 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if row_date in rBC_BB_24h_data: rBC_BB_24h_data[row_date].append(row_data) else: rBC_BB_24h_data[row_date] = [row_data] #pop off any cluslist times that are in the past cluslist_current_datetime = cluslist[0][0] #in PST while row_datetime > (cluslist_current_datetime + timedelta(hours=3)): cluslist.pop(0) if len(cluslist): cluslist_current_datetime = cluslist[0][0] continue else: break #get cluster no cluslist_current_cluster_no = cluslist[0][1] #add data to list in cluster dictionaries (1 list per cluster time early night/late night) if ((cluslist_current_datetime-timedelta(hours=3)) <= row_datetime <= (cluslist_current_datetime+timedelta(hours=3))): #if in a BB time, if (fire_time1[0] <= row_datetime <= fire_time1[1]) or (fire_time2[0] <= row_datetime <= fire_time2[1]): correction_factor_for_massdistr = 1./0.415 mass_distr_correction_error = 0.018 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluslist_current_datetime in rBC_FT_data_cluster_BB: rBC_FT_data_cluster_BB[cluslist_current_datetime].append(row_data) else: rBC_FT_data_cluster_BB[cluslist_current_datetime] = [row_data] continue #do not go on to put this data into a cluster dictionary, since it's BB data if cluslist_current_cluster_no == 9: correction_factor_for_massdistr = 1./0.5411 mass_distr_correction_error = 0.015 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluslist_current_datetime in rBC_FT_data_cluster_GBPS: rBC_FT_data_cluster_GBPS[cluslist_current_datetime].append(row_data) else: rBC_FT_data_cluster_GBPS[cluslist_current_datetime] = [row_data] if cluslist_current_cluster_no == 4: correction_factor_for_massdistr = 1./0.4028 mass_distr_correction_error = 0.028 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluslist_current_datetime in rBC_FT_data_cluster_Cont: rBC_FT_data_cluster_Cont[cluslist_current_datetime].append(row_data) else: rBC_FT_data_cluster_Cont[cluslist_current_datetime] = [row_data] if cluslist_current_cluster_no in [6,8]: correction_factor_for_massdistr = 1./0.4626 mass_distr_correction_error = 0.032 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluslist_current_datetime in rBC_FT_data_cluster_SPac: rBC_FT_data_cluster_SPac[cluslist_current_datetime].append(row_data) else: rBC_FT_data_cluster_SPac[cluslist_current_datetime] = [row_data] if cluslist_current_cluster_no in [2,7]: correction_factor_for_massdistr = 1./0.5280 mass_distr_correction_error = 0.019 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluslist_current_datetime in rBC_FT_data_cluster_LRT: rBC_FT_data_cluster_LRT[cluslist_current_datetime].append(row_data) else: rBC_FT_data_cluster_LRT[cluslist_current_datetime] = [row_data] if cluslist_current_cluster_no in [1,3,5,10]: correction_factor_for_massdistr = 1./0.3525 mass_distr_correction_error = 0.015 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = row_rBC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, row_abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluslist_current_datetime in rBC_FT_data_cluster_NPac: rBC_FT_data_cluster_NPac[cluslist_current_datetime].append(row_data) else: rBC_FT_data_cluster_NPac[cluslist_current_datetime] = [row_data] #24h rBC-meas avgs SP2_24h_FR = [] SP2_24h_BB = [] #6h rBC-meas avgs (FT data) SP2_6h_NPac = [] SP2_6h_SPac = [] SP2_6h_Cont = [] SP2_6h_LRT = [] SP2_6h_GBPS = [] SP2_6h_BB = [] SP2_6h_all_non_BB = [] #24h avgd data for date, mass_data in rBC_24h_data.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_24h_FR.append([date_mean,date_mean_err]) for date, mass_data in rBC_BB_24h_data.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_24h_BB.append([date_mean,date_mean_err]) #6h avgd data for date, mass_data in rBC_FT_data_cluster_NPac.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_NPac.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) for date, mass_data in rBC_FT_data_cluster_SPac.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_SPac.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) for date, mass_data in rBC_FT_data_cluster_Cont.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_Cont.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) for date, mass_data in rBC_FT_data_cluster_LRT.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_LRT.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) for date, mass_data in rBC_FT_data_cluster_GBPS.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_GBPS.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) for date, mass_data in rBC_FT_data_cluster_BB.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_BB.append([date_mean,date_mean_err]) ###################GEOS-Chem GC_data = {} data_dir = 'C:/Users/Sarah Hanna/Documents/Data/WHI long term record/GOES-Chem/Junwei_runs/v10_tests/All_together/' os.chdir(data_dir) lat = 20 #20 corresponds to 50deg lon = 7 #7 corresponds to -122.5deg level = 9 #1-47 #9 is closest to WHI avg P (WHI 95% CI = 770-793) molar_mass_BC = 12.0107 #in g/mol ng_per_g = 10**9 R = 8.3144621 # in m3*Pa/(K*mol) GEOS_Chem_factor = 10**-9 start_hour = 4 end_hour = 16 pressure = [] for file in os.listdir(data_dir): if file.endswith('.hdf'): file_year = int(file[2:6]) file_month = int(file[6:8]) file_day = int(file[8:10]) file_hour = int(file[11:13]) if start_hour <= file_hour < end_hour: #ignore any times not in the 2000-0800 PST window (0400-1600 UTC) hdf_file = SD(file, SDC.READ) #pprint(hdf_file.datasets()) #pressures = hdf_file.select('PEDGE-$::PSURF') #pressure.append(pressures[level,lat,lon]) #lats = hdf_file.select('LAT') #lons = hdf_file.select('LON') ##print lats[lat], lons[lon] if start_hour <= file_hour < (start_hour+6): period_midtime = datetime(file_year,file_month,file_day,23) - timedelta(days=1) #this is the early night period of 2000-0200 PST (mid time is 2300 of the previous day when converting from UTC to PST) if (start_hour+6) <= file_hour < end_hour: period_midtime = datetime(file_year,file_month,file_day,05) #this is the late night period of 0200-0800 PST i=0 for layer in [level, level-1, level+1]: hydrophilic_BC = hdf_file.select('IJ-AVG-$::BCPI') #3d conc data in ppbv (molBC/molAIR) hydrophobic_BC = hdf_file.select('IJ-AVG-$::BCPO') total_BC_ppbv = hydrophilic_BC[layer,lat,lon] + hydrophobic_BC[layer,lat,lon] Factor = (1000 * 1e2 * 1e6 * 1e-9) / (8.31 * 273) BC_conc_ngm3 = total_BC_ppbv*molar_mass_BC*ng_per_g*GEOS_Chem_factor*(101325/(R*273)) #101325/(R*273) corrects to STP temp_BC = total_BC_ppbv * Factor * 12 *1000 if period_midtime in sampling_times: #this excludes BB times already if period_midtime in GC_data: GC_data[period_midtime][i].append(temp_BC) else: GC_data[period_midtime] = [[],[],[],''] GC_data[period_midtime][i].append(temp_BC) i+=1 hdf_file.end() #print np.mean(pressure) #assign clusters for line in cluslist_GC: cluster_datetime = line[0] cluster_no = line[1] if cluster_datetime in sampling_times: if cluster_no == 4: cluster = 'Cont' if cluster_no == 9: cluster = 'GBPS' if cluster_no in [6,8]: cluster = 'SPac' if cluster_no in [2,7]: cluster = 'LRT' if cluster_no in [1,3,5,10]: cluster = 'NPac' if (fire_time1[0] <= cluster_datetime <= fire_time1[1]) or (fire_time2[0] <= cluster_datetime <= fire_time2[1]): cluster = 'BB' for period_midtime in GC_data: if period_midtime == cluster_datetime: GC_data[period_midtime][3] = cluster GC_6h_NPac = [] GC_6h_SPac = [] GC_6h_Cont = [] GC_6h_LRT = [] GC_6h_GBPS = [] GC_6h_BB = [] GC_6h_all_non_BB = [] for period_midtime in GC_data: cluster = GC_data[period_midtime][3] mean_BC_conc = np.nanmean(GC_data[period_midtime][0]) mean_BC_conc_lvl_dn = np.nanmean(GC_data[period_midtime][1]) mean_BC_conc_lvl_up = np.nanmean(GC_data[period_midtime][2]) BC_conc_ngm3_lower_limit = min(mean_BC_conc,mean_BC_conc_lvl_dn,mean_BC_conc_lvl_up) BC_conc_ngm3_upper_limit = max(mean_BC_conc,mean_BC_conc_lvl_dn,mean_BC_conc_lvl_up) pos_y_err = BC_conc_ngm3_upper_limit - mean_BC_conc neg_y_err = mean_BC_conc - BC_conc_ngm3_lower_limit mean_rel_err = ((pos_y_err+neg_y_err)/2)/mean_BC_conc if cluster == 'BB': GC_6h_BB.append([mean_BC_conc,mean_rel_err]) if cluster == 'Cont': GC_6h_Cont.append([mean_BC_conc,mean_rel_err]) if cluster == 'GBPS': GC_6h_GBPS.append([mean_BC_conc,mean_rel_err]) if cluster == 'NPac': GC_6h_NPac.append([mean_BC_conc,mean_rel_err]) if cluster == 'SPac': GC_6h_SPac.append([mean_BC_conc,mean_rel_err]) if cluster == 'LRT': GC_6h_LRT.append([mean_BC_conc,mean_rel_err]) if cluster != 'BB': GC_6h_all_non_BB.append([mean_BC_conc,mean_rel_err]) #print out percentile data and uncertainties stats_SP2 = { 'SP2_24h_FR':[SP2_24h_FR], 'SP2_24h_BB':[SP2_24h_BB], 'SP2_6h_NPac':[SP2_6h_NPac], 'SP2_6h_SPac':[SP2_6h_SPac], 'SP2_6h_Cont':[SP2_6h_Cont], 'SP2_6h_LRT':[SP2_6h_LRT], 'SP2_6h_GBPS':[SP2_6h_GBPS], 'SP2_6h_BB':[SP2_6h_BB], 'SP2_6h_all_non_BB':[SP2_6h_all_non_BB], } file_list = [] print 'SP2' for key, value in stats_SP2.iteritems(): mass_concs = [row[0] for row in value[0]] mass_concs_rel_errs = [row[1] for row in value[0]] #print key,'no. of samples: ', len(mass_concs) #print key,'mass concs', np.percentile(mass_concs, 10),np.percentile(mass_concs, 50), np.percentile(mass_concs, 90), np.mean(mass_concs) #print key,'errs',np.percentile(mass_concs_rel_errs, 50), np.mean(mass_concs_rel_errs) stats_SP2[key].append(np.percentile(mass_concs, 50)) file_list.append([key,np.percentile(mass_concs, 10),np.percentile(mass_concs, 50), np.percentile(mass_concs, 90), np.mean(mass_concs),np.mean(mass_concs_rel_errs)]) #save stats to file os.chdir('C:/Users/Sarah Hanna/Documents/Data/WHI long term record/GOES-Chem/') file = open('WHI_long_term_SP2_stats_by_cluster.txt', 'w') file.write('mass conc stats in ng/m3 - stp' +'\n') file.write('cluster' + '\t' + '10th percentile' + '\t' + '50th percentile' + '\t' + '90th percentile' + '\t' + 'mean' + '\t' +'mean rel err' +'\n') for row in file_list: line = '\t'.join(str(x) for x in row) file.write(line + '\n') file.close() stats_GC = { 'GC_6h_NPac':[GC_6h_NPac], 'GC_6h_SPac':[GC_6h_SPac], 'GC_6h_Cont':[GC_6h_Cont], 'GC_6h_LRT':[GC_6h_LRT], 'GC_6h_GBPS':[GC_6h_GBPS], #'GC_6h_BB':[GC_6h_BB], 'GC_6h_all_non_BB':[GC_6h_all_non_BB], } print 'GC' for key, value in stats_GC.iteritems(): mass_concs = [row[0] for row in value[0]] mass_concs_rel_errs = [row[1] for row in value[0]] print key,'mass concs', np.percentile(mass_concs, 10),np.percentile(mass_concs, 50), np.percentile(mass_concs, 90), np.mean(mass_concs) #print key,'rel err', np.mean(mass_concs_rel_errs) stats_GC[key].append(np.percentile(mass_concs, 50)) ###################plotting SP2_6h_NPac_m = [row[0] for row in SP2_6h_NPac] SP2_6h_SPac_m = [row[0] for row in SP2_6h_SPac] SP2_6h_Cont_m = [row[0] for row in SP2_6h_Cont] SP2_6h_LRT_m = [row[0] for row in SP2_6h_LRT] SP2_6h_GBPS_m = [row[0] for row in SP2_6h_GBPS] SP2_6h_BB_m = [row[0] for row in SP2_6h_BB] SP2_6h_all_non_BB_m = [row[0] for row in SP2_6h_all_non_BB] GC_6h_NPac_m = [row[0] for row in GC_6h_NPac] GC_6h_SPac_m = [row[0] for row in GC_6h_SPac] GC_6h_Cont_m = [row[0] for row in GC_6h_Cont] GC_6h_LRT_m = [row[0] for row in GC_6h_LRT] GC_6h_GBPS_m = [row[0] for row in GC_6h_GBPS] GC_6h_BB_m = [row[0] for row in GC_6h_BB] GC_6h_all_non_BB_m = [row[0] for row in GC_6h_all_non_BB] fig = plt.figure(figsize=(12,6)) bin_number = 20 bin_number_BB = 20 FT_UL = 300 FT_UL_BB = 625 bin_range = (0,FT_UL) bin_range_BB = (0,FT_UL_BB) incr = 100 ax1 = plt.subplot2grid((2,5), (0,0), colspan=1) ax2 = plt.subplot2grid((2,5), (0,1), colspan=1, sharey=ax1) ax3 = plt.subplot2grid((2,5), (0,2), colspan=1, sharey=ax1) ax4 = plt.subplot2grid((2,5), (0,3), colspan=1, sharey=ax1) ax5 = plt.subplot2grid((2,5), (0,4), colspan=1, sharey=ax1) #ax11 = plt.subplot2grid((2,6), (0,5), colspan=1, sharey=ax1) ax6 = plt.subplot2grid((2,5), (1,0), colspan=1) ax7 = plt.subplot2grid((2,5), (1,1), colspan=1, sharey=ax6) ax8 = plt.subplot2grid((2,5), (1,2), colspan=1, sharey=ax6) ax9 = plt.subplot2grid((2,5), (1,3), colspan=1, sharey=ax6) ax10 = plt.subplot2grid((2,5), (1,4), colspan=1, sharey=ax6) #ax12 = plt.subplot2grid((2,6), (1,5), colspan=1, sharey=ax6) #SP2 ax1.hist(SP2_6h_NPac_m,bins = bin_number, range = bin_range) ax1.xaxis.set_visible(True) ax1.yaxis.set_visible(True) ax1.set_ylabel('frequency - Measurements') ax1.text(0.25, 0.9,'N. Pacific', transform=ax1.transAxes) #ax1.set_ylim(0,40) ax1.xaxis.tick_top() ax1.xaxis.set_label_position('top') ax1.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax1.axvline(stats_SP2['SP2_6h_NPac'][1], color= 'black', linestyle = '--') ax2.hist(SP2_6h_SPac_m,bins = bin_number, range = bin_range) ax2.xaxis.set_visible(True) ax2.yaxis.set_visible(False) ax2.text(0.25, 0.9,'S. Pacific', transform=ax2.transAxes) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') ax2.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax2.axvline(stats_SP2['SP2_6h_SPac'][1], color= 'black', linestyle = '--') ax3.hist(SP2_6h_GBPS_m,bins = bin_number, range = bin_range) ax3.xaxis.set_visible(True) ax3.yaxis.set_visible(False) ax3.text(0.2, 0.82,'Georgia Basin/\nPuget Sound', transform=ax3.transAxes) ax3.xaxis.tick_top() ax3.xaxis.set_label_position('top') ax3.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax3.axvline(stats_SP2['SP2_6h_GBPS'][1], color= 'black', linestyle = '--') ax4.hist(SP2_6h_LRT_m,bins = bin_number, range = bin_range) ax4.xaxis.set_visible(True) ax4.yaxis.set_visible(False) ax4.text(0.2, 0.9,'W. Pacific/Asia', transform=ax4.transAxes) ax4.xaxis.tick_top() ax4.xaxis.set_label_position('top') ax4.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax4.axvline(stats_SP2['SP2_6h_LRT'][1], color= 'black', linestyle = '--') ax5.hist(SP2_6h_Cont_m,bins = bin_number, range = bin_range) ax5.xaxis.set_visible(True) ax5.yaxis.set_visible(False) ax5.text(0.25, 0.9,'N. Canada', transform=ax5.transAxes) ax5.xaxis.tick_top() ax5.xaxis.set_label_position('top') ax5.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax5.axvline(stats_SP2['SP2_6h_Cont'][1], color= 'black', linestyle = '--') #ax11.hist(SP2_6h_BB_m,bins = bin_number_BB, range = bin_range_BB) #ax11.xaxis.set_visible(True) #ax11.yaxis.set_visible(False) #ax11.text(0.4, 0.9,'BB', transform=ax11.transAxes) #ax11.xaxis.tick_top() #ax11.xaxis.set_label_position('top') #ax11.xaxis.set_ticks(np.arange(0, FT_UL_BB, 200)) #ax11.axvline(stats_SP2['SP2_6h_Cont'][1], color= 'black', linestyle = '--') #GC ax6.hist(GC_6h_NPac_m,bins = bin_number, range = bin_range, color = 'green') ax6.xaxis.set_visible(True) ax6.yaxis.set_visible(True) ax6.set_ylabel('frequency - GEOS-Chem') ax6.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax6.axvline(stats_GC['GC_6h_NPac'][1], color= 'black', linestyle = '--') ax7.hist(GC_6h_SPac_m,bins = bin_number, range = bin_range, color = 'green') ax7.xaxis.set_visible(True) ax7.yaxis.set_visible(False) ax7.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax7.axvline(stats_GC['GC_6h_SPac'][1], color= 'black', linestyle = '--') ax8.hist(GC_6h_GBPS_m,bins = bin_number, range = bin_range, color = 'green') ax8.xaxis.set_visible(True) ax8.yaxis.set_visible(False) ax8.set_xlabel('6h rBC mass concentration (ng/m3 - STP)') ax8.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax8.axvline(stats_GC['GC_6h_GBPS'][1], color= 'black', linestyle = '--') ax9.hist(GC_6h_LRT_m,bins = bin_number, range = bin_range, color = 'green') ax9.xaxis.set_visible(True) ax9.yaxis.set_visible(False) ax9.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax9.axvline(stats_GC['GC_6h_LRT'][1], color= 'black', linestyle = '--') ax10.hist(GC_6h_Cont_m,bins = bin_number, range = bin_range, color = 'green') ax10.xaxis.set_visible(True) ax10.yaxis.set_visible(False) ax10.xaxis.set_ticks(np.arange(0, FT_UL, incr)) ax10.axvline(stats_GC['GC_6h_Cont'][1], color= 'black', linestyle = '--') #ax12.hist(GC_6h_BB_m,bins = bin_number_BB, range = bin_range_BB, color = 'green') #ax12.xaxis.set_visible(True) #ax12.yaxis.set_visible(False) #ax12.xaxis.set_ticks(np.arange(0, FT_UL_BB, 200)) #ax12.axvline(stats_GC['GC_6h_BB'][1], color= 'black', linestyle = '--') plt.subplots_adjust(hspace=0.05) plt.subplots_adjust(wspace=0.05) os.chdir('C:/Users/Sarah Hanna/Documents/Data/WHI long term record/GOES-Chem/') plt.savefig('histograms -clustered GEOS-Chem and measurements - 6h FT - JW_wet_scavenging.png',bbox_inches='tight') plt.show() ###################plotting 3 fig = plt.figure(figsize=(6,8)) bin_number_all_FT = 30 UL_all_FT = 300 bin_range_all_FT = (0,UL_all_FT) ax1 = plt.subplot2grid((2,1), (0,0), colspan=1) ax2 = plt.subplot2grid((2,1), (1,0), colspan=1) #SP2 ax1.hist(SP2_6h_all_non_BB_m,bins = bin_number_all_FT, range = bin_range_all_FT) ax1.xaxis.set_visible(True) ax1.yaxis.set_visible(True) ax1.set_ylabel('frequency - Measurements') #ax1.text(0.25, 0.80,'All nighttime measurements \n(not including biomass burning periods)', transform=ax1.transAxes) #ax1.set_ylim(0,40) ax1.xaxis.tick_top() ax1.xaxis.set_label_position('top') ax1.xaxis.set_ticks(np.arange(0, UL_all_FT, 50)) ax1.axvline(stats_SP2['SP2_6h_all_non_BB'][1], color= 'black', linestyle = '--') #GC ax2.hist(GC_6h_all_non_BB_m,bins = bin_number_all_FT, range = bin_range_all_FT, color = 'green') ax2.xaxis.set_visible(True) ax2.yaxis.set_visible(True) ax2.set_ylabel('frequency - GEOS-Chem') ax2.xaxis.set_ticks(np.arange(0, UL_all_FT, 50)) ax2.axvline(stats_GC['GC_6h_all_non_BB'][1], color= 'black', linestyle = '--') ax2.set_xlabel('6h rBC mass concentration (ng/m3 - STP)') #plt.figtext(0.35,0.06, '6h rBC mass concentration (ng/m3 - STP)') plt.subplots_adjust(hspace=0.07) plt.subplots_adjust(wspace=0.07) plt.savefig('histograms - GEOS-Chem and measurements - all non-BB FT - 6h - JW_wet_scavenging.png',bbox_inches='tight') plt.show() SP2_6h_all_non_BB
mit
fyffyt/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
wooga/airflow
airflow/providers/presto/hooks/presto.py
1
4892
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import prestodb from prestodb.exceptions import DatabaseError from prestodb.transaction import IsolationLevel from airflow.hooks.dbapi_hook import DbApiHook class PrestoException(Exception): """ Presto exception """ class PrestoHook(DbApiHook): """ Interact with Presto through prestodb. >>> ph = PrestoHook() >>> sql = "SELECT count(1) AS num FROM airflow.static_babynames" >>> ph.get_records(sql) [[340698]] """ conn_name_attr = 'presto_conn_id' default_conn_name = 'presto_default' def get_conn(self): """Returns a connection object""" db = self.get_connection(self.presto_conn_id) # pylint: disable=no-member auth = prestodb.auth.BasicAuthentication(db.login, db.password) if db.password else None return prestodb.dbapi.connect( host=db.host, port=db.port, user=db.login, source=db.extra_dejson.get('source', 'airflow'), http_scheme=db.extra_dejson.get('protocol', 'http'), catalog=db.extra_dejson.get('catalog', 'hive'), schema=db.schema, auth=auth, isolation_level=self.get_isolation_level() ) def get_isolation_level(self): """Returns an isolation level""" db = self.get_connection(self.presto_conn_id) # pylint: disable=no-member isolation_level = db.extra_dejson.get('isolation_level', 'AUTOCOMMIT').upper() return getattr(IsolationLevel, isolation_level, IsolationLevel.AUTOCOMMIT) @staticmethod def _strip_sql(sql): return sql.strip().rstrip(';') def get_records(self, hql, parameters=None): """ Get a set of records from Presto """ try: return super().get_records( self._strip_sql(hql), parameters) except DatabaseError as e: raise PrestoException(e) def get_first(self, hql, parameters=None): """ Returns only the first row, regardless of how many rows the query returns. """ try: return super().get_first( self._strip_sql(hql), parameters) except DatabaseError as e: raise PrestoException(e) def get_pandas_df(self, hql, parameters=None): """ Get a pandas dataframe from a sql query. """ import pandas cursor = self.get_cursor() try: cursor.execute(self._strip_sql(hql), parameters) data = cursor.fetchall() except DatabaseError as e: raise PrestoException(e) column_descriptions = cursor.description if data: df = pandas.DataFrame(data) df.columns = [c[0] for c in column_descriptions] else: df = pandas.DataFrame() return df def run(self, hql, parameters=None): """ Execute the statement against Presto. Can be used to create views. """ return super().run(self._strip_sql(hql), parameters) def insert_rows(self, table, rows, target_fields=None, commit_every=0): """ A generic way to insert a set of tuples into a table. :param table: Name of the target table :type table: str :param rows: The rows to insert into the table :type rows: iterable of tuples :param target_fields: The names of the columns to fill in the table :type target_fields: iterable of strings :param commit_every: The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction. :type commit_every: int """ if self.get_isolation_level() == IsolationLevel.AUTOCOMMIT: self.log.info( 'Transactions are not enable in presto connection. ' 'Please use the isolation_level property to enable it. ' 'Falling back to insert all rows in one transaction.' ) commit_every = 0 super().insert_rows(table, rows, target_fields, commit_every)
apache-2.0
yassineS/COSMOS-2.0
cosmos/web/gemon/views.py
2
1089
import getpass from flask import Blueprint from flask import render_template bprint = Blueprint('gemon', __name__, template_folder='templates') @bprint.route('/') def home(): import numpy as np from .ge import qstat import pandas as pd # df_user = qstat() df_all = qstat('*') if len(df_all) != 0: df_user = df_all[df_all['JB_owner'] == getpass.getuser()] def summarize(df): def f(): for state, df_ in df.groupby(['state']): yield '%s_jobs' % state, [len(df_)] yield '%s_slots' % state, [df_.slots.astype(int).sum()] yield 'sum(io_usage)', ["{:,}".format(int(np.nan_to_num(df.io_usage.astype(float).sum())))] return pd.DataFrame(dict(f())) df_user_summary = summarize(df_user) df_all_summary = summarize(df_all) else: df_user_summary, df_all_summary = None, None return render_template('gemon/home.html', df_user=df_user, df_user_summary=df_user_summary, df_all_summary=df_all_summary)
gpl-3.0
nighres/nighres
nighres/io/io_mesh.py
1
25827
import nibabel as nb import numpy as np # TODO: compare with Nilearn functions and possibly extend def load_mesh(surf_mesh): ''' Load a mesh into a dictionary with entries "points", "faces" and "data" Parameters ---------- surf_mesh: Mesh to be loaded, can be a path to a file (currently supported formats are freesurfer geometry formats, gii and ASCII-coded vtk, ply or obj) or a dictionary with the keys "points", "faces" and (optionally) "data" Returns ---------- dict Dictionary with a numpy array with key "points" for a Numpy array of the x-y-z coordinates of the mesh vertices and key "faces" for a Numpy array of the the indices (into points) of the mesh faces. Optional "data" key is a Numpy array of values sampled on the "points". Notes ---------- Originally created as part of Laminar Python [1]_ References ----------- .. [1] Huntenburg et al. (2017), Laminar Python: Tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python. DOI: 10.3897/rio.3.e12346 ''' if surf_mesh.endswith('vtk'): points, faces, data = _read_vtk(surf_mesh) return {'points': points, 'faces': faces, 'data': data} elif surf_mesh.endswith('gii'): points, faces, data = _read_gifti(surf_mesh) return {'points': points, 'faces': faces, 'data': data} else: geom = load_mesh_geometry(surf_mesh) return geom def save_mesh(filename, surf_dict): ''' Saves surface mesh to file Parameters ---------- filename: str Full path and filename under which surfaces data should be saved. The extension determines the file format. Currently supported are freesurfer geometry formats, gii and ASCII-coded vtk, obj, ply. Note that only ASCII-coded vtk currently saves data, the others only save the geometry. surf_dict: dict Surface mesh geometry to be saved. Dictionary with a numpy array with key "points" for a Numpy array of the x-y-z coordinates of the mesh vertices and key "faces" for a Numpy array of the the indices (into points) of the mesh faces. Optional "data" key is a Numpy array of values sampled on the "points" Notes ---------- Originally created as part of Laminar Python [1]_ References ----------- .. [1] Huntenburg et al. (2017), Laminar Python: Tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python. DOI: 10.3897/rio.3.e12346 ''' if filename.endswith('vtk'): _write_vtk(filename, surf_dict['points'], surf_dict['faces'], surf_dict['data']) elif filename.endswith('gii'): _write_gifti(filename, surf_dict['points'], surf_dict['faces'], surf_dict['data']) else: save_mesh_geometry(filename, surf_dict) def load_mesh_geometry(surf_mesh): ''' Load a mesh geometry into a dictionary with entries "points" and "faces" Parameters ---------- surf_mesh: Mesh geometry to be loaded, can be a path to a file (currently supported formats are freesurfer geometry formats, gii and ASCII-coded vtk, ply or obj) or a dictionary with the keys "points" and "faces" Returns ---------- dict Dictionary with a numpy array with key "points" for a Numpy array of the x-y-z coordinates of the mesh vertices and key "faces" for a Numpy array of the the indices (into points) of the mesh faces Notes ---------- Originally created as part of Laminar Python [1]_ References ----------- .. [1] Huntenburg et al. (2017), Laminar Python: Tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python. DOI: 10.3897/rio.3.e12346 ''' # if input is a filename, try to load it with nibabel if isinstance(surf_mesh, str): if (surf_mesh.endswith('orig') or surf_mesh.endswith('pial') or surf_mesh.endswith('white') or surf_mesh.endswith('sphere') or surf_mesh.endswith('inflated')): points, faces = nb.freesurfer.io.read_geometry(surf_mesh) elif surf_mesh.endswith('gii'): points, faces, = _read_gifti(surf_mesh) elif surf_mesh.endswith('vtk'): points, faces, _ = _read_vtk(surf_mesh) elif surf_mesh.endswith('ply'): points, faces = _read_ply(surf_mesh) elif surf_mesh.endswith('obj'): points, faces = _read_obj(surf_mesh) else: raise ValueError('Currently supported file formats are freesurfer ' 'geometry formats and gii, vtk, ply, obj') elif isinstance(surf_mesh, dict): if ('faces' in surf_mesh and 'points' in surf_mesh): points, faces = surf_mesh['points'], surf_mesh['faces'] else: raise ValueError('If surf_mesh is given as a dictionary it ' 'must contain items with keys "points" and ' '"faces"') else: raise ValueError('Input surf_mesh must be a either filename or a ' 'dictionary containing items with keys "points" ' 'and "faces"') return {'points': points, 'faces': faces} def load_mesh_data(surf_data, gii_darray=None): ''' Loads mesh data into a Numpy array Parameters ---------- surf_data: Mesh data to be loaded, can be a Numpy array or a path to a file. Currently supported formats are freesurfer data formats (mgz, curv, sulc, thickness, annot, label), nii, gii, ASCII-coded vtk and txt gii_darray: int, optional Index of gii data array to load (default is to load all) Returns ---------- np.ndarray Numpy array containing the data Notes ---------- Originally created as part of Laminar Python [1]_ References ----------- .. [1] Huntenburg et al. (2017), Laminar Python: Tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python. DOI: 10.3897/rio.3.e12346 ''' # if the input is a filename, load it if isinstance(surf_data, str): if (surf_data.endswith('nii') or surf_data.endswith('nii.gz') or surf_data.endswith('mgz')): data = np.squeeze(nb.load(surf_data).get_data()) elif (surf_data.endswith('curv') or surf_data.endswith('sulc') or surf_data.endswith('thickness')): data = nb.freesurfer.io.read_morph_data(surf_data) elif surf_data.endswith('annot'): data = nb.freesurfer.io.read_annot(surf_data)[0] elif surf_data.endswith('label'): data = nb.freesurfer.io.read_label(surf_data) # check if this works with multiple indices (if dim(data)>1) elif surf_data.endswith('gii'): _, _, data = _read_gifti(surf_data) elif surf_data.endswith('vtk'): _, _, data = _read_vtk(surf_data) elif surf_data.endswith('txt'): data = np.loadtxt(surf_data) else: raise ValueError('Format of data file not recognized. Currently ' 'supported formats are freesurfer data formats ' '(mgz, sulc, curv, thickness, annot, label)' 'nii', 'gii, ASCII-coded vtk and txt') elif isinstance(surf_data, np.ndarray): data = np.squeeze(surf_data) return data def save_mesh_data(filename, surf_data): ''' Saves surface data that is a Numpy array to file Parameters ---------- filename: str Full path and filename under which surfaces data should be saved. The extension determines the file format. Currently supported are freesurfer formats curv, thickness, sulc and ASCII-coded txt' surf_data: np.ndarray Surface data to be saved Notes ---------- Originally created as part of Laminar Python [1]_ References ----------- .. [1] Huntenburg et al. (2017), Laminar Python: Tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python. DOI: 10.3897/rio.3.e12346 ''' if isinstance(filename, str) and isinstance(surf_data, np.ndarray): if (filename.endswith('curv') or filename.endswith('thickness') or filename.endswith('sulc')): nb.freesurfer.io.write_morph_data(filename, surf_data) print("\nSaving {0}".format(filename)) elif filename.endswith('txt'): np.savetxt(filename, surf_data) print("\nSaving {0}".format(filename)) else: raise ValueError('File format not recognized. Currently supported ' 'are freesurfer formats curv, sulc, thickness ' 'and ASCII coded vtk and txt') else: raise ValueError('Filename must be a string') def save_mesh_geometry(filename, surf_dict): ''' Saves surface mesh geometry to file Parameters ---------- filename: str Full path and filename under which surfaces data should be saved. The extension determines the file format. Currently supported are freesurfer geometry formats, gii and ASCII-coded vtk, obj, ply' surf_dict: dict Surface mesh geometry to be saved. Dictionary with a numpy array with key "points" for a Numpy array of the x-y-z coordinates of the mesh vertices and key "faces2 for a Numpy array of the the indices (into points) of the mesh faces Notes ---------- Originally created as part of Laminar Python [1]_ References ----------- .. [1] Huntenburg et al. (2017), Laminar Python: Tools for cortical depth-resolved analysis of high-resolution brain imaging data in Python. DOI: 10.3897/rio.3.e12346 ''' if isinstance(filename, str) and isinstance(surf_dict, dict): if (filename.endswith('orig') or filename.endswith('pial') or filename.endswith('white') or filename.endswith('sphere') or filename.endswith('inflated')): nb.freesurfer.io.write_geometry(filename, surf_dict['points'], surf_dict['faces']) print("\nSaving {0}".format(filename)) elif filename.endswith('gii'): _write_gifti(filename, surf_dict['points'], surf_dict['faces']) print("\nSaving {0}".format(filename)) elif filename.endswith('vtk'): if 'data' in surf_dict.keys(): _write_vtk(filename, surf_dict['points'], surf_dict['faces'], surf_dict['data']) print("\nSaving {0}".format(filename)) else: _write_vtk(filename, surf_dict['points'], surf_dict['faces']) print("\nSaving {0}".format(filename)) elif filename.endswith('ply'): _write_ply(filename, surf_dict['points'], surf_dict['faces']) print("\nSaving {0}".format(filename)) elif filename.endswith('obj'): _write_obj(filename, surf_dict['points'], surf_dict['faces']) print("\nSaving {0}".format(filename)) print('To view mesh in brainview, run the command:\n') print('average_objects ' + filename + ' ' + filename) else: raise ValueError('Filename must be a string and surf_dict must be a ' 'dictionary with keys "points" and "faces"') def _read_gifti(file): points = nb.gifti.read(file).get_arrays_from_intent( nb.nifti1.intent_codes['NIFTI_INTENT_POINTSET'])[0].data faces = nb.gifti.read(file).get_arrays_from_intent( nb.nifti1.intent_codes['NIFTI_INTENT_TRIANGLE'])[0].data narrays = len(nb.gifti.read(file).darrays)-2 if narrays>0: data = np.zeros([points.shape[0], narrays]) n=0; for darray in nb.gifti.read(file).darrays: if darray.intent is not nb.nifti1.intent_codes['NIFTI_INTENT_POINTSET'] \ and darray.intent is not nb.nifti1.intent_codes['NIFTI_INTENT_TRIANGLE']: data[:,n] = darray.data n=n+1 else: data = None return points, faces, data # function to read vtk files # ideally use pyvtk, but it didn't work for our data, look into why def _read_vtk(file): ''' Reads ASCII coded vtk files using pandas, returning vertices, faces and data as three numpy arrays. ''' import pandas as pd import csv # read full file while dropping empty lines try: vtk_df = pd.read_csv(file, header=None, engine='python') except csv.Error: raise ValueError( 'This vtk file appears to be binary coded currently only ASCII ' 'coded vtk files can be read') vtk_df = vtk_df.dropna() # extract number of vertices and faces number_vertices = int(vtk_df[vtk_df[0].str.contains( 'POINTS')][0].iloc[0].split()[1]) number_faces = int(vtk_df[vtk_df[0].str.contains( 'POLYGONS')][0].iloc[0].split()[1]) # read vertices into df and array start_vertices = (vtk_df[vtk_df[0].str.contains( 'POINTS')].index.tolist()[0]) + 1 vertex_df = pd.read_csv(file, skiprows=range(start_vertices), nrows=number_vertices, delim_whitespace=True, header=None, engine='python') if np.array(vertex_df).shape[1] == 3: vertex_array = np.array(vertex_df) # sometimes the vtk format is weird with 9 indices per line, # then it has to be reshaped elif np.array(vertex_df).shape[1] == 9: vertex_df = pd.read_csv(file, skiprows=range(start_vertices), nrows=int(number_vertices / 3) + 1, delim_whitespace=True, header=None, engine='python') vertex_array = np.array(vertex_df.iloc[0:1, 0:3]) vertex_array = np.append(vertex_array, vertex_df.iloc[0:1, 3:6], axis=0) vertex_array = np.append(vertex_array, vertex_df.iloc[0:1, 6:9], axis=0) for row in range(1, (int(number_vertices / 3) + 1)): for col in [0, 3, 6]: vertex_array = np.append(vertex_array, np.array( vertex_df.iloc[row:(row + 1), col:(col + 3)]), axis=0) # strip rows containing nans vertex_array = vertex_array[~np.isnan(vertex_array)].reshape( number_vertices, 3) else: print("vertex indices out of shape") # read faces into df and array start_faces = (vtk_df[vtk_df[0].str.contains( 'POLYGONS')].index.tolist()[0]) + 1 face_df = pd.read_csv(file, skiprows=range(start_faces), nrows=number_faces, delim_whitespace=True, header=None, engine='python') face_array = np.array(face_df.iloc[:, 1:4]) # read data into df and array if exists if vtk_df[vtk_df[0].str.contains('POINT_DATA')].index.tolist() != []: start_data = (vtk_df[vtk_df[0].str.contains( 'POINT_DATA')].index.tolist()[0]) + 3 number_data = number_vertices data_df = pd.read_csv(file, skiprows=range(start_data), nrows=number_data, delim_whitespace=True, header=None, engine='python') data_array = np.array(data_df) else: data_array = None return vertex_array, face_array, data_array def _read_ply(file): import pandas as pd import csv # read full file and drop empty lines try: ply_df = pd.read_csv(file, header=None, engine='python') except csv.Error: raise ValueError( 'This ply file appears to be binary coded currently only ' 'ASCII coded ply files can be read') ply_df = ply_df.dropna() # extract number of vertices and faces, and row that marks end of header number_vertices = int(ply_df[ply_df[0].str.contains( 'element vertex')][0].iloc[0].split()[2]) number_faces = int(ply_df[ply_df[0].str.contains( 'element face')][0].iloc[0].split()[2]) end_header = ply_df[ply_df[0].str.contains('end_header')].index.tolist()[0] # read vertex coordinates into dict vertex_df = pd.read_csv(file, skiprows=range(end_header + 1), nrows=number_vertices, sep='\s*', header=None, engine='python') vertex_array = np.array(vertex_df) # read face indices into dict face_df = pd.read_csv(file, skiprows=range(end_header + number_vertices + 1), nrows=number_faces, sep='\s*', header=None, engine='python') face_array = np.array(face_df.iloc[:, 1:4]) return vertex_array, face_array # function to read MNI obj mesh format def _read_obj(file): def chunks(l, n): """Yield n-sized chunks from l""" for i in range(0, len(l), n): yield l[i:i + n] def indices(lst, element): result = [] offset = -1 while True: try: offset = lst.index(element, offset + 1) except ValueError: return result result.append(offset) fp = open(file, 'r') n_vert = [] n_poly = [] k = 0 Polys = [] # Find number of vertices and number of polygons, stored in .obj file. # Then extract list of all vertices in polygons for i, line in enumerate(fp): if i == 0: # Number of vertices n_vert = int(line.split()[6]) XYZ = np.zeros((n_vert, 3)) elif i <= n_vert: XYZ[i - 1] = [float(num) for num in line.split()] elif i > 2 * n_vert + 5: if not line.strip(): k = 1 elif k == 1: Polys.extend(line.split()) Polys = [int(num) for num in Polys] npPolys = np.array(Polys) triangles = np.array(list(chunks(Polys, 3))) return XYZ, triangles def _write_gifti(surf_mesh, points, faces, data=None): coord_array = nb.gifti.GiftiDataArray(data=points, intent=nb.nifti1.intent_codes[ 'NIFTI_INTENT_POINTSET']) face_array = nb.gifti.GiftiDataArray(data=faces, intent=nb.nifti1.intent_codes[ 'NIFTI_INTENT_TRIANGLE']) if data is not None: data_array = nb.gifti.GiftiDataArray(data=data, intent=nb.nifti1.intent_codes[ 'NIFTI_INTENT_ESTIMATE']) gii = nb.gifti.GiftiImage(darrays=[coord_array, face_array, data_array]) else: gii = nb.gifti.GiftiImage(darrays=[coord_array, face_array]) nb.gifti.write(gii, surf_mesh) def _write_obj(surf_mesh, points, faces): # write out MNI - obj format n_vert = len(points) XYZ = points.tolist() Tri = faces.tolist() with open(surf_mesh, 'w') as s: line1 = "P 0.3 0.3 0.4 10 1 " + str(n_vert) + "\n" s.write(line1) k = -1 for a in XYZ: k += 1 cor = ' ' + ' '.join(map(str, XYZ[k])) s.write('%s\n' % cor) s.write('\n') for a in XYZ: s.write(' 0 0 0\n') s.write('\n') l = ' ' + str(len(Tri)) + '\n' s.write(l) s.write(' 0 1 1 1 1\n') s.write('\n') nt = len(Tri) * 3 Triangles = np.arange(3, nt + 1, 3) Rounded8 = np.shape(Triangles)[0] / 8 N8 = 8 * Rounded8 Triangles8 = Triangles[0:N8] RowsOf8 = np.split(Triangles8, N8 / 8) for r in RowsOf8: L = r.tolist() Lint = map(int, L) Line = ' ' + ' '.join(map(str, Lint)) s.write('%s\n' % Line) L = Triangles[N8:].tolist() Lint = map(int, L) Line = ' ' + ' '.join(map(str, Lint)) s.write('%s\n' % Line) s.write('\n') ListOfTriangles = np.array(Tri).flatten() Rounded8 = np.shape(ListOfTriangles)[0] / 8 N8 = 8 * Rounded8 Triangles8 = ListOfTriangles[0:N8] ListTri8 = ListOfTriangles[0:N8] RowsOf8 = np.split(Triangles8, N8 / 8) for r in RowsOf8: L = r.tolist() Lint = map(int, L) Line = ' ' + ' '.join(map(str, Lint)) s.write('%s\n' % Line) L = ListOfTriangles[N8:].tolist() Lint = map(int, L) Line = ' ' + ' '.join(map(str, Lint)) s.write('%s\n' % Line) def _write_vtk(filename, vertices, faces, data=None, comment=None): ''' Creates ASCII coded vtk file from numpy arrays using pandas. Inputs: ------- (mandatory) * filename: str, path to location where vtk file should be stored * vertices: numpy array with vertex coordinates, shape (n_vertices, 3) * faces: numpy array with face specifications, shape (n_faces, 3) (optional) * data: numpy array with data points, shape (n_vertices, n_datapoints) NOTE: n_datapoints can be =1 but cannot be skipped (n_vertices,) * comment: str, is written into the comment section of the vtk file Usage: --------------------- _write_vtk('/path/to/vtk/file.vtk', v_array, f_array) ''' import pandas as pd # infer number of vertices and faces number_vertices = vertices.shape[0] number_faces = faces.shape[0] if data is not None: number_data = data.shape[0] # make header and subheader dataframe header = ['# vtk DataFile Version 3.0', '%s' % comment, 'ASCII', 'DATASET POLYDATA', 'POINTS %i float' % number_vertices ] header_df = pd.DataFrame(header) sub_header = ['POLYGONS %i %i' % (number_faces, 4 * number_faces)] sub_header_df = pd.DataFrame(sub_header) # make dataframe from vertices vertex_df = pd.DataFrame(vertices) # make dataframe from faces, appending first row of 3's # (indicating the polygons are triangles) triangles = np.reshape(3 * (np.ones(number_faces)), (number_faces, 1)) triangles = triangles.astype(int) faces = faces.astype(int) faces_df = pd.DataFrame(np.concatenate((triangles, faces), axis=1)) # write dfs to csv header_df.to_csv(filename, header=None, index=False) with open(filename, 'a') as f: vertex_df.to_csv(f, header=False, index=False, float_format='%.3f', sep=' ') with open(filename, 'a') as f: sub_header_df.to_csv(f, header=False, index=False) with open(filename, 'a') as f: faces_df.to_csv(f, header=False, index=False, float_format='%.0f', sep=' ') # if there is data append second subheader and data if data is not None: if len(data.shape)>1: datapoints = data.shape[1] sub_header2 = ['POINT_DATA %i' % (number_data), 'SCALARS Scalars float %i' % (datapoints), 'LOOKUP_TABLE default'] else: datapoints = 1 sub_header2 = ['POINT_DATA %i' % (number_data), 'SCALARS Scalars float', 'LOOKUP_TABLE default'] sub_header_df2 = pd.DataFrame(sub_header2) data_df = pd.DataFrame(data) with open(filename, 'a') as f: sub_header_df2.to_csv(f, header=False, index=False) with open(filename, 'a') as f: data_df.to_csv(f, header=False, index=False, float_format='%.16f', sep=' ') def _write_ply(filename, vertices, faces, comment=None): import pandas as pd print("writing ply format") # infer number of vertices and faces number_vertices = vertices.shape[0] number_faces = faces.shape[0] # make header dataframe header = ['ply', 'format ascii 1.0', 'comment %s' % comment, 'element vertex %i' % number_vertices, 'property float x', 'property float y', 'property float z', 'element face %i' % number_faces, 'property list uchar int vertex_indices', 'end_header' ] header_df = pd.DataFrame(header) # make dataframe from vertices vertex_df = pd.DataFrame(vertices) # make dataframe from faces, adding first row of 3s (indicating triangles) triangles = np.reshape(3 * (np.ones(number_faces)), (number_faces, 1)) triangles = triangles.astype(int) faces = faces.astype(int) faces_df = pd.DataFrame(np.concatenate((triangles, faces), axis=1)) # write dfs to csv header_df.to_csv(filename, header=None, index=False) with open(filename, 'a') as f: vertex_df.to_csv(f, header=False, index=False, float_format='%.3f', sep=' ') with open(filename, 'a') as f: faces_df.to_csv(f, header=False, index=False, float_format='%.0f', sep=' ')
apache-2.0
smartscheduling/scikit-learn-categorical-tree
examples/ensemble/plot_random_forest_embedding.py
286
3531
""" ========================================================= Hashing feature transformation using Totally Random Trees ========================================================= RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification. The mapping is completely unsupervised and very efficient. This example visualizes the partitions given by several trees and shows how the transformation can also be used for non-linear dimensionality reduction or non-linear classification. Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed representation. This allows to separate two concentric circles simply based on the principal components of the transformed data. In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed space with an ExtraTreesClassifier forests learned on the original data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_circles from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier from sklearn.decomposition import TruncatedSVD from sklearn.naive_bayes import BernoulliNB # make a synthetic dataset X, y = make_circles(factor=0.5, random_state=0, noise=0.05) # use RandomTreesEmbedding to transform data hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3) X_transformed = hasher.fit_transform(X) # Visualize result using PCA pca = TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) # Learn a Naive Bayes classifier on the transformed data nb = BernoulliNB() nb.fit(X_transformed, y) # Learn an ExtraTreesClassifier for comparison trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0) trees.fit(X, y) # scatter plot of original and reduced data fig = plt.figure(figsize=(9, 8)) ax = plt.subplot(221) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_title("Original Data (2d)") ax.set_xticks(()) ax.set_yticks(()) ax = plt.subplot(222) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50) ax.set_title("PCA reduction (2d) of transformed data (%dd)" % X_transformed.shape[1]) ax.set_xticks(()) ax.set_yticks(()) # Plot the decision in original space. For that, we will assign a color to each # point in the mesh [x_min, m_max] x [y_min, y_max]. h = .01 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # transform grid using RandomTreesEmbedding transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()]) y_grid_pred = nb.predict_proba(transformed_grid)[:, 1] ax = plt.subplot(223) ax.set_title("Naive Bayes on Transformed data") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) # transform grid using ExtraTreesClassifier y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] ax = plt.subplot(224) ax.set_title("ExtraTrees predictions") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) plt.tight_layout() plt.show()
bsd-3-clause
xyguo/scikit-learn
sklearn/datasets/tests/test_20news.py
280
3045
"""Test the 20news downloader, if the data is available.""" import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn import datasets def test_20news(): try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract a reduced dataset data2cats = datasets.fetch_20newsgroups( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert_equal(data2cats.target_names, data.target_names[-2:]) # Assert that we have only 0 and 1 as labels assert_equal(np.unique(data2cats.target).tolist(), [0, 1]) # Check that the number of filenames is consistent with data/target assert_equal(len(data2cats.filenames), len(data2cats.target)) assert_equal(len(data2cats.filenames), len(data2cats.data)) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert_equal(entry1, entry2) def test_20news_length_consistency(): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ try: data = datasets.fetch_20newsgroups( subset='all', download_if_missing=False, shuffle=False) except IOError: raise SkipTest("Download 20 newsgroups to run this test") # Extract the full dataset data = datasets.fetch_20newsgroups(subset='all') assert_equal(len(data['data']), len(data.data)) assert_equal(len(data['target']), len(data.target)) assert_equal(len(data['filenames']), len(data.filenames)) def test_20news_vectorized(): # This test is slow. raise SkipTest("Test too slow.") bunch = datasets.fetch_20newsgroups_vectorized(subset="train") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314, 107428)) assert_equal(bunch.target.shape[0], 11314) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="test") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (7532, 107428)) assert_equal(bunch.target.shape[0], 7532) assert_equal(bunch.data.dtype, np.float64) bunch = datasets.fetch_20newsgroups_vectorized(subset="all") assert_true(sp.isspmatrix_csr(bunch.data)) assert_equal(bunch.data.shape, (11314 + 7532, 107428)) assert_equal(bunch.target.shape[0], 11314 + 7532) assert_equal(bunch.data.dtype, np.float64)
bsd-3-clause
vincentchoqueuse/parametrix
examples/ex_polynomial_fitting_MC.py
1
1215
from parametrix.polynomial.signal_models import M_Polynomial from parametrix.polynomial.classifiers import C_ModelOrder_Polynomial_IC from parametrix.monte_carlo.classifiers import MC_Simulations_classification import numpy as np import matplotlib.pyplot as plt """ Example: Model order selection for polynomial fitting based oSee [SEG04]_ p(x)=1-0.5x-5x**2-1.5x**3 .. [SEG04] Seghouane, A-K., and Maiza Bekara. "A small sample model selection criterion based on Kullback's symmetric divergence." IEEE Transactions on Signal Processing 52.12 (2004): 3314-3323.""" an=np.array([1,-0.5,-5,-1.5]) x_axis=np.linspace(-3,3,30) model=M_Polynomial(an,x_axis,0) model.sigma2s=635.37 #integral in page 3318 ## Model Order Selection order_vect=np.arange(10) classifier_AIC=C_ModelOrder_Polynomial_IC(order_vect,x_axis,method="AIC") classifier_AICc=C_ModelOrder_Polynomial_IC(order_vect,x_axis,method="AICc") classifier_BIC=C_ModelOrder_Polynomial_IC(order_vect,x_axis,method="BIC") ## Monte Carlo Simulation mc=MC_Simulations_classification("SNR",np.arange(-10,15,2),[classifier_AIC,classifier_AICc,classifier_BIC]) mc.trials(model,nb_trials=1000,verbose=1,plot=1) plt.show()
bsd-3-clause
tturowski/gwide
gwide/scripts/geneUsage.py
1
4140
#!/usr/bin/env python __author__ = 'Tomasz Turowski' __copyright__ = "Copyright 2015" __version__ = "1.0" __credits__ = ["Tomasz Turowski"] __email__ = "[email protected]" __status__ = "Production" from tRNAFromConcatv2 import * from optparse import OptionParser import argparse from argparse import RawTextHelpFormatter import select, os, re import pandas as pd usage = "Usage: calculate gene usage for tRNA genes" parser = argparse.ArgumentParser(usage=usage, formatter_class=RawTextHelpFormatter) files = parser.add_argument_group('Options for input files') files.add_argument("-w", dest="w_file", help="Provide the path to your tab file with anticodones wages", metavar="FILE", default=None) files.add_argument("-e", dest="e_file", help="Provide the path to your tab file tRNA expression", metavar="FILE", default=None) options = parser.parse_args() #function from Internet by Tommy Tang def ReverseComplement(seq): seq_dict = {'A':'U','T':'A','G':'C','C':'G', 'a':'u','t':'a','g':'c','c':'g'} return "".join([seq_dict[base] for base in reversed(seq)]) if not options.w_file or not options.e_file: print "Some file(s) is missing, use -w and -e" exit() #making revere complement (DNA to RNA) wages = pd.read_csv(options.w_file, sep='\t') wages['wage'] = wages['wage'].convert_objects(convert_numeric=True) for i, c in enumerate(wages['codone']): wages.loc[i, 'anticodone'] = ReverseComplement(c) #calculating % of codon usage new_wages = pd.DataFrame() for isotype in sorted(set(wages['isotype'].tolist())): temp_df = wages[wages.isotype == isotype] temp_df['wage_percent'] = temp_df['wage'].divide(temp_df.sum()['wage'], axis=0, level=None, fill_value=None) temp_df['wage_percent_correction'] = 0 new_wages = new_wages.append(temp_df) wages = new_wages #calculating average hits and getting codone and anticodone from gene ID expression = pd.read_csv(options.e_file, sep='\t') expression['average'] = expression.mean(axis=1, numeric_only=True) for i, gene_id in enumerate(expression['gene_id']): expression.loc[i, 'anticodone'] = gene_id[3:6] expression.loc[i, 'isotype'] = gene_id[1] #calculating % of gene usage for each anticodone new_expression = pd.DataFrame() for anticodone in set(expression['anticodone'].tolist()): temp_df = expression[expression.anticodone == anticodone] temp_df['exp_percent_anticodone'] = temp_df['average'].divide(temp_df.sum()['average'], axis=0, level=None, fill_value=None) new_expression = new_expression.append(temp_df) expression = new_expression # #calculating % of gene usage for each isotype # new_expression2 = pd.DataFrame() # for isotype in set(expression['isotype'].tolist()): # temp_df = expression[expression.isotype == isotype] # temp_df['exp_percent_isotype'] = temp_df['average'].divide(temp_df.sum()['average'], axis=0, level=None, fill_value=None) # new_expression2 = new_expression2.append(temp_df) # expression = new_expression2 #getting all alternative (wobble driven) codones in decoding a = wages[['anticodone','codone', 'isotype', 'wage_percent']] b = expression[['anticodone','isotype']] b['gene'] = 'gene' #mark gene encoded anticodones c = pd.ordered_merge(a,b) d = c[c.gene != 'gene'] #leave only wobble-driven codones d = d.sort('isotype') #re-asigning codones to new anticodones and adding wages for some genes wobble_driven_anticodones = list() wobble_dict = {'A':'A','T':'G','G':'U','C':'A', 'a':'a','t':'G','g':'u','c':'a'} for i, row in d.iterrows(): if row['isotype'] != 'Z': anti1 = wobble_dict[row['codone'][2]] anti23 = ReverseComplement(row['codone'])[1:3] d.loc[i, 'recog_ant'] = anti1+anti23 wages.loc[wages.anticodone == anti1+anti23,'wage_percent_correction'] += row['wage_percent'] wages['wages_sum'] = wages['wage_percent']+wages['wage_percent_correction'] # print d d.to_csv('wages', sep='\t') # wages = new_wages.drop('isotype', axis=1) # expression = new_expression.drop('isotype', axis=1) olo = pd.ordered_merge(expression,new_wages) # print olo olo.to_csv('output', sep='\t') print "Done."
