repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
harisbal/pandas
pandas/core/resample.py
2
53145
from datetime import timedelta import numpy as np import warnings import copy from textwrap import dedent import pandas as pd from pandas.core.groupby.base import GroupByMixin from pandas.core.groupby.ops import BinGrouper from pandas.core.groupby.groupby import ( _GroupBy, GroupBy, groupby, _pipe_template ) from pandas.core.groupby.grouper import Grouper from pandas.core.groupby.generic import SeriesGroupBy, PanelGroupBy from pandas.tseries.frequencies import to_offset, is_subperiod, is_superperiod from pandas.core.indexes.datetimes import DatetimeIndex, date_range from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.tseries.offsets import (DateOffset, Tick, Day, delta_to_nanoseconds, Nano) from pandas.core.indexes.period import PeriodIndex from pandas.errors import AbstractMethodError import pandas.core.algorithms as algos from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries import pandas.compat as compat from pandas.compat.numpy import function as nv from pandas._libs import lib from pandas._libs.tslibs import Timestamp, NaT from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.util._decorators import Appender, Substitution from pandas.core.generic import _shared_docs _shared_docs_kwargs = dict() class Resampler(_GroupBy): """ Class for resampling datetimelike data, a groupby-like operation. See aggregate, transform, and apply functions on this object. It's easiest to use obj.resample(...) to use Resampler. Parameters ---------- obj : pandas object groupby : a TimeGrouper object axis : int, default 0 kind : str or None 'period', 'timestamp' to override default index treatement Notes ----- After resampling, see aggregate, apply, and transform functions. Returns ------- a Resampler of the appropriate type """ # to the groupby descriptor _attributes = ['freq', 'axis', 'closed', 'label', 'convention', 'loffset', 'base', 'kind'] def __init__(self, obj, groupby=None, axis=0, kind=None, **kwargs): self.groupby = groupby self.keys = None self.sort = True self.axis = axis self.kind = kind self.squeeze = False self.group_keys = True self.as_index = True self.exclusions = set() self.binner = None self.grouper = None if self.groupby is not None: self.groupby._set_grouper(self._convert_obj(obj), sort=True) def __unicode__(self): """ provide a nice str repr of our rolling object """ attrs = ["{k}={v}".format(k=k, v=getattr(self.groupby, k)) for k in self._attributes if getattr(self.groupby, k, None) is not None] return "{klass} [{attrs}]".format(klass=self.__class__.__name__, attrs=', '.join(attrs)) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self._attributes: return getattr(self.groupby, attr) if attr in self.obj: return self[attr] return object.__getattribute__(self, attr) def __iter__(self): """ Resampler iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group See Also -------- GroupBy.__iter__ """ self._set_binner() return super(Resampler, self).__iter__() @property def obj(self): return self.groupby.obj @property def ax(self): return self.groupby.ax @property def _typ(self): """ masquerade for compat as a Series or a DataFrame """ if isinstance(self._selected_obj, pd.Series): return 'series' return 'dataframe' @property def _from_selection(self): """ is the resampling from a DataFrame column or MultiIndex level """ # upsampling and PeriodIndex resampling do not work # with selection, this state used to catch and raise an error return (self.groupby is not None and (self.groupby.key is not None or self.groupby.level is not None)) def _convert_obj(self, obj): """ provide any conversions for the object in order to correctly handle Parameters ---------- obj : the object to be resampled Returns ------- obj : converted object """ obj = obj._consolidate() return obj def _get_binner_for_time(self): raise AbstractMethodError(self) def _set_binner(self): """ setup our binners cache these as we are an immutable object """ if self.binner is None: self.binner, self.grouper = self._get_binner() def _get_binner(self): """ create the BinGrouper, assume that self.set_grouper(obj) has already been called """ binner, bins, binlabels = self._get_binner_for_time() bin_grouper = BinGrouper(bins, binlabels, indexer=self.groupby.indexer) return binner, bin_grouper def _assure_grouper(self): """ make sure that we are creating our binner & grouper """ self._set_binner() @Substitution(klass='Resampler', versionadded='.. versionadded:: 0.23.0', examples=""" >>> df = pd.DataFrame({'A': [1, 2, 3, 4]}, ... index=pd.date_range('2012-08-02', periods=4)) >>> df A 2012-08-02 1 2012-08-03 2 2012-08-04 3 2012-08-05 4 To get the difference between each 2-day period's maximum and minimum value in one pass, you can do >>> df.resample('2D').pipe(lambda x: x.max() - x.min()) A 2012-08-02 1 2012-08-04 1""") @Appender(_pipe_template) def pipe(self, func, *args, **kwargs): return super(Resampler, self).pipe(func, *args, **kwargs) _agg_doc = dedent(""" Examples -------- >>> s = pd.Series([1,2,3,4,5], index=pd.date_range('20130101', periods=5,freq='s')) 2013-01-01 00:00:00 1 2013-01-01 00:00:01 2 2013-01-01 00:00:02 3 2013-01-01 00:00:03 4 2013-01-01 00:00:04 5 Freq: S, dtype: int64 >>> r = s.resample('2s') DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0] >>> r.agg(np.sum) 2013-01-01 00:00:00 3 2013-01-01 00:00:02 7 2013-01-01 00:00:04 5 Freq: 2S, dtype: int64 >>> r.agg(['sum','mean','max']) sum mean max 2013-01-01 00:00:00 3 1.5 2 2013-01-01 00:00:02 7 3.5 4 2013-01-01 00:00:04 5 5.0 5 >>> r.agg({'result' : lambda x: x.mean() / x.std(), 'total' : np.sum}) total result 2013-01-01 00:00:00 3 2.121320 2013-01-01 00:00:02 7 4.949747 2013-01-01 00:00:04 5 NaN See also -------- pandas.DataFrame.groupby.aggregate pandas.DataFrame.resample.transform pandas.DataFrame.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( klass='DataFrame', versionadded='', axis='')) def aggregate(self, func, *args, **kwargs): self._set_binner() result, how = self._aggregate(func, *args, **kwargs) if result is None: how = func grouper = None result = self._groupby_and_aggregate(how, grouper, *args, **kwargs) result = self._apply_loffset(result) return result agg = aggregate apply = aggregate def transform(self, arg, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> resampled.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ return self._selected_obj.groupby(self.groupby).transform( arg, *args, **kwargs) def _downsample(self, f): raise AbstractMethodError(self) def _upsample(self, f, limit=None, fill_value=None): raise AbstractMethodError(self) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ self._set_binner() grouper = self.grouper if subset is None: subset = self.obj grouped = groupby(subset, by=None, grouper=grouper, axis=self.axis) # try the key selection try: return grouped[key] except KeyError: return grouped def _groupby_and_aggregate(self, how, grouper=None, *args, **kwargs): """ re-evaluate the obj with a groupby aggregation """ if grouper is None: self._set_binner() grouper = self.grouper obj = self._selected_obj try: grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis) except TypeError: # panel grouper grouped = PanelGroupBy(obj, grouper=grouper, axis=self.axis) try: if isinstance(obj, ABCDataFrame) and compat.callable(how): # Check if the function is reducing or not. result = grouped._aggregate_item_by_item(how, *args, **kwargs) else: result = grouped.aggregate(how, *args, **kwargs) except Exception: # we have a non-reducing function # try to evaluate result = grouped.apply(how, *args, **kwargs) result = self._apply_loffset(result) return self._wrap_result(result) def _apply_loffset(self, result): """ if loffset is set, offset the result index This is NOT an idempotent routine, it will be applied exactly once to the result. Parameters ---------- result : Series or DataFrame the result of resample """ needs_offset = ( isinstance(self.loffset, (DateOffset, timedelta, np.timedelta64)) and isinstance(result.index, DatetimeIndex) and len(result.index) > 0 ) if needs_offset: result.index = result.index + self.loffset self.loffset = None return result def _get_resampler_for_grouping(self, groupby, **kwargs): """ return the correct class for resampling with groupby """ return self._resampler_for_grouping(self, groupby=groupby, **kwargs) def _wrap_result(self, result): """ potentially wrap any results """ if isinstance(result, ABCSeries) and self._selection is not None: result.name = self._selection if isinstance(result, ABCSeries) and result.empty: obj = self.obj result.index = obj.index._shallow_copy(freq=to_offset(self.freq)) result.name = getattr(obj, 'name', None) return result def pad(self, limit=None): """ Forward fill the values Parameters ---------- limit : integer, optional limit of how many values to fill Returns ------- an upsampled Series See Also -------- Series.fillna DataFrame.fillna """ return self._upsample('pad', limit=limit) ffill = pad def nearest(self, limit=None): """ Fill values with nearest neighbor starting from center Parameters ---------- limit : integer, optional limit of how many values to fill .. versionadded:: 0.21.0 Returns ------- an upsampled Series See Also -------- Series.fillna DataFrame.fillna """ return self._upsample('nearest', limit=limit) def backfill(self, limit=None): """ Backward fill the new missing values in the resampled data. In statistics, imputation is the process of replacing missing data with substituted values [1]_. When resampling data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency). The backward fill will replace NaN values that appeared in the resampled data with the next value in the original sequence. Missing values that existed in the original data will not be modified. Parameters ---------- limit : integer, optional Limit of how many values to fill. Returns ------- Series, DataFrame An upsampled Series or DataFrame with backward filled NaN values. See Also -------- bfill : Alias of backfill. fillna : Fill NaN values using the specified method, which can be 'backfill'. nearest : Fill NaN values with nearest neighbor starting from center. pad : Forward fill NaN values. pandas.Series.fillna : Fill NaN values in the Series using the specified method, which can be 'backfill'. pandas.DataFrame.fillna : Fill NaN values in the DataFrame using the specified method, which can be 'backfill'. References ---------- .. [1] https://en.wikipedia.org/wiki/Imputation_(statistics) Examples -------- Resampling a Series: >>> s = pd.Series([1, 2, 3], ... index=pd.date_range('20180101', periods=3, freq='h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 2018-01-01 02:00:00 3 Freq: H, dtype: int64 >>> s.resample('30min').backfill() 2018-01-01 00:00:00 1 2018-01-01 00:30:00 2 2018-01-01 01:00:00 2 2018-01-01 01:30:00 3 2018-01-01 02:00:00 3 Freq: 30T, dtype: int64 >>> s.resample('15min').backfill(limit=2) 2018-01-01 00:00:00 1.0 2018-01-01 00:15:00 NaN 2018-01-01 00:30:00 2.0 2018-01-01 00:45:00 2.0 2018-01-01 01:00:00 2.0 2018-01-01 01:15:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 01:45:00 3.0 2018-01-01 02:00:00 3.0 Freq: 15T, dtype: float64 Resampling a DataFrame that has missing values: >>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]}, ... index=pd.date_range('20180101', periods=3, ... freq='h')) >>> df a b 2018-01-01 00:00:00 2.0 1 2018-01-01 01:00:00 NaN 3 2018-01-01 02:00:00 6.0 5 >>> df.resample('30min').backfill() a b 2018-01-01 00:00:00 2.0 1 2018-01-01 00:30:00 NaN 3 2018-01-01 01:00:00 NaN 3 2018-01-01 01:30:00 6.0 5 2018-01-01 02:00:00 6.0 5 >>> df.resample('15min').backfill(limit=2) a b 2018-01-01 00:00:00 2.0 1.0 2018-01-01 00:15:00 NaN NaN 2018-01-01 00:30:00 NaN 3.0 2018-01-01 00:45:00 NaN 3.0 2018-01-01 01:00:00 NaN 3.0 2018-01-01 01:15:00 NaN NaN 2018-01-01 01:30:00 6.0 5.0 2018-01-01 01:45:00 6.0 5.0 2018-01-01 02:00:00 6.0 5.0 """ return self._upsample('backfill', limit=limit) bfill = backfill def fillna(self, method, limit=None): """ Fill missing values introduced by upsampling. In statistics, imputation is the process of replacing missing data with substituted values [1]_. When resampling data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency). Missing values that existed in the original data will not be modified. Parameters ---------- method : {'pad', 'backfill', 'ffill', 'bfill', 'nearest'} Method to use for filling holes in resampled data * 'pad' or 'ffill': use previous valid observation to fill gap (forward fill). * 'backfill' or 'bfill': use next valid observation to fill gap. * 'nearest': use nearest valid observation to fill gap. limit : integer, optional Limit of how many consecutive missing values to fill. Returns ------- Series or DataFrame An upsampled Series or DataFrame with missing values filled. See Also -------- backfill : Backward fill NaN values in the resampled data. pad : Forward fill NaN values in the resampled data. nearest : Fill NaN values in the resampled data with nearest neighbor starting from center. interpolate : Fill NaN values using interpolation. pandas.Series.fillna : Fill NaN values in the Series using the specified method, which can be 'bfill' and 'ffill'. pandas.DataFrame.fillna : Fill NaN values in the DataFrame using the specified method, which can be 'bfill' and 'ffill'. Examples -------- Resampling a Series: >>> s = pd.Series([1, 2, 3], ... index=pd.date_range('20180101', periods=3, freq='h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 2018-01-01 02:00:00 3 Freq: H, dtype: int64 Without filling the missing values you get: >>> s.resample("30min").asfreq() 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 01:00:00 2.0 2018-01-01 01:30:00 NaN 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 >>> s.resample('30min').fillna("backfill") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 2 2018-01-01 01:00:00 2 2018-01-01 01:30:00 3 2018-01-01 02:00:00 3 Freq: 30T, dtype: int64 >>> s.resample('15min').fillna("backfill", limit=2) 2018-01-01 00:00:00 1.0 2018-01-01 00:15:00 NaN 2018-01-01 00:30:00 2.0 2018-01-01 00:45:00 2.0 2018-01-01 01:00:00 2.0 2018-01-01 01:15:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 01:45:00 3.0 2018-01-01 02:00:00 3.0 Freq: 15T, dtype: float64 >>> s.resample('30min').fillna("pad") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 1 2018-01-01 01:00:00 2 2018-01-01 01:30:00 2 2018-01-01 02:00:00 3 Freq: 30T, dtype: int64 >>> s.resample('30min').fillna("nearest") 2018-01-01 00:00:00 1 2018-01-01 00:30:00 2 2018-01-01 01:00:00 2 2018-01-01 01:30:00 3 2018-01-01 02:00:00 3 Freq: 30T, dtype: int64 Missing values present before the upsampling are not affected. >>> sm = pd.Series([1, None, 3], ... index=pd.date_range('20180101', periods=3, freq='h')) >>> sm 2018-01-01 00:00:00 1.0 2018-01-01 01:00:00 NaN 2018-01-01 02:00:00 3.0 Freq: H, dtype: float64 >>> sm.resample('30min').fillna('backfill') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 >>> sm.resample('30min').fillna('pad') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 1.0 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 NaN 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 >>> sm.resample('30min').fillna('nearest') 2018-01-01 00:00:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 01:00:00 NaN 2018-01-01 01:30:00 3.0 2018-01-01 02:00:00 3.0 Freq: 30T, dtype: float64 DataFrame resampling is done column-wise. All the same options are available. >>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]}, ... index=pd.date_range('20180101', periods=3, ... freq='h')) >>> df a b 2018-01-01 00:00:00 2.0 1 2018-01-01 01:00:00 NaN 3 2018-01-01 02:00:00 6.0 5 >>> df.resample('30min').fillna("bfill") a b 2018-01-01 00:00:00 2.0 1 2018-01-01 00:30:00 NaN 3 2018-01-01 01:00:00 NaN 3 2018-01-01 01:30:00 6.0 5 2018-01-01 02:00:00 6.0 5 References ---------- .. [1] https://en.wikipedia.org/wiki/Imputation_(statistics) """ return self._upsample(method, limit=limit) @Appender(_shared_docs['interpolate'] % _shared_docs_kwargs) def interpolate(self, method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None, **kwargs): """ Interpolate values according to different methods. .. versionadded:: 0.18.1 """ result = self._upsample(None) return result.interpolate(method=method, axis=axis, limit=limit, inplace=inplace, limit_direction=limit_direction, limit_area=limit_area, downcast=downcast, **kwargs) def asfreq(self, fill_value=None): """ return the values at the new freq, essentially a reindex Parameters ---------- fill_value: scalar, optional Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). .. versionadded:: 0.20.0 See Also -------- Series.asfreq DataFrame.asfreq """ return self._upsample('asfreq', fill_value=fill_value) def std(self, ddof=1, *args, **kwargs): """ Compute standard deviation of groups, excluding missing values Parameters ---------- ddof : integer, default 1 degrees of freedom """ nv.validate_resampler_func('std', args, kwargs) return self._downsample('std', ddof=ddof) def var(self, ddof=1, *args, **kwargs): """ Compute variance of groups, excluding missing values Parameters ---------- ddof : integer, default 1 degrees of freedom """ nv.validate_resampler_func('var', args, kwargs) return self._downsample('var', ddof=ddof) @Appender(GroupBy.size.__doc__) def size(self): # It's a special case as higher level does return # a copy of 0-len objects. GH14962 result = self._downsample('size') if not len(self.ax) and isinstance(self._selected_obj, ABCDataFrame): result = pd.Series([], index=result.index, dtype='int64') return result def quantile(self, q=0.5, **kwargs): """ Return value at the given quantile. .. versionadded:: 0.24.0 Parameters ---------- q : float or array-like, default 0.5 (50% quantile) See Also -------- Series.quantile DataFrame.quantile DataFrameGroupBy.quantile """ return self._downsample('quantile', q=q, **kwargs) # downsample methods for method in ['sum', 'prod']: def f(self, _method=method, min_count=0, *args, **kwargs): nv.validate_resampler_func(_method, args, kwargs) return self._downsample(_method, min_count=min_count) f.__doc__ = getattr(GroupBy, method).__doc__ setattr(Resampler, method, f) # downsample methods for method in ['min', 'max', 'first', 'last', 'mean', 'sem', 'median', 'ohlc']: def f(self, _method=method, *args, **kwargs): nv.validate_resampler_func(_method, args, kwargs) return self._downsample(_method) f.__doc__ = getattr(GroupBy, method).__doc__ setattr(Resampler, method, f) # groupby & aggregate methods for method in ['count']: def f(self, _method=method): return self._downsample(_method) f.__doc__ = getattr(GroupBy, method).__doc__ setattr(Resampler, method, f) # series only methods for method in ['nunique']: def f(self, _method=method): return self._downsample(_method) f.__doc__ = getattr(SeriesGroupBy, method).__doc__ setattr(Resampler, method, f) def _maybe_process_deprecations(r, how=None, fill_method=None, limit=None): """ potentially we might have a deprecation warning, show it but call the appropriate methods anyhow """ if how is not None: # .resample(..., how='sum') if isinstance(how, compat.string_types): method = "{0}()".format(how) # .resample(..., how=lambda x: ....) else: method = ".apply(<func>)" # if we have both a how and fill_method, then show # the following warning if fill_method is None: warnings.warn("how in .resample() is deprecated\n" "the new syntax is " ".resample(...).{method}".format( method=method), FutureWarning, stacklevel=3) r = r.aggregate(how) if fill_method is not None: # show the prior function call method = '.' + method if how is not None else '' args = "limit={0}".format(limit) if limit is not None else "" warnings.warn("fill_method is deprecated to .resample()\n" "the new syntax is .resample(...){method}" ".{fill_method}({args})".format( method=method, fill_method=fill_method, args=args), FutureWarning, stacklevel=3) if how is not None: r = getattr(r, fill_method)(limit=limit) else: r = r.aggregate(fill_method, limit=limit) return r class _GroupByMixin(GroupByMixin): """ provide the groupby facilities """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop('parent', None) groupby = kwargs.pop('groupby', None) if parent is None: parent = obj # initialize our GroupByMixin object with # the resampler attributes for attr in self._attributes: setattr(self, attr, kwargs.get(attr, getattr(parent, attr))) super(_GroupByMixin, self).__init__(None) self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True self.groupby = copy.copy(parent.groupby) def _apply(self, f, grouper=None, *args, **kwargs): """ dispatch to _upsample; we are stripping all of the _upsample kwargs and performing the original function call on the grouped object """ def func(x): x = self._shallow_copy(x, groupby=self.groupby) if isinstance(f, compat.string_types): return getattr(x, f)(**kwargs) return x.apply(f, *args, **kwargs) result = self._groupby.apply(func) return self._wrap_result(result) _upsample = _apply _downsample = _apply _groupby_and_aggregate = _apply class DatetimeIndexResampler(Resampler): @property def _resampler_for_grouping(self): return DatetimeIndexResamplerGroupby def _get_binner_for_time(self): # this is how we are actually creating the bins if self.kind == 'period': return self.groupby._get_time_period_bins(self.ax) return self.groupby._get_time_bins(self.ax) def _downsample(self, how, **kwargs): """ Downsample the cython defined function Parameters ---------- how : string / cython mapped function **kwargs : kw args passed to how function """ self._set_binner() how = self._is_cython_func(how) or how ax = self.ax obj = self._selected_obj if not len(ax): # reset to the new freq obj = obj.copy() obj.index.freq = self.freq return obj # do we have a regular frequency if ax.freq is not None or ax.inferred_freq is not None: if len(self.grouper.binlabels) > len(ax) and how is None: # let's do an asfreq return self.asfreq() # we are downsampling # we want to call the actual grouper method here result = obj.groupby( self.grouper, axis=self.axis).aggregate(how, **kwargs) result = self._apply_loffset(result) return self._wrap_result(result) def _adjust_binner_for_upsample(self, binner): """ Adjust our binner when upsampling. The range of a new index should not be outside specified range """ if self.closed == 'right': binner = binner[1:] else: binner = binner[:-1] return binner def _upsample(self, method, limit=None, fill_value=None): """ method : string {'backfill', 'bfill', 'pad', 'ffill', 'asfreq'} method for upsampling limit : int, default None Maximum size gap to fill when reindexing fill_value : scalar, default None Value to use for missing values See also -------- .fillna """ self._set_binner() if self.axis: raise AssertionError('axis must be 0') if self._from_selection: raise ValueError("Upsampling from level= or on= selection" " is not supported, use .set_index(...)" " to explicitly set index to" " datetime-like") ax = self.ax obj = self._selected_obj binner = self.binner res_index = self._adjust_binner_for_upsample(binner) # if we have the same frequency as our axis, then we are equal sampling if limit is None and to_offset(ax.inferred_freq) == self.freq: result = obj.copy() result.index = res_index else: result = obj.reindex(res_index, method=method, limit=limit, fill_value=fill_value) result = self._apply_loffset(result) return self._wrap_result(result) def _wrap_result(self, result): result = super(DatetimeIndexResampler, self)._wrap_result(result) # we may have a different kind that we were asked originally # convert if needed if self.kind == 'period' and not isinstance(result.index, PeriodIndex): result.index = result.index.to_period(self.freq) return result class DatetimeIndexResamplerGroupby(_GroupByMixin, DatetimeIndexResampler): """ Provides a resample of a groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return DatetimeIndexResampler class PeriodIndexResampler(DatetimeIndexResampler): @property def _resampler_for_grouping(self): return PeriodIndexResamplerGroupby def _get_binner_for_time(self): if self.kind == 'timestamp': return super(PeriodIndexResampler, self)._get_binner_for_time() return self.groupby._get_period_bins(self.ax) def _convert_obj(self, obj): obj = super(PeriodIndexResampler, self)._convert_obj(obj) if self._from_selection: # see GH 14008, GH 12871 msg = ("Resampling from level= or on= selection" " with a PeriodIndex is not currently supported," " use .set_index(...) to explicitly set index") raise NotImplementedError(msg) if self.loffset is not None: # Cannot apply loffset/timedelta to PeriodIndex -> convert to # timestamps self.kind = 'timestamp' # convert to timestamp if self.kind == 'timestamp': obj = obj.to_timestamp(how=self.convention) return obj def _downsample(self, how, **kwargs): """ Downsample the cython defined function Parameters ---------- how : string / cython mapped function **kwargs : kw args passed to how function """ # we may need to actually resample as if we are timestamps if self.kind == 'timestamp': return super(PeriodIndexResampler, self)._downsample(how, **kwargs) how = self._is_cython_func(how) or how ax = self.ax if is_subperiod(ax.freq, self.freq): # Downsampling return self._groupby_and_aggregate(how, grouper=self.grouper, **kwargs) elif is_superperiod(ax.freq, self.freq): if how == 'ohlc': # GH #13083 # upsampling to subperiods is handled as an asfreq, which works # for pure aggregating/reducing methods # OHLC reduces along the time dimension, but creates multiple # values for each period -> handle by _groupby_and_aggregate() return self._groupby_and_aggregate(how, grouper=self.grouper) return self.asfreq() elif ax.freq == self.freq: return self.asfreq() raise IncompatibleFrequency( 'Frequency {} cannot be resampled to {}, as they are not ' 'sub or super periods'.format(ax.freq, self.freq)) def _upsample(self, method, limit=None, fill_value=None): """ method : string {'backfill', 'bfill', 'pad', 'ffill'} method for upsampling limit : int, default None Maximum size gap to fill when reindexing fill_value : scalar, default None Value to use for missing values See also -------- .fillna """ # we may need to actually resample as if we are timestamps if self.kind == 'timestamp': return super(PeriodIndexResampler, self)._upsample( method, limit=limit, fill_value=fill_value) self._set_binner() ax = self.ax obj = self.obj new_index = self.binner # Start vs. end of period memb = ax.asfreq(self.freq, how=self.convention) # Get the fill indexer indexer = memb.get_indexer(new_index, method=method, limit=limit) return self._wrap_result(_take_new_index( obj, indexer, new_index, axis=self.axis)) class PeriodIndexResamplerGroupby(_GroupByMixin, PeriodIndexResampler): """ Provides a resample of a groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return PeriodIndexResampler class TimedeltaIndexResampler(DatetimeIndexResampler): @property def _resampler_for_grouping(self): return TimedeltaIndexResamplerGroupby def _get_binner_for_time(self): return self.groupby._get_time_delta_bins(self.ax) def _adjust_binner_for_upsample(self, binner): """ Adjust our binner when upsampling. The range of a new index is allowed to be greater than original range so we don't need to change the length of a binner, GH 13022 """ return binner class TimedeltaIndexResamplerGroupby(_GroupByMixin, TimedeltaIndexResampler): """ Provides a resample of a groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return TimedeltaIndexResampler def resample(obj, kind=None, **kwds): """ create a TimeGrouper and return our resampler """ tg = TimeGrouper(**kwds) return tg._get_resampler(obj, kind=kind) resample.__doc__ = Resampler.__doc__ def get_resampler_for_grouping(groupby, rule, how=None, fill_method=None, limit=None, kind=None, **kwargs): """ return our appropriate resampler when grouping as well """ # .resample uses 'on' similar to how .groupby uses 'key' kwargs['key'] = kwargs.pop('on', None) tg = TimeGrouper(freq=rule, **kwargs) resampler = tg._get_resampler(groupby.obj, kind=kind) r = resampler._get_resampler_for_grouping(groupby=groupby) return _maybe_process_deprecations(r, how=how, fill_method=fill_method, limit=limit) class TimeGrouper(Grouper): """ Custom groupby class for time-interval grouping Parameters ---------- freq : pandas date offset or offset alias for identifying bin edges closed : closed end of interval; 'left' or 'right' label : interval boundary to use for labeling; 'left' or 'right' convention : {'start', 'end', 'e', 's'} If axis is PeriodIndex """ _attributes = Grouper._attributes + ('closed', 'label', 'how', 'loffset', 'kind', 'convention', 'base') def __init__(self, freq='Min', closed=None, label=None, how='mean', axis=0, fill_method=None, limit=None, loffset=None, kind=None, convention=None, base=0, **kwargs): # Check for correctness of the keyword arguments which would # otherwise silently use the default if misspelled if label not in {None, 'left', 'right'}: raise ValueError('Unsupported value {} for `label`'.format(label)) if closed not in {None, 'left', 'right'}: raise ValueError('Unsupported value {} for `closed`'.format( closed)) if convention not in {None, 'start', 'end', 'e', 's'}: raise ValueError('Unsupported value {} for `convention`' .format(convention)) freq = to_offset(freq) end_types = {'M', 'A', 'Q', 'BM', 'BA', 'BQ', 'W'} rule = freq.rule_code if (rule in end_types or ('-' in rule and rule[:rule.find('-')] in end_types)): if closed is None: closed = 'right' if label is None: label = 'right' else: if closed is None: closed = 'left' if label is None: label = 'left' self.closed = closed self.label = label self.kind = kind self.convention = convention or 'E' self.convention = self.convention.lower() if isinstance(loffset, compat.string_types): loffset = to_offset(loffset) self.loffset = loffset self.how = how self.fill_method = fill_method self.limit = limit self.base = base # always sort time groupers kwargs['sort'] = True super(TimeGrouper, self).__init__(freq=freq, axis=axis, **kwargs) def _get_resampler(self, obj, kind=None): """ return my resampler or raise if we have an invalid axis Parameters ---------- obj : input object kind : string, optional 'period','timestamp','timedelta' are valid Returns ------- a Resampler Raises ------ TypeError if incompatible axis """ self._set_grouper(obj) ax = self.ax if isinstance(ax, DatetimeIndex): return DatetimeIndexResampler(obj, groupby=self, kind=kind, axis=self.axis) elif isinstance(ax, PeriodIndex) or kind == 'period': return PeriodIndexResampler(obj, groupby=self, kind=kind, axis=self.axis) elif isinstance(ax, TimedeltaIndex): return TimedeltaIndexResampler(obj, groupby=self, axis=self.axis) raise TypeError("Only valid with DatetimeIndex, " "TimedeltaIndex or PeriodIndex, " "but got an instance of %r" % type(ax).__name__) def _get_grouper(self, obj, validate=True): # create the resampler and return our binner r = self._get_resampler(obj) r._set_binner() return r.binner, r.grouper, r.obj def _get_time_bins(self, ax): if not isinstance(ax, DatetimeIndex): raise TypeError('axis must be a DatetimeIndex, but got ' 'an instance of %r' % type(ax).__name__) if len(ax) == 0: binner = labels = DatetimeIndex( data=[], freq=self.freq, name=ax.name) return binner, [], labels first, last = _get_range_edges(ax.min(), ax.max(), self.freq, closed=self.closed, base=self.base) tz = ax.tz # GH #12037 # use first/last directly instead of call replace() on them # because replace() will swallow the nanosecond part # thus last bin maybe slightly before the end if the end contains # nanosecond part and lead to `Values falls after last bin` error binner = labels = DatetimeIndex(freq=self.freq, start=first, end=last, tz=tz, name=ax.name) # GH 15549 # In edge case of tz-aware resapmling binner last index can be # less than the last variable in data object, this happens because of # DST time change if len(binner) > 1 and binner[-1] < last: extra_date_range = pd.date_range(binner[-1], last + self.freq, freq=self.freq, tz=tz, name=ax.name) binner = labels = binner.append(extra_date_range[1:]) # a little hack trimmed = False if (len(binner) > 2 and binner[-2] == last and self.closed == 'right'): binner = binner[:-1] trimmed = True ax_values = ax.asi8 binner, bin_edges = self._adjust_bin_edges(binner, ax_values) # general version, knowing nothing about relative frequencies bins = lib.generate_bins_dt64( ax_values, bin_edges, self.closed, hasnans=ax.hasnans) if self.closed == 'right': labels = binner if self.label == 'right': labels = labels[1:] elif not trimmed: labels = labels[:-1] else: if self.label == 'right': labels = labels[1:] elif not trimmed: labels = labels[:-1] if ax.hasnans: binner = binner.insert(0, NaT) labels = labels.insert(0, NaT) # if we end up with more labels than bins # adjust the labels # GH4076 if len(bins) < len(labels): labels = labels[:len(bins)] return binner, bins, labels def _adjust_bin_edges(self, binner, ax_values): # Some hacks for > daily data, see #1471, #1458, #1483 if self.freq != 'D' and is_superperiod(self.freq, 'D'): if self.closed == 'right': # GH 21459, GH 9119: Adjust the bins relative to the wall time bin_edges = binner.tz_localize(None) bin_edges = bin_edges + timedelta(1) - Nano(1) bin_edges = bin_edges.tz_localize(binner.tz).asi8 else: bin_edges = binner.asi8 # intraday values on last day if bin_edges[-2] > ax_values.max(): bin_edges = bin_edges[:-1] binner = binner[:-1] else: bin_edges = binner.asi8 return binner, bin_edges def _get_time_delta_bins(self, ax): if not isinstance(ax, TimedeltaIndex): raise TypeError('axis must be a TimedeltaIndex, but got ' 'an instance of %r' % type(ax).__name__) if not len(ax): binner = labels = TimedeltaIndex( data=[], freq=self.freq, name=ax.name) return binner, [], labels start, end = ax.min(), ax.max() labels = binner = TimedeltaIndex(start=start, end=end, freq=self.freq, name=ax.name) end_stamps = labels + self.freq bins = ax.searchsorted(end_stamps, side='left') # Addresses GH #10530 if self.base > 0: labels += type(self.freq)(self.base) return binner, bins, labels def _get_time_period_bins(self, ax): if not isinstance(ax, DatetimeIndex): raise TypeError('axis must be a DatetimeIndex, but got ' 'an instance of %r' % type(ax).__name__) freq = self.freq if not len(ax): binner = labels = PeriodIndex(data=[], freq=freq, name=ax.name) return binner, [], labels labels = binner = PeriodIndex(start=ax[0], end=ax[-1], freq=freq, name=ax.name) end_stamps = (labels + freq).asfreq(freq, 's').to_timestamp() if ax.tzinfo: end_stamps = end_stamps.tz_localize(ax.tzinfo) bins = ax.searchsorted(end_stamps, side='left') return binner, bins, labels def _get_period_bins(self, ax): if not isinstance(ax, PeriodIndex): raise TypeError('axis must be a PeriodIndex, but got ' 'an instance of %r' % type(ax).__name__) memb = ax.asfreq(self.freq, how=self.convention) # NaT handling as in pandas._lib.lib.generate_bins_dt64() nat_count = 0 if memb.hasnans: nat_count = np.sum(memb._isnan) memb = memb[~memb._isnan] # if index contains no valid (non-NaT) values, return empty index if not len(memb): binner = labels = PeriodIndex( data=[], freq=self.freq, name=ax.name) return binner, [], labels start = ax.min().asfreq(self.freq, how=self.convention) end = ax.max().asfreq(self.freq, how='end') labels = binner = PeriodIndex(start=start, end=end, freq=self.freq, name=ax.name) i8 = memb.asi8 freq_mult = self.freq.n # when upsampling to subperiods, we need to generate enough bins expected_bins_count = len(binner) * freq_mult i8_extend = expected_bins_count - (i8[-1] - i8[0]) rng = np.arange(i8[0], i8[-1] + i8_extend, freq_mult) rng += freq_mult bins = memb.searchsorted(rng, side='left') if nat_count > 0: # NaT handling as in pandas._lib.lib.generate_bins_dt64() # shift bins by the number of NaT bins += nat_count bins = np.insert(bins, 0, nat_count) binner = binner.insert(0, NaT) labels = labels.insert(0, NaT) return binner, bins, labels def _take_new_index(obj, indexer, new_index, axis=0): from pandas.core.api import Series, DataFrame if isinstance(obj, Series): new_values = algos.take_1d(obj.values, indexer) return Series(new_values, index=new_index, name=obj.name) elif isinstance(obj, DataFrame): if axis == 1: raise NotImplementedError("axis 1 is not supported") return DataFrame(obj._data.reindex_indexer( new_axis=new_index, indexer=indexer, axis=1)) else: raise ValueError("'obj' should be either a Series or a DataFrame") def _get_range_edges(first, last, offset, closed='left', base=0): if isinstance(offset, Tick): is_day = isinstance(offset, Day) day_nanos = delta_to_nanoseconds(timedelta(1)) # #1165 if (is_day and day_nanos % offset.nanos == 0) or not is_day: return _adjust_dates_anchored(first, last, offset, closed=closed, base=base) else: first = first.normalize() last = last.normalize() if closed == 'left': first = Timestamp(offset.rollback(first)) else: first = Timestamp(first - offset) last = Timestamp(last + offset) return first, last def _adjust_dates_anchored(first, last, offset, closed='right', base=0): # First and last offsets should be calculated from the start day to fix an # error cause by resampling across multiple days when a one day period is # not a multiple of the frequency. # # See https://github.com/pandas-dev/pandas/issues/8683 # GH 10117 & GH 19375. If first and last contain timezone information, # Perform the calculation in UTC in order to avoid localizing on an # Ambiguous or Nonexistent time. first_tzinfo = first.tzinfo last_tzinfo = last.tzinfo start_day_nanos = first.normalize().value if first_tzinfo is not None: first = first.tz_convert('UTC') if last_tzinfo is not None: last = last.tz_convert('UTC') base_nanos = (base % offset.n) * offset.nanos // offset.n start_day_nanos += base_nanos foffset = (first.value - start_day_nanos) % offset.nanos loffset = (last.value - start_day_nanos) % offset.nanos if closed == 'right': if foffset > 0: # roll back fresult = first.value - foffset else: fresult = first.value - offset.nanos if loffset > 0: # roll forward lresult = last.value + (offset.nanos - loffset) else: # already the end of the road lresult = last.value else: # closed == 'left' if foffset > 0: fresult = first.value - foffset else: # start of the road fresult = first.value if loffset > 0: # roll forward lresult = last.value + (offset.nanos - loffset) else: lresult = last.value + offset.nanos fresult = Timestamp(fresult) lresult = Timestamp(lresult) if first_tzinfo is not None: fresult = fresult.tz_localize('UTC').tz_convert(first_tzinfo) if last_tzinfo is not None: lresult = lresult.tz_localize('UTC').tz_convert(last_tzinfo) return fresult, lresult def asfreq(obj, freq, method=None, how=None, normalize=False, fill_value=None): """ Utility frequency conversion method for Series/DataFrame """ if isinstance(obj.index, PeriodIndex): if method is not None: raise NotImplementedError("'method' argument is not supported") if how is None: how = 'E' new_obj = obj.copy() new_obj.index = obj.index.asfreq(freq, how=how) elif len(obj.index) == 0: new_obj = obj.copy() new_obj.index = obj.index._shallow_copy(freq=to_offset(freq)) else: dti = date_range(obj.index[0], obj.index[-1], freq=freq) dti.name = obj.index.name new_obj = obj.reindex(dti, method=method, fill_value=fill_value) if normalize: new_obj.index = new_obj.index.normalize() return new_obj
bsd-3-clause
ngvozdiev/ctr-base
python/plot_link_paths.py
1
3124
from collections import defaultdict from scipy import interpolate import numpy as np import matplotlib.pylab as plt import parser_wrapper import glob import itertools import matplotlib.patches as mpatches import argparse import matplotlib matplotlib.rcParams.update({'font.size': 14}) parser = argparse.ArgumentParser(description='Plots link occupancy') parser.add_argument('--file', type=str, help='Metric file') parser.add_argument('--sofile', type=str, help='Library file for parser', default='libmetrics_parser.dylib') parser.add_argument('--metric', type=str, help='Metric id', default='path_bytes') parser.add_argument('--x_min', type=float, default=0) parser.add_argument('--x_max', type=float, default=2000) args = parser.parse_args() INTERESTING_LINKS = ['N0->N1', 'N4->N5', 'N8->N9', 'N12->N13'] p = parser_wrapper.MetricsParser(args.file, args.sofile) data = p.Parse(args.metric, '.*', deltas=True) print data ax_f, axarr = plt.subplots(len(INTERESTING_LINKS), sharex=True, sharey=True) def SrcDstLabel(src, dst): s = str(src) + u'\u2192' + str(dst) return s.replace('N', '') def AggFromPath(path): path = path.split('[')[1].split(']')[0] pieces = path.split('->') return SrcDstLabel(pieces[0], pieces[-1]) cm = plt.get_cmap('hot') NUM_COLORS=5 colors = itertools.cycle([cm(1.*i/NUM_COLORS) for i in range(NUM_COLORS)]) color_map = {} def GetColor(label): if label in color_map: return color_map[label] return color_map.setdefault(label, colors.next()) GetColor(SrcDstLabel(0, 1)) GetColor(SrcDstLabel(2, 3)) GetColor(SrcDstLabel(6, 7)) GetColor(SrcDstLabel(10, 11)) for i, link in enumerate(INTERESTING_LINKS): ax = axarr[i] xs = [] fs = [] labels = [] for key, value in data.items(): assert(key[0] == args.metric) path = key[1] if link in path: x, y = value x = np.array(x, dtype=np.float64) * 0.000000000001 y = np.array(y, dtype=np.float64) * (100.0 / 1000.0 / 1000.0 / 1000.0) * 8 x, y = parser_wrapper.Bin(x, y, 100) xs.append(x) fs.append(interpolate.interp1d(x,y, bounds_error=False, fill_value=0)) labels.append(AggFromPath(path)) if len(xs) == 0: continue max_x = max(len(i) for i in xs) x = None for xi in xs: if len(xi) == max_x: x = xi ys = [f(x) for f in fs] colors_list = [GetColor(i) for i in labels] ngons = ax.stackplot(x, ys, labels=labels, colors=colors_list) # ngons[0].set_hatch('//') ax.set_ylabel('Gbps') ax.legend(loc=1, prop={'size': 10}) #color_items = color_map.items() #ax.legend([plt.Rectangle((0, 0), 1, 1, fc=v) for _, v in color_items], # [k for k, _ in color_items], ncol=2, loc=2) ax_f.subplots_adjust(hspace=0) plt.setp([a.get_xticklabels() for a in ax_f.axes[:-1]], visible=False) plt.xlim([args.x_min, args.x_max]) plt.ylim([0,0.999]) start, end = ax.get_xlim() ax.xaxis.set_ticks(np.arange(start, end, 300)) plt.xlabel('seconds') plt.savefig('link_paths_out.pdf', bbox_inches='tight') plt.show()
mit
bartvm/pylearn2
pylearn2/optimization/test_batch_gradient_descent.py
44
6402
from __future__ import print_function from pylearn2.optimization.batch_gradient_descent import BatchGradientDescent import theano.tensor as T from pylearn2.utils import sharedX import numpy as np from theano.compat.six.moves import xrange from theano import config from theano.printing import min_informative_str def test_batch_gradient_descent(): """ Verify that batch gradient descent works by checking that it minimizes a quadratic function f(x) = x^T A x + b^T x + c correctly for several sampled values of A, b, and c. The ground truth minimizer is x = np.linalg.solve(A,-b)""" n = 3 A = T.matrix(name = 'A') b = T.vector(name = 'b') c = T.scalar(name = 'c') x = sharedX( np.zeros((n,)) , name = 'x') half = np.cast[config.floatX](0.5) obj = half * T.dot(T.dot(x,A),x)+T.dot(b,x)+c minimizer = BatchGradientDescent( objective = obj, params = [ x], inputs = [ A, b, c]) num_samples = 3 rng = np.random.RandomState([1,2,3]) for i in xrange(num_samples): A = np.cast[config.floatX](rng.randn(1.5*n,n)) A = np.cast[config.floatX](np.dot(A.T,A)) A += np.cast[config.floatX](np.identity(n) * .02) b = np.cast[config.floatX](rng.randn(n)) c = np.cast[config.floatX](rng.randn()) x.set_value(np.cast[config.floatX](rng.randn(n))) analytical_x = np.linalg.solve(A,-b) actual_obj = minimizer.minimize(A,b,c) actual_x = x.get_value() #Check that the value returned by the minimize method #is the objective function value at the parameters #chosen by the minimize method cur_obj = minimizer.obj(A,b,c) assert np.allclose(actual_obj, cur_obj) x.set_value(analytical_x) analytical_obj = minimizer.obj(A,b,c) #make sure the objective function is accurate to first 4 digits condition1 = not np.allclose(analytical_obj, actual_obj) condition2 = np.abs(analytical_obj-actual_obj) >= 1e-4 * \ np.abs(analytical_obj) if (config.floatX == 'float64' and condition1) \ or (config.floatX == 'float32' and condition2): print('objective function value came out wrong on sample ',i) print('analytical obj', analytical_obj) print('actual obj',actual_obj) """ The following section of code was used to verify that numerical error can make the objective function look non-convex print('Checking for numerically induced non-convex behavior') def f(x): return 0.5 * np.dot(x,np.dot(A,x)) + np.dot(b,x) + c x.set_value(actual_x) minimizer._compute_grad(A,b,c) minimizer._normalize_grad() d = minimizer.param_to_grad_shared[x].get_value() x = actual_x.copy() prev = f(x) print(prev) step_size = 1e-4 x += step_size * d cur = f(x) print(cur) cur_sgn = np.sign(cur-prev) flip_cnt = 0 for i in xrange(10000): x += step_size * d prev = cur cur = f(x) print(cur) prev_sgn = cur_sgn cur_sgn = np.sign(cur-prev) if cur_sgn != prev_sgn: print('flip') flip_cnt += 1 if flip_cnt > 1: print("Non-convex!") from matplotlib import pyplot as plt y = [] x = actual_x.copy() for j in xrange(10000): y.append(f(x)) x += step_size * d plt.plot(y) plt.show() assert False print('None found') """ #print 'actual x',actual_x #print 'A:' #print A #print 'b:' #print b #print 'c:' #print c x.set_value(actual_x) minimizer._compute_grad(A,b,c) x_grad = minimizer.param_to_grad_shared[x] actual_grad = x_grad.get_value() correct_grad = 0.5 * np.dot(A,x.get_value())+ 0.5 * \ np.dot(A.T, x.get_value()) +b if not np.allclose(actual_grad, correct_grad): print('gradient was wrong at convergence point') print('actual grad: ') print(actual_grad) print('correct grad: ') print(correct_grad) print('max difference: ', end='') np.abs(actual_grad-correct_grad).max() assert False minimizer._normalize_grad() d = minimizer.param_to_grad_shared[x].get_value() step_len = ( np.dot(b,d) + 0.5 * np.dot(d,np.dot(A,actual_x)) \ + 0.5 * np.dot(actual_x,np.dot(A,d)) ) \ / np.dot(d, np.dot(A,d)) g = np.dot(A,actual_x)+b deriv = np.dot(g,d) print('directional deriv at actual', deriv) print('optimal step_len', step_len) optimal_x = actual_x - d * step_len g = np.dot(A,optimal_x) + b deriv = np.dot(g,d) print('directional deriv at optimal: ',deriv) x.set_value(optimal_x) print('obj at optimal: ',minimizer.obj(A,b,c)) print('eigenvalue range:') val, vec = np.linalg.eig(A) print((val.min(),val.max())) print('condition number: ',(val.max()/val.min())) assert False if __name__ == '__main__': test_batch_gradient_descent()
bsd-3-clause
maartenbreddels/vaex
packages/vaex-core/vaex/legacy.py
1
60957
# -*- coding: utf-8 -*- from __future__ import division, print_function import numpy as np import vaex from .tasks import Task, TaskMapReduce from .utils import _parse_f import six def _asfloat(a): if a.dtype.type == np.float64 and a.strides[0] == 8: return a else: return a.astype(np.float64, copy=False) class TaskMapReduceLegacy(TaskMapReduce): def __init__(self, *args, **kwargs): kwargs = kwargs.copy() kwargs['ignore_filter'] = True TaskMapReduce.__init__(self, *args, **kwargs) class TaskHistogram(Task): def __init__(self, df, subspace, expressions, size, limits, masked=False, weight=None): self.size = size self.limits = limits Task.__init__(self, df, expressions, name="histogram") self.subspace = subspace self.dtype = np.float64 self.masked = masked self.weight = weight # self.grids = vaex.grids.Grids(self.df, self.df.executor.thread_pool, *expressions) # self.grids.ranges = limits # self.grids.grids["counts"] = vaex.grids.Grid(self.grids, size, self.dimension, None) shape1 = (self.size,) * self.dimension try: self.size[0] shape1 = tuple(self.size) except: pass shape = (self.subspace.executor.thread_pool.nthreads,) + shape1 self.data = np.zeros(shape, dtype=self.dtype) self.ranges_flat = [] self.minima = [] self.maxima = [] for limit in self.limits: self.ranges_flat.extend(limit) vmin, vmax = limit self.minima.append(vmin) self.maxima.append(vmax) if self.weight is not None: self.expressions_all.append(weight) # print self.ranges_flat def __repr__(self): name = self.__class__.__module__ + "." + self.__class__.__name__ return "<%s(df=%r, expressions=%r, size=%r, limits=%r)> instance at 0x%x" % (name, self.df, self.expressions, self.size, self.limits, id(self)) def map(self, thread_index, i1, i2, filter_mask, *blocks): class Info(object): pass info = Info() info.i1 = i1 info.i2 = i2 info.first = i1 == 0 info.last = i2 == self.df.length_unfiltered() info.size = i2 - i1 # print "bin", i1, i2, info.last # self.grids["counts"].bin_block(info, *blocks) # mask = self.df.mask data = self.data[thread_index] blocks = [_asfloat(block) for block in blocks] if self.masked or self.df.filtered: mask = self.df.evaluate_selection_mask("default" if self.masked else None, i1=i1, i2=i2, pre_filtered=False) blocks = [block[mask] for block in blocks] subblock_weight = None if len(blocks) == len(self.expressions) + 1: subblock_weight = blocks[-1] blocks = list(blocks[:-1]) # print subblocks[0] # print subblocks[1] if self.dimension == 1: vaex.vaexfast.histogram1d(blocks[0], subblock_weight, data, *self.ranges_flat) elif self.dimension == 2: # if subblock_weight is None: # #print "speedup?" # histogram_numba(blocks[0], blocks[1], subblock_weight, data, *self.ranges_flat) # else: vaex.vaexfast.histogram2d(blocks[0], blocks[1], subblock_weight, data, *self.ranges_flat) # vaex.vaexfast.statisticNd([blocks[0], blocks[1]], subblock_weight, data, self.minima, self.maxima, 0) elif self.dimension == 3: vaex.vaexfast.histogram3d(blocks[0], blocks[1], blocks[2], subblock_weight, data, *self.ranges_flat) else: blocks = list(blocks) # histogramNd wants blocks to be a list vaex.vaexfast.histogramNd(blocks, subblock_weight, data, self.minima, self.maxima) return i1 # return map(self._map, blocks)#[self.map(block) for block in blocks] def reduce(self, results): for i in range(1, self.subspace.executor.thread_pool.nthreads): self.data[0] += self.data[i] return self.data[0] # return self.data class SubspaceGridded(object): def __init__(self, subspace_bounded, grid, vx=None, vy=None, vcounts=None): self.subspace_bounded = subspace_bounded self.grid = grid self.vx = vx self.vy = vy self.vcounts = vcounts def vector(self, weightx, weighty, size=32): counts = self.subspace_bounded.gridded_by_histogram(size=size) vx = self.subspace_bounded.gridded_by_histogram(size=size, weight=weightx) vy = self.subspace_bounded.gridded_by_histogram(size=size, weight=weighty) return SubspaceGridded(self.subspace_bounded, self.grid, vx=vx, vy=vy, vcounts=counts) def filter_gaussian(self, sigmas=1): import scipy.ndimage return SubspaceGridded(self.subspace_bounded, scipy.ndimage.filters.gaussian_filter(self.grid, sigmas)) def clip_relative(self, v1, v2): vmin = self.grid.min() vmax = self.grid.max() width = vmax - vmin return SubspaceGridded(self.subspace_bounded, np.clip(self.grid, vmin + v1 * width, vmin + v2 * width)) def volr(self, **kwargs): import vaex.notebook return vaex.notebook.volr(subspace_gridded=self, **kwargs) def plot(self, axes=None, **kwargs): self.subspace_bounded.subspace.plot(np.log1p(self.grid), limits=self.subspace_bounded.bounds, axes=axes, **kwargs) def mean_line(self, axis=0, **kwargs): from matplotlib import pylab assert axis in [0, 1] other_axis = 0 if axis == 1 else 1 xmin, xmax = self.subspace_bounded.bounds[axis] ymin, ymax = self.subspace_bounded.bounds[other_axis] x = vaex.utils.linspace_centers(xmin, xmax, self.grid.shape[axis]) y = vaex.utils.linspace_centers(ymin, ymax, self.grid.shape[other_axis]) print(y) if axis == 0: counts = np.sum(self.grid, axis=axis) means = np.sum(self.grid * y[np.newaxis, :].T, axis=axis) / counts else: counts = np.sum(self.grid, axis=axis) means = np.sum(self.grid * y[:, np.newaxis].T, axis=axis) / counts if axis == 0: result = pylab.plot(x, means, **kwargs) else: result = pylab.plot(means, x, **kwargs) self.subspace_bounded.lim() return result, x, means def _repr_png_(self): from matplotlib import pylab fig, ax = pylab.subplots() self.plot(axes=ax, f=np.log1p) import vaex.utils if all([k is not None for k in [self.vx, self.vy, self.vcounts]]): N = self.vx.grid.shape[0] bounds = self.subspace_bounded.bounds print(bounds) positions = [vaex.utils.linspace_centers(bounds[i][0], bounds[i][1], N) for i in range(self.subspace_bounded.subspace.dimension)] print(positions) mask = self.vcounts.grid > 0 vx = np.zeros_like(self.vx.grid) vy = np.zeros_like(self.vy.grid) vx[mask] = self.vx.grid[mask] / self.vcounts.grid[mask] vy[mask] = self.vy.grid[mask] / self.vcounts.grid[mask] # vx = self.vx.grid / self.vcounts.grid # vy = self.vy.grid / self.vcounts.grid x2d, y2d = np.meshgrid(positions[0], positions[1]) ax.quiver(x2d[mask], y2d[mask], vx[mask], vy[mask]) # print x2d # print y2d # print vx # print vy # ax.quiver(x2d, y2d, vx, vy) ax.title.set_text(r"$\log(1+counts)$") ax.set_xlabel(self.subspace_bounded.subspace.expressions[0]) ax.set_ylabel(self.subspace_bounded.subspace.expressions[1]) # pylab.savefig # from .io import StringIO from six import StringIO file_object = StringIO() fig.canvas.print_png(file_object) pylab.close(fig) return file_object.getvalue() def cube_png(self, f=np.log1p, colormap="afmhot", file="cube.png"): if self.grid.shape != ((128,) * 3): logger.error("only 128**3 cubes are supported") return None colormap_name = "afmhot" import matplotlib.cm colormap = matplotlib.cm.get_cmap(colormap_name) mapping = matplotlib.cm.ScalarMappable(cmap=colormap) # pixmap = QtGui.QPixmap(32*2, 32) data = np.zeros((128 * 8, 128 * 16, 4), dtype=np.uint8) # mi, ma = 1*10**self.mod1, self.data3d.max()*10**self.mod2 grid = f(self.grid) vmin, vmax = grid.min(), grid.max() grid_normalized = (grid - vmin) / (vmax - vmin) # intensity_normalized = (np.log(self.data3d + 1.) - np.log(mi)) / (np.log(ma) - np.log(mi)); import PIL.Image for y2d in range(8): for x2d in range(16): zindex = x2d + y2d * 16 I = grid_normalized[zindex] rgba = mapping.to_rgba(I, bytes=True) # .reshape(Nx, 4) # print rgba.shape subdata = data[y2d * 128:(y2d + 1) * 128, x2d * 128:(x2d + 1) * 128] for i in range(3): subdata[:, :, i] = rgba[:, :, i] subdata[:, :, 3] = (grid_normalized[zindex] * 255).astype(np.uint8) # * 0 + 255 if 0: filename = "cube%03d.png" % zindex img = PIL.Image.frombuffer("RGB", (128, 128), subdata[:, :, 0:3] * 1) print(("saving to", filename)) img.save(filename) img = PIL.Image.frombuffer("RGBA", (128 * 16, 128 * 8), data, 'raw') # , "RGBA", 0, -1) # filename = "cube.png" # print "saving to", file img.save(file, "png") if 0: filename = "colormap.png" print(("saving to", filename)) height, width = self.colormap_data.shape[:2] img = PIL.Image.frombuffer("RGB", (width, height), self.colormap_data) img.save(filename) class SubspaceBounded(object): def __init__(self, subspace, bounds): self.subspace = subspace self.bounds = bounds def histogram(self, size=256, weight=None): return self.subspace.histogram(limits=self.bounds, size=size, weight=weight) def gridded(self, size=256, weight=None): return self.gridded_by_histogram(size=size, weight=weight) def gridded_by_histogram(self, size=256, weight=None): grid = self.histogram(size=size, weight=weight) return SubspaceGridded(self, grid) def lim(self): from matplotlib import pylab xmin, xmax = self.bounds[0] ymin, ymax = self.bounds[1] pylab.xlim(xmin, xmax) pylab.ylim(ymin, ymax) class Subspaces(object): """ :type: subspaces: list[Subspace] """ def __init__(self, subspaces): self.subspaces = subspaces self.expressions = set() first_subspace = self.subspaces[0] self.delay = first_subspace.delay self.dimension = first_subspace.dimension self.df = self.subspaces[0].df for subspace in self.subspaces: assert subspace.df == self.subspaces[0].df assert subspace.delay == self.subspaces[0].delay assert subspace.dimension == self.subspaces[0].dimension, "subspace is of dimension %s, while first subspace if of dimension %s" % (subspace.dimension, self.subspaces[0].dimension) # assert subspace.sele== self.subspaces[0].delay self.expressions.update(subspace.expressions) self.expressions = list(self.expressions) self.subspace = self.df(*list(self.expressions), delay=self.delay, executor=first_subspace.executor) # def _repr_html_(self): def __len__(self): return len(self.subspaces) def names(self, seperator=" "): return [seperator.join(subspace.expressions) for subspace in self.subspaces] def expressions_list(self): return [subspace.expressions for subspace in self.subspaces] def selected(self): return Subspaces([subspace.selected() for subspace in self.subspaces]) def _unpack(self, values): value_map = dict(zip(self.expressions, values)) return [[value_map[ex] for ex in subspace.expressions] for subspace in self.subspaces] def _pack(self, values): value_map = {} for subspace_values, subspace in zip(values, self.subspaces): for value, expression in zip(subspace_values, subspace.expressions): if expression in value_map: if isinstance(value, np.ndarray): assert np.all(value_map[expression] == value), "inconsistency in subspaces, value for expression %r is %r in one case, and %r in the other" % (expression, value, value_map[expression]) else: assert value_map[expression] == value, "inconsistency in subspaces, value for expression %r is %r in one case, and %r in the other" % (expression, value, value_map[expression]) else: value_map[expression] = value return [value_map[expression] for expression in self.expressions] def minmax(self): if self.delay: return self.subspace.minmax().then(self._unpack) else: return self._unpack(self.subspace.minmax()) def limits_sigma(self, sigmas=3, square=False): if self.delay: return self.subspace.limits_sigma(sigmas=sigmas, square=square).then(self._unpack) else: return self._unpack(self.subspace.limits_sigma(sigmas=sigmas, square=square)) def mutual_information(self, limits=None, size=256): if limits is not None: limits = self._pack(limits) def mutual_information(limits): return vaex.promise.listPromise([vaex.promise.Promise.fulfilled(subspace.mutual_information(subspace_limits, size=size)) for subspace_limits, subspace in zip(limits, self.subspaces)]) # return histograms if limits is None: limits_promise = vaex.promise.Promise.fulfilled(self.subspace.minmax()) else: limits_promise = vaex.promise.Promise.fulfilled(limits) limits_promise = limits_promise.then(self._unpack) promise = limits_promise.then(mutual_information) return promise if self.delay else promise.get() def mean(self): if self.delay: return self.subspace.mean().then(self._unpack) else: means = self.subspace.mean() return self._unpack(means) def var(self, means=None): # 'pack' means, and check if it makes sence if means is not None: means = self._pack(means) def var(means): return self.subspace.var(means=means) if self.delay: # if means is None: # return self.subspace.mean().then(var).then(self._unpack) # else: return var(means).then(self._unpack) else: # if means is None: # means = self.subspace.mean() # logger.debug("means: %r", means) return self._unpack(var(means=means)) def correlation(self, means=None, vars=None): def var(means): return self.subspace.var(means=means) def correlation(means_and_vars): means, vars = means_and_vars means, vars = self._unpack(means), self._unpack(vars) # return self.subspace.correlation(means=means, vars=vars) return vaex.promise.listPromise([subspace.correlation(means=subspace_mean, vars=subspace_var) for subspace_mean, subspace_var, subspace in zip(means, vars, self.subspaces)]) if means is not None: means = self._pack(means) if vars is not None: vars = self._pack(vars) if self.delay: if means is None: mean_promise = self.subspace.mean() else: mean_promise = vaex.promise.Promise.fulfilled(means) if vars is None: var_promise = mean_promise.then(var) else: var_promise = vaex.promise.Promise.fulfilled(vars) mean_and_var_calculated = vaex.promise.listPromise(mean_promise, var_promise) return mean_and_var_calculated.then(correlation) else: if means is None: means = self.subspace.mean() if vars is None: vars = self.subspace.var(means=means) means = self._unpack(means) vars = self._unpack(vars) return [subspace.correlation(means=subspace_mean, vars=subspace_var) for subspace_mean, subspace_var, subspace in zip(means, vars, self.subspaces)] # return correlation((means, vars)) # def bounded_by(self, limits_list): # return SubspacesBounded(SubspaceBounded(subspace, limits) for subspace, limit in zip(self.subspaces, limits_list)) class Subspace(object): """A Subspace represent a subset of columns or expressions from a df. subspace are not instantiated directly, but by 'calling' the df like this: >>> subspace_xy = some_df("x", "y") >>> subspace_r = some_df("sqrt(x**2+y**2)") See `vaex.df.Dataset` for more documentation. """ def __init__(self, df, expressions, executor, delay, masked=False): """ :param Dataset df: the df the subspace refers to :param list[str] expressions: list of expressions that forms the subspace :param Executor executor: responsible for executing the tasks :param bool delay: return answers directly, or as a promise :param bool masked: work on the selection or not :return: """ self.df = df self.expressions = expressions self.executor = executor self.delay = delay self.is_masked = masked def __repr__(self): name = self.__class__.__module__ + "." + self.__class__.__name__ return "<%s(df=%r, expressions=%r, delay=%r, is_masked=%r)> instance at 0x%x" % (name, self.df, self.expressions, self.delay, self.is_masked, id(self)) @property def dimension(self): return len(self.expressions) def get_selection(self): return self.df.get_selection("default") if self.is_masked else None def is_selected(self): return self.is_masked def selected(self): return self.__class__(self.df, expressions=self.expressions, executor=self.executor, delay=self.delay, masked=True) def delayhronous(self): return self.