apache-2.0
lukius/outlier-utils
outliers/smirnov_grubbs.py
1
7308
# -*- coding: utf-8 -*- """ Smirnov-Grubbs test for outlier detection. """ import numpy as np from scipy import stats from math import sqrt from collections import defaultdict try: import pandas as pd except ImportError: pd = None __all__ = ['test', 'two_sided_test', 'two_sided_test_indices', 'two_sided_test_outliers', 'min_test', 'min_test_indices', 'min_test_outliers', 'max_test', 'max_test_indices', 'max_test_outliers', 'TwoSidedGrubbsTest', 'MinValueGrubbsTest', 'MaxValueGrubbsTest', 'OutputType'] DEFAULT_ALPHA = 0.95 # Test output types class OutputType: DATA = 0 # Output data without outliers OUTLIERS = 1 # Output outliers INDICES = 2 # Output outlier indices class GrubbsTest(object): def __init__(self, data): self.original_data = data def _copy_data(self): if isinstance(self.original_data, np.ndarray): return self.original_data elif pd is not None and isinstance(self.original_data, pd.Series): return self.original_data elif isinstance(self.original_data, list): return np.array(self.original_data) else: raise TypeError('Unsupported data format') def _delete_item(self, data, index): if pd is not None and isinstance(data, pd.Series): return data.drop(index) elif isinstance(data, np.ndarray): return np.delete(data, index) else: raise TypeError('Unsupported data format') def _get_indices(self, values): last_seen = defaultdict(lambda: 0) data = list(self.original_data) indices = list() for value in values: start = last_seen[value] index = data.index(value, start) indices.append(index) last_seen[value] = index + 1 return indices def _get_g_test(self, data, alpha): """Compute a significant value score following these steps, being alpha the requested significance level: 1. Find the upper critical value of the t-distribution with n-2 degrees of freedom and a significance level of alpha/2n (for two-sided tests) or alpha/n (for one-sided tests). 2. Use this t value to find the score with the following formula: ((n-1) / sqrt(n)) * (sqrt(t**2 / (n-2 + t**2))) :param numpy.array data: data set :param float alpha: significance level :return: G_test score """ n = len(data) significance_level = self._get_t_significance_level(alpha, n) t = stats.t.isf(significance_level, n-2) return ((n-1) / sqrt(n)) * (sqrt(t**2 / (n-2 + t**2))) def _test_once(self, data, alpha): """Perform one iteration of the Smirnov-Grubbs test. :param numpy.array data: data set :param float alpha: significance level :return: the index of the outlier if one if found; None otherwise """ target_index, value = self._target(data) g = value / data.std() g_test = self._get_g_test(data, alpha) return target_index if g > g_test else None def run(self, alpha=DEFAULT_ALPHA, output_type=OutputType.DATA): """Run the Smirnov-Grubbs test to remove outliers in the given data set. :param float alpha: significance level :param int output_type: test output type (from OutputType class values) :return: depending on the value of output_type, the data set without outliers (DATA), the outliers themselves (OUTLIERS) or the indices of the outliers in the original data set (INDICES) """ data = self._copy_data() outliers = list() while True: outlier_index = self._test_once(data, alpha) if outlier_index is None: break outlier = data[outlier_index] outliers.append(outlier) data = self._delete_item(data, outlier_index) return_value = data if output_type == OutputType.OUTLIERS: return_value = outliers elif output_type == OutputType.INDICES: return_value = self._get_indices(outliers) return return_value def _target(self, data): raise NotImplementedError def _get_t_significance_level(self, alpha): raise NotImplementedError class TwoSidedGrubbsTest(GrubbsTest): def _target(self, data): """Compute the index of the farthest value from the sample mean and its distance. :param numpy.array data: data set :return int, float: the index of the element and its distance to the mean """ relative_values = abs(data - data.mean()) index = relative_values.argmax() value = relative_values[index] return index, value def _get_t_significance_level(self, alpha, n): return alpha / (2*n) class OneSidedGrubbsTest(GrubbsTest): def _target(self, data): """Compute the index of the min/max value and its distance from the sample mean. :param numpy.array data: data set :return int, float: the index of the min/max value and its distance to the mean """ index = self._get_index(data) value = data[index] return index, abs(value - data.mean()) def _get_t_significance_level(self, alpha, n): return alpha / n class MinValueGrubbsTest(OneSidedGrubbsTest): def _get_index(self, data): return data.argmin() class MaxValueGrubbsTest(OneSidedGrubbsTest): def _get_index(self, data): return data.argmax() # Convenience functions to run single Grubbs tests def _test(test_class, data, alpha, output_type): return test_class(data).run(alpha, output_type=output_type) def _two_sided_test(data, alpha, output_type): return _test(TwoSidedGrubbsTest, data, alpha, output_type) def _min_test(data, alpha, output_type): return _test(MinValueGrubbsTest, data, alpha, output_type) def _max_test(data, alpha, output_type): return _test(MaxValueGrubbsTest, data, alpha, output_type) def two_sided_test(data, alpha=DEFAULT_ALPHA): return _two_sided_test(data, alpha, OutputType.DATA) def two_sided_test_indices(data, alpha=DEFAULT_ALPHA): return _two_sided_test(data, alpha, OutputType.INDICES) def two_sided_test_outliers(data, alpha=DEFAULT_ALPHA): return _two_sided_test(data, alpha, OutputType.OUTLIERS) def min_test(data, alpha=DEFAULT_ALPHA): return _min_test(data, alpha, OutputType.DATA) def min_test_indices(data, alpha=DEFAULT_ALPHA): return _min_test(data, alpha, OutputType.INDICES) def min_test_outliers(data, alpha=DEFAULT_ALPHA): return _min_test(data, alpha, OutputType.OUTLIERS) def max_test(data, alpha=DEFAULT_ALPHA): return _max_test(data, alpha, OutputType.DATA) def max_test_indices(data, alpha=DEFAULT_ALPHA): return _max_test(data, alpha, OutputType.INDICES) def max_test_outliers(data, alpha=DEFAULT_ALPHA): return _max_test(data, alpha, OutputType.OUTLIERS) def test(data, alpha=DEFAULT_ALPHA): return two_sided_test(data, alpha)
mit
mhue/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
ChanChiChoi/scikit-learn
examples/plot_multilabel.py
87
4279
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, return_indicator=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
ChristophKirst/ClearMapUnstable
ClearMap/Visualization/Plot.py
1
9095
# -*- coding: utf-8 -*- """ Plotting routines for overlaying labels, tilings, and sectioning of 3d data sets Supported functionality: * plot volumetric data as a sequence of tiles via :func:`plotTiling` * overlay points on images via :func:`overlayPoints` and :func:`plotOverlayPoints` * overlay labeled images on gray scale images via :func:`overlayLabel` and :func:`plotOverlayLabel` """ #:copyright: Copyright 2015 by Christoph Kirst, The Rockefeller University, New York City #:license: GNU, see LICENSE.txt for details. import math import numpy import matplotlib as mpl import matplotlib.pyplot as plt import ClearMap.IO as io import ClearMap.Analysis.Voxelization as vox def plotTiling(dataSource, tiling = "automatic", maxtiles = 20, x = all, y = all, z = all, inverse = False): """Plot 3d image as 2d tiles Arguments: dataSouce (str or array): volumetric image data tiling (str or tuple): tiling specification maxtiles: maximalnumber of tiles x, y, z (all or tuple): sub-range specification inverse (bool):invert image Returns: (object): figure handle """ image = io.readData(dataSource, x = x, y = y, z = z); dim = image.ndim; if dim < 2 or dim > 4: raise StandardError('plotTiling: image dimension must be 2 to 4'); if dim == 2: image = image.reshape(image.shape + (1,)); dim = 3; if image.ndim == 3: if image.shape[2] == 3: # 2d color image ntiles = 1; cmap = None; image = image.reshape((image.shape[0], image.shape[1], 1, 3)); else: # 3d gray image ntiles = image.shape[2]; cmap = plt.cm.gray; image = image.reshape(image.shape + (1,)); else: ntiles = image.shape[2]; # 3d color = 4d cmap = None; if ntiles > maxtiles: print "plotTiling: number of tiles %d very big! Clipping at %d!" % (ntiles, maxtiles); ntiles = maxtiles; if tiling == "automatic": nx = math.floor(math.sqrt(ntiles)); ny = int(math.ceil(ntiles / nx)); nx = int(nx); else: nx = int(tiling[0]); ny = int(tiling[1]); #print image.shape fig, axarr = plt.subplots(nx, ny, sharex = True, sharey = True); fig.subplots_adjust(wspace=0.05, hspace=0.05); axarr = numpy.array(axarr); axarr = axarr.flatten(); imin = image.min(); imax = image.max(); if inverse: (imin, imax) = (-float(imax), -float(imin)); #print imin, imax for i in range(0, ntiles): a = axarr[i]; imgpl = image[:,:,i,:].copy(); imgpl = imgpl.transpose([1,0,2]); if imgpl.shape[2] == 1: imgpl = imgpl.reshape((imgpl.shape[0], imgpl.shape[1])); if inverse: imgpl = -imgpl.astype('float'); #a.imshow(imgpl, interpolation='none', cmap = cmap, vmin = imin, vmax = imax); a.imshow(imgpl, interpolation='none', cmap = cmap, vmin = imin, vmax = imax); #fig.canvas.manager.window.activateWindow() #fig.canvas.manager.window.raise_() return fig; def overlayLabel(dataSource, labelSource, sink = None, alpha = False, labelColorMap = 'jet', x = all, y = all, z = all): """Overlay a gray scale image with colored labeled image Arguments: dataSouce (str or array): volumetric image data labelSource (str or array): labeled image to be overlayed on the image data sink (str or None): destination for the overlayed image alpha (float or False): transparency labelColorMap (str or object): color map for the labels x, y, z (all or tuple): sub-range specification Returns: (array or str): figure handle See Also: :func:`overlayPoints` """ label = io.readData(labelSource, x = x, y = y, z = z); image = io.readData(dataSource, x = x, y = y, z = z); lmax = label.max(); if lmax <= 1: carray = numpy.array([[1,0,0,1]]); else: cm = mpl.cm.get_cmap(labelColorMap); cNorm = mpl.colors.Normalize(vmin=1, vmax = int(lmax)); carray = mpl.cm.ScalarMappable(norm=cNorm, cmap=cm); carray = carray.to_rgba(numpy.arange(1, int(lmax + 1))); if alpha == False: carray = numpy.concatenate(([[0,0,0,1]], carray), axis = 0); else: carray = numpy.concatenate(([[1,1,1,1]], carray), axis = 0); cm = mpl.colors.ListedColormap(carray); carray = cm(label); carray = carray.take([0,1,2], axis = -1); if alpha == False: cimage = (label == 0) * image; cimage = numpy.repeat(cimage, 3); cimage = cimage.reshape(image.shape + (3,)); cimage = cimage.astype(carray.dtype); cimage += carray; else: cimage = numpy.repeat(image, 3); cimage = cimage.reshape(image.shape + (3,)); cimage = cimage.astype(carray.dtype); cimage *= carray; return io.writeData(sink, cimage); def plotOverlayLabel(dataSource, labelSource, alpha = False, labelColorMap = 'jet', x = all, y = all, z = all, tiling = "automatic", maxtiles = 20): """Plot gray scale image overlayed with labeled image Arguments: dataSouce (str or array): volumetric image data labelSource (str or array): labeled image to be overlayed on the image data alpha (float or False): transparency labelColorMap (str or object): color map for the labels x, y, z (all or tuple): sub-range specification tiling (str or tuple): tiling specification maxtiles: maximalnumber of tiles Returns: (object): figure handle See Also: :func:`overlayLabel` """ ov = overlayLabel(dataSource, labelSource, alpha = alpha, labelColorMap = labelColorMap, x = x, y = y, z = z); return plotTiling(ov, tiling = tiling, maxtiles = maxtiles); def overlayPoints(dataSource, pointSource, sink = None, pointColor = [1,0,0], x = all, y = all, z = all): """Overlay points on 3D data and return as color image Arguments: dataSouce (str or array): volumetric image data pointSource (str or array): point data to be overlayed on the image data pointColor (array): RGB color for the overlayed points x, y, z (all or tuple): sub-range specification Returns: (str or array): image overlayed with points See Also: :func:`overlayLabel` """ data = io.readData(dataSource, x = x, y = y, z = z); points = io.readPoints(pointSource, x = x, y = y, z = z, shift = True); #print data.shape if not pointColor is None: dmax = data.max(); dmin = data.min(); if dmin == dmax: dmax = dmin + 1; cimage = numpy.repeat( (data - dmin) / (dmax - dmin), 3); cimage = cimage.reshape(data.shape + (3,)); if data.ndim == 2: for p in points: # faster version using voxelize ? cimage[p[0], p[1], :] = pointColor; elif data.ndim == 3: for p in points: # faster version using voxelize ? cimage[p[0], p[1], p[2], :] = pointColor; else: raise RuntimeError('overlayPoints: data dimension %d not suported' % data.ndim); else: cimage = vox.voxelize(points, data.shape, method = 'Pixel'); cimage = cimage.astype(data.dtype) * data.max(); data.shape = data.shape + (1,); cimage.shape = cimage.shape + (1,); cimage = numpy.concatenate((data, cimage), axis = 3); #print cimage.shape return io.writeData(sink, cimage); def plotOverlayPoints(dataSource, pointSource, pointColor = [1,0,0], x = all, y = all, z = all): """Plot points overlayed on gray scale 3d image as tiles. Arguments: dataSouce (str or array): volumetric image data pointSource (str or array): point data to be overlayed on the image data pointColor (array): RGB color for the overlayed points x, y, z (all or tuple): sub-range specification Returns: (object): figure handle See Also: :func:`plotTiling` """ cimg = overlayPoints(dataSource, pointSource, pointColor = pointColor, x = x, y = y, z = z); return plotTiling(cimg); def test(): """Test Plot module""" import numpy as np import ClearMap.Visualization.Plot as self reload(self) l = np.array([[0,0,0,0,0], [0,1,1,0,0], [3,0,5,0,2], [5,0,0,0,0], [4,4,0,0,0]]) x = np.random.rand(5,5); self.plotOverlayLabel(x,l, alpha = False); self.plotOverlayLabel(x,l, alpha = True); # x = np.random.rand(50,20); p = np.array([[10,15], [40,10]]); self.plotOverlayPoints(x, p) if __name__ == "__main__": test();
gpl-3.0
JoostVisser/ml-assignment2
mglearn/plot_dbscan.py
1
1675
import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import DBSCAN from sklearn.datasets import make_blobs from .plot_helpers import discrete_scatter def plot_dbscan(): X, y = make_blobs(random_state=0, n_samples=12) dbscan = DBSCAN() clusters = dbscan.fit_predict(X) clusters fig, axes = plt.subplots(3, 4, figsize=(11, 8), subplot_kw={'xticks': (), 'yticks': ()}) # Plot clusters as red, green and blue, and outliers (-1) as white colors = ['r', 'g', 'b'] markers = ['o', '^', 'v'] # iterate over settings of min_samples and eps for i, min_samples in enumerate([2, 3, 5]): for j, eps in enumerate([1, 1.5, 2, 3]): # instantiate DBSCAN with a particular setting dbscan = DBSCAN(min_samples=min_samples, eps=eps) # get cluster assignments clusters = dbscan.fit_predict(X) print("min_samples: %d eps: %f cluster: %s" % (min_samples, eps, clusters)) if np.any(clusters == -1): c = ['w'] + colors m = ['o'] + markers else: c = colors m = markers discrete_scatter(X[:, 0], X[:, 1], clusters, ax=axes[i, j], c=c, s=8, markers=m) inds = dbscan.core_sample_indices_ # vizualize core samples and clusters. if len(inds): discrete_scatter(X[inds, 0], X[inds, 1], clusters[inds], ax=axes[i, j], s=15, c=colors, markers=markers) axes[i, j].set_title("min_samples: %d eps: %.1f" % (min_samples, eps)) fig.tight_layout()
mit
aerosara/thesis
notebooks_archive_10112014/thesis_functions/visualization.py
1
2680
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def CreatePlotGrid(title, xlabel, ylabel, zlabel, aspectmode): # plot fig, ((axXZ, axYZ), (axXY, ax3D)) = plt.subplots(2, 2) fig.suptitle(title, fontsize=14) fig.set_size_inches(10, 10) fig.subplots_adjust(hspace=0.2) fig.subplots_adjust(wspace=0.5) # XZ Plane axXZ.set_title(xlabel + zlabel + ' Plane') axXZ.xaxis.set_label_text(xlabel + ' axis') axXZ.yaxis.set_label_text(zlabel + ' axis') axXZ.set_aspect(aspectmode) # YZ Plane axYZ.set_title(ylabel + zlabel + ' Plane') axYZ.xaxis.set_label_text(ylabel + ' axis') axYZ.yaxis.set_label_text(zlabel + ' axis') axYZ.set_aspect(aspectmode) # XY Plane axXY.set_title(xlabel + ylabel + ' Plane') axXY.xaxis.set_label_text(xlabel + ' axis') axXY.yaxis.set_label_text(ylabel + ' axis') axXY.set_aspect(aspectmode) # plot in 3D ax3D.axis('off') ax3D = fig.add_subplot(224, projection='3d') # "224" means "2x2 grid, 4th subplot" ax3D.set_title('3D View in ' + xlabel + ylabel + zlabel + ' Frame') ax3D.xaxis.set_label_text(xlabel + ' axis') ax3D.yaxis.set_label_text(ylabel + ' axis') ax3D.zaxis.set_label_text(zlabel + ' axis') ax3D.set_aspect(aspectmode) return axXZ, axYZ, axXY, ax3D # Allowed colors: # b: blue # g: green # r: red # c: cyan # m: magenta # y: yellow # k: black # w: white def SetPlotGridData(axXZ, axYZ, axXY, ax3D, data, points): # add points to plots for key in points: axXZ.plot(points[key]['xyz'][0], points[key]['xyz'][2], 'o', markersize=5, label=key, color=points[key]['color']) axYZ.plot(points[key]['xyz'][1], points[key]['xyz'][2], 'o', markersize=5, label=key, color=points[key]['color']) axXY.plot(points[key]['xyz'][0], points[key]['xyz'][1], 'o', markersize=5, label=key, color=points[key]['color']) ax3D.plot([points[key]['xyz'][0]], [points[key]['xyz'][1]], [points[key]['xyz'][2]], 'o', markersize=5, label=key, color=points[key]['color']) # add data to plots for key in data: axXZ.plot(data[key]['x'], data[key]['z'], '-', label=key, color=data[key]['color']) axYZ.plot(data[key]['y'], data[key]['z'], '-', label=key, color=data[key]['color']) axXY.plot(data[key]['x'], data[key]['y'], '-', label=key, color=data[key]['color']) ax3D.plot(data[key]['x'], data[key]['y'], data[key]['z'], '-', label=key, color=data[key]['color']) #ax3D.legend(loc='center left', bbox_to_anchor=(1.2, 0.5))
mit
joachimwolff/minHashNearestNeighbors
sparse_neighbors_search/neighbors/wtaHash.py
1
30894
# Copyright 2016, 2017, 2018, 2019, 2020 Joachim Wolff # PhD Thesis # # Copyright 2015, 2016 Joachim Wolff # Master Thesis # Tutor: Fabrizio Costa # Winter semester 2015/2016 # # Chair of Bioinformatics # Department of Computer Science # Faculty of Engineering # Albert-Ludwigs-University Freiburg im Breisgau __author__ = 'joachimwolff' from scipy.sparse import csr_matrix from .nearestNeighborsCppInterface import _NearestNeighborsCppInterface class WtaHash(): """Approximate unsupervised learner for implementing neighbor searches on sparse data sets. Based on a dimension reduction with winner takes is all hash. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. fast : {True, False}, optional (default = False) - True: will only use an inverse index to compute a k_neighbor query. - False: an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. number_of_hash_functions : int, optional (default = '400') Number of hash functions to use for computing the inverse index. max_bin_size : int, optional (default = 50) The number of maximal collisions for one hash value of one hash function. If one value of a hash function has more collisions, this value will be ignored. minimal_blocks_in_common : int, optional (default = 1) The minimal number of hash collisions two instances have to be in common to be recognised. Everything less will be ignored. shingle_size : int, optional (default = 4) Reduction factor for the signature size. E.g. number_of_hash_functions=400 and shingle_size=4 --> Size of the signature will be 100 excess_factor : int, optional (default = 5) Factor to return more neighbors internally as defined with n_neighbors. Factor is useful to increase the precision of the :meth:`algorithm=exact` version of the implementation. E.g.: n_neighbors = 5, excess_factor = 5. Internally n_neighbors*excess_factor = 25 neighbors will be returned. Now the reduced data set for sklearn.NearestNeighbors is of size 25 and not 5. similarity : {True, False}, optional (default = False) If true: cosine similarity is used If false: Euclidean distance is used number_of_cores : int, optional (default = None) Number of cores that should be used for openmp. If your system doesn't support openmp, this value will have no effect. If it supports openmp and it is not defined, the maximum number of cores is used. chunk_size : int, optional (default = None) Number of elements one cpu core should work on. If it is set to "0" the default behaviour of openmp is used; all cores are getting the same amount of data at once; e.g. 8-core cpu and 128 elements to process, every core will get 16 elements at once. prune_inverse_index : int, optional (default = -1) Remove every hash value with less occurence than n. If -1 it is deactivated. prune_inverse_index_after_instance: float, optional (default = -1.0) Start all the pruning routines after x% of the data during the fitting process. remove_hash_function_with_less_entries_as: int, optional (default =-1) Remove every hash function with less hash values as n. block_size : int, optional (default = 5) How much more hash functions should be computed. Number is relevant for the shingels. shingle : int, optional (default = 0) store_value_with_least_sigificant_bit : int, optional (default = 0) gpu_hashing : int, optional (default = 1) If the hashing of WtaHash should be computed on the GPU (1) but the prediction is computed on the CPU. If 0 it is deactivated. speed_optimized : {True, False}, optional (default = None) A parameter setting that is optimized for the best speed. Can not be used together with the parameter 'accuracy_optimized'. If bad results are computed, try 'accuracy_optimized' or optimize the parameters with a hyperparameter optimization. accuracy_optimized : {True, False}, optional (default = None) A parameter setting that is optimized for the best accuracy. Can not be used together with the parameter 'speed_optimized'. If results are computed to slow, try 'speed_optimized' or optimize the parameters with a hyperparameter optimization. Notes ----- The documentation is copied from scikit-learn and was only extend for a few cases. All examples are available there. http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors Sources: Basic algorithm: http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm Idea behind implementation: https://en.wikipedia.org/wiki/Locality-sensitive_hashing Implementation is using scikit learn: http://scikit-learn.org/dev/index.html http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors Algorithm based on: Heyne, S., Costa, F., Rose, D., & Backofen, R. (2012). GraphClust: alignment-free structural clustering of local RNA secondary structures. Bioinformatics, 28(12), i224-i232. http://bioinformatics.oxfordjournals.org/content/28/12/i224.full.pdf+html Winner takes it all hash based on: Yagnik, Jay, et al. "The power of comparative reasoning." C omputer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011. http://www.dennis-strelow.com/papers/documents/iccv11.pdf """ def __init__(self, n_neighbors=5, radius=1.0, fast=False, number_of_hash_functions=400, rangeK_wta=20, max_bin_size=50, minimal_blocks_in_common=1, shingle_size=4, excess_factor=5, similarity=False, number_of_cores=None, chunk_size=None, prune_inverse_index=-1, prune_inverse_index_after_instance=-1.0, remove_hash_function_with_less_entries_as=-1, block_size=5, shingle=0, store_value_with_least_sigificant_bit=0, speed_optimized=None, accuracy_optimized=None, absolute_numbers=False): # cpu_gpu_load_balancing=0, if speed_optimized is not None and accuracy_optimized is not None: print("Speed optimization and accuracy optimization at the same time is not possible.") return if speed_optimized: number_of_hash_functions = 186 max_bin_size = 87 minimal_blocks_in_common = 1 shingle_size = 1 excess_factor = 11 prune_inverse_index = 6 prune_inverse_index_after_instance = 0.0 remove_hash_function_with_less_entries_as = 0 block_size = 1 shingle = 0 store_value_with_least_sigificant_bit = 1 rangeK_wta = 17 elif accuracy_optimized: number_of_hash_functions = 739 max_bin_size = 30 minimal_blocks_in_common = 1 shingle_size = 3 excess_factor = 14 prune_inverse_index = 1 prune_inverse_index_after_instance = 0.5 remove_hash_function_with_less_entries_as = 0 block_size = 1 shingle = 0 store_value_with_least_sigificant_bit = 2 rangeK_wta = 23 cpu_gpu_load_balancing = 0 self._nearestNeighborsCppInterface = _NearestNeighborsCppInterface(n_neighbors=n_neighbors, radius=radius, fast=fast, number_of_hash_functions=number_of_hash_functions, max_bin_size=max_bin_size, minimal_blocks_in_common=minimal_blocks_in_common, shingle_size=shingle_size, excess_factor=excess_factor, similarity=similarity, number_of_cores=number_of_cores, chunk_size=chunk_size, prune_inverse_index=prune_inverse_index, prune_inverse_index_after_instance=prune_inverse_index_after_instance, remove_hash_function_with_less_entries_as=remove_hash_function_with_less_entries_as, hash_algorithm=1, block_size=block_size, shingle=shingle, store_value_with_least_sigificant_bit=store_value_with_least_sigificant_bit, cpu_gpu_load_balancing=cpu_gpu_load_balancing, gpu_hashing=0, rangeK_wta=rangeK_wta) def __del__(self): del self._nearestNeighborsCppInterface def fit(self, X, y=None): """Fit the model using X as training data. Parameters ---------- X : {array-like, sparse matrix}, optional Training data. If array or matrix, shape = [n_samples, n_features] If X is None, a "lazy fitting" is performed. If kneighbors is called, the fitting with with the data there is done. Also the caching of computed hash values is deactivated in this case. y : list, optional (default = None) List of classes for the given input of X. Size have to be n_samples.""" self._nearestNeighborsCppInterface.fit(X=X, y=y) def partial_fit(self, X, y=None): """Extend the model by X as additional training data. Parameters ---------- X : {array-like, sparse matrix} Training data. Shape = [n_samples, n_features] y : list, optional (default = None) List of classes for the given input of X. Size have to be n_samples.""" self._nearestNeighborsCppInterface.partial_fit(X=X, y=y) def kneighbors(self, X=None, n_neighbors=None, return_distance=True, fast=None, similarity=None, pAbsoluteNumbers=None): """Finds the n_neighbors of a point X or of all points of X. Parameters ---------- X : {array-like, sparse matrix}, optional Data point(s) to be searched for n_neighbors. Shape = [n_samples, n_features] If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int, optional Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned fast : {'True', 'False'}, optional (default = 'None') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. Returns ------- dist : array, shape = [n_samples, distances] Array representing the lengths to points, only present if return_distance=True ind : array, shape = [n_samples, neighbors] Indices of the nearest points in the population matrix.""" return self._nearestNeighborsCppInterface.kneighbors(X=X, n_neighbors=n_neighbors, return_distance=return_distance, fast=fast, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def kneighbors_graph(self, X=None, n_neighbors=None, mode='connectivity', fast=None, symmetric=True, similarity=None, pAbsoluteNumbers=None): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. fast : {'True', 'False'}, optional (default = 'None') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. symmetric: {True, False} (default = True) If true the returned graph is symmetric, otherwise not. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. """ return self._nearestNeighborsCppInterface.kneighbors_graph(X=X, n_neighbors=n_neighbors, mode=mode, fast=fast, symmetric=symmetric, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def radius_neighbors(self, X=None, radius=None, return_distance=None, fast=None, similarity=None, pAbsoluteNumbers=None): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned fast : bool, optional (default = 'False') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points.""" return self._nearestNeighborsCppInterface.radius_neighbors(X=X, radius=radius, return_distance=return_distance, fast=fast, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity', fast=None, symmetric=True, similarity=None, pAbsoluteNumbers=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. fast : bool, optional (default = 'False') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. symmetric: {True, False} (default = True) If true the returned graph is symmetric, otherwise not. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j.""" return self._nearestNeighborsCppInterface.radius_neighbors_graph(X=X, radius=radius, mode=mode, fast=fast, symmetric=symmetric, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def fit_kneighbors(self, X, n_neighbors=None, return_distance=True, fast=None, similarity=None, pAbsoluteNumbers=None): """"Fits and returns the n_neighbors of X. Parameters ---------- X : {array-like, sparse matrix}, optional Data point(s) to be searched for n_neighbors. Shape = [n_samples, n_features] If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int, optional Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned fast : {'True', 'False'}, optional (default = 'None') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. Returns ------- dist : array, shape = [n_samples, distances] Array representing the lengths to points, only present if return_distance=True ind : array, shape = [n_samples, neighbors] Indices of the nearest points in the population matrix.""" return self._nearestNeighborsCppInterface.fit_kneighbors(X=X, n_neighbors=n_neighbors, return_distance=return_distance, fast=fast, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def fit_kneighbor_graph(self, X, n_neighbors=None, mode='connectivity', fast=None, symmetric=True, similarity=None, pAbsoluteNumbers=None): """Fits and computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. fast : {'True', 'False'}, optional (default = 'None') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. symmetric: {True, False} (default = True) If true the returned graph is symmetric, otherwise not. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. """ return self._nearestNeighborsCppInterface.fit_kneighbor_graph(X=X, n_neighbors=n_neighbors, mode=mode, fast=fast, symmetric=symmetric, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def fit_radius_neighbors(self, X, radius=None, return_distance=None, fast=None, similarity=None, pAbsoluteNumbers=None): """Fits the data and finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned fast : bool, optional (default = 'False') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points.""" return self._nearestNeighborsCppInterface.fit_radius_neighbors(X=X, radius=radius, return_distance=return_distance, fast=fast, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def fit_radius_neighbors_graph(self, X, radius=None, mode='connectivity', fast=None, symmetric=True, similarity=None, pAbsoluteNumbers=None): """Fits and computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. fast : bool, optional (default = 'False') - 'True': will only use an inverse index to compute a k_neighbor query. - 'False': an inverse index is used to preselect instances, and these are used to get the original data from the data set to answer a k_neighbor query. The original data is stored in the memory. If not passed, default value is what was passed to the constructor. similarity: {True, False}, optional (default = None) If true: cosine similarity is used If false: Euclidean distance is used If None: Value that was defined at the init is taken. symmetric: {True, False} (default = True) If true the returned graph is symmetric, otherwise not. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j.""" return self._nearestNeighborsCppInterface.fit_radius_neighbors_graph(X=X, radius=radius, mode=mode, fast=fast, symmetric=symmetric, similarity=similarity, pAbsoluteNumbers=pAbsoluteNumbers) def get_distribution_of_inverse_index(self): """Returns the number of created hash values per hash function, the average size of elements per hash value per hash function, the mean and the standard deviation.""" return self._nearestNeighborsCppInterface.get_distribution_of_inverse_index() def _getY(self): return self._nearestNeighborsCppInterface._getY() def _getY_is_csr(self): return self._nearestNeighborsCppInterface._getY_is_csr()
mit
PrashntS/scikit-learn
benchmarks/bench_random_projections.py
397
8900
""" =========================== Random projection benchmark =========================== Benchmarks for random projections. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import collections import numpy as np import scipy.sparse as sp from sklearn import clone from sklearn.externals.six.moves import xrange from sklearn.random_projection import (SparseRandomProjection, GaussianRandomProjection, johnson_lindenstrauss_min_dim) def type_auto_or_float(val): if val == "auto": return "auto" else: return float(val) def type_auto_or_int(val): if val == "auto": return "auto" else: return int(val) def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_scikit_transformer(X, transfomer): gc.collect() clf = clone(transfomer) # start time t_start = datetime.now() clf.fit(X) delta = (datetime.now() - t_start) # stop time time_to_fit = compute_time(t_start, delta) # start time t_start = datetime.now() clf.transform(X) delta = (datetime.now() - t_start) # stop time time_to_transform = compute_time(t_start, delta) return time_to_fit, time_to_transform # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros, random_state=None): rng = np.random.RandomState(random_state) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def print_row(clf_type, time_fit, time_transform): print("%s | %s | %s" % (clf_type.ljust(30), ("%.4fs" % time_fit).center(12), ("%.4fs" % time_transform).center(12))) if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-features", dest="n_features", default=10 ** 4, type=int, help="Number of features in the benchmarks") op.add_option("--n-components", dest="n_components", default="auto", help="Size of the random subspace." " ('auto' or int > 0)") op.add_option("--ratio-nonzeros", dest="ratio_nonzeros", default=10 ** -3, type=float, help="Number of features in the benchmarks") op.add_option("--n-samples", dest="n_samples", default=500, type=int, help="Number of samples in the benchmarks") op.add_option("--random-seed", dest="random_seed", default=13, type=int, help="Seed used by the random number generators.") op.add_option("--density", dest="density", default=1 / 3, help="Density used by the sparse random projection." " ('auto' or float (0.0, 1.0]") op.add_option("--eps", dest="eps", default=0.5, type=float, help="See the documentation of the underlying transformers.") op.add_option("--transformers", dest="selected_transformers", default='GaussianRandomProjection,SparseRandomProjection', type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. Available: " "GaussianRandomProjection,SparseRandomProjection") op.add_option("--dense", dest="dense", default=False, action="store_true", help="Set input space as a dense matrix.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) opts.n_components = type_auto_or_int(opts.n_components) opts.density = type_auto_or_float(opts.density) selected_transformers = opts.selected_transformers.split(',') ########################################################################### # Generate dataset ########################################################################### n_nonzeros = int(opts.ratio_nonzeros * opts.n_features) print('Dataset statics') print("===========================") print('n_samples \t= %s' % opts.n_samples) print('n_features \t= %s' % opts.n_features) if opts.n_components == "auto": print('n_components \t= %s (auto)' % johnson_lindenstrauss_min_dim(n_samples=opts.n_samples, eps=opts.eps)) else: print('n_components \t= %s' % opts.n_components) print('n_elements \t= %s' % (opts.n_features * opts.n_samples)) print('n_nonzeros \t= %s per feature' % n_nonzeros) print('ratio_nonzeros \t= %s' % opts.ratio_nonzeros) print('') ########################################################################### # Set transformer input ########################################################################### transformers = {} ########################################################################### # Set GaussianRandomProjection input gaussian_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed } transformers["GaussianRandomProjection"] = \ GaussianRandomProjection(**gaussian_matrix_params) ########################################################################### # Set SparseRandomProjection input sparse_matrix_params = { "n_components": opts.n_components, "random_state": opts.random_seed, "density": opts.density, "eps": opts.eps, } transformers["SparseRandomProjection"] = \ SparseRandomProjection(**sparse_matrix_params) ########################################################################### # Perform benchmark ########################################################################### time_fit = collections.defaultdict(list) time_transform = collections.defaultdict(list) print('Benchmarks') print("===========================") print("Generate dataset benchmarks... ", end="") X_dense, X_sparse = make_sparse_random_data(opts.n_samples, opts.n_features, n_nonzeros, random_state=opts.random_seed) X = X_dense if opts.dense else X_sparse print("done") for name in selected_transformers: print("Perform benchmarks for %s..." % name) for iteration in xrange(opts.n_times): print("\titer %s..." % iteration, end="") time_to_fit, time_to_transform = bench_scikit_transformer(X_dense, transformers[name]) time_fit[name].append(time_to_fit) time_transform[name].append(time_to_transform) print("done") print("") ########################################################################### # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Transformer performance:") print("===========================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") print("%s | %s | %s" % ("Transformer".ljust(30), "fit".center(12), "transform".center(12))) print(31 * "-" + ("|" + "-" * 14) * 2) for name in sorted(selected_transformers): print_row(name, np.mean(time_fit[name]), np.mean(time_transform[name])) print("") print("")
bsd-3-clause
RomainBrault/scikit-learn
sklearn/semi_supervised/label_propagation.py
39
16726
# coding=utf8 """ Label propagation in the context of this module refers to a set of semi-supervised classification algorithms. At a high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supports RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # License: BSD from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from ..base import BaseEstimator, ClassifierMixin from ..externals import six from ..metrics.pairwise import rbf_kernel from ..neighbors.unsupervised import NearestNeighbors from ..utils.extmath import safe_sparse_dot from ..utils.graph import graph_laplacian from ..utils.multiclass import check_classification_targets from ..utils.validation import check_X_y, check_is_fitted, check_array # Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_neighbors : integer > 0 Parameter for knn kernel n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3, n_jobs=1): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha self.n_jobs = n_jobs def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors, n_jobs=self.n_jobs).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) elif callable(self.kernel): if y is None: return self.kernel(X, X) else: return self.kernel(X, y) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " or an explicit function " " are supported at this time." % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') X_2d = check_array(X, accept_sparse=['csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia']) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X check_classification_targets(y) # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propagation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf', callable} String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape [n_samples, n_features], and return a [n_samples, n_samples] shaped weight matrix gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.randint(0, 2, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3, n_jobs=1): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol, n_jobs=n_jobs) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
comepradz/pybrain
examples/rl/environments/shipsteer/shipbench_sde.py
26
3454
from __future__ import print_function #!/usr/bin/env python ######################################################################### # Reinforcement Learning with SPE on the ShipSteering Environment # # Requirements: # pybrain (tested on rev. 1195, ship env rev. 1202) # Synopsis: # shipbenchm.py [<True|False> [logfile]] # (first argument is graphics flag) ######################################################################### __author__ = "Martin Felder, Thomas Rueckstiess" __version__ = '$Id$' #--- # default backend GtkAgg does not plot properly on Ubuntu 8.04 import matplotlib matplotlib.use('TkAgg') #--- from pybrain.rl.environments.shipsteer import ShipSteeringEnvironment from pybrain.rl.environments.shipsteer import GoNorthwardTask from pybrain.rl.agents import LearningAgent from pybrain.rl.learners.directsearch.enac import ENAC from pybrain.rl.experiments.episodic import EpisodicExperiment from pybrain.tools.shortcuts import buildNetwork from pybrain.tools.plotting import MultilinePlotter from pylab import figure, ion from scipy import mean import sys if len(sys.argv) > 1: useGraphics = eval(sys.argv[1]) else: useGraphics = False # create task env=ShipSteeringEnvironment() maxsteps = 500 task = GoNorthwardTask(env=env, maxsteps = maxsteps) # task.env.setRenderer( CartPoleRenderer()) # create controller network #net = buildNetwork(task.outdim, 7, task.indim, bias=True, outputbias=False) net = buildNetwork(task.outdim, task.indim, bias=False) #net.initParams(0.0) # create agent learner = ENAC() learner.gd.rprop = True # only relevant for RP learner.gd.deltamin = 0.0001 #agent.learner.gd.deltanull = 0.05 # only relevant for BP learner.gd.alpha = 0.01 learner.gd.momentum = 0.9 agent = LearningAgent(net, learner) agent.actaspg = False # create experiment experiment = EpisodicExperiment(task, agent) # print weights at beginning print(agent.module.params) rewards = [] if useGraphics: figure() ion() pl = MultilinePlotter(autoscale=1.2, xlim=[0, 50], ylim=[0, 1]) pl.setLineStyle(linewidth=2) # queued version # experiment._fillQueue(30) # while True: # experiment._stepQueueLoop() # # rewards.append(mean(agent.history.getSumOverSequences('reward'))) # print agent.module.getParameters(), # print mean(agent.history.getSumOverSequences('reward')) # clf() # plot(rewards) # episodic version x = 0 batch = 30 #number of samples per gradient estimate (was: 20; more here due to stochastic setting) while x<5000: #while True: experiment.doEpisodes(batch) x += batch reward = mean(agent.history.getSumOverSequences('reward'))*task.rewardscale if useGraphics: pl.addData(0,x,reward) print(agent.module.params) print(reward) #if reward > 3: # pass agent.learn() agent.reset() if useGraphics: pl.update() if len(sys.argv) > 2: agent.history.saveToFile(sys.argv[1], protocol=-1, arraysonly=True) if useGraphics: pl.show( popup = True) #To view what the simulation is doing at the moment set the environment with True, go to pybrain/rl/environments/ode/ and start viewer.py (python-openGL musst be installed, see PyBrain documentation) ## performance: ## experiment.doEpisodes(5) * 100 without weave: ## real 2m39.683s ## user 2m33.358s ## sys 0m5.960s ## experiment.doEpisodes(5) * 100 with weave: ##real 2m41.275s ##user 2m35.310s ##sys 0m5.192s ##
bsd-3-clause
madjam/mxnet
example/gluon/kaggle_k_fold_cross_validation.py
25
6871
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # This example provides an end-to-end pipeline for a common Kaggle competition. # The entire pipeline includes common utilities such as k-fold cross validation # and data pre-processing. # # Specifically, the example studies the `House Prices: Advanced Regression # Techniques` challenge as a case study. # # The link to the problem on Kaggle: # https://www.kaggle.com/c/house-prices-advanced-regression-techniques import numpy as np import pandas as pd from mxnet import autograd from mxnet import gluon from mxnet import ndarray as nd # After logging in www.kaggle.com, the training and testing data sets can be downloaded at: # https://www.kaggle.com/c/house-prices-advanced-regression-techniques/download/train.csv # https://www.kaggle.com/c/house-prices-advanced-regression-techniques/download/test.csv train = pd.read_csv("train.csv") test = pd.read_csv("test.csv") all_X = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) # Get all the numerical features and apply standardization. numeric_feas = all_X.dtypes[all_X.dtypes != "object"].index all_X[numeric_feas] = all_X[numeric_feas].apply(lambda x: (x - x.mean()) / (x.std())) # Convert categorical feature values to numerical (including N/A). all_X = pd.get_dummies(all_X, dummy_na=True) # Approximate N/A feature value by the mean value of the current feature. all_X = all_X.fillna(all_X.mean()) num_train = train.shape[0] # Convert data formats to NDArrays to feed into gluon. X_train = all_X[:num_train].as_matrix() X_test = all_X[num_train:].as_matrix() y_train = train.SalePrice.as_matrix() X_train = nd.array(X_train) y_train = nd.array(y_train) y_train.reshape((num_train, 1)) X_test = nd.array(X_test) square_loss = gluon.loss.L2Loss() def get_rmse_log(net, X_train, y_train): """Gets root mse between the logarithms of the prediction and the truth.""" num_train = X_train.shape[0] clipped_preds = nd.clip(net(X_train), 1, float('inf')) return np.sqrt(2 * nd.sum(square_loss( nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train) def get_net(): """Gets a neural network. Better results are obtained with modifications.""" net = gluon.nn.Sequential() with net.name_scope(): net.add(gluon.nn.Dense(50, activation="relu")) net.add(gluon.nn.Dense(1)) net.initialize() return net def train(net, X_train, y_train, epochs, verbose_epoch, learning_rate, weight_decay, batch_size): """Trains the model.""" dataset_train = gluon.data.ArrayDataset(X_train, y_train) data_iter_train = gluon.data.DataLoader(dataset_train, batch_size, shuffle=True) trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': learning_rate, 'wd': weight_decay}) net.collect_params().initialize(force_reinit=True) for epoch in range(epochs): for data, label in data_iter_train: with autograd.record(): output = net(data) loss = square_loss(output, label) loss.backward() trainer.step(batch_size) avg_loss = get_rmse_log(net, X_train, y_train) if epoch > verbose_epoch: print("Epoch %d, train loss: %f" % (epoch, avg_loss)) return avg_loss def k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train, learning_rate, weight_decay, batch_size): """Conducts k-fold cross validation for the model.""" assert k > 1 fold_size = X_train.shape[0] // k train_loss_sum = 0.0 test_loss_sum = 0.0 for test_idx in range(k): X_val_test = X_train[test_idx * fold_size: (test_idx + 1) * fold_size, :] y_val_test = y_train[test_idx * fold_size: (test_idx + 1) * fold_size] val_train_defined = False for i in range(k): if i != test_idx: X_cur_fold = X_train[i * fold_size: (i + 1) * fold_size, :] y_cur_fold = y_train[i * fold_size: (i + 1) * fold_size] if not val_train_defined: X_val_train = X_cur_fold y_val_train = y_cur_fold val_train_defined = True else: X_val_train = nd.concat(X_val_train, X_cur_fold, dim=0) y_val_train = nd.concat(y_val_train, y_cur_fold, dim=0) net = get_net() train_loss = train(net, X_val_train, y_val_train, epochs, verbose_epoch, learning_rate, weight_decay, batch_size) train_loss_sum += train_loss test_loss = get_rmse_log(net, X_val_test, y_val_test) print("Test loss: %f" % test_loss) test_loss_sum += test_loss return train_loss_sum / k, test_loss_sum / k # The sets of parameters. Better results are obtained with modifications. # These parameters can be fine-tuned with k-fold cross-validation. k = 5 epochs = 100 verbose_epoch = 95 learning_rate = 0.3 weight_decay = 100 batch_size = 100 train_loss, test_loss = \ k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train, learning_rate, weight_decay, batch_size) print("%d-fold validation: Avg train loss: %f, Avg test loss: %f" % (k, train_loss, test_loss)) def learn(epochs, verbose_epoch, X_train, y_train, test, learning_rate, weight_decay, batch_size): """Trains the model and predicts on the test data set.""" net = get_net() _ = train(net, X_train, y_train, epochs, verbose_epoch, learning_rate, weight_decay, batch_size) preds = net(X_test).asnumpy() test['SalePrice'] = pd.Series(preds.reshape(1, -1)[0]) submission = pd.concat([test['Id'], test['SalePrice']], axis=1) submission.to_csv('submission.csv', index=False) learn(epochs, verbose_epoch, X_train, y_train, test, learning_rate, weight_decay, batch_size)
apache-2.0
theodoregoetz/wernher
examples/ground_track.py
1
1703
import wernher from matplotlib import pyplot import numpy as np π = np.pi deg = π/180 km = 1000 body = wernher.CelestialBody( name = 'kerbin', gravitational_parameter = 3.5316e12, equatorial_radius = 600*km, rotational_speed = 2*π/21600) orbit = wernher.Orbit( t0 = 0, i = 30*deg, Ω = 0*deg, ω = 15*deg, pe_alt = 100*km, ap_alt = 200*km, M0 = -45*deg, body = body) # ground track consists of 200 points npoints = 200 # start in the past by 1/4 of the orbital period tmin = orbit.epoch - 0.25*orbit.period # plot 1.5 periods of ground track tmax = tmin + 1.5*orbit.period # array of times - evenly spaced tt = np.linspace(tmin,tmax,npoints) # array of lattitude and longitudes, converted to degrees lat = orbit.latitude_at_time(tt) / deg lon = orbit.longitude_at_time(tt) / deg # calculate radius (to be used to set color of track r = orbit.radius_at_time(tt) # create figure and add map view, track and position marker fig,ax = pyplot.subplots() mview = wernher.MapView(orbit.body) mview.zoomlevel = 1 mview.plot_basemap(ax) # plot ground track tk = wernher.MapView.plot_track(ax,lat,lon,r) # place marker for the vessel location mk = wernher.MapView.plot_marker(ax, orbit.latitude_at_epoch/deg, orbit.longitude_at_epoch/deg, color='red') # next periapsis marker mk = wernher.MapView.plot_marker(ax, orbit.latitude_at_periapsis()/deg, orbit.longitude_at_periapsis()/deg, marker='v', color='cyan') # next apoapsis marker mk = wernher.MapView.plot_marker(ax, orbit.latitude_at_apoapsis()/deg, orbit.longitude_at_apoapsis()/deg, marker='^', color='magenta') # show plot in new window pyplot.show()
gpl-3.0
evanbiederstedt/RRBSfun
epiphen/cll_tests/total_CLL_chr07.py
1
8306
import glob import pandas as pd import numpy as np pd.set_option('display.max_columns', 50) # print all rows import os os.chdir("/gpfs/commons/home/biederstedte-934/evan_projects/correct_phylo_files") cw154 = glob.glob("binary_position_RRBS_cw154*") trito = glob.glob("binary_position_RRBS_trito_pool*") print(len(cw154)) print(len(trito)) totalfiles = cw154 + trito print(len(totalfiles)) df_list = [] for file in totalfiles: df = pd.read_csv(file) df = df.drop("Unnamed: 0", axis=1) df["chromosome"] = df["position"].map(lambda x: str(x)[:5]) df = df[df["chromosome"] == "chr7_"] df = df.drop("chromosome", axis=1) df_list.append(df) print(len(df_list)) total_matrix = pd.concat([df.set_index("position") for df in df_list], axis=1).reset_index().astype(object) total_matrix = total_matrix.drop("index", axis=1) len(total_matrix.columns) total_matrix.columns = ["RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACAACC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACCGCG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACGTGG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ACTCAC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.AGGATG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ATAGCG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.ATCGAC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CAAGAG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CATGAC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CCTTCG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CGGTAG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.CTCAGC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GACACG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GCATTC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GCTGCC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GGCATC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.GTGAGG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TAGCGG", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TATCTC", "RRBS_cw154_CutSmart_proteinase_K_TAGGCATG.TCTCTG", "RRBS_cw154_Tris_protease_CTCTCTAC.ACAACC", "RRBS_cw154_Tris_protease_CTCTCTAC.ACCGCG", "RRBS_cw154_Tris_protease_CTCTCTAC.ACGTGG", "RRBS_cw154_Tris_protease_CTCTCTAC.ACTCAC", "RRBS_cw154_Tris_protease_CTCTCTAC.AGGATG", "RRBS_cw154_Tris_protease_CTCTCTAC.ATAGCG", "RRBS_cw154_Tris_protease_CTCTCTAC.ATCGAC", "RRBS_cw154_Tris_protease_CTCTCTAC.CATGAC", "RRBS_cw154_Tris_protease_CTCTCTAC.CCTTCG", "RRBS_cw154_Tris_protease_CTCTCTAC.CGGTAG", "RRBS_cw154_Tris_protease_CTCTCTAC.CTATTG", "RRBS_cw154_Tris_protease_CTCTCTAC.CTCAGC", "RRBS_cw154_Tris_protease_CTCTCTAC.GACACG", "RRBS_cw154_Tris_protease_CTCTCTAC.GCATTC", "RRBS_cw154_Tris_protease_CTCTCTAC.GCTGCC", "RRBS_cw154_Tris_protease_CTCTCTAC.GGCATC", "RRBS_cw154_Tris_protease_CTCTCTAC.GTGAGG", "RRBS_cw154_Tris_protease_CTCTCTAC.GTTGAG", "RRBS_cw154_Tris_protease_CTCTCTAC.TAGCGG", "RRBS_cw154_Tris_protease_CTCTCTAC.TATCTC", "RRBS_cw154_Tris_protease_CTCTCTAC.TCTCTG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACAACC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACCGCG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACGTGG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ACTCAC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.AGGATG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ATAGCG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.ATCGAC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CATGAC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CCTTCG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CGGTAG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CTATTG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.CTCAGC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GACACG", "RBS_cw154_Tris_protease_GR_CAGAGAGG.GCATTC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GCTGCC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GGCATC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GTGAGG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.GTTGAG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.TAGCGG", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.TATCTC", "RRBS_cw154_Tris_protease_GR_CAGAGAGG.TCTCTG", "RRBS_trito_pool_1_TAAGGCGA.ACAACC", "RRBS_trito_pool_1_TAAGGCGA.ACGTGG", "RRBS_trito_pool_1_TAAGGCGA.ACTCAC", "RRBS_trito_pool_1_TAAGGCGA.ATAGCG", "RRBS_trito_pool_1_TAAGGCGA.ATCGAC", "RRBS_trito_pool_1_TAAGGCGA.CAAGAG", "RRBS_trito_pool_1_TAAGGCGA.CATGAC", "RRBS_trito_pool_1_TAAGGCGA.CCTTCG", "RRBS_trito_pool_1_TAAGGCGA.CGGTAG", "RRBS_trito_pool_1_TAAGGCGA.CTATTG", "RRBS_trito_pool_1_TAAGGCGA.GACACG", "RRBS_trito_pool_1_TAAGGCGA.GCATTC", "RRBS_trito_pool_1_TAAGGCGA.GCTGCC", "RRBS_trito_pool_1_TAAGGCGA.GGCATC", "RRBS_trito_pool_1_TAAGGCGA.GTGAGG", "RRBS_trito_pool_1_TAAGGCGA.GTTGAG", "RRBS_trito_pool_1_TAAGGCGA.TAGCGG", "RRBS_trito_pool_1_TAAGGCGA.TATCTC", "RRBS_trito_pool_1_TAAGGCGA.TCTCTG", "RRBS_trito_pool_1_TAAGGCGA.TGACAG", "RRBS_trito_pool_1_TAAGGCGA.TGCTGC", "RRBS_trito_pool_2_CGTACTAG.ACAACC", "RRBS_trito_pool_2_CGTACTAG.ACGTGG", "RRBS_trito_pool_2_CGTACTAG.ACTCAC", "RRBS_trito_pool_2_CGTACTAG.AGGATG", "RRBS_trito_pool_2_CGTACTAG.ATAGCG", "RRBS_trito_pool_2_CGTACTAG.ATCGAC", "RRBS_trito_pool_2_CGTACTAG.CAAGAG", "RRBS_trito_pool_2_CGTACTAG.CATGAC", "RRBS_trito_pool_2_CGTACTAG.CCTTCG", "RRBS_trito_pool_2_CGTACTAG.CGGTAG", "RRBS_trito_pool_2_CGTACTAG.CTATTG", "RRBS_trito_pool_2_CGTACTAG.GACACG", "RRBS_trito_pool_2_CGTACTAG.GCATTC", "RRBS_trito_pool_2_CGTACTAG.GCTGCC", "RRBS_trito_pool_2_CGTACTAG.GGCATC", "RRBS_trito_pool_2_CGTACTAG.GTGAGG", "RRBS_trito_pool_2_CGTACTAG.GTTGAG", "RRBS_trito_pool_2_CGTACTAG.TAGCGG", "RRBS_trito_pool_2_CGTACTAG.TATCTC", "RRBS_trito_pool_2_CGTACTAG.TCTCTG", "RRBS_trito_pool_2_CGTACTAG.TGACAG"] print(total_matrix.shape) total_matrix = total_matrix.applymap(lambda x: int(x) if pd.notnull(x) else str("?")) total_matrix = total_matrix.astype(str).apply(''.join) tott = pd.Series(total_matrix.index.astype(str).str.cat(total_matrix.astype(str),' ')) os.chdir("/gpfs/commons/home/biederstedte-934/evan_projects/CLL_tests") tott.to_csv("total_CLL_chrom07.phy", header=None, index=None) print(tott.shape)
mit
rrohan/scikit-learn
examples/linear_model/plot_sgd_loss_functions.py
249
1095
""" ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`sklearn.linear_model.SGDClassifier` . """ print(__doc__) import numpy as np import matplotlib.pyplot as plt def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], 'k-', label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), 'g-', label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), 'm-', label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), 'r-', label="Log loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, 'b-', label="Squared hinge loss") plt.plot(xx, modified_huber_loss(xx, 1), 'y--', label="Modified Huber loss") plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y, f(x))$") plt.show()
bsd-3-clause
treycausey/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
1
12293
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012 # License: BSD 3 clause from tempfile import mkdtemp import warnings import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.cluster import Ward, WardAgglomeration, ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage X = np.ones((5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foobar').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foobar') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter("always", DeprecationWarning) # Use the copy argument, to raise a warning Ward(copy=True).fit(X) # We should be getting 2 warnings: one for using Ward that is # deprecated, one for using the copy argument assert_equal(len(warning_list), 2) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): """ Check that we obtain the correct solution for structured linkage trees. """ rnd = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rnd.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): """ Check that we obtain the correct solution for unstructured linkage trees. """ rnd = np.random.RandomState(0) X = rnd.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter("ignore", DeprecationWarning) children, n_nodes, n_leaves, parent = assert_warns(UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter("always", UserWarning) warnings.simplefilter("ignore", DeprecationWarning) # With specified a number of clusters just for the sake of # raising a warning and testing the warning code children, n_nodes, n_leaves, parent = tree_builder( this_X.T, n_clusters=10) assert_equal(len(warning_list), 1) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): """ Check that the height of the results of linkage tree is sorted. """ rnd = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rnd.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): """ Check that we obtain the correct number of clusters with agglomerative clustering. """ rnd = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rnd.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=mkdtemp(), linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) # Turn caching off now clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) np.testing.assert_array_equal(clustering.labels_, labels) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.todense()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.todense(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score( clustering2.labels_, clustering.labels_), 1) def test_ward_agglomeration(): """ Check that we obtain the correct solution in a simplistic case """ rnd = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rnd.randn(50, 100) connectivity = grid_to_graph(*mask.shape) assert_warns(DeprecationWarning, WardAgglomeration) ward = WardAgglomeration(n_clusters=5, connectivity=connectivity) ward.fit(X) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_array_equal(agglo.labels_, ward.labels_) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): """Test scikit linkage with full connectivity (i.e. unstructured) vs scipy """ n, p, k = 10, 5, 3 rnd = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rnd.normal(size=(n, p)) X -= 4 * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_popagation(): """ Check that connectivity in the ward tree is propagated correctly during merging. """ from sklearn.neighbors import kneighbors_graph X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144), ]) connectivity = kneighbors_graph(X, 10) ward = Ward(n_clusters=4, connectivity=connectivity) # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_connectivity_fixing_non_lil(): """ Check non regression of a bug if a non item assignable connectivity is provided with more than one component. """ # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = Ward(connectivity=c) assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/matplotlib/backends/qt_editor/figureoptions.py
2
9182
# -*- coding: utf-8 -*- # # Copyright © 2009 Pierre Raybaut # Licensed under the terms of the MIT License # see the mpl licenses directory for a copy of the license """Module that provides a GUI-based editor for matplotlib's figure options""" from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os.path as osp import re import matplotlib from matplotlib import cm, markers, colors as mcolors import matplotlib.backends.qt_editor.formlayout as formlayout from matplotlib.backends.qt_compat import QtGui def get_icon(name): basedir = osp.join(matplotlib.rcParams['datapath'], 'images') return QtGui.QIcon(osp.join(basedir, name)) LINESTYLES = {'-': 'Solid', '--': 'Dashed', '-.': 'DashDot', ':': 'Dotted', 'None': 'None', } DRAWSTYLES = { 'default': 'Default', 'steps-pre': 'Steps (Pre)', 'steps': 'Steps (Pre)', 'steps-mid': 'Steps (Mid)', 'steps-post': 'Steps (Post)'} MARKERS = markers.MarkerStyle.markers def figure_edit(axes, parent=None): """Edit matplotlib figure options""" sep = (None, None) # separator # Get / General # Cast to builtin floats as they have nicer reprs. xmin, xmax = map(float, axes.get_xlim()) ymin, ymax = map(float, axes.get_ylim()) general = [('Title', axes.get_title()), sep, (None, "<b>X-Axis</b>"), ('Left', xmin), ('Right', xmax), ('Label', axes.get_xlabel()), ('Scale', [axes.get_xscale(), 'linear', 'log', 'logit']), sep, (None, "<b>Y-Axis</b>"), ('Bottom', ymin), ('Top', ymax), ('Label', axes.get_ylabel()), ('Scale', [axes.get_yscale(), 'linear', 'log', 'logit']), sep, ('(Re-)Generate automatic legend', False), ] # Save the unit data xconverter = axes.xaxis.converter yconverter = axes.yaxis.converter xunits = axes.xaxis.get_units() yunits = axes.yaxis.get_units() # Sorting for default labels (_lineXXX, _imageXXX). def cmp_key(label): match = re.match(r"(_line|_image)(\d+)", label) if match: return match.group(1), int(match.group(2)) else: return label, 0 # Get / Curves linedict = {} for line in axes.get_lines(): label = line.get_label() if label == '_nolegend_': continue linedict[label] = line curves = [] def prepare_data(d, init): """Prepare entry for FormLayout. `d` is a mapping of shorthands to style names (a single style may have multiple shorthands, in particular the shorthands `None`, `"None"`, `"none"` and `""` are synonyms); `init` is one shorthand of the initial style. This function returns an list suitable for initializing a FormLayout combobox, namely `[initial_name, (shorthand, style_name), (shorthand, style_name), ...]`. """ # Drop duplicate shorthands from dict (by overwriting them during # the dict comprehension). name2short = {name: short for short, name in d.items()} # Convert back to {shorthand: name}. short2name = {short: name for name, short in name2short.items()} # Find the kept shorthand for the style specified by init. canonical_init = name2short[d[init]] # Sort by representation and prepend the initial value. return ([canonical_init] + sorted(short2name.items(), key=lambda short_and_name: short_and_name[1])) curvelabels = sorted(linedict, key=cmp_key) for label in curvelabels: line = linedict[label] color = mcolors.to_hex( mcolors.to_rgba(line.get_color(), line.get_alpha()), keep_alpha=True) ec = mcolors.to_hex( mcolors.to_rgba(line.get_markeredgecolor(), line.get_alpha()), keep_alpha=True) fc = mcolors.to_hex( mcolors.to_rgba(line.get_markerfacecolor(), line.get_alpha()), keep_alpha=True) curvedata = [ ('Label', label), sep, (None, '<b>Line</b>'), ('Line style', prepare_data(LINESTYLES, line.get_linestyle())), ('Draw style', prepare_data(DRAWSTYLES, line.get_drawstyle())), ('Width', line.get_linewidth()), ('Color (RGBA)', color), sep, (None, '<b>Marker</b>'), ('Style', prepare_data(MARKERS, line.get_marker())), ('Size', line.get_markersize()), ('Face color (RGBA)', fc), ('Edge color (RGBA)', ec)] curves.append([curvedata, label, ""]) # Is there a curve displayed? has_curve = bool(curves) # Get / Images imagedict = {} for image in axes.get_images(): label = image.get_label() if label == '_nolegend_': continue imagedict[label] = image imagelabels = sorted(imagedict, key=cmp_key) images = [] cmaps = [(cmap, name) for name, cmap in sorted(cm.cmap_d.items())] for label in imagelabels: image = imagedict[label] cmap = image.get_cmap() if cmap not in cm.cmap_d.values(): cmaps = [(cmap, cmap.name)] + cmaps low, high = image.get_clim() imagedata = [ ('Label', label), ('Colormap', [cmap.name] + cmaps), ('Min. value', low), ('Max. value', high), ('Interpolation', [image.get_interpolation()] + [(name, name) for name in sorted(image.iterpnames)])] images.append([imagedata, label, ""]) # Is there an image displayed? has_image = bool(images) datalist = [(general, "Axes", "")] if curves: datalist.append((curves, "Curves", "")) if images: datalist.append((images, "Images", "")) def apply_callback(data): """This function will be called to apply changes""" orig_xlim = axes.get_xlim() orig_ylim = axes.get_ylim() general = data.pop(0) curves = data.pop(0) if has_curve else [] images = data.pop(0) if has_image else [] if data: raise ValueError("Unexpected field") # Set / General (title, xmin, xmax, xlabel, xscale, ymin, ymax, ylabel, yscale, generate_legend) = general if axes.get_xscale() != xscale: axes.set_xscale(xscale) if axes.get_yscale() != yscale: axes.set_yscale(yscale) axes.set_title(title) axes.set_xlim(xmin, xmax) axes.set_xlabel(xlabel) axes.set_ylim(ymin, ymax) axes.set_ylabel(ylabel) # Restore the unit data axes.xaxis.converter = xconverter axes.yaxis.converter = yconverter axes.xaxis.set_units(xunits) axes.yaxis.set_units(yunits) axes.xaxis._update_axisinfo() axes.yaxis._update_axisinfo() # Set / Curves for index, curve in enumerate(curves): line = linedict[curvelabels[index]] (label, linestyle, drawstyle, linewidth, color, marker, markersize, markerfacecolor, markeredgecolor) = curve line.set_label(label) line.set_linestyle(linestyle) line.set_drawstyle(drawstyle) line.set_linewidth(linewidth) rgba = mcolors.to_rgba(color) line.set_alpha(None) line.set_color(rgba) if marker is not 'none': line.set_marker(marker) line.set_markersize(markersize) line.set_markerfacecolor(markerfacecolor) line.set_markeredgecolor(markeredgecolor) # Set / Images for index, image_settings in enumerate(images): image = imagedict[imagelabels[index]] label, cmap, low, high, interpolation = image_settings image.set_label(label) image.set_cmap(cm.get_cmap(cmap)) image.set_clim(*sorted([low, high])) image.set_interpolation(interpolation) # re-generate legend, if checkbox is checked if generate_legend: draggable = None ncol = 1 if axes.legend_ is not None: old_legend = axes.get_legend() draggable = old_legend._draggable is not None ncol = old_legend._ncol new_legend = axes.legend(ncol=ncol) if new_legend: new_legend.draggable(draggable) # Redraw figure = axes.get_figure() figure.canvas.draw() if not (axes.get_xlim() == orig_xlim and axes.get_ylim() == orig_ylim): figure.canvas.toolbar.push_current() data = formlayout.fedit(datalist, title="Figure options", parent=parent, icon=get_icon('qt4_editor_options.svg'), apply=apply_callback) if data is not None: apply_callback(data)
mit
ngoix/OCRF
examples/neural_networks/plot_rbm_logistic_classification.py
99
4608
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.model_selection import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
anorfleet/turntable
test/lib/python2.7/site-packages/numpy/lib/recfunctions.py
41
35014
""" Collection of utilities to manipulate structured arrays. Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended for convenience. """ from __future__ import division, absolute_import, print_function import sys import itertools import numpy as np import numpy.ma as ma from numpy import ndarray, recarray from numpy.ma import MaskedArray from numpy.ma.mrecords import MaskedRecords from numpy.lib._iotools import _is_string_like from numpy.compat import basestring if sys.version_info[0] < 3: from future_builtins import zip _check_fill_value = np.ma.core._check_fill_value __all__ = [ 'append_fields', 'drop_fields', 'find_duplicates', 'get_fieldstructure', 'join_by', 'merge_arrays', 'rec_append_fields', 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', 'rename_fields', 'stack_arrays', ] def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures. Parameters ---------- input : ndarray Input array. output : ndarray Output array. Notes ----- * `output` should be at least the same size as `input` Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> rfn.recursive_fill_fields(a, b) array([(1, 10.0), (2, 20.0), (0, 0.0)], dtype=[('A', '<i4'), ('B', '<f8')]) """ newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output def get_names(adtype): """ Returns the field names of the input datatype as a tuple. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names(np.empty((1,), dtype=int)) is None True >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names(adtype) ('a', ('b', ('ba', 'bb'))) """ listnames = [] names = adtype.names for name in names: current = adtype[name] if current.names: listnames.append((name, tuple(get_names(current)))) else: listnames.append(name) return tuple(listnames) or None def get_names_flat(adtype): """ Returns the field names of the input datatype as a tuple. Nested structure are flattend beforehand. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None True >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names_flat(adtype) ('a', 'b', 'ba', 'bb') """ listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names: listnames.extend(get_names_flat(current)) return tuple(listnames) or None def flatten_descr(ndtype): """ Flatten a structured data-type description. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.flatten_descr(ndtype) (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32'))) """ names = ndtype.names if names is None: return ndtype.descr else: descr = [] for field in names: (typ, _) = ndtype.fields[field] if typ.names: descr.extend(flatten_descr(typ)) else: descr.append((field, typ)) return tuple(descr) def zip_descr(seqarrays, flatten=False): """ Combine the dtype description of a series of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays flatten : {boolean}, optional Whether to collapse nested descriptions. """ newdtype = [] if flatten: for a in seqarrays: newdtype.extend(flatten_descr(a.dtype)) else: for a in seqarrays: current = a.dtype names = current.names or () if len(names) > 1: newdtype.append(('', current.descr)) else: newdtype.extend(current.descr) return np.dtype(newdtype).descr def get_fieldstructure(adtype, lastname=None, parents=None,): """ Returns a dictionary with fields indexing lists of their parent fields. This function is used to simplify access to fields nested in other fields. Parameters ---------- adtype : np.dtype Input datatype lastname : optional Last processed field name (used internally during recursion). parents : dictionary Dictionary of parent fields (used interbally during recursion). Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('A', int), ... ('B', [('BA', int), ... ('BB', [('BBA', int), ('BBB', int)])])]) >>> rfn.get_fieldstructure(ndtype) ... # XXX: possible regression, order of BBA and BBB is swapped {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} """ if parents is None: parents = {} names = adtype.names for name in names: current = adtype[name] if current.names: if lastname: parents[name] = [lastname, ] else: parents[name] = [] parents.update(get_fieldstructure(current, name, parents)) else: lastparent = [_ for _ in (parents.get(lastname, []) or [])] if lastparent: lastparent.append(lastname) elif lastname: lastparent = [lastname, ] parents[name] = lastparent or [] return parents or None def _izip_fields_flat(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays, collapsing any nested structure. """ for element in iterable: if isinstance(element, np.void): for f in _izip_fields_flat(tuple(element)): yield f else: yield element def _izip_fields(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays. """ for element in iterable: if (hasattr(element, '__iter__') and not isinstance(element, basestring)): for f in _izip_fields(element): yield f elif isinstance(element, np.void) and len(tuple(element)) == 1: for f in _izip_fields(element): yield f else: yield element def izip_records(seqarrays, fill_value=None, flatten=True): """ Returns an iterator of concatenated items from a sequence of arrays. Parameters ---------- seqarray : sequence of arrays Sequence of arrays. fill_value : {None, integer} Value used to pad shorter iterables. flatten : {True, False}, Whether to """ # OK, that's a complete ripoff from Python2.6 itertools.izip_longest def sentinel(counter=([fill_value] * (len(seqarrays) - 1)).pop): "Yields the fill_value or raises IndexError" yield counter() # fillers = itertools.repeat(fill_value) iters = [itertools.chain(it, sentinel(), fillers) for it in seqarrays] # Should we flatten the items, or just use a nested approach if flatten: zipfunc = _izip_fields_flat else: zipfunc = _izip_fields # try: for tup in zip(*iters): yield tuple(zipfunc(tup)) except IndexError: pass def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output def _fix_defaults(output, defaults=None): """ Update the fill_value and masked data of `output` from the default given in a dictionary defaults. """ names = output.dtype.names (data, mask, fill_value) = (output.data, output.mask, output.fill_value) for (k, v) in (defaults or {}).items(): if k in names: fill_value[k] = v data[k][mask[k]] = v return output def merge_arrays(seqarrays, fill_value=-1, flatten=False, usemask=False, asrecarray=False): """ Merge arrays field by field. Parameters ---------- seqarrays : sequence of ndarrays Sequence of arrays fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. flatten : {False, True}, optional Whether to collapse nested fields. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) masked_array(data = [(1, 10.0) (2, 20.0) (--, 30.0)], mask = [(False, False) (False, False) (True, False)], fill_value = (999999, 1e+20), dtype = [('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])), ... usemask=False) array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]).view([('a', int)]), ... np.array([10., 20., 30.])), ... usemask=False, asrecarray=True) rec.array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('a', '<i4'), ('f1', '<f8')]) Notes ----- * Without a mask, the missing value will be filled with something, * depending on what its corresponding type: -1 for integers -1.0 for floating point numbers '-' for characters '-1' for strings True for boolean values * XXX: I just obtained these values empirically """ # Only one item in the input sequence ? if (len(seqarrays) == 1): seqarrays = np.asanyarray(seqarrays[0]) # Do we have a single ndarray as input ? if isinstance(seqarrays, (ndarray, np.void)): seqdtype = seqarrays.dtype if (not flatten) or \ (zip_descr((seqarrays,), flatten=True) == seqdtype.descr): # Minimal processing needed: just make sure everythng's a-ok seqarrays = seqarrays.ravel() # Make sure we have named fields if not seqdtype.names: seqdtype = [('', seqdtype)] # Find what type of array we must return if usemask: if asrecarray: seqtype = MaskedRecords else: seqtype = MaskedArray elif asrecarray: seqtype = recarray else: seqtype = ndarray return seqarrays.view(dtype=seqdtype, type=seqtype) else: seqarrays = (seqarrays,) else: # Make sure we have arrays in the input sequence seqarrays = [np.asanyarray(_m) for _m in seqarrays] # Find the sizes of the inputs and their maximum sizes = tuple(a.size for a in seqarrays) maxlength = max(sizes) # Get the dtype of the output (flattening if needed) newdtype = zip_descr(seqarrays, flatten=flatten) # Initialize the sequences for data and mask seqdata = [] seqmask = [] # If we expect some kind of MaskedArray, make a special loop. if usemask: for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) # Get the data and mask data = a.ravel().__array__() mask = ma.getmaskarray(a).ravel() # Get the filling value (if needed) if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] fmsk = True else: fval = np.array(fval, dtype=a.dtype, ndmin=1) fmsk = np.ones((1,), dtype=mask.dtype) else: fval = None fmsk = True # Store an iterator padding the input to the expected length seqdata.append(itertools.chain(data, [fval] * nbmissing)) seqmask.append(itertools.chain(mask, [fmsk] * nbmissing)) # Create an iterator for the data data = tuple(izip_records(seqdata, flatten=flatten)) output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength), mask=list(izip_records(seqmask, flatten=flatten))) if asrecarray: output = output.view(MaskedRecords) else: # Same as before, without the mask we don't need... for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) data = a.ravel().__array__() if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] else: fval = np.array(fval, dtype=a.dtype, ndmin=1) else: fval = None seqdata.append(itertools.chain(data, [fval] * nbmissing)) output = np.fromiter(tuple(izip_records(seqdata, flatten=flatten)), dtype=newdtype, count=maxlength) if asrecarray: output = output.view(recarray) # And we're done... return output def drop_fields(base, drop_names, usemask=True, asrecarray=False): """ Return a new array with fields in `drop_names` dropped. Nested fields are supported. Parameters ---------- base : array Input array drop_names : string or sequence String or sequence of strings corresponding to the names of the fields to drop. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence, optional Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype. The default is False. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], ... dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) >>> rfn.drop_fields(a, 'a') array([((2.0, 3),), ((5.0, 6),)], dtype=[('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.drop_fields(a, 'ba') array([(1, (3,)), (4, (6,))], dtype=[('a', '<i4'), ('b', [('bb', '<i4')])]) >>> rfn.drop_fields(a, ['ba', 'bb']) array([(1,), (4,)], dtype=[('a', '<i4')]) """ if _is_string_like(drop_names): drop_names = [drop_names, ] else: drop_names = set(drop_names) def _drop_descr(ndtype, drop_names): names = ndtype.names newdtype = [] for name in names: current = ndtype[name] if name in drop_names: continue if current.names: descr = _drop_descr(current, drop_names) if descr: newdtype.append((name, descr)) else: newdtype.append((name, current)) return newdtype newdtype = _drop_descr(base.dtype, drop_names) if not newdtype: return None output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_drop_fields(base, drop_names): """ Returns a new numpy.recarray with fields in `drop_names` dropped. """ return drop_fields(base, drop_names, usemask=False, asrecarray=True) def rename_fields(base, namemapper): """ Rename the fields from a flexible-datatype ndarray or recarray. Nested fields are supported. Parameters ---------- base : ndarray Input array whose fields must be modified. namemapper : dictionary Dictionary mapping old field names to their new version. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) array([(1, (2.0, [3.0, 30.0])), (4, (5.0, [6.0, 60.0]))], dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<f8', 2)])]) """ def _recursive_rename_fields(ndtype, namemapper): newdtype = [] for name in ndtype.names: newname = namemapper.get(name, name) current = ndtype[name] if current.names: newdtype.append( (newname, _recursive_rename_fields(current, namemapper)) ) else: newdtype.append((newname, current)) return newdtype newdtype = _recursive_rename_fields(base.dtype, namemapper) return base.view(newdtype) def append_fields(base, names, data, dtypes=None, fill_value=-1, usemask=True, asrecarray=False): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. """ # Check the names if isinstance(names, (tuple, list)): if len(names) != len(data): msg = "The number of arrays does not match the number of names" raise ValueError(msg) elif isinstance(names, basestring): names = [names, ] data = [data, ] # if dtypes is None: data = [np.array(a, copy=False, subok=True) for a in data] data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)] else: if not isinstance(dtypes, (tuple, list)): dtypes = [dtypes, ] if len(data) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(data) else: msg = "The dtypes argument must be None, a dtype, or a list." raise ValueError(msg) data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)]) for (a, n, d) in zip(data, names, dtypes)] # base = merge_arrays(base, usemask=usemask, fill_value=fill_value) if len(data) > 1: data = merge_arrays(data, flatten=True, usemask=usemask, fill_value=fill_value) else: data = data.pop() # output = ma.masked_all(max(len(base), len(data)), dtype=base.dtype.descr + data.dtype.descr) output = recursive_fill_fields(base, output) output = recursive_fill_fields(data, output) # return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_append_fields(base, names, data, dtypes=None): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. See Also -------- append_fields Returns ------- appended_array : np.recarray """ return append_fields(base, names, data=data, dtypes=dtypes, asrecarray=True, usemask=False) def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False, autoconvert=False): """ Superposes arrays fields by fields Parameters ---------- seqarrays : array or sequence Sequence of input arrays. defaults : dictionary, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. autoconvert : {False, True}, optional Whether automatically cast the type of the field to the maximum. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> x = np.array([1, 2,]) >>> rfn.stack_arrays(x) is x True >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], ... dtype=[('A', '|S3'), ('B', float), ('C', float)]) >>> test = rfn.stack_arrays((z,zz)) >>> test masked_array(data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ('b', 20.0, 200.0) ('c', 30.0, 300.0)], mask = [(False, False, True) (False, False, True) (False, False, False) (False, False, False) (False, False, False)], fill_value = ('N/A', 1e+20, 1e+20), dtype = [('A', '|S3'), ('B', '<f8'), ('C', '<f8')]) """ if isinstance(arrays, ndarray): return arrays elif len(arrays) == 1: return arrays[0] seqarrays = [np.asanyarray(a).ravel() for a in arrays] nrecords = [len(a) for a in seqarrays] ndtype = [a.dtype for a in seqarrays] fldnames = [d.names for d in ndtype] # dtype_l = ndtype[0] newdescr = dtype_l.descr names = [_[0] for _ in newdescr] for dtype_n in ndtype[1:]: for descr in dtype_n.descr: name = descr[0] or '' if name not in names: newdescr.append(descr) names.append(name) else: nameidx = names.index(name) current_descr = newdescr[nameidx] if autoconvert: if np.dtype(descr[1]) > np.dtype(current_descr[-1]): current_descr = list(current_descr) current_descr[-1] = descr[1] newdescr[nameidx] = tuple(current_descr) elif descr[1] != current_descr[-1]: raise TypeError("Incompatible type '%s' <> '%s'" % (dict(newdescr)[name], descr[1])) # Only one field: use concatenate if len(newdescr) == 1: output = ma.concatenate(seqarrays) else: # output = ma.masked_all((np.sum(nrecords),), newdescr) offset = np.cumsum(np.r_[0, nrecords]) seen = [] for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): names = a.dtype.names if names is None: output['f%i' % len(seen)][i:j] = a else: for name in n: output[name][i:j] = a[name] if name not in seen: seen.append(name) # return _fix_output(_fix_defaults(output, defaults), usemask=usemask, asrecarray=asrecarray) def find_duplicates(a, key=None, ignoremask=True, return_index=False): """ Find the duplicates in a structured array along a given key Parameters ---------- a : array-like Input array key : {string, None}, optional Name of the fields along which to check the duplicates. If None, the search is performed by records ignoremask : {True, False}, optional Whether masked data should be discarded or considered as duplicates. return_index : {False, True}, optional Whether to return the indices of the duplicated values. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = [('a', int)] >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3], ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) >>> rfn.find_duplicates(a, ignoremask=True, return_index=True) ... # XXX: judging by the output, the ignoremask flag has no effect """ a = np.asanyarray(a).ravel() # Get a dictionary of fields fields = get_fieldstructure(a.dtype) # Get the sorting data (by selecting the corresponding field) base = a if key: for f in fields[key]: base = base[f] base = base[key] # Get the sorting indices and the sorted data sortidx = base.argsort() sortedbase = base[sortidx] sorteddata = sortedbase.filled() # Compare the sorting data flag = (sorteddata[:-1] == sorteddata[1:]) # If masked data must be ignored, set the flag to false where needed if ignoremask: sortedmask = sortedbase.recordmask flag[sortedmask[1:]] = False flag = np.concatenate(([False], flag)) # We need to take the point on the left as well (else we're missing it) flag[:-1] = flag[:-1] + flag[1:] duplicates = a[sortidx][flag] if return_index: return (duplicates, sortidx[flag]) else: return duplicates def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None, usemask=True, asrecarray=False): """ Join arrays `r1` and `r2` on key `key`. The key should be either a string or a sequence of string corresponding to the fields used to join the array. An exception is raised if the `key` field cannot be found in the two input arrays. Neither `r1` nor `r2` should have any duplicates along `key`: the presence of duplicates will make the output quite unreliable. Note that duplicates are not looked for by the algorithm. Parameters ---------- key : {string, sequence} A string or a sequence of strings corresponding to the fields used for comparison. r1, r2 : arrays Structured arrays. jointype : {'inner', 'outer', 'leftouter'}, optional If 'inner', returns the elements common to both r1 and r2. If 'outer', returns the common elements as well as the elements of r1 not in r2 and the elements of not in r2. If 'leftouter', returns the common elements and the elements of r1 not in r2. r1postfix : string, optional String appended to the names of the fields of r1 that are present in r2 but absent of the key. r2postfix : string, optional String appended to the names of the fields of r2 that are present in r1 but absent of the key. defaults : {dictionary}, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. Notes ----- * The output is sorted along the key. * A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the result. This array is then sorted, and the common entries selected. The output is constructed by filling the fields with the selected entries. Matching is not preserved if there are some duplicates... """ # Check jointype if jointype not in ('inner', 'outer', 'leftouter'): raise ValueError( "The 'jointype' argument should be in 'inner', " "'outer' or 'leftouter' (got '%s' instead)" % jointype ) # If we have a single key, put it in a tuple if isinstance(key, basestring): key = (key,) # Check the keys for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s' % name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s' % name) # Make sure we work with ravelled arrays r1 = r1.ravel() r2 = r2.ravel() # Fixme: nb2 below is never used. Commenting out for pyflakes. # (nb1, nb2) = (len(r1), len(r2)) nb1 = len(r1) (r1names, r2names) = (r1.dtype.names, r2.dtype.names) # Check the names for collision if (set.intersection(set(r1names), set(r2names)).difference(key) and not (r1postfix or r2postfix)): msg = "r1 and r2 contain common names, r1postfix and r2postfix " msg += "can't be empty" raise ValueError(msg) # Make temporary arrays of just the keys r1k = drop_fields(r1, [n for n in r1names if n not in key]) r2k = drop_fields(r2, [n for n in r2names if n not in key]) # Concatenate the two arrays for comparison aux = ma.concatenate((r1k, r2k)) idx_sort = aux.argsort(order=key) aux = aux[idx_sort] # # Get the common keys flag_in = ma.concatenate(([False], aux[1:] == aux[:-1])) flag_in[:-1] = flag_in[1:] + flag_in[:-1] idx_in = idx_sort[flag_in] idx_1 = idx_in[(idx_in < nb1)] idx_2 = idx_in[(idx_in >= nb1)] - nb1 (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) if jointype == 'inner': (r1spc, r2spc) = (0, 0) elif jointype == 'outer': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) elif jointype == 'leftouter': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) # Select the entries from each input (s1, s2) = (r1[idx_1], r2[idx_2]) # # Build the new description of the output array ....... # Start with the key fields ndtype = [list(_) for _ in r1k.dtype.descr] # Add the other fields ndtype.extend(list(_) for _ in r1.dtype.descr if _[0] not in key) # Find the new list of names (it may be different from r1names) names = list(_[0] for _ in ndtype) for desc in r2.dtype.descr: desc = list(desc) name = desc[0] # Have we seen the current name already ? if name in names: nameidx = ndtype.index(desc) current = ndtype[nameidx] # The current field is part of the key: take the largest dtype if name in key: current[-1] = max(desc[1], current[-1]) # The current field is not part of the key: add the suffixes else: current[0] += r1postfix desc[0] += r2postfix ndtype.insert(nameidx + 1, desc) #... we haven't: just add the description to the current list else: names.extend(desc[0]) ndtype.append(desc) # Revert the elements to tuples ndtype = [tuple(_) for _ in ndtype] # Find the largest nb of common fields : # r1cmn and r2cmn should be equal, but... cmn = max(r1cmn, r2cmn) # Construct an empty array output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) names = output.dtype.names for f in r1names: selected = s1[f] if f not in names or (f in r2names and not r2postfix and f not in key): f += r1postfix current = output[f] current[:r1cmn] = selected[:r1cmn] if jointype in ('outer', 'leftouter'): current[cmn:cmn + r1spc] = selected[r1cmn:] for f in r2names: selected = s2[f] if f not in names or (f in r1names and not r1postfix and f not in key): f += r2postfix current = output[f] current[:r2cmn] = selected[:r2cmn] if (jointype == 'outer') and r2spc: current[-r2spc:] = selected[r2cmn:] # Sort and finalize the output output.sort(order=key) kwargs = dict(usemask=usemask, asrecarray=asrecarray) return _fix_output(_fix_defaults(output, defaults), **kwargs) def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None): """ Join arrays `r1` and `r2` on keys. Alternative to join_by, that always returns a np.recarray. See Also -------- join_by : equivalent function """ kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix, defaults=defaults, usemask=False, asrecarray=True) return join_by(key, r1, r2, **kwargs)
mit
ilyes14/scikit-learn
sklearn/mixture/tests/test_gmm.py
200
17427
import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
gcarq/freqtrade
freqtrade/optimize/default_hyperopt_loss.py
1
1967
""" ShortTradeDurHyperOptLoss This module defines the default HyperoptLoss class which is being used for Hyperoptimization. """ from math import exp from pandas import DataFrame from freqtrade.optimize.hyperopt import IHyperOptLoss # Set TARGET_TRADES to suit your number concurrent trades so its realistic # to the number of days TARGET_TRADES = 600 # This is assumed to be expected avg profit * expected trade count. # For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades, # expected max profit = 3.85 # Check that the reported Σ% values do not exceed this! # Note, this is ratio. 3.85 stated above means 385Σ%. EXPECTED_MAX_PROFIT = 3.0 # Max average trade duration in minutes. # If eval ends with higher value, we consider it a failed eval. MAX_ACCEPTED_TRADE_DURATION = 300 class ShortTradeDurHyperOptLoss(IHyperOptLoss): """ Defines the default loss function for hyperopt """ @staticmethod def hyperopt_loss_function(results: DataFrame, trade_count: int, *args, **kwargs) -> float: """ Objective function, returns smaller number for better results This is the Default algorithm Weights are distributed as follows: * 0.4 to trade duration * 0.25: Avoiding trade loss * 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above """ total_profit = results['profit_percent'].sum() trade_duration = results['trade_duration'].mean() trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8) profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT) duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1) result = trade_loss + profit_loss + duration_loss return result # Create an alias for This to allow the legacy Method to work as well. DefaultHyperOptLoss = ShortTradeDurHyperOptLoss
gpl-3.0
maheshakya/scikit-learn
examples/cluster/plot_mean_shift.py
351
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
nivm/learningchess
chess/complexmove/draw_moves_dist.py
1
5247
import sys import re from collections import defaultdict import itertools from math import sqrt import matplotlib.pyplot as plt pieces_hash = {"r": "rook", "k": "king", "q": "queen", "b" : "bishop", \ "n" : "knight", "p" : "pawn"} def normalize_area_vec (piece_area): normalization_factor = 1000.0 / sum(piece_area) piece_area = [normalization_factor * p for p in piece_area] return piece_area def draw_charts(chess_pieces_move_dict): for piece, piece_moves in chess_pieces_move_dict.iteritems(): fig = plt.figure() ax = fig.add_subplot(111) ax.set_title(pieces_hash[piece].upper() + " move histogram") piece_x = [] piece_y = [] piece_area = [] for locations, count in piece_moves.iteritems(): piece_x.append(locations[1]) piece_y.append(locations[0]) piece_area.append(count) piece_area = normalize_area_vec(piece_area) plt.scatter(piece_x, piece_y, s=piece_area, alpha=0.5) # Adding the piece it self plt.scatter([0], [0], s=200, alpha=0.6, color="red") ax.set_xticks(range(min(piece_x)-1,max(piece_x)+2)) ax.set_yticks(range(min(piece_y)-1,max(piece_y)+2)) plt.grid(b=True, which='both', color='0.65',linestyle='-') plt.show() def draw_overall_chart (chess_pieces_move_dict): fig = plt.figure() ax = fig.add_subplot(111) piece_color_hash = {"p": "LightSlateGray", "k": "Navy", "q":"ForestGreen",\ "r": "OrangeRed", "n": "LimeGreen","b": "red"} legend,legend_text = [], [] for i, (piece, piece_moves) in enumerate(chess_pieces_move_dict.iteritems()): #ax.set_title(pieces_hash[piece].upper() + " move histogram") piece_x = [] piece_y = [] piece_area = [] #legend_text.append(pieces_hash[piece].upper()) legend_text.append(pieces_hash[piece]) for locations, count in piece_moves.iteritems(): piece_x.append(locations[0]) piece_y.append(locations[1]) piece_area.append(count) piece_area = normalize_area_vec(piece_area) plt.scatter(piece_x, piece_y, alpha=0.75, \ color=piece_color_hash[piece], s=piece_area) #print type(x), x.get_sizes() ax.set_xticks(range(min(piece_x)-1,max(piece_x)+2)) ax.set_yticks(range(min(piece_y)-1,max(piece_y)+2)) #, fontsize=8 plt.legend(legend_text, scatterpoints=1,loc='lower center',ncol=6, prop={'size':10}) plt.scatter([0], [0], s=180, alpha=0.9, color="black") plt.grid(b=True, which='both', color='0.65',linestyle='-') plt.show() def surrounds_histograms(surrounds_data): histogram = defaultdict(lambda: defaultdict(int)) for surround, count in surrounds_data.iteritems(): elements = surround.split(";") for i in xrange(0, len(elements)): histogram[i][elements[i]]+=count #histogram = {k : dict(v) for k,v in histogram.iteritems() if k!=4} histogram = {k : dict(v) for k,v in histogram.iteritems() if len(v)==1 and k!=4} return histogram def rotate_surround(surround): ''' Rotate surrond so white surround and black surround would act the same ''' surround = surround.split(";") n = int(sqrt(len(surround))) surround = [surround[i:i+n] for i in xrange(0, n*n,n)] surround = [reversed(z) for z in reversed(surround)] surround = list(itertools.chain(*surround)) surround = ";".join(surround) return surround def group_by_histograms(histograms): histogram_groups = defaultdict(lambda: defaultdict(list)) for piece, diffs in histograms.iteritems(): for (x,y), histogram in diffs.iteritems(): count = list(itertools.chain(*[k.values() for k in histogram.values() \ if len(k)==1]))[0] if count < 10: continue keys = tuple(sorted(histogram.keys())) values = tuple([histogram[k].keys()[0] for k in keys]) histogram_groups[piece][keys].append(((x,y),count, values)) return histogram_groups def main(): ''' Draw a histogram of the relative movments of the pieces Input count piece x y ''' chess_pieces_move_dict = {} # for line in sys.stdin: fields = re.split("\t", line.strip()) if len(fields)==3: piece, x,y = fields elif len(fields)==4: piece, x,y, surround = fields x = int(x) y = int(y) # Adjust black and white behaviour if piece.lower() != piece: x = -x y = -y if surround: surround = rotate_surround(surround) if piece.lower() not in chess_pieces_move_dict: if surround: chess_pieces_move_dict[piece.lower()] = \ defaultdict(lambda : defaultdict(int)) else: chess_pieces_move_dict[piece.lower()]= defaultdict[(x,y)] if surround: chess_pieces_move_dict[piece.lower()][(x,y)][surround]+= 1 else: chess_pieces_move_dict[piece.lower()][(x,y)]+= 1 histograms = defaultdict(lambda: defaultdict(dict)) for piece in chess_pieces_move_dict: for x,y in chess_pieces_move_dict[piece]: histogram = surrounds_histograms(chess_pieces_move_dict[piece][(x,y)]) if histogram: histograms[piece][(x,y)] = histogram histogram_groups = group_by_histograms(histograms) for piece, piece_groups in histogram_groups.iteritems(): for group, moves in piece_groups.iteritems(): print piece,'\t',group,'\t',moves print '\n\n\n' for piece, diffs in histograms.iteritems(): for (x,y), histogram in diffs.iteritems(): print piece,'\t',(x,y),'\t',histogram #draw_charts(chess_pieces_move_dict) #draw_overall_chart(chess_pieces_move_dict) if __name__ == '__main__': main()
apache-2.0
holdenk/spark
python/pyspark/worker.py
5
28191
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Worker that receives input from Piped RDD. """ import os import sys import time from inspect import currentframe, getframeinfo, getfullargspec import importlib # 'resource' is a Unix specific module. has_resource_module = True try: import resource except ImportError: has_resource_module = False import traceback import warnings from pyspark.accumulators import _accumulatorRegistry from pyspark.broadcast import Broadcast, _broadcastRegistry from pyspark.java_gateway import local_connect_and_auth from pyspark.taskcontext import BarrierTaskContext, TaskContext from pyspark.files import SparkFiles from pyspark.resource import ResourceInformation from pyspark.rdd import PythonEvalType from pyspark.serializers import write_with_length, write_int, read_long, read_bool, \ write_long, read_int, SpecialLengths, UTF8Deserializer, PickleSerializer, \ BatchedSerializer from pyspark.sql.pandas.serializers import ArrowStreamPandasUDFSerializer, CogroupUDFSerializer from pyspark.sql.pandas.types import to_arrow_type from pyspark.sql.types import StructType from pyspark.util import fail_on_stopiteration, try_simplify_traceback from pyspark import shuffle pickleSer = PickleSerializer() utf8_deserializer = UTF8Deserializer() def report_times(outfile, boot, init, finish): write_int(SpecialLengths.TIMING_DATA, outfile) write_long(int(1000 * boot), outfile) write_long(int(1000 * init), outfile) write_long(int(1000 * finish), outfile) def add_path(path): # worker can be used, so do not add path multiple times if path not in sys.path: # overwrite system packages sys.path.insert(1, path) def read_command(serializer, file): command = serializer._read_with_length(file) if isinstance(command, Broadcast): command = serializer.loads(command.value) return command def chain(f, g): """chain two functions together """ return lambda *a: g(f(*a)) def wrap_udf(f, return_type): if return_type.needConversion(): toInternal = return_type.toInternal return lambda *a: toInternal(f(*a)) else: return lambda *a: f(*a) def wrap_scalar_pandas_udf(f, return_type): arrow_return_type = to_arrow_type(return_type) def verify_result_type(result): if not hasattr(result, "__len__"): pd_type = "Pandas.DataFrame" if type(return_type) == StructType else "Pandas.Series" raise TypeError("Return type of the user-defined function should be " "{}, but is {}".format(pd_type, type(result))) return result def verify_result_length(result, length): if len(result) != length: raise RuntimeError("Result vector from pandas_udf was not the required length: " "expected %d, got %d" % (length, len(result))) return result return lambda *a: (verify_result_length( verify_result_type(f(*a)), len(a[0])), arrow_return_type) def wrap_pandas_iter_udf(f, return_type): arrow_return_type = to_arrow_type(return_type) def verify_result_type(result): if not hasattr(result, "__len__"): pd_type = "Pandas.DataFrame" if type(return_type) == StructType else "Pandas.Series" raise TypeError("Return type of the user-defined function should be " "{}, but is {}".format(pd_type, type(result))) return result return lambda *iterator: map(lambda res: (res, arrow_return_type), map(verify_result_type, f(*iterator))) def wrap_cogrouped_map_pandas_udf(f, return_type, argspec): def wrapped(left_key_series, left_value_series, right_key_series, right_value_series): import pandas as pd left_df = pd.concat(left_value_series, axis=1) right_df = pd.concat(right_value_series, axis=1) if len(argspec.args) == 2: result = f(left_df, right_df) elif len(argspec.args) == 3: key_series = left_key_series if not left_df.empty else right_key_series key = tuple(s[0] for s in key_series) result = f(key, left_df, right_df) if not isinstance(result, pd.DataFrame): raise TypeError("Return type of the user-defined function should be " "pandas.DataFrame, but is {}".format(type(result))) if not len(result.columns) == len(return_type): raise RuntimeError( "Number of columns of the returned pandas.DataFrame " "doesn't match specified schema. " "Expected: {} Actual: {}".format(len(return_type), len(result.columns))) return result return lambda kl, vl, kr, vr: [(wrapped(kl, vl, kr, vr), to_arrow_type(return_type))] def wrap_grouped_map_pandas_udf(f, return_type, argspec): def wrapped(key_series, value_series): import pandas as pd if len(argspec.args) == 1: result = f(pd.concat(value_series, axis=1)) elif len(argspec.args) == 2: key = tuple(s[0] for s in key_series) result = f(key, pd.concat(value_series, axis=1)) if not isinstance(result, pd.DataFrame): raise TypeError("Return type of the user-defined function should be " "pandas.DataFrame, but is {}".format(type(result))) if not len(result.columns) == len(return_type): raise RuntimeError( "Number of columns of the returned pandas.DataFrame " "doesn't match specified schema. " "Expected: {} Actual: {}".format(len(return_type), len(result.columns))) return result return lambda k, v: [(wrapped(k, v), to_arrow_type(return_type))] def wrap_grouped_agg_pandas_udf(f, return_type): arrow_return_type = to_arrow_type(return_type) def wrapped(*series): import pandas as pd result = f(*series) return pd.Series([result]) return lambda *a: (wrapped(*a), arrow_return_type) def wrap_window_agg_pandas_udf(f, return_type, runner_conf, udf_index): window_bound_types_str = runner_conf.get('pandas_window_bound_types') window_bound_type = [t.strip().lower() for t in window_bound_types_str.split(',')][udf_index] if window_bound_type == 'bounded': return wrap_bounded_window_agg_pandas_udf(f, return_type) elif window_bound_type == 'unbounded': return wrap_unbounded_window_agg_pandas_udf(f, return_type) else: raise RuntimeError("Invalid window bound type: {} ".format(window_bound_type)) def wrap_unbounded_window_agg_pandas_udf(f, return_type): # This is similar to grouped_agg_pandas_udf, the only difference # is that window_agg_pandas_udf needs to repeat the return value # to match window length, where grouped_agg_pandas_udf just returns # the scalar value. arrow_return_type = to_arrow_type(return_type) def wrapped(*series): import pandas as pd result = f(*series) return pd.Series([result]).repeat(len(series[0])) return lambda *a: (wrapped(*a), arrow_return_type) def wrap_bounded_window_agg_pandas_udf(f, return_type): arrow_return_type = to_arrow_type(return_type) def wrapped(begin_index, end_index, *series): import pandas as pd result = [] # Index operation is faster on np.ndarray, # So we turn the index series into np array # here for performance begin_array = begin_index.values end_array = end_index.values for i in range(len(begin_array)): # Note: Create a slice from a series for each window is # actually pretty expensive. However, there # is no easy way to reduce cost here. # Note: s.iloc[i : j] is about 30% faster than s[i: j], with # the caveat that the created slices shares the same # memory with s. Therefore, user are not allowed to # change the value of input series inside the window # function. It is rare that user needs to modify the # input series in the window function, and therefore, # it is be a reasonable restriction. # Note: Calling reset_index on the slices will increase the cost # of creating slices by about 100%. Therefore, for performance # reasons we don't do it here. series_slices = [s.iloc[begin_array[i]: end_array[i]] for s in series] result.append(f(*series_slices)) return pd.Series(result) return lambda *a: (wrapped(*a), arrow_return_type) def read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index): num_arg = read_int(infile) arg_offsets = [read_int(infile) for i in range(num_arg)] chained_func = None for i in range(read_int(infile)): f, return_type = read_command(pickleSer, infile) if chained_func is None: chained_func = f else: chained_func = chain(chained_func, f) if eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF: func = chained_func else: # make sure StopIteration's raised in the user code are not ignored # when they are processed in a for loop, raise them as RuntimeError's instead func = fail_on_stopiteration(chained_func) # the last returnType will be the return