__class__(self.df, expressions=self.expressions, executor=self.executor, delay=True, masked=self.is_masked) def image_rgba_save(self, filename, data=None, rgba8=None, **kwargs): if rgba8 is not None: data = self.image_rgba_data(rgba8=rgba8, **kwargs) if data is None: data = self.image_rgba_data(**kwargs) with open(filename, "wb") as f: f.write(data) def image_rgba_notebook(self, data=None, rgba8=None, **kwargs): if rgba8 is not None: data = self.image_rgba_data(rgba8=rgba8, **kwargs) if data is None: data = self.image_rgba_data(**kwargs) from IPython.display import display, Image return Image(data=data) def image_rgba_data(self, rgba8=None, format="png", pil_draw=False, **kwargs): import PIL.Image import PIL.ImageDraw from six import StringIO if rgba8 is None: rgba8 = self.image_rgba(**kwargs) img = PIL.Image.frombuffer("RGBA", rgba8.shape[:2], rgba8, 'raw') # , "RGBA", 0, -1) if pil_draw: draw = PIL.ImageDraw.Draw(img) pil_draw(draw) f = StringIO() img.save(f, format) return f.getvalue() def image_rgba_url(self, rgba8=None, **kwargs): if rgba8 is None: rgba8 = self.image_rgba(**kwargs) import PIL.Image img = PIL.Image.frombuffer("RGBA", rgba8.shape[:2], rgba8, 'raw') # , "RGBA", 0, -1) from six import StringIO f = StringIO() img.save(f, "png") from base64 import b64encode imgurl = "data:image/png;base64," + b64encode(f.getvalue()) + "" return imgurl def normalize_grid(self, grid): grid = grid * 1 # copy mask = (grid > 0) & np.isfinite(grid) if grid.sum(): grid -= grid[mask].min() grid /= grid[mask].max() else: grid[:] = 0 return grid def limits(self, value, square=False): """TODO: doc + server side implementation""" if isinstance(value, six.string_types): import re match = re.match(r"(\d*)(\D*)", value) if match is None: raise ValueError("do not understand limit specifier %r, examples are 90%, 3sigma") else: value, type = match.groups() import ast value = ast.literal_eval(value) type = type.strip() if type in ["s", "sigma"]: return self.limits_sigma(value) elif type in ["ss", "sigmasquare"]: return self.limits_sigma(value, square=True) elif type in ["%", "percent"]: return self.limits_percentage(value) elif type in ["%s", "%square", "percentsquare"]: return self.limits_percentage(value, square=True) if value is None: return self.limits_percentage(square=square) else: return value def image_rgba(self, grid=None, size=256, limits=None, square=False, center=None, weight=None, weight_stat="mean", figsize=None, aspect="auto", f=lambda x: x, axes=None, xlabel=None, ylabel=None, group_by=None, group_limits=None, group_colors='jet', group_labels=None, group_count=10, cmap="afmhot", vmin=None, vmax=None, pre_blend=False, background_color="white", background_alpha=1., normalize=True, color=None): f = _parse_f(f) if grid is None: limits = self.limits(limits) if limits is None: limits = self.limits_sigma() if group_limits is None and group_by: group_limits = tuple(self.df(group_by).minmax()[0]) + (group_count,) if weight_stat == "mean" and weight is not None: grid = self.bin_mean(weight, limits=limits, size=size, group_limits=group_limits, group_by=group_by) else: grid = self.histogram(limits=limits, size=size, weight=weight, group_limits=group_limits, group_by=group_by) if grid is None: # cancel occured return import matplotlib.cm background_color = np.array(matplotlib.colors.colorConverter.to_rgb(background_color)) if group_by: gmin, gmax, group_count = group_limits if isinstance(group_colors, six.string_types): group_colors = matplotlib.cm.get_cmap(group_colors) if isinstance(group_colors, matplotlib.colors.Colormap): group_count = group_limits[2] colors = [group_colors(k / float(group_count - 1.)) for k in range(group_count)] else: colors = [matplotlib.colors.colorConverter.to_rgba(k) for k in group_colors] total = np.sum(grid, axis=0).T # grid /= total mask = total > 0 alpha = total - total[mask].min() alpha[~mask] = 0 alpha = total / alpha.max() rgba = grid.T.dot(colors) def _norm(data): mask = np.isfinite(data) data = data - data[mask].min() data /= data[mask].max() return data rgba[..., 3] = (f(alpha)) # rgba[...,3] = 1 rgba[total == 0, 3] = 0. mask = alpha > 0 if 1: for i in range(3): rgba[..., i] /= total # rgba[...,i] /= rgba[...,0:3].max() rgba[~mask, i] = background_color[i] rgba = (np.swapaxes(rgba, 0, 1)) else: if color: color = np.array(matplotlib.colors.colorConverter.to_rgba(color)) rgba = np.zeros(grid.shape + (4,)) rgba[..., 0:4] = color data = f(grid) mask = (grid > 0) & np.isfinite(data) if vmin is None: vmin = data[mask].min() if vmax is None: vmax = data[mask].max() if mask.sum(): data -= vmin data /= vmax data[~mask] = 0 else: data[:] = 0 rgba[..., 3] = data else: cmap = matplotlib.cm.get_cmap(cmap) data = f(grid) if normalize: mask = (data > 0) & np.isfinite(data) if vmin is None: vmin = data[mask].min() if vmax is None: vmax = data[mask].max() if mask.sum(): data -= vmin data /= vmax else: data[:] = 0 data[~mask] = 0 data = np.clip(data, 0, 1) rgba = cmap(data) if normalize: rgba[~mask, 3] = 0 rgba[..., 3] = 1 # data # rgba8 = np.swapaxes(rgba8, 0, 1) # white = np.ones_like(rgba[...,0:3]) if pre_blend: # rgba[...,3] = background_alpha rgb = rgba[..., :3].T alpha = rgba[..., 3].T rgb[:] = rgb * alpha + background_color[:3].reshape(3, 1, 1) * (1 - alpha) alpha[:] = alpha + background_alpha * (1 - alpha) rgba = np.clip(rgba, 0, 1) rgba8 = (rgba * 255).astype(np.uint8) return rgba8 def plot_vectors(self, expression_x, expression_y, limits, wx=None, wy=None, counts=None, size=32, axes=None, **kwargs): import pylab # refactor: should go to bin_means_xy if counts is None: counts = self.histogram(size=size, limits=limits) if wx is None: wx = self.histogram(size=size, weight=expression_x, limits=limits) if wy is None: wy = self.histogram(size=size, weight=expression_y, limits=limits) N = size positions = [vaex.utils.linspace_centers(limits[i][0], limits[i][1], N) for i in range(self.dimension)] # print(positions) mask = counts > 0 vx = wx / counts vy = wy / counts vx[counts == 0] = 0 vy[counts == 0] = 0 # vx = self.vx.grid / self.vcounts.grid # vy = self.vy.grid / self.vcounts.grid x2d, y2d = np.meshgrid(positions[0], positions[1]) if axes is None: axes = pylab.gca() axes.quiver(x2d[mask], y2d[mask], vx[mask], vy[mask], **kwargs) def plot(self, grid=None, size=256, limits=None, square=False, center=None, weight=None, weight_stat="mean", figsize=None, aspect="auto", f="identity", axes=None, xlabel=None, ylabel=None, group_by=None, group_limits=None, group_colors='jet', group_labels=None, group_count=None, vmin=None, vmax=None, cmap="afmhot", **kwargs): """Plot the subspace using sane defaults to get a quick look at the data. :param grid: A 2d numpy array with the counts, if None it will be calculated using limits provided and Subspace.histogram :param size: Passed to Subspace.histogram :param limits: Limits for the subspace in the form [[xmin, xmax], [ymin, ymax]], if None it will be calculated using Subspace.limits_sigma :param square: argument passed to Subspace.limits_sigma :param Executor executor: responsible for executing the tasks :param figsize: (x, y) tuple passed to pylab.figure for setting the figure size :param aspect: Passed to matplotlib's axes.set_aspect :param xlabel: String for label on x axis (may contain latex) :param ylabel: Same for y axis :param kwargs: extra argument passed to axes.imshow, useful for setting the colormap for instance, e.g. cmap='afmhot' :return: matplotlib.image.AxesImage """ import pylab f = _parse_f(f) limits = self.limits(limits) if limits is None: limits = self.limits_sigma() # if grid is None: if group_limits is None and group_by: group_limits = tuple(self.df(group_by).minmax()[0]) + (group_count,) # grid = self.histogram(limits=limits, size=size, weight=weight, group_limits=group_limits, group_by=group_by) if figsize is not None: pylab.figure(num=None, figsize=figsize, dpi=80, facecolor='w', edgecolor='k') if axes is None: axes = pylab.gca() fig = pylab.gcf() # if xlabel: pylab.xlabel(xlabel or self.expressions[0]) # if ylabel: pylab.ylabel(ylabel or self.expressions[1]) # axes.set_aspect(aspect) rgba8 = self.image_rgba(grid=grid, size=size, limits=limits, square=square, center=center, weight=weight, weight_stat=weight_stat, f=f, axes=axes, group_by=group_by, group_limits=group_limits, group_colors=group_colors, group_count=group_count, vmin=vmin, vmax=vmax, cmap=cmap) import matplotlib if group_by: if isinstance(group_colors, six.string_types): group_colors = matplotlib.cm.get_cmap(group_colors) if isinstance(group_colors, matplotlib.colors.Colormap): group_count = group_limits[2] colors = [group_colors(k / float(group_count - 1.)) for k in range(group_count)] else: colors = [matplotlib.colors.colorConverter.to_rgba(k) for k in group_colors] colormap = matplotlib.colors.ListedColormap(colors) gmin, gmax, group_count = group_limits # [:2] delta = (gmax - gmin) / (group_count - 1.) norm = matplotlib.colors.Normalize(gmin - delta / 2, gmax + delta / 2) sm = matplotlib.cm.ScalarMappable(norm, colormap) sm.set_array(1) # make matplotlib happy (strange behavious) colorbar = fig.colorbar(sm) if group_labels: colorbar.set_ticks(np.arange(gmin, gmax + delta / 2, delta)) colorbar.set_ticklabels(group_labels) else: colorbar.set_ticks(np.arange(gmin, gmax + delta / 2, delta)) colorbar.set_ticklabels(map(lambda x: "%f" % x, np.arange(gmin, gmax + delta / 2, delta))) colorbar.ax.set_ylabel(group_by) # matplotlib.colorbar.ColorbarBase(axes, norm=norm, cmap=colormap) im = axes.imshow(rgba8, extent=np.array(limits).flatten(), origin="lower", aspect=aspect, **kwargs) else: norm = matplotlib.colors.Normalize(0, 23) sm = matplotlib.cm.ScalarMappable(norm, cmap) sm.set_array(1) # make matplotlib happy (strange behavious) colorbar = fig.colorbar(sm) im = axes.imshow(rgba8, extent=np.array(limits).flatten(), origin="lower", aspect=aspect, **kwargs) colorbar = None return im, colorbar def plot1d(self, grid=None, size=64, limits=None, weight=None, figsize=None, f="identity", axes=None, xlabel=None, ylabel=None, **kwargs): """Plot the subspace using sane defaults to get a quick look at the data. :param grid: A 2d numpy array with the counts, if None it will be calculated using limits provided and Subspace.histogram :param size: Passed to Subspace.histogram :param limits: Limits for the subspace in the form [[xmin, xmax], [ymin, ymax]], if None it will be calculated using Subspace.limits_sigma :param figsize: (x, y) tuple passed to pylab.figure for setting the figure size :param xlabel: String for label on x axis (may contain latex) :param ylabel: Same for y axis :param kwargs: extra argument passed to ..., """ import pylab f = _parse_f(f) limits = self.limits(limits) assert self.dimension == 1, "can only plot 1d, not %s" % self.dimension if limits is None: limits = self.limits_sigma() if grid is None: grid = self.histogram(limits=limits, size=size, weight=weight) if figsize is not None: pylab.figure(num=None, figsize=figsize, dpi=80, facecolor='w', edgecolor='k') if axes is None: axes = pylab.gca() # if xlabel: pylab.xlabel(xlabel or self.expressions[0]) # if ylabel: # pylab.ylabel(ylabel or self.expressions[1]) pylab.ylabel("counts" or ylabel) # axes.set_aspect(aspect) N = len(grid) xmin, xmax = limits[0] return pylab.plot(np.arange(N) / (N - 1.0) * (xmax - xmin) + xmin, f(grid,), drawstyle="steps", **kwargs) # pylab.ylim(-1, 6) def plot_histogram_bq(self, f="identity", size=64, limits=None, color="red", bq_cleanup=True): import vaex.ext.bqplot limits = self.limits(limits) plot = vaex.ext.bqplot.BqplotHistogram(self, color, size, limits) if not hasattr(self, "_bqplot"): self._bqplot = {} self._bqplot["cleanups"] = [] else: if bq_cleanup: for cleanup in self._bqplot["cleanups"]: cleanup() self._bqplot["cleanups"] = [] def cleanup(callback=plot.callback): self.df.signal_selection_changed.disconnect(callback=callback) self._bqplot["cleanups"].append(cleanup) return plot def plot_bq(self, grid=None, size=256, limits=None, square=False, center=None, weight=None, figsize=None, aspect="auto", f="identity", fig=None, axes=None, xlabel=None, ylabel=None, title=None, group_by=None, group_limits=None, group_colors='jet', group_labels=None, group_count=None, cmap="afmhot", scales=None, tool_select=False, bq_cleanup=True, **kwargs): import vaex.ext.bqplot import bqplot.interacts import bqplot.pyplot as p import ipywidgets as widgets import bqplot as bq f = _parse_f(f) limits = self.limits(limits) import vaex.ext.bqplot vaex.ext.bqplot.patch() if not hasattr(self, "_bqplot"): self._bqplot = {} self._bqplot["cleanups"] = [] else: if bq_cleanup: for cleanup in self._bqplot["cleanups"]: cleanup() self._bqplot["cleanups"] = [] if limits is None: limits = self.limits_sigma() # if fig is None: if scales is None: x_scale = bq.LinearScale(min=limits[0][0], max=limits[0][1]) y_scale = bq.LinearScale(min=limits[1][0], max=limits[1][1]) scales = {'x': x_scale, 'y': y_scale} else: x_scale = scales["x"] y_scale = scales["y"] if 1: fig = p.figure() # actually, bqplot doesn't return it fig = p.current_figure() fig.fig_color = "black" # TODO, take the color from the colormap fig.padding_y = 0 # if we don't do this, bqplot may flip some axes... report this bug x = np.arange(10) y = x**2 p.plot(x, y, scales=scales) # p.xlim(*limits[0]) # p.ylim(*limits[1]) # if grid is None: if group_limits is None and group_by: group_limits = tuple(self.df(group_by).minmax()[0]) + (group_count,) # fig = p. # if xlabel: fig.axes[0].label = xlabel or self.expressions[0] # if ylabel: fig.axes[1].label = ylabel or self.expressions[1] if title: fig.title = title # axes.set_aspect(aspect) rgba8 = self.image_rgba(grid=grid, size=size, limits=limits, square=square, center=center, weight=weight, f=f, axes=axes, group_by=group_by, group_limits=group_limits, group_colors=group_colors, group_count=group_count, cmap=cmap) # x_scale = p._context["scales"]["x"] # y_scale = p._context["scales"]["y"] src = "http://localhost:8888/kernelspecs/python2/logo-64x64.png" import bqplot.marks im = vaex.ext.bqplot.Image(src=src, scales=scales, x=0, y=0, width=1, height=1) if 0: size = 20 x_data = np.arange(size) line = bq.Lines(x=x_data, y=np.random.randn(size), scales={'x': x_scale, 'y': y_scale}, stroke_width=3, colors=['red']) ax_x = bq.Axis(scale=x_scale, tick_format='0.2f', grid_lines='solid') ax_y = bq.Axis(scale=y_scale, orientation='vertical', tick_format='0.2f', grid_lines='solid') panzoom = bq.PanZoom(scales={'x': [x_scale], 'y': [y_scale]}) lasso = bqplot.interacts.LassoSelector() brush = bqplot.interacts.BrushSelector(x_scale=x_scale, y_scale=y_scale, color="green") fig = bq.Figure(marks=[line, im], axes=[ax_x, ax_y], min_width=100, min_height=100, interaction=panzoom) else: fig.marks = list(fig.marks) + [im] def make_image(executor, limits): # print "make image" * 100 self.executor = executor if self.df.has_selection(): sub = self.selected() else: sub = self return sub.image_rgba(limits=limits, size=size, f=f) progress = widgets.FloatProgress(value=0.0, min=0.0, max=1.0, step=0.01) updater = vaex.ext.bqplot.DebouncedThreadedUpdater(self, size, im, make_image, progress_widget=progress) def update_image(): limits = [x_scale.min, x_scale.max], [y_scale.min, y_scale.max] # print limits # print "update...", limits # vxbq.debounced_threaded_update(self.df, im, make_image2, limits=limits) updater.update(limits) def update(*args): update_image() y_scale.observe(update, "min") y_scale.observe(update, "max") x_scale.observe(update, "min") x_scale.observe(update, "max") update_image() # fig = kwargs.pop('figure', p.current_figure()) tools = [] tool_actions = [] panzoom = bq.PanZoom(scales={'x': [x_scale], 'y': [y_scale]}) tool_actions_map = {u"m": panzoom} tool_actions.append(u"m") fig.interaction = panzoom if tool_select: brush = bqplot.interacts.BrushSelector(x_scale=x_scale, y_scale=y_scale, color="green") tool_actions_map["b"] = brush tool_actions.append("b") def update_selection(*args): def f(): if brush.selected: (x1, y1), (x2, y2) = brush.selected ex1, ex2 = self.expressions mode = modes_names[modes_labels.index(button_selection_mode.value)] self.df.select_rectangle(ex1, ex2, limits=[[x1, x2], [y1, y2]], mode=mode) else: self.df.select_nothing() updater.update_select(f) brush.observe(update_selection, "selected") # fig.interaction = brush # callback = self.df.signal_selection_changed.connect(lambda df: update_image()) callback = self.df.signal_selection_changed.connect(lambda df: updater.update_direct_safe()) def cleanup(callback=callback): self.df.signal_selection_changed.disconnect(callback=callback) self._bqplot["cleanups"].append(cleanup) button_select_nothing = widgets.Button(icon="fa-trash-o") def select_nothing(button): self.df.select_nothing() button_select_nothing.on_click(select_nothing) tools.append(button_select_nothing) modes_names = "replace and or xor subtract".split() modes_labels = "= & | ^ -".split() button_selection_mode = widgets.ToggleButtons(description='', options=modes_labels) tools.append(button_selection_mode) def change_interact(*args): # print "change", args fig.interaction = tool_actions_map[button_action.value] # tool_actions = ["m", "b"] # tool_actions = [("m", "m"), ("b", "b")] button_action = widgets.ToggleButtons(description='', options=tool_actions, icons=["fa-arrows", "fa-pencil-square-o"]) button_action.observe(change_interact, "value") tools.insert(0, button_action) button_action.value = "m" # tool_actions[-1] if len(tools) == 1: tools = [] tools = widgets.HBox(tools) box_layout = widgets.Layout(display='flex', flex_flow='column', # border='solid', width='100%', height="100%") fig.fig_margin = {'bottom': 40, 'left': 60, 'right': 10, 'top': 40} # fig.min_height = 700 # fig.min_width = 400 fig.layout = box_layout return widgets.VBox([fig, progress, tools]) def figlarge(self, size=(10, 10)): import pylab pylab.figure(num=None, figsize=size, dpi=80, facecolor='w', edgecolor='k') # def bounded(self): # return self.bounded_by_minmax() def bounded_by(self, limits): """Returns a bounded subspace (SubspaceBounded) with limits as given by limits :param limits: sequence of [(min, max), ..., (min, max)] values :rtype: SubspaceBounded """ return SubspaceBounded(self, np.array(limits)) def bounded_by_minmax(self): """Returns a bounded subspace (SubspaceBounded) with limits given by Subspace.minmax() :rtype: SubspaceBounded """ bounds = self.minmax() return SubspaceBounded(self, bounds) bounded = bounded_by_minmax def bounded_by_sigmas(self, sigmas=3, square=False): """Returns a bounded subspace (SubspaceBounded) with limits given by Subspace.limits_sigma() :rtype: SubspaceBounded """ bounds = self.limits_sigma(sigmas=sigmas, square=square) return SubspaceBounded(self, bounds) def minmax(self): """Return a sequence of [(min, max), ..., (min, max)] corresponding to each expression in this subspace ignoring NaN. """ raise NotImplementedError def mean(self): """Return a sequence of [mean, ... , mean] corresponding to the mean of each expression in this subspace ignoring NaN. """ raise NotImplementedError def var(self, means=None): """Return a sequence of [var, ... , var] corresponding to the variance of each expression in this subspace ignoring NaN. """ raise NotImplementedError def sum(self): """Return a sequence of [sum, ... , sum] corresponding to the sum of values of each expression in this subspace ignoring NaN.""" raise NotImplementedError def histogram(self, limits, size=256, weight=None): """Return a grid of shape (size, ..., size) corresponding to the dimensionality of this subspace containing the counts in each element The type of the grid of np.float64 """ raise NotImplementedError def limits_sigma(self, sigmas=3, square=False): raise NotImplementedError def row(self, index): return np.array([self.df.evaluate(expression, i1=index, i2=index + 1)[0] for expression in self.expressions]) class SubspaceLocal(Subspace): """Subclass of subspace which implemented methods that can be run locally. """ def _toarray(self, list): return np.array(list) @property def pre(self): self.executor.pre @property def post(self): self.executor.post def _task(self, task, progressbar=False): """Helper function for returning tasks results, result when immediate is True, otherwise the task itself, which is a promise""" if self.delay: # should return a task or a promise nesting it return self.executor.schedule(task) else: import vaex.utils callback = None try: if progressbar == True: def update(fraction): bar.update(fraction) return True bar = vaex.utils.progressbar(task.name) callback = self.executor.signal_progress.connect(update) elif progressbar: callback = self.executor.signal_progress.connect(progressbar) self.executor.schedule(task) self.df.execute() result = task.get() if progressbar == True: bar.finish() sys.stdout.write('\n') return result finally: if callback: self.executor.signal_progress.disconnect(callback) def minmax(self, progressbar=False): def min_max_reduce(minmax1, minmax2): if minmax1 is None: return minmax2 if minmax2 is None: return minmax1 result = [] for d in range(self.dimension): min1, max1 = minmax1[d] min2, max2 = minmax2[d] result.append((min(min1, min2), max(max1, max2))) return result def min_max_map(thread_index, i1, i2, *blocks): if self.is_masked or self.df.filtered: mask = self.df.evaluate_selection_mask("default" if self.is_masked else None, i1=i1, i2=i2, pre_filtered=False) blocks = [block[mask] for block in blocks] is_empty = all(~mask) if is_empty: return None # with lock: # print blocks # with lock: # print thread_index, i1, i2, blocks blocks = [_asfloat(block) for block in blocks] return [vaex.vaexfast.find_nan_min_max(block) for block in blocks] if 0: # TODO: implement using statisticNd and benchmark minmaxes = np.zeros((len(blocks), 2), dtype=float) minmaxes[:, 0] = np.inf minmaxes[:, 1] = -np.inf for i, block in enumerate(blocks): vaex.vaexfast.statisticNd([], block, minmaxes[i, :], [], [], 2) # minmaxes[~np.isfinite(minmaxes)] = np.nan return minmaxes task = TaskMapReduceLegacy(self.df, self.expressions, min_max_map, min_max_reduce, self._toarray, info=True, name="minmax") return self._task(task, progressbar=progressbar) def mean(self): return self._moment(1) def _moment(self, moment=1): def mean_reduce(means_and_counts1, means_and_counts2): means_and_counts = [] for (mean1, count1), (mean2, count2) in zip(means_and_counts1, means_and_counts2): means_and_counts.append([np.nansum([mean1 * count1, mean2 * count2]) / (count1 + count2), count1 + count2]) return means_and_counts def remove_counts(means_and_counts): return self._toarray(means_and_counts)[:, 0] def mean_map(thread_index, i1, i2, *blocks): if self.is_masked or self.df.filtered: mask = self.df.evaluate_selection_mask("default" if self.is_masked else None, i1=i1, i2=i2, pre_filtered=False) return [(np.nanmean(block[mask]**moment), np.count_nonzero(~np.isnan(block[mask]))) for block in blocks] else: return [(np.nanmean(block**moment), np.count_nonzero(~np.isnan(block))) for block in blocks] task = TaskMapReduceLegacy(self.df, self.expressions, mean_map, mean_reduce, remove_counts, info=True) return self._task(task) def var(self, means=None): # variances are linear, use the mean to reduce def vars_reduce(vars_and_counts1, vars_and_counts2): vars_and_counts = [] for (var1, count1), (var2, count2) in zip(vars_and_counts1, vars_and_counts2): vars_and_counts.append([np.nansum([var1 * count1, var2 * count2]) / (count1 + count2), count1 + count2]) return vars_and_counts def remove_counts(vars_and_counts): return self._toarray(vars_and_counts)[:, 0] if self.is_masked or self.df.filtered: def var_map(thread_index, i1, i2, *blocks): mask = self.df.evaluate_selection_mask("default" if self.is_masked else None, i1=i1, i2=i2, pre_filtered=False) if means is not None: return [(np.nanmean((block[mask] - mean)**2), np.count_nonzero(~np.isnan(block[mask]))) for block, mean in zip(blocks, means)] else: return [(np.nanmean(block[mask]**2), np.count_nonzero(~np.isnan(block[mask]))) for block in blocks] task = TaskMapReduceLegacy(self.df, self.expressions, var_map, vars_reduce, remove_counts, info=True) else: def var_map(*blocks): if means is not None: return [(np.nanmean((block - mean)**2), np.count_nonzero(~np.isnan(block))) for block, mean in zip(blocks, means)] else: return [(np.nanmean(block**2), np.count_nonzero(~np.isnan(block))) for block in blocks] task = TaskMapReduceLegacy(self.df, self.expressions, var_map, vars_reduce, remove_counts) return self._task(task) def correlation(self, means=None, vars=None): if self.dimension != 2: raise ValueError("correlation is only defined for 2d subspaces, not %dd" % self.dimension) def do_correlation(means, vars): meanx, meany = means sigmax, sigmay = vars[0]**0.5, vars[1]**0.5 def remove_counts_and_normalize(covar_and_count): covar, counts = covar_and_count return covar / counts / (sigmax * sigmay) def covars_reduce(covar_and_count1, covar_and_count2): if covar_and_count1 is None: return covar_and_count2 if covar_and_count2 is None: return covar_and_count1 else: covar1, count1 = covar_and_count1 covar2, count2 = covar_and_count2 return [np.nansum([covar1, covar2]), count1 + count2] mask = self.df.mask def covar_map(thread_index, i1, i2, *blocks): # return [(np.nanmean((block[mask[i1:i2]]-mean)**2), np.count_nonzero(~np.isnan(block[mask[i1:i2]]))) for block, mean in zip(blocks, means)] blockx, blocky = blocks if self.is_masked: blockx, blocky = blockx[mask[i1:i2]], blocky[mask[i1:i2]] counts = np.count_nonzero(~(np.isnan(blockx) | np.isnan(blocky))) if counts == 0: return None else: return np.nansum((blockx - meanx) * (blocky - meany)), counts task = TaskMapReduceLegacy(self.df, self.expressions, covar_map, covars_reduce, remove_counts_and_normalize, info=True) return self._task(task) if means is None: if self.delay: means_wrapper = [None] def do_vars(means): means_wrapper[0] = means return self.var(means) def do_correlation_wrapper(vars): return do_correlation(means_wrapper[0], vars) return self.mean().then(do_vars).then(do_correlation_wrapper) else: means = self.mean() vars = self.var(means=means) return do_correlation(means, vars) else: if vars is None: if self.delay: def do_correlation_wrapper(vars): return do_correlation(means, vars) return self.vars(means=means).then(do_correlation_wrapper) else: vars = self.var(means) return do_correlation(means, vars) else: if means is None: means = self.mean() if vars is None: vars = self.var(means=means) return do_correlation(means, vars) def sum(self): def nansum(x): return np.nansum(x, dtype=np.float64) # TODO: we can speed up significantly using our own nansum, probably the same for var and mean nansum = vaex.vaexfast.nansum if self.is_masked or self.df.filtered: task = TaskMapReduceLegacy(self.df, self.expressions, lambda thread_index, i1, i2, *blocks: [nansum(block[self.df.evaluate_selection_mask("default" if self.is_masked else None, i1=i1, i2=i2, pre_filtered=False)]) for block in blocks], lambda a, b: np.array(a) + np.array(b), self._toarray, info=True) else: task = TaskMapReduceLegacy(self.df, self.expressions, lambda *blocks: [nansum(block) for block in blocks], lambda a, b: np.array(a) + np.array(b), self._toarray) return self._task(task) def histogram(self, limits, size=256, weight=None, progressbar=False, group_by=None, group_limits=None): expressions = self.expressions if group_by: expressions = list(expressions) + [group_by] limits = list(limits) + [group_limits[:2]] # [[group_limits[0] - 0,5, group_limits[1]+0.5]] # assert group_limits[2] == 1 size = (group_limits[2],) + (size,) * (len(expressions) - 1) task = TaskHistogram(self.df, self, expressions, size, limits, masked=self.is_masked, weight=weight) return self._task(task, progressbar=progressbar) def bin_mean(self, expression, limits, size=256, progressbar=False, group_by=None, group_limits=None): # todo, fix progressbar into two... counts = self.histogram(limits=limits, size=size, progressbar=progressbar, group_by=group_by, group_limits=group_limits) weighted = self.histogram(limits=limits, size=size, progressbar=progressbar, group_by=group_by, group_limits=group_limits, weight=expression) mean = weighted / counts mean[counts == 0] = np.nan return mean def bin_mean_cyclic(self, expression, max_value, limits, size=256, progressbar=False, group_by=None, group_limits=None): # todo, fix progressbar into two... meanx = self.bin_mean(limits=limits, size=size, progressbar=progressbar, group_by=group_by, group_limits=group_limits, expression="cos((%s)/%r*2*pi)" % (expression, max_value)) meany = self.bin_mean(limits=limits, size=size, progressbar=progressbar, group_by=group_by, group_limits=group_limits, expression="sin((%s)/%r*2*pi)" % (expression, max_value)) angles = np.arctan2(meany, meanx) values = ((angles + 2 * np.pi) % (2 * np.pi)) / (2 * np.pi) * max_value length = np.sqrt(meanx**2 + meany**2) length[~np.isfinite(meanx)] = np.nan return values, length def mutual_information(self, limits=None, grid=None, size=256): if limits is None: limits_done = Task.fulfilled(self.minmax()) else: limits_done = Task.fulfilled(limits) if grid is None: if limits is None: histogram_done = limits_done.then(lambda limits: self.histogram(limits, size=size)) else: histogram_done = Task.fulfilled(self.histogram(limits, size=size)) else: histogram_done = Task.fulfilled(grid) mutual_information_promise = histogram_done.then(vaex.kld.mutual_information) return mutual_information_promise if self.delay else mutual_information_promise.get() def limits_percentage(self, percentage=99.73, square=False): import scipy.ndimage limits = [] for expr in self.expressions: subspace = self.df(expr) if self.is_selected(): subspace = subspace.selected() limits_minmax = subspace.minmax() vmin, vmax = limits_minmax[0] size = 1024 * 16 counts = subspace.histogram(size=size, limits=limits_minmax) cumcounts = np.concatenate([[0], np.cumsum(counts)]) cumcounts /= cumcounts.max() # TODO: this is crude.. see the details! f = (1 - percentage / 100.) / 2 x = np.linspace(vmin, vmax, size + 1) l = scipy.interp([f, 1 - f], cumcounts, x) limits.append(l) return limits def limits_sigma(self, sigmas=3, square=False): if self.delay: means_wrapper = [None] def do_vars(means): means_wrapper[0] = means return self.var(means) def do_limits(vars): stds = vars**0.5 means = means_wrapper[0] if square: stds = np.repeat(stds.mean(), len(stds)) return np.array(list(zip(means - sigmas * stds, means + sigmas * stds))) return self.mean().then(do_vars).then(do_limits) else: means = self.mean() stds = self.var(means=means)**0.5 if square: stds = np.repeat(stds.mean(), len(stds)) return np.array(list(zip(means - sigmas * stds, means + sigmas * stds))) def _not_needed_current(self): index = self.df.get_current_row() def find(thread_index, i1, i2, *blocks): if (index >= i1) and (index < i2): return [block[index - i1] for block in blocks] else: return None task = TaskMapReduceLegacy(self.df, self.expressions, find, lambda a, b: a if b is None else b, info=True) return self._task(task) def nearest(self, point, metric=None): metric = metric or [1.] * len(point) def nearest_in_block(thread_index, i1, i2, *blocks): if self.is_masked: mask = self.df.evaluate_selection_mask("default", i1=i1, i2=i2, pre_filtered=False) if mask.sum() == 0: return None blocks = [block[mask] for block in blocks] distance_squared = np.sum([(blocks[i] - point[i])**2. * metric[i] for i in range(self.dimension)], axis=0) min_index_global = min_index = np.argmin(distance_squared) if self.is_masked: # we skipped some indices, so correct for that min_index_global = np.argmin((np.cumsum(mask) - 1 - min_index)**2) # with lock: # print i1, i2, min_index, distance_squared, [block[min_index] for block in blocks] return min_index_global.item() + i1, distance_squared[min_index].item()**0.5, [block[min_index].item() for block in blocks] def nearest_reduce(a, b): if a is None: return b if b is None: return a if a[1] < b[1]: return a else: return b if self.is_masked: pass task = TaskMapReduceLegacy(self.df, self.expressions, nearest_in_block, nearest_reduce, info=True) return self._task(task)
mit
bsipocz/seaborn
seaborn/categorical.py
19
102299
from __future__ import division from textwrap import dedent import colorsys import numpy as np from scipy import stats import pandas as pd from pandas.core.series import remove_na import matplotlib as mpl import matplotlib.pyplot as plt import warnings from .external.six import string_types from .external.six.moves import range from . import utils from .utils import desaturate, iqr, categorical_order from .algorithms import bootstrap from .palettes import color_palette, husl_palette, light_palette from .axisgrid import FacetGrid, _facet_docs class _CategoricalPlotter(object): width = .8 def establish_variables(self, x=None, y=None, hue=None, data=None, orient=None, order=None, hue_order=None, units=None): """Convert input specification into a common representation.""" # Option 1: # We are plotting a wide-form dataset # ----------------------------------- if x is None and y is None: # Do a sanity check on the inputs if hue is not None: error = "Cannot use `hue` without `x` or `y`" raise ValueError(error) # No hue grouping with wide inputs plot_hues = None hue_title = None hue_names = None # No statistical units with wide inputs plot_units = None # We also won't get a axes labels here value_label = None group_label = None # Option 1a: # The input data is a Pandas DataFrame # ------------------------------------ if isinstance(data, pd.DataFrame): # Order the data correctly if order is None: order = [] # Reduce to just numeric columns for col in data: try: data[col].astype(np.float) order.append(col) except ValueError: pass plot_data = data[order] group_names = order group_label = data.columns.name # Convert to a list of arrays, the common representation iter_data = plot_data.iteritems() plot_data = [np.asarray(s, np.float) for k, s in iter_data] # Option 1b: # The input data is an array or list # ---------------------------------- else: # We can't reorder the data if order is not None: error = "Input data must be a pandas object to reorder" raise ValueError(error) # The input data is an array if hasattr(data, "shape"): if len(data.shape) == 1: if np.isscalar(data[0]): plot_data = [data] else: plot_data = list(data) elif len(data.shape) == 2: nr, nc = data.shape if nr == 1 or nc == 1: plot_data = [data.ravel()] else: plot_data = [data[:, i] for i in range(nc)] else: error = ("Input `data` can have no " "more than 2 dimensions") raise ValueError(error) # Check if `data` is None to let us bail out here (for testing) elif data is None: plot_data = [[]] # The input data is a flat list elif np.isscalar(data[0]): plot_data = [data] # The input data is a nested list # This will catch some things that might fail later # but exhaustive checks are hard else: plot_data = data # Convert to a list of arrays, the common representation plot_data = [np.asarray(d, np.float) for d in plot_data] # The group names will just be numeric indices group_names = list(range((len(plot_data)))) # Figure out the plotting orientation orient = "h" if str(orient).startswith("h") else "v" # Option 2: # We are plotting a long-form dataset # ----------------------------------- else: # See if we need to get variables from `data` if data is not None: x = data.get(x, x) y = data.get(y, y) hue = data.get(hue, hue) units = data.get(units, units) # Validate the inputs for input in [x, y, hue, units]: if isinstance(input, string_types): err = "Could not interpret input '{}'".format(input) raise ValueError(err) # Figure out the plotting orientation orient = self.infer_orient(x, y, orient) # Option 2a: # We are plotting a single set of data # ------------------------------------ if x is None or y is None: # Determine where the data are vals = y if x is None else x # Put them into the common representation plot_data = [np.asarray(vals)] # Get a label for the value axis if hasattr(vals, "name"): value_label = vals.name else: value_label = None # This plot will not have group labels or hue nesting groups = None group_label = None group_names = [] plot_hues = None hue_names = None hue_title = None plot_units = None # Option 2b: # We are grouping the data values by another variable # --------------------------------------------------- else: # Determine which role each variable will play if orient == "v": vals, groups = y, x else: vals, groups = x, y # Get the categorical axis label group_label = None if hasattr(groups, "name"): group_label = groups.name # Get the order on the categorical axis group_names = categorical_order(groups, order) # Group the numeric data plot_data, value_label = self._group_longform(vals, groups, group_names) # Now handle the hue levels for nested ordering if hue is None: plot_hues = None hue_title = None hue_names = None else: # Get the order of the hue levels hue_names = categorical_order(hue, hue_order) # Group the hue data plot_hues, hue_title = self._group_longform(hue, groups, group_names) # Now handle the units for nested observations if units is None: plot_units = None else: plot_units, _ = self._group_longform(units, groups, group_names) # Assign object attributes # ------------------------ self.orient = orient self.plot_data = plot_data self.group_label = group_label self.value_label = value_label self.group_names = group_names self.plot_hues = plot_hues self.hue_title = hue_title self.hue_names = hue_names self.plot_units = plot_units def _group_longform(self, vals, grouper, order): """Group a long-form variable by another with correct order.""" # Ensure that the groupby will work if not isinstance(vals, pd.Series): vals = pd.Series(vals) # Group the val data grouped_vals = vals.groupby(grouper) out_data = [] for g in order: try: g_vals = np.asarray(grouped_vals.get_group(g)) except KeyError: g_vals = np.array([]) out_data.append(g_vals) # Get the vals axis label label = vals.name return out_data, label def establish_colors(self, color, palette, saturation): """Get a list of colors for the main component of the plots.""" if self.hue_names is None: n_colors = len(self.plot_data) else: n_colors = len(self.hue_names) # Determine the main colors if color is None and palette is None: # Determine whether the current palette will have enough values # If not, we'll default to the husl palette so each is distinct current_palette = mpl.rcParams["axes.color_cycle"] if n_colors <= len(current_palette): colors = color_palette(n_colors=n_colors) else: colors = husl_palette(n_colors, l=.7) elif palette is None: # When passing a specific color, the interpretation depends # on whether there is a hue variable or not. # If so, we will make a blend palette so that the different # levels have some amount of variation. if self.hue_names is None: colors = [color] * n_colors else: colors = light_palette(color, n_colors) else: # Let `palette` be a dict mapping level to color if isinstance(palette, dict): if self.hue_names is None: levels = self.group_names else: levels = self.hue_names palette = [palette[l] for l in levels] colors = color_palette(palette, n_colors) # Conver the colors to a common rgb representation colors = [mpl.colors.colorConverter.to_rgb(c) for c in colors] # Desaturate a bit because these are patches if saturation < 1: colors = [desaturate(c, saturation) for c in colors] # Determine the gray color to use for the lines framing the plot light_vals = [colorsys.rgb_to_hls(*c)[1] for c in colors] l = min(light_vals) * .6 gray = (l, l, l) # Assign object attributes self.colors = colors self.gray = gray def infer_orient(self, x, y, orient=None): """Determine how the plot should be oriented based on the data.""" orient = str(orient) def is_categorical(s): try: # Correct way, but doesnt exist in older Pandas return pd.core.common.is_categorical_dtype(s) except AttributeError: # Also works, but feels hackier return str(s.dtype) == "categorical" def is_not_numeric(s): try: np.asarray(s, dtype=np.float) except ValueError: return True return False no_numeric = "Neither the `x` nor `y` variable appears to be numeric." if orient.startswith("v"): return "v" elif orient.startswith("h"): return "h" elif x is None: return "v" elif y is None: return "h" elif is_categorical(y): if is_categorical(x): raise ValueError(no_numeric) else: return "h" elif is_not_numeric(y): if is_not_numeric(x): raise ValueError(no_numeric) else: return "h" else: return "v" @property def hue_offsets(self): """A list of center positions for plots when hue nesting is used.""" n_levels = len(self.hue_names) each_width = self.width / n_levels offsets = np.linspace(0, self.width - each_width, n_levels) offsets -= offsets.mean() return offsets @property def nested_width(self): """A float with the width of plot elements when hue nesting is used.""" return self.width / len(self.hue_names) * .98 def annotate_axes(self, ax): """Add descriptive labels to an Axes object.""" if self.orient == "v": xlabel, ylabel = self.group_label, self.value_label else: xlabel, ylabel = self.value_label, self.group_label if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) if self.orient == "v": ax.set_xticks(np.arange(len(self.plot_data))) ax.set_xticklabels(self.group_names) else: ax.set_yticks(np.arange(len(self.plot_data))) ax.set_yticklabels(self.group_names) if self.orient == "v": ax.xaxis.grid(False) ax.set_xlim(-.5, len(self.plot_data) - .5) else: ax.yaxis.grid(False) ax.set_ylim(-.5, len(self.plot_data) - .5) if self.hue_names is not None: leg = ax.legend(loc="best") if self.hue_title is not None: leg.set_title(self.hue_title) # Set the title size a roundabout way to maintain # compatability with matplotlib 1.1 try: title_size = mpl.rcParams["axes.labelsize"] * .85 except TypeError: # labelsize is something like "large" title_size = mpl.rcParams["axes.labelsize"] prop = mpl.font_manager.FontProperties(size=title_size) leg._legend_title_box._text.set_font_properties(prop) def add_legend_data(self, ax, color, label): """Add a dummy patch object so we can get legend data.""" rect = plt.Rectangle([0, 0], 0, 0, linewidth=self.linewidth / 2, edgecolor=self.gray, facecolor=color, label=label) ax.add_patch(rect) class _BoxPlotter(_CategoricalPlotter): def __init__(self, x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, fliersize, linewidth): self.establish_variables(x, y, hue, data, orient, order, hue_order) self.establish_colors(color, palette, saturation) self.width = width self.fliersize = fliersize if linewidth is None: linewidth = mpl.rcParams["lines.linewidth"] self.linewidth = linewidth def draw_boxplot(self, ax, kws): """Use matplotlib to draw a boxplot on an Axes.""" vert = self.orient == "v" for i, group_data in enumerate(self.plot_data): if self.plot_hues is None: # Handle case where there is data at this level if group_data.size == 0: continue # Draw a single box or a set of boxes # with a single level of grouping box_data = remove_na(group_data) # Handle case where there is no non-null data if box_data.size == 0: continue artist_dict = ax.boxplot(box_data, vert=vert, patch_artist=True, positions=[i], widths=self.width, **kws) color = self.colors[i] self.restyle_boxplot(artist_dict, color, kws) else: # Draw nested groups of boxes offsets = self.hue_offsets for j, hue_level in enumerate(self.hue_names): hue_mask = self.plot_hues[i] == hue_level # Add a legend for this hue level if not i: self.add_legend_data(ax, self.colors[j], hue_level) # Handle case where there is data at this level if group_data.size == 0: continue box_data = remove_na(group_data[hue_mask]) # Handle case where there is no non-null data if box_data.size == 0: continue center = i + offsets[j] artist_dict = ax.boxplot(box_data, vert=vert, patch_artist=True, positions=[center], widths=self.nested_width, **kws) self.restyle_boxplot(artist_dict, self.colors[j], kws) # Add legend data, but just for one set of boxes def restyle_boxplot(self, artist_dict, color, kws): """Take a drawn matplotlib boxplot and make it look nice.""" for box in artist_dict["boxes"]: box.update(dict(color=color, zorder=.9, edgecolor=self.gray, linewidth=self.linewidth)) box.update(kws.get("boxprops", {})) for whisk in artist_dict["whiskers"]: whisk.update(dict(color=self.gray, linewidth=self.linewidth, linestyle="-")) whisk.update(kws.get("whiskerprops", {})) for cap in artist_dict["caps"]: cap.update(dict(color=self.gray, linewidth=self.linewidth)) cap.update(kws.get("capprops", {})) for med in artist_dict["medians"]: med.update(dict(color=self.gray, linewidth=self.linewidth)) med.update(kws.get("medianprops", {})) for fly in artist_dict["fliers"]: fly.update(dict(color=self.gray, marker="d", markeredgecolor=self.gray, markersize=self.fliersize)) fly.update(kws.get("flierprops", {})) def plot(self, ax, boxplot_kws): """Make the plot.""" self.draw_boxplot(ax, boxplot_kws) self.annotate_axes(ax) if self.orient == "h": ax.invert_yaxis() class _ViolinPlotter(_CategoricalPlotter): def __init__(self, x, y, hue, data, order, hue_order, bw, cut, scale, scale_hue, gridsize, width, inner, split, orient, linewidth, color, palette, saturation): self.establish_variables(x, y, hue, data, orient, order, hue_order) self.establish_colors(color, palette, saturation) self.estimate_densities(bw, cut, scale, scale_hue, gridsize) self.gridsize = gridsize self.width = width if inner is not None: if not any([inner.startswith("quart"), inner.startswith("box"), inner.startswith("stick"), inner.startswith("point")]): err = "Inner style '{}' not recognized".format(inner) raise ValueError(err) self.inner = inner if split and self.hue_names is not None and len(self.hue_names) != 2: raise ValueError("Cannot use `split` with more than 2 hue levels.") self.split = split if linewidth is None: linewidth = mpl.rcParams["lines.linewidth"] self.linewidth = linewidth def estimate_densities(self, bw, cut, scale, scale_hue, gridsize): """Find the support and density for all of the data.""" # Initialize data structures to keep track of plotting data if self.hue_names is None: support = [] density = [] counts = np.zeros(len(self.plot_data)) max_density = np.zeros(len(self.plot_data)) else: support = [[] for _ in self.plot_data] density = [[] for _ in self.plot_data] size = len(self.group_names), len(self.hue_names) counts = np.zeros(size) max_density = np.zeros(size) for i, group_data in enumerate(self.plot_data): # Option 1: we have a single level of grouping # -------------------------------------------- if self.plot_hues is None: # Strip missing datapoints kde_data = remove_na(group_data) # Handle special case of no data at this level if kde_data.size == 0: support.append(np.array([])) density.append(np.array([1.])) counts[i] = 0 max_density[i] = 0 continue # Handle special case of a single unique datapoint elif np.unique(kde_data).size == 1: support.append(np.unique(kde_data)) density.append(np.array([1.])) counts[i] = 1 max_density[i] = 0 continue # Fit the KDE and get the used bandwidth size kde, bw_used = self.fit_kde(kde_data, bw) # Determine the support grid and get the density over it support_i = self.kde_support(kde_data, bw_used, cut, gridsize) density_i = kde.evaluate(support_i) # Update the data structures with these results support.append(support_i) density.append(density_i) counts[i] = kde_data.size max_density[i] = density_i.max() # Option 2: we have nested grouping by a hue variable # --------------------------------------------------- else: for j, hue_level in enumerate(self.hue_names): # Handle special case of no data at this category level if not group_data.size: support[i].append(np.array([])) density[i].append(np.array([1.])) counts[i, j] = 0 max_density[i, j] = 0 continue # Select out the observations for this hue level hue_mask = self.plot_hues[i] == hue_level # Strip missing datapoints kde_data = remove_na(group_data[hue_mask]) # Handle special case of no data at this level if kde_data.size == 0: support[i].append(np.array([])) density[i].append(np.array([1.])) counts[i, j] = 0 max_density[i, j] = 0 continue # Handle special case of a single unique datapoint elif np.unique(kde_data).size == 1: support[i].append(np.unique(kde_data)) density[i].append(np.array([1.])) counts[i, j] = 1 max_density[i, j] = 0 continue # Fit the KDE and get the used bandwidth size kde, bw_used = self.fit_kde(kde_data, bw) # Determine the support grid and get the density over it support_ij = self.kde_support(kde_data, bw_used, cut, gridsize) density_ij = kde.evaluate(support_ij) # Update the data structures with these results support[i].append(support_ij) density[i].append(density_ij) counts[i, j] = kde_data.size max_density[i, j] = density_ij.max() # Scale the height of the density curve. # For a violinplot the density is non-quantitative. # The objective here is to scale the curves relative to 1 so that # they can be multiplied by the width parameter during plotting. if scale == "area": self.scale_area(density, max_density, scale_hue) elif scale == "width": self.scale_width(density) elif scale == "count": self.scale_count(density, counts, scale_hue) else: raise ValueError("scale method '{}' not recognized".format(scale)) # Set object attributes that will be used while plotting self.support = support self.density = density def fit_kde(self, x, bw): """Estimate a KDE for a vector of data with flexible bandwidth.""" # Allow for the use of old scipy where `bw` is fixed try: kde = stats.gaussian_kde(x, bw) except TypeError: kde = stats.gaussian_kde(x) if bw != "scott": # scipy default msg = ("Ignoring bandwidth choice, " "please upgrade scipy to use a different bandwidth.") warnings.warn(msg, UserWarning) # Extract the numeric bandwidth from the KDE object bw_used = kde.factor # At this point, bw will be a numeric scale factor. # To get the actual bandwidth of the kernel, we multiple by the # unbiased standard deviation of the data, which we will use # elsewhere to compute the range of the support. bw_used = bw_used * x.std(ddof=1) return kde, bw_used def kde_support(self, x, bw, cut, gridsize): """Define a grid of support for the violin.""" support_min = x.min() - bw * cut support_max = x.max() + bw * cut return np.linspace(support_min, support_max, gridsize) def scale_area(self, density, max_density, scale_hue): """Scale the relative area under the KDE curve. This essentially preserves the "standard" KDE scaling, but the resulting maximum density will be 1 so that the curve can be properly multiplied by the violin width. """ if self.hue_names is None: for d in density: if d.size > 1: d /= max_density.max() else: for i, group in enumerate(density): for d in group: if scale_hue: max = max_density[i].max() else: max = max_density.max() if d.size > 1: d /= max def scale_width(self, density): """Scale each density curve to the same height.""" if self.hue_names is None: for d in density: d /= d.max() else: for group in density: for d in group: d /= d.max() def scale_count(self, density, counts, scale_hue): """Scale each density curve by the number of observations.""" if self.hue_names is None: for count, d in zip(counts, density): d /= d.max() d *= count / counts.max() else: for i, group in enumerate(density): for j, d in enumerate(group): count = counts[i, j] if scale_hue: scaler = count / counts[i].max() else: scaler = count / counts.max() d /= d.max() d *= scaler @property def dwidth(self): if self.hue_names is None: return self.width / 2 elif self.split: return self.width / 2 else: return self.width / (2 * len(self.hue_names)) def draw_violins(self, ax): """Draw the violins onto `ax`.""" fill_func = ax.fill_betweenx if self.orient == "v" else ax.fill_between for i, group_data in enumerate(self.plot_data): kws = dict(edgecolor=self.gray, linewidth=self.linewidth) # Option 1: we have a single level of grouping # -------------------------------------------- if self.plot_hues is None: support, density = self.support[i], self.density[i] # Handle special case of no observations in this bin if support.size == 0: continue # Handle special case of a single observation elif support.size == 1: val = np.asscalar(support) d = np.asscalar(density) self.draw_single_observation(ax, i, val, d) continue # Draw the violin for this group grid = np.ones(self.gridsize) * i fill_func(support, grid - density * self.dwidth, grid + density * self.dwidth, color=self.colors[i], **kws) # Draw the interior representation of the data if self.inner is None: continue # Get a nan-free vector of datapoints violin_data = remove_na(group_data) # Draw box and whisker information if self.inner.startswith("box"): self.draw_box_lines(ax, violin_data, support, density, i) # Draw quartile lines elif self.inner.startswith("quart"): self.draw_quartiles(ax, violin_data, support, density, i) # Draw stick observations elif self.inner.startswith("stick"): self.draw_stick_lines(ax, violin_data, support, density, i) # Draw point observations elif self.inner.startswith("point"): self.draw_points(ax, violin_data, i) # Option 2: we have nested grouping by a hue variable # --------------------------------------------------- else: offsets = self.hue_offsets for j, hue_level in enumerate(self.hue_names): support, density = self.support[i][j], self.density[i][j] kws["color"] = self.colors[j] # Add legend data, but just for one set of violins if not i: self.add_legend_data(ax, self.colors[j], hue_level) # Handle the special case where we have no observations if support.size == 0: continue # Handle the special case where we have one observation elif support.size == 1: val = np.asscalar(support) d = np.asscalar(density) if self.split: d = d / 2 at_group = i + offsets[j] self.draw_single_observation(ax, at_group, val, d) continue # Option 2a: we are drawing a single split violin # ----------------------------------------------- if self.split: grid = np.ones(self.gridsize) * i if j: fill_func(support, grid, grid + density * self.dwidth, **kws) else: fill_func(support, grid - density * self.dwidth, grid, **kws) # Draw the interior representation of the data if self.inner is None: continue # Get a nan-free vector of datapoints hue_mask = self.plot_hues[i] == hue_level violin_data = remove_na(group_data[hue_mask]) # Draw quartile lines if self.inner.startswith("quart"): self.draw_quartiles(ax, violin_data, support, density, i, ["left", "right"][j]) # Draw stick observations elif self.inner.startswith("stick"): self.draw_stick_lines(ax, violin_data, support, density, i, ["left", "right"][j]) # The box and point interior plots are drawn for # all data at the group level, so we just do that once if not j: continue # Get the whole vector for this group level violin_data = remove_na(group_data) # Draw box and whisker information if self.inner.startswith("box"): self.draw_box_lines(ax, violin_data, support, density, i) # Draw point observations elif self.inner.startswith("point"): self.draw_points(ax, violin_data, i) # Option 2b: we are drawing full nested violins # ----------------------------------------------- else: grid = np.ones(self.gridsize) * (i + offsets[j]) fill_func(support, grid - density * self.dwidth, grid + density * self.dwidth, **kws) # Draw the interior representation if self.inner is None: continue # Get a nan-free vector of datapoints hue_mask = self.plot_hues[i] == hue_level violin_data = remove_na(group_data[hue_mask]) # Draw box and whisker information if self.inner.startswith("box"): self.draw_box_lines(ax, violin_data, support, density, i + offsets[j]) # Draw quartile lines elif self.inner.startswith("quart"): self.draw_quartiles(ax, violin_data, support, density, i + offsets[j]) # Draw stick observations elif self.inner.startswith("stick"): self.draw_stick_lines(ax, violin_data, support, density, i + offsets[j]) # Draw point observations elif self.inner.startswith("point"): self.draw_points(ax, violin_data, i + offsets[j]) def draw_single_observation(self, ax, at_group, at_quant, density): """Draw a line to mark a single observation.""" d_width = density * self.dwidth if self.orient == "v": ax.plot([at_group - d_width, at_group + d_width], [at_quant, at_quant], color=self.gray, linewidth=self.linewidth) else: ax.plot([at_quant, at_quant], [at_group - d_width, at_group + d_width], color=self.gray, linewidth=self.linewidth) def draw_box_lines(self, ax, data, support, density, center): """Draw boxplot information at center of the density.""" # Compute the boxplot statistics q25, q50, q75 = np.percentile(data, [25, 50, 75]) whisker_lim = 1.5 * iqr(data) h1 = np.min(data[data >= (q25 - whisker_lim)]) h2 = np.max(data[data <= (q75 + whisker_lim)]) # Draw a boxplot using lines and a point if self.orient == "v": ax.plot([center, center], [h1, h2], linewidth=self.linewidth, color=self.gray) ax.plot([center, center], [q25, q75], linewidth=self.linewidth * 3, color=self.gray) ax.scatter(center, q50, zorder=3, color="white", edgecolor=self.gray, s=np.square(self.linewidth * 2)) else: ax.plot([h1, h2], [center, center], linewidth=self.linewidth, color=self.gray) ax.plot([q25, q75], [center, center], linewidth=self.linewidth * 3, color=self.gray) ax.scatter(q50, center, zorder=3, color="white", edgecolor=self.gray, s=np.square(self.linewidth * 2)) def draw_quartiles(self, ax, data, support, density, center, split=False): """Draw the quartiles as lines at width of density.""" q25, q50, q75 = np.percentile(data, [25, 50, 75]) self.draw_to_density(ax, center, q25, support, density, split, linewidth=self.linewidth, dashes=[self.linewidth * 1.5] * 2) self.draw_to_density(ax, center, q50, support, density, split, linewidth=self.linewidth, dashes=[self.linewidth * 3] * 2) self.draw_to_density(ax, center, q75, support, density, split, linewidth=self.linewidth, dashes=[self.linewidth * 1.5] * 2) def draw_points(self, ax, data, center): """Draw individual observations as points at middle of the violin.""" kws = dict(s=np.square(self.linewidth * 2), c=self.gray, edgecolor=self.gray) grid = np.ones(len(data)) * center if self.orient == "v": ax.scatter(grid, data, **kws) else: ax.scatter(data, grid, **kws) def draw_stick_lines(self, ax, data, support, density, center, split=False): """Draw individual observations as sticks at width of density.""" for val in data: self.draw_to_density(ax, center, val, support, density, split, linewidth=self.linewidth * .5) def draw_to_density(self, ax, center, val, support, density, split, **kws): """Draw a line orthogonal to the value axis at width of density.""" idx = np.argmin(np.abs(support - val)) width = self.dwidth * density[idx] * .99 kws["color"] = self.gray if self.orient == "v": if split == "left": ax.plot([center - width, center], [val, val], **kws) elif split == "right": ax.plot([center, center + width], [val, val], **kws) else: ax.plot([center - width, center + width], [val, val], **kws) else: if split == "left": ax.plot([val, val], [center - width, center], **kws) elif split == "right": ax.plot([val, val], [center, center + width], **kws) else: ax.plot([val, val], [center - width, center + width], **kws) def plot(self, ax): """Make the violin plot.""" self.draw_violins(ax) self.annotate_axes(ax) if self.orient == "h": ax.invert_yaxis() class _StripPlotter(_CategoricalPlotter): """1-d scatterplot with categorical organization.""" def __init__(self, x, y, hue, data, order, hue_order, jitter, split, orient, color, palette): """Initialize the plotter.""" self.establish_variables(x, y, hue, data, orient, order, hue_order) self.establish_colors(color, palette, 1) # Set object attributes self.split = split self.width = .8 if jitter == 1: # Use a good default for `jitter = True` jlim = 0.1 else: jlim = float(jitter) if self.hue_names is not None and split: jlim /= len(self.hue_names) self.jitterer = stats.uniform(-jlim, jlim * 2).rvs def draw_stripplot(self, ax, kws): """Draw the points onto `ax`.""" # Set the default zorder to 2.1, so that the points # will be drawn on top of line elements (like in a boxplot) kws.setdefault("zorder", 2.1) for i, group_data in enumerate(self.plot_data): if self.plot_hues is None: # Determine the positions of the points strip_data = remove_na(group_data) jitter = self.jitterer(len(strip_data)) kws["color"] = self.colors[i] # Draw the plot if self.orient == "v": ax.scatter(i + jitter, strip_data, **kws) else: ax.scatter(strip_data, i + jitter, **kws) else: offsets = self.hue_offsets for j, hue_level in enumerate(self.hue_names): hue_mask = self.plot_hues[i] == hue_level if not hue_mask.any(): continue # Determine the positions of the points strip_data = remove_na(group_data[hue_mask]) pos = i + offsets[j] if self.split else i jitter = self.jitterer(len(strip_data)) kws["color"] = self.colors[j] # Only label one set of plots if i: kws.pop("label", None) else: kws["label"] = hue_level # Draw the plot if self.orient == "v": ax.scatter(pos + jitter, strip_data, **kws) else: ax.scatter(strip_data, pos + jitter, **kws) def plot(self, ax, kws): """Make the plot.""" self.draw_stripplot(ax, kws) self.annotate_axes(ax) if self.orient == "h": ax.invert_yaxis() class _SwarmPlotter(_BoxPlotter): def __init__(self): pass def plot(self, ax): pass class _CategoricalStatPlotter(_CategoricalPlotter): @property def nested_width(self): """A float with the width of plot elements when hue nesting is used.""" return self.width / len(self.hue_names) def estimate_statistic(self, estimator, ci, n_boot): if self.hue_names is None: statistic = [] confint = [] else: statistic = [[] for _ in self.plot_data] confint = [[] for _ in self.plot_data] for i, group_data in enumerate(self.plot_data): # Option 1: we have a single layer of grouping # -------------------------------------------- if self.plot_hues is None: if self.plot_units is None: stat_data = remove_na(group_data) unit_data = None else: unit_data = self.plot_units[i] have = pd.notnull(np.c_[group_data, unit_data]).all(axis=1) stat_data = group_data[have] unit_data = unit_data[have] # Estimate a statistic from the vector of data if not stat_data.size: statistic.append(np.nan) else: statistic.append(estimator(stat_data)) # Get a confidence interval for this estimate if ci is not None: if stat_data.size < 2: confint.append([np.nan, np.nan]) continue boots = bootstrap(stat_data, func=estimator, n_boot=n_boot, units=unit_data) confint.append(utils.ci(boots, ci)) # Option 2: we are grouping by a hue layer # ---------------------------------------- else: for j, hue_level in enumerate(self.hue_names): if not self.plot_hues[i].size: statistic[i].append(np.nan) if ci is not None: confint[i].append((np.nan, np.nan)) continue hue_mask = self.plot_hues[i] == hue_level if self.plot_units is None: stat_data = remove_na(group_data[hue_mask]) unit_data = None else: group_units = self.plot_units[i] have = pd.notnull( np.c_[group_data, group_units] ).all(axis=1) stat_data = group_data[hue_mask & have] unit_data = group_units[hue_mask & have] # Estimate a statistic from the vector of data if not stat_data.size: statistic[i].append(np.nan) else: statistic[i].append(estimator(stat_data)) # Get a confidence interval for this estimate if ci is not None: if stat_data.size < 2: confint[i].append([np.nan, np.nan]) continue boots = bootstrap(stat_data, func=estimator, n_boot=n_boot, units=unit_data) confint[i].append(utils.ci(boots, ci)) # Save the resulting values for plotting self.statistic = np.array(statistic) self.confint = np.array(confint) # Rename the value label to reflect the estimation if self.value_label is not None: self.value_label = "{}({})".format(estimator.__name__, self.value_label) def draw_confints(self, ax, at_group, confint, colors, **kws): kws.setdefault("lw", mpl.rcParams["lines.linewidth"] * 1.8) for at, (ci_low, ci_high), color in zip(at_group, confint, colors): if self.orient == "v": ax.plot([at, at], [ci_low, ci_high], color=color, **kws) else: ax.plot([ci_low, ci_high], [at, at], color=color, **kws) class _BarPlotter(_CategoricalStatPlotter): """Show point estimates and confidence intervals with bars.""" def __init__(self, x, y, hue, data, order, hue_order, estimator, ci, n_boot, units, orient, color, palette, saturation, errcolor): """Initialize the plotter.""" self.establish_variables(x, y, hue, data, orient, order, hue_order, units) self.establish_colors(color, palette, saturation) self.estimate_statistic(estimator, ci, n_boot) self.errcolor = errcolor def draw_bars(self, ax, kws): """Draw the bars onto `ax`.""" # Get the right matplotlib function depending on the orientation barfunc = ax.bar if self.orient == "v" else ax.barh barpos = np.arange(len(self.statistic)) if self.plot_hues is None: # Draw the bars barfunc(barpos, self.statistic, self.width, color=self.colors, align="center", **kws) # Draw the confidence intervals errcolors = [self.errcolor] * len(barpos) self.draw_confints(ax, barpos, self.confint, errcolors) else: for j, hue_level in enumerate(self.hue_names): # Draw the bars offpos = barpos + self.hue_offsets[j] barfunc(offpos, self.statistic[:, j], self.nested_width, color=self.colors[j], align="center", label=hue_level, **kws) # Draw the confidence intervals if self.confint.size: confint = self.confint[:, j] errcolors = [self.errcolor] * len(offpos) self.draw_confints(ax, offpos, confint, errcolors) def plot(self, ax, bar_kws): """Make the plot.""" self.draw_bars(ax, bar_kws) self.annotate_axes(ax) if self.orient == "h": ax.invert_yaxis() class _PointPlotter(_CategoricalStatPlotter): """Show point estimates and confidence intervals with (joined) points.""" def __init__(self, x, y, hue, data, order, hue_order, estimator, ci, n_boot, units, markers, linestyles, dodge, join, scale, orient, color, palette): """Initialize the plotter.""" self.establish_variables(x, y, hue, data, orient, order, hue_order, units) self.establish_colors(color, palette, 1) self.estimate_statistic(estimator, ci, n_boot) # Override the default palette for single-color plots if hue is None and color is None and palette is None: self.colors = [color_palette()[0]] * len(self.colors) # Don't join single-layer plots with different colors if hue is None and palette is not None: join = False # Use a good default for `dodge=True` if dodge is True and self.hue_names is not None: dodge = .025 * len(self.hue_names) # Make sure we have a marker for each hue level if isinstance(markers, string_types): markers = [markers] * len(self.colors) self.markers = markers # Make sure we have a line style for each hue level if isinstance(linestyles, string_types): linestyles = [linestyles] * len(self.colors) self.linestyles = linestyles # Set the other plot components self.dodge = dodge self.join = join self.scale = scale @property def hue_offsets(self): """Offsets relative to the center position for each hue level.""" offset = np.linspace(0, self.dodge, len(self.hue_names)) offset -= offset.mean() return offset def draw_points(self, ax): """Draw the main data components of the plot.""" # Get the center positions on the categorical axis pointpos = np.arange(len(self.statistic)) # Get the size of the plot elements lw = mpl.rcParams["lines.linewidth"] * 1.8 * self.scale mew = lw * .75 markersize = np.pi * np.square(lw) * 2 if self.plot_hues is None: # Draw lines joining each estimate point if self.join: color = self.colors[0] ls = self.linestyles[0] if self.orient == "h": ax.plot(self.statistic, pointpos, color=color, ls=ls, lw=lw) else: ax.plot(pointpos, self.statistic, color=color, ls=ls, lw=lw) # Draw the confidence intervals self.draw_confints(ax, pointpos, self.confint, self.colors, lw=lw) # Draw the estimate points marker = self.markers[0] if self.orient == "h": ax.scatter(self.statistic, pointpos, linewidth=mew, marker=marker, s=markersize, c=self.colors, edgecolor=self.colors) else: ax.scatter(pointpos, self.statistic, linewidth=mew, marker=marker, s=markersize, c=self.colors, edgecolor=self.colors) else: offsets = self.hue_offsets for j, hue_level in enumerate(self.hue_names): # Determine the values to plot for this level statistic = self.statistic[:, j] # Determine the position on the categorical and z axes offpos = pointpos + offsets[j] z = j + 1 # Draw lines joining each estimate point if self.join: color = self.colors[j] ls = self.linestyles[j] if self.orient == "h": ax.plot(statistic, offpos, color=color, zorder=z, ls=ls, lw=lw) else: ax.plot(offpos, statistic, color=color, zorder=z, ls=ls, lw=lw) # Draw the confidence intervals if self.confint.size: confint = self.confint[:, j] errcolors = [self.colors[j]] * len(offpos) self.draw_confints(ax, offpos, confint, errcolors, zorder=z, lw=lw) # Draw the estimate points marker = self.markers[j] if self.orient == "h": ax.scatter(statistic, offpos, label=hue_level, c=[self.colors[j]] * len(offpos), linewidth=mew, marker=marker, s=markersize, edgecolor=self.colors[j], zorder=z) else: ax.scatter(offpos, statistic, label=hue_level, c=[self.colors[j]] * len(offpos), linewidth=mew, marker=marker, s=markersize, edgecolor=self.colors[j], zorder=z) def plot(self, ax): """Make the plot.""" self.draw_points(ax) self.annotate_axes(ax) if self.orient == "h": ax.invert_yaxis() _categorical_docs = dict( # Shared narrative docs main_api_narrative=dedent("""\ Input data can be passed in a variety of formats, including: - Vectors of data represented as lists, numpy arrays, or pandas Series objects passed directly to the ``x``, ``y``, and/or ``hue`` parameters. - A "long-form" DataFrame, in which case the ``x``, ``y``, and ``hue`` variables will determine how the data are plotted. - A "wide-form" DataFrame, such that each numeric column will be plotted. - Anything accepted by ``plt.boxplot`` (e.g. a 2d array or list of vectors) In most cases, it is possible to use numpy or Python objects, but pandas objects are preferable because the associated names will be used to annotate the axes. Additionally, you can use Categorical types for the grouping variables to control the order of plot elements.\ """), # Shared function parameters input_params=dedent("""\ x, y, hue : names of variables in ``data`` or vector data, optional Inputs for plotting long-form data. See examples for interpretation.\ """), string_input_params=dedent("""\ x, y, hue : names of variables in ``data`` Inputs for plotting long-form data. See examples for interpretation.\ """), categorical_data=dedent("""\ data : DataFrame, array, or list of arrays, optional Dataset for plotting. If ``x`` and ``y`` are absent, this is interpreted as wide-form. Otherwise it is expected to be long-form.\ """), long_form_data=dedent("""\ data : DataFrame Long-form (tidy) dataset for plotting. Each column should correspond to a variable, and each row should correspond to an observation.\ """), order_vars=dedent("""\ order, hue_order : lists of strings, optional Order to plot the categorical levels in, otherwise the levels are inferred from the data objects.\ """), stat_api_params=dedent("""\ estimator : callable that maps vector -> scalar, optional Statistical function to estimate within each categorical bin. ci : float or None, optional Size of confidence intervals to draw around estimated values. If ``None``, no bootstrapping will be performed, and error bars will not be drawn. n_boot : int, optional Number of bootstrap iterations to use when computing confidence intervals. units : name of variable in ``data`` or vector data, optional Identifier of sampling units, which will be used to perform a multilevel bootstrap and account for repeated measures design.\ """), orient=dedent("""\ orient : "v" | "h", optional Orientation of the plot (vertical or horizontal). This is usually inferred from the dtype of the input variables, but can be used to specify when the "categorical" variable is a numeric or when plotting wide-form data.\ """), color=dedent("""\ color : matplotlib color, optional Color for all of the elements, or seed for :func:`light_palette` when using hue nesting.\ """), palette=dedent("""\ palette : palette name, list, or dict, optional Color palette that maps either the grouping variable or the hue variable. If the palette is a dictionary, keys should be names of levels and values should be matplotlib colors.\ """), saturation=dedent("""\ saturation : float, optional Proportion of the original saturation to draw colors at. Large patches often look better with slightly desaturated colors, but set this to ``1`` if you want the plot colors to perfectly match the input color spec.\ """), width=dedent("""\ width : float, optional Width of a full element when not using hue nesting, or width of all the elements for one level of the major grouping variable.\ """), linewidth=dedent("""\ linewidth : float, optional Width of the gray lines that frame the plot elements.\ """), ax_in=dedent("""\ ax : matplotlib Axes, optional Axes object to draw the plot onto, otherwise uses the current Axes.\ """), ax_out=dedent("""\ ax : matplotlib Axes Returns the Axes object with the boxplot drawn onto it.\ """), # Shared see also boxplot=dedent("""\ boxplot : A traditional box-and-whisker plot with a similar API.\ """), violinplot=dedent("""\ violinplot : A combination of boxplot and kernel density estimation.\ """), stripplot=dedent("""\ stripplot : A scatterplot where one variable is categorical. Can be used in conjunction with a other plots to show each observation.\ """), barplot=dedent("""\ barplot : Show point estimates and confidence intervals using bars.\ """), countplot=dedent("""\ countplot : Show the counts of observations in each categorical bin.\ """), pointplot=dedent("""\ pointplot : Show point estimates and confidence intervals using scatterplot glyphs.\ """), factorplot=dedent("""\ factorplot : Combine categorical plots and a class:`FacetGrid`.\ """), ) _categorical_docs.update(_facet_docs) def boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=.75, width=.8, fliersize=5, linewidth=None, whis=1.5, notch=False, ax=None, **kwargs): # Try to handle broken backwards-compatability # This should help with the lack of a smooth deprecation, # but won't catch everything warn = False if isinstance(x, pd.DataFrame): data = x x = None warn = True if "vals" in kwargs: x = kwargs.pop("vals") warn = True if "groupby" in kwargs: y = x x = kwargs.pop("groupby") warn = True if "vert" in kwargs: vert = kwargs.pop("vert", True) if not vert: x, y = y, x orient = "v" if vert else "h" warn = True if "names" in kwargs: kwargs.pop("names") warn = True if "join_rm" in kwargs: kwargs.pop("join_rm") warn = True msg = ("The boxplot API has been changed. Attempting to adjust your " "arguments for the new API (which might not work). Please update " "your code. See the version 0.6 release notes for more info.") if warn: warnings.warn(msg, UserWarning) plotter = _BoxPlotter(x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, fliersize, linewidth) if ax is None: ax = plt.gca() kwargs.update(dict(whis=whis, notch=notch)) plotter.plot(ax, kwargs) return ax boxplot.__doc__ = dedent("""\ Draw a box plot to show distributions with respect to categories. A box plot (or box-and-whisker plot) shows the distribution of quantitative data in a way that facilitates comparisons between variables or across levels of a categorical variable. The box shows the quartiles of the dataset while the whiskers extend to show the rest of the distribution, except for points that are determined to be "outliers" using a method that is a function of the inter-quartile range. {main_api_narrative} Parameters ---------- {input_params} {categorical_data} {order_vars} {orient} {color} {palette} {saturation} {width} fliersize : float, optional Size of the markers used to indicate outlier observations. {linewidth} whis : float, optional Proportion of the IQR past the low and high quartiles to extend the plot whiskers. Points outside this range will be identified as outliers. notch : boolean, optional Whether to "notch" the box to indicate a confidence interval for the median. There are several other parameters that can control how the notches are drawn; see the ``plt.boxplot`` help for more information on them. {ax_in} kwargs : key, value mappings Other keyword arguments are passed through to ``plt.boxplot`` at draw time. Returns ------- {ax_out} See Also -------- {violinplot} {stripplot} Examples -------- Draw a single horizontal boxplot: .. plot:: :context: close-figs >>> import seaborn as sns >>> sns.set_style("whitegrid") >>> tips = sns.load_dataset("tips") >>> ax = sns.boxplot(x=tips["total_bill"]) Draw a vertical boxplot grouped by a categorical variable: .. plot:: :context: close-figs >>> ax = sns.boxplot(x="day", y="total_bill", data=tips) Draw a boxplot with nested grouping by two categorical variables: .. plot:: :context: close-figs >>> ax = sns.boxplot(x="day", y="total_bill", hue="smoker", ... data=tips, palette="Set3") Draw a boxplot with nested grouping when some bins are empty: .. plot:: :context: close-figs >>> ax = sns.boxplot(x="day", y="total_bill", hue="time", ... data=tips, linewidth=2.5) Control box order by sorting the input data: .. plot:: :context: close-figs >>> ax = sns.boxplot(x="size", y="tip", data=tips.sort("size")) Control box order by passing an explicit order: .. plot:: :context: close-figs >>> ax = sns.boxplot(x="size", y="tip", data=tips, ... order=np.arange(1, 7), palette="Blues_d") Draw a boxplot for each numeric variable in a DataFrame: .. plot:: :context: close-figs >>> iris = sns.load_dataset("iris") >>> ax = sns.boxplot(data=iris, orient="h", palette="Set2") Use :func:`stripplot` to show the datapoints on top of the boxes: .. plot:: :context: close-figs >>> ax = sns.boxplot(x="day", y="total_bill", data=tips) >>> ax = sns.stripplot(x="day", y="total_bill", data=tips, ... size=4, jitter=True, edgecolor="gray") Draw a box plot on to a :class:`FacetGrid` to group within an additional categorical variable: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="time", size=4, aspect=.7) >>> (g.map(sns.boxplot, "sex", "total_bill", "smoker") ... .despine(left=True) ... .add_legend(title="smoker")) #doctest: +ELLIPSIS <seaborn.axisgrid.FacetGrid object at 0x...> """).format(**_categorical_docs) def violinplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, bw="scott", cut=2, scale="area", scale_hue=True, gridsize=100, width=.8, inner="box", split=False, orient=None, linewidth=None, color=None, palette=None, saturation=.75, ax=None, **kwargs): # Try to handle broken backwards-compatability # This should help with the lack of a smooth deprecation, # but won't catch everything warn = False if isinstance(x, pd.DataFrame): data = x x = None warn = True if "vals" in kwargs: x = kwargs.pop("vals") warn = True if "groupby" in kwargs: y = x x = kwargs.pop("groupby") warn = True if "vert" in kwargs: vert = kwargs.pop("vert", True) if not vert: x, y = y, x orient = "v" if vert else "h" warn = True msg = ("The violinplot API has been changed. Attempting to adjust your " "arguments for the new API (which might not work). Please update " "your code. See the version 0.6 release notes for more info.") if warn: warnings.warn(msg, UserWarning) plotter = _ViolinPlotter(x, y, hue, data, order, hue_order, bw, cut, scale, scale_hue, gridsize, width, inner, split, orient, linewidth, color, palette, saturation) if ax is None: ax = plt.gca() plotter.plot(ax) return ax violinplot.__doc__ = dedent("""\ Draw a combination of boxplot and kernel density estimate. A violin plot plays a similar role as a box and whisker plot. It shows the distribution of quantitative data across several levels of one (or more) categorical variables such that those distributions can be compared. Unlike a box plot, in which all of the plot components correspond to actual datapoints, the violin plot features a kernel density estimation of the underlying distribution. This can be an effective and attractive way to show multiple distributions of data at once, but keep in mind that the estimation procedure is influenced by the sample size, and violins for relatively small samples might look misleadingly smooth. {main_api_narrative} Parameters ---------- {input_params} {categorical_data} {order_vars} bw : {{'scott', 'silverman', float}}, optional Either the name of a reference rule or the scale factor to use when computing the kernel bandwidth. The actual kernel size will be determined by multiplying the scale factor by the standard deviation of the data within each bin. cut : float, optional Distance, in units of bandwidth size, to extend the density past the extreme datapoints. Set to 0 to limit the violin range within the range of the observed data (i.e., to have the same effect as ``trim=True`` in ``ggplot``. scale : {{"area", "count", "width"}}, optional The method used to scale the width of each violin. If ``area``, each violin will have the same area. If ``count``, the width of the violins will be scaled by the number of observations in that bin. If ``width``, each violin will have the same width. scale_hue : bool, optional When nesting violins using a ``hue`` variable, this parameter determines whether the scaling is computed within each level of the major grouping variable (``scale_hue=True``) or across all the violins on the plot (``scale_hue=False``). gridsize : int, optional Number of points in the discrete grid used to compute the kernel density estimate. {width} inner : {{"box", "quartile", "point", "stick", None}}, optional Representation of the datapoints in the violin interior. If ``box``, draw a miniature boxplot. If ``quartiles``, draw the quartiles of the distribution. If ``point`` or ``stick``, show each underlying datapoint. Using ``None`` will draw unadorned violins. split : bool, optional When using hue nesting with a variable that takes two levels, setting ``split`` to True will draw half of a violin for each level. This can make it easier to directly compare the distributions. {orient} {linewidth} {color} {palette} {saturation} {ax_in} Returns ------- {ax_out} See Also -------- {boxplot} {stripplot} Examples -------- Draw a single horizontal violinplot: .. plot:: :context: close-figs >>> import seaborn as sns >>> sns.set_style("whitegrid") >>> tips = sns.load_dataset("tips") >>> ax = sns.violinplot(x=tips["total_bill"]) Draw a vertical violinplot grouped by a categorical variable: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", data=tips) Draw a violinplot with nested grouping by two categorical variables: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", hue="smoker", ... data=tips, palette="muted") Draw split violins to compare the across the hue variable: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", hue="smoker", ... data=tips, palette="muted", split=True) Control violin order by sorting the input data: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="size", y="tip", data=tips.sort("size")) Control violin order by passing an explicit order: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="size", y="tip", data=tips, ... order=np.arange(1, 7), palette="Blues_d") Scale the violin width by the number of observations in each bin: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex", ... data=tips, palette="Set2", split=True, ... scale="count") Draw the quartiles as horizontal lines instead of a mini-box: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex", ... data=tips, palette="Set2", split=True, ... scale="count", inner="quartile") Show each observation with a stick inside the violin: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex", ... data=tips, palette="Set2", split=True, ... scale="count", inner="stick") Scale the density relative to the counts across all bins: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex", ... data=tips, palette="Set2", split=True, ... scale="count", inner="stick", scale_hue=False) Use a narrow bandwidth to reduce the amount of smoothing: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", hue="sex", ... data=tips, palette="Set2", split=True, ... scale="count", inner="stick", ... scale_hue=False, bw=.2) Draw horizontal violins: .. plot:: :context: close-figs >>> planets = sns.load_dataset("planets") >>> ax = sns.violinplot(x="orbital_period", y="method", ... data=planets[planets.orbital_period < 1000], ... scale="width", palette="Set3") Draw a violin plot on to a :class:`FacetGrid` to group within an additional categorical variable: .. plot:: :context: close-figs >>> g = sns.FacetGrid(tips, col="time", size=4, aspect=.7) >>> (g.map(sns.violinplot, "sex", "total_bill", "smoker", split=True) ... .despine(left=True) ... .add_legend(title="smoker")) # doctest: +ELLIPSIS <seaborn.axisgrid.FacetGrid object at 0x...> """).format(**_categorical_docs) def stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, jitter=False, split=True, orient=None, color=None, palette=None, size=7, edgecolor="w", linewidth=1, ax=None, **kwargs): plotter = _StripPlotter(x, y, hue, data, order, hue_order, jitter, split, orient, color, palette) if ax is None: ax = plt.gca() kwargs.update(dict(s=size ** 2, edgecolor=edgecolor, linewidth=linewidth)) if edgecolor == "gray": kwargs["edgecolor"] = plotter.gray plotter.plot(ax, kwargs) return ax stripplot.__doc__ = dedent("""\ Draw a scatterplot where one variable is categorical. A strip plot can be drawn on its own, but it is also a good complement to a box or violin plot in cases where you want to show all observations along with some representation of the underlying distribution. {main_api_narrative} Parameters ---------- {input_params} {categorical_data} {order_vars} jitter : float, ``True``/``1`` is special-cased, optional Amount of jitter (only along the categorical axis) to apply. This can be useful when you have many points and they overlap, so that it is easier to see the distribution. You can specify the amount of jitter (half the width of the uniform random variable support), or just use ``True`` for a good default. split : bool, optional When using ``hue`` nesting, setting this to ``True`` will separate the strips for different hue levels along the categorical axis. Otherwise, the points for each level will be plotted on top of each other. {orient} {color} {palette} size : float, optional Diameter of the markers, in points. (Although ``plt.scatter`` is used to draw the points, the ``size`` argument here takes a "normal" markersize and not size^2 like ``plt.scatter``. edgecolor : matplotlib color, "gray" is special-cased, optional Color of the lines around each point. If you pass ``"gray"``, the brightness is determined by the color palette used for the body of the points. {linewidth} {ax_in} Returns ------- {ax_out} See Also -------- {boxplot} {violinplot} Examples -------- Draw a single horizontal strip plot: .. plot:: :context: close-figs >>> import seaborn as sns >>> sns.set_style("whitegrid") >>> tips = sns.load_dataset("tips") >>> ax = sns.stripplot(x=tips["total_bill"]) Group the strips by a categorical variable: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="day", y="total_bill", data=tips) Add jitter to bring out the distribution of values: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="day", y="total_bill", data=tips, jitter=True) Use a smaller amount of jitter: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="day", y="total_bill", data=tips, jitter=0.05) Draw horizontal strips: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="total_bill", y="day", data=tips, ... jitter=True) Nest the strips within a second categorical variable: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="sex", y="total_bill", hue="day", ... data=tips, jitter=True) Draw each level of the ``hue`` variable at the same location on the major categorical axis: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="day", y="total_bill", hue="smoker", ... data=tips, jitter=True, ... palette="Set2", split=False) Control strip order by sorting the input data: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="size", y="tip", data=tips.sort("size")) Control strip order by passing an explicit order: .. plot:: :context: close-figs >>> ax = sns.stripplot(x="size", y="tip", data=tips, ... order=np.arange(1, 7), palette="Blues_d") Draw strips with large points and different aesthetics: .. plot:: :context: close-figs >>> ax = sns.stripplot("day", "total_bill", "smoker", data=tips, ... palette="Set2", size=20, marker="D", ... edgecolor="gray", alpha=.25) Draw strips of observations on top of a box plot: .. plot:: :context: close-figs >>> ax = sns.boxplot(x="tip", y="day", data=tips, whis=np.inf) >>> ax = sns.stripplot(x="tip", y="day", data=tips, jitter=True) Draw strips of observations on top of a violin plot: .. plot:: :context: close-figs >>> ax = sns.violinplot(x="day", y="total_bill", data=tips, inner=None) >>> ax = sns.stripplot(x="day", y="total_bill", data=tips, ... jitter=True, color="white", edgecolor="gray") """).format(**_categorical_docs) def barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=np.mean, ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, saturation=.75, errcolor=".26", ax=None, **kwargs): # Handle some deprecated arguments if "hline" in kwargs: kwargs.pop("hline") warnings.warn("The `hline` parameter has been removed", UserWarning) if "dropna" in kwargs: kwargs.pop("dropna") warnings.warn("The `dropna` parameter has been removed", UserWarning) if "x_order" in kwargs: order = kwargs.pop("x_order") warnings.warn("The `x_order` parameter has been renamed `order`", UserWarning) plotter = _BarPlotter(x, y, hue, data, order, hue_order, estimator, ci, n_boot, units, orient, color, palette, saturation, errcolor) if ax is None: ax = plt.gca() plotter.plot(ax, kwargs) return ax barplot.__doc__ = dedent("""\ Show point estimates and confidence intervals as rectangular bars. A bar plot represents an estimate of central tendency for a numeric variable with the height of each rectangle and provides some indication of the uncertainty around that estimate using error bars. Bar plots include 0 in the quantitative axis range, and they are a good choice when 0 is a meaningful value for the quantitative variable, and you want to make comparisons against it. For datasets where 0 is not a meaningful value, a point plot will allow you to focus on differences between levels of one or more categorical variables. It is also important to keep in mind that a bar plot shows only the mean (or other estimator) value, but in many cases it may be more informative to show the distribution of values at each level of the categorical variables. In that case, other approaches such as a box or violin plot may be more appropriate. {main_api_narrative} Parameters ---------- {input_params} {categorical_data} {order_vars} {stat_api_params} {orient} {color} {palette} {saturation} errcolor : matplotlib color Color for the lines that represent the confidence interval. {ax_in} kwargs : key, value mappings Other keyword arguments are passed through to ``plt.bar`` at draw time. Returns ------- {ax_out} See Also -------- {countplot} {pointplot} {factorplot} Examples -------- Draw a set of vertical bar plots grouped by a categorical variable: .. plot:: :context: close-figs >>> import seaborn as sns >>> sns.set_style("whitegrid") >>> tips = sns.load_dataset("tips") >>> ax = sns.barplot(x="day", y="total_bill", data=tips) Draw a set of vertical bars with nested grouping by a two variables: .. plot:: :context: close-figs >>> ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips) Draw a set of horizontal bars: .. plot:: :context: close-figs >>> ax = sns.barplot(x="tip", y="day", data=tips) Control bar order by sorting the input data: .. plot:: :context: close-figs >>> ax = sns.barplot(x="size", y="tip", data=tips.sort("size")) Control bar order by passing an explicit order: .. plot:: :context: close-figs >>> ax = sns.barplot(x="size", y="tip", data=tips, ... order=np.arange(1, 7), palette="Blues_d") Use median as the estimate of central tendency: .. plot:: :context: close-figs >>> from numpy import median >>> ax = sns.barplot(x="day", y="tip", data=tips, estimator=median) Show the standard error of the mean with the error bars: .. plot:: :context: close-figs >>> ax = sns.barplot(x="day", y="tip", data=tips, ci=68) Use a different color palette for the bars: .. plot:: :context: close-figs >>> ax = sns.barplot("size", y="total_bill", data=tips.sort("size"), ... palette="Blues_d") Plot all bars in a single color: .. plot:: :context: close-figs >>> ax = sns.barplot("size", y="total_bill", data=tips.sort("size"), ... color="salmon", saturation=.5) Use ``plt.bar`` keyword arguments to further change the aesthetic: .. plot:: :context: close-figs >>> ax = sns.barplot("day", "total_bill", data=tips, ... linewidth=2.5, facecolor=(1, 1, 1, 0), ... errcolor=".2", edgecolor=".2") """).format(**_categorical_docs) def pointplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, estimator=np.mean, ci=95, n_boot=1000, units=None, markers="o", linestyles="-", dodge=False, join=True, scale=1, orient=None, color=None, palette=None, ax=None, **kwargs): # Handle some deprecated arguments if "hline" in kwargs: kwargs.pop("hline") warnings.warn("The `hline` parameter has been removed", UserWarning) if "dropna" in kwargs: kwargs.pop("dropna") warnings.warn("The `dropna` parameter has been removed", UserWarning) if "x_order" in kwargs: order = kwargs.pop("x_order") warnings.warn("The `x_order` parameter has been renamed `order`", UserWarning) plotter = _PointPlotter(x, y, hue, data, order, hue_order, estimator, ci, n_boot, units, markers, linestyles, dodge, join, scale, orient, color, palette) if ax is None: ax = plt.gca() plotter.plot(ax) return ax pointplot.__doc__ = dedent("""\ Show point estimates and confidence intervals using scatter plot glyphs. A point plot represents an estimate of central tendency for a numeric variable by the position of scatter plot points and provides some indication of the uncertainty around that estimate using error bars. Point plots can be more useful than bar plots for focusing comparisons between different levels of one or more categorical variables. They are particularly adept at showing interactions: how the relationship between levels of one categorical variable changes across levels of a second categorical variable. The lines that join each point from the same ``hue`` level allow interactions to be judged by differences in slope, which is easier for the eyes than comparing the heights of several groups of points or bars. It is important to keep in mind that a point plot shows only the mean (or other estimator) value, but in many cases it may be more informative to show the distribution of values at each level of the categorical variables. In that case, other approaches such as a box or violin plot may be more appropriate. {main_api_narrative} Parameters ---------- {input_params} {categorical_data} {order_vars} {stat_api_params} markers : string or list of strings, optional Markers to use for each of the ``hue`` levels. linestyles : string or list of strings, optional Line styles to use for each of the ``hue`` levels. dodge : bool or float, optional Amount to separate the points for each level of the ``hue`` variable along the categorical axis. join : bool, optional If ``True``, lines will be drawn between point estimates at the same ``hue`` level. scale : float, optional Scale factor for the plot elements. {orient} {color} {palette} {ax_in} Returns ------- {ax_out} See Also -------- {barplot} {factorplot} Examples -------- Draw a set of vertical point plots grouped by a categorical variable: .. plot:: :context: close-figs >>> import seaborn as sns >>> sns.set_style("darkgrid") >>> tips = sns.load_dataset("tips") >>> ax = sns.pointplot(x="time", y="total_bill", data=tips) Draw a set of vertical points with nested grouping by a two variables: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker", ... data=tips) Separate the points for different hue levels along the categorical axis: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker", ... data=tips, dodge=True) Use a different marker and line style for the hue levels: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker", ... data=tips, ... markers=["o", "x"], ... linestyles=["-", "--"]) Draw a set of horizontal points: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="tip", y="day", data=tips) Don't draw a line connecting each point: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="tip", y="day", data=tips, join=False) Use a different color for a single-layer plot: .. plot:: :context: close-figs >>> ax = sns.pointplot("time", y="total_bill", data=tips, ... color="#bb3f3f") Use a different color palette for the points: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="time", y="total_bill", hue="smoker", ... data=tips, palette="Set2") Control point order by sorting the input data: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="size", y="tip", data=tips.sort("size")) Control point order by passing an explicit order: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="size", y="tip", data=tips, ... order=np.arange(1, 7), palette="Blues_d") Use median as the estimate of central tendency: .. plot:: :context: close-figs >>> from numpy import median >>> ax = sns.pointplot(x="day", y="tip", data=tips, estimator=median) Show the standard error of the mean with the error bars: .. plot:: :context: close-figs >>> ax = sns.pointplot(x="day", y="tip", data=tips, ci=68) """).format(**_categorical_docs) def countplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=.75, ax=None, **kwargs): estimator = len ci = None n_boot = 0 units = None errcolor = None if x is None and y is not None: orient = "h" x = y elif y is None and x is not None: orient = "v" y = x elif x is not None and y is not None: raise TypeError("Cannot pass values for both `x` and `y`") else: raise TypeError("Must pass valus for either `x` or `y`") plotter = _BarPlotter(x, y, hue, data, order, hue_order, estimator, ci, n_boot, units, orient, color, palette, saturation, errcolor) plotter.value_label = "count" if ax is None: ax = plt.gca() plotter.plot(ax, kwargs) return ax countplot.__doc__ = dedent("""\ Show the counts of observations in each categorical bin using bars. A count plot can be thought of as a histogram across a categorical, instead of quantitative, variable. The basic API and options are identical to those for :func:`barplot`, so you can compare counts across nested variables. {main_api_narrative} Parameters ---------- {input_params} {categorical_data} {order_vars} {orient} {color} {palette} {saturation} {ax_in} kwargs : key, value mappings Other keyword arguments are passed to ``plt.bar``. Returns ------- {ax_out} See Also -------- {barplot} {factorplot} Examples -------- Show value counts for a single categorical variable: .. plot:: :context: close-figs >>> import seaborn as sns >>> sns.set(style="darkgrid") >>> titanic = sns.load_dataset("titanic") >>> ax = sns.countplot(x="class", data=titanic) Show value counts for two categorical variables: .. plot:: :context: close-figs >>> ax = sns.countplot(x="class", hue="who", data=titanic) Plot the bars horizontally: .. plot:: :context: close-figs >>> ax = sns.countplot(y="class", hue="who", data=titanic) Use a different color palette: .. plot:: :context: close-figs >>> ax = sns.countplot(x="who", data=titanic, palette="Set3") Use ``plt.bar`` keyword arguments for a different look: .. plot:: :context: close-figs >>> ax = sns.countplot(x="who", data=titanic, ... facecolor=(0, 0, 0, 0), ... linewidth=5, ... edgecolor=sns.color_palette("dark", 3)) """).format(**_categorical_docs) def factorplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=np.mean, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind="point", size=4, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs): # Handle some deprecated arguments if "hline" in kwargs: kwargs.pop("hline") warnings.warn("The `hline` parameter has been removed", UserWarning) if "dropna" in kwargs: kwargs.pop("dropna") warnings.warn("The `dropna` parameter has been removed", UserWarning) if "x_order" in kwargs: order = kwargs.pop("x_order") warnings.warn("The `x_order` parameter has been renamed `order`", UserWarning) # Determine the plotting function try: plot_func = globals()[kind + "plot"] except KeyError: err = "Plot kind '{}' is not recognized".format(kind) raise ValueError(err) # Alias the input variables to determine categorical order and palette # correctly in the case of a count plot if kind == "count": if x is None and y is not None: x_, y_, orient = y, y, "h" elif y is None and x is not None: x_, y_, orient = x, x, "v" else: raise ValueError("Either `x` or `y` must be None for count plots") else: x_, y_ = x, y # Determine the order for the whole dataset, which will be used in all # facets to ensure representation of all data in the final plot p = _CategoricalPlotter() p.establish_variables(x_, y_, hue, data, orient, order, hue_order) order = p.group_names hue_order = p.hue_names # Determine the palette to use # (FacetGrid will pass a value for ``color`` to the plotting function # so we need to define ``palette`` to get default behavior for the # categorical functions p.establish_colors(color, palette, 1) if kind != "point" or hue is not None: palette = p.colors # Determine keyword arguments for the facets facet_kws = {} if facet_kws is None else facet_kws facet_kws.update( data=data, row=row, col=col, row_order=row_order, col_order=col_order, col_wrap=col_wrap, size=size, aspect=aspect, sharex=sharex, sharey=sharey, legend_out=legend_out, margin_titles=margin_titles, dropna=False, ) # Determine keyword arguments for the plotting function plot_kws = dict( order=order, hue_order=hue_order, orient=orient, color=color, palette=palette, ) plot_kws.update(kwargs) if kind in ["bar", "point"]: plot_kws.update( estimator=estimator, ci=ci, n_boot=n_boot, units=units, ) # Initialize the facets g = FacetGrid(**facet_kws) # Draw the plot onto the facets g.map_dataframe(plot_func, x, y, hue, **plot_kws) # Special case axis labels for a count type plot if kind == "count": if x is None: g.set_axis_labels(x_var="count") if y is None: g.set_axis_labels(y_var="count") if legend and (hue is not None) and (hue not in [x, row, col]): hue_order = list(map(str, hue_order)) g.add_legend(title=hue, label_order=hue_order) return g factorplot.__doc__ = dedent("""\ Draw a categorical plot onto a FacetGrid. The default plot that is shown is a point plot, but other seaborn categorical plots can be chosen with the ``kind`` parameter, including box plots, violin plots, bar plots, or strip plots. It is important to choose how variables get mapped to the plot structure such that the most important comparisons are easiest to make. As a general rule, it is easier to compare positions that are closer together, so the ``hue`` variable should be used for the most important comparisons. For secondary comparisons, try to share the quantitative axis (so, use ``col`` for vertical plots and ``row`` for horizontal plots). Note that, although it is possible to make rather complex plots using this function, in many cases you may be better served by created several smaller and more focused plots than by trying to stuff many comparisons into one figure. After plotting, the :class:`FacetGrid` with the plot is returned and can be used directly to tweak supporting plot details or add other layers. Note that, unlike when using the underlying plotting functions directly, data must be passed in a long-form DataFrame with variables specified by passing strings to ``x``, ``y``, ``hue``, and other parameters. As in the case with the underlying plot functions, if variables have a ``categorical`` data type, the correct orientation of the plot elements, the levels of the categorical variables, and their order will be inferred from the objects. Otherwise you may have to use the function parameters (``orient``, ``order``, ``hue_order``, etc.) to set up the plot correctly. Parameters ---------- {string_input_params} {long_form_data} row, col : names of variables in ``data``, optional Categorical variables that will determine the faceting of the grid. {col_wrap} {stat_api_params} {order_vars} row_order, col_order : lists of strings, optional Order to organize the rows and/or columns of the grid in, otherwise the orders are inferred from the data objects. kind : {{``point``, ``bar``, ``count``, ``box``, ``violin``, ``strip``}} The kind of plot to draw. {size} {aspect} {orient} {color} {palette} legend : bool, optional If ``True`` and there is a ``hue`` variable, draw a legend on the plot. {legend_out} {share_xy} {margin_titles} facet_kws : dict, optional Dictionary of other keyword arguments to pass to :class:`FacetGrid`. kwargs : key, value pairings Other keyword arguments are passed through to the underlying plotting function. Returns ------- g : :class:`FacetGrid` Returns the :class:`FacetGrid` object with the plot on it for further tweaking. Examples -------- Draw a single facet to use the :class:`FacetGrid` legend placement: .. plot:: :context: close-figs >>> import seaborn as sns >>> sns.set(style="ticks") >>> exercise = sns.load_dataset("exercise") >>> g = sns.factorplot(x="time", y="pulse", hue="kind", data=exercise) Use a different plot kind to visualize the same data: .. plot:: :context: close-figs >>> g = sns.factorplot(x="time", y="pulse", hue="kind", ... data=exercise, kind="violin") Facet along the columns to show a third categorical variable: .. plot:: :context: close-figs >>> g = sns.factorplot(x="time", y="pulse", hue="kind", ... col="diet", data=exercise) Use a different size and aspect ratio for the facets: .. plot:: :context: close-figs >>> g = sns.factorplot(x="time", y="pulse", hue="kind", ... col="diet", data=exercise, ... size=5, aspect=.8) Make many column facets and wrap them into the rows of the grid: .. plot:: :context: close-figs >>> titanic = sns.load_dataset("titanic") >>> g = sns.factorplot("alive", col="deck", col_wrap=4, ... data=titanic[titanic.deck.notnull()], ... kind="count", size=2.5, aspect=.8) Plot horizontally and pass other keyword arguments to the plot function: .. plot:: :context: close-figs >>> g = sns.factorplot(x="age", y="embark_town", ... hue="sex", row="class", ... data=titanic[titanic.embark_town.notnull()], ... orient="h", size=2, aspect=3.5, palette="Set3", ... kind="violin", split=True, cut=0, bw=.2) Use methods on the returned :class:`FacetGrid` to tweak the presentation: .. plot:: :context: close-figs >>> g = sns.factorplot(x="who", y="survived", col="class", ... data=titanic, saturation=.5, ... kind="bar", ci=None, aspect=.6) >>> (g.set_axis_labels("", "Survival Rate") ... .set_xticklabels(["Men", "Women", "Children"]) ... .set_titles("{{col_name}} {{col_var}}") ... .set(ylim=(0, 1)) ... .despine(left=True)) #doctest: +ELLIPSIS <seaborn.axisgrid.FacetGrid object at 0x...> """).format(**_categorical_docs)
bsd-3-clause
brev/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/numerix/__init__.py
69
5473
""" numerix imports either Numeric or numarray based on various selectors. 0. If the value "--numpy","--numarray" or "--Numeric" is specified on the command line, then numerix imports the specified array package. 1. The value of numerix in matplotlibrc: either Numeric or numarray 2. If none of the above is done, the default array package is Numeric. Because the matplotlibrc always provides *some* value for numerix (it has it's own system of default values), this default is most likely never used. To summarize: the commandline is examined first, the rc file second, and the default array package is Numeric. """ import sys, os, struct from matplotlib import rcParams, verbose which = None, None use_maskedarray = None # First, see if --numarray or --Numeric was specified on the command # line: for a in sys.argv: if a in ["--Numeric", "--numeric", "--NUMERIC", "--Numarray", "--numarray", "--NUMARRAY", "--NumPy", "--numpy", "--NUMPY", "--Numpy", ]: which = a[2:], "command line" if a == "--maskedarray": use_maskedarray = True if a == "--ma": use_maskedarray = False try: del a except NameError: pass if which[0] is None: try: # In theory, rcParams always has *some* value for numerix. which = rcParams['numerix'], "rc" except KeyError: pass if use_maskedarray is None: try: use_maskedarray = rcParams['maskedarray'] except KeyError: use_maskedarray = False # If all the above fail, default to Numeric. Most likely not used. if which[0] is None: which = "numeric", "defaulted" which = which[0].strip().lower(), which[1] if which[0] not in ["numeric", "numarray", "numpy"]: raise ValueError("numerix selector must be either 'Numeric', 'numarray', or 'numpy' but the value obtained from the %s was '%s'." % (which[1], which[0])) if which[0] == "numarray": import warnings warnings.warn("numarray use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from na_imports import * from numarray import * from _na_imports import nx, inf, infinity, Infinity, Matrix, isnan, all from numarray.numeric import nonzero from numarray.convolve import cross_correlate, convolve import numarray version = 'numarray %s'%numarray.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numeric": import warnings warnings.warn("Numeric use as a numerix backed for matplotlib is deprecated", DeprecationWarning, stacklevel=1) #from nc_imports import * from Numeric import * from _nc_imports import nx, inf, infinity, Infinity, isnan, all, any from Matrix import Matrix import Numeric version = 'Numeric %s'%Numeric.__version__ nan = struct.unpack('d', struct.pack('Q', 0x7ff8000000000000))[0] elif which[0] == "numpy": try: import numpy.oldnumeric as numpy from numpy.oldnumeric import * except ImportError: import numpy from numpy import * print 'except asarray', asarray from _sp_imports import nx, infinity, rand, randn, isnan, all, any from _sp_imports import UInt8, UInt16, UInt32, Infinity try: from numpy.oldnumeric.matrix import Matrix except ImportError: Matrix = matrix version = 'numpy %s' % numpy.__version__ from numpy import nan else: raise RuntimeError("invalid numerix selector") # Some changes are only applicable to the new numpy: if (which[0] == 'numarray' or which[0] == 'numeric'): from mlab import amin, amax newaxis = NewAxis def typecode(a): return a.typecode() def iscontiguous(a): return a.iscontiguous() def byteswapped(a): return a.byteswapped() def itemsize(a): return a.itemsize() def angle(a): return arctan2(a.imag, a.real) else: # We've already checked for a valid numerix selector, # so assume numpy. from mlab import amin, amax newaxis = NewAxis from numpy import angle def typecode(a): return a.dtype.char def iscontiguous(a): return a.flags.contiguous def byteswapped(a): return a.byteswap() def itemsize(a): return a.itemsize verbose.report('numerix %s'%version) # a bug fix for blas numeric suggested by Fernando Perez matrixmultiply=dot asum = sum def _import_fail_message(module, version): """Prints a message when the array package specific version of an extension fails to import correctly. """ _dict = { "which" : which[0], "module" : module, "specific" : version + module } print """ The import of the %(which)s version of the %(module)s module, %(specific)s, failed. This is is either because %(which)s was unavailable when matplotlib was compiled, because a dependency of %(specific)s could not be satisfied, or because the build flag for this module was turned off in setup.py. If it appears that %(specific)s was not built, make sure you have a working copy of %(which)s and then re-install matplotlib. Otherwise, the following traceback gives more details:\n""" % _dict g = globals() l = locals() __import__('ma', g, l) __import__('fft', g, l) __import__('linear_algebra', g, l) __import__('random_array', g, l) __import__('mlab', g, l) la = linear_algebra ra = random_array
agpl-3.0
CorySimon/CorySimon.github.io
codes/overboarding.py
1
3038
import numpy as np import math import matplotlib.pyplot as plt from scipy.stats import norm plt.style.use('bmh') import matplotlib matplotlib.rc('lines',linewidth=3) matplotlib.rc('font',size=16) # revenue we make from each ticket sold ($) revenue_per_ticket = 250 # cost of a voucher ($) cost_per_voucher = 800 # probability any given passenger who bought a ticket will show up for his/her flight p = 0.9 # total number of seats on the airplane. nb_total_seats = 100 # Goal: find expected net revenue per flight as a function of `x`, the number of tickets sold beyond capaacity. # i.e. we are selling `nb_total_seats` + `x` tickets. # net revenue = (revenue from tickets) - (cost of voucher payoffs to overbook customers) # We will find net revenue for `x` = 0, 1, 2, ..., N_x # (Note we only consider `x` >= 0 b/c we at least sell a ticket for each seat!) N_x = 55 # pre-allocate here. net_revenue[i] := net revenue for x = i. expected_net_revenue = np.zeros((N_x, )) ## expected net revenue as a function of x for x in range(N_x): # mean and variance in binomial distribution for this $x$. # e.g. mean is referring to the # of customers we expect to show up given we sold (nb_total_seats+x) tickets mean = (nb_total_seats + x) * p sig2 = (nb_total_seats + x) * p * (1 - p) # pre-allocate expected voucher payoffs and ticket revenue we expect for this `x` expected_voucher_payoffs = 0.0 expected_ticket_revenue = 0.0 # consider the probability that $k$ customers show up to the flight # anywhere from 0, 1, 2, ..., nb_total_seats+x customers could show up # ... since we sold nb_total_seats+x tickets! for k in range(nb_total_seats + x + 1): # to calculate Pr(N=k| x), governed by binomial dist'n, use normal approximation to binomial # let Z ~ Normal(0, 1) # Pr(N=k|x) ~ Prob(l < Z < h) # subtract cumulative distribution (cdf) functions for this h = (k + 0.5 - mean) / math.sqrt(sig2) # -0.5 is for continuity correction l = (k - 0.5 - mean) / math.sqrt(sig2) prob_k_show_up = norm.cdf(h) - norm.cdf(l) # calculate ticket revenue given `k` customers show up ticket_revenue = revenue_per_ticket * np.min([nb_total_seats, k]) expected_ticket_revenue += prob_k_show_up * ticket_revenue # calculate voucher payoffs voucher_payoffs = cost_per_voucher * np.max([0, k - nb_total_seats]) expected_voucher_payoffs += prob_k_show_up * voucher_payoffs expected_net_revenue[x] = expected_ticket_revenue - expected_voucher_payoffs # plot expected net revenue as a function of `x` fig = plt.figure() plt.plot(range(N_x), expected_net_revenue, linewidth=3) plt.xlim([0, x]) plt.axhline(y=0, linestyle='--', color='k') plt.axhline(y=nb_total_seats * revenue_per_ticket, linestyle='--', color='r') plt.xlabel('# tickets beyond capacity ($x$)') plt.ylabel('Expected revenue (\$)') plt.tight_layout() plt.savefig('overbook.png',format='png') plt.show()
mit
EPAENERGYSTAR/epathermostat
thermostat/core.py
1
75403
from datetime import datetime, timedelta from collections import namedtuple from itertools import repeat import inspect from warnings import warn import logging import pandas as pd import numpy as np from scipy.optimize import leastsq from pkg_resources import resource_stream from thermostat.regression import runtime_regression from thermostat import get_version from thermostat.climate_zone import retrieve_climate_zone try: if "0.21." in pd.__version__: warn( "WARNING: Pandas version 0.21.x has known issues and is not supported. " "Please either downgrade to Pandas 0.20.3 or upgrade to the latest Pandas version.") except TypeError: pass # Documentation mocks out pd, so ignore if not present. # Ignore divide-by-zero errors np.seterr(divide='ignore', invalid='ignore') CoreDaySet = namedtuple("CoreDaySet", ["name", "daily", "hourly", "start_date", "end_date"]) logger = logging.getLogger('epathermostat') VAR_MIN_RHU_RUNTIME = 30 * 60 # Unit is in minutes (30 hours * 60 minutes) RESISTANCE_HEAT_USE_BINS_MIN_TEMP = 0 # Unit is 1 degree F. RESISTANCE_HEAT_USE_BINS_MAX_TEMP = 60 # Unit is 1 degree F. RESISTANCE_HEAT_USE_BIN_TEMP_WIDTH = 5 # Unit is 1 degree F. RESISTANCE_HEAT_USE_BIN_FIRST = list(t for t in range( RESISTANCE_HEAT_USE_BINS_MIN_TEMP, RESISTANCE_HEAT_USE_BINS_MAX_TEMP + RESISTANCE_HEAT_USE_BIN_TEMP_WIDTH, RESISTANCE_HEAT_USE_BIN_TEMP_WIDTH)) RESISTANCE_HEAT_USE_BIN_FIRST_TUPLE = [(RESISTANCE_HEAT_USE_BIN_FIRST[i], RESISTANCE_HEAT_USE_BIN_FIRST[i+1]) for i in range(0, len(RESISTANCE_HEAT_USE_BIN_FIRST) - 1)] RESISTANCE_HEAT_USE_BIN_SECOND = [-np.inf, 10, 20, 30, 40, 50, 60] RESISTANCE_HEAT_USE_BIN_SECOND_TUPLE = [(RESISTANCE_HEAT_USE_BIN_SECOND[i], RESISTANCE_HEAT_USE_BIN_SECOND[i+1]) for i in range(0, len(RESISTANCE_HEAT_USE_BIN_SECOND) - 1)] # FIXME: Turning off these warnings for now pd.set_option('mode.chained_assignment', None) class Thermostat(object): """ Main thermostat data container. Each parameter which contains timeseries data should be a pandas.Series with a datetimeIndex, and that each index should be equivalent. Parameters ---------- thermostat_id : object An identifier for the thermostat. Can be anything, but should be identifying (e.g., an ID provided by the manufacturer). equipment_type : { 0, 1, 2, 3, 4, 5 } - :code:`0`: Other - e.g. multi-zone multi-stage, modulating. Note: module will not output savings data for this type. - :code:`1`: Single stage heat pump with aux and/or emergency heat - :code:`2`: Single stage heat pump without aux or emergency heat - :code:`3`: Single stage non heat pump with single-stage central air conditioning - :code:`4`: Single stage non heat pump without central air conditioning - :code:`5`: Single stage central air conditioning without central heating zipcode : str Installation ZIP code for the thermostat. station : str USAF identifier for weather station used to pull outdoor temperature data. temperature_in : pandas.Series Contains internal temperature data in degrees Fahrenheit (F), with resolution of at least 0.5F. Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. :code:`freq='H'`). temperature_out : pandas.Series Contains outdoor temperature data as observed by a relevant weather station in degrees Fahrenheit (F), with resolution of at least 0.5F. Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. :code:`freq='H'`). cooling_setpoint : pandas.Series Contains target temperature (setpoint) data in degrees Fahrenheit (F), with resolution of at least 0.5F used to control cooling equipment. Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. :code:`freq='H'`). heating_setpoint : pandas.Series Contains target temperature (setpoint) data in degrees Fahrenheit (F), with resolution of at least 0.5F used to control heating equipment. Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. :code:`freq='H'`). cool_runtime : pandas.Series, Daily runtimes for cooling equipment controlled by the thermostat, measured in minutes. No datapoint should exceed 1440 mins, which would indicate over a day of runtime (impossible). Should be indexed by a pandas.DatetimeIndex with daily frequency (i.e. :code:`freq='D'`). heat_runtime : pandas.Series, Daily runtimes for heating equipment controlled by the thermostat, measured in minutes. No datapoint should exceed 1440 mins, which would indicate over a day of runtime (impossible). Should be indexed by a pandas.DatetimeIndex with daily frequency (i.e. :code:`freq='D'`). auxiliary_heat_runtime : pandas.Series, Hourly runtimes for auxiliary heating equipment controlled by the thermostat, measured in minutes. Auxiliary heat runtime is counted when both resistance heating and the compressor are running (for heat pump systems). No datapoint should exceed 60 mins, which would indicate over a hour of runtime (impossible). Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. :code:`freq='H'`). emergency_heat_runtime : pandas.Series, Hourly runtimes for emergency heating equipment controlled by the thermostat, measured in minutes. Emergency heat runtime is counted when resistance heating is running when the compressor is not (for heat pump systems). No datapoint should exceed 60 mins, which would indicate over a hour of runtime (impossible). Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. :code:`freq='H'`). """ HEATING_EQUIPMENT_TYPES = set([1, 2, 3, 4]) COOLING_EQUIPMENT_TYPES = set([1, 2, 3, 5]) AUX_EMERG_EQUIPMENT_TYPES = set([1]) def __init__( self, thermostat_id, equipment_type, zipcode, station, temperature_in, temperature_out, cooling_setpoint, heating_setpoint, cool_runtime, heat_runtime, auxiliary_heat_runtime, emergency_heat_runtime): self.thermostat_id = thermostat_id self.equipment_type = equipment_type self.zipcode = zipcode self.station = station self.temperature_in = self._interpolate(temperature_in, method="linear") self.temperature_out = self._interpolate(temperature_out, method="linear") self.cooling_setpoint = cooling_setpoint self.heating_setpoint = heating_setpoint self.cool_runtime = cool_runtime self.heat_runtime = heat_runtime self.auxiliary_heat_runtime = auxiliary_heat_runtime self.emergency_heat_runtime = emergency_heat_runtime self.validate() def validate(self): self._validate_heating() self._validate_cooling() self._validate_aux_emerg() def _format_rhu(self, rhu_type, low, high, duty_cycle): format_string = "{rhu_type}_{low:02d}F_to_{high:02d}F" if low == -np.inf: format_string = "{rhu_type}_less{high:02d}F" low = 0 # Don't need this value so we zero it out if high == np.inf: format_string = "{rhu_type}_greater{low:02d}F" high = 0 # Don't need this value so we zero it out result = format_string.format( rhu_type=rhu_type, low=int(low), high=int(high)) if duty_cycle is not None: result = '_'.join((result, duty_cycle)) return result def _validate_heating(self): if self.equipment_type in self.HEATING_EQUIPMENT_TYPES: if self.heat_runtime is None: message = "For thermostat {}, heating runtime data was not provided," \ " despite equipment type of {}, which requires heating data.".format(self.thermostat_id, self.equipment_type) raise ValueError(message) if self.heating_setpoint is None: message = "For thermostat {}, heating setpoint data was not provided," \ " despite equipment type of {}, which requires heating data." \ " If only one setpoint is used, (or if there is no distinction" \ " between the heating and cooling setpoints, please" \ " explicitly provide two copies of the available setpoint data" \ .format(self.thermostat_id, self.equipment_type) raise ValueError(message) def _validate_cooling(self): if self.equipment_type in self.COOLING_EQUIPMENT_TYPES: if self.cool_runtime is None: message = "For thermostat {}, cooling runtime data was not provided," \ " despite equipment type of {}, which requires cooling data.".format(self.thermostat_id, self.equipment_type) raise ValueError(message) if self.cooling_setpoint is None: message = "For thermostat {}, cooling setpoint data was not provided," \ " despite equipment type of {}, which requires heating data." \ " If only one setpoint is used, (or if there is no distinction" \ " between the heating and cooling setpoints, please" \ " explicitly provide two copies of the available setpoint data" \ .format(self.thermostat_id, self.equipment_type) raise ValueError(message) def _validate_aux_emerg(self): if self.equipment_type in self.AUX_EMERG_EQUIPMENT_TYPES: if self.auxiliary_heat_runtime is None or self.emergency_heat_runtime is None: message = "For thermostat {}, aux and emergency runtime data were not provided," \ " despite equipment type of {}, which requires these columns of data."\ " If none is available, please change to equipment_type 2," \ " or provide columns of 0s".format(self.thermostat_id, self.equipment_type) raise ValueError(message) def _interpolate(self, series, method="linear"): if method not in ["linear"]: return series return series.interpolate(method="linear", limit=1, limit_direction="both") def _protect_heating(self): function_name = inspect.stack()[1][3] if self.equipment_type not in self.HEATING_EQUIPMENT_TYPES: message = "The function '{}', which is heating specific, cannot be" \ " called for equipment_type {}".format(function_name, self.equipment_type) raise ValueError(message) def _protect_cooling(self): function_name = inspect.stack()[1][3] if self.equipment_type not in self.COOLING_EQUIPMENT_TYPES: message = "The function '{}', which is cooling specific, cannot be" \ " called for equipment_type {}".format(function_name, self.equipment_type) raise ValueError(message) def _protect_aux_emerg(self): function_name = inspect.stack()[1][3] if self.equipment_type not in self.AUX_EMERG_EQUIPMENT_TYPES: message = "The function '{}', which is auxiliary/emergency heating specific, cannot be" \ " called for equipment_type {}".format(function_name, self.equipment_type) raise ValueError(message) def get_core_heating_days(self, method="entire_dataset", min_minutes_heating=30, max_minutes_cooling=0): """ Determine core heating days from data associated with this thermostat Parameters ---------- method : {"entire_dataset", "year_mid_to_mid"}, default: "entire_dataset" Method by which to find core heating day sets. - "entire_dataset": all heating days in dataset (days with >= 30 min of heating runtime and no cooling runtime. (default) - "year_mid_to_mid": groups all heating days (days with >= 30 min of total heating and no cooling) from July 1 to June 30 (inclusive) into individual core heating day sets. May overlap with core cooling day sets. min_minutes_heating : int, default 30 Number of minutes of heating runtime per day required for inclusion in core heating day set. max_minutes_cooling : int, default 0 Number of minutes of cooling runtime per day beyond which the day is considered part of a shoulder season (and is therefore not part of the core heating day set). Returns ------- core_heating_day_sets : list of thermostat.core.CoreDaySet objects List of core day sets detected; Core day sets are represented as pandas Series of boolean values, intended to be used as selectors or masks on the thermostat data at hourly and daily frequencies. A value of True at a particular index indicates inclusion of of the data at that index in the core day set. If method is "entire_dataset", name of core day sets are "heating_ALL"; if method is "year_mid_to_mid", names of core day sets are of the form "heating_YYYY-YYYY" """ if method not in ["year_mid_to_mid", "entire_dataset"]: raise NotImplementedError self._protect_heating() # compute inclusion thresholds meets_heating_thresholds = self.heat_runtime >= min_minutes_heating if self.equipment_type in self.COOLING_EQUIPMENT_TYPES: meets_cooling_thresholds = self.cool_runtime <= max_minutes_cooling else: meets_cooling_thresholds = True meets_thresholds = meets_heating_thresholds & meets_cooling_thresholds # enough temperature_in enough_temp_in = \ self.temperature_in.groupby(self.temperature_in.index.date) \ .apply(lambda x: x.isnull().sum() <= 2) enough_temp_out = \ self.temperature_out.groupby(self.temperature_out.index.date) \ .apply(lambda x: x.isnull().sum() <= 2) meets_thresholds &= enough_temp_in & enough_temp_out data_start_date = np.datetime64(self.heat_runtime.index[0]) data_end_date = np.datetime64(self.heat_runtime.index[-1]) if method == "year_mid_to_mid": # find all potential core heating day ranges start_year = data_start_date.item().year - 1 end_year = data_end_date.item().year + 1 potential_core_day_sets = zip(range(start_year, end_year), range(start_year + 1, end_year + 1)) # for each potential core day set, look for core heating days. core_heating_day_sets = [] for start_year_, end_year_ in potential_core_day_sets: core_day_set_start_date = np.datetime64(datetime(start_year_, 7, 1)) core_day_set_end_date = np.datetime64(datetime(end_year_, 7, 1)) start_date = max(core_day_set_start_date, data_start_date).item() end_date = min(core_day_set_end_date, data_end_date).item() in_range = self._get_range_boolean(self.heat_runtime.index, start_date, end_date) inclusion_daily = pd.Series(in_range & meets_thresholds, index=self.heat_runtime.index) if any(inclusion_daily): name = "heating_{}-{}".format(start_year_, end_year_) inclusion_hourly = self._get_hourly_boolean(inclusion_daily) core_day_set = CoreDaySet(name, inclusion_daily, inclusion_hourly, start_date, end_date) core_heating_day_sets.append(core_day_set) return core_heating_day_sets elif method == "entire_dataset": inclusion_daily = pd.Series(meets_thresholds, index=self.heat_runtime.index) inclusion_hourly = self._get_hourly_boolean(inclusion_daily) core_heating_day_set = CoreDaySet( "heating_ALL", inclusion_daily, inclusion_hourly, data_start_date, data_end_date) # returned as list for consistency core_heating_day_sets = [core_heating_day_set] return core_heating_day_sets def get_core_cooling_days(self, method="entire_dataset", min_minutes_cooling=30, max_minutes_heating=0): """ Determine core cooling days from data associated with this thermostat. Parameters ---------- method : {"entire_dataset", "year_end_to_end"}, default: "entire_dataset" Method by which to find core cooling days. - "entire_dataset": all cooling days in dataset (days with >= 30 min of cooling runtime and no heating runtime. - "year_end_to_end": groups all cooling days (days with >= 30 min of total cooling and no heating) from January 1 to December 31 into individual core cooling sets. min_minutes_cooling : int, default 30 Number of minutes of core cooling runtime per day required for inclusion in core cooling day set. max_minutes_heating : int, default 0 Number of minutes of heating runtime per day beyond which the day is considered part of a shoulder season (and is therefore not part of the core cooling day set). Returns ------- core_cooling_day_sets : list of thermostat.core.CoreDaySet objects List of core day sets detected; Core day sets are represented as pandas Series of boolean values, intended to be used as selectors or masks on the thermostat data at hourly and daily frequencies. A value of True at a particular index indicates inclusion of of the data at that index in the core day set. If method is "entire_dataset", name of core day set is "cooling_ALL"; if method is "year_end_to_end", names of core day sets are of the form "cooling_YYYY" """ if method not in ["year_end_to_end", "entire_dataset"]: raise NotImplementedError self._protect_cooling() # find all potential core cooling day ranges data_start_date = np.datetime64(self.cool_runtime.index[0]) data_end_date = np.datetime64(self.cool_runtime.index[-1]) # compute inclusion thresholds if self.equipment_type in self.HEATING_EQUIPMENT_TYPES: meets_heating_thresholds = self.heat_runtime <= max_minutes_heating else: meets_heating_thresholds = True meets_cooling_thresholds = self.cool_runtime >= min_minutes_cooling meets_thresholds = meets_heating_thresholds & meets_cooling_thresholds # enough temperature_in enough_temp_in = \ self.temperature_in.groupby(self.temperature_in.index.date) \ .apply(lambda x: x.isnull().sum() <= 2) enough_temp_out = \ self.temperature_out.groupby(self.temperature_out.index.date) \ .apply(lambda x: x.isnull().sum() <= 2) meets_thresholds &= enough_temp_in & enough_temp_out if method == "year_end_to_end": start_year = data_start_date.item().year end_year = data_end_date.item().year potential_core_day_sets = range(start_year, end_year + 1) # for each potential core day set, look for cooling days. core_cooling_day_sets = [] for year in potential_core_day_sets: core_day_set_start_date = np.datetime64(datetime(year, 1, 1)) core_day_set_end_date = np.datetime64(datetime(year + 1, 1, 1)) start_date = max(core_day_set_start_date, data_start_date).item() end_date = min(core_day_set_end_date, data_end_date).item() in_range = self._get_range_boolean(self.cool_runtime.index, start_date, end_date) inclusion_daily = pd.Series(in_range & meets_thresholds, index=self.cool_runtime.index) if any(inclusion_daily): name = "cooling_{}".format(year) inclusion_hourly = self._get_hourly_boolean(inclusion_daily) core_day_set = CoreDaySet(name, inclusion_daily, inclusion_hourly, start_date, end_date) core_cooling_day_sets.append(core_day_set) return core_cooling_day_sets elif method == "entire_dataset": inclusion_daily = pd.Series(meets_thresholds, index=self.cool_runtime.index) inclusion_hourly = self._get_hourly_boolean(inclusion_daily) core_day_set = CoreDaySet( "cooling_ALL", inclusion_daily, inclusion_hourly, data_start_date, data_end_date) core_cooling_day_sets = [core_day_set] return core_cooling_day_sets def _get_range_boolean(self, dt_index, start_date, end_date): after_start = dt_index >= start_date before_end = dt_index < end_date return after_start & before_end def _get_hourly_boolean(self, daily_boolean): values = np.repeat(daily_boolean.values, 24) index = pd.date_range(start=daily_boolean.index[0], periods=daily_boolean.index.shape[0] * 24, freq="H") hourly_boolean = pd.Series(values, index) return hourly_boolean def total_heating_runtime(self, core_day_set): """ Calculates total heating runtime. Parameters ---------- core_day_set : thermostat.core.CoreDaySet Core day set for which to calculate total runtime. Returns ------- total_runtime : float Total heating runtime. """ self._protect_heating() return self.heat_runtime[core_day_set.daily].sum() def total_auxiliary_heating_runtime(self, core_day_set): """ Calculates total auxiliary heating runtime. Parameters ---------- core_day_set : thermostat.core.CoreDaySet Core day set for which to calculate total runtime. Returns ------- total_runtime : float Total auxiliary heating runtime. """ self._protect_aux_emerg() return self.auxiliary_heat_runtime[core_day_set.hourly].sum() def total_emergency_heating_runtime(self, core_day_set): """ Calculates total emergency heating runtime. Parameters ---------- core_day_set : thermostat.core.CoreDaySet Core day set for which to calculate total runtime. Returns ------- total_runtime : float Total heating runtime. """ self._protect_aux_emerg() return self.emergency_heat_runtime[core_day_set.hourly].sum() def total_cooling_runtime(self, core_day_set): """ Calculates total cooling runtime. Parameters ---------- core_day_set : thermostat.core.CoreDaySet Core day set for which to calculate total runtime. Returns ------- total_runtime : float Total cooling runtime. """ self._protect_cooling() return self.cool_runtime[core_day_set.daily].sum() def get_resistance_heat_utilization_runtime(self, core_heating_day_set): """ Calculates resistance heat utilization runtime and filters based on the core heating days Parameters ---------- core_heating_day_set : thermostat.core.CoreDaySet Core heating day set for which to calculate total runtime. Returns ------- runtime_temp : pandas.DataFrame or None A pandas DataFrame which includes the outdoor temperature, heat runtime, aux runtime, and emergency runtime, filtered by the core heating day set. Returns None if the thermostat does not control the appropriate equipment. """ self._protect_aux_emerg() if self.equipment_type != 1: return None in_core_day_set_daily = self._get_range_boolean( core_heating_day_set.daily.index, core_heating_day_set.start_date, core_heating_day_set.end_date) # convert hourly to daily temp_out_daily = self.temperature_out.resample('D').mean() aux_daily = self.auxiliary_heat_runtime.resample('D').sum() emg_daily = self.emergency_heat_runtime.resample('D').sum() # Build the initial DataFrame based on daily readings runtime_temp = pd.DataFrame() runtime_temp['temperature'] = temp_out_daily runtime_temp['heat_runtime'] = self.heat_runtime runtime_temp['aux_runtime'] = aux_daily runtime_temp['emg_runtime'] = emg_daily runtime_temp['in_core_daily'] = in_core_day_set_daily runtime_temp['total_minutes'] = 1440 # default number of minutes per day # Filter out records that aren't part of the core day set runtime_temp = runtime_temp[runtime_temp['in_core_daily'].map(lambda x: x is True)] return runtime_temp def get_resistance_heat_utilization_bins(self, runtime_temp, bins, core_heating_day_set, min_runtime_minutes=None): """ Calculates the resistance heat utilization in bins (provided by the bins parameter) Parameters ---------- runtime_temp: DataFrame Runtime Temperatures Dataframe from get_resistance_heat_utilization_runtime bins : list List of the bins (rightmost-edge aligned) for binning core_heating_day_set : thermostat.core.CoreDaySet Core heating day set for which to calculate total runtime. Returns ------- RHUs : pandas.DataFrame or None Resistance heat utilization for each temperature bin, ordered ascending by temperature bin. Returns None if the thermostat does not control the appropriate equipment or if the runtime_temp is None. """ self._protect_aux_emerg() if self.equipment_type != 1: return None if runtime_temp is None: return None # Create the bins and group by them runtime_temp['bins'] = pd.cut(runtime_temp['temperature'], bins) runtime_rhu = runtime_temp.groupby('bins')['heat_runtime', 'aux_runtime', 'emg_runtime', 'total_minutes'].sum() # Calculate the RHU based on the bins runtime_rhu['rhu'] = (runtime_rhu['aux_runtime'] + runtime_rhu['emg_runtime']) / (runtime_rhu['heat_runtime'] + runtime_rhu['emg_runtime']) # Currently treating aux_runtime as separate from heat_runtime runtime_rhu['total_runtime'] = runtime_rhu.heat_runtime + runtime_rhu.aux_runtime + runtime_rhu.emg_runtime # Changed to use the number of minutes per eligible day runtime_rhu['aux_duty_cycle'] = runtime_rhu.aux_runtime / runtime_rhu.total_minutes runtime_rhu['emg_duty_cycle'] = runtime_rhu.emg_runtime / runtime_rhu.total_minutes runtime_rhu['compressor_duty_cycle'] = runtime_rhu.heat_runtime / runtime_rhu.total_minutes # If we're passed min_runtime_minutes (RHU2) then treat the thermostat as not having run during that period if min_runtime_minutes: runtime_rhu['rhu'].loc[runtime_rhu.total_runtime < min_runtime_minutes] = np.nan runtime_rhu['aux_duty_cycle'].loc[runtime_rhu.total_runtime < min_runtime_minutes] = np.nan runtime_rhu['emg_duty_cycle'].loc[runtime_rhu.total_runtime < min_runtime_minutes] = np.nan runtime_rhu['compressor_duty_cycle'].loc[runtime_rhu.total_runtime < min_runtime_minutes] = np.nan runtime_rhu['total_runtime'].loc[runtime_rhu.total_runtime < min_runtime_minutes] = np.nan runtime_rhu['data_is_nonsense'] = (runtime_rhu['aux_runtime'] > runtime_rhu['heat_runtime']) runtime_rhu.loc[runtime_rhu.data_is_nonsense == True, 'rhu'] = np.nan # noqa: E712 if runtime_rhu.data_is_nonsense.any(): for item in runtime_rhu.itertuples(): if item.data_is_nonsense: warn( 'WARNING: ' 'aux heat runtime %s > compressor runtime %s ' 'for %sF <= temperature < %sF ' 'for thermostat_id %s ' 'from %s to %s inclusive' % ( item.aux_runtime, item.heat_runtime, item.Index.left, item.Index.right, self.thermostat_id, core_heating_day_set.start_date, core_heating_day_set.end_date)) return runtime_rhu def get_ignored_days(self, core_day_set): """ Determine how many days are ignored for a particular core day set Returns ------- n_both : int Number of days excluded from core day set because of presence of both heating and cooling runtime. n_days_insufficient : int Number of days excluded from core day set because of null runtime data. """ in_range = self._get_range_boolean( core_day_set.daily.index, core_day_set.start_date, core_day_set.end_date) if self.equipment_type in self.HEATING_EQUIPMENT_TYPES: has_heating = self.heat_runtime > 0 null_heating = pd.isnull(self.heat_runtime) else: has_heating = False null_heating = False # shouldn't be counted, so False, not True if self.equipment_type in self.COOLING_EQUIPMENT_TYPES: has_cooling = self.cool_runtime > 0 null_cooling = pd.isnull(self.cool_runtime) else: has_cooling = False null_cooling = False # shouldn't be counted, so False, not True n_both = (in_range & has_heating & has_cooling).sum() n_days_insufficient = (in_range & (null_heating | null_cooling)).sum() return n_both, n_days_insufficient def get_core_day_set_n_days(self, core_day_set): """ Returns number of days in the core day set. """ return int(core_day_set.daily.sum()) def get_inputfile_date_range(self, core_day_set): """ Returns number of days of data provided in input data file. """ delta = (core_day_set.end_date - core_day_set.start_date) if isinstance(delta, timedelta): return delta.days else: try: result = int(delta.astype('timedelta64[D]') / np.timedelta64(1, 'D')) except ZeroDivisionError: logger.debug( 'Date Range divided by zero: %s / %s ' 'for thermostat_id %s' % ( delta.astype('timedelta64[D]'), np.timedelta64(1, 'D'), self.thermostat_id)) result = np.nan return result def get_cooling_demand(self, core_cooling_day_set): """ Calculates a measure of cooling demand using the hourlyavgCTD method. Starting with an assumed value of zero for Tau :math:`(\\tau_c)`, calculate the daily Cooling Thermal Demand :math:`(\\text{daily CTD}_d)`, as follows :math:`\\text{daily CTD}_d = \\frac{\sum_{i=1}^{24} [\\tau_c - \\text{hourly} \Delta T_{d.n}]_{+}}{24}`, where :math:`\\text{hourly} \Delta T_{d.n} (^{\circ} F) = \\text{hourly indoor} T_{d.n} - \\text{hourly outdoor} T_{d.n}`, and :math:`d` is the core cooling day; :math:`\left(001, 002, 003 ... x \\right)`, :math:`n` is the hour; :math:`\left(01, 02, 03 ... 24 \\right)`, :math:`\\tau_c` (cooling) is the :math:`\Delta T` associated with :math:`CTD=0` (zero cooling runtime), and :math:`[]_{+}` indicates that the term is zero if its value would be negative. For the set of all core cooling days in the CT interval data file, use ratio estimation to calculate :math:`\\alpha_c`, the home's responsiveness to cooling, which should be positive. :math:`\\alpha_c \left(\\frac{\\text{minutes}}{^{\circ} F}\\right) = \\frac{RT_\\text{actual cool}}{\sum_{d=1}^{x} \\text{daily CTD}_d}`, where :math:`RT_\\text{actual cool}` is the sum of cooling run times for all core cooling days in the CT interval data file. For the set of all core cooling days in the CT interval data file, optimize :math:`\\tau_c` that results in minimization of the sum of squares of the difference between daily run times reported by the CT, and calculated daily cooling run times. Next recalculate :math:`\\alpha_c` (in accordance with the above step) and record the model's parameters :math:`\left(\\alpha_c, \\tau_c \\right)` Parameters ---------- core_cooling_day_set : thermostat.core.CoreDaySet Core day set over which to calculate cooling demand. Returns ------- demand : pd.Series Daily demand in the core heating day set as calculated using the method described above. tau : float Estimate of :math:`\\tau_c`. alpha : float Estimate of :math:`\\alpha_c` mse : float Mean squared error in runtime estimates. rmse : float Root mean squared error in runtime estimates. cvrmse : float Coefficient of variation of root mean squared error in runtime estimates. mape : float Mean absolute percent error mae : float Mean absolute error """ self._protect_cooling() core_day_set_temp_in = self.temperature_in[core_cooling_day_set.hourly] core_day_set_temp_out = self.temperature_out[core_cooling_day_set.hourly] core_day_set_deltaT = core_day_set_temp_in - core_day_set_temp_out daily_index = core_cooling_day_set.daily[core_cooling_day_set.daily].index def calc_cdd(tau): hourly_cdd = (tau - core_day_set_deltaT).apply(lambda x: np.maximum(x, 0)) # Note - `x / 24` this should be thought of as a unit conversion, not an average. return np.array([cdd.sum() / 24 for day, cdd in hourly_cdd.groupby(core_day_set_deltaT.index.date)]) daily_runtime = self.cool_runtime[core_cooling_day_set.daily] total_runtime = daily_runtime.sum() def calc_estimates(tau): cdd = calc_cdd(tau) total_cdd = np.sum(cdd) try: alpha_estimate = total_runtime / total_cdd except ZeroDivisionError: logger.debug( 'Alpha Estimate divided by zero: %s / %s' 'for thermostat %s' % ( total_runtime, total_cdd, self.thermostat_id)) alpha_estimate = np.nan runtime_estimate = cdd * alpha_estimate errors = daily_runtime - runtime_estimate return cdd, alpha_estimate, errors def estimate_errors(tau_estimate): _, _, errors = calc_estimates(tau_estimate) return errors tau_starting_guess = 0 try: y, _ = leastsq(estimate_errors, tau_starting_guess) except TypeError: # len 0 assert daily_runtime.shape[0] == 0 # make sure no other type errors are sneaking in return pd.Series([], index=daily_index), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan tau_estimate = y[0] cdd, alpha_estimate, errors = calc_estimates(tau_estimate) mse = np.nanmean((errors)**2) rmse = mse ** 0.5 mean_daily_runtime = np.nanmean(daily_runtime) try: cvrmse = rmse / mean_daily_runtime except ZeroDivisionError: logger.debug( 'CVRMSE divided by zero: %s / %s ' 'for thermostat_id %s ' % ( rmse, mean_daily_runtime, self.thermostat_id)) cvrmse = np.nan mape = np.nanmean(np.absolute(errors / mean_daily_runtime)) mae = np.nanmean(np.absolute(errors)) return pd.Series(cdd, index=daily_index), tau_estimate, alpha_estimate, mse, rmse, cvrmse, mape, mae def get_heating_demand(self, core_heating_day_set): """ Calculates a measure of heating demand using the hourlyavgCTD method. :math:`\\text{daily HTD}_d = \\frac{\sum_{i=1}^{24} [\\text{hourly} \Delta T_{d.n} - \\tau_h]_{+}}{24}`, where :math:`\\text{hourly} \Delta T_{d.n} (^{\circ} F) = \\text{hourly indoor} T_{d.n} - \\text{hourly outdoor} T_{d.n}`, and :math:`d` is the core heating day; :math:`\left(001, 002, 003 ... x \\right)`, :math:`n` is the hour; :math:`\left(01, 02, 03 ... 