type of UDF if eval_type == PythonEvalType.SQL_SCALAR_PANDAS_UDF: return arg_offsets, wrap_scalar_pandas_udf(func, return_type) elif eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF: return arg_offsets, wrap_pandas_iter_udf(func, return_type) elif eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF: return arg_offsets, wrap_pandas_iter_udf(func, return_type) elif eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF: argspec = getfullargspec(chained_func) # signature was lost when wrapping it return arg_offsets, wrap_grouped_map_pandas_udf(func, return_type, argspec) elif eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF: argspec = getfullargspec(chained_func) # signature was lost when wrapping it return arg_offsets, wrap_cogrouped_map_pandas_udf(func, return_type, argspec) elif eval_type == PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF: return arg_offsets, wrap_grouped_agg_pandas_udf(func, return_type) elif eval_type == PythonEvalType.SQL_WINDOW_AGG_PANDAS_UDF: return arg_offsets, wrap_window_agg_pandas_udf(func, return_type, runner_conf, udf_index) elif eval_type == PythonEvalType.SQL_BATCHED_UDF: return arg_offsets, wrap_udf(func, return_type) else: raise ValueError("Unknown eval type: {}".format(eval_type)) def read_udfs(pickleSer, infile, eval_type): runner_conf = {} if eval_type in (PythonEvalType.SQL_SCALAR_PANDAS_UDF, PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF, PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF, PythonEvalType.SQL_MAP_PANDAS_ITER_UDF, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF, PythonEvalType.SQL_WINDOW_AGG_PANDAS_UDF): # Load conf used for pandas_udf evaluation num_conf = read_int(infile) for i in range(num_conf): k = utf8_deserializer.loads(infile) v = utf8_deserializer.loads(infile) runner_conf[k] = v # NOTE: if timezone is set here, that implies respectSessionTimeZone is True timezone = runner_conf.get("spark.sql.session.timeZone", None) safecheck = runner_conf.get("spark.sql.execution.pandas.convertToArrowArraySafely", "false").lower() == 'true' # Used by SQL_GROUPED_MAP_PANDAS_UDF and SQL_SCALAR_PANDAS_UDF when returning StructType assign_cols_by_name = runner_conf.get( "spark.sql.legacy.execution.pandas.groupedMap.assignColumnsByName", "true")\ .lower() == "true" if eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF: ser = CogroupUDFSerializer(timezone, safecheck, assign_cols_by_name) else: # Scalar Pandas UDF handles struct type arguments as pandas DataFrames instead of # pandas Series. See SPARK-27240. df_for_struct = (eval_type == PythonEvalType.SQL_SCALAR_PANDAS_UDF or eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF or eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF) ser = ArrowStreamPandasUDFSerializer(timezone, safecheck, assign_cols_by_name, df_for_struct) else: ser = BatchedSerializer(PickleSerializer(), 100) num_udfs = read_int(infile) is_scalar_iter = eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF is_map_iter = eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF if is_scalar_iter or is_map_iter: if is_scalar_iter: assert num_udfs == 1, "One SCALAR_ITER UDF expected here." if is_map_iter: assert num_udfs == 1, "One MAP_ITER UDF expected here." arg_offsets, udf = read_single_udf( pickleSer, infile, eval_type, runner_conf, udf_index=0) def func(_, iterator): num_input_rows = 0 def map_batch(batch): nonlocal num_input_rows udf_args = [batch[offset] for offset in arg_offsets] num_input_rows += len(udf_args[0]) if len(udf_args) == 1: return udf_args[0] else: return tuple(udf_args) iterator = map(map_batch, iterator) result_iter = udf(iterator) num_output_rows = 0 for result_batch, result_type in result_iter: num_output_rows += len(result_batch) # This assert is for Scalar Iterator UDF to fail fast. # The length of the entire input can only be explicitly known # by consuming the input iterator in user side. Therefore, # it's very unlikely the output length is higher than # input length. assert is_map_iter or num_output_rows <= num_input_rows, \ "Pandas SCALAR_ITER UDF outputted more rows than input rows." yield (result_batch, result_type) if is_scalar_iter: try: next(iterator) except StopIteration: pass else: raise RuntimeError("pandas iterator UDF should exhaust the input " "iterator.") if num_output_rows != num_input_rows: raise RuntimeError( "The length of output in Scalar iterator pandas UDF should be " "the same with the input's; however, the length of output was %d and the " "length of input was %d." % (num_output_rows, num_input_rows)) # profiling is not supported for UDF return func, None, ser, ser def extract_key_value_indexes(grouped_arg_offsets): """ Helper function to extract the key and value indexes from arg_offsets for the grouped and cogrouped pandas udfs. See BasePandasGroupExec.resolveArgOffsets for equivalent scala code. Parameters ---------- grouped_arg_offsets: list List containing the key and value indexes of columns of the DataFrames to be passed to the udf. It consists of n repeating groups where n is the number of DataFrames. Each group has the following format: group[0]: length of group group[1]: length of key indexes group[2.. group[1] +2]: key attributes group[group[1] +3 group[0]]: value attributes """ parsed = [] idx = 0 while idx < len(grouped_arg_offsets): offsets_len = grouped_arg_offsets[idx] idx += 1 offsets = grouped_arg_offsets[idx: idx + offsets_len] split_index = offsets[0] + 1 offset_keys = offsets[1: split_index] offset_values = offsets[split_index:] parsed.append([offset_keys, offset_values]) idx += offsets_len return parsed if eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF: # We assume there is only one UDF here because grouped map doesn't # support combining multiple UDFs. assert num_udfs == 1 # See FlatMapGroupsInPandasExec for how arg_offsets are used to # distinguish between grouping attributes and data attributes arg_offsets, f = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0) parsed_offsets = extract_key_value_indexes(arg_offsets) # Create function like this: # mapper a: f([a[0]], [a[0], a[1]]) def mapper(a): keys = [a[o] for o in parsed_offsets[0][0]] vals = [a[o] for o in parsed_offsets[0][1]] return f(keys, vals) elif eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF: # We assume there is only one UDF here because cogrouped map doesn't # support combining multiple UDFs. assert num_udfs == 1 arg_offsets, f = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0) parsed_offsets = extract_key_value_indexes(arg_offsets) def mapper(a): df1_keys = [a[0][o] for o in parsed_offsets[0][0]] df1_vals = [a[0][o] for o in parsed_offsets[0][1]] df2_keys = [a[1][o] for o in parsed_offsets[1][0]] df2_vals = [a[1][o] for o in parsed_offsets[1][1]] return f(df1_keys, df1_vals, df2_keys, df2_vals) else: udfs = [] for i in range(num_udfs): udfs.append(read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=i)) def mapper(a): result = tuple(f(*[a[o] for o in arg_offsets]) for (arg_offsets, f) in udfs) # In the special case of a single UDF this will return a single result rather # than a tuple of results; this is the format that the JVM side expects. if len(result) == 1: return result[0] else: return result func = lambda _, it: map(mapper, it) # profiling is not supported for UDF return func, None, ser, ser def main(infile, outfile): try: boot_time = time.time() split_index = read_int(infile) if split_index == -1: # for unit tests sys.exit(-1) version = utf8_deserializer.loads(infile) if version != "%d.%d" % sys.version_info[:2]: raise Exception(("Python in worker has different version %s than that in " + "driver %s, PySpark cannot run with different minor versions. " + "Please check environment variables PYSPARK_PYTHON and " + "PYSPARK_DRIVER_PYTHON are correctly set.") % ("%d.%d" % sys.version_info[:2], version)) # read inputs only for a barrier task isBarrier = read_bool(infile) boundPort = read_int(infile) secret = UTF8Deserializer().loads(infile) # set up memory limits memory_limit_mb = int(os.environ.get('PYSPARK_EXECUTOR_MEMORY_MB', "-1")) if memory_limit_mb > 0 and has_resource_module: total_memory = resource.RLIMIT_AS try: (soft_limit, hard_limit) = resource.getrlimit(total_memory) msg = "Current mem limits: {0} of max {1}\n".format(soft_limit, hard_limit) print(msg, file=sys.stderr) # convert to bytes new_limit = memory_limit_mb * 1024 * 1024 if soft_limit == resource.RLIM_INFINITY or new_limit < soft_limit: msg = "Setting mem limits to {0} of max {1}\n".format(new_limit, new_limit) print(msg, file=sys.stderr) resource.setrlimit(total_memory, (new_limit, new_limit)) except (resource.error, OSError, ValueError) as e: # not all systems support resource limits, so warn instead of failing lineno = getframeinfo( currentframe()).lineno + 1 if currentframe() is not None else 0 print(warnings.formatwarning( "Failed to set memory limit: {0}".format(e), ResourceWarning, __file__, lineno ), file=sys.stderr) # initialize global state taskContext = None if isBarrier: taskContext = BarrierTaskContext._getOrCreate() BarrierTaskContext._initialize(boundPort, secret) # Set the task context instance here, so we can get it by TaskContext.get for # both TaskContext and BarrierTaskContext TaskContext._setTaskContext(taskContext) else: taskContext = TaskContext._getOrCreate() # read inputs for TaskContext info taskContext._stageId = read_int(infile) taskContext._partitionId = read_int(infile) taskContext._attemptNumber = read_int(infile) taskContext._taskAttemptId = read_long(infile) taskContext._resources = {} for r in range(read_int(infile)): key = utf8_deserializer.loads(infile) name = utf8_deserializer.loads(infile) addresses = [] taskContext._resources = {} for a in range(read_int(infile)): addresses.append(utf8_deserializer.loads(infile)) taskContext._resources[key] = ResourceInformation(name, addresses) taskContext._localProperties = dict() for i in range(read_int(infile)): k = utf8_deserializer.loads(infile) v = utf8_deserializer.loads(infile) taskContext._localProperties[k] = v shuffle.MemoryBytesSpilled = 0 shuffle.DiskBytesSpilled = 0 _accumulatorRegistry.clear() # fetch name of workdir spark_files_dir = utf8_deserializer.loads(infile) SparkFiles._root_directory = spark_files_dir SparkFiles._is_running_on_worker = True # fetch names of includes (*.zip and *.egg files) and construct PYTHONPATH add_path(spark_files_dir) # *.py files that were added will be copied here num_python_includes = read_int(infile) for _ in range(num_python_includes): filename = utf8_deserializer.loads(infile) add_path(os.path.join(spark_files_dir, filename)) importlib.invalidate_caches() # fetch names and values of broadcast variables needs_broadcast_decryption_server = read_bool(infile) num_broadcast_variables = read_int(infile) if needs_broadcast_decryption_server: # read the decrypted data from a server in the jvm port = read_int(infile) auth_secret = utf8_deserializer.loads(infile) (broadcast_sock_file, _) = local_connect_and_auth(port, auth_secret) for _ in range(num_broadcast_variables): bid = read_long(infile) if bid >= 0: if needs_broadcast_decryption_server: read_bid = read_long(broadcast_sock_file) assert(read_bid == bid) _broadcastRegistry[bid] = \ Broadcast(sock_file=broadcast_sock_file) else: path = utf8_deserializer.loads(infile) _broadcastRegistry[bid] = Broadcast(path=path) else: bid = - bid - 1 _broadcastRegistry.pop(bid) if needs_broadcast_decryption_server: broadcast_sock_file.write(b'1') broadcast_sock_file.close() _accumulatorRegistry.clear() eval_type = read_int(infile) if eval_type == PythonEvalType.NON_UDF: func, profiler, deserializer, serializer = read_command(pickleSer, infile) else: func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type) init_time = time.time() def process(): iterator = deserializer.load_stream(infile) out_iter = func(split_index, iterator) try: serializer.dump_stream(out_iter, outfile) finally: if hasattr(out_iter, 'close'): out_iter.close() if profiler: profiler.profile(process) else: process() # Reset task context to None. This is a guard code to avoid residual context when worker # reuse. TaskContext._setTaskContext(None) BarrierTaskContext._setTaskContext(None) except BaseException as e: try: exc_info = None if os.environ.get("SPARK_SIMPLIFIED_TRACEBACK", False): tb = try_simplify_traceback(sys.exc_info()[-1]) if tb is not None: e.__cause__ = None exc_info = "".join(traceback.format_exception(type(e), e, tb)) if exc_info is None: exc_info = traceback.format_exc() write_int(SpecialLengths.PYTHON_EXCEPTION_THROWN, outfile) write_with_length(exc_info.encode("utf-8"), outfile) except IOError: # JVM close the socket pass except BaseException: # Write the error to stderr if it happened while serializing print("PySpark worker failed with exception:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) sys.exit(-1) finish_time = time.time() report_times(outfile, boot_time, init_time, finish_time) write_long(shuffle.MemoryBytesSpilled, outfile) write_long(shuffle.DiskBytesSpilled, outfile) # Mark the beginning of the accumulators section of the output write_int(SpecialLengths.END_OF_DATA_SECTION, outfile) write_int(len(_accumulatorRegistry), outfile) for (aid, accum) in _accumulatorRegistry.items(): pickleSer._write_with_length((aid, accum._value), outfile) # check end of stream if read_int(infile) == SpecialLengths.END_OF_STREAM: write_int(SpecialLengths.END_OF_STREAM, outfile) else: # write a different value to tell JVM to not reuse this worker write_int(SpecialLengths.END_OF_DATA_SECTION, outfile) sys.exit(-1) if __name__ == '__main__': # Read information about how to connect back to the JVM from the environment. java_port = int(os.environ["PYTHON_WORKER_FACTORY_PORT"]) auth_secret = os.environ["PYTHON_WORKER_FACTORY_SECRET"] (sock_file, _) = local_connect_and_auth(java_port, auth_secret) main(sock_file, sock_file)
apache-2.0
larsmans/scikit-learn
sklearn/metrics/tests/test_score_objects.py
9
11108
import pickle import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import check_scoring from sklearn.metrics import make_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.grid_search import GridSearchCV from sklearn.multiclass import OneVsRestClassifier REGRESSION_SCORERS = ['r2', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'roc_auc', 'average_precision', 'precision', 'recall', 'log_loss', 'adjusted_rand_score' # not really, but works ] class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y def test_check_scoring(): """Test all branches of check_scoring""" estimator = EstimatorWithoutFit() pattern = (r"estimator should a be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() pattern = (r"The estimator passed should have a 'score'" r" or a 'predict' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator, "accuracy") estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_make_scorer(): """Sanity check on the make_scorer factory function.""" f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): """Test classification scorers.""" X, y = make_blobs(random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) score1 = SCORERS['f1'](clf, X_test, y_test) score2 = f1_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): """Test regression scorers.""" diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = SCORERS['r2'](clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): """Test scorers that take thresholds.""" X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = SCORERS['roc_auc'](clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = SCORERS['log_loss'](clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = SCORERS['roc_auc'](clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, SCORERS['roc_auc'], clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): """Test that the scorer work with multilabel-indicator format for multilabel and multi-output multi-class classifier """ X, y = make_multilabel_classification(return_indicator=True, allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = SCORERS['roc_auc'](clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = SCORERS['roc_auc'](clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = SCORERS['roc_auc'](clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = SCORERS['roc_auc'](clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): """Test clustering scorers against gold standard labeling.""" # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = SCORERS['adjusted_rand_score'](km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): """Test that when a list of scores is returned, we raise proper errors.""" X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) def test_scorer_sample_weight(): """Test that scorers support sample_weight or raise sensible errors""" # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier() sensible_clf.fit(X_train, y_train) estimator = dict([(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS]) for name, scorer in SCORERS.items(): try: weighted = scorer(estimator[name], X_test, y_test, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], y_test[10:]) unweighted = scorer(estimator[name], X_test, y_test) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e)))
bsd-3-clause
drphilmarshall/scriptutils
python/plotting.py
1
1613
############################ # @file plotting.py # @author Douglas Applegate # @date 10/12/07 # # Provides convienient wrappers around common plotting tasks # using numpy and pylab ############################ __cvs_id__ = "$Id: plotting.py,v 1.1 2008-01-17 19:12:38 dapple Exp $" ############################ import matplotlib.pylab as pylab import numpy ############################ def doFormating(**formating): if 'title' in formating: pylab.title(formating['title']) if 'xlabel' in formating: pylab.xlabel(formating['xlabel']) if 'ylabel' in formating: pylab.ylabel(formating['ylabel']) ############################ def histogram(a, bins=10, range=None, log = False, normed = False, filename = None, **formating): hist, bins = numpy.histogram(a, bins, range, normed) width = bins[1] - bins[0] pylab.bar(bins[:-1], hist[:-1], width=width, log=log) doFormating(**formating) pylab.show() if filename is not None: pylab.savefig(filename) pylab.clf() ############################# def histogram2d(x, y, bins=10, range=None, normed=False, weights=None, log = False, filename = None, **formating): hist, x, y = numpy.histogram2d(x, y, bins, range, normed, weights) if log is True: hist = numpy.log(hist) X, Y = pylab.meshgrid(x,y) pylab.pcolor(X, Y,hist.transpose()) pylab.colorbar() doFormating(**formating) pylab.show() if filename is not None: pylab.savefig(filename) pylab.clf()
mit
iastro-pt/ObservationTools
rv.py
2
13320
"""Radial Velocity Orbit. Goals ----- To calculate when the radial velocity is different by a certain value. Plot radial velocity phase curves. Indicating obtained measurement locations. """ import argparse import logging import sys from datetime import datetime from typing import Dict, List, Any, Union import astropy.units as u import matplotlib.pyplot as plt import numpy as np from astropy.constants import c from mpl_toolkits.axes_grid1 import host_subplot from utils.parse import parse_paramfile from utils.rv_utils import RV, JulianDate, prepare_mass_params, generate_companion_label from utils.rv_utils import strtimes2jd, join_times, check_core_parameters c_km_s = c.to(u.kilometer / u.second) # Speed of light in km/s def parse_args(args): # type: List[str] -> argparse.Namespace """RV Argparse parser.""" parser = argparse.ArgumentParser(description='Radial velocity plotting') parser.add_argument('params', help='RV parameters filename', type=str) parser.add_argument('-d', '--date', default=None, help='Reference date in format YYYY-MM-DD [HH:MM:SS]. Default=None uses time of now.') # parser.add_argument('-r', '--rv_diff', help='RV difference threshold to find') parser.add_argument('-o', '--obs_times', help='Times of previous observations YYYY-MM-DD format', nargs='+', default=None) parser.add_argument('-l', '--obs_list', help='File with list of obs times.', type=str, default=None) # parser.add_argument('-f', '--files', help='Params and obs-times are file' # ' names to open', action='store_true') parser.add_argument('-m', '--mode', help='Display mode ' ' e.g. phase or time plot. Default="phase"', choices=['phase', 'time'], default='phase', type=str) parser.add_argument("-c", "--cycle_fraction", default=1.0, help="Cylcle fraction to display", type=float) parser.add_argument("-p", "--phase_center", help="Center of phase curve.", default=0) parser.add_argument("--save_only", help="Only save the figure, do not show it.", action="store_true") parser.add_argument("--debug", help="Turning on debug output", action='store_true', default=False) return parser.parse_args(args) def main(params, mode="phase", obs_times=None, obs_list=None, date=None, cycle_fraction=1, phase_center=0, save_only=False): # obs_times=None, mode='phase', rv_diff=None # type: (Dict[str, Union[str, float]], str, List[str], str, str, bool) -> None r"""Radial velocity displays. Parameters ---------- params: str Filename for text file containing the rv parameters. Format of 'param = value\n'. mode: str Mode for script to use. Phase, time, future. obs_times: list of str Dates of observations added manually at command line of format YYYY-MM-DD. obs_list: str Filename for list which contains obs_times (YYY-MM-DD HH:MM:SS). date: str Reference date for some modes. Defaults=None) """ # Load in params and store as a dictionary parameters = parse_paramfile(params) parameters = prepare_mass_params(parameters, only_msini=True) parameters = check_core_parameters(parameters) # combine obs_times and obs_list and turn into jd. if obs_times: if (".txt" in obs_times) or (".dat" in obs_times): raise ValueError("Filename given instead of dates for obs_times.") obs_times = join_times(obs_times, obs_list) obs_jd = strtimes2jd(obs_times) test_jd = obs_jd[0] if isinstance(obs_jd, (list, tuple)) else obs_jd if ((str(parameters["tau"]).startswith("24") and not str(test_jd).startswith("24")) or (not(str(parameters["tau"]).startswith("24")) and str(test_jd).startswith("24"))): raise ValueError("Mismatch between Tau parameter '{0}' and times used '{1}'.".format(parameters["tau"], obs_jd)) date_split = JulianDate.now().jd if date is None else JulianDate.from_str(date).jd # Slit past and future obs future_obs = [obs for obs in obs_jd if obs > date_split] past_obs = [obs for obs in obs_jd if obs <= date_split] host_orbit = RV.from_dict(parameters) companion_orbit = host_orbit.create_companion() if mode == "phase": fig = binary_phase_curve(host_orbit, companion_orbit, t_past=past_obs, t_future=future_obs, cycle_fraction=cycle_fraction, phase_center=phase_center) elif mode == "time": fig = binary_time_curve(host_orbit, companion_orbit, t_past=past_obs, start_day=date_split, t_future=future_obs, cycle_fraction=cycle_fraction) else: raise NotImplementedError("Other modes are not Implemented yet.") if not save_only: fig.show() return fig def binary_phase_curve(host, companion, cycle_fraction=1, phase_center=0, ignore_mean=False, t_past=False, t_future=False): # type: (RV, RV, float, bool, Any, Any) -> int """Plot RV phase curve centered on zero. Parameters ---------- host: RV RV class for systems host. cycle_fraction: float Fraction of phase space to plot. (Default=1) ignore_mean: bool Remove the contribution from the systems mean velocity. (Default=False) t_past: float, array-like Times of past observations. t_future: float, array-like Times of future observations. phase_center: float Center of phase curve to show. Returns ------- fig: matplotlib.Figure Returns figure object. """ companion_present = companion is not None phase = np.linspace(-0.5, 0.5, 100) * cycle_fraction + phase_center fig = plt.figure(figsize=(10, 7)) fig.subplots_adjust() ax1 = host_subplot(111) host.ignore_mean = ignore_mean host_rvs = host.rv_at_phase(phase) ax1.plot(phase, host_rvs, label="Host", lw=2, color="k") host_delta_y = host.max_amp() * 1.1 ax1.set_ylim(host.gamma - host_delta_y, host.gamma + host_delta_y) ax1.axhline(host.gamma, color="black", linestyle="-.", alpha=0.5) ax1.set_xlabel("Orbital Phase") ax1.set_ylabel("Host RV (km/s)") if companion_present: companion.ignore_mean = ignore_mean companion_rvs = companion.rv_at_phase(phase) ax2 = ax1.twinx() companion_label = generate_companion_label(companion) ax2.plot(phase, companion_rvs, '--', label=companion_label, lw=2) # Determine rv max amplitudes. comp_delta_y = companion.max_amp() * 1.1 ax2.set_ylim(companion.gamma - comp_delta_y, companion.gamma + comp_delta_y) ax2.axhline(companion.gamma, color="black", linestyle="-.", alpha=0.5) ax2.set_ylabel("Companion RV (km/s)") if t_past: t_past = np.asarray(t_past) phi = ((t_past - host.tau) / host.period + 0.5) % 1 - 0.5 rv_star = host.rv_at_phase(phi) ax1.plot(phi, rv_star, ".", markersize=10, markeredgewidth=2) if companion_present: rv_planet = companion.rv_at_phase(phi) ax2.plot(phi, rv_planet, "+", markersize=10, markeredgewidth=2) if t_future: t_future = np.asarray(t_future) phi = ((t_future - host.tau) / host.period + 0.5) % 1 - 0.5 rv_star = host.rv_at_phase(phi) ax1.plot(phi, rv_star, "ko", markersize=10, markeredgewidth=2, label="Host Obs") if companion_present: rv_planet = companion.rv_at_phase(phi) ax2.plot(phi, rv_planet, "g*", markersize=10, markeredgewidth=2, label="Comp Obs") if 'name' in host._params.keys(): if ("companion" in host._params.keys()) and (companion_present): plt.title("RV Phase Curve for {} {}".format(host._params['name'].upper(), host._params['companion'])) else: plt.title("RV Phase Curve for {}".format(host._params['name'].upper())) else: plt.title("RV Phase Curve") plt.legend(loc=0) return fig def binary_time_curve(host, companion, cycle_fraction=1, ignore_mean=False, t_past=False, t_future=False, start_day=None): # type: (RV, RV, float, bool, Any, Any, Any) -> int """Plot RV phase curve centered on zero. Parameters ---------- host: RV RV class for system. cycle_fraction: float Minimum Fraction of orbit to plot. (Default=1) ignore_mean: bool Remove the contribution from the systems mean velocity. (Default=False) t_past: float, array-like Times of past observations in julian days. t_future: float, array-like Times of future observations in julian days. start_day: str Day to being RV curve from in julian days. The Default=None sets the start time to ephem.now(). Returns ------- exit_status: bool Returns 0 if successful. Displays matplotlib figure. """ companion_present = companion is not None t_start = start_day if start_day is not None else JulianDate.now().jd # Make curve from start of t_past print("t_past", t_past, "t_future", t_future) if isinstance(t_past, float): obs_start = t_past elif t_past != [] and t_past is not None: obs_start = np.min(t_past) else: obs_start = t_start if isinstance(t_future, float): obs_end = t_future elif t_future != [] and t_future is not None: obs_end = np.max(t_future) else: obs_end = t_start # Specify 100 points per period num_cycles = ((t_start + host.period * cycle_fraction) - np.min([t_start, obs_start])) / host.period num_points = np.ceil(500 * num_cycles) if num_points > 10000: logging.debug("num points = {}".format(num_points)) raise ValueError("num_points is to large") t_space = np.linspace(min([t_start, obs_start]), np.max([t_start + host.period * cycle_fraction, obs_end]), num_points) start_dt = JulianDate(t_start).to_datetime() if (start_dt.hour == 0) and (start_dt.minute == 0) and (start_dt.second == 0): start_string = datetime.strftime(start_dt, "%Y-%m-%d") else: start_string = datetime.strftime(start_dt, "%Y-%m-%d %H:%M:%S") # Issue with 00:00:01 not appearing fig = plt.figure(figsize=(10, 7)) fig.subplots_adjust() ax1 = host_subplot(111) host.ignore_mean = ignore_mean host_rvs = host.rv_at_times(t_space) ax1.plot(t_space - t_start, host_rvs, label="Host", lw=2, color="k") # Determine rv max amplitudes. amp1 = host.max_amp() # Adjust axis limits ax1.set_ylim(host.gamma - (amp1 * 1.1), host.gamma + (amp1 * 1.1)) ax1.axhline(host.gamma, color="black", linestyle="-.", alpha=0.5) ax1.set_xlabel("Days from {!s}".format(start_string)) ax1.set_ylabel("Host RV (km/s)") if companion_present: companion.ignore_mean = ignore_mean companion_rvs = companion.rv_at_times(t_space) companion_label = generate_companion_label(companion) ax2 = ax1.twinx() ax2.plot(t_space - t_start, companion_rvs, '--', label=companion_label, lw=2) # Adjust axis limits amp2 = companion.max_amp() # Determine rv max amplitudes. ax2.set_ylim(companion.gamma - (amp2 * 1.1), companion.gamma + (amp2 * 1.1)) ax2.axhline(companion.gamma, color="black", linestyle="-.", alpha=0.5) ax2.set_ylabel("Companion RV (km/s)") if t_past: t_past = np.asarray(t_past) rv_star = host.rv_at_times(t_past) ax1.plot(t_past - t_start, rv_star, "b.", markersize=10, markeredgewidth=2, label="Host past") if companion_present: rv_planet = companion.rv_at_times(t_past) ax2.plot(t_past - t_start, rv_planet, "r+", markersize=10, markeredgewidth=2, label="Comp past") if t_future: t_future = np.asarray(t_future) rv_star = host.rv_at_times(t_future) ax1.plot(t_future - t_start, rv_star, "ko", markersize=10, markeredgewidth=2, label="Host future") if companion_present: rv_planet = companion.rv_at_times(t_future) ax2.plot(t_future - t_start, rv_planet, "g*", markersize=10, markeredgewidth=2, label="Comp future") if 'name' in host._params.keys(): if ("companion" in host._params.keys()) and (companion_present): plt.title("Radial Velocity Curve for {} {}".format(host._params['name'].upper(), host._params['companion'])) else: plt.title("Radial Velocity Curve for {}".format(host._params['name'].upper())) else: plt.title("Radial Velocity Curve") plt.legend(loc=0) return fig if __name__ == '__main__': args = vars(parse_args(sys.argv[1:])) debug = args.pop('debug') opts = {k: args[k] for k in args} if debug: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') else: logging.basicConfig(level=logging.WARNING, format='%(asctime)s %(levelname)s %(message)s') fig = main(**opts) plt.show(fig)