24 \\right)`, :math:`\\tau_h` (heating) is the :math:`\Delta T` associated with :math:`HTD=0`, reflecting that homes with no heat running tend to be warmer that the outdoors, and :math:`[]_{+}` indicates that the term is zero if its value would be negative. For the set of all core heating days in the CT interval data file, use ratio estimation to calculate :math:`\\alpha_h`, the home's responsiveness to heating, which should be positive. :math:`\\alpha_h \left(\\frac{\\text{minutes}}{^{\circ} F}\\right) = \\frac{RT_\\text{actual heat}}{\sum_{d=1}^{x} \\text{daily HTD}_d}`, where :math:`RT_\\text{actual heat}` is the sum of heating run times for all core heating days in the CT interval data file. For the set of all core heating days in the CT interval data file, optimize :math:`\\tau_h` that results in minimization of the sum of squares of the difference between daily run times reported by the CT, and calculated daily heating run times. Next recalculate :math:`\\alpha_h` (in accordance with the above step) and record the model's parameters :math:`\left(\\alpha_h, \\tau_h \\right)` Parameters ---------- core_heating_day_set : array_like Core day set over which to calculate heating demand. Returns ------- demand : pd.Series Daily demand in the core heating day set as calculated using the method described above. tau : float Estimate of :math:`\\tau_h`. alpha : float Estimate of :math:`\\alpha_h` mse : float Mean squared error in runtime estimates. rmse : float Root mean squared error in runtime estimates. cvrmse : float Coefficient of variation of root mean squared error in runtime estimates. mape : float Mean absolute percent error mae : float Mean absolute error """ self._protect_heating() core_day_set_temp_in = self.temperature_in[core_heating_day_set.hourly] core_day_set_temp_out = self.temperature_out[core_heating_day_set.hourly] core_day_set_deltaT = core_day_set_temp_in - core_day_set_temp_out daily_index = core_heating_day_set.daily[core_heating_day_set.daily].index def calc_hdd(tau): hourly_hdd = (core_day_set_deltaT - tau).apply(lambda x: np.maximum(x, 0)) # Note - this `x / 24` should be thought of as a unit conversion, not an average. return np.array([hdd.sum() / 24 for day, hdd in hourly_hdd.groupby(core_day_set_deltaT.index.date)]) daily_runtime = self.heat_runtime[core_heating_day_set.daily] total_runtime = daily_runtime.sum() def calc_estimates(tau): hdd = calc_hdd(tau) total_hdd = np.sum(hdd) try: alpha_estimate = total_runtime / total_hdd except ZeroDivisionError: logger.debug( 'alpha_estimate divided by zero: %s / %s ' 'for thermostat_id %s ' % ( total_runtime, total_hdd, self.thermostat_id)) alpha_estimate = np.nan runtime_estimate = hdd * alpha_estimate errors = daily_runtime - runtime_estimate return hdd, alpha_estimate, errors def estimate_errors(tau_estimate): _, _, errors = calc_estimates(tau_estimate) return errors tau_starting_guess = 0 try: y, _ = leastsq(estimate_errors, tau_starting_guess) except TypeError: # len 0 assert daily_runtime.shape[0] == 0 # make sure no other type errors are sneaking in return pd.Series([], index=daily_index), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan tau_estimate = y[0] hdd, alpha_estimate, errors = calc_estimates(tau_estimate) mse = np.nanmean((errors)**2) rmse = mse ** 0.5 mean_daily_runtime = np.nanmean(daily_runtime) try: cvrmse = rmse / mean_daily_runtime except ZeroDivisionError: logger.warn( 'CVRMSE divided by zero: %s / %s ' 'for thermostat_id %s ' % ( rmse, mean_daily_runtime, self.thermostat_id)) cvrmse = np.nan mape = np.nanmean(np.absolute(errors / mean_daily_runtime)) mae = np.nanmean(np.absolute(errors)) return ( pd.Series(hdd, index=daily_index), tau_estimate, alpha_estimate, mse, rmse, cvrmse, mape, mae ) def get_core_cooling_day_baseline_setpoint(self, core_cooling_day_set, method='tenth_percentile', source='temperature_in'): """ Calculate the core cooling day baseline setpoint (comfort temperature). Parameters ---------- core_cooling_day_set : thermost.core.CoreDaySet Core cooling days over which to calculate baseline cooling setpoint. method : {"tenth_percentile"}, default: "tenth_percentile" Method to use in calculation of the baseline. - "tenth_percentile": 10th percentile of source temperature. (Either cooling setpoint or temperature in). source : {"cooling_setpoint", "temperature_in"}, default "temperature_in" The source of temperatures to use in baseline calculation. Returns ------- baseline : float The baseline cooling setpoint for the core cooling days as determined by the given method. """ self._protect_cooling() if method != 'tenth_percentile': raise NotImplementedError if source == 'cooling_setpoint': return self.cooling_setpoint[core_cooling_day_set.hourly].dropna().quantile(.1) elif source == 'temperature_in': return self.temperature_in[core_cooling_day_set.hourly].dropna().quantile(.1) else: raise NotImplementedError def get_core_heating_day_baseline_setpoint(self, core_heating_day_set, method='ninetieth_percentile', source='temperature_in'): """ Calculate the core heating day baseline setpoint (comfort temperature). Parameters ---------- core_heating_day_set : thermostat.core.CoreDaySet Core heating days over which to calculate baseline heating setpoint. method : {"ninetieth_percentile"}, default: "ninetieth_percentile" Method to use in calculation of the baseline. - "ninetieth_percentile": 90th percentile of source temperature. (Either heating setpoint or indoor temperature). source : {"heating_setpoint", "temperature_in"}, default "temperature_in" The source of temperatures to use in baseline calculation. Returns ------- baseline : float The baseline heating setpoint for the heating day as determined by the given method. """ self._protect_heating() if method != 'ninetieth_percentile': raise NotImplementedError if source == 'heating_setpoint': return self.heating_setpoint[core_heating_day_set.hourly].dropna().quantile(.9) elif source == 'temperature_in': return self.temperature_in[core_heating_day_set.hourly].dropna().quantile(.9) else: raise NotImplementedError def get_baseline_cooling_demand(self, core_cooling_day_set, temp_baseline, tau): """ Calculate baseline cooling demand for a particular core cooling day set and fitted physical parameters. :math:`\\text{daily CTD base}_d = \\frac{\sum_{i=1}^{24} [\\tau_c - \\text{hourly } \Delta T \\text{ base cool}_{d.n}]_{+}}{24}`, where :math:`\\text{hourly } \Delta T \\text{ base cool}_{d.n} (^{\circ} F) = \\text{base heat} T_{d.n} - \\text{hourly outdoor} T_{d.n}`, and :math:`d` is the core cooling day; :math:`\left(001, 002, 003 ... x \\right)`, :math:`n` is the hour; :math:`\left(01, 02, 03 ... 24 \\right)`, :math:`\\tau_c` (cooling), determined earlier, is a constant that is part of the CT/home's thermal/HVAC cooling run time model, and :math:`[]_{+}` indicates that the term is zero if its value would be negative. Parameters ---------- core_cooling_day_set : thermostat.core.CoreDaySet Core cooling days over which to calculate baseline cooling demand. temp_baseline : float Baseline comfort temperature tau : float, default: None From fitted demand model. Returns ------- baseline_cooling_demand : pandas.Series A series containing baseline daily heating demand for the core cooling day set. """ self._protect_cooling() hourly_temp_out = self.temperature_out[core_cooling_day_set.hourly] hourly_cdd = (tau - (temp_baseline - hourly_temp_out)).apply(lambda x: np.maximum(x, 0)) demand = np.array([cdd.sum() / 24 for day, cdd in hourly_cdd.groupby(hourly_temp_out.index.date)]) index = core_cooling_day_set.daily[core_cooling_day_set.daily].index return pd.Series(demand, index=index) def get_baseline_heating_demand(self, core_heating_day_set, temp_baseline, tau): """ Calculate baseline heating demand for a particular core heating day set and fitted physical parameters. :math:`\\text{daily HTD base}_d = \\frac{\sum_{i=1}^{24} [\\text{hourly } \Delta T \\text{ base heat}_{d.n} - \\tau_h]_{+}}{24}`, where :math:`\\text{hourly } \Delta T \\text{ base heat}_{d.n} (^{\circ} F) = \\text{base cool} T_{d.n} - \\text{hourly outdoor} T_{d.n}`, and :math:`d` is the core heating day; :math:`\left(001, 002, 003 ... x \\right)`, :math:`n` is the hour; :math:`\left(01, 02, 03 ... 24 \\right)`, :math:`\\tau_h` (heating), determined earlier, is a constant that is part of the CT/home's thermal/HVAC heating run time model, and :math:`[]_{+}` indicates that the term is zero if its value would be negative. Parameters ---------- core_heating_day_set : thermostat.core.CoreDaySet Core heating days over which to calculate baseline cooling demand. temp_baseline : float Baseline comfort temperature tau : float, default: None From fitted demand model. Returns ------- baseline_heating_demand : pandas.Series A series containing baseline daily heating demand for the core heating days. """ self._protect_heating() hourly_temp_out = self.temperature_out[core_heating_day_set.hourly] hourly_hdd = (temp_baseline - hourly_temp_out - tau).apply(lambda x: np.maximum(x, 0)) demand = np.array([hdd.sum() / 24 for day, hdd in hourly_hdd.groupby(hourly_temp_out.index.date)]) index = core_heating_day_set.daily[core_heating_day_set.daily].index return pd.Series(demand, index=index) def get_baseline_cooling_runtime(self, baseline_cooling_demand, alpha): """ Calculate baseline cooling runtime given baseline cooling demand and fitted physical parameters. :math:`RT_{\\text{base cool}} (\\text{minutes}) = \\alpha_c \cdot \\text{daily CTD base}_d` Parameters ---------- baseline_cooling_demand : pandas.Series A series containing estimated daily baseline cooling demand. alpha : float Slope of fitted line Returns ------- baseline_cooling_runtime : pandas.Series A series containing estimated daily baseline cooling runtime. """ return np.maximum(alpha * (baseline_cooling_demand), 0) def get_baseline_heating_runtime(self, baseline_heating_demand, alpha): """ Calculate baseline heating runtime given baseline heating demand. and fitted physical parameters. :math:`RT_{\\text{base heat}} (\\text{minutes}) = \\alpha_h \cdot \\text{daily HTD base}_d` Parameters ---------- baseline_heating_demand : pandas.Series A series containing estimated daily baseline heating demand. alpha : float Slope of fitted line Returns ------- baseline_heating_runtime : pandas.Series A series containing estimated daily baseline heating runtime. """ return np.maximum(alpha * (baseline_heating_demand), 0) def get_daily_avoided_cooling_runtime( self, baseline_runtime, core_cooling_day_set): return baseline_runtime - self.cool_runtime[core_cooling_day_set] def get_daily_avoided_heating_runtime( self, baseline_runtime, core_heating_day_set): return baseline_runtime - self.heat_runtime[core_heating_day_set] def calculate_epa_field_savings_metrics(self, core_cooling_day_set_method="entire_dataset", core_heating_day_set_method="entire_dataset", climate_zone_mapping=None): """ Calculates metrics for connected thermostat savings as defined by the specification defined by the EPA Energy Star program and stakeholders. Parameters ---------- core_cooling_day_set_method : {"entire_dataset", "year_end_to_end"}, default: "entire_dataset" Method by which to find core cooling day sets. - "entire_dataset": all core cooling days in dataset (days with >= 1 hour of cooling runtime and no heating runtime. - "year_end_to_end": groups all core cooling days (days with >= 1 hour of total cooling and no heating) from January 1 to December 31 into independent core cooling day sets. core_heating_day_set_method : {"entire_dataset", "year_mid_to_mid"}, default: "entire_dataset" Method by which to find core heating day sets. - "entire_dataset": all core heating days in dataset (days with >= 1 hour of heating runtime and no cooling runtime. - "year_mid_to_mid": groups all core heating days (days with >= 1 hour of total heating and no cooling) from July 1 to June 30 into independent core heating day sets. climate_zone_mapping : filename, default: None A mapping from climate zone to zipcode. If None is provided, uses default zipcode to climate zone mapping provided in tutorial. :download:`default mapping <./resources/Building America Climate Zone to Zipcode Database_Rev2_2016.09.08.csv>` Returns ------- metrics : list list of dictionaries of output metrics; one per set of core heating or cooling days. """ retval = retrieve_climate_zone(climate_zone_mapping, self.zipcode) climate_zone = retval.climate_zone baseline_regional_cooling_comfort_temperature = retval.baseline_regional_cooling_comfort_temperature baseline_regional_heating_comfort_temperature = retval.baseline_regional_heating_comfort_temperature metrics = [] def avoided(baseline, observed): return baseline - observed def percent_savings(avoided, baseline): try: savings = (avoided.mean() / baseline.mean()) * 100.0 except ZeroDivisionError: logger.debug( 'percent_savings divided by zero: %s / %s ' 'for thermostat_id %s ' % ( avoided.mean(), baseline.mean(), self.thermostat_id)) savings = np.nan return savings if self.equipment_type in self.COOLING_EQUIPMENT_TYPES: for core_cooling_day_set in self.get_core_cooling_days( method=core_cooling_day_set_method): baseline10_comfort_temperature = \ self.get_core_cooling_day_baseline_setpoint(core_cooling_day_set) daily_runtime = self.cool_runtime[core_cooling_day_set.daily] ( demand, tau, alpha, mse, rmse, cvrmse, mape, mae, ) = self.get_cooling_demand(core_cooling_day_set) total_runtime_core_cooling = daily_runtime.sum() n_days = core_cooling_day_set.daily.sum() if np.isnan(total_runtime_core_cooling): warn( "WARNING: Total Runtime Core Cooling Days is nan. " "This may mean that you have pandas 0.21.x installed " "(which is not supported).") if n_days == 0: warn( "WARNING: Number of valid cooling days is zero.") # Raise a division error if dividing by zero and replace with np.nan instead old_err_state = np.seterr(divide='raise') try: average_daily_cooling_runtime = np.divide(total_runtime_core_cooling, n_days) except FloatingPointError: average_daily_cooling_runtime = np.nan np.seterr(**old_err_state) baseline10_demand = self.get_baseline_cooling_demand( core_cooling_day_set, baseline10_comfort_temperature, tau, ) baseline10_runtime = self.get_baseline_cooling_runtime( baseline10_demand, alpha ) avoided_runtime_baseline10 = avoided(baseline10_runtime, daily_runtime) savings_baseline10 = percent_savings(avoided_runtime_baseline10, baseline10_runtime) if baseline_regional_cooling_comfort_temperature is not None: baseline_regional_demand = self.get_baseline_cooling_demand( core_cooling_day_set, baseline_regional_cooling_comfort_temperature, tau ) baseline_regional_runtime = self.get_baseline_cooling_runtime( baseline_regional_demand, alpha ) avoided_runtime_baseline_regional = avoided(baseline_regional_runtime, daily_runtime) savings_baseline_regional = percent_savings(avoided_runtime_baseline_regional, baseline_regional_runtime) percent_savings_baseline_regional = savings_baseline_regional avoided_daily_mean_core_day_runtime_baseline_regional = avoided_runtime_baseline_regional.mean() avoided_total_core_day_runtime_baseline_regional = avoided_runtime_baseline_regional.sum() baseline_daily_mean_core_day_runtime_baseline_regional = baseline_regional_runtime.mean() baseline_total_core_day_runtime_baseline_regional = baseline_regional_runtime.sum() _daily_mean_core_day_demand_baseline_baseline_regional = np.nanmean(baseline_regional_demand) else: baseline_regional_demand = None baseline_regional_runtime = None avoided_runtime_baseline_regional = None savings_baseline_regional = None percent_savings_baseline_regional = None avoided_daily_mean_core_day_runtime_baseline_regional = None avoided_total_core_day_runtime_baseline_regional = None baseline_daily_mean_core_day_runtime_baseline_regional = None baseline_total_core_day_runtime_baseline_regional = None _daily_mean_core_day_demand_baseline_baseline_regional = None n_days_both, n_days_insufficient_data = self.get_ignored_days(core_cooling_day_set) n_core_cooling_days = self.get_core_day_set_n_days(core_cooling_day_set) n_days_in_inputfile_date_range = self.get_inputfile_date_range(core_cooling_day_set) core_cooling_days_mean_indoor_temperature = self.temperature_in[core_cooling_day_set.hourly].mean() core_cooling_days_mean_outdoor_temperature = self.temperature_out[core_cooling_day_set.hourly].mean() outputs = { "sw_version": get_version(), "ct_identifier": self.thermostat_id, "equipment_type": self.equipment_type, "heating_or_cooling": core_cooling_day_set.name, "zipcode": self.zipcode, "station": self.station, "climate_zone": climate_zone, "start_date": pd.Timestamp(core_cooling_day_set.start_date).to_pydatetime().isoformat(), "end_date": pd.Timestamp(core_cooling_day_set.end_date).to_pydatetime().isoformat(), "n_days_in_inputfile_date_range": n_days_in_inputfile_date_range, "n_days_both_heating_and_cooling": n_days_both, "n_days_insufficient_data": n_days_insufficient_data, "n_core_cooling_days": n_core_cooling_days, "baseline_percentile_core_cooling_comfort_temperature": baseline10_comfort_temperature, "regional_average_baseline_cooling_comfort_temperature": baseline_regional_cooling_comfort_temperature, "percent_savings_baseline_percentile": savings_baseline10, "avoided_daily_mean_core_day_runtime_baseline_percentile": avoided_runtime_baseline10.mean(), "avoided_total_core_day_runtime_baseline_percentile": avoided_runtime_baseline10.sum(), "baseline_daily_mean_core_day_runtime_baseline_percentile": baseline10_runtime.mean(), "baseline_total_core_day_runtime_baseline_percentile": baseline10_runtime.sum(), "_daily_mean_core_day_demand_baseline_baseline_percentile": np.nanmean(baseline10_demand), "percent_savings_baseline_regional": percent_savings_baseline_regional, "avoided_daily_mean_core_day_runtime_baseline_regional": avoided_daily_mean_core_day_runtime_baseline_regional, "avoided_total_core_day_runtime_baseline_regional": avoided_total_core_day_runtime_baseline_regional, "baseline_daily_mean_core_day_runtime_baseline_regional": baseline_daily_mean_core_day_runtime_baseline_regional, "baseline_total_core_day_runtime_baseline_regional": baseline_total_core_day_runtime_baseline_regional, "_daily_mean_core_day_demand_baseline_baseline_regional": _daily_mean_core_day_demand_baseline_baseline_regional, "mean_demand": np.nanmean(demand), "tau": tau, "alpha": alpha, "mean_sq_err": mse, "root_mean_sq_err": rmse, "cv_root_mean_sq_err": cvrmse, "mean_abs_pct_err": mape, "mean_abs_err": mae, "total_core_cooling_runtime": total_runtime_core_cooling, "daily_mean_core_cooling_runtime": average_daily_cooling_runtime, "core_cooling_days_mean_indoor_temperature": core_cooling_days_mean_indoor_temperature, "core_cooling_days_mean_outdoor_temperature": core_cooling_days_mean_outdoor_temperature, "core_mean_indoor_temperature": core_cooling_days_mean_indoor_temperature, "core_mean_outdoor_temperature": core_cooling_days_mean_outdoor_temperature, } metrics.append(outputs) if self.equipment_type in self.HEATING_EQUIPMENT_TYPES: for core_heating_day_set in self.get_core_heating_days(method=core_heating_day_set_method): baseline90_comfort_temperature = \ self.get_core_heating_day_baseline_setpoint(core_heating_day_set) # deltaT daily_runtime = self.heat_runtime[core_heating_day_set.daily] ( demand, tau, alpha, mse, rmse, cvrmse, mape, mae, ) = self.get_heating_demand(core_heating_day_set) total_runtime_core_heating = daily_runtime.sum() n_days = core_heating_day_set.daily.sum() if np.isnan(total_runtime_core_heating): warn( "WARNING: Total Runtime Core Heating is nan. " "This may mean that you have pandas 0.21.x installed " "(which is not supported).") if n_days == 0: warn( "WARNING: Number of valid heating days is zero.") # Raise a division error if dividing by zero and replace with np.nan instead old_err_state = np.seterr(divide='raise') try: average_daily_heating_runtime = np.divide(total_runtime_core_heating, n_days) except FloatingPointError: average_daily_heating_runtime = np.nan np.seterr(**old_err_state) baseline90_demand = self.get_baseline_heating_demand( core_heating_day_set, baseline90_comfort_temperature, tau, ) baseline90_runtime = self.get_baseline_heating_runtime( baseline90_demand, alpha, ) avoided_runtime_baseline90 = avoided(baseline90_runtime, daily_runtime) savings_baseline90 = percent_savings(avoided_runtime_baseline90, baseline90_runtime) if baseline_regional_heating_comfort_temperature is not None: baseline_regional_demand = self.get_baseline_heating_demand( core_heating_day_set, baseline_regional_heating_comfort_temperature, tau, ) baseline_regional_runtime = self.get_baseline_heating_runtime( baseline_regional_demand, alpha, ) avoided_runtime_baseline_regional = avoided(baseline_regional_runtime, daily_runtime) savings_baseline_regional = percent_savings(avoided_runtime_baseline_regional, baseline_regional_runtime) percent_savings_baseline_regional = savings_baseline_regional avoided_daily_mean_core_day_runtime_baseline_regional = avoided_runtime_baseline_regional.mean() avoided_total_core_day_runtime_baseline_regional = avoided_runtime_baseline_regional.sum() baseline_daily_mean_core_day_runtime_baseline_regional = baseline_regional_runtime.mean() baseline_total_core_day_runtime_baseline_regional = baseline_regional_runtime.sum() _daily_mean_core_day_demand_baseline_baseline_regional = np.nanmean(baseline_regional_demand) else: baseline_regional_demand = None baseline_regional_runtime = None avoided_runtime_baseline_regional = None savings_baseline_regional = None percent_savings_baseline_regional = None avoided_daily_mean_core_day_runtime_baseline_regional = None avoided_total_core_day_runtime_baseline_regional = None baseline_daily_mean_core_day_runtime_baseline_regional = None baseline_total_core_day_runtime_baseline_regional = None _daily_mean_core_day_demand_baseline_baseline_regional = None n_days_both, n_days_insufficient_data = self.get_ignored_days(core_heating_day_set) n_core_heating_days = self.get_core_day_set_n_days(core_heating_day_set) n_days_in_inputfile_date_range = self.get_inputfile_date_range(core_heating_day_set) core_heating_days_mean_indoor_temperature = self.temperature_in[core_heating_day_set.hourly].mean() core_heating_days_mean_outdoor_temperature = self.temperature_out[core_heating_day_set.hourly].mean() outputs = { "sw_version": get_version(), "ct_identifier": self.thermostat_id, "equipment_type": self.equipment_type, "heating_or_cooling": core_heating_day_set.name, "zipcode": self.zipcode, "station": self.station, "climate_zone": climate_zone, "start_date": pd.Timestamp(core_heating_day_set.start_date).to_pydatetime().isoformat(), "end_date": pd.Timestamp(core_heating_day_set.end_date).to_pydatetime().isoformat(), "n_days_in_inputfile_date_range": n_days_in_inputfile_date_range, "n_days_both_heating_and_cooling": n_days_both, "n_days_insufficient_data": n_days_insufficient_data, "n_core_heating_days": n_core_heating_days, "baseline_percentile_core_heating_comfort_temperature": baseline90_comfort_temperature, "regional_average_baseline_heating_comfort_temperature": baseline_regional_heating_comfort_temperature, "percent_savings_baseline_percentile": savings_baseline90, "avoided_daily_mean_core_day_runtime_baseline_percentile": avoided_runtime_baseline90.mean(), "avoided_total_core_day_runtime_baseline_percentile": avoided_runtime_baseline90.sum(), "baseline_daily_mean_core_day_runtime_baseline_percentile": baseline90_runtime.mean(), "baseline_total_core_day_runtime_baseline_percentile": baseline90_runtime.sum(), "_daily_mean_core_day_demand_baseline_baseline_percentile": np.nanmean(baseline90_demand), "percent_savings_baseline_regional": savings_baseline_regional, "avoided_daily_mean_core_day_runtime_baseline_regional": avoided_daily_mean_core_day_runtime_baseline_regional, "avoided_total_core_day_runtime_baseline_regional": avoided_total_core_day_runtime_baseline_regional, "baseline_daily_mean_core_day_runtime_baseline_regional": baseline_daily_mean_core_day_runtime_baseline_regional, "baseline_total_core_day_runtime_baseline_regional": baseline_total_core_day_runtime_baseline_regional, "_daily_mean_core_day_demand_baseline_baseline_regional": _daily_mean_core_day_demand_baseline_baseline_regional, "mean_demand": np.nanmean(demand), "tau": tau, "alpha": alpha, "mean_sq_err": mse, "root_mean_sq_err": rmse, "cv_root_mean_sq_err": cvrmse, "mean_abs_pct_err": mape, "mean_abs_err": mae, "total_core_heating_runtime": total_runtime_core_heating, "daily_mean_core_heating_runtime": average_daily_heating_runtime, "core_heating_days_mean_indoor_temperature": core_heating_days_mean_indoor_temperature, "core_heating_days_mean_outdoor_temperature": core_heating_days_mean_outdoor_temperature, "core_mean_indoor_temperature": core_heating_days_mean_indoor_temperature, "core_mean_outdoor_temperature": core_heating_days_mean_outdoor_temperature, } if self.equipment_type in self.AUX_EMERG_EQUIPMENT_TYPES: additional_outputs = { "total_auxiliary_heating_core_day_runtime": self.total_auxiliary_heating_runtime( core_heating_day_set), "total_emergency_heating_core_day_runtime": self.total_emergency_heating_runtime( core_heating_day_set), } # Add RHU Calculations for rhu_type in ('rhu1', 'rhu2'): if rhu_type == 'rhu2': min_runtime_minutes = VAR_MIN_RHU_RUNTIME else: min_runtime_minutes = None rhu_runtime = self.get_resistance_heat_utilization_runtime(core_heating_day_set) # Add duty cycle records heat_runtime = rhu_runtime.heat_runtime.sum() aux_runtime = rhu_runtime.aux_runtime.sum() emg_runtime = rhu_runtime.emg_runtime.sum() total_minutes = rhu_runtime.total_minutes.sum() additional_outputs[rhu_type + '_aux_duty_cycle'] = aux_runtime / total_minutes additional_outputs[rhu_type + '_emg_duty_cycle'] = emg_runtime / total_minutes additional_outputs[rhu_type + '_compressor_duty_cycle'] = heat_runtime / total_minutes rhu_first = self.get_resistance_heat_utilization_bins( rhu_runtime, RESISTANCE_HEAT_USE_BIN_FIRST, core_heating_day_set, min_runtime_minutes) rhu_second = self.get_resistance_heat_utilization_bins( rhu_runtime, RESISTANCE_HEAT_USE_BIN_SECOND, core_heating_day_set, min_runtime_minutes) for duty_cycle in (None, 'aux_duty_cycle', 'emg_duty_cycle', 'compressor_duty_cycle'): if rhu_first is not None: for item in rhu_first.itertuples(): column = self._format_rhu( rhu_type=rhu_type, low=item.Index.left, high=item.Index.right, duty_cycle=duty_cycle) if duty_cycle is None: additional_outputs[column] = item.rhu else: additional_outputs[column] = getattr(item, duty_cycle) else: for (low, high) in RESISTANCE_HEAT_USE_BIN_FIRST_TUPLE: column = self._format_rhu( rhu_type, low, high, duty_cycle) additional_outputs[column] = None if rhu_second is not None: for item in rhu_second.itertuples(): column = self._format_rhu( rhu_type=rhu_type, low=item.Index.left, high=item.Index.right, duty_cycle=duty_cycle) if duty_cycle is None: additional_outputs[column] = item.rhu else: additional_outputs[column] = getattr(item, duty_cycle) else: for (low, high) in RESISTANCE_HEAT_USE_BIN_SECOND_TUPLE: column = self._format_rhu( rhu_type, low, high, duty_cycle) additional_outputs[column] = None outputs.update(additional_outputs) metrics.append(outputs) return metrics
mit
shakamunyi/tensorflow
tensorflow/examples/learn/iris_custom_model.py
37
3651
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for Iris plant dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf X_FEATURE = 'x' # Name of the input feature. def my_model(features, labels, mode): """DNN with three hidden layers, and dropout of 0.1 probability.""" # Create three fully connected layers respectively of size 10, 20, and 10 with # each layer having a dropout probability of 0.1. net = features[X_FEATURE] for units in [10, 20, 10]: net = tf.layers.dense(net, units=units, activation=tf.nn.relu) net = tf.layers.dropout(net, rate=0.1) # Compute logits (1 per class). logits = tf.layers.dense(net, 3, activation=None) # Compute predictions. predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'class': predicted_classes, 'prob': tf.nn.softmax(logits) } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Convert the labels to a one-hot tensor of shape (length of features, 3) and # with a on-value of 1 for each one-hot vector of length 3. onehot_labels = tf.one_hot(labels, 3, 1, 0) # Compute loss. loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) # Create training op. if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) # Compute evaluation metrics. eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = tf.estimator.Estimator(model_fn=my_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=1000) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
mktumbi/SimAnaRep
SimAnaRepproRMSD.py
1
2516
import MDAnalysis import matplotlib.pyplot as plt import numpy as np from MDAnalysis.analysis.align import * from MDAnalysis.analysis.rms import rmsd def proRMSD(u,ref): """ This function produces RMSD data and plots for Protein. :input 1) Universe of Trajectory 2) reference universe :return 1) matplot object 2) array for RMSD data. """ RMSD = [] RMSDAllAtom = [] backbone = u.select_atoms("protein and (name C or name N or name CA)") reference = ref.select_atoms("protein and (name C or name N or name CA)") Allcurrent = u.select_atoms("protein and not name H*") Allreference = ref.select_atoms("protein and not name H*") for ts in u.trajectory: A = backbone.coordinates() B = reference.coordinates() E = Allcurrent.coordinates() F = Allreference.coordinates() C = rmsd(A,B) G = rmsd(E,F) RMSD.append((u.trajectory.frame, C)) RMSDAllAtom.append((u.trajectory.frame, G)) RMSD = np.array(RMSD) RMSDAllAtom = np.array(RMSDAllAtom) #print RMSDAllAtom #print RMSD ax = plt.subplot(111) ax.plot(RMSD[:,0], RMSD[:,1], 'r', lw=2, label="Calpha RMSD") ax.plot(RMSDAllAtom[:,0], RMSDAllAtom[:,1], 'g', lw=2, label="All Atom RMSD (noH)") ax.set_xlabel("Frame") ax.set_ylabel(r"RMSD of Backbone ($\AA$)") #ax.figure.savefig("RMSD.pdf") handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, loc = 'lower left') #plt.draw() return ax, RMSD, RMSDAllAtom if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='This function will plot Radius of gyration for a given universe (trajectory).') parser.add_argument('-j', '--jobname', help='Enter your job name and it will appear as first coloumn in the result file', default='Test') parser.add_argument('-trj', '--trajectory', help='Filename of Trajecotry file.', required=True) parser.add_argument('-top', '--topology', help='Filename of psf/topology file', required=True) args = parser.parse_args() u = MDAnalysis.Universe(args.topology, args.trajectory) ref = MDAnalysis.Universe(args.topology, args.trajectory) caRMSD =[] allRMSD = [] fig,caRMSD,allRMSD = proRMSD(u,ref) #print caRMSD np.savetxt(args.jobname+"-caRMSD-pro.data", caRMSD) np.savetxt(args.jobname+"-allRMSD-pro.data", allRMSD) fig.figure.savefig(args.jobname+"-proRMSD.pdf")
gpl-2.0
rs2/pandas
pandas/tests/io/excel/conftest.py
8
1355
import pytest import pandas.util._test_decorators as td import pandas._testing as tm from pandas.io.parsers import read_csv @pytest.fixture def frame(float_frame): """ Returns the first ten items in fixture "float_frame". """ return float_frame[:10] @pytest.fixture def tsframe(): return tm.makeTimeDataFrame()[:5] @pytest.fixture(params=[True, False]) def merge_cells(request): return request.param @pytest.fixture def df_ref(datapath): """ Obtain the reference data from read_csv with the Python engine. """ filepath = datapath("io", "data", "csv", "test1.csv") df_ref = read_csv(filepath, index_col=0, parse_dates=True, engine="python") return df_ref @pytest.fixture(params=[".xls", ".xlsx", ".xlsm", ".ods", ".xlsb"]) def read_ext(request): """ Valid extensions for reading Excel files. """ return request.param @pytest.fixture(autouse=True) def check_for_file_leaks(): """ Fixture to run around every test to ensure that we are not leaking files. See also -------- _test_decorators.check_file_leaks """ # GH#30162 psutil = td.safe_import("psutil") if not psutil: yield else: proc = psutil.Process() flist = proc.open_files() yield flist2 = proc.open_files() assert flist == flist2
bsd-3-clause
abimannans/scikit-learn
sklearn/feature_selection/tests/test_from_model.py
244
1593
import numpy as np import scipy.sparse as sp from nose.tools import assert_raises, assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC iris = load_iris() def test_transform_linear_model(): for clf in (LogisticRegression(C=0.1), LinearSVC(C=0.01, dual=False), SGDClassifier(alpha=0.001, n_iter=50, shuffle=True, random_state=0)): for thresh in (None, ".09*mean", "1e-5 * median"): for func in (np.array, sp.csr_matrix): X = func(iris.data) clf.set_params(penalty="l1") clf.fit(X, iris.target) X_new = clf.transform(X, thresh) if isinstance(clf, SGDClassifier): assert_true(X_new.shape[1] <= X.shape[1]) else: assert_less(X_new.shape[1], X.shape[1]) clf.set_params(penalty="l2") clf.fit(X_new, iris.target) pred = clf.predict(X_new) assert_greater(np.mean(pred == iris.target), 0.7) def test_invalid_input(): clf = SGDClassifier(alpha=0.1, n_iter=10, shuffle=True, random_state=None) clf.fit(iris.data, iris.target) assert_raises(ValueError, clf.transform, iris.data, "gobbledigook") assert_raises(ValueError, clf.transform, iris.data, ".5 * gobbledigook")
bsd-3-clause
hanw/connectal
examples/gyro_simple/test_gyro.py
3
6205
#!/usr/bin/env python # Copyright (c) 2013 Quanta Research Cambridge, Inc. # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, copy, # modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import socket import struct import time import ctypes import os import numpy import pandas as pd import math from gyroVisualize import * import argparse import json sys.path.append(os.path.abspath('../../scripts')) import portalJson class gyro_stream: def __init__(self, lpf=False): self.times = 0 self.tails = [[],[],[]] self.means = [0,0,0] self.calibrate_window = 0 self.sample_freq_hz = 100 self.lpf = lpf def radians(self, sample): # sensitivity of sample is 70 milli-degrees-per-second/digit. # multiply sample by 70 to get milli-degrees-per-second # divide by sample_freq_hz to get milli-degrees # divide by 1000 to get degrees return (math.radians(sample[0]*70.0/self.sample_freq_hz/1000.0), math.radians(-sample[1]*70.0/self.sample_freq_hz/1000.0), math.radians(-sample[2]*70.0/self.sample_freq_hz/1000.0)) def next_samples(self,samples): self.times = self.times+1 octave_length = 20 window_sz = 10 rv = [] write_octave = True if (write_octave): octave_file = open("x.m", "w"); octave_file.write("#! /usr/bin/octave --persist \nv = ["); num_samples = len(samples) if (self.lpf): x = numpy.concatenate((self.tails[0],samples[0::3]),0) y = numpy.concatenate((self.tails[1],samples[1::3]),0) z = numpy.concatenate((self.tails[2],samples[2::3]),0) xs = pd.rolling_mean(pd.Series(x),window=window_sz)[window_sz:] ys = pd.rolling_mean(pd.Series(y),window=window_sz)[window_sz:] zs = pd.rolling_mean(pd.Series(z),window=window_sz)[window_sz:] self.tails[0] = x[-window_sz:] self.tails[1] = y[-window_sz:] self.tails[2] = z[-window_sz:] else: xs = samples[0::3] ys = samples[1::3] zs = samples[2::3] if (self.times <= octave_length): print self.times for x,y,z in zip(xs,ys,zs): #print "%d %d %d" % (x,y,z) if (self.times <= octave_length): self.calibrate_window += 1 self.means[0] += x; self.means[1] += y; self.means[2] += z; if (write_octave): octave_file.write("%d, %d, %d; \n" % (x,y,z)); else: pos = (x-self.means[0],y-self.means[1],z-self.means[2]) rv.append(self.radians(pos)) #print "%d %d %d" %(pos[0],pos[1],pos[2]) if (self.times == octave_length): for i in range (0,len(self.means)): self.means[i] = self.means[i]/self.calibrate_window print "x_mean:%d y_mean:%d, z_mean:%d\n" % (self.means[0],self.means[1],self.means[2]) if (write_octave): octave_file.write("];\n"); octave_file.write("plot(v(:,1),color=\"r\");\n"); octave_file.write("hold on;\n"); octave_file.write("plot(v(:,2),color=\"g\");\n"); octave_file.write("plot(v(:,3),color=\"b\");\n"); octave_file.close() print "done writing octave_file" if (self.times > octave_length): return rv smoothe = False if __name__ == "__main__": argparser = argparse.ArgumentParser('Display gyroscope data') argparser.add_argument('-v', '--visualize', help='Display gyro orientation in 3D rendering', default=False, action='store_true') argparser.add_argument('-a', '--address', help='Device address', default=None) options = argparser.parse_args() spew = not options.visualize; visualize = options.visualize; print options.address if not options.address: options.address = os.environ['RUNPARAM'] if (visualize): v = gv() gs = gyro_stream() jp = portalJson.portal(options.address, 5000) summ = [0,0,0] try: while (True): samples = [] for i in range(0,48): d = json.loads(jp.recv()) samples.append(d['x']) samples.append(d['y']) samples.append(d['z']) poss = gs.next_samples(samples) if poss is not None: for pos in poss: if (spew): print "%f %f %f" % (pos[0],pos[1],pos[2]) summ[0] = summ[0]+pos[0] summ[1] = summ[1]+pos[1] summ[2] = summ[2]+pos[2] if (visualize and smoothe): v.update(summ, gs.sample_freq_hz) time.sleep(1/gs.sample_freq_hz) if (visualize and (not smoothe)): v.update(summ, gs.sample_freq_hz) if (not spew): print "%f %f %f" % (summ[0], summ[1], summ[2]) except KeyboardInterrupt: jp.shutdown() sys.exit()
mit
fyffyt/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
lbishal/scikit-learn
sklearn/utils/tests/test_utils.py
35
9000
import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import pinv2 from scipy.linalg import eigh from itertools import chain from sklearn.utils.testing import (assert_equal, assert_raises, assert_true, assert_almost_equal, assert_array_equal, SkipTest, assert_raises_regex, assert_greater_equal) from sklearn.utils import check_random_state from sklearn.utils import deprecated from sklearn.utils import resample from sklearn.utils import safe_mask from sklearn.utils import column_or_1d from sklearn.utils import safe_indexing from sklearn.utils import shuffle from sklearn.utils import gen_even_slices from sklearn.utils.extmath import pinvh from sklearn.utils.arpack import eigsh from sklearn.utils.mocking import MockDataFrame from sklearn.utils.graph import graph_laplacian def test_make_rng(): # Check the check_random_state utility function behavior assert_true(check_random_state(None) is np.random.mtrand._rand) assert_true(check_random_state(np.random) is np.random.mtrand._rand) rng_42 = np.random.RandomState(42) assert_true(check_random_state(42).randint(100) == rng_42.randint(100)) rng_42 = np.random.RandomState(42) assert_true(check_random_state(rng_42) is rng_42) rng_42 = np.random.RandomState(42) assert_true(check_random_state(43).randint(100) != rng_42.randint(100)) assert_raises(ValueError, check_random_state, "some invalid seed") def test_resample_noarg(): # Border case not worth mentioning in doctests assert_true(resample() is None) def test_deprecated(): # Test whether the deprecated decorator issues appropriate warnings # Copied almost verbatim from http://docs.python.org/library/warnings.html # First a function... with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated() def ham(): return "spam" spam = ham() assert_equal(spam, "spam") # function must remain usable assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) # ... then a class. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") @deprecated("don't use this") class Ham(object): SPAM = 1 ham = Ham() assert_true(hasattr(ham, "SPAM")) assert_equal(len(w), 1) assert_true(issubclass(w[0].category, DeprecationWarning)) assert_true("deprecated" in str(w[0].message).lower()) def test_resample_value_errors(): # Check that invalid arguments yield ValueError assert_raises(ValueError, resample, [0], [0, 1]) assert_raises(ValueError, resample, [0, 1], [0, 1], n_samples=3) assert_raises(ValueError, resample, [0, 1], [0, 1], meaning_of_life=42) def test_safe_mask(): random_state = check_random_state(0) X = random_state.rand(5, 4) X_csr = sp.csr_matrix(X) mask = [False, False, True, True, True] mask = safe_mask(X, mask) assert_equal(X[mask].shape[0], 3) mask = safe_mask(X_csr, mask) assert_equal(X_csr[mask].shape[0], 3) def test_pinvh_simple_real(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]], dtype=np.float64) a = np.dot(a, a.T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_pinvh_nonpositive(): a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float64) a = np.dot(a, a.T) u, s, vt = np.linalg.svd(a) s[0] *= -1 a = np.dot(u * s, vt) # a is now symmetric non-positive and singular a_pinv = pinv2(a) a_pinvh = pinvh(a) assert_almost_equal(a_pinv, a_pinvh) def test_pinvh_simple_complex(): a = (np.array([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) + 1j * np.array([[10, 8, 7], [6, 5, 4], [3, 2, 1]])) a = np.dot(a, a.conj().T) a_pinv = pinvh(a) assert_almost_equal(np.dot(a, a_pinv), np.eye(3)) def test_arpack_eigsh_initialization(): # Non-regression test that shows null-space computation is better with # initialization of eigsh from [-1,1] instead of [0,1] random_state = check_random_state(42) A = random_state.rand(50, 50) A = np.dot(A.T, A) # create s.p.d. matrix A = graph_laplacian(A) + 1e-7 * np.identity(A.shape[0]) k = 5 # Test if eigsh is working correctly # New initialization [-1,1] (as in original ARPACK) # Was [0,1] before, with which this test could fail v0 = random_state.uniform(-1,1, A.shape[0]) w, _ = eigsh(A, k=k, sigma=0.0, v0=v0) # Eigenvalues of s.p.d. matrix should be nonnegative, w[0] is smallest assert_greater_equal(w[0], 0) def test_column_or_1d(): EXAMPLES = [ ("binary", ["spam", "egg", "spam"]), ("binary", [0, 1, 0, 1]), ("continuous", np.arange(10) / 20.), ("multiclass", [1, 2, 3]), ("multiclass", [0, 1, 2, 2, 0]), ("multiclass", [[1], [2], [3]]), ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]), ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]), ("multiclass-multioutput", [[1, 2, 3]]), ("continuous-multioutput", np.arange(30).reshape((-1, 3))), ] for y_type, y in EXAMPLES: if y_type in ["binary", 'multiclass', "continuous"]: assert_array_equal(column_or_1d(y), np.ravel(y)) else: assert_raises(ValueError, column_or_1d, y) def test_safe_indexing(): X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] inds = np.array([1, 2]) X_inds = safe_indexing(X, inds) X_arrays = safe_indexing(np.array(X), inds) assert_array_equal(np.array(X_inds), X_arrays) assert_array_equal(np.array(X_inds), np.array(X)[inds]) def test_safe_indexing_pandas(): try: import pandas as pd except ImportError: raise SkipTest("Pandas not found") X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = pd.DataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) # fun with read-only data in dataframes # this happens in joblib memmapping X.setflags(write=False) X_df_readonly = pd.DataFrame(X) with warnings.catch_warnings(record=True): X_df_ro_indexed = safe_indexing(X_df_readonly, inds) assert_array_equal(np.array(X_df_ro_indexed), X_indexed) def test_safe_indexing_mock_pandas(): X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) X_df = MockDataFrame(X) inds = np.array([1, 2]) X_df_indexed = safe_indexing(X_df, inds) X_indexed = safe_indexing(X_df, inds) assert_array_equal(np.array(X_df_indexed), X_indexed) def test_shuffle_on_ndim_equals_three(): def to_tuple(A): # to make the inner arrays hashable return tuple(tuple(tuple(C) for C in B) for B in A) A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # A.shape = (2,2,2) S = set(to_tuple(A)) shuffle(A) # shouldn't raise a ValueError for dim = 3 assert_equal(set(to_tuple(A)), S) def test_shuffle_dont_convert_to_array(): # Check that shuffle does not try to convert to numpy arrays with float # dtypes can let any indexable datastructure pass-through. a = ['a', 'b', 'c'] b = np.array(['a', 'b', 'c'], dtype=object) c = [1, 2, 3] d = MockDataFrame(np.array([['a', 0], ['b', 1], ['c', 2]], dtype=object)) e = sp.csc_matrix(np.arange(6).reshape(3, 2)) a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0) assert_equal(a_s, ['c', 'b', 'a']) assert_equal(type(a_s), list) assert_array_equal(b_s, ['c', 'b', 'a']) assert_equal(b_s.dtype, object) assert_equal(c_s, [3, 2, 1]) assert_equal(type(c_s), list) assert_array_equal(d_s, np.array([['c', 2], ['b', 1], ['a', 0]], dtype=object)) assert_equal(type(d_s), MockDataFrame) assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]])) def test_gen_even_slices(): # check that gen_even_slices contains all samples some_range = range(10) joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)])) assert_array_equal(some_range, joined_range) # check that passing negative n_chunks raises an error slices = gen_even_slices(10, -1) assert_raises_regex(ValueError, "gen_even_slices got n_packs=-1, must be" " >=1", next, slices)
bsd-3-clause
leggitta/mne-python
mne/io/proj.py
3
24371
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # Denis Engemann <[email protected]> # Teon Brooks <[email protected]> # # License: BSD (3-clause) from copy import deepcopy from math import sqrt import numpy as np from scipy import linalg from itertools import count import warnings from .tree import dir_tree_find from .tag import find_tag from .constants import FIFF from .pick import pick_types from .write import (write_int, write_float, write_string, write_name_list, write_float_matrix, end_block, start_block) from ..utils import logger, verbose from ..externals.six import string_types class Projection(dict): """Projection vector A basic class to proj a meaningful print for projection vectors. """ def __repr__(self): s = "%s" % self['desc'] s += ", active : %s" % self['active'] s += ", n_channels : %s" % self['data']['ncol'] return "<Projection | %s>" % s class ProjMixin(object): """Mixin class for Raw, Evoked, Epochs Notes ----- This mixin adds a proj attribute as a property to data containers. It is True if at least one proj is present and all of them are active. The projs might not be applied yet if data are not preloaded. In this case it's the _projector attribute that does the job. If a private _data attribute is present then the projs applied to it are the ones marked as active. A proj parameter passed in constructor of raw or epochs calls apply_proj and hence after the .proj attribute is True. As soon as you've applied the projs it will stay active in the remaining pipeline. The suggested pipeline is proj=True in epochs (it's cheaper than for raw). When you use delayed SSP in Epochs, projs are applied when you call get_data() method. They are not applied to the evoked._data unless you call apply_proj(). The reason is that you want to reject with projs although it's not stored in proj mode. """ @property def proj(self): return (len(self.info['projs']) > 0 and all(p['active'] for p in self.info['projs'])) def add_proj(self, projs, remove_existing=False): """Add SSP projection vectors Parameters ---------- projs : list List with projection vectors. remove_existing : bool Remove the projection vectors currently in the file. Returns ------- self : instance of Raw | Epochs | Evoked The data container. """ if isinstance(projs, Projection): projs = [projs] if (not isinstance(projs, list) and not all(isinstance(p, Projection) for p in projs)): raise ValueError('Only projs can be added. You supplied ' 'something else.') # mark proj as inactive, as they have not been applied projs = deactivate_proj(projs, copy=True, verbose=self.verbose) if remove_existing: # we cannot remove the proj if they are active if any(p['active'] for p in self.info['projs']): raise ValueError('Cannot remove projectors that have ' 'already been applied') self.info['projs'] = projs else: self.info['projs'].extend(projs) return self def apply_proj(self): """Apply the signal space projection (SSP) operators to the data. Notes ----- Once the projectors have been applied, they can no longer be removed. It is usually not recommended to apply the projectors at too early stages, as they are applied automatically later on (e.g. when computing inverse solutions). Hint: using the copy method individual projection vectors can be tested without affecting the original data. With evoked data, consider the following example:: projs_a = mne.read_proj('proj_a.fif') projs_b = mne.read_proj('proj_b.fif') # add the first, copy, apply and see ... evoked.add_proj(a).copy().apply_proj().plot() # add the second, copy, apply and see ... evoked.add_proj(b).copy().apply_proj().plot() # drop the first and see again evoked.copy().del_proj(0).apply_proj().plot() evoked.apply_proj() # finally keep both Returns ------- self : instance of Raw | Epochs | Evoked The instance. """ from ..epochs import _BaseEpochs from .base import _BaseRaw if self.info['projs'] is None or len(self.info['projs']) == 0: logger.info('No projector specified for this dataset.' 'Please consider the method self.add_proj.') return self # Exit delayed mode if you apply proj if isinstance(self, _BaseEpochs) and self._do_delayed_proj: logger.info('Leaving delayed SSP mode.') self._do_delayed_proj = False if all(p['active'] for p in self.info['projs']): logger.info('Projections have already been applied. ' 'Setting proj attribute to True.') return self _projector, info = setup_proj(deepcopy(self.info), activate=True, verbose=self.verbose) # let's not raise a RuntimeError here, otherwise interactive plotting if _projector is None: # won't be fun. logger.info('The projections don\'t apply to these data.' ' Doing nothing.') return self self._projector, self.info = _projector, info if isinstance(self, _BaseRaw): if self.preload: self._data = np.dot(self._projector, self._data) elif isinstance(self, _BaseEpochs): if self.preload: for ii, e in enumerate(self._data): self._data[ii] = self._project_epoch(e) else: self.load_data() # will automatically apply else: # Evoked self.data = np.dot(self._projector, self.data) logger.info('SSP projectors applied...') return self def del_proj(self, idx): """Remove SSP projection vector Note: The projection vector can only be removed if it is inactive (has not been applied to the data). Parameters ---------- idx : int Index of the projector to remove. Returns ------- self : instance of Raw | Epochs | Evoked """ if self.info['projs'][idx]['active']: raise ValueError('Cannot remove projectors that have already ' 'been applied') self.info['projs'].pop(idx) return self def plot_projs_topomap(self, ch_type=None, layout=None, axes=None): """Plot SSP vector Parameters ---------- ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None | List The channel type to plot. For 'grad', the gradiometers are collec- ted in pairs and the RMS for each pair is plotted. If None (default), it will return all channel types present. If a list of ch_types is provided, it will return multiple figures. layout : None | Layout | List of Layouts Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found, the layout is automatically generated from the sensor locations. Or a list of Layout if projections are from different sensor types. axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of projectors. If instance of Axes, there must be only one projector. Defaults to None. Returns ------- fig : instance of matplotlib figure Figure distributing one image per channel across sensor topography. """ if self.info['projs'] is not None or len(self.info['projs']) != 0: from ..viz.topomap import plot_projs_topomap from ..channels.layout import find_layout if layout is None: layout = [] if ch_type is None: ch_type = [ch for ch in ['meg', 'eeg'] if ch in self] elif isinstance(ch_type, string_types): ch_type = [ch_type] for ch in ch_type: if ch in self: layout.append(find_layout(self.info, ch, exclude=[])) else: err = 'Channel type %s is not found in info.' % ch warnings.warn(err) fig = plot_projs_topomap(self.info['projs'], layout, axes=axes) else: raise ValueError("Info is missing projs. Nothing to plot.") return fig def _proj_equal(a, b): """ Test if two projectors are equal """ equal = (a['active'] == b['active'] and a['kind'] == b['kind'] and a['desc'] == b['desc'] and a['data']['col_names'] == b['data']['col_names'] and a['data']['row_names'] == b['data']['row_names'] and a['data']['ncol'] == b['data']['ncol'] and a['data']['nrow'] == b['data']['nrow'] and np.all(a['data']['data'] == b['data']['data'])) return equal @verbose def _read_proj(fid, node, verbose=None): """Read spatial projections from a FIF file. Parameters ---------- fid : file The file descriptor of the open file. node : tree node The node of the tree where to look. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- projs: dict The list of projections. """ projs = list() # Locate the projection data nodes = dir_tree_find(node, FIFF.FIFFB_PROJ) if len(nodes) == 0: return projs tag = find_tag(fid, nodes[0], FIFF.FIFF_NCHAN) if tag is not None: global_nchan = int(tag.data) items = dir_tree_find(nodes[0], FIFF.FIFFB_PROJ_ITEM) for i in range(len(items)): # Find all desired tags in one item item = items[i] tag = find_tag(fid, item, FIFF.FIFF_NCHAN) if tag is not None: nchan = int(tag.data) else: nchan = global_nchan tag = find_tag(fid, item, FIFF.FIFF_DESCRIPTION) if tag is not None: desc = tag.data else: tag = find_tag(fid, item, FIFF.FIFF_NAME) if tag is not None: desc = tag.data else: raise ValueError('Projection item description missing') # XXX : is this useful ? # tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST) # if tag is not None: # namelist = tag.data # else: # raise ValueError('Projection item channel list missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_KIND) if tag is not None: kind = int(tag.data) else: raise ValueError('Projection item kind missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_NVEC) if tag is not None: nvec = int(tag.data) else: raise ValueError('Number of projection vectors not specified') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST) if tag is not None: names = tag.data.split(':') else: raise ValueError('Projection item channel list missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_VECTORS) if tag is not None: data = tag.data else: raise ValueError('Projection item data missing') tag = find_tag(fid, item, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE) if tag is not None: active = bool(tag.data) else: active = False # handle the case when data is transposed for some reason if data.shape[0] == len(names) and data.shape[1] == nvec: data = data.T if data.shape[1] != len(names): raise ValueError('Number of channel names does not match the ' 'size of data matrix') # Use exactly the same fields in data as in a named matrix one = Projection(kind=kind, active=active, desc=desc, data=dict(nrow=nvec, ncol=nchan, row_names=None, col_names=names, data=data)) projs.append(one) if len(projs) > 0: logger.info(' Read a total of %d projection items:' % len(projs)) for k in range(len(projs)): if projs[k]['active']: misc = 'active' else: misc = ' idle' logger.info(' %s (%d x %d) %s' % (projs[k]['desc'], projs[k]['data']['nrow'], projs[k]['data']['ncol'], misc)) return projs ############################################################################### # Write def _write_proj(fid, projs): """Write a projection operator to a file. Parameters ---------- fid : file The file descriptor of the open file. projs : dict The projection operator. """ start_block(fid, FIFF.FIFFB_PROJ) for proj in projs: start_block(fid, FIFF.FIFFB_PROJ_ITEM) write_int(fid, FIFF.FIFF_NCHAN, proj['data']['ncol']) write_name_list(fid, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST, proj['data']['col_names']) write_string(fid, FIFF.FIFF_NAME, proj['desc']) write_int(fid, FIFF.FIFF_PROJ_ITEM_KIND, proj['kind']) if proj['kind'] == FIFF.FIFFV_PROJ_ITEM_FIELD: write_float(fid, FIFF.FIFF_PROJ_ITEM_TIME, 0.0) write_int(fid, FIFF.FIFF_PROJ_ITEM_NVEC, proj['data']['nrow']) write_int(fid, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE, proj['active']) write_float_matrix(fid, FIFF.FIFF_PROJ_ITEM_VECTORS, proj['data']['data']) end_block(fid, FIFF.FIFFB_PROJ_ITEM) end_block(fid, FIFF.FIFFB_PROJ) ############################################################################### # Utils def make_projector(projs, ch_names, bads=[], include_active=True): """Create an SSP operator from SSP projection vectors Parameters ---------- projs : list List of projection vectors. ch_names : list of strings List of channels to include in the projection matrix. bads : list of strings Some bad channels to exclude. If bad channels were marked in the raw file when projs were calculated using mne-python, they should not need to be included here as they will have been automatically omitted from the projectors. include_active : bool Also include projectors that are already active. Returns ------- proj : array of shape [n_channels, n_channels] The projection operator to apply to the data. nproj : int How many items in the projector. U : array The orthogonal basis of the projection vectors (optional). """ nchan = len(ch_names) if nchan == 0: raise ValueError('No channel names specified') default_return = (np.eye(nchan, nchan), 0, []) # Check trivial cases first if projs is None: return default_return nvec = 0 nproj = 0 for p in projs: if not p['active'] or include_active: nproj += 1 nvec += p['data']['nrow'] if nproj == 0: return default_return # Pick the appropriate entries vecs = np.zeros((nchan, nvec)) nvec = 0 nonzero = 0 for k, p in enumerate(projs): if not p['active'] or include_active: if (len(p['data']['col_names']) != len(np.unique(p['data']['col_names']))): raise ValueError('Channel name list in projection item %d' ' contains duplicate items' % k) # Get the two selection vectors to pick correct elements from # the projection vectors omitting bad channels sel = [] vecsel = [] for c, name in enumerate(ch_names): if name in p['data']['col_names'] and name not in bads: sel.append(c) vecsel.append(p['data']['col_names'].index(name)) # If there is something to pick, pickit if len(sel) > 0: nrow = p['data']['nrow'] vecs[sel, nvec:nvec + nrow] = p['data']['data'][:, vecsel].T # Rescale for better detection of small singular values for v in range(p['data']['nrow']): psize = sqrt(np.sum(vecs[:, nvec + v] * vecs[:, nvec + v])) if psize > 0: vecs[:, nvec + v] /= psize nonzero += 1 nvec += p['data']['nrow'] # Check whether all of the vectors are exactly zero if nonzero == 0: return default_return # Reorthogonalize the vectors U, S, V = linalg.svd(vecs[:, :nvec], full_matrices=False) # Throw away the linearly dependent guys nproj = np.sum((S / S[0]) > 1e-2) U = U[:, :nproj] # Here is the celebrated result proj = np.eye(nchan, nchan) - np.dot(U, U.T) return proj, nproj, U def make_projector_info(info, include_active=True): """Make an SSP operator using the measurement info Calls make_projector on good channels. Parameters ---------- info : dict Measurement info. include_active : bool Also include projectors that are already active. Returns ------- proj : array of shape [n_channels, n_channels] The projection operator to apply to the data. nproj : int How many items in the projector. """ proj, nproj, _ = make_projector(info['projs'], info['ch_names'], info['bads'], include_active) return proj, nproj @verbose def activate_proj(projs, copy=True, verbose=None): """Set all projections to active Useful before passing them to make_projector. Parameters ---------- projs : list The projectors. copy : bool Modify projs in place or operate on a copy. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- projs : list The projectors. """ if copy: projs = deepcopy(projs) # Activate the projection items for proj in projs: proj['active'] = True logger.info('%d projection items activated' % len(projs)) return projs @verbose def deactivate_proj(projs, copy=True, verbose=None): """Set all projections to inactive Useful before saving raw data without projectors applied. Parameters ---------- projs : list The projectors. copy : bool Modify projs in place or operate on a copy. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- projs : list The projectors. """ if copy: projs = deepcopy(projs) # Deactivate the projection items for proj in projs: proj['active'] = False logger.info('%d projection items deactivated' % len(projs)) return projs @verbose def make_eeg_average_ref_proj(info, activate=True, verbose=None): """Create an EEG average reference SSP projection vector Parameters ---------- info : dict Measurement info. activate : bool If True projections are activated. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- eeg_proj: instance of Projection The SSP/PCA projector. """ if info.get('custom_ref_applied', False): raise RuntimeError('Cannot add an average EEG reference projection ' 'since a custom reference has been applied to the ' 'data earlier.') logger.info("Adding average EEG reference projection.") eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') ch_names = info['ch_names'] eeg_names = [ch_names[k] for k in eeg_sel] n_eeg = len(eeg_sel) if n_eeg == 0: raise ValueError('Cannot create EEG average reference projector ' '(no EEG data found)') vec = np.ones((1, n_eeg)) / n_eeg eeg_proj_data = dict(col_names=eeg_names, row_names=None, data=vec, nrow=1, ncol=n_eeg) eeg_proj = Projection(active=activate, data=eeg_proj_data, desc='Average EEG reference', kind=FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF) return eeg_proj def _has_eeg_average_ref_proj(projs): """Determine if a list of projectors has an average EEG ref""" for proj in projs: if (proj['desc'] == 'Average EEG reference' or proj['kind'] == FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF): return True return False def _needs_eeg_average_ref_proj(info): """Determine if the EEG needs an averge EEG reference This returns True if no custom reference has been applied and no average reference projection is present in the list of projections. """ eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') return (len(eeg_sel) > 0 and not info['custom_ref_applied'] and not _has_eeg_average_ref_proj(info['projs'])) @verbose def setup_proj(info, add_eeg_ref=True, activate=True, verbose=None): """Set up projection for Raw and Epochs Parameters ---------- info : dict The measurement info. add_eeg_ref : bool If True, an EEG average reference will be added (unless one already exists). activate : bool If True projections are activated. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- projector : array of shape [n_channels, n_channels] The projection operator to apply to the data. info : dict The modified measurement info (Warning: info is modified inplace). """ # Add EEG ref reference proj if necessary if _needs_eeg_average_ref_proj(info) and add_eeg_ref: eeg_proj = make_eeg_average_ref_proj(info, activate=activate) info['projs'].append(eeg_proj) # Create the projector projector, nproj = make_projector_info(info) if nproj == 0: if verbose: logger.info('The projection vectors do not apply to these ' 'channels') projector = None else: logger.info('Created an SSP operator (subspace dimension = %d)' % nproj) # The projection items have been activated if activate: info['projs'] = activate_proj(info['projs'], copy=False) return projector, info def _uniquify_projs(projs): """Aux function""" final_projs = [] for proj in projs: # flatten if not any(_proj_equal(p, proj) for p in final_projs): final_projs.append(proj) my_count = count(len(final_projs)) def sorter(x): """sort in a nice way""" digits = [s for s in x['desc'] if s.isdigit()] if digits: sort_idx = int(digits[-1]) else: sort_idx = next(my_count) return (sort_idx, x['desc']) return sorted(final_projs, key=sorter)
bsd-3-clause
walkerps/ICGPM
cleaner.py
1
1634
import pandas as pd import numpy as np import re from nltk import word_tokenize from nltk.corpus import wordnet def main(data): #print "Data is getting Cleaned" columns = ['OrderId','Firstname'] data.columns = columns name_list= [] name_value= [] data = data.dropna(subset = ['Firstname']) for name in data.Firstname: name_list.append(name) for name in name_list: if not re.search(r'[a-zA-Z]',name): name_value.append(name) for name in name_value: data = data[data.Firstname != name] name_list = [] name_value = [] for name in data.Firstname: name_list.append(name) #print "Midway point 1" for name in name_list: if re.search(r'[0-9]',name): name_value.append(name) for name in name_value: data = data[data.Firstname != name] name_list = [] name_value =[] for name in data.Firstname: name_list.append(name) for name in name_list: if re.search(r'[,.!@#$%^&*]',name): name_value.append(name) for name in name_value: data = data[data.Firstname != name] #print "midway point 2" name_list = [] name_value = [] for name in data.Firstname: name_list.append(name) for name in name_list: value = word_tokenize(name) name_value.append(value[0]) data.Firstname = [name_value[ii] for ii in range(len(name_value))] data.Firstname = map(lambda x:x.lower(),data.Firstname) #print "midway point 3" name_list = [] name_value =[] for name in data.Firstname: name_list.append(name) for name in name_list: if len(name) <=2: name_value.append(name) for name in name_value: data = data[data.Firstname != name] #print "midway point 4" return data
apache-2.0
XInterns/IPL-Sparkers
src/Prediction+Model+in+Spark.py
1
2063
# coding: utf-8 # In[105]: import findspark findspark.init() from pyspark import SparkContext from pyspark import SparkConf # In[91]: import pandas as pd import numpy as np from sklearn import grid_search, datasets from spark_sklearn import GridSearchCV from sklearn import ensemble from pyspark.sql import SparkSession from spark_sklearn.util import createLocalSparkSession from patsy import dmatrices from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB # In[92]: # In[93]: df = pd.read_csv("../data/matcheswithfeatures.csv", index_col = 0) df.tail() # In[94]: spark = createLocalSparkSession() # In[95]: y, X = dmatrices('team1Winning ~ 0 + Avg_SR_Difference + Avg_WPR_Difference + Total_MVP_Difference + Prev_Enc_Team1_WinPerc + Total_RF_Difference', df, return_type="dataframe") y_arr = np.ravel(y) # In[96]: X.tail() # In[97]: X_timetrain = X.loc[X.index < 398] Y_timetrain = y.loc[y.index < 398] Y_timetrain_arr = np.ravel(Y_timetrain) X_timetest = X.loc[X.index >= 398] Y_timetest = y.loc[y.index >= 398] Y_timetest_arr = np.ravel(Y_timetest) X_timetest # In[99]: tuned_parameters = { "n_estimators": [ 100 ], "max_depth" : [ 3 ], "learning_rate": [ 0.1 ], } gbc = ensemble.GradientBoostingClassifier() clf = GridSearchCV(spark.sparkContext, gbc, tuned_parameters) clf # In[100]: clf.fit(X_timetrain, Y_timetrain_arr) clftest_pred = clf.predict(X_timetest) print "Accuracy is ", metrics.accuracy_score(Y_timetest_arr, clftest_pred) *100, "%" # In[101]: knn1 = KNeighborsClassifier() knn_params = { "n_neighbors": [31] } clf2 = GridSearchCV(spark.sparkContext, knn1, knn_params, n_jobs = 2) clf2 # In[102]: clf2.fit(X_timetrain, Y_timetrain_arr) clf2test_pred = clf2.predict(X_timetest) print "Accuracy is ", metrics.accuracy_score(Y_timetest_arr, clf2test_pred) *100, "%" # In[ ]:
mit
Windy-Ground/scikit-learn
sklearn/linear_model/tests/test_ridge.py
68
23597
import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.grid_search import GridSearchCV from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr", "sag"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) # Test for fit_intercept = True est = Ridge(alpha=alpha, solver=solver) est.fit(X, y, sample_weight=sample_weight) # Check using Newton's Method # Quadratic function should be solved in a single step. # Initialize sample_weight = np.sqrt(sample_weight) X_weighted = sample_weight[:, np.newaxis] * ( np.column_stack((np.ones(n_samples), X))) y_weighted = y * sample_weight # Gradient is (X*coef-y)*X + alpha*coef_[1:] # Remove coef since it is initialized to zero. grad = -np.dot(y_weighted, X_weighted) # Hessian is (X.T*X) + alpha*I except that the first # diagonal element should be zero, since there is no # penalization of intercept. diag = alpha * np.ones(n_features + 1) diag[0] = 0. hess = np.dot(X_weighted.T, X_weighted) hess.flat[::n_features + 2] += diag coef_ = - np.dot(linalg.inv(hess), grad) assert_almost_equal(coef_[0], est.intercept_) assert_array_almost_equal(coef_[1:], est.coef_) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky', 'sag']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:-1]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd') assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'balanced' can handle negative labels. clf = RidgeClassifier(class_weight='balanced') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'balanced', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='balanced') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weight_vs_sample_weight(): """Check class_weights resemble sample_weights behavior.""" for clf in (RidgeClassifier, RidgeClassifierCV): # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = clf() clf1.fit(iris.data, iris.target) clf2 = clf(class_weight='balanced') clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Check that sample_weight and class_weight are multiplicative clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.coef_, clf2.coef_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridgecv_sample_weight(): rng = np.random.RandomState(0) alphas = (0.1, 1.0, 10.0) # There are different algorithms for n_samples > n_features # and the opposite, so test them both. for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) cv = KFold(n_samples, 5) ridgecv = RidgeCV(alphas=alphas, cv=cv) ridgecv.fit(X, y, sample_weight=sample_weight) # Check using GridSearchCV directly parameters = {'alpha': alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(), parameters, fit_params=fit_params, cv=cv) gs.fit(X, y) assert_equal(ridgecv.alpha_, gs.best_estimator_.alpha) assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1]) @ignore_warnings def test_n_iter(): # Test that self.n_iter_ is correct. n_targets = 2 X, y = X_diabetes, y_diabetes y_n = np.tile(y, (n_targets, 1)).T for max_iter in range(1, 4): for solver in ('sag', 'lsqr'): reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12) reg.fit(X, y_n) assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets)) for solver in ('sparse_cg', 'svd', 'cholesky'): reg = Ridge(solver=solver, max_iter=1, tol=1e-1) reg.fit(X, y_n) assert_equal(reg.n_iter_, None)
bsd-3-clause
pianomania/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
102
2319
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() lw = 2 plt.plot(coef[:, feature_to_plot], color='seagreen', linewidth=lw, label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], color='cornflowerblue', linewidth=lw, label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], color='gold', linewidth=lw, label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
drogenlied/qudi
core/__init__.py
1
1672
# -*- coding: utf-8 -*- """ This file contains the Qudi Manager class. Qudi is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Qudi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Qudi. If not, see <http://www.gnu.org/licenses/>. Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> """ __version__ = '0.1' # import Qt import os if not 'QT_API' in os.environ: # use PyQt4 as default os.environ['QT_API'] = 'pyqt' else: print('Specified Qt API:', os.environ['QT_API']) # if pyqt4 check environment variable is 'pyqt' and not 'pyqt4' (ipython, # matplotlib, etc) if os.environ['QT_API'].lower() == 'pyqt4': os.environ['QT_API'] = 'pyqt' import qtpy print('Used Qt API:', qtpy.API_NAME) import sys # Make icons work on non-X11 platforms, import a custom theme if sys.platform == 'win32': try: import ctypes myappid = 'quantumoptics.quantumdiamond.mainapp' # arbitrary string ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid) except: print('SetCurrentProcessExplicitAppUserModelID failed! This is ' 'probably not Microsoft Windows!')
gpl-3.0
adelomana/30sols
F1.interplay/panel.a/group.expression.distribution.py
1
6548
### ### This script makes a figure of the distribution of expression for the different regulatory groups ### import os,sys,numpy import matplotlib,matplotlib.pyplot matplotlib.rcParams.update({'font.size':24,'font.family':'Arial','xtick.labelsize':18,'ytick.labelsize':18}) def histogrammer(theData): ''' This function creates a histogram. ''' x=[]; y=[] binSize=0.1 left=0 right=5 rightBins=numpy.arange(left+binSize,right+binSize,binSize) n,bins=numpy.histogram(theData,bins=rightBins) halfBin=(bins[1]-bins[0])/2. for bin in bins: center=bin+halfBin x.append(center) x.pop() y=numpy.array(n) y=list(y/float(sum(y))) return x,y def transcriptomicsReader(): ''' This function reads transcriptomics data as in transcriptomics[trna/rbf][replicate][timepoint][gene] ''' data={} geneNames=[]; timepoints=[]; replicates=[] with open(transcriptomicsDataFile,'r') as f: header=f.readline() labels=header.split('\t')[1:-1] for label in labels: crumbles=label.split('.') fraction=crumbles[0] replicate='br'+crumbles[2] timepoint='tp.'+crumbles[4] if replicate not in replicates: replicates.append(replicate) if timepoint not in timepoints: timepoints.append(timepoint) if fraction not in data.keys(): data[fraction]={} if replicate not in data[fraction].keys(): data[fraction][replicate]={} if timepoint not in data[fraction][replicate].keys(): data[fraction][replicate][timepoint]={} for line in f: vector=line.split('\t')[:-1] values=[float(element) for element in vector[1:]] geneName=vector[0].replace('_','') if geneName not in geneNames: geneNames.append(geneName) for i in range(len(values)): crumbles=labels[i].split('.') fraction=crumbles[0] replicate='br'+crumbles[2] timepoint='tp.'+crumbles[4] data[fraction][replicate][timepoint][geneName]=values[i] return data,geneNames,timepoints,replicates ### ### MAIN ### # 0. user defined variables # 0.1. paths transcriptomicsDataFile='/Volumes/omics4tb/alomana/projects/TLR/data/expression1e3/expressionMatrix.kallisto.txt' # 1. reading data print('reading data...') # 1.1. reading mRNA expression data rnaExpression,geneNames,timepoints,replicates=transcriptomicsReader() # 1.2. reading group membership geneSets={} elements=os.listdir('results') for element in elements: tag=element.split('results.')[1].split('.txt')[0] geneSets[tag]=[] # read file file2read='results/{}'.format(element) with open(file2read,'r') as f: for line in f: v=line.split('\t') if v[2] not in ['gene-VNGRS13150','gene-VNGRS00005','gene-VNGRS09790','gene-VNGRS10040','gene-VNGRS09800','gene-VNGRS09805','gene-VNGRS03925']: geneSets[tag].append(v[2]) # add manuall a group with all genes longNames=['gene-'+element for element in geneNames] geneSets['all']=longNames # 2. convert group memmberships into expression distributions print('converting group memberships into expression distributions...') expressionDistributions={} for element in geneSets.keys(): expressionDistributions[element]=[] # check consistency of mRNA count=0 for geneName in geneSets[element]: mRNA_TPMs=[] shortGeneName=geneName.split('gene-')[1] for replicate in replicates: mRNA_TPMs.append(rnaExpression['trna'][replicate]['tp.1'][shortGeneName]) # data transformations and quality check log10M=numpy.log10(numpy.array(mRNA_TPMs)+1) log2M=numpy.log2(numpy.array(mRNA_TPMs)+1) # noise if numpy.max(log2M) > numpy.log2(10+1): # if expression is below 1 TPMs, don't consider noise sem=numpy.std(log2M)/numpy.sqrt(len(log2M)) rsem_mRNA=sem/numpy.mean(log2M) else: rsem_mRNA=0 if rsem_mRNA < 0.3: m=numpy.median(log10M) expressionDistributions[element].append(m) # 3. define significance of deviation print('running hypothesis test of deviation...') groupLabels=list(expressionDistributions.keys()) groupLabels.sort() groupLabels.remove('dubious') theColors=['black','black','black','blue','green','orange','red','yellow'] theLineStyle=['-',':','--','-','-','-','-','-'] # run specific groups #groupLabels=['orange','green'] #theColors=['orange','green'] #groupLabels=['black.minus', 'black.plus','blue','red'] #theColors=['gainsboro','dimgrey','blue','red'] groupLabels=['yellow'] theColors=['yellow'] # make a figure of the overal distribution x,y=histogrammer(expressionDistributions['all']) matplotlib.pyplot.plot(x,y,'-',color='black',lw=1) for i in range(len(groupLabels)): # resample numberOfElements=int(1e6) workingDist=expressionDistributions[groupLabels[i]] measuredAverage=numpy.mean(workingDist) averageDist=[] for j in range(numberOfElements): sample=numpy.random.choice(expressionDistributions['all'],len(workingDist)) average=numpy.mean(sample) averageDist.append(average) # hypothesis test higherRandoms=sum(numpy.greater(averageDist,measuredAverage)) if higherRandoms > numberOfElements/2: pvalue=1-(higherRandoms/float(numberOfElements)) else: pvalue=higherRandoms/float(numberOfElements) print('Group label {} has a deviation whose p-value is {}. Out of {} trials'.format(groupLabels[i],pvalue,numberOfElements)) # make a figure of the expected group distribution x,y=histogrammer(averageDist) matplotlib.pyplot.plot(x,y,linestyle=':',color=theColors[i],lw=2,alpha=0.5) matplotlib.pyplot.axvline(x=measuredAverage,color=theColors[i],linestyle='-',lw=3) matplotlib.pyplot.xlim([-0.1,4.]) matplotlib.pyplot.ylim([-0.01,0.6]) matplotlib.pyplot.xlabel('mRNA (log$_{10}$ TPM+1)') matplotlib.pyplot.ylabel('Probability') matplotlib.pyplot.tight_layout() #matplotlib.pyplot.savefig('figure.expression.distribution.TL.pdf') #matplotlib.pyplot.savefig('figure.expression.distribution.TC.pdf') matplotlib.pyplot.savefig('figure.expression.distribution.yellow.pdf') matplotlib.pyplot.clf()
gpl-3.0
appapantula/scikit-learn
sklearn/ensemble/tests/test_bagging.py
127
25365
""" Testing for the bagging ensemble module (sklearn.ensemble.bagging). """ # Author: Gilles Louppe # License: BSD 3 clause import numpy as np from sklearn.base import BaseEstimator from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.grid_search import GridSearchCV, ParameterGrid from sklearn.ensemble import BaggingClassifier, BaggingRegressor from sklearn.linear_model import Perceptron, LogisticRegression from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.svm import SVC, SVR from sklearn.pipeline import make_pipeline from sklearn.feature_selection import SelectKBest from sklearn.cross_validation import train_test_split from sklearn.datasets import load_boston, load_iris, make_hastie_10_2 from sklearn.utils import check_random_state from scipy.sparse import csc_matrix, csr_matrix rng = check_random_state(0) # also load the iris dataset # and randomly permute it iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] def test_classification(): # Check classification for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [1, 2, 4], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyClassifier(), Perceptron(), DecisionTreeClassifier(), KNeighborsClassifier(), SVC()]: for params in grid: BaggingClassifier(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_classification(): # Check classification for various parameter settings on sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVC, self).fit(X, y) self.data_type_ = type(X) return self rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: # Trained on sparse format sparse_classifier = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_results = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train, y_train).predict(X_test) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert_array_equal(sparse_results, dense_results) assert all([t == sparse_type for t in types]) def test_regression(): # Check regression for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [0.5, 1.0], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyRegressor(), DecisionTreeRegressor(), KNeighborsRegressor(), SVR()]: for params in grid: BaggingRegressor(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_regression(): # Check regression for various parameter settings on sparse input. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) class CustomSVR(SVR): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVR, self).fit(X, y) self.data_type_ = type(X) return self parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: # Trained on sparse format sparse_classifier = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_results = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train, y_train).predict(X_test) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert_array_equal(sparse_results, dense_results) assert all([t == sparse_type for t in types]) assert_array_equal(sparse_results, dense_results) def test_bootstrap_samples(): # Test that bootstraping samples generate non-perfect base estimators. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) base_estimator = DecisionTreeRegressor().fit(X_train, y_train) # without bootstrap, all trees are perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=False, random_state=rng).fit(X_train, y_train) assert_equal(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) # with bootstrap, trees are no longer perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=True, random_state=rng).fit(X_train, y_train) assert_greater(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) def test_bootstrap_features(): # Test that bootstraping features may generate dupplicate features. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=False, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_equal(boston.data.shape[1], np.unique(features).shape[0]) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=True, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_greater(boston.data.shape[1], np.unique(features).shape[0]) def test_probability(): # Predict probabilities. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) with np.errstate(divide="ignore", invalid="ignore"): # Normal case ensemble = BaggingClassifier(base_estimator=DecisionTreeClassifier(), random_state=rng).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) # Degenerate case, where some classes are missing ensemble = BaggingClassifier(base_estimator=LogisticRegression(), random_state=rng, max_samples=5).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) def test_oob_score_classification(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) for base_estimator in [DecisionTreeClassifier(), SVC()]: clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=100, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingClassifier(base_estimator=base_estimator, n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_oob_score_regression(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=50, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_single_estimator(): # Check singleton ensembles. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf1 = BaggingRegressor(base_estimator=KNeighborsRegressor(), n_estimators=1, bootstrap=False, bootstrap_features=False, random_state=rng).fit(X_train, y_train) clf2 = KNeighborsRegressor().fit(X_train, y_train) assert_array_equal(clf1.predict(X_test), clf2.predict(X_test)) def test_error(): # Test that it gives proper exception on deficient input. X, y = iris.data, iris.target base = DecisionTreeClassifier() # Test max_samples assert_raises(ValueError, BaggingClassifier(base, max_samples=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=1000).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples="foobar").fit, X, y) # Test max_features assert_raises(ValueError, BaggingClassifier(base, max_features=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=5).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features="foobar").fit, X, y) # Test support of decision_function assert_false(hasattr(BaggingClassifier(base).fit(X, y), 'decision_function')) def test_parallel_classification(): # Check parallel classification. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) # predict_proba ensemble.set_params(n_jobs=1) y1 = ensemble.predict_proba(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y3) # decision_function ensemble = BaggingClassifier(SVC(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) decisions1 = ensemble.decision_function(X_test) ensemble.set_params(n_jobs=2) decisions2 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions2) ensemble = BaggingClassifier(SVC(), n_jobs=1, random_state=0).fit(X_train, y_train) decisions3 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions3) def test_parallel_regression(): # Check parallel regression. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) y1 = ensemble.predict(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict(X_test) assert_array_almost_equal(y1, y3) def test_gridsearch(): # Check that bagging ensembles can be grid-searched. # Transform iris into a binary classification task X, y = iris.data, iris.target y[y == 2] = 1 # Grid search with scoring based on decision_function parameters = {'n_estimators': (1, 2), 'base_estimator__C': (1, 2)} GridSearchCV(BaggingClassifier(SVC()), parameters, scoring="roc_auc").fit(X, y) def test_base_estimator(): # Check base_estimator and its default values. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(Perceptron(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, Perceptron)) # Regression X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(SVR(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, SVR)) def test_bagging_with_pipeline(): estimator = BaggingClassifier(make_pipeline(SelectKBest(k=1), DecisionTreeClassifier()), max_features=2) estimator.fit(iris.data, iris.target) class DummyZeroEstimator(BaseEstimator): def fit(self, X, y): self.classes_ = np.unique(y) return self def predict(self, X): return self.classes_[np.zeros(X.shape[0], dtype=int)] def test_bagging_sample_weight_unsupported_but_passed(): estimator = BaggingClassifier(DummyZeroEstimator()) rng = check_random_state(0) estimator.fit(iris.data, iris.target).predict(iris.data) assert_raises(ValueError, estimator.fit, iris.data, iris.target, sample_weight=rng.randint(10, size=(iris.data.shape[0]))) def test_warm_start(random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = BaggingClassifier(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) def test_warm_start_smaller_n_estimators(): # Test if warm start'ed second fit with smaller n_estimators raises error. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_equal_n_estimators(): # Test that nothing happens when fitting without increasing n_estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # modify X to nonsense values, this should not change anything X_train += 1. assert_warns_message(UserWarning, "Warm-start fitting without increasing n_estimators does not", clf.fit, X_train, y_train) assert_array_equal(y_pred, clf.predict(X_test)) def test_warm_start_equivalence(): # warm started classifier with 5+5 estimators should be equivalent to # one classifier with 10 estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf_ws = BaggingClassifier(n_estimators=5, warm_start=True, random_state=3141) clf_ws.fit(X_train, y_train) clf_ws.set_params(n_estimators=10) clf_ws.fit(X_train, y_train) y1 = clf_ws.predict(X_test) clf = BaggingClassifier(n_estimators=10, warm_start=False, random_state=3141) clf.fit(X_train, y_train) y2 = clf.predict(X_test) assert_array_almost_equal(y1, y2) def test_warm_start_with_oob_score_fails(): # Check using oob_score and warm_start simultaneously fails X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True) assert_raises(ValueError, clf.fit, X, y) def test_oob_score_removed_on_warm_start(): X, y = make_hastie_10_2(n_samples=2000, random_state=1) clf = BaggingClassifier(n_estimators=50, oob_score=True) clf.fit(X, y) clf.set_params(warm_start=True, oob_score=False, n_estimators=100) clf.fit(X, y) assert_raises(AttributeError, getattr, clf, "oob_score_")
bsd-3-clause
great-expectations/great_expectations
great_expectations/expectations/metrics/column_aggregate_metrics/column_distinct_values.py
1
5055
from typing import Any, Dict, Optional, Tuple from great_expectations.core import ExpectationConfiguration from great_expectations.execution_engine import ( ExecutionEngine, PandasExecutionEngine, SparkDFExecutionEngine, ) from great_expectations.execution_engine.sqlalchemy_execution_engine import ( SqlAlchemyExecutionEngine, ) from great_expectations.expectations.metrics.column_aggregate_metric import ( ColumnMetricProvider, column_aggregate_value, ) from great_expectations.expectations.metrics.metric_provider import metric_value from great_expectations.validator.validation_graph import MetricConfiguration class ColumnDistinctValues(ColumnMetricProvider): metric_name = "column.distinct_values" @column_aggregate_value(engine=PandasExecutionEngine) def _pandas(cls, column, **kwargs): return set(column.unique()) @metric_value(engine=SqlAlchemyExecutionEngine) def _sqlalchemy( cls, execution_engine: "SqlAlchemyExecutionEngine", metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): observed_value_counts = metrics["column.value_counts"] return set(observed_value_counts.index) @metric_value(engine=SparkDFExecutionEngine) def _spark( cls, execution_engine: "SqlAlchemyExecutionEngine", metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): observed_value_counts = metrics["column.value_counts"] return set(observed_value_counts.index) @classmethod def _get_evaluation_dependencies( cls, metric: MetricConfiguration, configuration: Optional[ExpectationConfiguration] = None, execution_engine: Optional[ExecutionEngine] = None, runtime_configuration: Optional[Dict] = None, ): """Returns a dictionary of given metric names and their corresponding configuration, specifying the metric types and their respective domains""" dependencies: dict = super()._get_evaluation_dependencies( metric=metric, configuration=configuration, execution_engine=execution_engine, runtime_configuration=runtime_configuration, ) if isinstance( execution_engine, (SqlAlchemyExecutionEngine, SparkDFExecutionEngine) ): dependencies["column.value_counts"] = MetricConfiguration( metric_name="column.value_counts", metric_domain_kwargs=metric.metric_domain_kwargs, metric_value_kwargs={ "sort": "value", "collate": None, }, ) return dependencies class ColumnDistinctValuesCount(ColumnMetricProvider): metric_name = "column.distinct_values.count" @column_aggregate_value(engine=PandasExecutionEngine) def _pandas(cls, column, **kwargs): return column.nunique() @metric_value(engine=SqlAlchemyExecutionEngine) def _sqlalchemy( cls, execution_engine: "SqlAlchemyExecutionEngine", metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): observed_value_counts = metrics["column.value_counts"] return len(observed_value_counts) @metric_value(engine=SparkDFExecutionEngine) def _spark( cls, execution_engine: "SqlAlchemyExecutionEngine", metric_domain_kwargs: Dict, metric_value_kwargs: Dict, metrics: Dict[Tuple, Any], runtime_configuration: Dict, ): observed_value_counts = metrics["column.value_counts"] return len(observed_value_counts) @classmethod def _get_evaluation_dependencies( cls, metric: MetricConfiguration, configuration: Optional[ExpectationConfiguration] = None, execution_engine: Optional[ExecutionEngine] = None, runtime_configuration: Optional[Dict] = None, ): """Returns a dictionary of given metric names and their corresponding configuration, specifying the metric types and their respective domains""" dependencies: dict = super()._get_evaluation_dependencies( metric=metric, configuration=configuration, execution_engine=execution_engine, runtime_configuration=runtime_configuration, ) if isinstance( execution_engine, (SqlAlchemyExecutionEngine, SparkDFExecutionEngine) ): dependencies["column.value_counts"] = MetricConfiguration( metric_name="column.value_counts", metric_domain_kwargs=metric.metric_domain_kwargs, metric_value_kwargs={ "sort": "value", "collate": None, }, ) return dependencies
apache-2.0
LohithBlaze/scikit-learn
sklearn/linear_model/tests/test_passive_aggressive.py
121
6117
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal, assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.base import ClassifierMixin from sklearn.utils import check_random_state from sklearn.datasets import load_iris from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import PassiveAggressiveRegressor iris = load_iris() random_state = check_random_state(12) indices = np.arange(iris.data.shape[0]) random_state.shuffle(indices) X = iris.data[indices] y = iris.target[indices] X_csr = sp.csr_matrix(X) class MyPassiveAggressive(ClassifierMixin): def __init__(self, C=1.0, epsilon=0.01, loss="hinge", fit_intercept=True, n_iter=1, random_state=None): self.C = C self.epsilon = epsilon self.loss = loss self.fit_intercept = fit_intercept self.n_iter = n_iter def fit(self, X, y): n_samples, n_features = X.shape self.w = np.zeros(n_features, dtype=np.float64) self.b = 0.0 for t in range(self.n_iter): for i in range(n_samples): p = self.project(X[i]) if self.loss in ("hinge", "squared_hinge"): loss = max(1 - y[i] * p, 0) else: loss = max(np.abs(p - y[i]) - self.epsilon, 0) sqnorm = np.dot(X[i], X[i]) if self.loss in ("hinge", "epsilon_insensitive"): step = min(self.C, loss / sqnorm) elif self.loss in ("squared_hinge", "squared_epsilon_insensitive"): step = loss / (sqnorm + 1.0 / (2 * self.C)) if self.loss in ("hinge", "squared_hinge"): step *= y[i] else: step *= np.sign(y[i] - p) self.w += step * X[i] if self.fit_intercept: self.b += step def project(self, X): return np.dot(X, self.w) + self.b def test_classifier_accuracy(): for data in (X, X_csr): for fit_intercept in (True, False): clf = PassiveAggressiveClassifier(C=1.0, n_iter=30, fit_intercept=fit_intercept, random_state=0) clf.fit(data, y) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_partial_fit(): classes = np.unique(y) for data in (X, X_csr): clf = PassiveAggressiveClassifier(C=1.0, fit_intercept=True, random_state=0) for t in range(30): clf.partial_fit(data, y, classes) score = clf.score(data, y) assert_greater(score, 0.79) def test_classifier_refit(): # Classifier can be retrained on different labels and features. clf = PassiveAggressiveClassifier().fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) clf.fit(X[:, :-1], iris.target_names[y]) assert_array_equal(clf.classes_, iris.target_names) def test_classifier_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("hinge", "squared_hinge"): clf1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) clf1.fit(X, y_bin) for data in (X, X_csr): clf2 = PassiveAggressiveClassifier(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) clf2.fit(data, y_bin) assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) def test_classifier_undefined_methods(): clf = PassiveAggressiveClassifier() for meth in ("predict_proba", "predict_log_proba", "transform"): assert_raises(AttributeError, lambda x: getattr(clf, x), meth) def test_regressor_mse(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): for fit_intercept in (True, False): reg = PassiveAggressiveRegressor(C=1.0, n_iter=50, fit_intercept=fit_intercept, random_state=0) reg.fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_partial_fit(): y_bin = y.copy() y_bin[y != 1] = -1 for data in (X, X_csr): reg = PassiveAggressiveRegressor(C=1.0, fit_intercept=True, random_state=0) for t in range(50): reg.partial_fit(data, y_bin) pred = reg.predict(data) assert_less(np.mean((pred - y_bin) ** 2), 1.7) def test_regressor_correctness(): y_bin = y.copy() y_bin[y != 1] = -1 for loss in ("epsilon_insensitive", "squared_epsilon_insensitive"): reg1 = MyPassiveAggressive(C=1.0, loss=loss, fit_intercept=True, n_iter=2) reg1.fit(X, y_bin) for data in (X, X_csr): reg2 = PassiveAggressiveRegressor(C=1.0, loss=loss, fit_intercept=True, n_iter=2, shuffle=False) reg2.fit(data, y_bin) assert_array_almost_equal(reg1.w, reg2.coef_.ravel(), decimal=2) def test_regressor_undefined_methods(): reg = PassiveAggressiveRegressor() for meth in ("transform",): assert_raises(AttributeError, lambda x: getattr(reg, x), meth)
bsd-3-clause
carrillo/scikit-learn
benchmarks/bench_covertype.py
120
7381
""" =========================== Covertype dataset benchmark =========================== Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- liblinear 15.9744s 0.0705s 0.2305 GaussianNB 3.0666s 0.3884s 0.4841 SGD 1.0558s 0.1152s 0.2300 CART 79.4296s 0.0523s 0.0469 RandomForest 1190.1620s 0.5881s 0.0243 ExtraTrees 640.3194s 0.6495s 0.0198 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype """ from __future__ import division, print_function # Author: Peter Prettenhofer <[email protected]> # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_covtype, get_data_home from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier, LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import zero_one_loss from sklearn.externals.joblib import Memory from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'covertype_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='C', random_state=13): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_covtype(download_if_missing=True, shuffle=True, random_state=random_state) X = check_array(data['data'], dtype=dtype, order=order) y = (data['target'] != 1).astype(np.int) ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 522911 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] ## Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std return X_train, X_test, y_train, y_test ESTIMATORS = { 'GBRT': GradientBoostingClassifier(n_estimators=250), 'ExtraTrees': ExtraTreesClassifier(n_estimators=20), 'RandomForest': RandomForestClassifier(n_estimators=20), 'CART': DecisionTreeClassifier(min_samples_split=5), 'SGD': SGDClassifier(alpha=0.001, n_iter=2), 'GaussianNB': GaussianNB(), 'liblinear': LinearSVC(loss="l2", penalty="l2", C=1000, dual=False, tol=1e-3), 'SAG': LogisticRegression(solver='sag', max_iter=2, C=1000) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['liblinear', 'GaussianNB', 'SGD', 'CART'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=13, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data( order=args["order"], random_state=args["random_seed"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == 0), int(X_train.nbytes / 1e6))) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == 0), int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) for name in sorted(args["classifiers"], key=error.get): print("%s %s %s %s" % (name.ljust(12), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % error[name]).center(10))) print()
bsd-3-clause
wetdesert/rad2py
ide2py/web2py.py
8
5464
#!/usr/bin/env python # -*- coding: utf-8 -*- "Async mono-thread web2py (development) server extension to ide2py" __author__ = "Mariano Reingart ([email protected])" __copyright__ = "Copyright (C) 2011 Mariano Reingart" __license__ = "GPL 3.0" # Just for debug by now, based on web2py widget app and stlib serve_forever # WARNING: do not request a web2py page from main thread! (it will block!) import os import select from wsgiref.simple_server import make_server, demo_app from urlparse import urlparse import sys import traceback import wx if False: # let pyinstaller to detect web2py modules # hook-gluon.main.py is needed in pyinstaller/hooks # with hiddenimports = gluon.import_all.base_modules # web2py must be installed on parent folder import gluon.main # this libraries are required by psp2py import matplotlib import matplotlib.pyplot import matplotlib.colors import numpy import pylab ID_ATTACH = wx.NewId() class Web2pyMixin(object): "ide2py extension to execute web2py under debugger and shell" def __init__(self): self.menu['run'].Append(ID_ATTACH, "Start &webserver\tCtrl-Alt-W", "Start and attach embedded local web2py server") self.Bind(wx.EVT_MENU, self.OnAttachWebserver, id=ID_ATTACH) def OnAttachWebserver(self, event): "start-up a web2py server instance" # read configuration with safe defaults cfg = wx.GetApp().get_config("WEB2PY") path = cfg.get("path", "../web2py") password = cfg.get("password", "a") port = cfg.get("port", 8006) host = "127.0.0.1" if path: # store current directory prevdir = os.path.abspath(os.curdir) try: # update current directory and python path to find web2py: os.chdir(path) sys.path.insert(0, os.path.abspath(os.curdir)) from gluon.main import wsgibase, save_password from gluon.contrib import qdb # store admin password save_password(password, port) web2py_env = {} ##self.build_web2py_environment() # Start a alternate web2py in a separate thread (for blocking requests) from threading import Thread def server(host, port, password): save_password(password, port) qdb.init(redirect=False) qdb.qdb.do_debug() def wrapped_app(environ, start_response): "WSGI wrapper to allow debugging" # hanshake with front-end on each request (update ui) # not realy needed (request processing is sequential) ##qdb.qdb.startup() # process the request as usual return wsgibase(environ, start_response) httpd2 = make_server(host, port, wrapped_app) print "THREAD - Serving HTTP on port2 %s..." % port httpd2.serve_forever(poll_interval=0.01) thread = Thread(target=server, args=(host, port, password)) thread.daemon = True # close on exit thread.start() # open internal browser at default page: url = "http://%s:%s/" % (host, port) if self.browser: self.browser.LoadURL(url) pass else: # no internal browser, open external one try: import webbrowser webbrowser.open(url) except: print 'warning: unable to detect your browser' except Exception, e: self.ShowInfoBar(u"cannot start web2py!: %s" % unicode(e), flags=wx.ICON_ERROR, key="web2py") web2py_env = {} finally: # recover original directory os.chdir(prevdir) self.web2py_environment = web2py_env def build_web2py_environment(self): "build a namespace suitable for editor autocompletion and calltips" # warning: this can alter current global variable, use with care! try: from gluon.globals import Request, Response, Session from gluon.compileapp import build_environment, DAL request = Request({}) response = Response() session = Session() # fake request values request.folder = "" request.application = "welcome" request.controller = "default" request.function = "index" ns = build_environment(request, response, session, ) # fake common model objects db = ns['db'] = DAL("sqlite:memory") from gluon.tools import Auth, Crud, Service ns['auth'] = Auth(db) ns['crud'] = Crud(db) ns['service'] = Service() except Exception, e: traceback.print_exc() ns = {} return ns def web2py_namespace(self): return self.web2py_environment
gpl-3.0
ML-KULeuven/socceraction
socceraction/xthreat.py
1
13033
# -*- coding: utf-8 -*- """Implements the xT framework.""" from typing import Callable, List, Tuple import numpy as np # type: ignore import pandas as pd # type: ignore from pandera.typing import DataFrame, Series import socceraction.spadl.config as spadlconfig from socceraction.spadl.base import SPADLSchema try: from scipy.interpolate import interp2d # type: ignore except ImportError: interp2d = None M: int = 12 N: int = 16 def _get_cell_indexes(x: Series, y: Series, l: int = N, w: int = M) -> Tuple[Series, Series]: xmin = 0 ymin = 0 xi = (x - xmin) / spadlconfig.field_length * l yj = (y - ymin) / spadlconfig.field_width * w xi = xi.astype(int).clip(0, l - 1) yj = yj.astype(int).clip(0, w - 1) return xi, yj def _get_flat_indexes(x: Series, y: Series, l: int = N, w: int = M) -> Series: xi, yj = _get_cell_indexes(x, y, l, w) return l * (w - 1 - yj) + xi def _count(x: Series, y: Series, l: int = N, w: int = M) -> np.ndarray: """Count the number of actions occurring in each cell of the grid. Parameters ---------- x : pd.Series The x-coordinates of the actions. y : pd.Series The y-coordinates of the actions. l : int Amount of grid cells in the x-dimension of the grid. w : int Amount of grid cells in the y-dimension of the grid. Returns ------- np.ndarray A matrix, denoting the amount of actions occurring in each cell. The top-left corner is the origin. """ x = x[~np.isnan(x) & ~np.isnan(y)] y = y[~np.isnan(x) & ~np.isnan(y)] flat_indexes = _get_flat_indexes(x, y, l, w) vc = flat_indexes.value_counts(sort=False) vector = np.zeros(w * l) vector[vc.index] = vc return vector.reshape((w, l)) def _safe_divide(a: np.ndarray, b: np.ndarray) -> np.ndarray: return np.divide(a, b, out=np.zeros_like(a), where=b != 0) def scoring_prob(actions: DataFrame[SPADLSchema], l: int = N, w: int = M) -> np.ndarray: """Compute the probability of scoring when taking a shot for each cell. Parameters ---------- actions : pd.DataFrame Actions, in SPADL format. l : int Amount of grid cells in the x-dimension of the grid. w : int Amount of grid cells in the y-dimension of the grid. Returns ------- np.ndarray A matrix, denoting the probability of scoring for each cell. """ shot_actions = actions[(actions.type_name == 'shot')] goals = shot_actions[(shot_actions.result_name == 'success')] shotmatrix = _count(shot_actions.start_x, shot_actions.start_y, l, w) goalmatrix = _count(goals.start_x, goals.start_y, l, w) return _safe_divide(goalmatrix, shotmatrix) def get_move_actions(actions: DataFrame[SPADLSchema]) -> DataFrame[SPADLSchema]: """Get all ball-progressing actions. These include passes, dribbles and crosses. Take-ons are ignored because they typically coincide with dribbles and do not move the ball to a different cell. Parameters ---------- actions : pd.DataFrame Actions, in SPADL format. Returns ------- pd.DataFrame All ball-progressing actions in the input dataframe. """ return actions[ (actions.type_name == 'pass') | (actions.type_name == 'dribble') | (actions.type_name == 'cross') ] def get_successful_move_actions(actions: DataFrame[SPADLSchema]) -> DataFrame[SPADLSchema]: """Get all successful ball-progressing actions. These include successful passes, dribbles and crosses. Parameters ---------- actions : pd.DataFrame Actions, in SPADL format. Returns ------- pd.DataFrame All ball-progressing actions in the input dataframe. """ move_actions = get_move_actions(actions) return move_actions[move_actions.result_name == 'success'] def action_prob( actions: DataFrame[SPADLSchema], l: int = N, w: int = M ) -> Tuple[np.ndarray, np.ndarray]: """Compute the probability of taking an action in each cell of the grid. The options are: shooting or moving. Parameters ---------- actions : pd.DataFrame Actions, in SPADL format. l : pd.DataFrame Amount of grid cells in the x-dimension of the grid. w : pd.DataFrame Amount of grid cells in the y-dimension of the grid. Returns ------- shotmatrix : np.ndarray For each cell the probability of choosing to shoot. movematrix : np.ndarray For each cell the probability of choosing to move. """ move_actions = get_move_actions(actions) shot_actions = actions[(actions.type_name == 'shot')] movematrix = _count(move_actions.start_x, move_actions.start_y, l, w) shotmatrix = _count(shot_actions.start_x, shot_actions.start_y, l, w) totalmatrix = movematrix + shotmatrix return _safe_divide(shotmatrix, totalmatrix), _safe_divide(movematrix, totalmatrix) def move_transition_matrix(actions: DataFrame[SPADLSchema], l: int = N, w: int = M) -> np.ndarray: """Compute the move transition matrix from the given actions. This is, when a player chooses to move, the probability that he will end up in each of the other cells of the grid successfully. Parameters ---------- actions : pd.DataFrame Actions, in SPADL format. l : int Amount of grid cells in the x-dimension of the grid. w : int Amount of grid cells in the y-dimension of the grid. Returns ------- np.ndarray The transition matrix. """ move_actions = get_move_actions(actions) X = pd.DataFrame() X['start_cell'] = _get_flat_indexes(move_actions.start_x, move_actions.start_y, l, w) X['end_cell'] = _get_flat_indexes(move_actions.end_x, move_actions.end_y, l, w) X['result_name'] = move_actions.result_name vc = X.start_cell.value_counts(sort=False) start_counts = np.zeros(w * l) start_counts[vc.index] = vc transition_matrix = np.zeros((w * l, w * l)) for i in range(0, w * l): vc2 = X[((X.start_cell == i) & (X.result_name == 'success'))].end_cell.value_counts( sort=False ) transition_matrix[i, vc2.index] = vc2 / start_counts[i] return transition_matrix class ExpectedThreat: """An implementation of the Expected Threat (xT) model [Singh2019]_. Parameters ---------- l : int Amount of grid cells in the x-dimension of the grid. w : int Amount of grid cells in the y-dimension of the grid. eps : float The desired precision to calculate the xT value of a cell. Default is 5 decimal places of precision (1e-5). Attributes ---------- l : int Amount of grid cells in the x-dimension of the grid. w : int Amount of grid cells in the y-dimension of the grid. eps : float The desired precision to calculate the xT value of a cell. Default is 5 decimal places of precision (1e-5). heatmaps : list(np.ndarray) The i-th element corresponds to the xT value surface after i iterations. xT : np.ndarray The final xT value surface. scoring_prob_matrix : np.ndarray, shape(M,N) The probability of scoring when taking a shot for each cell. shot_prob_matrix : np.ndarray, shape(M,N) The probability of choosing to shoot for each cell. move_prob_matrix : np.ndarray, shape(M,N) The probability of choosing to move for each cell. transition_matrix : np.ndarray, shape(M*N,M*N) When moving, the probability of moving to each of the other zones. .. [Singh2019] Singh, Karun. "Introducing Expected Threat (xT)." 15 February, 2019. https://karun.in/blog/expected-threat.html """ def __init__(self, l: int = N, w: int = M, eps: float = 1e-5): self.l = l self.w = w self.eps = eps self.heatmaps: List[np.ndarray] = [] self.xT: np.ndarray = np.zeros((w, l)) self.scoring_prob_matrix: np.ndarray = np.zeros((w, l)) self.shot_prob_matrix: np.ndarray = np.zeros((w, l)) self.move_prob_matrix: np.ndarray = np.zeros((w, l)) self.transition_matrix: np.ndarray = np.zeros((w * l, w * l)) def __solve( self, p_scoring: np.ndarray, p_shot: np.ndarray, p_move: np.ndarray, transition_matrix: np.ndarray, ) -> None: """Solves the expected threat equation with dynamic programming. Parameters ---------- p_scoring : (np.ndarray, shape(M, N)): Probability of scoring at each grid cell, when shooting from that cell. p_shot : (np.ndarray, shape(M,N)): For each grid cell, the probability of choosing to shoot from there. p_move : (np.ndarray, shape(M,N)): For each grid cell, the probability of choosing to move from there. transition_matrix : (np.ndarray, shape(M*N,M*N)): When moving, the probability of moving to each of the other zones. """ gs = p_scoring * p_shot diff = 1 it = 0 self.heatmaps.append(self.xT.copy()) while np.any(diff > self.eps): total_payoff = np.zeros((self.w, self.l)) for y in range(0, self.w): for x in range(0, self.l): for q in range(0, self.w): for z in range(0, self.l): total_payoff[y, x] += ( transition_matrix[self.l * y + x, self.l * q + z] * self.xT[q, z] ) newxT = gs + (p_move * total_payoff) diff = newxT - self.xT self.xT = newxT self.heatmaps.append(self.xT.copy()) it += 1 print('# iterations: ', it) def fit(self, actions: DataFrame[SPADLSchema]) -> 'ExpectedThreat': """Fits the xT model with the given actions. Parameters ---------- actions : pd.DataFrame Actions, in SPADL format. Returns ------- self Fitted xT model. """ self.scoring_prob_matrix = scoring_prob(actions, self.l, self.w) self.shot_prob_matrix, self.move_prob_matrix = action_prob(actions, self.l, self.w) self.transition_matrix = move_transition_matrix(actions, self.l, self.w) self.__solve( self.scoring_prob_matrix, self.shot_prob_matrix, self.move_prob_matrix, self.transition_matrix, ) return self def interpolator(self, kind: str = 'linear') -> Callable[[np.ndarray, np.ndarray], np.ndarray]: """Interpolate over the pitch. This is a wrapper around :func:`scipy.interpolate.interp2d`. Parameters ---------- kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is ‘linear’. Returns ------- callable A function that interpolates xT values over the pitch. """ if interp2d is None: raise ImportError('Interpolation requires scipy to be installed.') cell_length = spadlconfig.field_length / self.l cell_width = spadlconfig.field_width / self.w x = np.arange(0.0, spadlconfig.field_length, cell_length) + 0.5 * cell_length y = np.arange(0.0, spadlconfig.field_width, cell_width) + 0.5 * cell_width return interp2d(x=x, y=y, z=self.xT, kind=kind, bounds_error=False) def predict( self, actions: DataFrame[SPADLSchema], use_interpolation: bool = False ) -> np.ndarray: """Predicts the xT values for the given actions. Parameters ---------- actions : pd.DataFrame Actions, in SPADL format. use_interpolation : bool Indicates whether to use bilinear interpolation when inferring xT values. Note that this requires Scipy to be installed (pip install scipy). Returns ------- np.ndarray The xT value for each action. """ if not use_interpolation: l = self.l w = self.w grid = self.xT else: # Use interpolation to create a # more fine-grained 1050 x 680 grid interp = self.interpolator() l = int(spadlconfig.field_length * 10) w = int(spadlconfig.field_width * 10) xs = np.linspace(0, spadlconfig.field_length, l) ys = np.linspace(0, spadlconfig.field_width, w) grid = interp(xs, ys) startxc, startyc = _get_cell_indexes(actions.start_x, actions.start_y, l, w) endxc, endyc = _get_cell_indexes(actions.end_x, actions.end_y, l, w) xT_start = grid[w - 1 - startyc, startxc] xT_end = grid[w - 1 - endyc, endxc] return xT_end - xT_start
mit
mlperf/training_results_v0.7
Fujitsu/benchmarks/resnet/implementations/implementation_open/mxnet/3rdparty/tvm/nnvm/tutorials/from_mxnet.py
2
5160
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ .. _tutorial-from-mxnet: Compile MXNet Models ==================== **Author**: `Joshua Z. Zhang <https://zhreshold.github.io/>`_ This article is an introductory tutorial to deploy mxnet models with NNVM. For us to begin with, mxnet module is required to be installed. A quick solution is .. code-block:: bash pip install mxnet --user or please refer to offical installation guide. https://mxnet.incubator.apache.org/versions/master/install/index.html """ # some standard imports import mxnet as mx import numpy as np import nnvm import tvm from tvm.contrib.download import download_testdata ###################################################################### # Download Resnet18 model from Gluon Model Zoo # --------------------------------------------- # In this section, we download a pretrained imagenet model and classify an image. from mxnet.gluon.model_zoo.vision import get_model from PIL import Image from matplotlib import pyplot as plt block = get_model('resnet18_v1', pretrained=True) img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' img_name = 'cat.png' synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', '4d0b62f3d01426887599d4f7ede23ee5/raw/', '596b27d23537e5a1b5751d2b0481ef172f58b539/', 'imagenet1000_clsid_to_human.txt']) synset_name = 'imagenet1000_clsid_to_human.txt' img_path = download_testdata(img_url, img_name, module='data') synset_path = download_testdata(synset_url, synset_name, module='data') with open(synset_path) as f: synset = eval(f.read()) image = Image.open(img_path).resize((224, 224)) plt.imshow(image) plt.show() def transform_image(image): image = np.array(image) - np.array([123., 117., 104.]) image /= np.array([58.395, 57.12, 57.375]) image = image.transpose((2, 0, 1)) image = image[np.newaxis, :] return image x = transform_image(image) print('x', x.shape) ###################################################################### # Compile the Graph # ----------------- # Now we would like to port the Gluon model to a portable computational graph. # It's as easy as several lines. # We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon sym, params = nnvm.frontend.from_mxnet(block) # we want a probability so add a softmax operator sym = nnvm.sym.softmax(sym) ###################################################################### # now compile the graph import nnvm.compiler target = 'cuda' shape_dict = {'data': x.shape} with nnvm.compiler.build_config(opt_level=3): graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params) ###################################################################### # Execute the portable graph on TVM # --------------------------------- # Now, we would like to reproduce the same forward computation using TVM. from tvm.contrib import graph_runtime ctx = tvm.gpu(0) dtype = 'float32' m = graph_runtime.create(graph, lib, ctx) # set inputs m.set_input('data', tvm.nd.array(x.astype(dtype))) m.set_input(**params) # execute m.run() # get outputs tvm_output = m.get_output(0) top1 = np.argmax(tvm_output.asnumpy()[0]) print('TVM prediction top-1:', top1, synset[top1]) ###################################################################### # Use MXNet symbol with pretrained weights # ---------------------------------------- # MXNet often use `arg_params` and `aux_params` to store network parameters # separately, here we show how to use these weights with existing API def block2symbol(block): data = mx.sym.Variable('data') sym = block(data) args = {} auxs = {} for k, v in block.collect_params().items(): args[k] = mx.nd.array(v.data().asnumpy()) return sym, args, auxs mx_sym, args, auxs = block2symbol(block) # usually we would save/load it as checkpoint mx.model.save_checkpoint('resnet18_v1', 0, mx_sym, args, auxs) # there are 'resnet18_v1-0000.params' and 'resnet18_v1-symbol.json' on disk ###################################################################### # for a normal mxnet model, we start from here mx_sym, args, auxs = mx.model.load_checkpoint('resnet18_v1', 0) # now we use the same API to get NNVM compatible symbol nnvm_sym, nnvm_params = nnvm.frontend.from_mxnet(mx_sym, args, auxs) # repeat the same steps to run this model using TVM
apache-2.0
legacysurvey/legacypipe
py/obiwan/decals_sim_unit_test.py
2
6467
""" unit test script for functions in decals_sim.py -- creates a tim object and sims stamp -- allows user to play with these on command line and confirm masking, invver behaves as expected, fluxes are correct, etc. RUN: python legacyanalysis/decals_sim_test_wone_tim.py or ipython %run legacyanalysis/decals_sim_test_wone_tim.py USE: run with ipython then can play with tim, stamp objects on command line!! """ from __future__ import division, print_function import matplotlib matplotlib.use('Agg') import os import sys #from argparse import ArgumentParser import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from astropy.table import Table, Column, vstack import galsim import photutils ### #from tractor.psfex import PsfEx, PixelizedPsfEx #from tractor import Tractor from tractor.basics import (NanoMaggies, PointSource, GaussianMixtureEllipsePSF,PixelizedPSF, RaDecPos) #from astrometry.util.fits import fits_table #from legacypipe.survey import wcs_for_brick ### from legacyanalysis.decals_sim import SimDecals,get_metadata_other,get_ith_simcat def get_one_tim(brickwcs=None, metacat=None, simcat=None, output_dir=None): '''return metacat,simcat, one tim object metacat,simcat -- from decals_sim tim object -- for same ra,dec range of metacat,simcat''' assert(brickwcs is not None and simcat is not None) survey = SimDecals(metacat=metacat, simcat=simcat, output_dir=output_dir) #brick = survey.get_brick_by_name(brickname) #targetwcs = wcs_for_brick(brick) # W=W, H=H, pixscale=pixscale) ccds = survey.ccds_touching_wcs(d['brickwcs'], ccdrad=None) if ccds is None: raise NothingToDoError('No CCDs touching brick') print(len(ccds), 'CCDs touching target WCS') # Sort images by band -- this also eliminates images whose # *image.filter* string is not in *bands*. print('Unique filters:', np.unique(ccds.filter)) bands='grz' ccds.cut(np.hstack([np.flatnonzero(ccds.filter == band) for band in bands])) print('Cut on filter:', len(ccds), 'CCDs remain.') print('Cutting out non-photometric CCDs...') I = survey.photometric_ccds(ccds) print(len(I), 'of', len(ccds), 'CCDs are photometric') ccds.cut(I) #just first ccd ccd= ccds[0] # tim.data is image+sims, tim.sims_image is sims im = survey.get_image_object(ccd) kwargs = dict(pixPsf=True, splinesky=True) tim = im.get_tractor_image(**kwargs) return tim #def get_metacat(brickname,objtype,nobj,chunksize,nchunk,zoom,rmag_range): # '''following decals_sim''' # metacols = [ # ('BRICKNAME', 'S10'), # ('OBJTYPE', 'S10'), # ('NOBJ', 'i4'), # ('CHUNKSIZE', 'i2'), # ('NCHUNK', 'i2'), # ('ZOOM', 'i4', (4,)), # ('SEED', 'S20'), # ('RMAG_RANGE', 'f4', (2,))] # metacat = Table(np.zeros(1, dtype=metacols)) # # metacat['BRICKNAME'] = brickname # metacat['OBJTYPE'] = objtype # metacat['NOBJ'] = nobj # metacat['CHUNKSIZE'] = chunksize # metacat['NCHUNK'] = nchunk # metacat['ZOOM'] = zoom # metacat['RMAG_RANGE'] = rmag_range # return metacat def plot_tim(tim): '''basic plotting func''' fig = plt.figure(figsize=(5,10)) ax = fig.gca() ax.get_xaxis().get_major_formatter().set_useOffset(False) ax.imshow(tim.getImage(), **tim.ima) ax.axis('off') fig.savefig('./test.png',bbox_inches='tight') def check_poisson_noise(stamp,ivarstamp,objstamp): '''each pixel of stamp+noise image - stamp image should be gaussian distributed with std dev = sqrt(pix value in stamp)''' diff=np.zeros((stamp.array.shape[0],stamp.array.shape[1],1000)) for cnt in range(diff.shape[-1]): stamp_copy= stamp.copy() ivarstamp_copy= ivarstamp.copy() stamp_copy, ivarstamp_copy = objstamp.addnoise(stamp_copy, ivarstamp_copy) diff[:,:,cnt]= stamp_copy.array-stamp.array one_std= np.sqrt( np.sqrt(stamp.array**2)) for x in np.arange(stamp.array.shape[0])[::4]: for y in np.arange(stamp.array.shape[1])[::4]: junk= plt.hist(diff[x,y,:],range=(-2*one_std[x,y],2*one_std[x,y])) plt.savefig('x%d_y%d_hist.png') plt.close() #def main(): # Loook for data on Edison SCRATCH os.environ['LEGACY_SURVEY_DIR']='/scratch1/scratchdirs/kaylanb/desi/dr3_brick_2523p355' os.environ['DUST_DIR']='/scratch1/scratchdirs/kaylanb/desi/dr3_brick_2523p355/dust/v0_0' # Decals Sim d= get_metadata_other() get_ith_simcat(1, d=d) tim= get_one_tim(brickwcs=d['brickwcs'],metacat=d['metacat'], simcat=d['simcat'], \ output_dir=d['simcat_dir']) # simcat X,Y may be outside image if data did not fill brick xlim,ylim=tim.data.shape keep=np.all((d['simcat']['X'] <= xlim-1,d['simcat']['Y'] <= ylim-1),axis=0) # Aperature flux #nobj,seed = 500,N #metacat= get_metacat(args.brickname,'STAR',nobj,500,1,(0,3600,0,3600),(18, 26)) #simcat = build_simcat(nobj, args.brickname, brickwcs, metacat, seed) #stamp_builder = BuildStamp(tim, gain=ccd.arawgain, seed=seed) ap_flux=np.zeros(len(d['simcat'][keep]))-1 ap_size=7. #arcsec pixsc=0.262 #decam for i,obj in enumerate(d['simcat'][keep]): aper=photutils.CircularAperture((obj['X'],obj['Y']),ap_size/pixsc) p = photutils.aperture_photometry(tim.sims_image, aper) # error=np.zeros(stamp.array.shape) ap_flux[i]= p['aperture_sum'] #PROBLEM: ap_flux all zeros #stamp #unit test after this or run from ipython to play with on command line #### # check_poisson_noise() #### #in decals_sim.py have a test option that if turned on makes 3panel yellow box plots, using code like below #tim.sims_image= sims_image.array #tim.sims_inverr= np.sqrt(sims_ivar.array) #tim.sims_xy= tim.sims_xy.astype(int) #tim.data = image.array + sims_image.array #tim.inverr = np.sqrt(invvar.array + sims_ivar.array) #plot image,image regions where have sims, just sims as 3 plot panel with yellow boxes #basename= plots.get_basename(self.imgfn) #plots.image_v_stamp([tim.data,tim.data-tim.sims_image,tim.sims_image], \ # xy_lim= tim.sims_xy, name=os.path.join(self.survey.output_dir,"image_v_stamp_%s.png" % basename)) #plots.image_v_stamp([np.power(tim.inverr,-1),np.power(tim.sims_inverr,-1)], \ # xy_lim= tim.sims_xy, titles=['image_std','sims_std'],\ #name=os.path.join(self.survey.output_dir,"std_%s.png" % basename)) #print('exiting early') #sys.exit() #if __name__ == "__main__": # main()
bsd-3-clause
artmusic0/theano-learning.part02
Training_data 4.0/rd_file_resize_rand_gz.py
1
4144
# -*- coding: utf-8 -*- """ Created on Thu Dec 24 04:03:19 2015 @author: winpython """ from matplotlib.pyplot import imshow import matplotlib.pyplot as plt import numpy as np from PIL import Image import cPickle, pickle import gzip thelist = np.array(['8_7', '11_1', '2_8', '13_4', '18_5', '7_1', '0_3', '1_0', '19_7', '3_3', '5_0', '7_5', '7_3', '12_7', '6_4', '10_0', '10_1', '5_1', '10_8', '12_9', '8_2', '19_8', '4_5', '14_9', '7_9', '19_2', '18_3', '15_1', '3_1', '6_1', '14_2', '7_4', '17_0', '19_0', '5_4', '14_8', '15_5', '15_8', '7_6', '16_2', '8_3', '1_8', '13_8', '3_8', '8_1', '11_8', '11_3', '17_5', '8_0', '8_6', '12_0', '18_2', '17_2', '17_8', '9_9', '4_1', '11_0', '18_6', '13_3', '19_3', '10_5', '4_6', '5_3', '16_1', '12_3', '15_6', '7_7', '17_4', '1_1', '4_7', '10_3', '3_6', '1_5', '11_4', '16_8', '9_3', '3_7', '8_9', '13_9', '5_9', '11_9', '4_3', '0_2', '19_9', '2_0', '0_0', '10_9', '13_0', '0_8', '8_5', '13_5', '8_8', '19_6', '12_1', '0_1', '4_8', '9_6', '0_4', '9_4', '6_2', '19_5', '1_3', '17_3', '4_0', '19_4', '0_6', '9_0', '2_5', '14_5', '12_2', '15_3', '18_4', '1_7', '11_5', '1_2', '1_4', '12_6', '18_8', '15_2', '16_7', '12_5', '16_5', '10_2', '14_6', '5_8', '4_4', '15_4', '13_6', '16_4', '3_4', '19_1', '14_4', '4_9', '6_8', '0_9', '1_6', '15_0', '5_7', '14_7', '2_3', '5_6', '14_0', '2_4', '10_6', '17_6', '11_7', '13_2', '6_3', '0_5', '2_1', '3_2', '11_2', '2_9', '14_3', '16_3', '17_9', '5_2', '18_1', '12_8', '6_5', '9_7', '9_8', '9_1', '6_6', '11_6', '7_2', '8_4', '9_2', '5_5', '18_7', '16_0', '3_5', '14_1', '2_7', '13_7', '4_2', '6_9', '3_0', '13_1', '1_9', '18_9', '7_8', '17_7', '16_6', '17_1', '9_5', '3_9', '0_7', '18_0', '6_0', '6_7', '2_6', '15_9', '15_7', '10_4', '10_7', '16_9', '7_0', '12_4', '2_2']) final_output = np.zeros((200,147456),dtype=np.float32) final_label = np.array([8, 11, 2, 13, 18, 7, 0, 1, 19, 3, 5, 7, 7, 12, 6, 10, 10, 5, 10, 12, 8, 19, 4, 14, 7, 19, 18, 15, 3, 6, 14, 7, 17, 19, 5, 14, 15, 15, 7, 16, 8, 1, 13, 3, 8, 11, 11, 17, 8, 8, 12, 18, 17, 17, 9, 4, 11, 18, 13, 19, 10, 4, 5, 16, 12, 15, 7, 17, 1, 4, 10, 3, 1, 11, 16, 9, 3, 8, 13, 5, 11, 4, 0, 19, 2, 0, 10, 13, 0, 8, 13, 8, 19, 12, 0, 4, 9, 0, 9, 6, 19, 1, 17, 4, 19, 0, 9, 2, 14, 12, 15, 18, 1, 11, 1, 1, 12, 18, 15, 16, 12, 16, 10, 14, 5, 4, 15, 13, 16, 3, 19, 14, 4, 6, 0, 1, 15, 5, 14, 2, 5, 14, 2, 10, 17, 11, 13, 6, 0, 2, 3, 11, 2, 14, 16, 17, 5, 18, 12, 6, 9, 9, 9, 6, 11, 7, 8, 9, 5, 18, 16, 3, 14, 2, 13, 4, 6, 3, 13, 1, 18, 7, 17, 16, 17, 9, 3, 0, 18, 6, 6, 2, 15, 15, 10, 10, 16, 7, 12, 2],dtype=np.int64) for i in range(200): print "reading", i, "..." pil_im = Image.open( "training_font_transparent/" + thelist[i] + ".jpg" ).convert('L') #imshow(np.asarray(pil_im)) # before resize pil_im = pil_im.resize((512, 288), Image.BILINEAR ) pil_im = np.array(pil_im) fig = plt.figure() plotwindow = fig.add_subplot() plt.imshow(pil_im, cmap='gray') plt.show() #print("test") #print(pil_im) note = 0 for j in range(288): for k in range(512): final_output[i][note]= ((255 - pil_im[j][k])/225.) note += 1 print " " print "Finished Picture..." print "Starting label" print "Finished Labeling..." print "Starting cpickle" outputandlabel = final_output, final_label f = gzip.open("training_data_200v4.pkl.gz", 'wb') cPickle.dump(outputandlabel, f) f.close() print "Finished cPickle..." print "\ ! congradulation ! /" #f = open("pic1.txt", "r") ''' imshow(np.asarray(pil_im)) # before resize pil_im = pil_im.resize((28, 28), Image.BILINEAR ) pil_im = np.array(pil_im) #print(np.array(pil_im)) #imshow(np.asarray(pil_im)) fig = plt.figure() plotwindow = fig.add_subplot() plt.imshow(pil_im, cmap='gray') plt.show() print("test") print(pil_im) '''
gpl-3.0
fredhusser/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
394
1770
"""Testing for bicluster metrics module""" import numpy as np from sklearn.utils.testing import assert_equal, assert_almost_equal from sklearn.metrics.cluster.bicluster import _jaccard from sklearn.metrics import consensus_score def test_jaccard(): a1 = np.array([True, True, False, False]) a2 = np.array([True, True, True, True]) a3 = np.array([False, True, True, False]) a4 = np.array([False, False, True, True]) assert_equal(_jaccard(a1, a1, a1, a1), 1) assert_equal(_jaccard(a1, a1, a2, a2), 0.25) assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7) assert_equal(_jaccard(a1, a1, a4, a4), 0) def test_consensus_score(): a = [[True, True, False, False], [False, False, True, True]] b = a[::-1] assert_equal(consensus_score((a, a), (a, a)), 1) assert_equal(consensus_score((a, a), (b, b)), 1) assert_equal(consensus_score((a, b), (a, b)), 1) assert_equal(consensus_score((a, b), (b, a)), 1) assert_equal(consensus_score((a, a), (b, a)), 0) assert_equal(consensus_score((a, a), (a, b)), 0) assert_equal(consensus_score((b, b), (a, b)), 0) assert_equal(consensus_score((b, b), (b, a)), 0) def test_consensus_score_issue2445(): ''' Different number of biclusters in A and B''' a_rows = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) a_cols = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0/3.0)
bsd-3-clause
pravsripad/mne-python
tutorials/evoked/plot_eeg_erp.py
4
10599
""" .. _tut_erp: EEG processing and Event Related Potentials (ERPs) ================================================== """ import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.channels import combine_channels ############################################################################### # Setup for reading the raw data data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' raw = mne.io.read_raw_fif(raw_fname) ############################################################################### # Let's restrict the data to the EEG channels raw.pick_types(meg=False, eeg=True, eog=True).load_data() # This particular dataset already has an average reference projection added # that we now want to remove it for the sake of this example. raw.set_eeg_reference([]) ############################################################################### # By looking at the measurement info you will see that we have now # 59 EEG channels and 1 EOG channel print(raw.info) ############################################################################### # In practice it's quite common to have some EEG channels that are actually # EOG channels. To change a channel type you can use the # :func:`mne.io.Raw.set_channel_types` method. For example # to treat an EOG channel as EEG you can change its type using raw.set_channel_types(mapping={'EOG 061': 'eeg'}) print(raw.info) ############################################################################### # And to change the name of the EOG channel raw.rename_channels(mapping={'EOG 061': 'EOG'}) ############################################################################### # Let's reset the EOG channel back to EOG type. raw.set_channel_types(mapping={'EOG': 'eog'}) ############################################################################### # The EEG channels in the sample dataset already have locations. # These locations are available in the 'loc' of each channel description. # For the first channel we get print(raw.info['chs'][0]['loc']) ############################################################################### # And it's actually possible to plot the channel locations using # :func:`mne.io.Raw.plot_sensors`. # In the case where your data don't have locations you can use one of the # standard :class:`Montages <mne.channels.DigMontage>` shipped with MNE. # See :ref:`plot_montage` and :ref:`tut-eeg-fsaverage-source-modeling`. raw.plot_sensors() raw.plot_sensors('3d') # in 3D ############################################################################### # Setting EEG reference # --------------------- # # Let's first inspect our Raw object with its original reference that was # applied during the recording of the data. # We define Epochs and compute an ERP for the left auditory condition. reject = dict(eeg=180e-6, eog=150e-6) event_id, tmin, tmax = {'left/auditory': 1}, -0.2, 0.5 events = mne.read_events(event_fname) epochs_params = dict(events=events, event_id=event_id, tmin=tmin, tmax=tmax, reject=reject) evoked_no_ref = mne.Epochs(raw, **epochs_params).average() title = 'EEG Original reference' evoked_no_ref.plot(titles=dict(eeg=title), time_unit='s') evoked_no_ref.plot_topomap(times=[0.1], size=3., title=title, time_unit='s') ############################################################################### # **Common average reference (car)**: We add back the average reference # projection that we removed at the beginning of this example (right after # loading the data). raw_car, _ = mne.set_eeg_reference(raw, 'average', projection=True) evoked_car = mne.Epochs(raw_car, **epochs_params).average() del raw_car # save memory title = 'EEG Average reference' evoked_car.plot(titles=dict(eeg=title), time_unit='s') evoked_car.plot_topomap(times=[0.1], size=3., title=title, time_unit='s') ############################################################################### # **Custom reference**: Use the mean of channels EEG 001 and EEG 002 as # a reference raw_custom, _ = mne.set_eeg_reference(raw, ['EEG 001', 'EEG 002']) evoked_custom = mne.Epochs(raw_custom, **epochs_params).average() del raw_custom # save memory title = 'EEG Custom reference' evoked_custom.plot(titles=dict(eeg=title), time_unit='s') evoked_custom.plot_topomap(times=[0.1], size=3., title=title, time_unit='s') ############################################################################### # Global field power (GFP) # ------------------------ # # Global field power :footcite:`Lehmann1980,Lehmann1984,Murray2008` is, # generally speaking, a measure of agreement of the signals picked up by all # sensors across the entire scalp: if all sensors have the same value at a # given time point, the GFP will be zero at that time point; if the signals # differ, the GFP will be non-zero at that time point. GFP # peaks may reflect "interesting" brain activity, warranting further # investigation. Mathematically, the GFP is the population standard # deviation across all sensors, calculated separately for every time point. # # You can plot the GFP using `evoked.plot(gfp=True) <mne.Evoked.plot>`. The GFP # trace will be black if ``spatial_colors=True`` and green otherwise. The EEG # reference will not affect the GFP: for evk in (evoked_car, evoked_no_ref): evk.plot(gfp=True, spatial_colors=True, ylim=dict(eeg=[-10, 10])) ############################################################################### # To plot the GFP by itself you can pass ``gfp='only'`` (this makes it easier # to read off the GFP data values, because the scale is aligned): evoked_car.plot(gfp='only') ############################################################################### # As stated above, the GFP is the population standard deviation of the signal # across channels. To compute it manually, we can leverage # the fact that `evoked.data <mne.Evoked.data>` is a NumPy array: gfp = evoked_car.data.std(axis=0, ddof=0) # Reproducing the plot style from above: fig, ax = plt.subplots() ax.plot(evoked_car.times, gfp * 1e6, color='lime') ax.fill_between(evoked_car.times, gfp * 1e6, color='lime', alpha=0.2) ax.set(xlabel='Time (s)', ylabel='GFP (µV)', title='EEG') ############################################################################### # Evoked response averaged across channels by ROI # ----------------------------------------------- # # It is possible to average channels by region of interest (for example left # and right) when studying the response to this left auditory stimulus. Here we # use our Raw object on which the average reference projection has been added # back. evoked = mne.Epochs(raw, **epochs_params).average() left_idx = mne.pick_channels(evoked.info['ch_names'], ['EEG 017', 'EEG 018', 'EEG 025', 'EEG 026']) right_idx = mne.pick_channels(evoked.info['ch_names'], ['EEG 023', 'EEG 024', 'EEG 034', 'EEG 035']) roi_dict = dict(Left=left_idx, Right=right_idx) evoked_combined = combine_channels(evoked, roi_dict, method='mean') title = 'Evoked response averaged by side' evoked_combined.plot(titles=dict(eeg=title), time_unit='s') ############################################################################### # Evoked arithmetic (e.g. differences) # ------------------------------------ # # Trial subsets from Epochs can be selected using 'tags' separated by '/'. # Evoked objects support basic arithmetic. # First, we create an Epochs object containing 4 conditions. event_id = {'left/auditory': 1, 'right/auditory': 2, 'left/visual': 3, 'right/visual': 4} epochs_params = dict(events=events, event_id=event_id, tmin=tmin, tmax=tmax, reject=reject) epochs = mne.Epochs(raw, **epochs_params) print(epochs) ############################################################################### # Next, we create averages of stimulation-left vs stimulation-right trials. # We can use negative weights in `mne.combine_evoked` to construct difference # ERPs. left, right = epochs["left"].average(), epochs["right"].average() # create and plot difference ERP joint_kwargs = dict(ts_args=dict(time_unit='s'), topomap_args=dict(time_unit='s')) mne.combine_evoked([left, right], weights=[1, -1]).plot_joint(**joint_kwargs) ############################################################################### # This is an equal-weighting difference. If you have imbalanced trial numbers, # you could also consider either equalizing the number of events per # condition (using # `epochs.equalize_event_counts <mne.Epochs.equalize_event_counts>`) or # use weights proportional to the number of trials averaged together to create # each `~mne.Evoked` (by passing ``weights='nave'`` to `~mne.combine_evoked`). # As an example, first, we create individual ERPs for each condition. aud_l = epochs["auditory/left"].average() aud_r = epochs["auditory/right"].average() vis_l = epochs["visual/left"].average() vis_r = epochs["visual/right"].average() all_evokeds = [aud_l, aud_r, vis_l, vis_r] print(all_evokeds) ############################################################################### # This can be simplified with a Python list comprehension: all_evokeds = [epochs[cond].average() for cond in sorted(event_id.keys())] print(all_evokeds) # Then, we can construct and plot an unweighted average of left vs. right # trials this way, too: mne.combine_evoked( all_evokeds, weights=[0.5, 0.5, -0.5, -0.5]).plot_joint(**joint_kwargs) ############################################################################### # Often, it makes sense to store Evoked objects in a dictionary or a list - # either different conditions, or different subjects. # If they are stored in a list, they can be easily averaged, for example, # for a grand average across subjects (or conditions). grand_average = mne.grand_average(all_evokeds) # And they can be written to disk like any other evoked data, e.g.: # mne.write_evokeds('tmp-ave.fif', all_evokeds) # If Evokeds objects are stored in a dictionary, they can be retrieved by name. all_evokeds = dict((cond, epochs[cond].average()) for cond in event_id) print(all_evokeds['left/auditory']) # Besides for explicit access, this can be used for example to set titles. for cond in all_evokeds: all_evokeds[cond].plot_joint(title=cond, **joint_kwargs) ############################################################################## # References # ---------- # .. footbibliography::
bsd-3-clause
wateraccounting/wa
Functions/Two/Calc_NDM.py
1
4771
# -*- coding: utf-8 -*- """ Authors: Tim Hessels UNESCO-IHE 2017 Contact: [email protected] Repository: https://github.com/wateraccounting/wa Module: Function/Two """ # import general python modules import os import gdal import numpy as np import pandas as pd import glob def NPP_GPP_Based(Dir_Basin, Data_Path_GPP, Data_Path_NPP, Startdate, Enddate): """ This functions calculated monthly NDM based on the yearly NPP and monthly GPP. Parameters ---------- Dir_Basin : str Path to all the output data of the Basin Data_Path_GPP : str Path from the Dir_Basin to the GPP data Data_Path_NPP : str Path from the Dir_Basin to the NPP data Startdate : str Contains the start date of the model 'yyyy-mm-dd' Enddate : str Contains the end date of the model 'yyyy-mm-dd' Simulation : int Defines the simulation Returns ------- Data_Path_NDM : str Path from the Dir_Basin to the normalized dry matter data """ # import WA+ modules import wa.General.data_conversions as DC import wa.General.raster_conversions as RC # Define output folder for Normalized Dry Matter Data_Path_NDM = os.path.join(Dir_Basin, "NDM") if not os.path.exists(Data_Path_NDM): os.mkdir(Data_Path_NDM) # Define monthly time steps that will be created Dates = pd.date_range(Startdate, Enddate, freq = 'MS') # Define the years that will be calculated Year_Start = int(Startdate[0:4]) Year_End = int(Enddate[0:4]) Years = range(Year_Start, Year_End+1) # Loop over the years for year in Years: # Change working directory to the NPP folder os.chdir(Data_Path_NPP) # Open yearly NPP data yearly_NPP_File = glob.glob('*yearly*%d.01.01.tif' %int(year))[0] Yearly_NPP = RC.Open_tiff_array(yearly_NPP_File) # Get the No Data Value of the NPP file dest = gdal.Open(yearly_NPP_File) NDV = dest.GetRasterBand(1).GetNoDataValue() # Set the No Data Value to Nan Yearly_NPP[Yearly_NPP == NDV] = np.nan # Change working directory to the GPP folder os.chdir(Data_Path_GPP) # Find all the monthly files of that year monthly_GPP_Files = glob.glob('*monthly*%d.*.01.tif' %int(year)) # Check if it are 12 files otherwise something is wrong and send the ERROR if not len(monthly_GPP_Files) == 12: print 'ERROR: Some monthly GPP Files are missing' # Get the projection information of the GPP inputs geo_out, proj, size_X, size_Y = RC.Open_array_info(monthly_GPP_Files[0]) geo_out_NPP, proj_NPP, size_X_NPP, size_Y_NPP = RC.Open_array_info(os.path.join(Data_Path_NPP,yearly_NPP_File)) if int(proj.split('"')[-2]) == 4326: proj = "WGS84" # Get the No Data Value of the GPP files dest = gdal.Open(monthly_GPP_Files[0]) NDV = dest.GetRasterBand(1).GetNoDataValue() # Create a empty numpy array Yearly_GPP = np.zeros([size_Y, size_X]) # Calculte the total yearly GPP for monthly_GPP_File in monthly_GPP_Files: # Open array Data = RC.Open_tiff_array(monthly_GPP_File) # Remove nan values Data[Data == NDV] = np.nan # Add data to yearly sum Yearly_GPP += Data # Check if size is the same of NPP and GPP otherwise resize if not (size_X_NPP is size_X or size_Y_NPP is size_Y): Yearly_NPP = RC.resize_array_example(Yearly_NPP, Yearly_GPP) # Loop over the monthly dates for Date in Dates: # If the Date is in the same year as the yearly NPP and GPP if Date.year == year: # Create empty GPP array monthly_GPP = np.ones([size_Y, size_X]) * np.nan # Get current month month = Date.month # Get the GPP file of the current year and month monthly_GPP_File = glob.glob('*monthly_%d.%02d.01.tif' %(int(year), int(month)))[0] monthly_GPP = RC.Open_tiff_array(monthly_GPP_File) monthly_GPP[monthly_GPP == NDV] = np.nan # Calculate the NDM based on the monthly and yearly NPP and GPP (fraction of GPP) Monthly_NDM = Yearly_NPP * monthly_GPP / Yearly_GPP * (30./12.) *10000 # kg/ha # Define output name output_name = os.path.join(Data_Path_NDM, 'NDM_MOD17_kg_ha-1_monthly_%d.%02d.01.tif' %(int(year), int(month))) # Save the NDM as tiff file DC.Save_as_tiff(output_name, Monthly_NDM, geo_out, proj) return(Data_Path_NDM)
apache-2.0
madan96/sympy
sympy/physics/quantum/circuitplot.py
28
12934
"""Matplotlib based plotting of quantum circuits. Todo: * Optimize printing of large circuits. * Get this to work with single gates. * Do a better job checking the form of circuits to make sure it is a Mul of Gates. * Get multi-target gates plotting. * Get initial and final states to plot. * Get measurements to plot. Might need to rethink measurement as a gate issue. * Get scale and figsize to be handled in a better way. * Write some tests/examples! """ from __future__ import print_function, division from sympy import Mul from sympy.core.compatibility import range from sympy.external import import_module from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS from sympy.core.core import BasicMeta from sympy.core.assumptions import ManagedProperties __all__ = [ 'CircuitPlot', 'circuit_plot', 'labeller', 'Mz', 'Mx', 'CreateOneQubitGate', 'CreateCGate', ] np = import_module('numpy') matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) # This is raised in environments that have no display. if not np or not matplotlib: class CircuitPlot(object): def __init__(*args, **kwargs): raise ImportError('numpy or matplotlib not available.') def circuit_plot(*args, **kwargs): raise ImportError('numpy or matplotlib not available.') else: pyplot = matplotlib.pyplot Line2D = matplotlib.lines.Line2D Circle = matplotlib.patches.Circle #from matplotlib import rc #rc('text',usetex=True) class CircuitPlot(object): """A class for managing a circuit plot.""" scale = 1.0 fontsize = 20.0 linewidth = 1.0 control_radius = 0.05 not_radius = 0.15 swap_delta = 0.05 labels = [] inits = {} label_buffer = 0.5 def __init__(self, c, nqubits, **kwargs): self.circuit = c self.ngates = len(self.circuit.args) self.nqubits = nqubits self.update(kwargs) self._create_grid() self._create_figure() self._plot_wires() self._plot_gates() self._finish() def update(self, kwargs): """Load the kwargs into the instance dict.""" self.__dict__.update(kwargs) def _create_grid(self): """Create the grid of wires.""" scale = self.scale wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float) gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float) self._wire_grid = wire_grid self._gate_grid = gate_grid def _create_figure(self): """Create the main matplotlib figure.""" self._figure = pyplot.figure( figsize=(self.ngates*self.scale, self.nqubits*self.scale), facecolor='w', edgecolor='w' ) ax = self._figure.add_subplot( 1, 1, 1, frameon=True ) ax.set_axis_off() offset = 0.5*self.scale ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset) ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset) ax.set_aspect('equal') self._axes = ax def _plot_wires(self): """Plot the wires of the circuit diagram.""" xstart = self._gate_grid[0] xstop = self._gate_grid[-1] xdata = (xstart - self.scale, xstop + self.scale) for i in range(self.nqubits): ydata = (self._wire_grid[i], self._wire_grid[i]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) if self.labels: init_label_buffer = 0 if self.inits.get(self.labels[i]): init_label_buffer = 0.25 self._axes.text( xdata[0]-self.label_buffer-init_label_buffer,ydata[0], render_label(self.labels[i],self.inits), size=self.fontsize, color='k',ha='center',va='center') self._plot_measured_wires() def _plot_measured_wires(self): ismeasured = self._measurements() xstop = self._gate_grid[-1] dy = 0.04 # amount to shift wires when doubled # Plot doubled wires after they are measured for im in ismeasured: xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale) ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) # Also double any controlled lines off these wires for i,g in enumerate(self._gates()): if isinstance(g, CGate) or isinstance(g, CGateS): wires = g.controls + g.targets for wire in wires: if wire in ismeasured and \ self._gate_grid[i] > self._gate_grid[ismeasured[wire]]: ydata = min(wires), max(wires) xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def _gates(self): """Create a list of all gates in the circuit plot.""" gates = [] if isinstance(self.circuit, Mul): for g in reversed(self.circuit.args): if isinstance(g, Gate): gates.append(g) elif isinstance(self.circuit, Gate): gates.append(self.circuit) return gates def _plot_gates(self): """Iterate through the gates and plot each of them.""" for i, gate in enumerate(self._gates()): gate.plot_gate(self, i) def _measurements(self): """Return a dict {i:j} where i is the index of the wire that has been measured, and j is the gate where the wire is measured. """ ismeasured = {} for i,g in enumerate(self._gates()): if getattr(g,'measurement',False): for target in g.targets: if target in ismeasured: if ismeasured[target] > i: ismeasured[target] = i else: ismeasured[target] = i return ismeasured def _finish(self): # Disable clipping to make panning work well for large circuits. for o in self._figure.findobj(): o.set_clip_on(False) def one_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a single qubit gate.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] self._axes.text( x, y, t, color='k', ha='center', va='center', bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), size=self.fontsize ) def two_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a two qubit gate. Doesn't work yet. """ x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx]+0.5 print(self._gate_grid) print(self._wire_grid) obj = self._axes.text( x, y, t, color='k', ha='center', va='center', bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), size=self.fontsize ) def control_line(self, gate_idx, min_wire, max_wire): """Draw a vertical control line.""" xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx]) ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def control_point(self, gate_idx, wire_idx): """Draw a control point.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.control_radius c = Circle( (x, y), radius*self.scale, ec='k', fc='k', fill=True, lw=self.linewidth ) self._axes.add_patch(c) def not_point(self, gate_idx, wire_idx): """Draw a NOT gates as the circle with plus in the middle.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.not_radius c = Circle( (x, y), radius, ec='k', fc='w', fill=False, lw=self.linewidth ) self._axes.add_patch(c) l = Line2D( (x, x), (y - radius, y + radius), color='k', lw=self.linewidth ) self._axes.add_line(l) def swap_point(self, gate_idx, wire_idx): """Draw a swap point as a cross.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] d = self.swap_delta l1 = Line2D( (x - d, x + d), (y - d, y + d), color='k', lw=self.linewidth ) l2 = Line2D( (x - d, x + d), (y + d, y - d), color='k', lw=self.linewidth ) self._axes.add_line(l1) self._axes.add_line(l2) def circuit_plot(c, nqubits, **kwargs): """Draw the circuit diagram for the circuit with nqubits. Parameters ========== c : circuit The circuit to plot. Should be a product of Gate instances. nqubits : int The number of qubits to include in the circuit. Must be at least as big as the largest `min_qubits`` of the gates. """ return CircuitPlot(c, nqubits, **kwargs) def render_label(label, inits={}): """Slightly more flexible way to render labels. >>> from sympy.physics.quantum.circuitplot import render_label >>> render_label('q0') '$|q0\\\\rangle$' >>> render_label('q0', {'q0':'0'}) '$|q0\\\\rangle=|0\\\\rangle$' """ init = inits.get(label) if init: return r'$|%s\rangle=|%s\rangle$' % (label, init) return r'$|%s\rangle$' % label def labeller(n, symbol='q'): """Autogenerate labels for wires of quantum circuits. Parameters ========== n : int number of qubits in the circuit symbol : string A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc. >>> from sympy.physics.quantum.circuitplot import labeller >>> labeller(2) ['q_1', 'q_0'] >>> labeller(3,'j') ['j_2', 'j_1', 'j_0'] """ return ['%s_%d' % (symbol,n-i-1) for i in range(n)] class Mz(OneQubitGate): """Mock-up of a z measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mz' gate_name_latex=u'M_z' class Mx(OneQubitGate): """Mock-up of an x measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mx' gate_name_latex=u'M_x' class CreateOneQubitGate(ManagedProperties): def __new__(mcl, name, latexname=None): if not latexname: latexname = name return BasicMeta.__new__(mcl, name + "Gate", (OneQubitGate,), {'gate_name': name, 'gate_name_latex': latexname}) def CreateCGate(name, latexname=None): """Use a lexical closure to make a controlled gate. """ if not latexname: latexname = name onequbitgate = CreateOneQubitGate(name, latexname) def ControlledGate(ctrls,target): return CGate(tuple(ctrls),onequbitgate(target)) return ControlledGate
bsd-3-clause
maxlikely/scikit-learn
examples/plot_hmm_stock_analysis.py
12
2783
""" ========================== Gaussian HMM of stock data ========================== This script shows how to use Gaussian HMM. It uses stock price data, which can be obtained from yahoo finance. For more information on how to get stock prices with matplotlib, please refer to date_demo1.py of matplotlib. """ from __future__ import print_function import datetime import numpy as np import pylab as pl from matplotlib.finance import quotes_historical_yahoo from matplotlib.dates import YearLocator, MonthLocator, DateFormatter from sklearn.hmm import GaussianHMM print(__doc__) ############################################################################### # Downloading the data date1 = datetime.date(1995, 1, 1) # start date date2 = datetime.date(2012, 1, 6) # end date # get quotes from yahoo finance quotes = quotes_historical_yahoo("INTC", date1, date2) if len(quotes) == 0: raise SystemExit # unpack quotes dates = np.array([q[0] for q in quotes], dtype=int) close_v = np.array([q[2] for q in quotes]) volume = np.array([q[5] for q in quotes])[1:] # take diff of close value # this makes len(diff) = len(close_t) - 1 # therefore, others quantity also need to be shifted diff = close_v[1:] - close_v[:-1] dates = dates[1:] close_v = close_v[1:] # pack diff and volume for training X = np.column_stack([diff, volume]) ############################################################################### # Run Gaussian HMM print("fitting to HMM and decoding ...", end='') n_components = 5 # make an HMM instance and execute fit model = GaussianHMM(n_components, covariance_type="diag", n_iter=1000) model.fit([X]) # predict the optimal sequence of internal hidden state hidden_states = model.predict(X) print("done\n") ############################################################################### # print trained parameters and plot print("Transition matrix") print(model.transmat_) print() print("means and vars of each hidden state") for i in range(n_components): print("%dth hidden state" % i) print("mean = ", model.means_[i]) print("var = ", np.diag(model.covars_[i])) print() years = YearLocator() # every year months = MonthLocator() # every month yearsFmt = DateFormatter('%Y') fig = pl.figure() ax = fig.add_subplot(111) for i in range(n_components): # use fancy indexing to plot data in each state idx = (hidden_states == i) ax.plot_date(dates[idx], close_v[idx], 'o', label="%dth hidden state" % i) ax.legend() # format the ticks ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) ax.autoscale_view() # format the coords message box ax.fmt_xdata = DateFormatter('%Y-%m-%d') ax.fmt_ydata = lambda x: '$%1.2f' % x ax.grid(True) fig.autofmt_xdate() pl.show()
bsd-3-clause
google/wikiloop-analysis
cross-edits-analysis/author_analytics.py
1
2978
''' Copyright 2020 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Date: 6/11/2020 Author: Haoran Fei Script to perform author-specific analytics, as outlined in part II of Preliminary Data Analysis Planning. ''' import sys import getopt #import pandas as pd import matplotlib.pyplot as plt import engine import os def main(argv): '''Main routine to load files, compute aggregate statistics, per-author statistics and sliding window analysis.''' author_analysis_engine = engine.Engine() author_analysis_engine.get_command_line_input(argv) author_analysis_engine.set_key("author", "author") author_analysis_engine.open_log_file() author_analysis_engine.display_aggregate_stats() #author_analysis_engine.iterate_per_key(author_analysis_engine.display_per_group_stats) #author_analysis_engine.iterate_per_key(author_analysis_engine.plot_evolution_across_time) author_analysis_engine.iterate_per_key(author_analysis_engine.sliding_window_analysis) authors_with_non_zero_scores = [] means = dict() medians = dict() columns = author_analysis_engine.columns_to_count for column in columns: means[column] = [] medians[column] = [] def compute_mean_and_median_non_zero(group, group_key, index): # Get the edits with non-zero ores score for time-series analysis non_zero_authors = group.loc[group["ores_damaging"] != 0].copy() non_zero_count = non_zero_authors.shape[0] if non_zero_count != 0: authors_with_non_zero_scores.append(group_key) for column in columns: means[column].append(group[column].mean()) medians[column].append(group[column].median()) author_analysis_engine.iterate_per_key(compute_mean_and_median_non_zero) # Distribution of mean and median scores across authors fig, axes = plt.subplots(2, len(columns)) fig.set_size_inches(37, 21) for i in range(len(columns)): axes[0][i].hist(means[columns[i]], bins=50) axes[0][i].set_title("Mean of {} across all authors".format(columns[i])) axes[1][i].hist(medians[columns[i]], bins=50) axes[1][i].set_title("Median of {} across all authors".format(columns[i])) plt.savefig("./graphs/aggregate/Mean_median_all_authors_all_columns_no_zero.png") plt.close() author_analysis_engine.cleanup() if __name__ == "__main__": main(sys.argv[1:])
apache-2.0
robcarver17/systematictradingexamples
plots_for_perhaps/correlatedreturns.py
1
2880
import Image from random import gauss import numpy as np from matplotlib.pyplot import plot, show, xticks, xlabel, ylabel, legend, yscale, title, savefig, rcParams, figure, hist, scatter import matplotlib.pylab as plt from itertools import cycle import pickle import pandas as pd lines = ["--","-","-."] linecycler = cycle(lines) def twocorrelatedseries(no_periods, period_mean, period_mean2, period_vol, corr): means = [period_mean, period_mean2] stds = [period_vol]*2 covs = [[stds[0]**2 , stds[0]*stds[1]*corr], [stds[0]*stds[1]*corr, stds[1]**2]] m = np.random.multivariate_normal(means, covs, no_periods).T data1=m[0] data2=m[1] return np.mean(data1) - np.mean(data2) ## path to difference for one thing no correlation months_in_year=12 annual_vol=0.150 monthly_vol=annual_vol/(months_in_year**.5) annual_SR=0.66 annual_SR2=0.46 diffSR=annual_SR - annual_SR2 annual_return=annual_vol*annual_SR annual_return2=annual_vol*annual_SR2 monthly_mean=annual_return/months_in_year monthly_mean2=annual_return2/months_in_year ## Make sure these match! no_years=10 no_periods=months_in_year*no_years monte_carlos=500000 corr=0.85 rollmeandiff=[twocorrelatedseries(no_periods, monthly_mean, monthly_mean2, monthly_vol, corr=corr) for ii in range(monte_carlos)] rollanndiff=[x*12 for x in rollmeandiff] rollannSR=[x/annual_vol for x in rollanndiff] def linehist(x, color="blue", linestyle="-", bins=10, linewidth=1): y,binEdges =np.histogram(x, bins=bins) bincenters = 0.5*(binEdges[1:]+binEdges[:-1]) plot(bincenters,y,'-', color=color, linestyle=linestyle, linewidth=linewidth) linehist(rollanndiff, bins=50, linewidth=2) frame=plt.gca() frame.get_yaxis().set_visible(False) frame.set_xlim([-0.07, 0.13]) frame.set_xticks([-0.05, 0.00, 0.05,.1]) frame.set_ylim([0,50000]) frame.annotate("Expected improvement in returns", xy=(0.03, 38000),xytext=(0.05, 45000.0), arrowprops=dict(facecolor='black', shrink=0.05), size=18) frame.annotate("Breakeven in costs", xy=(0.01, 28000),xytext=(-0.05, 40000.0), arrowprops=dict(facecolor='black', shrink=0.05), size=18) plt.axvline(0.01, linestyle="--") plt.axvline(0.03, linestyle="--") #xlabel("Difference in annual % returns between managers") rcParams.update({'font.size': 18}) def file_process(filename): fig = plt.gcf() fig.set_size_inches(18.5,10.5) fig.savefig("/home/rob/%s.png" % filename,dpi=300) fig.savefig("/home/rob/%sLOWRES.png" % filename,dpi=50) Image.open("/home/rob/%s.png" % filename).convert('L').save("/home/rob/%s.jpg" % filename) Image.open("/home/rob/%sLOWRES.png" % filename).convert('L').save("/home/rob/%sLOWRES.jpg" % filename) file_process("correlateddifferences") show() print(sum([1.0 for x in rollanndiff if x<0.01])/len(rollanndiff)) print(np.std(rollanndiff))
gpl-2.0
lcameron05/PCWG
pcwg/core/turbine.py
2
29788
import math import interpolators import scipy.interpolate import numpy as np import pandas as pd from ..core.status import Status from empirical_turbulence import AugmentedTurbulenceCorrection class Relaxation(object): def __init__(self, correction): self.correction = correction def relax(self, wind_speed, turbulence): return self.correction * turbulence class NoRelaxation(object): def relax(self, wind_speed,turbulence): # suppress unused parameter message in PyCharm _ = wind_speed return turbulence class PowerCurve(object): def __init__(self, rotor_geometry, reference_density, data_frame, wind_speed_column, turbulence_column, power_column, count_column=None, rated_power=None, name='Undefined', interpolation_mode='Cubic Spline', zero_ti_pc_required=False, x_limits=None, sub_power=None, relaxation=NoRelaxation()): self.name = name self.interpolation_mode = interpolation_mode self.reference_density = reference_density self.data_frame = data_frame self.wind_speed_column = wind_speed_column self.turbulence_column = turbulence_column self.power_column = power_column self.count_column = count_column self.x_limits = x_limits self.sub_power = sub_power self.rotor_geometry = rotor_geometry if self.count_column is not None: self.hours = self.data_frame[count_column].sum()*1.0/6.0 else: self.hours = None wind_data = data_frame[self.wind_speed_column] power_data = data_frame[self.power_column] self.first_wind_speed = min(wind_data) self.cut_in_wind_speed = self.calculate_cut_in_wind_speed() self.cut_out_wind_speed = self.calculate_cut_out_wind_speed() self.wind_speed_points, self.power_points = self.extract_points(wind_data, power_data) self.turbulence_function = self.create_one_dimensional_function(self.wind_speed_column, self.turbulence_column, supress_negative=True) self.available_power = AvailablePower(self.rotor_geometry, self.reference_density) Status.add("calculating power function ({0})".format(self.interpolation_mode), verbosity=3) self.power_function = self.create_power_function(self.wind_speed_points, self.power_points) Status.add("power function calculated ({0})".format(type(self.power_function)), verbosity=3) self.rated_power = self.get_rated_power(rated_power, data_frame[self.power_column]) self._reverted_relaxation = None self._reverted_simulated_power = None self._reverted_zero_turbulence_power_curve = None self.relaxation = relaxation self.zero_ti_pc_required = zero_ti_pc_required @property def zero_ti_pc_required(self): return self._zero_ti_pc_required @zero_ti_pc_required.setter def zero_ti_pc_required(self, value): if hasattr(self, '_zero_ti_pc_required'): update = (self._zero_ti_pc_required != value) else: update = True if update: if value and (self.reference_density is None): raise Exception("Zero Turbulence Curve cannot be calculated" " if turbine does not have a well defined density") self._zero_ti_pc_required = value self.update_zero_ti() def get_raw_levels(self): padded_levels = (self.data_frame['Is Extrapolation'] == True) return self.data_frame[~padded_levels] def revert_zero_ti(self): if self._reverted_zero_turbulence_power_curve is None: raise Exception('Cannot revert zero turbulence power curve') self.relaxation = self._reverted_relaxation self.simulatedPower = self._reverted_simulated_power self.zeroTurbulencePowerCurve = self._reverted_zero_turbulence_power_curve self._reverted_relaxation = None self._reverted_simulated_power = None self._reverted_zero_turbulence_power_curve = None def update_zero_ti(self, relaxation=None): self._reverted_relaxation = self.relaxation if hasattr(self, 'simulatedPower'): self._reverted_simulated_power = self.simulatedPower if hasattr(self, 'zeroTurbulencePowerCurve'): self._reverted_zero_turbulence_power_curve = self.zeroTurbulencePowerCurve Status.add("Zero TI Required: {0}".format(self.zero_ti_pc_required), verbosity=3) if relaxation is not None: self.relaxation = relaxation if self.zero_ti_pc_required: Status.add("Calculating zero turbulence curve for {0} Power Curve".format(self.name), verbosity=3) try: self.calculate_zero_turbulence_power_curve() Status.add("Calculation of zero turbulence curve for {0}" " Power Curve successful".format(self.name), verbosity=3) except None as error: err_msg = "Calculation of zero turbulence curve for {0}" \ " Power Curve unsuccessful: {1}".format(self.name, error) raise Exception(err_msg) else: self.zeroTurbulencePowerCurve = None self.simulatedPower = None Status.add("Turbine Created Successfully", verbosity=3) def get_level(self, wind_speed, tolerance=0.00001): for i in range(len(self.wind_speed_points)): diff = abs(self.wind_speed_points[i] - wind_speed) if diff < tolerance: return self.power_points[i] raise Exception("Cannot find level: {0}".format(wind_speed)) def calculate_zero_turbulence_power_curve(self): integration_range = IntegrationRange(0.0, 100.0, 0.1) wind_speeds = [] powers = [] turbulence_values = [] for index in self.data_frame.index: wind_speed = self.data_frame.loc[index, self.wind_speed_column] power = self.data_frame.loc[index, self.power_column] turbulence = self.data_frame.loc[index, self.turbulence_column] if not np.isnan(wind_speed) and \ not np.isnan(power) and \ not np.isnan(turbulence) and \ wind_speed >= 0.0 and \ power >= 0.0 and \ turbulence > 0: wind_speeds.append(wind_speed) turbulence_values.append(turbulence) powers.append(power) self.zeroTurbulencePowerCurve = ZeroTurbulencePowerCurve(wind_speeds, powers, turbulence_values, integration_range, self.available_power, self.reference_density, self.relaxation) self.simulatedPower = SimulatedPower(self.zeroTurbulencePowerCurve, integration_range) def get_rated_power(self, rated_power, power_curve_levels): if rated_power is None: return power_curve_levels.max() else: return rated_power def get_threshold_wind_speed(self): return float(interpolators.LinearPowerCurveInterpolator(self.power_points, self.wind_speed_points, self.rated_power)(0.85 * self.rated_power) * 1.5) def get_turbulence_levels(self, power_curve_levels, turbulence_levels, fixed_turbulence): if fixed_turbulence is not None: turbulence_levels = pd.Series(index=power_curve_levels.index) for level in power_curve_levels.index: turbulence_levels[level] = fixed_turbulence else: turbulence_levels = turbulence_levels return turbulence_levels def create_one_dimensional_function(self, x_col, y_col, supress_negative=True): x, y = [], [] for index in self.data_frame.index: x_value = self.data_frame.loc[index, x_col] y_value = self.data_frame.loc[index, y_col] if (not np.isnan(x_value)) and (not np.isnan(y_value)): if (not supress_negative) or y_value > 0: x.append(x_value) y.append(y_value) return interpolators.LinearTurbulenceInterpolator(x, y) def extract_points(self, x_data, y_data): if x_data is None: x_data = pd.Series(y_data.index, index=y_data.index) x, y = [], [] Status.add("Preparing input points", verbosity=3) for i in y_data.index: if i in x_data.index and not np.isnan(x_data[i]): x_val = x_data[i] else: x_val = i y_val = y_data[i] if (not np.isnan(x_val)) and (not np.isnan(y_val)): x.append(x_val) y.append(y_val) Status.add("{0} {1} {2}".format(i, x[-1], y[-1]), verbosity=3) return x, y def create_power_function(self, x, y): Status.add("Creating interpolator", verbosity=3) if self.interpolation_mode == 'Linear': return interpolators.LinearPowerCurveInterpolator(x, y, self.cut_out_wind_speed) elif self.interpolation_mode == 'Cubic' or self.interpolation_mode == 'Cubic Spline': return interpolators.CubicSplinePowerCurveInterpolator(x, y, self.cut_out_wind_speed) elif self.interpolation_mode == 'Cubic Hermite': return interpolators.CubicHermitePowerCurveInterpolator(x, y, self.cut_out_wind_speed) elif self.interpolation_mode == 'Marmander' or self.interpolation_mode == 'Marmander (Cubic Spline)': return interpolators.MarmanderPowerCurveInterpolatorCubicSpline(x, y, self.cut_out_wind_speed, x_limits=self.x_limits, sub_power=self.sub_power) elif self.interpolation_mode == 'Marmander (Cubic Hermite)': return interpolators.MarmanderPowerCurveInterpolatorCubicHermite(x, y, self.cut_out_wind_speed, x_limits=self.x_limits, sub_power=self.sub_power) else: raise Exception('Unknown interpolation mode: {0}'.format(self.interpolation_mode)) def power(self, wind_speed, turbulence=None, augment_turbulence_correction=False, normalised_wind_speed=None): if augment_turbulence_correction and normalised_wind_speed is None: raise Exception('normalised_wind_speed cannot be None if augment_turbulence_correction=True') reference_power = self.power_function(wind_speed) if turbulence is None: power = reference_power else: reference_turbulence = self.reference_turbulence(wind_speed) simulated_power_site = self.simulatedPower.power(wind_speed, self.relaxation.relax(wind_speed, turbulence)) simulated_power_reference = self.simulatedPower.power(wind_speed, self.relaxation.relax(wind_speed, reference_turbulence)) correction = simulated_power_site - simulated_power_reference power = reference_power + correction if augment_turbulence_correction: deviation = self.augment_turbulence_correction(normalised_wind_speed, turbulence, reference_turbulence) power *= (1.0 + deviation) power = max([0.0, power]) power = min([self.rated_power, power]) return power def augment_turbulence_correction(self, normalised_wind_speed, turbulence, reference_turbulence): empirical = AugmentedTurbulenceCorrection() return empirical.calculate(normalised_wind_speed, turbulence, reference_turbulence) def reference_turbulence(self, wind_speed): if wind_speed < self.first_wind_speed: return self.turbulence_function(self.first_wind_speed) elif wind_speed > self.cut_out_wind_speed: return self.turbulence_function(self.cut_out_wind_speed) else: return self.turbulence_function(wind_speed) def calculate_cut_in_wind_speed(self): return min(self.non_zero_levels()) def calculate_cut_out_wind_speed(self): return max(self.non_zero_levels()) def non_zero_levels(self): levels = [] for index in self.data_frame.index: power = self.data_frame.loc[index, self.power_column] speed = self.data_frame.loc[index, self.wind_speed_column] if not np.isnan(power) and power > 0.0: levels.append(speed) return levels def __str__(self): value = "Wind Speed\tPower\n" for wind_speed in self.wind_speed_points: value += "%0.2f\t%0.2f\n" % (wind_speed, self.power(wind_speed)) return value class RotorGeometry: def __init__(self, diameter, hub_height, tilt=None): if diameter is None: raise Exception('Diameter is not set') if hub_height is None: raise Exception('Hub Height is not set') self.diameter = diameter self.radius = diameter / 2 self.area = math.pi * self.radius ** 2 self.hub_height = hub_height self.lower_tip = self.hub_height - self.radius self.upper_tip = self.hub_height + self.radius self.tilt = tilt def within_rotor(self, height): return (height >= self.lower_tip) and (height <= self.upper_tip) class IntegrationProbabilities: def __init__(self, wind_speeds, wind_speed_step): # speed optimised normal distribution self.wind_speeds = wind_speeds self.a = wind_speed_step / math.sqrt(2.0 * math.pi) def probabilities(self, wind_speed_mean, wind_speed_std__dev): if wind_speed_std__dev == 0: return np.nan one_over_standard_deviation = 1.0 / wind_speed_std__dev one_over_standard_deviation_sq = one_over_standard_deviation * one_over_standard_deviation b = self.a * one_over_standard_deviation c = -0.5 * one_over_standard_deviation_sq wind_speed_minus_means = (self.wind_speeds - wind_speed_mean) wind_speed_minus_mean_sq = wind_speed_minus_means * wind_speed_minus_means d = c * wind_speed_minus_mean_sq return b * np.exp(d) class IntegrationRange: def __init__(self, minimum_wind_speed, maximum_wind_speed, wind_speed_step): self.minimum_wind_speed = minimum_wind_speed self.maximum_wind_speed = maximum_wind_speed self.wind_speed_step = wind_speed_step self.wind_speeds = np.arange(minimum_wind_speed, maximum_wind_speed, wind_speed_step) self.integrationProbabilities = IntegrationProbabilities(self.wind_speeds, self.wind_speed_step) def probabilities(self, wind_speed_mean, wind_speed_std_dev): return self.integrationProbabilities.probabilities(wind_speed_mean, wind_speed_std_dev) class AvailablePower(object): def __init__(self, rotor_geometry, density): self.area = rotor_geometry.area self.density = density def power(self, wind_speed): return 0.5 * self.density * self.area * wind_speed * wind_speed * wind_speed / 1000.0 def power_coefficient(self, wind_speed, actual_power): power = self.power(wind_speed) if power > 0: return actual_power / self.power(wind_speed) else: return 0.0 class ZeroTurbulencePowerCurve(object): def __init__(self, reference_wind_speeds, reference_powers, reference_turbulence_values, integration_range, available_power, density, relaxation): self.integration_range = integration_range self.initial_zero_turbulence_power_curve = InitialZeroTurbulencePowerCurve(reference_wind_speeds, reference_powers, reference_turbulence_values, integration_range, available_power, density, relaxation) simulated_reference_power_curve = SimulatedPowerCurve(reference_wind_speeds, self.initial_zero_turbulence_power_curve, reference_turbulence_values, integration_range, relaxation) self.wind_speeds = reference_wind_speeds self.powers = [] self.min_wind_speed = None self.last_wind_speed = None self.last_power = None for i in range(len(self.wind_speeds)): correct_to_zero_turbulence = (-simulated_reference_power_curve.powers[i] + self.initial_zero_turbulence_power_curve.powers[i]) power = reference_powers[i] + correct_to_zero_turbulence if reference_powers[i] > 0: if self.last_wind_speed is None or self.wind_speeds[i] > self.last_wind_speed: self.last_wind_speed = self.wind_speeds[i] self.last_power = power self.powers.append(power) self.powerFunction = scipy.interpolate.interp1d(self.wind_speeds, self.powers) self.zero_ti_rated_power = self.initial_zero_turbulence_power_curve.rated_power self.zero_ti_rated_wind_speed = self.initial_zero_turbulence_power_curve.rated_wind_speed self.zero_ti_cut_in_wind_speed = self.initial_zero_turbulence_power_curve.cut_in_wind_speed self.min_wind_speed = min(self.wind_speeds) self.df_power_levels = pd.DataFrame(self.powers, index=self.wind_speeds, columns=['Power']) def power(self, wind_speed): if wind_speed < self.min_wind_speed: return 0.0 elif wind_speed > self.last_wind_speed: return self.last_power else: return self.powerFunction(wind_speed) class InitialZeroTurbulencePowerCurve(object): def __init__(self, reference_wind_speeds, reference_powers, reference_turbulence_values, integration_range, available_power, density, relaxation): self.max_iterations = 5 self.density = density self.integration_range = integration_range self.available_power = available_power self.reference_wind_speeds = reference_wind_speeds self.reference_powers = reference_powers self.reference_turbulence_values = reference_turbulence_values self.relaxation = relaxation self.reference_power_curve_stats = IterationPowerCurveStats(reference_wind_speeds, reference_powers, available_power) self.selected_stats = self.solve(self.reference_power_curve_stats) selected_iteration = InitialZeroTurbulencePowerCurveIteration(reference_wind_speeds, self.available_power, self.selected_stats.rated_power, self.selected_stats.cut_in_wind_speed, self.selected_stats.cp_max, self.density) self.rated_wind_speed = selected_iteration.rated_wind_speed self.rated_power = selected_iteration.rated_power self.cut_in_wind_speed = selected_iteration.cut_in_wind_speed self.wind_speeds = selected_iteration.wind_speeds self.powers = selected_iteration.powers self.power = selected_iteration.power def solve(self, previous_iteration_stats, iteration_count=1): if iteration_count > self.max_iterations: raise Exception("Failed to solve initial zero turbulence curve in permitted number of iterations") previous_rated_power = previous_iteration_stats.rated_power previous_cut_in_wind_speed = previous_iteration_stats.cut_in_wind_speed previous_cp_max = previous_iteration_stats.cp_max iteration_zero_turbulence_curve = InitialZeroTurbulencePowerCurveIteration(self.integration_range.wind_speeds, self.available_power, previous_rated_power, previous_cut_in_wind_speed, previous_cp_max, self.density) iteration_simulated_curve = SimulatedPowerCurve(self.reference_wind_speeds, iteration_zero_turbulence_curve, self.reference_turbulence_values, self.integration_range, self.relaxation) iteration_simulated_curve_stats = IterationPowerCurveStats(iteration_simulated_curve.wind_speeds, iteration_simulated_curve.powers, self.available_power) convergence_check = IterationPowerCurveConvergenceCheck(self.reference_power_curve_stats, iteration_simulated_curve_stats) if convergence_check.isConverged: return previous_iteration_stats else: incremented_stats = IncrementedPowerCurveStats(previous_iteration_stats, convergence_check) return self.solve(incremented_stats, iteration_count + 1) class IterationPowerCurveConvergenceCheck(object): def __init__(self, reference_stats, iteration_stats): self.threshold_power_diff = reference_stats.rated_power * 0.001 self.threshold_cut_in_wind_speed_diff = 0.5 self.threshold_cp_max_diff = 0.01 self.rated_power_diff = iteration_stats.rated_power - reference_stats.rated_power self.cut_in_diff = iteration_stats.cut_in_wind_speed - reference_stats.cut_in_wind_speed self.cp_max_diff = iteration_stats.cp_max - reference_stats.cp_max self.rated_power_converged = abs(self.rated_power_diff) < self.threshold_power_diff self.cut_in_converged = abs(self.cut_in_diff) <= self.threshold_cut_in_wind_speed_diff self.cp_max_converged = abs(self.cp_max_diff) <= self.threshold_cp_max_diff self.isConverged = self.rated_power_converged and self.cut_in_converged and self.cp_max_converged class IncrementedPowerCurveStats(object): def __init__(self, previous_iteration_stats, convergence_check): if convergence_check.rated_power_converged: self.rated_power = previous_iteration_stats.rated_power else: self.rated_power = previous_iteration_stats.rated_power - convergence_check.rated_power_diff if convergence_check.cut_in_converged: self.cut_in_wind_speed = previous_iteration_stats.cut_in_wind_speed else: self.cut_in_wind_speed = previous_iteration_stats.cut_in_wind_speed - convergence_check.cut_in_diff if convergence_check.cp_max_converged: self.cp_max = previous_iteration_stats.cp_max else: self.cp_max = previous_iteration_stats.cp_max - convergence_check.cp_max_diff class InitialZeroTurbulencePowerCurveIteration(object): def __init__(self, wind_speeds, available_power, rated_power, cut_in_wind_speed, cp_max, density): self.wind_speeds = wind_speeds self.powers = [] self.rated_wind_speed = ((2.0 * rated_power * 1000.0) / (density * cp_max * available_power.area)) ** (1.0 / 3.0) self.rated_power = rated_power self.cut_in_wind_speed = cut_in_wind_speed self.cp_max = cp_max self.availablePower = available_power for wind_speed in self.wind_speeds: self.powers.append(self.power(wind_speed)) def power(self, wind_speed): if wind_speed > self.cut_in_wind_speed: if wind_speed < self.rated_wind_speed: return self.availablePower.power(wind_speed) * self.cp_max else: return self.rated_power else: return 0.0 class IterationPowerCurveStats(object): def __init__(self, wind_speeds, powers, available_power): self.rated_power = max(powers) threshold_power = self.rated_power * 0.001 operating_wind_speeds = [] cps = [] for i in range(len(wind_speeds)): wind_speed = wind_speeds[i] power = powers[i] cps.append(available_power.power_coefficient(wind_speed, power)) if power >= threshold_power: operating_wind_speeds.append(wind_speed) self.cp_max = max(cps) if len(operating_wind_speeds) > 0: self.cut_in_wind_speed = min(operating_wind_speeds) else: self.cut_in_wind_speed = 0.0 class SimulatedPower(object): def __init__(self, zero_turbulence_power_curve, integration_range): self.zero_turbulence_power_curve = zero_turbulence_power_curve self.integration_range = integration_range integration_powers = [] for wind_speed in np.nditer(self.integration_range.wind_speeds): integration_powers.append(self.zero_turbulence_power_curve.power(wind_speed)) self.integrationPowers = np.array(integration_powers) def power(self, wind_speed, turbulence): if wind_speed > 0: standard_deviation = wind_speed * turbulence integration_probabilities = self.integration_range.probabilities(wind_speed, standard_deviation) return np.sum(integration_probabilities * self.integrationPowers) / np.sum(integration_probabilities) else: return 0.0 class SimulatedPowerCurve(object): def __init__(self, wind_speeds, zero_turbulence_power_curve, turbulence_values, integration_range, relaxation): self.simulated_power = SimulatedPower(zero_turbulence_power_curve, integration_range) self.relaxation = relaxation self.wind_speeds = wind_speeds self.turbulence_values = turbulence_values self.powers = [] for i in range(len(wind_speeds)): wind_speed = wind_speeds[i] turbulence = self.relaxation.relax(wind_speed, turbulence_values[i]) power = self.simulated_power.power(wind_speed, turbulence) self.powers.append(power)
mit
ronnyandersson/zignal
zignal/audio.py
1
46119
''' Created on Dec 31, 2013 @author: Ronny Andersson ([email protected]) @copyright: (c) 2013 Ronny Andersson @license: MIT ''' # Standard library import logging import os # Third party import matplotlib.pyplot as plt import numpy as np import samplerate import scipy.io.wavfile import scipy.signal # ================================================================================================== # Classes # ================================================================================================== class Audio(object): def __init__(self, channels=0, fs=96000, nofsamples=0, duration=None, initialdata=None, dtype=np.float64): """Base class for audio processing. Samples are stored as a numpy array. We can create an instance by specifying a channel count and one of either a duration or a sample count parameter. The other way of creating an instance is by providing an already existing numpy array containing the audio samples. The shape of the audio samples are always (Nsamples_per_channel, Nchannels). """ self._logger = logging.getLogger(__name__) # We sometimes divide by the sample rate to get time values assert fs > 0, "sample rate cannot be zero or negative" self.fs = fs # sample rate should always be specified in the constructor self.nofsamples = None # number of samples per channel self.duration = None # duration (length) in seconds self.ch = None # number of channels self._comment = '' if initialdata is None: # if we are not given any initial samples we create an empty array of # zeros for the audio samples. assert isinstance(channels, int) assert not(nofsamples != 0 and duration is not None), \ "choose either samples or duration" self.ch = channels if duration is not None: self.nofsamples = int(duration*self.fs) self.duration = duration else: self.nofsamples = nofsamples self._set_duration() # create space for the samples self.samples = np.zeros((self.nofsamples, self.ch), dtype=dtype) else: # An array of initial samples are given, use this to extract # channel count and durations. assert isinstance(initialdata, np.ndarray), \ 'Only numpy arrays are allowed as initial data' assert channels == 0, \ "parameter 'channels' is redundant if initial data is specified" assert nofsamples == 0, \ "parameter 'nofsamples' is redundant if initial data is specified" assert duration is None, \ "parameter 'duration' is redundant if initial data is specified" # copy the data to avoid unexpected data corruption self.samples = initialdata.copy() if self.samples.ndim == 1: # if the array is # array([ 1., 1., 1.]) # we expand it to # array([[ 1.], # [ 1.], # [ 1.]]) # self.samples = np.expand_dims(self.samples, axis=1) assert self.samples.ndim == 2, 'shape must be (Nsamples, Nchannels)' self.nofsamples, self.ch = self.samples.shape # initial data is assumed to have more samples than channels assert self.nofsamples > self.ch, 'shape must be (Nsamples, Nchannels)' self._set_duration() assert self.nofsamples is not None assert self.duration is not None assert self.ch is not None def __str__(self): s = '=======================================\n' s += 'classname : %s\n' % self.__class__.__name__ s += 'sample rate : %.1f [Hz]\n' % self.fs s += 'channels : %i\n' % self.ch s += 'duration : %.3f [s]\n' % self.duration s += 'datatype : %s\n' % self.samples.dtype s += 'samples per ch : %i\n' % self.nofsamples s += 'data size : %.3f [Mb]\n' % (self.samples.nbytes/(1024*1024)) s += 'has comment : %s\n' % ('yes' if len(self._comment) != 0 else 'no') if self.ch != 0: # += '-----------------:---------------------\n' s += 'peak : %s\n' % np.array_str(self.peak()[0], precision=4, suppress_small=True) s += 'RMS : %s\n' % np.array_str(self.rms(), precision=4, suppress_small=True) s += 'crestfactor : %s\n' % np.array_str(self.crest_factor(), precision=4, suppress_small=True) s += '-----------------:---------------------\n' return s def __len__(self): return self.nofsamples def _set_duration(self): """internal method If we have modified the samples variable (by padding with zeros for example) we need to re-calculate the duration """ self.duration = self.nofsamples/self.fs def _set_samples(self, idx=0, samples=None): """internal method NOTE: idx != channel idx is always zero indexed since it refers to the numpy array. Channels are always indexed from one since this is the natural way of identifying channel numbers. """ assert isinstance(samples, np.ndarray) assert len(samples) == self.nofsamples self.samples[:, idx] = samples def copy(self): """deep:ish copy""" return Audio(fs=self.fs, initialdata=self.samples) def pretty_string_samples(self, idx_start=0, idx_end=20, precision=4, header=False): s = '' if header: t = ' ' u = 'ch' for i in range(self.ch): t += '-------:' u += ' %2i :' % (i+1) t += '\n' u += '\n' s += t # --> -------:-------:-------: s += u # --> ch 1 : 2 : 3 : s += t # --> -------:-------:-------: s += np.array_str(self.samples[idx_start:idx_end, :], max_line_width=260, # we can print 32 channels before linewrap precision=precision, suppress_small=True) if (idx_end-idx_start) < self.nofsamples: s = s[:-1] # strip the right ']' character s += '\n ...,\n' lastlines = np.array_str(self.samples[-3:, :], max_line_width=260, precision=precision, suppress_small=True) s += ' %s\n' % lastlines[1:] # strip first '[' return s def pad(self, nofsamples=0): """Zero pad *at the end* of the current audio data. increases duration by samples/fs """ assert nofsamples >= 0, "Can't append negative number of samples" zeros = np.zeros((nofsamples, self.ch), dtype=self.samples.dtype) self.samples = np.append(self.samples, zeros, axis=0) self.nofsamples = len(self.samples) self._set_duration() def iter_chunks(self, chunksize=1024): """ Splits the audio samples into chunks, to iterate over in block-based processing. There are no restrictions on the chunk size, but in practical implementations it is usually a power of two. This is not a requirement here. Chunks are sometimes called blocks, this is the same. So chunksize is the same as blocksize. """ chunks = len(self.samples) // chunksize missing = len(self.samples) % chunksize self._logger.debug("chunksize : %i", chunksize) self._logger.debug("data shape : %s", self.samples.shape) self._logger.debug("chunks pre pad : %i", chunks) self._logger.debug("missing (modulo) : %i", missing) # If the data doesn't add up to a full chunk we need to pad with zeros but # first we need to calculate how many samples are missing for a full chunk. if missing: missing_samples = chunksize - missing self._logger.debug("missing (samples): %s", missing_samples) # Pad with zeros, assuming that all channels are equally long in the # first place. A new array is created since the original data should # be kept unchanged. This means that this iterator is not very memory # efficient. This can be avoided if the data is padded to add up to # a multiple of the chunksize before this method is called. If this is # acceptable (changing the original data) then this iterator is very # memory efficient since only a new view of the original data is # created (if possible, not guaranteed) padded = np.concatenate([self.samples, np.zeros((missing_samples, self.ch))]) self._logger.debug("padded shape : %s", padded.shape) else: # Here the audio samples adds up to a multiple of the chunksize self._logger.debug("*** No padding is needed") padded = self.samples padded_chunks = len(padded) // chunksize self._logger.info("chunks (total) : %i", padded_chunks) reshape = padded.reshape((padded_chunks, chunksize, self.ch)) # Now finally iterate over all the chunks for i in range(padded_chunks): curr_start = chunksize*i curr_stop = curr_start + chunksize - 1 self._logger.debug("current slice : %10i %10i", curr_start, curr_stop) yield reshape[i] def is_empty(self): """Check if all samples in all channels are zero, then file is empty.""" return np.all(self.samples == 0) def is_probably_empty(self, limit=-80): """Check if the absolute peak is below <limit> dB""" peak, idx = self.peak() peak = np.abs(peak) self._logger.debug("abs(peak) is %s dB at %s sec", np.array_str(lin2db(peak), precision=4, suppress_small=True), np.array_str(idx/self.fs, precision=3, suppress_small=True), ) return np.all(peak <= db2lin(limit)) def trim(self, start=None, end=None): """Trim samples **IN PLACE** """ self.samples = self.samples[start:end] self.nofsamples = len(self.samples) self._set_duration() def trim_sec(self, start=None, end=None): """Trim (in seconds) **IN PLACE** """ self.trim(int(start*self.fs), int(end*self.fs)) def _fade(self, millisec, direction): """Internal method. Fade in/out is essentially the same exept the slope (and position) of the ramp. Currently only a linear ramp is implemented. """ assert np.issubdtype(self.samples.dtype, np.floating), \ "only floating point processing implemented" assert millisec >= 0, "Got a time machine?" assert direction in ("in", "out") fade_seconds = millisec/1000 assert self.duration > fade_seconds, "fade cannot be longer than the length of the audio" sample_count = int(np.ceil(fade_seconds*self.fs)) self._logger.debug("fade %s sample count: %i" % (direction, sample_count)) # generate the ramp if direction == "out": # ramp down ramp = np.linspace(1, 0, num=sample_count, endpoint=True) else: # ramp up ramp = np.linspace(0, 1, num=sample_count, endpoint=True) ones = np.ones(len(self)-len(ramp)) # glue the ones and the ramp together if direction == "out": gains = np.append(ones, ramp, axis=0) else: gains = np.append(ramp, ones, axis=0) # expand the dimension so we get a one channels array of samples, # as in (samples, channels) gains = np.expand_dims(gains, axis=1) assert len(gains) == len(self) # repeat the gain vector so we get as many gain channels as all the channels gains = np.repeat(gains, self.ch, axis=1) assert gains.shape == self.samples.shape # apply gains self.samples = self.samples * gains def fade_in(self, millisec=10): """Fade in over 'millisec' seconds. Applies on *all* channels""" self._fade(millisec, "in") def fade_out(self, millisec=30): """Fade out over 'millisec' seconds. Applies on *all* channels""" self._fade(millisec, "out") def delay(self, n, channel=1): """Delay channel x by n samples""" self.samples[:, channel-1] = \ np.pad(self.samples[:, channel-1], (n, 0), mode="constant")[:-n] def get_time(self): """Return a vector of time values, starting with t0=0. Useful when plotting.""" return np.linspace(0, self.duration, num=self.nofsamples, endpoint=False) def get_channel(self, channel): assert channel != 0, "channel count starts at 1" assert channel <= self.ch, \ "channel %i does not exist, %i channels available" % (channel, self.ch) return Audio(fs=self.fs, initialdata=self.samples[:, channel-1]) def comment(self, comment=None): """Modify or return a string comment.""" assert isinstance(comment, (str, type(None))), "A comment is a string" if comment is not None: self._comment = comment return self._comment def to_mono(self): """Mix down to mono, reduces the channel count to 1. """ # FIXME: this only works on floats, not ints # sum all samples, do the actual mix samples_mono = np.sum(self.samples, axis=1) # return a new instance since any subclass data is lost mono = Audio(fs=self.fs, initialdata=samples_mono) # Two correlated signals will have a combined gain of 2, so we need to # reduce the gain to not overflow. We reduce the gain by 1 over the # number of channels. # 1/1 = 1.00 --> 0 [dB] # 1/2 = 0.50 --> -6.02... [dB] # 1/3 = 0.33... --> -9.54... [dB] # 1/4 = 0.25 --> -12.04... [dB] gain = lin2db(1/self.ch) self._logger.debug("Total gain reduction: %.3f [dB]", gain) mono.gain(gain) return mono def append(self, *args): """Add (append) channels *to the right* of the current audio data. does zeropadding increases channel count """ for i, other in enumerate(args): assert isinstance(other, Audio), "only Audio() instances can be used" self._logger.debug( "** iteration %02i --> appending %s" % ((i+1), other.__class__.__name__)) assert self.fs == other.fs, "Sample rates must match (%s != %s)" % (self.fs, other.fs) assert self.samples.dtype == other.samples.dtype, \ "Data types must match (%s != %s)" % (self.samples.dtype, other.samples.dtype) max_nofsamples = max(self.nofsamples, other.nofsamples) missingsamples = abs(self.nofsamples - other.nofsamples) self._logger.debug("max nof samples: %i" % max_nofsamples) self._logger.debug( "appending %i new channel(s) and %i samples" % (other.ch, missingsamples)) if self.nofsamples > other.nofsamples: self._logger.debug("self.nofsamples > other.nofsamples") tmp = np.append(other.samples, np.zeros(((missingsamples), other.ch), dtype=other.samples.dtype), axis=0) self.samples = np.append(self.samples, tmp, axis=1) elif self.nofsamples < other.nofsamples: self._logger.debug("self.nofsamples < other.nofsamples") tmp = np.append(self.samples, np.zeros(((missingsamples), self.ch), dtype=self.samples.dtype), axis=0) self.samples = np.append(tmp, other.samples, axis=1) else: self._logger.debug("self.nofsamples == other.nofsamples") self.samples = np.append(self.samples, other.samples, axis=1) self.ch = self.ch+other.ch self.nofsamples = max_nofsamples self._set_duration() def concat(self, *args): """Concatenate (append) samples *after* the current audio data. example: x1 = 1234 x2 = 5678 x1.concat(x2) --> 12345678 """ for i, other in enumerate(args): assert isinstance(other, Audio), "only Audio() instances can be used" self._logger.debug( "** iteration %02i --> appending %s" % ((i+1), other.__class__.__name__)) assert self.fs == other.fs, "Sample rates must match (%s != %s)" % (self.fs, other.fs) assert self.samples.dtype == other.samples.dtype, \ "Data types must match (%s != %s)" % (self.samples.dtype, other.samples.dtype) assert self.ch == other.ch, "channel count must match" self.samples = np.append(self.samples, other.samples, axis=0) self.nofsamples = len(self.samples) self._set_duration() def gain(self, *args): """Apply gain to the audio samples. Always specify gain values in dB. Converts **IN PLACE** """ self._logger.debug('gains: %s' % str(args)) dt = self.samples.dtype lin = db2lin(args) # apply the (linear) gain self.samples = lin*self.samples # make sure that the data type is retained self.samples = self.samples.astype(dt) def rms(self): """Calculate the RMS (Root Mean Square) value of the audio data. Returns the RMS value for each individual channel """ if not (self.samples == 0).all(): if np.issubdtype(self.samples.dtype, np.floating): rms = np.sqrt(np.mean(np.power(self.samples, 2), axis=0)) else: # use a bigger datatype for ints since we most likely will # overflow when calculating to the power of 2 bigger = np.asarray(self.samples, dtype=np.int64) rms = np.sqrt(np.mean(np.power(bigger, 2), axis=0)) elif len(self.samples) == 0: # no samples are set but channels are configured rms = np.zeros(self.ch) rms[:] = float('nan') else: rms = np.zeros(self.ch) return rms def peak(self): """Calculate peak sample value (with sign)""" if len(self.samples) != 0: if np.issubdtype(self.samples.dtype, np.floating): idx = np.absolute(self.samples).argmax(axis=0) else: # We have to be careful when checking two's complement since the absolute value # of the smallest possible value can't be represented without overflowing. For # example: signed 16bit has range [-32768, 32767] so abs(-32768) cannot be # represented in signed 16 bits --> use a bigger datatype bigger = np.asarray(self.samples, dtype=np.int64) idx = np.absolute(bigger).argmax(axis=0) peak = np.array([self.samples[row, col] for col, row in enumerate(idx)]) else: # no samples are set but channels are configured idx = np.zeros(self.ch, dtype=np.int64) peak = np.zeros(self.ch) peak[:] = float('nan') return peak, idx def crest_factor(self): """Calculate the Crest Factor (peak over RMS) value of the audio. Returns the crest factor value for each channel. Some common crest factor values: sine : 1.414... MLS : 1 (if no emphasis filter is applied) impulse : very high. The value gets higher the longer the length of the audio data. square : 1 (ideal square) zeros : NaN (we cannot calculate 0/0) """ rms = self.rms() assert len(rms) != 0 with np.errstate(invalid='ignore'): # if the rms is zero we will get division errors. Ignore them. if len(self.samples) != 0: crest = np.abs(self.samples).max(axis=0)/rms else: # no samples are set but channels are configured crest = np.zeros(self.ch) crest[:] = float('nan') return crest def convert_to_integer(self, targetbits=16): """Scale floating point values between [-1.0, 1.0] to the equivalent signed integer value. Converts **IN PLACE** Note: 24 bit signed integers and 8 bit unsigned integers currently unsupported. """ assert targetbits in (8, 16, 32, 64) assert self.samples.dtype in (np.int8, np.int16, np.int32, np.int64, np.float32, np.float64) dt = { 8 : 'int8', 16 : 'int16', 32 : 'int32', 64 : 'int64', } sourcebits = self.samples.itemsize * 8 if self.samples.dtype in (np.float32, np.float64): self._logger.debug( "source is %02i bits (float), target is %2i bits (integer)" % (sourcebits, targetbits)) self.samples = np.array(self.samples*(2**(targetbits-1)-1), dtype=dt.get(targetbits)) else: self._logger.debug( "source is %02i bits (integer), target is %2i bits (integer)" % (sourcebits, targetbits)) raise NotImplementedError("TODO: implement scale int->int") def convert_to_float(self, targetbits=64): """Scale integer values to equivalent floating point values between [-1.0, 1.0]. Converts **IN PLACE** """ assert targetbits in (32, 64) assert self.samples.dtype in (np.int8, np.int16, np.int32, np.int64, np.float32, np.float64) dt = {32 : 'float32', 64 : 'float64'} sourcebits = self.samples.itemsize * 8 if self.samples.dtype in (np.int8, np.int16, np.int32, np.int64): self._logger.debug( "source is %02i bits (integer), target is %2i bits (float)" % (sourcebits, targetbits)) self.samples = np.array(self.samples/(2**(sourcebits-1)), dtype=dt.get(targetbits)) else: self._logger.debug( "source is %02i bits (float), target is %2i bits (float)" % (sourcebits, targetbits)) self.samples = np.array(self.samples, dtype=dt.get(targetbits)) def write_wav_file(self, filename=None): """Save audio data to .wav file.""" assert filename is not None, "Specify a filename, for example 'filename=audio.wav'" self._logger.debug("writing file %s" % filename) if self.samples.dtype == np.float64: self._logger.warn("datatype is %s" % self.samples.dtype) try: scipy.io.wavfile.write(filename, int(self.fs), self.samples) except: # noqa: E722 self._logger.exception("Could not write file: '%s'" % filename) def plot(self, ch=1, plotname=None, plotrange=(None, None), **kwargs): """Plot the audio data on a time domain plot. example: x1 = Sinetone(f0=0.2, fs=10, nofsamples=50) x1.plot(linestyle='--', marker='x', color='r', label='sine at 0.2Hz') """ if ch != 'all': assert ch-1 < self.ch, "channel does not exist" if plotrange[0] is None: plotrange = (0, plotrange[1]) if plotrange[1] is None: plotrange = (plotrange[0], self.duration) assert plotrange[0] >= 0 and plotrange[1] <= self.duration, "plotrange is out of bounds" assert plotrange[0] <= plotrange[1], "malformed plotrange" # Any fractional samples are truncated here samplerange = (int(plotrange[0]*self.fs), int(plotrange[1]*self.fs)) timerange = np.linspace( plotrange[0], plotrange[1], num=samplerange[1]-samplerange[0], endpoint=False) plt.figure(1) plt.title("%s" % self.__class__.__name__) if ch != 'all': plt.plot(timerange, self.samples[samplerange[0]:samplerange[1], ch-1], **kwargs) else: plt.plot(timerange, self.samples[samplerange[0]:samplerange[1], :], **kwargs) plt.xlabel('Time [s]') plt.ylabel('Amplitude [linear]') if 'label' in kwargs: plt.legend(loc='best') plt.grid(True) if plotname is None: plt.show() else: plt.savefig(plotname) plt.close(1) def plot_fft(self, plotname=None, window='hann', normalise=True, **kwargs): """Make a plot (in the frequency domain) of all channels""" ymin = kwargs.get('ymin', -160) # dB freq, mag = self.fft(window=window, normalise=normalise) fig_id = 1 plt.figure(fig_id) #plt.semilogx(freq, mag, **kwargs) # plots all channel directly for ch in range(self.ch): plt.semilogx(freq, mag[:, ch], label='ch%2i' % (ch+1)) plt.xlim(left=1) # we're not interested in freqs. below 1 Hz plt.ylim(bottom=ymin) plt.xlabel('Frequency [Hz]') plt.ylabel('Magnitude [dB]') plt.legend(loc='best') plt.grid(True) if plotname is None: plt.show() else: plt.savefig(plotname) plt.close(fig_id) def fft(self, window='hann', normalise=True): """Calculate the FFT of all channels. Returns data up to fs/2""" fftsize = self.nofsamples # Avoid Mersenne Primes if fftsize in [(2**13)-1, (2**17)-1, (2**19)-1, (2**31)-1]: self._logger.warn("FFT size is a Mersenne Prime, increasing size by 1") fftsize = fftsize+1 self._logger.debug("fftsize: %i" % fftsize) self._logger.debug("window : %s" % str(window)) win = scipy.signal.windows.get_window(window, Nx=self.nofsamples) # not fftsize! win = np.expand_dims(win, axis=1) y = self.samples*win Y = np.fft.fft(y, n=fftsize, axis=0) if normalise: Y = Y/fftsize mag = lin2db(np.abs(Y)) frq = np.fft.fftfreq(fftsize, 1/self.fs) frq = frq[:int(fftsize/2)] mag = mag[:int(fftsize/2)] return frq, mag def dither(self, bits=16, distribution='TPDF'): raise NotImplementedError('TODO') assert distribution == 'TPDF', \ "Only the Triangular Probability Density Function is implemented" # Triangular Probability Density Function #noise = np.random.triangular(-1, 0, 1, self.samples.shape) def decimate(self, N): """ Throw away samples. Keep every Nth sample. Converts **IN PLACE** This is half of a downsampler. The other half would be to make sure that the sampling theorem isn't violated for the new sample rate. So the appropriate low pass filtering has to be done on the audio before this metod is called, otherwise aliasing might occur. """ self._logger.debug("decimate by factor N: %i", N) # Use the slice operator. Efficient and fast. Will silently ignore the # last incomplete chunk; for example 100 decimated by 3 leaves 1 # sample at the end that cannot be used. self.samples = self.samples[::N] self._logger.debug("decimated: %s", self.samples.shape) self.nofsamples = len(self.samples) self.set_sample_rate(self.fs/N) def resample(self, targetrate=8000, converter_type="sinc_best"): """Use the python bindings for the Secret Rabbit Code library (aka libsamplerate) to perform sample rate conversion. Converts **IN PLACE** https://pypi.org/project/samplerate/ http://www.mega-nerd.com/SRC/index.html """ # From API docs: # src_ratio : Equal to output_sample_rate / input_sample_rate. ratio = targetrate / self.fs self._logger.debug( "source: %.2f destination: %.2f ratio %f", self.fs, targetrate, ratio) # We can use the simple API here since we always operate on the whole # audio clip. See http://www.mega-nerd.com/SRC/api_simple.html self.samples = samplerate.resample( self.samples, ratio, converter_type=converter_type) # The number of samples have changed, that is the whole point of # this operation. Get the new values and calculate the new duration, # hopefully that shouldn't change too much. self.nofsamples, self.ch = self.samples.shape self.fs = targetrate self._set_duration() def set_sample_rate(self, new_fs): """Change the sample rate fs *without* up/down sample conversion. This would be the same as changing the playback speed. All data is left intact and only the time parameters (fs and duration) are changed. """ ratio = new_fs/self.fs self.fs = new_fs self._logger.debug('ratio: %.3f' % ratio) self._set_duration() return ratio def normalise(self): """Normalise samples so that the new range is [-1.0, 1.0] for floats Converts **IN PLACE** TODO: verify [-2^n, 2^n-1] for ints """ peaks, unused_idx = self.peak() self._logger.debug("raw peaks: %s" % peaks) max_abs = np.max(np.absolute(peaks)) self._logger.debug("max_abs: %s" % max_abs) self.samples = self.samples/max_abs peaks, unused_idx = self.peak() self._logger.debug("new peaks: %s" % peaks) # ================================================================================================== # Audio sub-classes # ================================================================================================== class Sinetone(Audio): def __init__(self, f0=997, fs=96000, duration=None, gaindb=0, nofsamples=0, phasedeg=0): """Generate a sine tone""" assert f0 < fs/2, "Sampling theorem is violated" Audio.__init__(self, channels=1, fs=fs, nofsamples=nofsamples, duration=duration) self.f0 = f0 self.phasedeg = phasedeg self._set_samples(idx=0, samples=self._sine_gen(f0, phasedeg)) self.gain(gaindb) def _sine_gen(self, freq, pha): return np.sin(2*np.pi*freq*self.get_time()+np.deg2rad(pha)) def __repr__(self): assert self.ch == 1, "If a channel has been appended we don't know anything about its data" s = 'Sinetone(f0=%r, fs=%r, nofsamples=%r, gaindb=%r, phasedeg=%r)' \ % (self.f0, self.fs, self.nofsamples, lin2db(abs(float(self.peak()[0]))), # only one channel here. self.phasedeg) return s def __str__(self): s = Audio.__str__(self) s += 'frequency : %.1f [Hz]\n' % self.f0 s += 'phase : %.1f [deg]\n' % self.phasedeg s += '-----------------:---------------------\n' return s def set_sample_rate(self, new_fs): ratio = Audio.set_sample_rate(self, new_fs) self.f0 = ratio * self.f0 class Sinetones(Sinetone): def __init__(self, *args, **kwargs): """Generate multiple sinetones. This is a quick way to generate multichannel audio. Each positional argument generates a sinetone at that channel. Setting the frequency to 0 guarantees that the channel is muted (contains samples with the value 0). Keywords accepted are similar to the ones used in the Sinetone() class. Example: >>> x = Sinetones(200, 500, 900, fs=24000, duration=1.5, gaindb=-6, phasedeg=0) >>> print(x) ======================================= classname : Sinetones sample rate : 24000.0 [Hz] channels : 3 duration : 1.500 [s] datatype : float64 samples per ch : 36000 data size : 0.824 [Mb] has comment : no peak : [ 0.5012 0.5012 -0.5012] RMS : [ 0.3544 0.3544 0.3544] crestfactor : [ 1.4142 1.4142 1.4142] -----------------:--------------------- phase (all ch) : 0.0 [deg] : channel 1 : 200.0 [Hz] channel 2 : 500.0 [Hz] channel 3 : 900.0 [Hz] -----------------:--------------------- >>> The gaindb argument can be an iterable of the same length as the number of frequencies specified. In this case a gain can be applied individually for each channel. >>> x = Sinetones(1000, 2000, duration=1, gaindb=(-6, -20)) A list can be used as the argument for the frequencies. Use the * notation to expand the list: >>> import numpy as np >>> f = np.zeros(8) >>> f[3] = 700 >>> f[7] = 2000 >>> x = Sinetones(*f, duration=1) >>> print(x) ======================================= classname : Sinetones sample rate : 96000.0 [Hz] channels : 8 duration : 1.000 [s] datatype : float64 samples per ch : 96000 data size : 5.859 [Mb] has comment : no peak : [ 0. 0. 0. -1. 0. 0. 0. 1.] RMS : [ 0. 0. 0. 0.7071 0. 0. 0. 0.7071] crestfactor : [ nan nan nan 1.4142 nan nan nan 1.4142] -----------------:--------------------- phase (all ch) : 0.0 [deg] : channel 1 : channel 2 : channel 3 : channel 4 : 700.0 [Hz] channel 5 : channel 6 : channel 7 : channel 8 : 2000.0 [Hz] -----------------:--------------------- >>> The argument phasedeg applies to all channels. """ fs = kwargs.pop('fs', 96000) duration = kwargs.pop('duration', None) nofsamples = kwargs.pop('nofsamples', 0) self._gaindb = kwargs.pop('gaindb', 0) self.phasedeg = kwargs.pop('phasedeg', 0) self.frequencies = args for frequency in self.frequencies: assert frequency < fs/2, "Sampling theorem is violated for frequency %.1f" % frequency if not isinstance(self._gaindb, int): assert len(self._gaindb) == len(self.frequencies), \ "set as many gains as channels used: %i != %i" % (len(self._gaindb), len(self.frequencies)) Audio.__init__(self, channels=len(self.frequencies), fs=fs, nofsamples=nofsamples, duration=duration) for i, frequency in enumerate(self.frequencies): if frequency != 0: self._set_samples(idx=i, samples=self._sine_gen(frequency, self.phasedeg)) else: pass # channel is silence self.gain(self._gaindb) def __repr__(self): s = 'Sinetones(*%r, fs=%r, nofsamples=%r, gaindb=%r, phasedeg=%r)' \ % (list(self.frequencies), self.fs, self.nofsamples, self._gaindb, self.phasedeg) return s def __str__(self): s = Audio.__str__(self) s += 'phase (all ch) : %.1f [deg]\n' % self.phasedeg s += ' :\n' for i, frequency in enumerate(self.frequencies): if frequency != 0: s += 'channel %2i : %.1f [Hz]\n' % (i+1, frequency) else: s += 'channel %2i :\n' % (i+1) s += '-----------------:---------------------\n' return s def set_sample_rate(self, new_fs): ratio = Audio.set_sample_rate(self, new_fs) self.frequencies = [ratio*f for f in self.frequencies] class SquareWave(Audio): def __init__(self, f0=997, fs=96000, duration=None, gaindb=0, nofsamples=0, phasedeg=0, dutycycle=0.5): """Generate an ideal squarewave.""" assert f0 < fs/2, "Sampling theorem is violated" assert dutycycle < 1 and dutycycle > 0 Audio.__init__(self, channels=1, fs=fs, nofsamples=nofsamples, duration=duration) self.f0 = f0 self.phasedeg = phasedeg self.dutycycle = dutycycle samples = scipy.signal.square(2*np.pi*f0*self.get_time()+np.deg2rad(phasedeg), duty=dutycycle) self._set_samples(idx=0, samples=samples) self.gain(gaindb) def __repr__(self): assert self.ch == 1, "If a channel has been appended we don't know anything about its data" s = 'SquareWave(f0=%r, fs=%r, gaindb=%r, nofsamples=%r, phasedeg=%r, dutycycle=%r)' \ % (self.f0, self.fs, lin2db(abs(float(self.peak()[0]))), # only one channel here. self.nofsamples, self.phasedeg, self.dutycycle) return s def __str__(self): s = Audio.__str__(self) s += 'frequency : %.1f [Hz]\n' % self.f0 s += 'phase : %.1f [deg]\n' % self.phasedeg s += 'duty cycle : %.3f (%4.1f%%)\n' % (self.dutycycle, self.dutycycle*100) s += '-----------------:---------------------\n' return s def set_sample_rate(self, new_fs): ratio = Audio.set_sample_rate(self, new_fs) self.f0 = ratio * self.f0 class FourierSeries(Sinetone): def __init__(self, f0=997, fs=96000, duration=None, gaindb=0, nofsamples=0, phasedeg=0, harmonics=7,): """Construct a square wave by adding odd harmonics with decreasing amplitude, i.e. Fourier Series. """ Sinetone.__init__(self, f0=f0, phasedeg=phasedeg, fs=fs, nofsamples=nofsamples, duration=duration, gaindb=0) assert harmonics >= 0 self.harmonics = harmonics self._logger.debug("fundamental f0: %.1f" % f0) for n in range(3, 2*(self.harmonics+1), 2): if n <= 15: self._logger.debug("adding harmonic n: %2i with amplitude 1/%i" % (n, n)) if n == 17: self._logger.debug("adding %i more harmonics..." % (self.harmonics-(n-3)//2)) #self.samples[:,0] += np.sin(2*np.pi*(n*f0)*self.get_time()+np.deg2rad(phasedeg*n))/n self.samples[:, 0] += (1/n)*self._sine_gen(n*f0, n*phasedeg) self.gain(gaindb) def __repr__(self): assert self.ch == 1, "If a channel has been appended we don't know anything about its data" s = 'FourierSeries(f0=%r, fs=%r, gaindb=%r, nofsamples=%r, phasedeg=%r, harmonics=%r)' \ % (self.f0, self.fs, lin2db(abs(float(self.peak()[0]))), # only one channel here. self.nofsamples, self.phasedeg, self.harmonics) return s def __str__(self): s = Sinetone.__str__(self) s = s.rstrip('-----------------:---------------------\n') s += '\n' s += 'harmonics : %i \n' % self.harmonics s += '-----------------:---------------------\n' return s class Noise(Audio): colours = ('white', 'pink', 'brown', 'blue', 'violet', 'grey') def __init__(self, channels=1, fs=96000, duration=None, gaindb=-10, nofsamples=0, colour='white'): """Generate uncorrelated noise. white : flat power spectral density pink : -3dB per octave brown(ian) : -6dB per octave blue : +3dB per octave violet : +6dB per octave grey : equal loudness """ assert colour in Noise.colours, "choose the colour of the noise: %s" % str(Noise.colours) Audio.__init__(self, channels=channels, fs=fs, nofsamples=nofsamples, duration=duration) # the distribution in np.random.uniform is half open, i.e -1.0 is # included but 1.0 is not. Possible fix: use integers instead, then # scale to floats. Might not work, since the integers will be # represented using twos complement and we then have an asymmetrical # range anyhow. self._colour = colour # first generate uniformly distributed noise, i.e. white noise. Then filter # to get the required shape. for ch in range(channels): self._set_samples(idx=ch, samples=np.random.uniform(low=-1.0, high=1.0, size=self.nofsamples)) if self._colour == 'pink': # -3dB per octave self._logger.debug("filtering to get pink noise") # http://dsp.stackexchange.com/q/322/6999 B = [0.049922035, -0.095993537, 0.050612699, -0.004408786] A = [1, -2.494956002, 2.017265875, -0.522189400] self.samples = scipy.signal.lfilter(B, A, self.samples, axis=0) elif self._colour == 'brown': # -6dB per octave raise NotImplementedError('TODO') elif self._colour == 'blue': # +3dB per octave raise NotImplementedError('TODO') elif self._colour == 'violet': # +6dB per octave raise NotImplementedError('TODO') elif self._colour == 'grey': # equal loudness raise NotImplementedError('TODO') self.gain(gaindb) def __str__(self): s = Audio.__str__(self) s += 'colour : %s\n' % self._colour s += '-----------------:---------------------\n' return s class WavFile(Audio): def __init__(self, filename=None, scale2float=True): """Read a .wav file from disk""" assert filename is not None, "Specify a filename" self.filename = filename fs, samples = scipy.io.wavfile.read(filename) if samples.ndim == 1: samples = np.expand_dims(samples, axis=1) Audio.__init__(self, fs=fs, initialdata=samples) del samples # just to make sure if scale2float: self.convert_to_float(targetbits=64) def __str__(self): s = Audio.__str__(self) s += 'filename : %s\n' % os.path.basename(self.filename) s += '-----------------:---------------------\n' return s # ================================================================================================== # Functions # ================================================================================================== def lin2db(lin): with np.errstate(divide='ignore'): # linear value 0 is common (as -inf dB) so we ignore any division warnings db = 20*np.log10(lin) return db def pow2db(power): with np.errstate(divide='ignore'): # ignore any division warnings db = 10*np.log10(power) return db def db2lin(db): lin = np.power(10, np.array(db)/20) return lin def db2pow(db): power = np.power(10, np.array(db)/10) return power def speed_of_sound(temperature=20, medium='air'): """The speed of sound is depending on the medium and the temperature. For air at a temperature of 20 degree Celcius the speed of sound is approximately 343 [m/s] """ assert medium in ['air', ], "TODO: water, iron" c = float('nan') if medium == 'air': c = 331.3*np.sqrt(1+temperature/273.15) return c def wavelength(frequency, speed=343.2): """Calculate the wavelength l of frequency f given the speed (of sound)""" length = speed/frequency return length def rad2hz(w0, fs=96000): """Calculate a normalised rotational frequency so that w0=2*pi --> f0=fs w0 f0 = fs * ------ 2*pi """ return fs*np.array(w0)/(2*np.pi) def hz2rad(f0, fs=96000): """Calculate a normalised angular frequency so that f0=fs --> w0=2*pi 1 w0 = ----- * 2*pi*f0 fs """ return (1/fs)*2*np.pi*np.array(f0) __all__ = [ # classes 'Audio', 'Sinetone', 'Sinetones', 'SquareWave', 'FourierSeries', 'Noise', 'WavFile', # functions 'lin2db', 'pow2db', 'db2lin', 'db2pow', 'speed_of_sound', 'wavelength', 'rad2hz', 'hz2rad', ] if __name__ == '__main__': logging.basicConfig( format='%(levelname)-7s: %(module)s.%(funcName)-15s %(message)s', level='DEBUG', ) logging.getLogger("matplotlib").setLevel(logging.INFO) print('-- Done --')
mit
ahuang11/ahh
setup.py
1
1228
from setuptools import setup, find_packages import sys import glob sys.path.append('builder/') from conf import source_version __author__ = '[email protected]' __copyright__ = 'Andrew Huang' setup(name='ahh', license='MIT', version=source_version, description='Functions that I can easily reference, and maybe you too!', packages=find_packages(exclude=['cartopy', 'basemap']), install_requires=[ 'matplotlib', 'numpy', 'pandas', 'xarray', 'netCDF4', 'bokeh', 'scipy', ], author='Andrew Huang', author_email='[email protected]', url='https://github.com/ahuang11/ahh', keywords=['data', 'visualization', 'analysis', 'streamline', 'andrew', 'huang', 'helps'], include_package_data=True, classifiers=[ 'Development Status :: 4 - Beta', 'Topic :: Scientific/Engineering :: Visualization', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', ], )
mit
CalebBell/fluids
docs/plots/contraction_conical_plot.py
1
1411
import matplotlib.pyplot as plt import numpy as np from fluids.fittings import contraction_conical_methods, contraction_conical styles = ['--', '-.', '-', ':', '.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4'] D_ratios = np.linspace(1-1e-9, .01, 100) angles = np.array([[2, 4, 8, 10], [15, 20, 25, 30], [45, 60, 90, 120], [135, 150, 165, 180]]) f, axarr = plt.subplots(4, 4) for angle, axes in zip(angles.ravel(), axarr.ravel()): for method, style in zip(contraction_conical_methods, styles): Ks = [contraction_conical(Di1=1, Di2=Di, Re=1E6, angle=angle, method=method) for Di in D_ratios] Ds2 = D_ratios**2 axes.plot(Ds2, Ks, label=method) # + ', angle = ' + str(angle) #axes.legend() axes.set_title(r'$%g^\circ$ Angle' %angle) #axes.set_xlabel('Area ratio') #axes.set_ylabel('K') for item in ([axes.title, axes.xaxis.label, axes.yaxis.label] + axes.get_xticklabels() + axes.get_yticklabels()): item.set_fontsize(6.5) ttl = axes.title.set_position([.5, .93]) plt.subplots_adjust(wspace=.35, hspace=.35) f.suptitle('Comparison of available methods for conical pipe contractions\n Area ratio (x) vs. Loss coefficient (y)') plt.legend(loc='upper center', bbox_to_anchor=(1.65, 4.7)) plt.subplots_adjust(right=0.82) #plt.show()
mit
soulmachine/scikit-learn
sklearn/utils/tests/test_random.py
20
3872
from __future__ import division import numpy as np from scipy.misc import comb as combinations from sklearn.utils.random import sample_without_replacement from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected))
bsd-3-clause
0x0all/scikit-learn
sklearn/linear_model/tests/test_ridge.py
2
22917
import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): """Ridge regression convergence test using score TODO: for this test to be robust, we should use a dataset instead of np.random. """ rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) # Test for fit_intercept = True est = Ridge(alpha=alpha, solver=solver) est.fit(X, y, sample_weight=sample_weight) # Check using Newton's Method # Quadratic function should be solved in a single step. # Initialize sample_weight = np.sqrt(sample_weight) X_weighted = sample_weight[:, np.newaxis] * ( np.column_stack((np.ones(n_samples), X))) y_weighted = y * sample_weight # Gradient is (X*coef-y)*X + alpha*coef_[1:] # Remove coef since it is initialized to zero. grad = -np.dot(y_weighted, X_weighted) # Hessian is (X.T*X) + alpha*I except that the first # diagonal element should be zero, since there is no # penalization of intercept. diag = alpha * np.ones(n_features + 1) diag[0] = 0. hess = np.dot(X_weighted.T, X_weighted) hess.flat[::n_features + 2] += diag coef_ = - np.dot(linalg.inv(hess), grad) assert_almost_equal(coef_[0], est.intercept_) assert_array_almost_equal(coef_[1:], est.coef_) def test_ridge_shapes(): """Test shape of coef_ and intercept_ """ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): """Test intercept with multiple targets GH issue #708 """ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): """Test BayesianRegression ridge classifier TODO: test also n_samples > n_features """ X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): """On alpha=0., Ridge and OLS yield the same solution.""" rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): """Tests the ridge object using individual penalties""" rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-6).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:3]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd') assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): """ Test class weights. """ X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'auto' can handle negative labels. clf = RidgeClassifier(class_weight='auto') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'auto', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='auto') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weights_cv(): """ Test class weights for cross validated ridge classifier. """ X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): """ Test _RidgeCV's store_cv_values attribute. """ rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridge_sample_weights_in_feature_space(): """Check that Cholesky solver in feature space applies sample_weights correctly. """ rng = np.random.RandomState(42) n_samples_list = [5, 6, 7] * 2 n_features_list = [7, 6, 5] * 2 n_targets_list = [1, 1, 1, 2, 2, 2] noise = 1. alpha = 2. alpha = np.atleast_1d(alpha) for n_samples, n_features, n_targets in zip(n_samples_list, n_features_list, n_targets_list): X = rng.randn(n_samples, n_features) beta = rng.randn(n_features, n_targets) Y = X.dot(beta) Y_noisy = Y + rng.randn(*Y.shape) * np.sqrt((Y ** 2).sum(0)) * noise K = X.dot(X.T) sample_weights = 1. + (rng.randn(n_samples) ** 2) * 10 coef_sample_space = _solve_cholesky_kernel(K, Y_noisy, alpha, sample_weight=sample_weights) coef_feature_space = _solve_cholesky(X, Y_noisy, alpha, sample_weight=sample_weights) assert_array_almost_equal(X.T.dot(coef_sample_space), coef_feature_space.T) def test_raises_value_error_if_sample_weights_greater_than_1d(): """Sample weights must be either scalar or 1D""" n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): """Sample weights must work with sparse matrices""" n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_deprecation_warning_dense_cholesky(): """Tests if DeprecationWarning is raised at instantiation of estimators and when ridge_regression is called""" warning_class = DeprecationWarning warning_message = ("The name 'dense_cholesky' is deprecated." " Using 'cholesky' instead") X = np.ones([2, 3]) y = np.ones(2) func1 = lambda: Ridge(solver='dense_cholesky').fit(X, y) func2 = lambda: RidgeClassifier(solver='dense_cholesky').fit(X, y) X = np.ones([3, 2]) y = np.zeros(3) func3 = lambda: ridge_regression(X, y, alpha=1, solver='dense_cholesky') for func in [func1, func2, func3]: assert_warns_message(warning_class, warning_message, func) def test_raises_value_error_if_solver_not_supported(): """Tests whether a ValueError is raised if a non-identified solver is passed to ridge_regression""" wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1])
bsd-3-clause
MatthieuBizien/scikit-learn
build_tools/cythonize.py
42
6375
#!/usr/bin/env python """ cythonize Cythonize pyx files into C files as needed. Usage: cythonize [root_dir] Default [root_dir] is 'sklearn'. Checks pyx files to see if they have been changed relative to their corresponding C files. If they have, then runs cython on these files to recreate the C files. The script detects changes in the pyx/pxd files using checksums [or hashes] stored in a database file Simple script to invoke Cython on all .pyx files; while waiting for a proper build system. Uses file hashes to figure out if rebuild is needed. It is called by ./setup.py sdist so that sdist package can be installed without cython Originally written by Dag Sverre Seljebotn, and adapted from statsmodel 0.6.1 (Modified BSD 3-clause) We copied it for scikit-learn. Note: this script does not check any of the dependent C libraries; it only operates on the Cython .pyx files or their corresponding Cython header (.pxd) files. """ # Author: Arthur Mensch <[email protected]> # Author: Raghav R V <[email protected]> # # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import re import sys import hashlib import subprocess HASH_FILE = 'cythonize.dat' DEFAULT_ROOT = 'sklearn' # WindowsError is not defined on unix systems try: WindowsError except NameError: WindowsError = None def cythonize(cython_file, gen_file): try: from Cython.Compiler.Version import version as cython_version from distutils.version import LooseVersion if LooseVersion(cython_version) < LooseVersion('0.21'): raise Exception('Building scikit-learn requires Cython >= 0.21') except ImportError: pass flags = ['--fast-fail'] if gen_file.endswith('.cpp'): flags += ['--cplus'] try: try: rc = subprocess.call(['cython'] + flags + ["-o", gen_file, cython_file]) if rc != 0: raise Exception('Cythonizing %s failed' % cython_file) except OSError: # There are ways of installing Cython that don't result in a cython # executable on the path, see scipy issue gh-2397. rc = subprocess.call([sys.executable, '-c', 'import sys; from Cython.Compiler.Main ' 'import setuptools_main as main;' ' sys.exit(main())'] + flags + ["-o", gen_file, cython_file]) if rc != 0: raise Exception('Cythonizing %s failed' % cython_file) except OSError: raise OSError('Cython needs to be installed') def load_hashes(filename): """Load the hashes dict from the hashfile""" # { filename : (sha1 of header if available or 'NA', # sha1 of input, # sha1 of output) } hashes = {} try: with open(filename, 'r') as cython_hash_file: for hash_record in cython_hash_file: (filename, header_hash, cython_hash, gen_file_hash) = hash_record.split() hashes[filename] = (header_hash, cython_hash, gen_file_hash) except (KeyError, ValueError, AttributeError, IOError): hashes = {} return hashes def save_hashes(hashes, filename): """Save the hashes dict to the hashfile""" with open(filename, 'w') as cython_hash_file: for key, value in hashes.items(): cython_hash_file.write("%s %s %s %s\n" % (key, value[0], value[1], value[2])) def sha1_of_file(filename): h = hashlib.sha1() with open(filename, "rb") as f: h.update(f.read()) return h.hexdigest() def clean_path(path): """Clean the path""" path = path.replace(os.sep, '/') if path.startswith('./'): path = path[2:] return path def get_hash_tuple(header_path, cython_path, gen_file_path): """Get the hashes from the given files""" header_hash = (sha1_of_file(header_path) if os.path.exists(header_path) else 'NA') from_hash = sha1_of_file(cython_path) to_hash = (sha1_of_file(gen_file_path) if os.path.exists(gen_file_path) else 'NA') return header_hash, from_hash, to_hash def cythonize_if_unchanged(path, cython_file, gen_file, hashes): full_cython_path = os.path.join(path, cython_file) full_header_path = full_cython_path.replace('.pyx', '.pxd') full_gen_file_path = os.path.join(path, gen_file) current_hash = get_hash_tuple(full_header_path, full_cython_path, full_gen_file_path) if current_hash == hashes.get(clean_path(full_cython_path)): print('%s has not changed' % full_cython_path) return print('Processing %s' % full_cython_path) cythonize(full_cython_path, full_gen_file_path) # changed target file, recompute hash current_hash = get_hash_tuple(full_header_path, full_cython_path, full_gen_file_path) # Update the hashes dict with the new hash hashes[clean_path(full_cython_path)] = current_hash def check_and_cythonize(root_dir): print(root_dir) hashes = load_hashes(HASH_FILE) for cur_dir, dirs, files in os.walk(root_dir): for filename in files: if filename.endswith('.pyx'): gen_file_ext = '.c' # Cython files with libcpp imports should be compiled to cpp with open(os.path.join(cur_dir, filename), 'rb') as f: data = f.read() m = re.search(b"libcpp", data, re.I | re.M) if m: gen_file_ext = ".cpp" cython_file = filename gen_file = filename.replace('.pyx', gen_file_ext) cythonize_if_unchanged(cur_dir, cython_file, gen_file, hashes) # Save hashes once per module. This prevents cythonizing prev. # files again when debugging broken code in a single file save_hashes(hashes, HASH_FILE) def main(root_dir=DEFAULT_ROOT): check_and_cythonize(root_dir) if __name__ == '__main__': try: root_dir_arg = sys.argv[1] except IndexError: root_dir_arg = DEFAULT_ROOT main(root_dir_arg)
bsd-3-clause
erdc/proteus
proteus/tests/POD/deim_utils.py
1
5097
#!/usr/bin/env python """ utility module for generating deim interpolants """ from __future__ import division from builtins import range from past.utils import old_div import numpy as np def read_from_hdf5(hdfFile,label,dof_map=None): """ Just grab the array stored in the node with label label and return it If dof_map is not none, use this to map values in the array If dof_map is not none, this determines shape of the output array """ assert hdfFile is not None, "requires hdf5 for heavy data" vals = hdfFile.get_node(label).read() if dof_map is not None: dof = vals[dof_map] else: dof = vals return dof def read_snapshots(archive,nsnap,val_name): """ assumes nsnap values of array in val_name are stored in h5file as /val_name'i' for i=0,nspap-1 loads these into a matrix and returns """ label_base="/%s%d" u = read_from_hdf5(archive.hdfFile,label_base % (val_name,0)) S = np.reshape(u,(u.shape[0],1)) for i in range(1,nsnap): label=label_base % (val_name,i) u = read_from_hdf5(archive.hdfFile,label) u = np.reshape(u,(u.shape[0],1)) S = np.append(S,u,axis=1) # return S def generate_svd_decomposition(archive,nsnap,val_name,outbase): """ assumes nsnap values of array in val_name are stored in h5file as /val_name'i' for i=0,nspap-1 loads these into a matrix, performs an SVD, and stores the output in outbase_SVD_basis, outbase_singular_values in numpy's binary format returns U,s,V svd decomposition of snapshots """ S = read_snapshots(archive,nsnap,val_name) U, s, V= np.linalg.svd(S,full_matrices=False) np.savetxt(outbase+'_SVD_basis',U,delimiter=' ') np.savetxt(outbase+'_SVD_singular_values',s,delimiter=' ') return U,s,V def calculate_deim_indices(Uin): """ input: Uin n x m array of basis vectors for nonlinear function snapshots output: rho, m vector of indices \rho_i for extracting $\vec F$ values """ n,m=Uin.shape rind = np.argmax(np.absolute(Uin[:,0])) U=np.array(Uin[:,0]) rho=np.array([rind],'i') #Pt = np.zeros((1,n),'d') #P[0,rind]=1.0 for j in range(1,m): u = Uin[:,j] Up=U[rho]#Up= np.dot(Pt,U) up=u[rho]#up= np.dot(Pt,u) if j==1: c=old_div(up,Up) r=u-U*c else: c =np.linalg.solve(Up,up) r=u-np.dot(U,c) rind=np.argmax(np.absolute(r)) rho_new = np.zeros(j+1,'i'); rho_new[:-1]=rho; rho_new[-1]=rind; rho = rho_new U_new=np.zeros((n,j+1),'d') U_new[:,:-1]=U.reshape(n,j); U_new[:,-1]=u U=U_new # return rho def deim_alg(Uin,m): """ Basic procedure - given $m$, dimension for $F$ reduced basis $\mathbf{U}_m$ - call DEIM algorithm to determine $\vec \rho$. - build $\mathbf{P}$ from $\rho$ as $$ \mathbf{P} = [\vec e_{\rho_1},\vec e_{\rho_2},\dots,\vec e_{\rho_m}] $$ - invert $\mathbf{P}^T\mathbf{U}_m$ - return \rho and $\mathbf{P}_F=\mathbf{U}_m(\mathbf{P}^T\mathbf{U}_m)^{-1}$ """ assert m <= Uin.shape[1] Um = Uin[:,0:m] rho = calculate_deim_indices(Um) PtUm = Um[rho] assert PtUm.shape == (m,m) PtUmInv = np.linalg.inv(PtUm) PF= np.dot(Um,PtUmInv) return rho,PF def visualize_zslice(variable,nnx,nny,iz,x=None,y=None,name=None): """ convenience function for plotting a slice """ istart = nnx*nny*iz iend = nnx*nny*(iz+1) v_slice= variable[istart:iend] v_slice= v_slice.reshape(nnx,nny) if x is None: x = np.outer(np.arange(nnx),np.arange(nnx)) if y is None: y = np.outer(np.arange(nny),np.arange(nny)) assert x.shape == v_slice.shape assert y.shape == v_slice.shape import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter fig = plt.figure() ax = fig.gca(projection='3d') surf=ax.plot_surface(x,y,v_slice,rstride=1,cstride=1,cmap=cm.coolwarm,linewidth=0,antialiased=False) plt.xlabel('x'); plt.ylabel('y') if name is None: name = 'deim_slice_z={0}.png'.format(iz) plt.savefig(name) return surf def extract_sub_matrix_csr(rho,rowptr,colind,nnzval): """ manually extract the rows in the deim index vector rho from a csr matrix representation returns a csr representation """ m = len(rho) rowptr_sub = np.zeros(m+1,'i') nnz_sub = 0 for k,I in enumerate(rho):#count number of nonzero entries diff = rowptr[I+1]-rowptr[I] rowptr_sub[k+1]=rowptr_sub[k]+diff nnz_sub += diff colind_sub = np.zeros(nnz_sub,'i'); nzval_sub=np.zeros(nnz_sub,'d') for k,KK in enumerate(rho): for m,MM in enumerate(range(rowptr[KK],rowptr[KK+1])): colind_sub[rowptr_sub[k]+m]=colind[MM] nzval_sub[rowptr_sub[k]+m]=nnzval[MM] # return rowptr_sub,colind_sub,nzval_sub
mit
wiheto/teneto
setup.py
1
1293
"""General setup for module.""" from setuptools import setup, find_packages VERSION = "teneto/_version.py" VERSION = open(VERSION, "rt").read() VERSION = VERSION.split('"')[1] setup(name='teneto', version=VERSION, python_requires='>3.5', setup_requires=['pytest-runner'], tests_require=['pytest'], install_requires=[ 'nilearn>=0.6.0', 'pybids>=0.11.1', 'statsmodels>=0.8.0', 'networkx>=2.0', 'python-louvain>=0.13', 'pandas>=0.21', 'scipy>=1.4.1', 'numpy>=1.19.5', 'templateflow>=0.6.2'], description='Temporal network tools', packages=find_packages(), author='William Hedley Thompson', author_email='[email protected]', url='https://www.github.com/wiheto/teneto', download_url='https://github.com/wiheto/teneto/archive/0.3.3.tar.gz', package_data={'': ['./teneto/data']}, include_package_data=True, entry_points={ 'console_scripts': ['teneto = teneto.__main__:main'] }, long_description='Temporal network tools. \ A package for deriving, analysing and plotting temporal network representations. \ Additional tools for temporal network analysis with neuroimaging contexts.')
gpl-3.0
Dapid/scipy
scipy/special/c_misc/struve_convergence.py
76
3725
""" Convergence regions of the expansions used in ``struve.c`` Note that for v >> z both functions tend rapidly to 0, and for v << -z, they tend to infinity. The floating-point functions over/underflow in the lower left and right corners of the figure. Figure legend ============= Red region Power series is close (1e-12) to the mpmath result Blue region Asymptotic series is close to the mpmath result Green region Bessel series is close to the mpmath result Dotted colored lines Boundaries of the regions Solid colored lines Boundaries estimated by the routine itself. These will be used for determining which of the results to use. Black dashed line The line z = 0.7*|v| + 12 """ from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt try: import mpmath except: from sympy import mpmath def err_metric(a, b, atol=1e-290): m = abs(a - b) / (atol + abs(b)) m[np.isinf(b) & (a == b)] = 0 return m def do_plot(is_h=True): from scipy.special._ufuncs import \ _struve_power_series, _struve_asymp_large_z, _struve_bessel_series vs = np.linspace(-1000, 1000, 91) zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]]) rp = _struve_power_series(vs[:,None], zs[None,:], is_h) ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h) rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h) mpmath.mp.dps = 50 if is_h: sh = lambda v, z: float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z))) else: sh = lambda v, z: float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z))) ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:]) err_a = err_metric(ra[0], ex) + 1e-300 err_p = err_metric(rp[0], ex) + 1e-300 err_b = err_metric(rb[0], ex) + 1e-300 err_est_a = abs(ra[1]/ra[0]) err_est_p = abs(rp[1]/rp[0]) err_est_b = abs(rb[1]/rb[0]) z_cutoff = 0.7*abs(vs) + 12 levels = [-1000, -12] plt.cla() plt.hold(1) plt.contourf(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], alpha=0.1) plt.contour(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], linestyles=[':', ':']) lp = plt.contour(vs, zs, np.log10(err_est_p).T, levels=levels, colors=['r', 'r'], linestyles=['-', '-']) la = plt.contour(vs, zs, np.log10(err_est_a).T, levels=levels, colors=['b', 'b'], linestyles=['-', '-']) lb = plt.contour(vs, zs, np.log10(err_est_b).T, levels=levels, colors=['g', 'g'], linestyles=['-', '-']) plt.clabel(lp, fmt={-1000: 'P', -12: 'P'}) plt.clabel(la, fmt={-1000: 'A', -12: 'A'}) plt.clabel(lb, fmt={-1000: 'B', -12: 'B'}) plt.plot(vs, z_cutoff, 'k--') plt.xlim(vs.min(), vs.max()) plt.ylim(zs.min(), zs.max()) plt.xlabel('v') plt.ylabel('z') def main(): plt.clf() plt.subplot(121) do_plot(True) plt.title('Struve H') plt.subplot(122) do_plot(False) plt.title('Struve L') plt.savefig('struve_convergence.png') plt.show() if __name__ == "__main__": import os import sys if '--main' in sys.argv: main() else: import subprocess subprocess.call([sys.executable, os.path.join('..', '..', '..', 'runtests.py'), '-g', '--python', __file__, '--main'])
bsd-3-clause
sfepy/sfepy
sfepy/mesh/bspline.py
5
24238
from __future__ import print_function from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') import numpy as nm from sfepy.base.base import Struct import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection nm_f64_eps = nm.finfo(nm.float64).eps def to_ndarray(a): if a is None: return None else: a = nm.asarray(a) if len(a.shape) == 0: a = a.reshape(1) return a class BSpline(Struct): """ B-spline curve representation """ def __init__(self, degree=3, is_cyclic=False, ncp=0): """ Initialize B-spline class. Parameters ---------- degree : int The degree of the spline function. is_cyclic : bool Cyclic spline?. ncp : int The number of control points. """ self.degree = degree self.knot_type = None self.is_cyclic = is_cyclic self.ncp = ncp self.knots = None self.basis = None self.curve_coors = None self.cp_coors = None self.approx_coors = None self.t = None def set_control_points(self, coors, cyclic_form=False): """ Set the B-spline control points. Parameters ---------- coors : array The coordinates of unique control points. cyclic_form : bool Are the control points in the cyclic form? """ coors = to_ndarray(coors) if self.is_cyclic and not cyclic_form: coors = nm.vstack((coors, coors[0:self.degree,:])) self.cp_coors = coors self.ncp = coors.shape[0] def get_control_points(self): """ Get the B-spline control points. Returns ------- coors : array The coordinates of control points. """ if self.is_cyclic: return self.cp_coors[:-self.degree,:] else: return self.cp_coors def set_param(self, t): """ Set the B-spline parametric vector. Parameters ---------- t : array The parameter vector of the B-spline. """ self.t = to_ndarray(t) if self.knots is not None: endval = self.knots[-(self.degree + 1)] idxs = nm.where(self.t == endval)[0] self.t[idxs] -= nm_f64_eps def set_param_n(self, n=100, knot_range=(0.0, 1.0)): """ Generate the B-spline parametric vector using the number of steps. Parameters ---------- n : array The number of steps in the B-spline parametric vector. """ self.t = nm.linspace(knot_range[0], knot_range[1], n) self.t[-1] -= nm_f64_eps @staticmethod def basis_function_dg0(t, knots, n): """ Basis function: degree = 0 Parameters ---------- t : array The parametric vector. knots : array The knot vector. n : int The number of intervals. Returns ------- bfun : array The spline basis function evaluated for given values. """ nt = len(t) bfun = nm.zeros((nt,n), dtype=nm.float64) for ii in range(n): idxs = nm.where(nm.logical_and(knots[ii] <= t, t < knots[ii + 1]))[0] bfun[idxs,ii] = 1.0 return bfun @staticmethod def basis_function_dg(degree, t, knots, n): """ B-spline basis functions. Parameters ---------- degree : int The degree of the spline function. t : array The parametric vector. knots : array The knot vector. n : int The number of intervals. Returns ------- bfun : array The spline basis function evaluated for given values. """ if degree >= 1: bfun_dgm1 = BSpline.basis_function_dg(degree - 1, t, knots, n + 1) nt = len(t) bfun = nm.zeros((nt,n), dtype=nm.float64) for ii in range(n): c1 = t - knots[ii] c2 = knots[ii + degree] - knots[ii] if nm.abs(c2) > nm_f64_eps: bfun[:,ii] = c1 / c2 * bfun_dgm1[:,ii] c1 = knots[ii + degree + 1] - t c2 = knots[ii + degree + 1] - knots[ii + 1] if nm.abs(c2) > nm_f64_eps: bfun[:,ii] += c1 / c2 * bfun_dgm1[:,ii + 1] else: bfun = BSpline.basis_function_dg0(t, knots, n) return bfun def make_knot_vector(self, knot_type='clamped', knot_data=None, knot_range=(0.0, 1.0)): """ Create a knot vector of the requested type. Parameters ---------- knot_type : str The knot vector type: clamped/cyclic/userdef. knot_data : The extra knot data. """ if self.is_cyclic and 'cyclic' not in knot_type: knot_type = 'cyclic' ncp = self.ncp dg = self.degree n_knots = dg + ncp + 1 n_inter = n_knots - 2 * dg aux = nm.linspace(knot_range[0], knot_range[1], n_inter) if knot_type == '' or knot_type == 'cyclic': dd = aux[1] self.knots = nm.hstack((nm.arange(-dg, 0) * dd, aux, nm.arange(1, dg + 1) * dd + 1)) elif knot_type == 'clamped': self.knots = nm.array([aux[0]]* dg + list(aux) + [aux[-1]]* dg, dtype=nm.float64) else: raise NotImplementedError self.knot_type = knot_type def set_knot_vector(self, knots): """ Set the knot vector. Parameters ---------- knots : array The knot vector. """ self.knot_type = 'userdef' self.knots = to_ndarray(knots) def get_knot_vector(self): """ Return the knot vector. Returns ------- knots : array The knot vector. """ return self.knots def insert_knot(self, new): """ Insert a new knot into the knot vector. Parameters ---------- new : float The new knot value. """ kn = self.knots dg = self.degree ncp = self.ncp cp = self.cp_coors idx = nm.where(nm.logical_and(kn[:-1] <= new, new < kn[1:]))[0] if len(idx) > 0: multi = len(nm.where(kn == new)[0]) if multi < dg: # new knot newkn = nm.zeros((len(kn) + 1,), dtype=nm.float64) newkn[:(idx + 1)] = kn[:(idx + 1)] newkn[idx + 1] = new newkn[(idx + 2):] = kn[(idx + 1):] u1 = idx - dg + 1 u2 = idx + 1 # new control points newcp = nm.zeros((ncp + 1, cp.shape[1]), dtype=nm.float64) newcp[:u1,:] = cp[:u1,:] newcp[u2:,:] = cp[(u2 - 1):,:] for ii in range(u1, u2): kn1 = kn[ii] kn2 = kn[ii + dg] dd = kn2 - kn1 newcp[ii,:] = (kn2 - new) / dd * cp[ii - 1] + \ (new - kn1) / dd * cp[ii] self.knots = newkn self.cp_coors = newcp self.ncp = newcp.shape[0] # evaluate B-spline base functions for new configuration self.eval_basis() else: print('knot insertion failed: multiplicity = spline degree!') else: print('knot insertion failed: out of bounds!') def eval_basis(self, t=None, return_val=False): """ Evaluate the basis of the bpsline. Parameters ---------- t : array The parameter vector of the B-spline. """ if t is not None: self.set_param(t) if self.knots is None: self.make_knot_vector() if self.t is None: self.set_param_n() self.basis = self.basis_function_dg(self.degree, self.t, self.knots, self.ncp) if return_val: return self.basis def eval(self, t=None, cp_coors=None): """ Evaluate the coordinates of the bpsline curve. Parameters ---------- t : array The parameter vector of the B-spline. cp_coors : array The coordinates of the control points. """ if cp_coors is not None: self.set_control_points(cp_coors) self.eval_basis(t) self.curve_coors = nm.dot(self.basis, self.cp_coors) return self.curve_coors def draw(self, ret_ax=False, ax=None, color='r', cp_id=True): """ Draw B-spline curve. Parameters ---------- ret_ax : bool Return an axes object? ax : axes object The axes to which will be drawn. color : str Line color. cp_id : bool If True, label control points. """ if self.curve_coors is None: self.eval() cc = self.curve_coors cp = self.cp_coors ci = self.approx_coors if ci is not None and self.is_cyclic: ci = nm.vstack((ci, ci[0,:])) if cc.shape[1] == 3: if ax is None: fig = plt.figure() ax = Axes3D(fig) ax.plot(cc[:,0], cc[:,1], cc[:,2], color + '-') if cp_id: ax.plot(cp[:,0], cp[:,1], cp[:,2], 'ko:', alpha=0.6) if ci is not None: ax.plot(ci[:,0], ci[:,1], ci[:,2], 'b--', alpha=0.6) else: if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(cc[:,0], cc[:,1], color + '-') if cp_id: ax.plot(cp[:,0], cp[:,1], 'ko:', alpha=0.6) for jj, icp in enumerate(self.cp_coors): ax.text(icp[0], icp[1], 'N%d' % (jj + 1), fontsize=10) if ci is not None: ax.plot(ci[:,0], ci[:,1], 'b--', alpha=0.6) ax.set_aspect('equal') if ret_ax: return ax else: plt.show() def draw_basis(self): """ Draw B-spline curve. """ plt.figure() plt.plot(self.t,self.basis) plt.legend(['b%d' % (ii + 1) for ii in range(self.basis.shape[1])]) plt.show() def approximate(self, coors, ncp=None, knot_type='clamped', knots=None, alpha=0.5, do_eval=False, do_param_correction=False): """ Approximate set of points by the B-spline curve. Parameters ---------- coors : array The coordinates of the approximated points. ncp : int The number of control points. knot_type : str The knot vector type. knots : array The knot vector. alpha : float The parameter vector distribution: 1.0 = chordal 0.5 = centripetal do_eval : bool Evaluate the curve coordinates? do_param_correction : bool Perform parametric corrections to improve the approximation? """ coors = to_ndarray(coors) dg = self.degree if ncp is not None: if self.is_cyclic: ncp += dg self.ncp = ncp self.make_knot_vector(knot_type) if knots is not None: self.knots = knots self.knot_type = 'userdef' ncp = len(knots) - dg - 1 self.ncp = ncp # param vector dist = nm.linalg.norm(coors[:-1,:] - coors[1:,:], axis=1) dista = nm.power(dist, alpha) self.t = nm.zeros((coors.shape[0],), dtype=nm.float64) self.t[1:] += dista.cumsum() / dista.sum() self.t[-1] -= nm_f64_eps while True: self.basis = self.basis_function_dg(dg, self.t, self.knots, ncp) A = nm.dot(self.basis.T, self.basis) b = nm.dot(self.basis.T, coors) # cyclic spline if self.is_cyclic: nred = ncp - dg R = nm.zeros((ncp, nred), dtype=nm.float64) for ii in range(nred): R[ii,ii] = 1.0 for ii in range(self.degree): R[nred + ii,ii] = 1.0 A = nm.dot(R.T, nm.dot(A, R)) b = nm.dot(R.T, b) self.cp_coors = nm.dot(R, nm.dot(nm.linalg.inv(A), b)) else: self.cp_coors = nm.dot(nm.linalg.inv(A), b) self.approx_coors = coors if not do_param_correction: break if do_eval: self.curve_coors = nm.dot(self.basis, self.cp_coors) def set_approx_points(self, coors): """ Set the coordinates of approximated points. Parameters ---------- coors : array The coordinates of approximated points. """ self.approx_coors = to_ndarray(coors) class BSplineSurf(Struct): """ B-spline surface representation """ def __init__(self, degree=(3,3), is_cyclic=(False, False)): """ Initialize B-spline class. Parameters ---------- degree : tuple of int The degree of the spline functions. is_cyclic : tuple of bool Cyclic splines?. """ self.splines = [None, None] for ii in range(2): self.splines[ii] = BSpline(degree[ii], is_cyclic=is_cyclic[ii]) self.surf_coors = None self.cp_coors = None self.approx_coors = None def set_control_points(self, coors, cyclic_form=False): """ Set the B-spline control points. Parameters ---------- coors : array The coordinates of unique control points. cyclic_form : bool Are the control points in the cyclic form? """ coors = to_ndarray(coors) if self.splines[0].is_cyclic and not cyclic_form: coors = nm.vstack((coors, coors[0:self.splines[0].degree,:,:])) if self.splines[1].is_cyclic and not cyclic_form: coors = nm.hstack((coors, coors[:,0:self.splines[1].degree,:])) self.cp_coors = coors for ii in range(2): self.splines[ii].ncp = coors.shape[ii] def get_control_points(self): """ Get the B-spline surface control points. Returns ------- coors : array The coordinates of control points. """ aux = self.cp_coors if self.splines[0].is_cyclic: aux = aux[:-self.splines[0].degree,:,:] if self.splines[1].is_cyclic: aux = aux[:,:-self.splines[1].degree,:] return aux def make_knot_vector(self, knot_type=('clamped', 'clamped'), knot_data=(None, None)): """ Create a knot vector of the requested type. Parameters ---------- knot_type : tuple of str The knot vector types. knot_data : tuple of ANY The extra knot data. """ for ii in range(2): self.splines[ii].make_knot_vector(knot_type[ii], knot_data[ii]) def set_param_n(self, n=(100, 100)): """ Generate the B-spline parametric vector using the number of steps. Parameters ---------- n : tuple of array The number of steps in the B-spline parametric vectors. """ for ii in range(2): self.splines[ii].set_param_n(n[ii]) def set_approx_points(self, coors): """ Set the coordinates of approximated points. Parameters ---------- coors : array The coordinates of approximated points. """ self.approx_coors = to_ndarray(coors) def eval(self, t=(None, None), cp_coors=None): """ Evaluate the coordinates of the bpsline curve. Parameters ---------- t : tuple of array The parametric vector of the B-splines. cp_coors : array The coordinates of the control points. """ if cp_coors is not None: self.set_control_points(cp_coors) for ii in range(2): self.splines[ii].eval_basis(t[ii]) nt = (len(self.splines[0].t), len(self.splines[1].t)) ncp = (self.splines[0].ncp, self.splines[1].ncp) aux = nm.zeros((nt[0], ncp[1], 3), dtype=nm.float64) for ii in range(ncp[1]): aux[:,ii,:] = nm.dot(self.splines[0].basis, self.cp_coors[:,ii,:]) self.surf_coors = nm.zeros(nt + (3,), dtype=nm.float64) for ii in range(nt[0]): self.surf_coors[ii,:,:] = nm.dot(self.splines[1].basis, aux[ii,:,:]) return self.surf_coors def draw(self, ret_ax=False, ax=None): """ Draw B-spline surface. Parameters ---------- ret_ax : bool Return an axes object? ax : axes object The axes to which will be drawn. """ if self.surf_coors is None: self.eval() fig = plt.figure() ax = Axes3D(fig) coors = self.surf_coors cs = coors.shape for ii in range(cs[0] - 1): for jj in range(cs[1] - 1): verts = nm.array([coors[ii,jj,:], coors[ii,jj + 1,:], coors[ii + 1,jj + 1,:], coors[ii + 1,jj,:]]) quad = Poly3DCollection([verts], facecolors='gray', edgecolor='k', linewidths=0.2, alpha=0.5) ax.add_collection3d(quad) cp = self.cp_coors for ii in range(cp.shape[1]): ax.plot(cp[:,ii,0], cp[:,ii,1], cp[:,ii,2], 'ro--', linewidth=2.0) for ii in range(cp.shape[0]): ax.plot(cp[ii,:,0], cp[ii,:,1], cp[ii,:,2], 'ro--', linewidth=2.0) ax.set_aspect('equal') plt.show() def approximate(self, coors, ncp, do_eval=False): """ Approximate set of points by the B-spline surface. Parameters ---------- coors : array The coordinates of the approximated points. ncp : tuple of int The number of control points. """ coors = to_ndarray(coors) nsc = coors.shape[0:2] aux = nm.zeros((nsc[0], ncp[1], 3), dtype=nm.float64) spl1 = self.splines[1] for ii in range(nsc[0]): spl1.approximate(coors[ii,...], ncp[1]) aux[ii,...] = spl1.get_control_points() self.cp_coors = nm.zeros((ncp[0], ncp[1], 3), dtype=nm.float64) spl2 = self.splines[0] for ii in range(ncp[1]): spl2.approximate(aux[:,ii,:], ncp[0]) self.cp_coors[:,ii,:] = spl2.get_control_points() self.approx_coors = coors def write_surface_vtk(self, filename, float_format='%.6f'): """ Write the spline surface to VTK file. Parameters ---------- filename: str Name of the VTK file. float_format: str Float formating. """ coors = self.surf_coors cs0, cs1 = coors.shape[0:2] nquads = (cs0 - 1) * (cs1 - 1) quads = nm.zeros((nquads, 4), dtype=nm.int64) kk = 0 for ii in range(cs0 - 1): offs = ii * cs1 for jj in range(cs1 - 1): quads[kk] = nm.array([jj + offs, jj + offs + cs1, jj + 1 + offs + cs1, jj + 1 + offs]) kk += 1 f = open(filename, 'w') f.write('# vtk DataFile Version 2.0\n') f.write('spline surface\nASCII\nDATASET POLYDATA\n') ff3 = ' '.join([float_format] * 3) + '\n' f.write('POINTS %d float\n' % (cs0 * cs1)) for ii in range(cs0): offs = ii * cs1 for jj in range(cs1): f.write(ff3 % tuple(coors[ii,jj,:])) f.write('POLYGONS %d %d\n' % (nquads, nquads * 5)) for ii in quads: f.write('4 %s\n' % (' '.join([str(jj) for jj in ii]))) f.close() def write_control_polygon_vtk(self, filename, float_format='%.6f'): """ Write the control polygon to VTK file. Parameters ---------- filename: str Name of the VTK file. float_format: str Float formating. """ coors = self.cp_coors cs0, cs1 = coors.shape[0:2] lines = [] nlines = cs0 + cs1 nlpts = 0 for ii in range(cs0): lines.append(nm.arange(cs1) + ii * cs1) nlpts += cs1 for ii in range(cs1): lines.append(nm.arange(cs0) * cs1 + ii) nlpts += cs0 f = open(filename, 'w') f.write('# vtk DataFile Version 2.0\n') f.write('spline control polygon\nASCII\nDATASET POLYDATA\n') ff3 = ' '.join([float_format] * 3) + '\n' f.write('POINTS %d float\n' % (cs0 * cs1)) for ii in range(cs0): for jj in range(cs1): f.write(ff3 % tuple(coors[ii,jj,:])) f.write('LINES %d %d\n' % (nlines, nlines + nlpts)) for ii in lines: f.write('%d %s\n' % (len(ii), ' '.join([str(jj) for jj in ii]))) f.close() def get_2d_points(is3d=False): """ Returns the set of points. Parameters ---------- is3d : bool 3D coordinates? """ out = nm.array([(-0.87, 0.15, 0), (-0.70, 0.54, 0), (-0.32, 0.80, 0), (0.15, 0.70, 0), (0.37, 0.26, 0), (0.70, -0.07, 0), (0.67, -0.49, 0), (0.07, -0.81, 0), (-0.44, -0.72, 0), (-0.80, -0.34, 0)]) if is3d: return out else: return out[:,:2] def approximation_example(): """ The example of using BSplineSurf for approximation of the surface given by the set of points. """ # define sample points in 2D spts0 = get_2d_points(is3d=True) # define sample points in 3D spts = nm.array([spts0, spts0 * 0.7 + nm.array([0.1,0,0.5]), spts0 * 0.8 + nm.array([0.2,0,1.5]), spts0 * 1.2 + nm.array([0.4,0,2.5])]) cyclic=(False, True) spl1 = BSplineSurf((3, 3), is_cyclic=cyclic) spl1.approximate(spts, (4,8)) cp = spl1.get_control_points() spls2 = BSplineSurf((3, 3), is_cyclic=cyclic) spls2.set_control_points(cp) spls2.make_knot_vector() spls2.set_param_n((12, 24)) spls2.eval() spls2.draw() def simple_example(): """ The example of using B-spline class. """ # define control points in 2D cp = get_2d_points() spl = BSpline(3, is_cyclic=True) spl.set_control_points(cp) spl.make_knot_vector() spl.set_param_n(150) spl.insert_knot(0.7) spl.insert_knot(0.7) spl.insert_knot(0.7) spl.eval() spl.draw() def main(argv): # simple_example() approximation_example() if __name__ == '__main__': main(sys.argv)
bsd-3-clause
MalkIPP/openfisca-survey-manager
openfisca_survey_manager/utils.py
2
9010
# -*- coding: utf-8 -*- # OpenFisca -- A versatile microsimulation software # By: OpenFisca Team <[email protected]> # # Copyright (C) 2011, 2012, 2013, 2014, 2015 OpenFisca Team # https://github.com/openfisca # # This file is part of OpenFisca. # # OpenFisca is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # OpenFisca is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os import logging from pandas import DataFrame, concat log = logging.getLogger(__name__) def clean_data_frame(data_frame): object_column_names = list(data_frame.select_dtypes(include=["object"]).columns) log.info( "The following variables are to be cleaned or left as strings : \n {}".format(object_column_names) ) for column_name in object_column_names: if data_frame[column_name].isnull().all(): # drop empty columns data_frame.drop(column_name, axis = 1, inplace = True) continue values = list(data_frame[column_name].value_counts().keys()) empty_string_present = "" in values if empty_string_present: values.remove("") all_digits = all([value.isdigit() for value in values]) no_zero = all([value != 0 for value in values]) if all_digits and no_zero: log.info( "Replacing empty string with zero for variable {}".format(column_name) ) data_frame.replace( to_replace = { column_name: {"": 0}, }, inplace = True, ) log.info( "Converting string variable {} to integer".format(column_name) ) data_frame[column_name] = data_frame[column_name].astype("int") return data_frame def dump_simulation_results_data_frame(survey_scenario, collection = None): assert collection is not None year = survey_scenario.year data_frame_by_entity = get_calculated_data_frame_by_entity(survey_scenario) openfisca_survey_collection = SurveyCollection.load(collection = "openfisca") output_data_directory = openfisca_survey_collection.config.get('data', 'output_directory') survey_name = "openfisca_data_{}".format(year) for entity, data_frame in data_frame_by_entity.iteritems(): print entity table = entity hdf5_file_path = os.path.join( os.path.dirname(output_data_directory), "{}{}".format(survey_name, ".h5"), ) survey = Survey( name = survey_name, hdf5_file_path = hdf5_file_path, ) survey.insert_table(name = table) survey.fill_hdf(table, data_frame) openfisca_survey_collection.surveys[survey_name] = survey openfisca_survey_collection.dump(collection = "openfisca") def get_data_frame(columns_name, survey_scenario, load_first = False, collection = None): year = survey_scenario.year if survey_scenario.simulation is None: survey_scenario.new_simulation() simulation = survey_scenario.simulation if load_first: assert collection is not None entities = [simulation.tax_benefit_system.column_by_name[column_name].entity for column_name in columns_name] assert len(set(entities)) == 1 # entity_symbol = entities[0] for entity_key_plural in simulation.entity_by_key_plural: if columns_name[0] in simulation.entity_by_key_plural[entity_key_plural].column_by_name: entity = entity_key_plural break openfisca_survey_collection = SurveyCollection.load(collection = collection) survey_name = "openfisca_data_{}".format(year) survey = openfisca_survey_collection.surveys[survey_name] table = entity data_frame = survey.get_values(variables = columns_name, table = table) else: data_frame = DataFrame(dict([(column_name, simulation.calculate(column_name)) for column_name in columns_name])) return data_frame def get_calculated_data_frame_by_entity(survey_scenario = None): if survey_scenario.simulation is None: survey_scenario.new_simulation() simulation = survey_scenario.simulation data_frame_by_entity = dict() for entity in simulation.entity_by_key_plural.itervalues(): variables_name = entity.column_by_name.keys() data_frame_by_entity[entity] = get_data_frame(variables_name, survey_scenario) return data_frame_by_entity def simulation_results_as_data_frame(survey_scenario = None, column_names = None, entity = None, force_sum = False): assert survey_scenario is not None assert force_sum is False or entity != 'ind', "force_sum cannot be True when entity is 'ind'" simulation = survey_scenario.simulation column_by_name = simulation.tax_benefit_system.column_by_name assert set(column_names) <= set(column_by_name), \ "Variables {} do not exist".format(list(set(column_names) - set(column_by_name))) entities = list(set([column_by_name[column_name].entity for column_name in column_names] + [entity])) if force_sum is False and entity != 'ind': assert len(entities) == 1 data_frame = get_data_frame(column_names, survey_scenario, load_first = False, collection = None) else: if 'ind' in entities: entities.remove('ind') if entity is None and len(entities) == 1: entity = entities[0] data_frame_by_entity = dict() individual_column_names = [ column_name for column_name in column_names if column_by_name[column_name].entity == 'ind' ] for selected_entity in entities: id_variables_column_names = ["id{}".format(selected_entity), "qui{}".format(selected_entity)] individual_column_names.extend(id_variables_column_names) selected_entity_column_names = [ column_name for column_name in column_names if column_by_name[column_name].entity == selected_entity ] data_frame_by_entity[selected_entity] = get_data_frame( selected_entity_column_names, survey_scenario, load_first = False, collection = None ) data_frame_by_entity[selected_entity]["id{}".format(entity)] = data_frame_by_entity[selected_entity].index individual_data_frame = get_data_frame( individual_column_names, survey_scenario, load_first = False, collection = None ) for other_entity in entities: if other_entity != entity: boolean_index = individual_data_frame["qui{}".format(other_entity)] == 0 index_other_entity = individual_data_frame.loc[boolean_index, "id{}".format(other_entity)].values for column_name, column_series in data_frame_by_entity[other_entity].iteritems(): individual_data_frame.loc[boolean_index, column_name] \ = column_series.iloc[index_other_entity].values individual_data_frame[column_name].fillna(0) if entity == 'ind' and force_sum is False: return individual_data_frame entity_column_names = [ column_name for column_name in column_names if column_by_name[column_name].entity == entity ] entity_data_frame = get_data_frame( entity_column_names, survey_scenario, load_first = False, collection = None ) grouped_data_frame = individual_data_frame.groupby(by = "id{}".format(entity)).agg(sum) grouped_data_frame.drop("qui{}".format(entity), axis = 1, inplace = True) data_frame = concat([entity_data_frame, grouped_data_frame], axis = 1) return data_frame if __name__ == '__main__': import logging log = logging.getLogger(__name__) import sys logging.basicConfig(level = logging.INFO, stream = sys.stdout) from openfisca_survey_manager.surveys import Survey, SurveyCollection from openfisca_plugin_aggregates.tests.test_aggregates import create_survey_scenario year = 2006 survey_scenario = create_survey_scenario(year) # dump_simulation_results_data_frame(survey_scenario, collection = "openfisca") df = get_data_frame(["af"], survey_scenario, load_first = True, collection = "openfisca") print df
agpl-3.0
cdcapano/pycbc
examples/distributions/mass_examples.py
14
1651
import matplotlib.pyplot as plt from pycbc import distributions # Create a mass distribution object that is uniform between 0.5 and 1.5 # solar masses. mass1_distribution = distributions.Uniform(mass1=(0.5, 1.5)) # Take 100000 random variable samples from this uniform mass distribution. mass1_samples = mass1_distribution.rvs(size=1000000) # Draw another distribution that is Gaussian between 0.5 and 1.5 solar masses # with a mean of 1.2 solar masses and a standard deviation of 0.15 solar # masses. Gaussian takes the variance as an input so square the standard # deviation. variance = 0.15*0.15 mass2_gaussian = distributions.Gaussian(mass2=(0.5, 1.5), mass2_mean=1.2, mass2_var=variance) # Take 100000 random variable samples from this gaussian mass distribution. mass2_samples = mass2_gaussian.rvs(size=1000000) # We can make pairs of distributions together, instead of apart. two_mass_distributions = distributions.Uniform(mass3=(1.6, 3.0), mass4=(1.6, 3.0)) two_mass_samples = two_mass_distributions.rvs(size=1000000) # Choose 50 bins for the histogram subplots. n_bins = 50 # Plot histograms of samples in subplots fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3, = axes.flat ax0.hist(mass1_samples['mass1'], bins = n_bins) ax1.hist(mass2_samples['mass2'], bins = n_bins) ax2.hist(two_mass_samples['mass3'], bins = n_bins) ax3.hist(two_mass_samples['mass4'], bins = n_bins) ax0.set_title('Mass 1 samples') ax1.set_title('Mass 2 samples') ax2.set_title('Mass 3 samples') ax3.set_title('Mass 4 samples') plt.tight_layout() plt.show()
gpl-3.0
wlamond/scikit-learn
sklearn/tests/test_discriminant_analysis.py
37
11979
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.discriminant_analysis import _cov # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) assert_warns(UserWarning, clf.fit, X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1, # Also tests whether the explained_variance_ratio_ formed by the # eigen solver is the same as the explained_variance_ratio_ formed # by the svd solver state = np.random.RandomState(0) X = state.normal(loc=0, scale=100, size=(40, 20)) y = state.randint(0, 3, size=(40,)) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_eigen.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_svd.fit(X, y) assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_svd.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_, clf_lda_eigen.explained_variance_ratio_) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariances=True).fit(X6, y6) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_covariance(): x, y = make_blobs(n_samples=100, n_features=5, centers=1, random_state=42) # make features correlated x = np.dot(x, np.arange(x.shape[1] ** 2).reshape(x.shape[1], x.shape[1])) c_e = _cov(x, 'empirical') assert_almost_equal(c_e, c_e.T) c_s = _cov(x, 'auto') assert_almost_equal(c_s, c_s.T)
bsd-3-clause
sidtechnical/ALTwitter
scripts/create_div_for_index_page.py
1
1298
#!/usr/bin/env python import pandas as pd from django.template import Template, Context, loader from django.conf import settings settings.configure() mep_df = pd.read_csv('clean_output.csv') mep_full_data = mep_df.to_dict('r') # print mep_full_data # mep_img_urls_df = pd.read_csv('mep_prof_img_url.csv') # mep_img_data = mep_img_urls_df.to_dict('r') # print mep_img_data template = """ {% for mep_row in mep_data %} <div class="portfolio {{ mep_row.NAME|make_list|first }}" data-cat="{{ mep_row.NAME|make_list|first }}"> <div class="portfolio-wrapper"> <a href="pages/{{ mep_row.SCREEN_NAME }}.html"><img width="300" height ="200" src="{{ mep_row.prof_img_url }}" alt="{{ mep_row.NAME }}" /></a> <div class="label"> <div class="label-text"> <a class="text-title">{{ mep_row.NAME }}</a> <span class="text-category"> {{ mep_row.NATIONALITY }} </span> </div> <div class="label-bg"></div> </div> </div> </div> {% endfor %} """ t = Template(template) c = Context({"mep_data": mep_full_data}) f1=open('index_divs.html', 'w+') try: f1.write(t.render(c).encode('utf-8')) except UnicodeEncodeError: f1.write(t.render(c).encode('ascii', 'ignore').decode('ascii')) f1.close()
gpl-3.0
JamesDickenson/aima-python
grading/bayesian-submissions.py
4
2414
import importlib import traceback from grading.util import roster, print_table # from logic import FolKB # from utils import expr import os from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() def indent(howMuch = 1): space = ' ' for i in range(1, howMuch): space += ' ' return space def printKB(label, kb): print(indent(), label + ' example:') print(indent(2), 'knowledge base:') for clause in kb.clauses: print(indent(3), str(clause)) def printResults(query, gen, limit=3): for count in range(limit): try: long = next(gen) except StopIteration: print() return short = {} for v in long: if v in query.args: short[v] = long[v] print(short, end=' ') print('...') def tryOne(label, frame): fit = gnb.fit(frame.data, frame.target) print('') print_table(fit.theta_, header=[frame.feature_names], topLeft=['Means:'], leftColumn=frame.target_names, numfmt='%6.3f', njust='center', tjust='rjust', ) y_pred = fit.predict(frame.data) print("Number of mislabeled points out of a total %d points : %d" % (len(frame.data), (frame.target != y_pred).sum())) def tryExamples(examples): for label in examples: tryOne(label, examples[label]) submissions = {} scores = {} message1 = 'Submissions that compile:' root = os.getcwd() for student in roster: try: os.chdir(root + '/submissions/' + student) # http://stackoverflow.com/a/17136796/2619926 mod = importlib.import_module('submissions.' + student + '.myBayes') submissions[student] = mod.Examples message1 += ' ' + student except ImportError: pass except: traceback.print_exc() os.chdir(root) print(message1) print('----------------------------------------') for student in roster: if not student in submissions.keys(): continue scores[student] = [] try: examples = submissions[student] print('Bayesian Networks from:', student) tryExamples(examples) except: traceback.print_exc() print(student + ' scores ' + str(scores[student]) + ' = ' + str(sum(scores[student]))) print('----------------------------------------')
mit
istellartech/OpenGoddard
examples/10_Low_Thrust_Orbit_Transfer.py
1
6942
# -*- coding: utf-8 -*- # Copyright 2017 Interstellar Technologies Inc. All Rights Reserved. from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from OpenGoddard.optimize import Problem, Guess, Condition, Dynamics class Orbiter: def __init__(self): self.u_max = 0.01 self.r0 = 1.0 self.vr0 = 0.0 self.vt0 = 1.0 self.rf = 4.0 self.vrf = 0.0 self.vtf = 0.5 self.tf_max = 55 def dynamics(prob, obj, section): r = prob.states(0, section) vr = prob.states(1, section) vt = prob.states(2, section) ur1 = prob.controls(0, section) ur2 = prob.controls(1, section) ut1 = prob.controls(2, section) ut2 = prob.controls(3, section) dx = Dynamics(prob, section) dx[0] = vr dx[1] = vt**2 / r - 1 / r**2 + (ur1 - ur2) dx[2] = - vr * vt / r + (ut1 - ut2) return dx() def equality(prob, obj): r = prob.states_all_section(0) vr = prob.states_all_section(1) vt = prob.states_all_section(2) ur1 = prob.controls_all_section(0) ur2 = prob.controls_all_section(1) ut1 = prob.controls_all_section(2) ut2 = prob.controls_all_section(3) tf = prob.time_final(-1) result = Condition() # event condition result.equal(r[0], obj.r0) result.equal(vr[0], obj.vr0) result.equal(vt[0], obj.vt0) result.equal(r[-1], obj.rf) result.equal(vr[-1], obj.vrf) result.equal(vt[-1], obj.vtf) return result() def inequality(prob, obj): r = prob.states_all_section(0) vr = prob.states_all_section(1) vt = prob.states_all_section(2) ur1 = prob.controls_all_section(0) ur2 = prob.controls_all_section(1) ut1 = prob.controls_all_section(2) ut2 = prob.controls_all_section(3) tf = prob.time_final(-1) result = Condition() # lower bounds result.lower_bound(r, obj.r0) result.lower_bound(ur1, 0.0) result.lower_bound(ut1, 0.0) result.lower_bound(ur2, 0.0) result.lower_bound(ut2, 0.0) result.lower_bound(tf, 0.0) # upper bounds result.upper_bound(r, obj.rf) result.upper_bound(ur1, obj.u_max) result.upper_bound(ut1, obj.u_max) result.upper_bound(ur2, obj.u_max) result.upper_bound(ut2, obj.u_max) result.upper_bound(tf, obj.tf_max) return result() def cost(prob, obj): return 0.0 def running_cost(prob, obj): ur1 = prob.controls_all_section(0) ur2 = prob.controls_all_section(1) ut1 = prob.controls_all_section(2) ut2 = prob.controls_all_section(3) return (ur1 + ur2) + (ut1 + ut2) # ======================== plt.close("all") plt.ion() # Program Starting Point time_init = [0.0, 10.0] n = [100] num_states = [3] num_controls = [4] max_iteration = 10 flag_savefig = True savefig_dir = "10_Low_Thrust_Orbit_Transfer/" # ------------------------ # set OpenGoddard class for algorithm determination prob = Problem(time_init, n, num_states, num_controls, max_iteration) obj = Orbiter() # ======================== # Initial parameter guess r_init = Guess.linear(prob.time_all_section, obj.r0, obj.rf) # Guess.plot(prob.time_all_section, r_init, "r", "time", "r") # if(flag_savefig):plt.savefig(savefig_dir + "guess_r" + savefig_add + ".png") vr_init = Guess.linear(prob.time_all_section, obj.vr0, obj.vrf) # Guess.plot(prob.time_all_section, vr_init, "vr", "time", "vr") # if(flag_savefig):plt.savefig(savefig_dir + "guess_vr" + savefig_add + ".png") vt_init = Guess.linear(prob.time_all_section, obj.vt0, obj.vtf) # Guess.plot(prob.time_all_section, theta_init, "vt", "time", "vt") # if(flag_savefig):plt.savefig(savefig_dir + "guess_vt" + savefig_add + ".png") ur1_init = Guess.linear(prob.time_all_section, obj.u_max, obj.u_max) # Guess.plot(prob.time_all_section, ur1_init, "ur1", "time", "ur1") # if(flag_savefig):plt.savefig(savefig_dir + "guess_ur1" + savefig_add + ".png") ut1_init = Guess.linear(prob.time_all_section, obj.u_max, obj.u_max) # Guess.plot(prob.time_all_section, ut1_init, "ut1", "time", "ut1") # if(flag_savefig):plt.savefig(savefig_dir + "guess_ut1" + savefig_add + ".png") prob.set_states_all_section(0, r_init) prob.set_states_all_section(1, vr_init) prob.set_states_all_section(2, vt_init) prob.set_controls_all_section(0, ur1_init) prob.set_controls_all_section(2, ut1_init) # ======================== # Main Process # Assign problem to SQP solver prob.dynamics = [dynamics] prob.knot_states_smooth = [] prob.cost = cost prob.running_cost = running_cost prob.equality = equality prob.inequality = inequality def display_func(): tf = prob.time_final(-1) print("tf: {0:.5f}".format(tf)) prob.solve(obj, display_func, ftol=1e-12) # ======================== # Post Process # ------------------------ # Convert parameter vector to variable r = prob.states_all_section(0) vr = prob.states_all_section(1) vt = prob.states_all_section(2) ur1 = prob.controls_all_section(0) ur2 = prob.controls_all_section(1) ut1 = prob.controls_all_section(2) ut2 = prob.controls_all_section(3) time = prob.time_update() # ------------------------ # Visualizetion plt.figure() plt.plot(time, r, marker="o", label="r") for line in prob.time_knots(): plt.axvline(line, color="k", alpha=0.5) plt.grid() plt.xlabel("time [-]") plt.ylabel("r [-]") plt.legend(loc="best") if(flag_savefig): plt.savefig(savefig_dir + "r" + ".png") plt.figure() plt.plot(time, vr, marker="o", label="vr") plt.plot(time, vt, marker="o", label="vt") for line in prob.time_knots(): plt.axvline(line, color="k", alpha=0.5) plt.grid() plt.xlabel("time [-]") plt.ylabel("velocity [-]") plt.legend(loc="best") if(flag_savefig): plt.savefig(savefig_dir + "velocity" + ".png") plt.figure() plt.plot(time, (ur1 - ur2), marker="o", label="ur") plt.plot(time, (ut1 - ut2), marker="o", label="ut") # plt.plot(time, ur1, marker="o", label="ur1") # plt.plot(time, ur2, marker="o", label="ur2") # plt.plot(time, ut1, marker="o", label="ut1") # plt.plot(time, ut2, marker="o", label="ut2") plt.grid() plt.xlabel("time [-]") plt.ylabel("thrust [-]") # plt.ylim([-0.02, 0.6]) plt.legend(loc="best") if(flag_savefig): plt.savefig(savefig_dir + "thrust" + ".png") from scipy import integrate from scipy import interpolate theta = integrate.cumtrapz(vt / r, time, initial=0) theta_f = interpolate.interp1d(time, theta) r_f = interpolate.interp1d(time, r) time_fine = np.linspace(time[0], time[-1], 1000) r_fine = r_f(time_fine) theta_fine = theta_f(time_fine) fig = plt.figure() # plt.plot(r*np.cos(theta), r*np.sin(theta)) plt.plot(r_fine*np.cos(theta_fine), r_fine*np.sin(theta_fine)) ax = fig.add_subplot(111) circle0 = plt.Circle((0.0, 0.0), 1.0, ls="--", fill=False, fc='none') circlef = plt.Circle((0.0, 0.0), 4.0, ls="--", fill=False, fc='none') ax.add_patch(circle0) ax.add_patch(circlef) plt.grid() plt.axis('equal') plt.ylim((-4.1, 4.1)) if(flag_savefig): plt.savefig(savefig_dir + "trajectry" + ".png") plt.show()
mit
liyu1990/sklearn
sklearn/mixture/gmm.py
7
30564
""" Gaussian Mixture Models. This implementation corresponds to frequentist (non-Bayesian) formulation of Gaussian Mixture Models. """ # Author: Ron Weiss <[email protected]> # Fabian Pedregosa <[email protected]> # Bertrand Thirion <[email protected]> import warnings import numpy as np from scipy import linalg from time import time from ..base import BaseEstimator from ..utils import check_random_state, check_array from ..utils.extmath import logsumexp from ..utils.validation import check_is_fitted from .. import cluster from sklearn.externals.six.moves import zip EPS = np.finfo(float).eps def log_multivariate_normal_density(X, means, covars, covariance_type='diag'): """Compute the log probability under a multivariate Gaussian distribution. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. means : array_like, shape (n_components, n_features) List of n_features-dimensional mean vectors for n_components Gaussians. Each row corresponds to a single mean vector. covars : array_like List of n_components covariance parameters for each Gaussian. The shape depends on `covariance_type`: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' covariance_type : string Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. Returns ------- lpr : array_like, shape (n_samples, n_components) Array containing the log probabilities of each data point in X under each of the n_components multivariate Gaussian distributions. """ log_multivariate_normal_density_dict = { 'spherical': _log_multivariate_normal_density_spherical, 'tied': _log_multivariate_normal_density_tied, 'diag': _log_multivariate_normal_density_diag, 'full': _log_multivariate_normal_density_full} return log_multivariate_normal_density_dict[covariance_type]( X, means, covars) def sample_gaussian(mean, covar, covariance_type='diag', n_samples=1, random_state=None): """Generate random samples from a Gaussian distribution. Parameters ---------- mean : array_like, shape (n_features,) Mean of the distribution. covar : array_like, optional Covariance of the distribution. The shape depends on `covariance_type`: scalar if 'spherical', (n_features) if 'diag', (n_features, n_features) if 'tied', or 'full' covariance_type : string, optional Type of the covariance parameters. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array, shape (n_features, n_samples) Randomly generated sample """ rng = check_random_state(random_state) n_dim = len(mean) rand = rng.randn(n_dim, n_samples) if n_samples == 1: rand.shape = (n_dim,) if covariance_type == 'spherical': rand *= np.sqrt(covar) elif covariance_type == 'diag': rand = np.dot(np.diag(np.sqrt(covar)), rand) else: s, U = linalg.eigh(covar) s.clip(0, out=s) # get rid of tiny negatives np.sqrt(s, out=s) U *= s rand = np.dot(U, rand) return (rand.T + mean).T class GMM(BaseEstimator): """Gaussian Mixture Model Representation of a Gaussian mixture model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a GMM distribution. Initializes parameters such that every mixture component has zero mean and identity covariance. Read more in the :ref:`User Guide <gmm>`. Parameters ---------- n_components : int, optional Number of mixture components. Defaults to 1. covariance_type : string, optional String describing the type of covariance parameters to use. Must be one of 'spherical', 'tied', 'diag', 'full'. Defaults to 'diag'. random_state: RandomState or an int seed (None by default) A random number generator instance min_covar : float, optional Floor on the diagonal of the covariance matrix to prevent overfitting. Defaults to 1e-3. tol : float, optional Convergence threshold. EM iterations will stop when average gain in log-likelihood is below this threshold. Defaults to 1e-3. n_iter : int, optional Number of EM iterations to perform. n_init : int, optional Number of initializations to perform. the best results is kept params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. init_params : string, optional Controls which parameters are updated in the initialization process. Can contain any combination of 'w' for weights, 'm' for means, and 'c' for covars. Defaults to 'wmc'. verbose : int, default: 0 Enable verbose output. If 1 then it always prints the current initialization and iteration step. If greater than 1 then it prints additionally the change and time needed for each step. Attributes ---------- weights_ : array, shape (`n_components`,) This attribute stores the mixing weights for each mixture component. means_ : array, shape (`n_components`, `n_features`) Mean parameters for each mixture component. covars_ : array Covariance parameters for each mixture component. The shape depends on `covariance_type`:: (n_components, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_components, n_features) if 'diag', (n_components, n_features, n_features) if 'full' converged_ : bool True when convergence was reached in fit(), False otherwise. See Also -------- DPGMM : Infinite gaussian mixture model, using the dirichlet process, fit with a variational algorithm VBGMM : Finite gaussian mixture model fit with a variational algorithm, better for situations where there might be too little data to get a good estimate of the covariance matrix. Examples -------- >>> import numpy as np >>> from sklearn import mixture >>> np.random.seed(1) >>> g = mixture.GMM(n_components=2) >>> # Generate random observations with two modes centered on 0 >>> # and 10 to use for training. >>> obs = np.concatenate((np.random.randn(100, 1), ... 10 + np.random.randn(300, 1))) >>> g.fit(obs) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.75, 0.25]) >>> np.round(g.means_, 2) array([[ 10.05], [ 0.06]]) >>> np.round(g.covars_, 2) #doctest: +SKIP array([[[ 1.02]], [[ 0.96]]]) >>> g.predict([[0], [2], [9], [10]]) #doctest: +ELLIPSIS array([1, 1, 0, 0]...) >>> np.round(g.score([[0], [2], [9], [10]]), 2) array([-2.19, -4.58, -1.75, -1.21]) >>> # Refit the model on new data (initial parameters remain the >>> # same), this time with an even split between the two modes. >>> g.fit(20 * [[0]] + 20 * [[10]]) # doctest: +NORMALIZE_WHITESPACE GMM(covariance_type='diag', init_params='wmc', min_covar=0.001, n_components=2, n_init=1, n_iter=100, params='wmc', random_state=None, tol=0.001, verbose=0) >>> np.round(g.weights_, 2) array([ 0.5, 0.5]) """ def __init__(self, n_components=1, covariance_type='diag', random_state=None, tol=1e-3, min_covar=1e-3, n_iter=100, n_init=1, params='wmc', init_params='wmc', verbose=0): self.n_components = n_components self.covariance_type = covariance_type self.tol = tol self.min_covar = min_covar self.random_state = random_state self.n_iter = n_iter self.n_init = n_init self.params = params self.init_params = init_params self.verbose = verbose if covariance_type not in ['spherical', 'tied', 'diag', 'full']: raise ValueError('Invalid value for covariance_type: %s' % covariance_type) if n_init < 1: raise ValueError('GMM estimation requires at least one run') self.weights_ = np.ones(self.n_components) / self.n_components # flag to indicate exit status of fit() method: converged (True) or # n_iter reached (False) self.converged_ = False def _get_covars(self): """Covariance parameters for each mixture component. The shape depends on ``cvtype``:: (n_states, n_features) if 'spherical', (n_features, n_features) if 'tied', (n_states, n_features) if 'diag', (n_states, n_features, n_features) if 'full' """ if self.covariance_type == 'full': return self.covars_ elif self.covariance_type == 'diag': return [np.diag(cov) for cov in self.covars_] elif self.covariance_type == 'tied': return [self.covars_] * self.n_components elif self.covariance_type == 'spherical': return [np.diag(cov) for cov in self.covars_] def _set_covars(self, covars): """Provide values for covariance""" covars = np.asarray(covars) _validate_covars(covars, self.covariance_type, self.n_components) self.covars_ = covars def score_samples(self, X): """Return the per-sample likelihood of the data under the model. Compute the log probability of X under the model and return the posterior distribution (responsibilities) of each mixture component for each element of X. Parameters ---------- X: array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X. responsibilities : array_like, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation """ check_is_fitted(self, 'means_') X = check_array(X) if X.ndim == 1: X = X[:, np.newaxis] if X.size == 0: return np.array([]), np.empty((0, self.n_components)) if X.shape[1] != self.means_.shape[1]: raise ValueError('The shape of X is not compatible with self') lpr = (log_multivariate_normal_density(X, self.means_, self.covars_, self.covariance_type) + np.log(self.weights_)) logprob = logsumexp(lpr, axis=1) responsibilities = np.exp(lpr - logprob[:, np.newaxis]) return logprob, responsibilities def score(self, X, y=None): """Compute the log probability under the model. Parameters ---------- X : array_like, shape (n_samples, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- logprob : array_like, shape (n_samples,) Log probabilities of each data point in X """ logprob, _ = self.score_samples(X) return logprob def predict(self, X): """Predict label for data. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ logprob, responsibilities = self.score_samples(X) return responsibilities.argmax(axis=1) def predict_proba(self, X): """Predict posterior probability of data under each Gaussian in the model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- responsibilities : array-like, shape = (n_samples, n_components) Returns the probability of the sample for each Gaussian (state) in the model. """ logprob, responsibilities = self.score_samples(X) return responsibilities def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int, optional Number of samples to generate. Defaults to 1. Returns ------- X : array_like, shape (n_samples, n_features) List of samples """ check_is_fitted(self, 'means_') if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) weight_cdf = np.cumsum(self.weights_) X = np.empty((n_samples, self.means_.shape[1])) rand = random_state.rand(n_samples) # decide which component to use for each sample comps = weight_cdf.searchsorted(rand) # for each component, generate all needed samples for comp in range(self.n_components): # occurrences of current component in X comp_in_X = (comp == comps) # number of those occurrences num_comp_in_X = comp_in_X.sum() if num_comp_in_X > 0: if self.covariance_type == 'tied': cv = self.covars_ elif self.covariance_type == 'spherical': cv = self.covars_[comp][0] else: cv = self.covars_[comp] X[comp_in_X] = sample_gaussian( self.means_[comp], cv, self.covariance_type, num_comp_in_X, random_state=random_state).T return X def fit_predict(self, X, y=None): """Fit and then predict labels for data. Warning: due to the final maximization step in the EM algorithm, with low iterations the prediction may not be 100% accurate Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = (n_samples,) component memberships """ return self._fit(X, y).argmax(axis=1) def _fit(self, X, y=None, do_prediction=False): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- responsibilities : array, shape (n_samples, n_components) Posterior probabilities of each mixture component for each observation. """ # initialization step X = check_array(X, dtype=np.float64, ensure_min_samples=2, estimator=self) if X.shape[0] < self.n_components: raise ValueError( 'GMM estimation with %s components, but got only %s samples' % (self.n_components, X.shape[0])) max_log_prob = -np.infty if self.verbose > 0: print('Expectation-maximization algorithm started.') for init in range(self.n_init): if self.verbose > 0: print('Initialization ' + str(init + 1)) start_init_time = time() if 'm' in self.init_params or not hasattr(self, 'means_'): self.means_ = cluster.KMeans( n_clusters=self.n_components, random_state=self.random_state).fit(X).cluster_centers_ if self.verbose > 1: print('\tMeans have been initialized.') if 'w' in self.init_params or not hasattr(self, 'weights_'): self.weights_ = np.tile(1.0 / self.n_components, self.n_components) if self.verbose > 1: print('\tWeights have been initialized.') if 'c' in self.init_params or not hasattr(self, 'covars_'): cv = np.cov(X.T) + self.min_covar * np.eye(X.shape[1]) if not cv.shape: cv.shape = (1, 1) self.covars_ = \ distribute_covar_matrix_to_match_covariance_type( cv, self.covariance_type, self.n_components) if self.verbose > 1: print('\tCovariance matrices have been initialized.') # EM algorithms current_log_likelihood = None # reset self.converged_ to False self.converged_ = False for i in range(self.n_iter): if self.verbose > 0: print('\tEM iteration ' + str(i + 1)) start_iter_time = time() prev_log_likelihood = current_log_likelihood # Expectation step log_likelihoods, responsibilities = self.score_samples(X) current_log_likelihood = log_likelihoods.mean() # Check for convergence. if prev_log_likelihood is not None: change = abs(current_log_likelihood - prev_log_likelihood) if self.verbose > 1: print('\t\tChange: ' + str(change)) if change < self.tol: self.converged_ = True if self.verbose > 0: print('\t\tEM algorithm converged.') break # Maximization step self._do_mstep(X, responsibilities, self.params, self.min_covar) if self.verbose > 1: print('\t\tEM iteration ' + str(i + 1) + ' took {0:.5f}s'.format( time() - start_iter_time)) # if the results are better, keep it if self.n_iter: if current_log_likelihood > max_log_prob: max_log_prob = current_log_likelihood best_params = {'weights': self.weights_, 'means': self.means_, 'covars': self.covars_} if self.verbose > 1: print('\tBetter parameters were found.') if self.verbose > 1: print('\tInitialization ' + str(init + 1) + ' took {0:.5f}s'.format( time() - start_init_time)) # check the existence of an init param that was not subject to # likelihood computation issue. if np.isneginf(max_log_prob) and self.n_iter: raise RuntimeError( "EM algorithm was never able to compute a valid likelihood " + "given initial parameters. Try different init parameters " + "(or increasing n_init) or check for degenerate data.") if self.n_iter: self.covars_ = best_params['covars'] self.means_ = best_params['means'] self.weights_ = best_params['weights'] else: # self.n_iter == 0 occurs when using GMM within HMM # Need to make sure that there are responsibilities to output # Output zeros because it was just a quick initialization responsibilities = np.zeros((X.shape[0], self.n_components)) return responsibilities def fit(self, X, y=None): """Estimate model parameters with the EM algorithm. A initialization step is performed before entering the expectation-maximization (EM) algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string '' when creating the GMM object. Likewise, if you would like just to do an initialization, set n_iter=0. Parameters ---------- X : array_like, shape (n, n_features) List of n_features-dimensional data points. Each row corresponds to a single data point. Returns ------- self """ self._fit(X, y) return self def _do_mstep(self, X, responsibilities, params, min_covar=0): """ Perform the Mstep of the EM algorithm and return the class weights """ weights = responsibilities.sum(axis=0) weighted_X_sum = np.dot(responsibilities.T, X) inverse_weights = 1.0 / (weights[:, np.newaxis] + 10 * EPS) if 'w' in params: self.weights_ = (weights / (weights.sum() + 10 * EPS) + EPS) if 'm' in params: self.means_ = weighted_X_sum * inverse_weights if 'c' in params: covar_mstep_func = _covar_mstep_funcs[self.covariance_type] self.covars_ = covar_mstep_func( self, X, responsibilities, weighted_X_sum, inverse_weights, min_covar) return weights def _n_parameters(self): """Return the number of free parameters in the model.""" ndim = self.means_.shape[1] if self.covariance_type == 'full': cov_params = self.n_components * ndim * (ndim + 1) / 2. elif self.covariance_type == 'diag': cov_params = self.n_components * ndim elif self.covariance_type == 'tied': cov_params = ndim * (ndim + 1) / 2. elif self.covariance_type == 'spherical': cov_params = self.n_components mean_params = ndim * self.n_components return int(cov_params + mean_params + self.n_components - 1) def bic(self, X): """Bayesian information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- bic: float (the lower the better) """ return (-2 * self.score(X).sum() + self._n_parameters() * np.log(X.shape[0])) def aic(self, X): """Akaike information criterion for the current model fit and the proposed data Parameters ---------- X : array of shape(n_samples, n_dimensions) Returns ------- aic: float (the lower the better) """ return - 2 * self.score(X).sum() + 2 * self._n_parameters() ######################################################################### # some helper routines ######################################################################### def _log_multivariate_normal_density_diag(X, means, covars): """Compute Gaussian log-density at X for a diagonal model""" n_samples, n_dim = X.shape lpr = -0.5 * (n_dim * np.log(2 * np.pi) + np.sum(np.log(covars), 1) + np.sum((means ** 2) / covars, 1) - 2 * np.dot(X, (means / covars).T) + np.dot(X ** 2, (1.0 / covars).T)) return lpr def _log_multivariate_normal_density_spherical(X, means, covars): """Compute Gaussian log-density at X for a spherical model""" cv = covars.copy() if covars.ndim == 1: cv = cv[:, np.newaxis] if covars.shape[1] == 1: cv = np.tile(cv, (1, X.shape[-1])) return _log_multivariate_normal_density_diag(X, means, cv) def _log_multivariate_normal_density_tied(X, means, covars): """Compute Gaussian log-density at X for a tied model""" cv = np.tile(covars, (means.shape[0], 1, 1)) return _log_multivariate_normal_density_full(X, means, cv) def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7): """Log probability for full covariance matrices.""" n_samples, n_dim = X.shape nmix = len(means) log_prob = np.empty((n_samples, nmix)) for c, (mu, cv) in enumerate(zip(means, covars)): try: cv_chol = linalg.cholesky(cv, lower=True) except linalg.LinAlgError: # The model is most probably stuck in a component with too # few observations, we need to reinitialize this components try: cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim), lower=True) except linalg.LinAlgError: raise ValueError("'covars' must be symmetric, " "positive-definite") cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol))) cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) + n_dim * np.log(2 * np.pi) + cv_log_det) return log_prob def _validate_covars(covars, covariance_type, n_components): """Do basic checks on matrix covariance sizes and values """ from scipy import linalg if covariance_type == 'spherical': if len(covars) != n_components: raise ValueError("'spherical' covars have length n_components") elif np.any(covars <= 0): raise ValueError("'spherical' covars must be non-negative") elif covariance_type == 'tied': if covars.shape[0] != covars.shape[1]: raise ValueError("'tied' covars must have shape (n_dim, n_dim)") elif (not np.allclose(covars, covars.T) or np.any(linalg.eigvalsh(covars) <= 0)): raise ValueError("'tied' covars must be symmetric, " "positive-definite") elif covariance_type == 'diag': if len(covars.shape) != 2: raise ValueError("'diag' covars must have shape " "(n_components, n_dim)") elif np.any(covars <= 0): raise ValueError("'diag' covars must be non-negative") elif covariance_type == 'full': if len(covars.shape) != 3: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") elif covars.shape[1] != covars.shape[2]: raise ValueError("'full' covars must have shape " "(n_components, n_dim, n_dim)") for n, cv in enumerate(covars): if (not np.allclose(cv, cv.T) or np.any(linalg.eigvalsh(cv) <= 0)): raise ValueError("component %d of 'full' covars must be " "symmetric, positive-definite" % n) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") def distribute_covar_matrix_to_match_covariance_type( tied_cv, covariance_type, n_components): """Create all the covariance matrices from a given template""" if covariance_type == 'spherical': cv = np.tile(tied_cv.mean() * np.ones(tied_cv.shape[1]), (n_components, 1)) elif covariance_type == 'tied': cv = tied_cv elif covariance_type == 'diag': cv = np.tile(np.diag(tied_cv), (n_components, 1)) elif covariance_type == 'full': cv = np.tile(tied_cv, (n_components, 1, 1)) else: raise ValueError("covariance_type must be one of " + "'spherical', 'tied', 'diag', 'full'") return cv def _covar_mstep_diag(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for diagonal cases""" avg_X2 = np.dot(responsibilities.T, X * X) * norm avg_means2 = gmm.means_ ** 2 avg_X_means = gmm.means_ * weighted_X_sum * norm return avg_X2 - 2 * avg_X_means + avg_means2 + min_covar def _covar_mstep_spherical(*args): """Performing the covariance M step for spherical cases""" cv = _covar_mstep_diag(*args) return np.tile(cv.mean(axis=1)[:, np.newaxis], (1, cv.shape[1])) def _covar_mstep_full(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): """Performing the covariance M step for full cases""" # Eq. 12 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" n_features = X.shape[1] cv = np.empty((gmm.n_components, n_features, n_features)) for c in range(gmm.n_components): post = responsibilities[:, c] mu = gmm.means_[c] diff = X - mu with np.errstate(under='ignore'): # Underflow Errors in doing post * X.T are not important avg_cv = np.dot(post * diff.T, diff) / (post.sum() + 10 * EPS) cv[c] = avg_cv + min_covar * np.eye(n_features) return cv def _covar_mstep_tied(gmm, X, responsibilities, weighted_X_sum, norm, min_covar): # Eq. 15 from K. Murphy, "Fitting a Conditional Linear Gaussian # Distribution" avg_X2 = np.dot(X.T, X) avg_means2 = np.dot(gmm.means_.T, weighted_X_sum) out = avg_X2 - avg_means2 out *= 1. / X.shape[0] out.flat[::len(out) + 1] += min_covar return out _covar_mstep_funcs = {'spherical': _covar_mstep_spherical, 'diag': _covar_mstep_diag, 'tied': _covar_mstep_tied, 'full': _covar_mstep_full, }
bsd-3-clause
gskielian/SimpleCV
SimpleCV/examples/util/ColorCube.py
13
1901
from SimpleCV import Image, Camera, Display, Color import pygame as pg import numpy as np from pylab import * from mpl_toolkits.mplot3d import axes3d from matplotlib.backends.backend_agg import FigureCanvasAgg import cv2 bins = 8 #precompute idxs = [] colors = [] offset = bins/2 skip = 255/bins for x in range(0,bins): for y in range(0,bins): for z in range(0,bins): b = ((x*skip)+offset)/255.0 g = ((y*skip)+offset)/255.0 r = ((z*skip)+offset)/255.0 idxs.append((x,y,z,(r,g,b))) # plot points in 3D cam = Camera() disp = Display((800,600)) fig = figure() fig.set_size_inches( (10,7) ) canvas = FigureCanvasAgg(fig) azim = 0 while disp.isNotDone(): ax = fig.gca(projection='3d') ax.set_xlabel('BLUE', color=(0,0,1) ) ax.set_ylabel('GREEN',color=(0,1,0)) ax.set_zlabel('RED',color=(1,0,0)) # Get the color histogram img = cam.getImage().scale(0.3) rgb = img.getNumpyCv2() hist = cv2.calcHist([rgb],[0,1,2],None,[bins,bins,bins],[0,256,0,256,0,256]) hist = hist/np.max(hist) # render everything [ ax.plot([x],[y],[z],'.',markersize=max(hist[x,y,z]*100,6),color=color) for x,y,z,color in idxs if(hist[x][y][z]>0) ] #[ ax.plot([x],[y],[z],'.',color=color) for x,y,z,color in idxs if(hist[x][y][z]>0) ] ax.set_xlim3d(0, bins-1) ax.set_ylim3d(0, bins-1) ax.set_zlim3d(0, bins-1) azim = (azim+0.5)%360 ax.view_init(elev=35, azim=azim) ########### convert matplotlib to SimpleCV image canvas.draw() renderer = canvas.get_renderer() raw_data = renderer.tostring_rgb() size = canvas.get_width_height() surf = pg.image.fromstring(raw_data, size, "RGB") figure = Image(surf) ############ All done figure = figure.floodFill((0,0), tolerance=5,color=Color.WHITE) result = figure.blit(img, pos=(20,20)) result.save(disp) fig.clf()
bsd-3-clause
desihub/desimodel
py/desimodel/footprint.py
1
23205
# See LICENSE.rst for BSD 3-clause license info # -*- coding: utf-8 -*- """ desimodel.footprint =================== Utility functions for working with the DESI footprint. """ import os from time import time import numpy as np from desiutil.log import get_logger from .io import load_tiles from . import __version__ as desimodel_version log = get_logger() _pass2program = None def pass2program(tilepass): '''Converts integer tile pass number to string program name. Args: tilepass (int or int array): tiling pass number. Returns: Program name for each pass (str or list of str). ''' global _pass2program if _pass2program is None: tiles = load_tiles() _pass2program = dict(set(zip(tiles['PASS'], tiles['PROGRAM']))) if np.isscalar(tilepass): return _pass2program[tilepass] else: return [_pass2program[p] for p in tilepass] def program2pass(program): '''Convert string program name to tile passes for that program. Args: program (str for str array): program name, *e.g.* DARK, BRIGHT, or GRAY. Returns: List of integer passes that cover that program, or list of lists if input was array-like. ''' tiles = load_tiles() if np.isscalar(program): passes = sorted(list(set(tiles['PASS'][tiles['PROGRAM'] == program]))) if len(passes) > 0: return passes else: known_programs = set(tiles['PROGRAM']) msg = 'Unknown program {}; known programs are {}'.format( program, known_programs) raise ValueError(msg) else: program = np.asarray(program) passes = [None,] * len(program) for thisprogram in np.unique(program): thesepasses = program2pass(thisprogram) for i in np.where(program == thisprogram)[0]: passes[i] = thesepasses return passes def radec2pix(nside, ra, dec): '''Convert `ra`, `dec` to nested pixel number. Args: nside (int): HEALPix `nside`, ``2**k`` where 0 < k < 30. ra (float or array): Right Accention in degrees. dec (float or array): Declination in degrees. Returns: Array of integer pixel numbers using nested numbering scheme. Notes: This is syntactic sugar around:: hp.ang2pix(nside, ra, dec, lonlat=True, nest=True) but also works with older versions of healpy that didn't have `lonlat` yet. ''' import healpy as hp theta, phi = np.radians(90-dec), np.radians(ra) if np.isnan(np.sum(theta)) : raise ValueError("some NaN theta values") if np.sum((theta < 0)|(theta > np.pi))>0 : raise ValueError("some theta values are outside [0,pi]: {}".format(theta[(theta < 0)|(theta > np.pi)])) return hp.ang2pix(nside, theta, phi, nest=True) def tiles2pix(nside, tiles=None, radius=None, per_tile=False, fact=2**7): '''Returns sorted array of pixels that overlap the tiles. Args: nside (int): HEALPix `nside`, ``2**k`` where 0 < k < 30. tiles (array-like or Table-like, optional): Integer tile IDs, or ``None`` to use all DESI tiles from :func:`desimodel.io.load_tiles`. radius (float, optional): tile radius in degrees; if ``None`` use :func:`desimodel.focalplane.get_tile_radius_deg`. per_tile (bool, optional): If ``True``, return a list of arrays of pixels per tile. fact (int, optional): Factor healpy uses to resolve pixel overlaps. When this is large there are fewer false positives at the expense of run time (although ``fact=2**8`` seems fast). Must be a power of 2. Returns: Integer array of pixel numbers that cover these tiles; or if per_tile is `True`, returns list of arrays such that ``pixels[i]`` is an array of pixel numbers covering ``tiles[i]``. ''' import healpy as hp from .focalplane import get_tile_radius_deg if tiles is None: tiles = load_tiles() if radius is None: radius = get_tile_radius_deg() theta, phi = np.radians(90-tiles['DEC']), np.radians(tiles['RA']) vec = hp.ang2vec(theta, phi) ipix = [hp.query_disc(nside, vec[i], radius=np.radians(radius), inclusive=True, nest=True, fact=fact) for i in range(len(tiles))] if per_tile: return ipix else: return np.sort(np.unique(np.concatenate(ipix))) def tileids2pix(nside, tileids, radius=None, per_tile=False): '''Like :func:`~desimodel.footprint.tiles2pix`, but accept integer tileid or list of tileids instead of table of tiles. ''' tiles = load_tiles() ii = np.in1d(tiles['TILEID'], tileids) if np.count_nonzero(ii) == np.asarray(tileids).size: return tiles2pix(nside, tiles[ii], radius=radius, per_tile=per_tile) else: extra = set(tileids) - set(tiles['TILEID']) raise ValueError('{}/{} TILEID(s) not in DESI footprint: {}'.format( len(extra), len(tileids), extra)) def tiles2fracpix(nside, step=1, tiles=None, radius=None, fact=2**7): '''Returns a sorted array of just the *fractional* pixels that overlap the tiles. Args: nside (int): HEALPix `nside`, ``2**k`` where 0 < k < 30. step (int, optional): The number of integration steps around the edges of a HEALPix pixel. ``step=1`` means just the pixel vertices. ``step=2`` means the vertices and the corners and the points halfway between the vertices. See also the `HEALPix boundary document <http://healpy.readthedocs.io/en/latest/generated/healpy.boundaries.html>`_ . tiles (Table-like, optional): Table-like with RA,DEC columns; or ``None`` to use all DESI tiles from :func:`desimodel.io.load_tiles`. radius (float, optional): Tile radius in degrees; if ``None`` use :func:`desimodel.focalplane.get_tile_radius_deg`. fact (int, optional): Factor healpy uses to resolve pixel overlaps. When this is large there are fewer false positives at the expense of run time (although ``fact=2**8`` seems fast). Must be a power of 2. Returns: Integer array of pixel numbers that cover these tiles, *excluding pixels that fully overlap the tiles* (*i.e.*, just pixels that *partially* overlap the tiles). The integers are sorted. Notes: There are potentially malicious cases where a pixel just brushes a tile, such that there is a very small area where the pixel overlaps the tile. To guard against these case, call this function with progressively larger step values until it converges. ''' #ADM set up healpy and set default tiles and radius import healpy as hp from .focalplane import get_tile_radius_deg if tiles is None: tiles = load_tiles() if radius is None: radius = get_tile_radius_deg() #ADM obtain ALL pixels that overlap the tiles (and perhaps a #ADM few more if fact is a small number pix = tiles2pix(nside, tiles=tiles, radius=radius, fact=fact) #ADM the recovered number of pixels, and the total number of points #ADM that will be integrated around the boundary of the pixel npix = len(pix) nvertsperpix = 4*step #ADM find points around the boundary of all pixels in Cartesian coordinates xyzverts = hp.boundaries(nside,pix,step=step,nest=True) #ADM convert to RA/Dec theta, phi = hp.vec2ang(np.hstack(xyzverts).T) ra, dec = np.degrees(phi), 90-np.degrees(theta) #ADM calculate which boundary points are in the tiles verts_in = is_point_in_desi(tiles, ra, dec, radius=radius) #ADM reshape this into an array with nvertsperpix columns pix_verts_in = np.reshape(verts_in,(npix,nvertsperpix)) #ADM any row with a column not in the tiles must be a fractional pixel isfracpix = ~np.all(pix_verts_in,axis=1) #ADM the pixel integers where pixels are fractional return pix[np.where(isfracpix)] def pixweight(nside, tiles=None, radius=None, precision=0.01, outfile=None, outplot=None): '''Create an array of the fraction of each pixel that overlaps the passed tiles. Args: nside (int): HEALPix `nside`, ``2**k`` where 0 < k < 30. tiles (Table-like, optional): Table-like with RA,DEC columns; or ``None`` to use all DESI tiles from :func:`desimodel.io.load_tiles`. radius (float, optional): Tile radius in degrees; if `None` use :func:`desimodel.focalplane.get_tile_radius_deg`. precision (float, optional): Approximate precision at which to calculate the area of pixels that partially overlap the footprint in SQUARE DEGREES (*e.g.* 0.01 means precise to 0.01 sq. deg., or 36 sq. arcmin.). Lower numbers mean better precision. outfile (str, optional): Write the pixel->weight array to the file passed as `outfile` (could be full directory path + file). outplot (str, optional): Create a plot named `outplot` (pass a *name* for a plot in the current directory, a *full path* for a plot in a different directory). This is passed to matplotlib.pyplot's savefig routine. Returns pixweight: An array of the weight for each pixel at the passed nside. The weight is the fracion of the pixel that overlaps the passed tiles: `WEIGHT=1` for the pixel is entirely contained in the tiles; `WEIGHT=0` for the pixel is entirely outside of the tiles; `0 < WEIGHT < 1` for a pixel that overlaps the tiles. The index of the array is the HEALPixel integer. Notes: It is sufficient to create the weights at a suitably high nside, say nside=256 (0.052456 sq. deg. per pixel) as pixel numbers at lower nsides can be obtained by integer division by powers of 4, *e.g.* pix_@_nside_128 = pix@nside_256//4 and fractional weights at lower nsides are the mean of the 4 pixels at the higher nside :func:`desimodel.io.load_pixweight` can downsample the array to lower nsides. ''' t0 = time() # ADM if tiles or radius is None, load the DESI model defaults. from .focalplane import get_tile_radius_deg if tiles is None: tiles = load_tiles() if radius is None: radius = get_tile_radius_deg() #ADM create an array that is zero for each integer pixel at this nside import healpy as hp npix = hp.nside2npix(nside) weight = np.zeros(npix,float) #ADM recover pixels that are likely to be in the DESI footprint and #ADM set their weight to one (it's the case, then, that anything that #ADM is *definitely outside of* the footprint has a weight of zero) pix = tiles2pix(nside, tiles=tiles, radius=radius, fact=2**8) weight[pix] = 1. #ADM loop through to find the "edge" (fractional) pixels, until convergence log.info('Start integration around partial pixels...') setfracpix = set([-1]) #ADM only have a limited range, to prevent this running forever for i in range(20): log.info('Trying {} pixel boundary points (step={})...t={:.1f}s' .format(4*2**i,2**i,time()-t0)) #ADM find the fractional pixels at this step fracpix = tiles2fracpix(nside, step=2**i, tiles=tiles, radius=radius, fact=2**8) log.info('...found {} fractional pixels...t={:.1f}s' .format(len(fracpix),time()-t0)) if set(fracpix) == setfracpix: break #ADM if we didn't converge, loop through again with the new #ADM set of fractional pixels setfracpix = set(fracpix) #ADM warn the user if the integration didn't converge at 4*2**20 boundary points if i == 20: log.warning('Integration around pixel boundaries did NOT converge!') #ADM create a mask that is True for fractional pixels, false for all other pixels mask = np.zeros(npix,bool) mask[fracpix] = True #ADM find the minimum and maximum dec of interest (there's no need to Monte Carlo #ADM integrate over declinations that lie beyond the fractional pixels) xyzverts = hp.boundaries(nside,fracpix,nest=True) theta, phi = hp.vec2ang(np.hstack(xyzverts).T) ra, dec = np.degrees(phi), 90-np.degrees(theta) decmin, decmax = np.min(dec), np.max(dec) sindecmin, sindecmax = np.sin(np.radians(decmin)), np.sin(np.radians(decmax)) area = 360.*np.degrees(sindecmax-sindecmin) log.info('Populating randoms between {:.2f} and {:.2f} degrees, an area of {:.1f} sq. deg....t={:.1f}s' .format(decmin,decmax,area,time()-t0)) #ADM determine the required precision for the area of interest nptpersqdeg = int((1./precision)**2) npt = int(nptpersqdeg * area) log.info('Generating {} random points...t={:.1f}s'.format(npt,time()-t0)) #ADM loop over chunks (if npt > 1e7) to reach npt points while avoiding memory issues nchunk = int(1e7) pixinmask = [] rainmask = [] decinmask = [] cnt = 0 while cnt < npt: #ADM if a chunk would pass too many points (> npt), revert to the remaining number #ADM of points instead of creating a full chunk if nchunk + cnt > npt: nchunk = npt - cnt #ADM populate the portion of the sphere of interest with random points ra = np.random.uniform(0.,360.,nchunk) dec = np.degrees(np.arcsin(1.-np.random.uniform(1-sindecmax,1-sindecmin,nchunk))) #ADM convert the random points to pixel number pix = radec2pix(nside,ra,dec) #ADM retain random points for which the mask is True (i.e. just the fractional pixels) inmask = np.where(mask[pix])[0] decinmask.append(dec[inmask]) rainmask.append(ra[inmask]) pixinmask.append(pix[inmask]) cnt += nchunk log.info('...generated {} random points...t={:.1f}s' .format(cnt,time()-t0)) #ADM collapse the 2-D chunks into a 1-D array from itertools import chain rainmask = np.array(list(chain.from_iterable(rainmask))) decinmask = np.array(list(chain.from_iterable(decinmask))) pixinmask = np.array(list(chain.from_iterable(pixinmask))) log.info('{} of the random points are in fractional pixels...t={:.1f}s' .format(len(pixinmask),time()-t0)) #ADM find which random points in the fractional pixels are in the DESI footprint log.info('Start integration over fractional pixels at edges of DESI footprint...') indesi = is_point_in_desi(tiles,rainmask,decinmask) log.info('...{} of the random points in fractional pixels are in DESI...t={:.1f}s' .format(np.sum(indesi),time()-t0)) #ADM assign the weights of the fractional pixels as the fraction of random points #ADM in the fractional pixels that are in the DESI footprint allinfracpix = np.histogram(pixinmask,bins=np.arange(npix))[0][fracpix] desiinfracpix = np.histogram(pixinmask[np.where(indesi)],bins=np.arange(npix))[0][fracpix] #ADM guard against integer division (for backwards-compatability with Python2) #ADM and create the final array of weights weight[fracpix] = desiinfracpix.astype('float64')/allinfracpix if outfile is not None: #ADM write information indicating HEALPix setup to file header #ADM include desimodel version as a check in case footprint changes import fitsio from desiutil import depend hdr = fitsio.FITSHDR() depend.setdep(hdr, 'desimodel', desimodel_version) hdr['PRECISE'] = precision hdr['HPXNSIDE'] = nside hdr['HPXNEST'] = True fitsio.write(outfile, weight, extname='PIXWEIGHTS', header=hdr, clobber=True) #ADM if outplot was passed, make a plot of the final mask in Mollweide projection if outplot is not None: import matplotlib.pyplot as plt hp.mollview(weight, nest=True) plt.savefig(outplot) log.info('Done...t={:.1f}s'.format(time()-t0)) return weight def pix2tiles(nside, pixels, tiles=None, radius=None): '''Returns subset of tiles that overlap the list of pixels. Args: nside (int): HEALPix `nside`, ``2**k`` where 0 < k < 30. pixels (array-like): Array of integer pixels using nested numbering scheme. tiles (Table-like, optional): Table-like with RA,DEC columns; or ``None`` to use all DESI tiles from :func:`desimodel.io.load_tiles`. radius (float, optional): Tile radius in degrees; if `None` use :func:`desimodel.focalplane.get_tile_radius_deg`. Returns: Table of tiles that cover these pixels. TODO: add support for tiles as integers or list/array of integer TILEIDs. ''' import healpy as hp from .focalplane import get_tile_radius_deg if tiles is None: tiles = load_tiles() if radius is None: radius = get_tile_radius_deg() #- Trim tiles to ones that *might* overlap these pixels theta, phi = hp.pix2ang(nside, pixels, nest=True) ra, dec = np.degrees(phi), 90 - np.degrees(theta) pixsize = np.degrees(hp.nside2resol(nside)) ii = find_tiles_over_point(tiles, ra, dec, radius=radius+pixsize) if np.isscalar(pixels): tiles = tiles[ii] else: ii = np.unique(np.concatenate(ii)) tiles = tiles[ii] #- Now check in detail theta, phi = np.radians(90-tiles['DEC']), np.radians(tiles['RA']) vec = hp.ang2vec(theta, phi) ii = list() for i in range(len(tiles)): tilepix = hp.query_disc(nside, vec[i], radius=np.radians(radius), inclusive=True, nest=True) if np.any(np.in1d(pixels, tilepix)): ii.append(i) return tiles[ii] def _embed_sphere(ra, dec): """Embed `ra`, `dec` to a uniform sphere in three dimensions. """ phi = np.radians(np.asarray(ra)) theta = np.radians(90.0 - np.asarray(dec)) r = np.sin(theta) x = r * np.cos(phi) y = r * np.sin(phi) z = np.cos(theta) return np.array((x, y, z)).T def is_point_in_desi(tiles, ra, dec, radius=None, return_tile_index=False): """If a point (`ra`, `dec`) is within `radius` distance from center of any tile, it is in DESI. Args: tiles (Table-like): The output of :func:`desimodel.io.load_tiles`, or a similar Table. ra (scalar or array-like): Right Ascension in degrees. dec (scalar or array-like): Declination in degrees. The size of `dec` must match the size of `ra`. radius (float, optional): Tile radius in degrees; if `None` use :func:`desimodel.focalplane.get_tile_radius_deg`. return_tile_index (bool, optional): If ``True``, return the index of the nearest tile in tiles array. Returns: Return ``True`` if points given by `ra`, `dec` lie in the set of `tiles`. Notes: This function is optimized to query a lot of points. """ from scipy.spatial import cKDTree as KDTree from .focalplane import get_tile_radius_deg if radius is None: radius = get_tile_radius_deg() tilecenters = _embed_sphere(tiles['RA'], tiles['DEC']) tree = KDTree(tilecenters) # radius to 3d distance threshold = 2.0 * np.sin(np.radians(radius) * 0.5) xyz = _embed_sphere(ra, dec) if not xyz.flags['C_CONTIGUOUS']: xyz = xyz.copy() d, i = tree.query(xyz, k=1) indesi = d < threshold if return_tile_index: return indesi, i else: return indesi def find_tiles_over_point(tiles, ra, dec, radius=None): """Return a list of indices of tiles that covers the points. This function is optimized to query a lot of points. radius is in units of degrees. The return value is an array of list objects that are the indices of tiles that cover each point. The indices are not sorted in any particular order. if ra, dec are scalars, a single list is returned. default radius is from desimodel.focalplane.get_tile_radius_deg() """ from scipy.spatial import cKDTree as KDTree from .focalplane import get_tile_radius_deg if radius is None: radius = get_tile_radius_deg() tilecenters = _embed_sphere(tiles['RA'], tiles['DEC']) tree = KDTree(tilecenters) # radius to 3d distance threshold = 2.0 * np.sin(np.radians(radius) * 0.5) xyz = _embed_sphere(ra, dec) if not xyz.flags['C_CONTIGUOUS']: xyz = xyz.copy() indices = tree.query_ball_point(xyz, threshold) return indices def find_points_in_tiles(tiles, ra, dec, radius=None): """Return a list of indices of points that are within each provided tile(s). This function is optimized to query a lot of points with relatively few tiles. radius is in units of degrees. The return value is an array of lists that contains the index of points that are in each tile. The indices are not sorted in any particular order. if tiles is a scalar, a single list is returned. default radius is from desimodel.focalplane.get_tile_radius_deg() """ return find_points_radec(tiles['RA'], tiles['DEC'], ra, dec, radius) def find_points_radec(telra, teldec, ra, dec, radius = None): """Return a list of indices of points that are within a radius of an arbitrary telra, teldec. This function is optimized to query a lot of points with a single telra and teldec. radius is in units of degrees. The return value is a list that contains the index of points that are in each tile. The indices are not sorted in any particular order. if tiles is a scalar, a single list is returned. default radius is from desimodel.focalplane.get_tile_radius_deg() Note: This is simply a modified version of find_points_in_tiles, but this function does not know about tiles. """ from scipy.spatial import cKDTree as KDTree from .focalplane import get_tile_radius_deg if radius is None: radius = get_tile_radius_deg() # check for malformed input shapes. Sorry we currently only # deal with vector inputs. (for a sensible definition of indices) assert ra.ndim == 1 assert dec.ndim == 1 points = _embed_sphere(ra, dec) tree = KDTree(points) # radius to 3d distance threshold = 2.0 * np.sin(np.radians(radius) * 0.5) xyz = _embed_sphere(telra, teldec) if not xyz.flags['C_CONTIGUOUS']: xyz = xyz.copy() indices = tree.query_ball_point(xyz, threshold) return indices def get_tile_radec(tileid): """Get the coordinates of a tile. Args: tileid (int): ID of a tile. Returns: tuple: (ra, dec) in degrees for the requested `tileid`. Raises: ValueError: If tileid is not in list of known tiles. """ tiles = load_tiles() if tileid in tiles['TILEID']: i = np.where(tiles['TILEID'] == tileid)[0][0] return tiles[i]['RA'], tiles[i]['DEC'] else: raise ValueError('Unknown tileid {}'.format(tileid))
bsd-3-clause
goldmanm/tools
analysis.py
1
9967
# -*- coding: utf-8 -*- import numpy as np import cantera as ct import pandas as pd import re import warnings import copy ################################### # 3b. output data analysis ################################### def branching_ratios(df, solution, compound, production = False): """ This method looks at the consumption pathways of `compound` over all time points in the data set. It outputs a pandas.DataFrame which contains columns of pertinant reactions and values of the branching ratio of each reaction which is defined as $BR_{i} = \frac{ROC_i}{\Sigma_{j=0}^{j=N} ROC_j }$ where $i$ is the reaction in question, $ROC$ is the rate of consumption of the desired species, and $N$ is the number of reactions, and $BR$ is the branching ratio. df = dataframe of run data solution = cantera solution object compound = species string which you want to identify production = if True, shows the reactions forming species X This method only works on forward reactions """ reaction_dataframe = weight_reaction_dataframe_by_stoich_coefficients(df,solution,compound) if not production: #only keep consumption consumption_terms = reaction_dataframe[reaction_dataframe < 0] df = consumption_terms.dropna('columns','all') else: production_terms = reaction_dataframe[reaction_dataframe > 0] df = production_terms.dropna('columns','all') total = df.sum('columns') branching_ratios = df.div(total,'index') branching_ratios = branching_ratios.fillna(0) #sort from most important importance_index = branching_ratios.sum('index').sort_values(ascending=False) branching_ratios = branching_ratios.reindex(importance_index.index,axis='columns') return branching_ratios def consumption_pathways(solution,df,species, time = 'all'): """ returns the total rate of production for a particular species at the specified time(s). Postive values indicate production, negative values indicate consumption If multiple times are given or the keyword 'all' is used, the output is a DataFrame with indexes the various times. If only one time is supplied, the output is a Series. solution = cantera solution object df = pandas dataframe of reactions species = string of species time = number describing the time points to determine consumption (or list of numbers) """ if time=='all': time = list(df.index) if isinstance(time,list): # recursively run consumption_pathways consumption_values = [] for t in time: consumption_values.append(consumption_pathways(solution=solution, df=df, species=species, time= t)) consumption_values = pd.DataFrame(consumption_values, index=time) # sort by total sum of flux sorted_index = consumption_values.sum('index').sort_values().keys() return consumption_values[sorted_index] # the time is not a list, return a pd.Series try: reactions_weighted = find_reactions(solution, df,species).loc[time,:] except KeyError: reactions_weighted = find_reactions(solution, df,species).loc[return_nearest_time_index(time,df.index, index=False),:] # weight by stoichiometric_coefficients stoich_coeffs = [obtain_stoichiometry_of_species(solution, species, reaction) for reaction in reactions_weighted.index] stoich_coeff_dict = pd.Series(dict(zip(reactions_weighted.index,stoich_coeffs))) # pandas was having some bug, so manually rewrote the line below #reactions_weighted *= stoich_coeff_dict for index in stoich_coeff_dict.index: reactions_weighted[index] *= stoich_coeff_dict[index] return reactions_weighted.sort_values() def quasi_steady_state(df, species): """ This method outputs the key parameter, $\frac{|ROP-ROC|}{ROP}$, in quasi steady state approximation. df = pd.DataFrame containing get_rop_and_roc_series species = string of species to use returns a pd.Series of the qss apprixmation: $\frac{|ROP-ROC|}{ROP}$ """ return (df['production',species] - df['consumption',species]).abs() / df['production',species] def compare_species_profile_at_one_time(desired_time, df1,df2, minimum_return_value=1e-13, time_string = 'time (s)'): """ compares the species profile between two models closest to the desired time returns a pandas.Series object with the relative species concentrations given by `compare_2_data_sets` """ time_index_1 = return_nearest_time_index(desired_time,df1[time_string]) time_index_2 = return_nearest_time_index(desired_time,df2[time_string]) time_slice_1 = find_species(df1).loc[time_index_1] time_slice_2 = find_species(df2).loc[time_index_2] return _compare_2_data_sets(time_slice_1,time_slice_2,minimum_return_value) def _compare_2_data_sets(model1, model2, minimum_return_value = 1000,diff_returned=0.0): """given two pd.Series of data, returns a pd.Series with the relative differences between the two sets. This requires one of the values to be above the `minimum_return_cutoff` and the difference to be above `diff_returned` The difference is returned as $\frac{model1 - model2}{\min(model1,model2)}$. Where the minimum merges the two datasets using the minimum value at each index. """ #ensure all values are the same model1 = copy.deepcopy(model1)[model2.index].dropna() model2 = copy.deepcopy(model2)[model1.index].dropna() minimum_value = pd.DataFrame({'model1':model1,'model2':model2}).min(1) compared_values = ((model1-model2)/minimum_value).dropna() for label in compared_values.index: not_enough_value = (model1[label] < minimum_return_value and model2[label] < minimum_return_value) not_enough_difference = abs(compared_values[label]) < diff_returned if not_enough_value or not_enough_difference: compared_values[label] = np.nan compared_values = compared_values.dropna() return compared_values.sort_values() def return_nearest_time_index(desired_time,time_series,index=True): """ input the desired time, double, and time_series, pd.Series, returns the index of the time_series. If you want the actual time value, change index=False """ # commented out due to error in mp.argmin #nearest_value = lambda value, array: np.argmin(abs(value-array)) #if index: # return nearest_value(desired_time,time_series) #return time_series[nearest_value(desired_time,time_series)] deviation_list = abs(desired_time-time_series) min_deviation = min(deviation_list) index_value = list(deviation_list).index(min_deviation) if index: return index_value return time_series[index_value] def obtain_stoichiometry_of_species(solution, species, reaction): """ this method finds a reaction string in the cantera solution file, and returns its stoichiometric coefficient of the specified species. Returns a negative value if the species is a reactant. solution = cantera solution object species = string of species name reaction = reaction string or list of reaction strings. Stoichiometry is calculated by: product_stoich_coeff - reactant_stoich_coeff """ # recursively deal with lists of reactions if not isinstance(reaction,str): coefficients = np.empty(len(reaction)) for index, reaction_string in enumerate(reaction): coefficients[index] = obtain_stoichiometry_of_species(solution,species,reaction_string) return coefficients # deal with individual reactions assert isinstance(reaction,str) reaction_index = solution.reaction_equations().index(reaction) reactant_stoich_coeff = solution.reactant_stoich_coeff(species, reaction_index) product_stoich_coeff = solution.product_stoich_coeff(species, reaction_index) if product_stoich_coeff > 0 or reactant_stoich_coeff > 0: return product_stoich_coeff - reactant_stoich_coeff raise Exception('Species {} is not in reaction {}'.format(species,reaction)) def weight_reaction_dataframe_by_stoich_coefficients(df, solution, species): """ returns a dataframe of reactions over time weighted by the stoichiometric coefficient of the species string `species`. """ reactions = find_reactions( solution, df, species) reaction_strings = list(reactions.columns) stoichiometries = obtain_stoichiometry_of_species(solution, species, reaction_strings) return reactions * stoichiometries def find_reactions(solution, df,species): """ finds the reaction columns in the net_reaction dataframe which contain the species specified and returns them. """ included_columns = [] rxn_string_to_rxn_index = dict(zip(solution.reaction_equations(),range(solution.n_reactions))) for rxn_name in df.columns: sln_index = rxn_string_to_rxn_index[rxn_name] try: if solution.product_stoich_coeff(species,sln_index) !=0 or \ solution.reactant_stoich_coeff(species,sln_index) !=0: included_columns.append(rxn_name) except KeyError: print("Error obtained in find_reactions,\ncheck to ensure the columns in `df`\ncorrespond to the reactions in `solution`") raise df_my_reactions = df[included_columns] if df_my_reactions.empty: raise Exception('No reactions found for species {}'.format(species)) return df_my_reactions
mit
alephu5/Soundbyte
environment/lib/python3.3/site-packages/matplotlib/sankey.py
1
40142
#!/usr/bin/env python """ Module for creating Sankey diagrams using matplotlib """ __author__ = "Kevin L. Davies" __credits__ = ["Yannick Copin"] __license__ = "BSD" __version__ = "2011/09/16" # Original version by Yannick Copin ([email protected]) 10/2/2010, available # at: # http://matplotlib.org/examples/api/sankey_demo_old.html # Modifications by Kevin Davies ([email protected]) 6/3/2011: # --Used arcs for the curves (so that the widths of the paths are uniform) # --Converted the function to a class and created methods to join multiple # simple Sankey diagrams # --Provided handling for cases where the total of the inputs isn't 100 # Now, the default layout is based on the assumption that the inputs sum to # 1. A scaling parameter can be used in other cases. # --The call structure was changed to be more explicit about layout, # including the length of the trunk, length of the paths, gap between the # paths, and the margin around the diagram. # --Allowed the lengths of paths to be adjusted individually, with an option # to automatically justify them # --The call structure was changed to make the specification of path # orientation more flexible. Flows are passed through one array, with # inputs being positive and outputs being negative. An orientation # argument specifies the direction of the arrows. The "main" # inputs/outputs are now specified via an orientation of 0, and there may # be several of each. # --Added assertions to catch common calling errors # --Added the physical unit as a string argument to be used in the labels, so # that the values of the flows can usually be applied automatically # --Added an argument for a minimum magnitude below which flows are not shown # --Added a tapered trunk in the case that the flows do not sum to 0 # --Allowed the diagram to be rotated import numpy as np from matplotlib.cbook import iterable, Bunch from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.transforms import Affine2D from matplotlib import verbose from matplotlib import docstring # Angles [deg/90] RIGHT = 0 UP = 1 # LEFT = 2 DOWN = 3 class Sankey: """ Sankey diagram in matplotlib Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is shown proportionally to the flow quantity. They are typically used to visualize energy or material or cost transfers between processes. `Wikipedia (6/1/2011) <http://en.wikipedia.org/wiki/Sankey_diagram>`_ """ def __init__(self, ax=None, scale=1.0, unit='', format='%G', gap=0.25, radius=0.1, shoulder=0.03, offset=0.15, head_angle=100, margin=0.4, tolerance=1e-6, **kwargs): """ Create a new Sankey instance. Optional keyword arguments: =============== =================================================== Field Description =============== =================================================== *ax* axes onto which the data should be plotted If *ax* isn't provided, new axes will be created. *scale* scaling factor for the flows *scale* sizes the width of the paths in order to maintain proper layout. The same scale is applied to all subdiagrams. The value should be chosen such that the product of the scale and the sum of the inputs is approximately 1.0 (and the product of the scale and the sum of the outputs is approximately -1.0). *unit* string representing the physical unit associated with the flow quantities If *unit* is None, then none of the quantities are labeled. *format* a Python number formatting string to be used in labeling the flow as a quantity (i.e., a number times a unit, where the unit is given) *gap* space between paths that break in/break away to/from the top or bottom *radius* inner radius of the vertical paths *shoulder* size of the shoulders of output arrowS *offset* text offset (from the dip or tip of the arrow) *head_angle* angle of the arrow heads (and negative of the angle of the tails) [deg] *margin* minimum space between Sankey outlines and the edge of the plot area *tolerance* acceptable maximum of the magnitude of the sum of flows The magnitude of the sum of connected flows cannot be greater than *tolerance*. =============== =================================================== The optional arguments listed above are applied to all subdiagrams so that there is consistent alignment and formatting. If :class:`Sankey` is instantiated with any keyword arguments other than those explicitly listed above (``**kwargs``), they will be passed to :meth:`add`, which will create the first subdiagram. In order to draw a complex Sankey diagram, create an instance of :class:`Sankey` by calling it without any kwargs:: sankey = Sankey() Then add simple Sankey sub-diagrams:: sankey.add() # 1 sankey.add() # 2 #... sankey.add() # n Finally, create the full diagram:: sankey.finish() Or, instead, simply daisy-chain those calls:: Sankey().add().add... .add().finish() .. seealso:: :meth:`add` :meth:`finish` **Examples:** .. plot:: mpl_examples/api/sankey_demo_basics.py """ # Check the arguments. assert gap >= 0, ( "The gap is negative.\nThis isn't allowed because it " "would cause the paths to overlap.") assert radius <= gap, ( "The inner radius is greater than the path spacing.\n" "This isn't allowed because it would cause the paths to overlap.") assert head_angle >= 0, ( "The angle is negative.\nThis isn't allowed " "because it would cause inputs to look like " "outputs and vice versa.") assert tolerance >= 0, ( "The tolerance is negative.\nIt must be a magnitude.") # Create axes if necessary. if ax is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[]) self.diagrams = [] # Store the inputs. self.ax = ax self.unit = unit self.format = format self.scale = scale self.gap = gap self.radius = radius self.shoulder = shoulder self.offset = offset self.margin = margin self.pitch = np.tan(np.pi * (1 - head_angle / 180.0) / 2.0) self.tolerance = tolerance # Initialize the vertices of tight box around the diagram(s). self.extent = np.array((np.inf, -np.inf, np.inf, -np.inf)) # If there are any kwargs, create the first subdiagram. if len(kwargs): self.add(**kwargs) def _arc(self, quadrant=0, cw=True, radius=1, center=(0, 0)): """ Return the codes and vertices for a rotated, scaled, and translated 90 degree arc. Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *quadrant* uses 0-based indexing (0, 1, 2, or 3) *cw* if True, clockwise *center* (x, y) tuple of the arc's center =============== ========================================== """ # Note: It would be possible to use matplotlib's transforms to rotate, # scale, and translate the arc, but since the angles are discrete, # it's just as easy and maybe more efficient to do it here. ARC_CODES = [Path.LINETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4] # Vertices of a cubic Bezier curve approximating a 90 deg arc # These can be determined by Path.arc(0,90). ARC_VERTICES = np.array([[1.00000000e+00, 0.00000000e+00], [1.00000000e+00, 2.65114773e-01], [8.94571235e-01, 5.19642327e-01], [7.07106781e-01, 7.07106781e-01], [5.19642327e-01, 8.94571235e-01], [2.65114773e-01, 1.00000000e+00], # Insignificant #[6.12303177e-17, 1.00000000e+00]]) [0.00000000e+00, 1.00000000e+00]]) if quadrant == 0 or quadrant == 2: if cw: vertices = ARC_VERTICES else: vertices = ARC_VERTICES[:, ::-1] # Swap x and y. elif quadrant == 1 or quadrant == 3: # Negate x. if cw: # Swap x and y. vertices = np.column_stack((-ARC_VERTICES[:, 1], ARC_VERTICES[:, 0])) else: vertices = np.column_stack((-ARC_VERTICES[:, 0], ARC_VERTICES[:, 1])) if quadrant > 1: radius = -radius # Rotate 180 deg. return list(zip(ARC_CODES, radius * vertices + np.tile(center, (ARC_VERTICES.shape[0], 1)))) def _add_input(self, path, angle, flow, length): """ Add an input to a path and return its tip and label locations. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. dipdepth = (flow / 2) * self.pitch if angle == RIGHT: x -= length dip = [x + dipdepth, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, dip), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x + self.gap, y + flow])]) label_location = [dip[0] - self.offset, dip[1]] else: # Vertical x -= self.gap if angle == UP: sign = 1 else: sign = -1 dip = [x - flow / 2, y - sign * (length - dipdepth)] if angle == DOWN: quadrant = 2 else: quadrant = 1 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x + self.radius, y - sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y - sign * length]), (Path.LINETO, dip), (Path.LINETO, [x - flow, y - sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=flow + self.radius, center=(x + self.radius, y - sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [dip[0], dip[1] - sign * self.offset] return dip, label_location def _add_output(self, path, angle, flow, length): """ Append an output to a path and return its tip and label locations. .. note:: *flow* is negative for an output. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. tipheight = (self.shoulder - flow / 2) * self.pitch if angle == RIGHT: x += length tip = [x + tipheight, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, [x, y + self.shoulder]), (Path.LINETO, tip), (Path.LINETO, [x, y - self.shoulder + flow]), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x - self.gap, y + flow])]) label_location = [tip[0] + self.offset, tip[1]] else: # Vertical x += self.gap if angle == UP: sign = 1 else: sign = -1 tip = [x - flow / 2.0