mit
prisae/blog-notebooks
travelmaps2.py
1
11650
# coding: utf-8 # # `travelmaps2`: An updated version of `travelmaps` # # I did not want to change `travelmaps`, as it is a blog entry. # # These functions are very basic, and include almost no checking or similar at all. Feel free to fork and improve them! # In[1]: import shapefile import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from matplotlib import rcParams, patheffects from matplotlib.collections import LineCollection # Disable DecompressionBombWarning from PIL import Image Image.MAX_IMAGE_PIXELS = None # In[2]: def setup(dpi=300, sketch=(1, 100, 2), theme='light'): """Setup travelmaps.""" # Customized plt.xkcd()-settings # http://jakevdp.github.io/blog/2013/07/10/XKCD-plots-in-matplotlib rcParams['font.family'] = ['Humor Sans', 'Comic Sans MS'] rcParams['font.size'] = 8.0 rcParams['path.sketch'] = sketch rcParams['axes.linewidth'] = 1.0 rcParams['lines.linewidth'] = 1.0 rcParams['grid.linewidth'] = 0.0 rcParams['axes.unicode_minus'] = False if theme=='dark': rcParams['path.effects'] = [patheffects.withStroke(linewidth=2, foreground="k")] rcParams['figure.facecolor'] = 'black' rcParams['figure.edgecolor'] = 'black' rcParams['lines.color'] = 'white' rcParams['patch.edgecolor'] = 'white' rcParams['text.color'] = 'white' rcParams['axes.facecolor'] = 'black' rcParams['axes.edgecolor'] = 'white' rcParams['axes.labelcolor'] = 'white' rcParams['xtick.color'] = 'white' rcParams['ytick.color'] = 'white' rcParams['grid.color'] = 'white' rcParams['savefig.facecolor'] = 'black' rcParams['savefig.edgecolor'] = 'black' else: rcParams['path.effects'] = [patheffects.withStroke(linewidth=2, foreground="w")] rcParams['figure.facecolor'] = 'white' rcParams['figure.edgecolor'] = 'white' rcParams['lines.color'] = 'black' rcParams['patch.edgecolor'] = 'black' rcParams['text.color'] = 'black' rcParams['axes.facecolor'] = 'white' rcParams['axes.edgecolor'] = 'black' rcParams['axes.labelcolor'] = 'black' rcParams['xtick.color'] = 'black' rcParams['ytick.color'] = 'black' rcParams['grid.color'] = 'black' rcParams['savefig.facecolor'] = 'white' rcParams['savefig.edgecolor'] = 'white' # *Bayesian Methods for Hackers*-colour-cylce # (https://github.com/pkgpl/PythonProcessing/blob/master/results/matplotlibrc.bmh.txt) rcParams['axes.prop_cycle'] = plt.cycler('color', ['#348ABD', '#A60628', '#7A68A6', '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']) # Adjust dpi, so figure on screen and savefig looks the same rcParams['figure.dpi'] = dpi rcParams['savefig.dpi'] = dpi # In[ ]: def setup_noxkcd(dpi=300, theme='light'): """Setup Maps.""" if theme=='dark': rcParams['figure.facecolor'] = 'black' rcParams['figure.edgecolor'] = 'black' rcParams['lines.color'] = 'white' rcParams['patch.edgecolor'] = 'white' rcParams['text.color'] = 'white' rcParams['axes.facecolor'] = 'black' rcParams['axes.edgecolor'] = 'white' rcParams['axes.labelcolor'] = 'white' rcParams['xtick.color'] = 'white' rcParams['ytick.color'] = 'white' rcParams['grid.color'] = 'white' rcParams['savefig.facecolor'] = 'black' rcParams['savefig.edgecolor'] = 'black' else: rcParams['figure.facecolor'] = 'white' rcParams['figure.edgecolor'] = 'white' rcParams['lines.color'] = 'black' rcParams['patch.edgecolor'] = 'black' rcParams['text.color'] = 'black' rcParams['axes.facecolor'] = 'white' rcParams['axes.edgecolor'] = 'black' rcParams['axes.labelcolor'] = 'black' rcParams['xtick.color'] = 'black' rcParams['ytick.color'] = 'black' rcParams['grid.color'] = 'black' rcParams['savefig.facecolor'] = 'white' rcParams['savefig.edgecolor'] = 'white' # *Bayesian Methods for Hackers*-colour-cylce # (https://github.com/pkgpl/PythonProcessing/blob/master/results/matplotlibrc.bmh.txt) rcParams['axes.prop_cycle'] = plt.cycler('color', ['#348ABD', '#A60628', '#7A68A6', '#467821', '#D55E00', '#CC79A7', '#56B4E9', '#009E73', '#F0E442', '#0072B2']) # Adjust dpi, so figure on screen and savefig looks the same rcParams['figure.dpi'] = dpi rcParams['savefig.dpi'] = dpi # In[3]: def cm2in(length, decimals=2): """Convert cm to inch. Parameters ---------- length : scalar or vector Numbers to be converted. decimals : int, optional; <2> As in np.round, used to round the result. Returns ------- cm2in : scalar or vector Converted numbers. Examples -------- >>> from adashof import cm2in >>> cm2in(5) 1.97 """ # Test input try: length = np.array(length, dtype='float') decimals = int(decimals) except ValueError: print("{length} must be a number, {decimals} an integer") return np.round(length/2.54, decimals) # In[4]: def country(countries, bmap, fc=None, ec='none', lw=1, alpha=1, adm=0, gadmpath='/home/dtr/Documents/Webpages/blog-notebooks/data/TravelMap/'): """Colour <countries> with a <bmap> projection. This script is adapted from: http://www.geophysique.be/2013/02/12/ matplotlib-basemap-tutorial-10-shapefiles-unleached-continued I downloaded the countries shapefile from the *Global Administrative Areas* website, [gadm.org](http://gadm.org). => You have to use the same abbreviations for the countries as GADM does, or adjust the script. => You have to download the shapefiles from GADM, and extract them into the <gadmpath> directory. Of course, you can use any other shapfiles you have, and adjust the script accordingly. Parameters ---------- countries : string or list of strings Countries to be plotted. bmap : handle As you get from bmap = Basemap(). fc : None or colour, or list of colours; <None> Face-colour for country; if <None>, it will cycle through colour-cycle. ec : 'none' or colour (scalar or list); <'none'> Edge-colour for country. lw : scalar or list; <1> Linewidth for country. alpha: scalar or list; <1> Transparency. adm : {0, 1, 2, 3}; <0> Administrative area to choose. gadmpath : 'string' Absolut or relative path to shapefiles. """ # Ensure countries is a list if not isinstance(countries, list): countries = [countries,] # Get current axis cax = plt.gca() # Loop through the countries for country in countries: # Get shapefile for the country; extract shapes and records r = shapefile.Reader(gadmpath+country+'_adm/'+country+'_adm'+str(adm), encoding='windows-1252') shapes = r.shapes() records = r.records() # Loop through the records; for adm0 this is only 1 run n = 0 for record, shape in zip(records,shapes): lons,lats = zip(*shape.points) data = np.array(bmap(lons, lats)).T if len(shape.parts) == 1: segs = [data,] else: segs = [] for i in range(1,len(shape.parts)): index = shape.parts[i-1] index2 = shape.parts[i] segs.append(data[index:index2]) segs.append(data[index2:]) lines = LineCollection(segs,antialiaseds=(1,)) # If facecolor is provided, use; else cycle through colours if fc: if not isinstance(fc, list): lines.set_facecolors(fc) else: lines.set_facecolors(fc[n]) else: cycle = cax._get_lines.prop_cycler lines.set_facecolors(next(cycle)['color']) # Edge colour if not isinstance(ec, list): lines.set_edgecolors(ec) else: lines.set_edgecolors(ec[n]) # Alpha if not isinstance(alpha, list): lines.set_alpha(alpha) else: lines.set_alpha(alpha[n]) # Line width if not isinstance(lw, list): lines.set_linewidth(lw) else: lines.set_linewidth(lw[n]) # Add to current plot cax.add_collection(lines) n += 1 # In[5]: def city(city, name, bmap, mfc=None, mec=None, color='b', offs=[.1, .1], halign='left'): """Plot a circle at <city> and annotate with <name>, with a <bmap> projection. Parameters ---------- city : List of two scalars [Northing, Easting]. name : string name to be plotted with city. bmap : handle As you get from bmap = Basemap(). mfc : None or colour; <None> Marker face-colour for city; if <None>, it will cycle through colour-cycle. colour : 'none' or colour; <'b'> Colour for <name>. offs : List of two scalars; <[.1, .1]> Offset for <name> from <city>. halign : {'left', 'right', 'center'}; <'left'> Alignment of <name> relative to <city>. """ # mec from rcParams, to respect theme (dark/light) if not mec: mec = rcParams['axes.edgecolor'] # Get current axis cax = plt.gca() # Plot dot # If mfc is provided, use; else cycle through colours if not mfc: cycle = cax._get_patches_for_fill.prop_cycler mfc = next(cycle)['color'] bmap.plot(city[1], city[0], 'o', mfc=mfc, mec=mec, ms=4, mew=1, latlon=True) # Annotate name cax.annotate(name, bmap(city[1]+offs[0], city[0]+offs[1]), horizontalalignment=halign, color=color, fontsize=7, zorder=10) # In[6]: def arrow(start, end, bmap, ec=None, fc=None, rad=-.3): """Plot an arrow from <start> to <end>, with a <bmap> projection. Parameters ---------- start : List of two scalars Start of arrow [Northing, Easting]. end : List of two scalars End of arrow [Northing, Easting]. bmap : handle As you get from bmap = Basemap(). ec : 'none' or colour; <'k'> Edge-colour for arrow. fc : 'none' or colour; <w> Face-colour for arrow. rad : Scalar; <.3]> Curvature of arrow. """ # ec & fc from rcParams, to respect theme (dark/light) if not ec: ec = rcParams['axes.edgecolor'] if not fc: fc = rcParams['axes.facecolor'] # Get current axis cax = plt.gca() # Plot arrow arrowstyle='Fancy, head_length=.6, head_width=.6, tail_width=.4' cax.annotate('', bmap(end[1], end[0]), bmap(start[1], start[0]), arrowprops=dict(arrowstyle=arrowstyle, alpha=.6, patchA=None, patchB=None, shrinkA=3, shrinkB=3, fc=fc, ec=ec, connectionstyle="arc3, rad="+str(rad), ))
cc0-1.0
Fireblend/scikit-learn
examples/applications/plot_outlier_detection_housing.py
243
5577
""" ==================================== Outlier detection on a real data set ==================================== This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out. In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed, yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm First example ------------- The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when another one exists. Here, many observations are confounded into one and break down the empirical covariance estimation. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines, Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these could be applied that easily. Second example -------------- The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data. """ print(__doc__) # Author: Virgile Fritsch <[email protected]> # License: BSD 3 clause import numpy as np from sklearn.covariance import EllipticEnvelope from sklearn.svm import OneClassSVM import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.datasets import load_boston # Get data X1 = load_boston()['data'][:, [8, 10]] # two clusters X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped # Define "classifiers" to be used classifiers = { "Empirical Covariance": EllipticEnvelope(support_fraction=1., contamination=0.261), "Robust Covariance (Minimum Covariance Determinant)": EllipticEnvelope(contamination=0.261), "OCSVM": OneClassSVM(nu=0.261, gamma=0.05)} colors = ['m', 'g', 'b'] legend1 = {} legend2 = {} # Learn a frontier for outlier detection with several classifiers xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500)) xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500)) for i, (clf_name, clf) in enumerate(classifiers.items()): plt.figure(1) clf.fit(X1) Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()]) Z1 = Z1.reshape(xx1.shape) legend1[clf_name] = plt.contour( xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i]) plt.figure(2) clf.fit(X2) Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()]) Z2 = Z2.reshape(xx2.shape) legend2[clf_name] = plt.contour( xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i]) legend1_values_list = list( legend1.values() ) legend1_keys_list = list( legend1.keys() ) # Plot the results (= shape of the data points cloud) plt.figure(1) # two clusters plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X1[:, 0], X1[:, 1], color='black') bbox_args = dict(boxstyle="round", fc="0.8") arrow_args = dict(arrowstyle="->") plt.annotate("several confounded points", xy=(24, 19), xycoords="data", textcoords="data", xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args) plt.xlim((xx1.min(), xx1.max())) plt.ylim((yy1.min(), yy1.max())) plt.legend((legend1_values_list[0].collections[0], legend1_values_list[1].collections[0], legend1_values_list[2].collections[0]), (legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("accessibility to radial highways") plt.xlabel("pupil-teacher ratio by town") legend2_values_list = list( legend2.values() ) legend2_keys_list = list( legend2.keys() ) plt.figure(2) # "banana" shape plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X2[:, 0], X2[:, 1], color='black') plt.xlim((xx2.min(), xx2.max())) plt.ylim((yy2.min(), yy2.max())) plt.legend((legend2_values_list[0].collections[0], legend2_values_list[1].collections[0], legend2_values_list[2].collections[0]), (legend2_values_list[0], legend2_values_list[1], legend2_values_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("% lower status of the population") plt.xlabel("average number of rooms per dwelling") plt.show()
bsd-3-clause
MATH2605-JES/python-LinearAlgebraAlgo
Util.py
1
6152
# General Utility Methods for Algorithms import random as rand import numpy as np import numpy.matlib import matplotlib.pyplot as pyplot import matplotlib.colors as plotcolors # James def multiply_matrix(matrix_1, matrix_2): if matrix_1.shape[1] != matrix_2.shape[0]: return None result = np.empty((matrix_1.shape[0], matrix_2.shape[1]), dtype=float) # We can use transpose & dot product library function. # Dot product of first rows of matrix_1 and matrix_2^t gives us first resulting number.of first row. # Dot product of first row of matrix_1 and second row of matrix_2^t gives us second resulting number of first row. matrix_2_t = matrix_2.transpose() for i in range(matrix_1.shape[0]): for j in range(matrix_2_t.shape[0]): result[i, j] = matrix_1[i].dot(matrix_2_t[j]) return result # Emeke # works n x m matrices def multiply_matrix2(matrix_1, matrix_2): product = np.matlib.empty((matrix_1.shape[0], matrix_2.shape[1])) for i in range(product.shape[0]): for j in range(product.shape[1]): product[i, j] = matrix_1[i, :].dot(matrix_2[:, j]) return product # Seth def lu_fact(matrix): size = matrix.shape[0] L = np.identity(size, float) U = np.ndarray.astype(matrix, float) for row in xrange(1, size): for col in xrange(0, row): L[row][col] = U[row][col] / U[col][col] U[row] -= L[row][col] * U[col] error = matrix_error(multiply_matrix(L, U), matrix) return L, U, error # Seth def find_determinant(matrix): size = matrix.shape[0] if size == 1: return matrix[0][0] answer = 0 modifier = 1 for i in xrange(size): element = matrix[0][i] newMatrix = np.zeros((size - 1, size - 1)) for row in xrange(1, size): newCol = 0 for col in xrange(size): if col != i: newMatrix[row - 1][newCol] = matrix[row][col] newCol += 1 answer += element * modifier * find_determinant(newMatrix) modifier *= -1 return answer # Seth def vector_error(array): if len(array) == 0: return answer = np.absolute(array[0]) for i in range(len(array)): if np.absolute(array[i]) > answer: answer = np.absolute(array[i]) return answer # Seth def getDiag(matrix): diag = np.copy(matrix) for i in range(diag.shape[0]): for j in range(diag.shape[1]): if i != j: diag[i][j] = 0 return diag # Seth def getLowerDiag(matrix): lower = np.copy(matrix) for i in range(lower.shape[0]): for j in range(lower.shape[1]): if i < j: lower[i][j] = 0 return lower # James def matrix_trace(matrix): loop = min(matrix.shape[1], matrix.shape[0]) sum = 0 for i in range(loop): sum += matrix[i, i] return sum # James def vector_norm(vector): squared_sum = 0 for i in range(len(vector)): squared_sum += vector[i] ** 2 return np.sqrt(squared_sum) # James # if [ a b c # d e f # g h i ] , cut_size = 1 # return [ e f # h i ] , will return same matrix of cut_size = 0 # def get_sub_matrix(matrix, cut_size=1): m, n = matrix.shape if cut_size <= 0: return matrix arr = np.empty((m - cut_size, n - cut_size)) for x in range(cut_size, n): for y in range(cut_size, m): arr[y - cut_size, x - cut_size] = matrix[y, x] return arr # James def matrix_error(matrix, original_matrix): if matrix.shape != original_matrix.shape: return None y, x = matrix.shape error_matrix = matrix - original_matrix # Allowed built-ins were iffy on this one, so didn't use np.sum(matrix-original_matrix, axis=1) max = abs(error_matrix[0, 0]) for i in range(y): for j in range(x): compared = abs(error_matrix[i, j]) if max < compared: max = compared return max # James # This beautiful code took 3.5 hours T_T def matrix_cofactor(matrix): y, x = matrix.shape cofactor = np.empty([y, x], dtype=float) for i in range(y): flip = 1.0 if (i % 2 == 0) else -1.0 for j in range(x): sub_matrix = np.delete(np.delete(matrix, j, 1), i, 0) cofactor[i, j] = flip * find_determinant(sub_matrix) flip *= -1 return cofactor # James def matrix_inverse(matrix): return 1.0 / find_determinant(matrix) * matrix_cofactor(matrix).T # Emeke def matrix_inverse_22(matrix): det = matrix[0, 0] * matrix[1, 1] - matrix[0, 1] * matrix[1, 0] matrixB = np.matrix([[matrix[0, 0], - matrix[0, 1]], [-matrix[1, 0], matrix[1, 1]]]) if det == 0: return None return (1.0 / det) * matrixB """ Emeke Generates 1000 random 2x2 matrices Create a series of randomly generated matrices with uniformly distributed entries within a given range shape (tuple(int, int)): Desired shape of matrices. number (int): Requested number of matrices. lower (Real): Lower bound for random range. upper (Real): Upper bound for random range. """ def random_matrices(shape, number, lower, upper): series = tuple() while len(series) < number: mat = np.matlib.empty(shape) for i in range(mat.shape[0]): for j in range(mat.shape[1]): mat[i, j] = rand.uniform(lower, upper) series += (mat,) return series # Emeke def plot_colored(data, colors, color_label, xlabel, ylabel, title, xscale, yscale, cmap, fname): pyplot.clf() # Create colormap object if needed colormap = None if cmap is None else plotcolors.LinearSegmentedColormap.from_list('cplot', cmap) # Plot data pyplot.scatter(data[0], data[1], s=40, c=colors, cmap=colormap) # Create titles and legend, then render pyplot.colorbar().set_label(color_label) pyplot.title(title).set_size('xx-large') pyplot.xlabel(xlabel) pyplot.ylabel(ylabel) pyplot.xlim(xscale) pyplot.ylim(yscale) pyplot.savefig(fname)
cc0-1.0
rahulgayatri23/moose-core
python/moose/neuroml2/converter.py
2
7358
# converter.py --- # # Filename: mtoneuroml.py # Description: # Author: # Maintainer: # Created: Mon Apr 22 12:15:23 2013 (+0530) # Version: # Last-Updated: Wed Jul 10 16:36:14 2013 (+0530) # By: subha # Update #: 819 # URL: # Keywords: # Compatibility: # # # Commentary: # # Utility for converting a MOOSE model into NeuroML2. This uses Python # libNeuroML. # # # Change log: # # Tue May 21 16:58:03 IST 2013 - Subha moved the code for function # fitting to hhfit.py. # # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth # Floor, Boston, MA 02110-1301, USA. # # # Code: #!!!!! TODO: unit conversion !!!! try: from future_builtins import zip except ImportError: pass import traceback import warnings from collections import deque import numpy as np from scipy.optimize import curve_fit from matplotlib import pyplot as plt import moose from moose.utils import autoposition import neuroml import hhfit def convert_morphology(root, positions='auto'): """Convert moose neuron morphology contained under `root` into a NeuroML object. The id of the return object is {root.name}_morphology. Each segment object gets the numeric value of the moose id of the object. The name of the segments are same as the corresponding moose compartment. Parameters ---------- root : a moose element containing a single cell model. positions : string flag to indicate if the positions of the end points of the compartments are explicitly available in the compartments or should be automatically generated. Possible values: `auto` - automatically generate z coordinates using length of the compartments. `explicit` - model has explicit coordinates for all compartments. Return ------ a neuroml.Morphology instance. """ if positions == 'auto': queue = deque([autoposition(root)]) elif positions == 'explicit': compartments = moose.wildcardFind('%s/##[TYPE=Compartment]' % (root.path)) queue = deque([compartment for compartment in map(moose.element, compartments) if len(compartment.neighbours['axial']) == 0]) if len(queue) != 1: raise Exception('There must be one and only one top level compartment. Found %d' % (len(topcomp_list))) else: raise Exception('allowed values for keyword argument positions=`auto` or `explicit`') comp_seg = {} parent = None while len(queue) > 0: compartment = queue.popleft() proximal = neuroml.Point3DWithDiam(x=compartment.x0, y=compartment.y0, z=compartment.z0, diameter=compartment.diameter) distal = neuroml.Point3DWithDiam(x=compartment.x, y=compartment.y, z=compartment.z, diameter=compartment.diameter) plist = list(map(moose.element, compartment.neighbours['axial'])) try: parent = neuroml.SegmentParent(segments=comp_seg[moose.element(plist[0])].id) except (KeyError, IndexError) as e: parent = None segment = neuroml.Segment(id=compartment.id_.value, proximal=proximal, distal=distal, parent=parent) # TODO: For the time being using numerical value of the moose # id for neuroml id.This needs to be updated for handling # array elements segment.name = compartment.name comp_seg[compartment] = segment queue.extend([comp for comp in map(moose.element, compartment.neighbours['raxial'])]) morph = neuroml.Morphology(id='%s_morphology' % (root.name)) morph.segments.extend(comp_seg.values()) return morph def define_vdep_rate(fn, name): """Define new component type with generic expressions for voltage dependent rate. """ ctype = neuroml.ComponentType(name) # This is going to be ugly ... def convert_hhgate(gate): """Convert a MOOSE gate into GateHHRates in NeuroML""" hh_rates = neuroml.GateHHRates(id=gate.id_.value, name=gate.name) alpha = gate.tableA.copy() beta = gate.tableB - alpha vrange = np.linspace(gate.min, gate.max, len(alpha)) afn, ap = hhfit.find_ratefn(vrange, alpha) bfn, bp = hhfit.find_ratefn(vrange, beta) if afn is None: raise Exception('could not find a fitting function for `alpha`') if bfn is None: raise Exception('could not find a fitting function for `alpha`') afn_type = fn_rate_map[afn] afn_component_type = None if afn_type is None: afn_type, afn_component_type = define_component_type(afn) hh_rates.forward_rate = neuroml.HHRate(type=afn_type, midpoint='%gmV' % (ap[2]), scale='%gmV' % (ap[1]), rate='%gper_ms' % (ap[0])) bfn_type = fn_rate_map[bfn] bfn_component_type = None if bfn_type is None: bfn_type, bfn_component_type = define_component_type(bfn) hh_rates.reverse_rate = neuroml.HHRate(type=bfn_type, midpoint='%gmV' % (bp[2]), scale='%gmV' % (bp[1]), rate='%gper_ms' % (bp[0])) return hh_rates, afn_component_type, bfn_component_type def convert_hhchannel(channel): """Convert a moose HHChannel object into a neuroml element. TODO: need to check useConcentration option for Ca2+ and V dependent gates. How to handle generic expressions??? """ nml_channel = neuroml.IonChannel(id=channel.id_.value, name=channel.name, type='ionChannelHH', conductance=channel.Gbar) if channel.Xpower > 0: hh_rate_x = convert_hhgate(channel.gateX[0]) hh_rate_x.instances = channel.Xpower nml_channel.gate.append(hh_rate_x) if channel.Ypower > 0: hh_rate_y = convert_hhgate(channel.gateY[0]) hh_rate_y.instances = channel.Ypower nml_channel.gate.append(hh_rate_y) if channel.Zpower > 0: hh_rate_z = convert_hhgate(channel.gateZ[0]) hh_rate_y.instances = channel.Zpower nml_channel.gate.append(hh_rate_z) return nml_channel # # converter.py ends here
gpl-3.0
bikong2/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
254
2005
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause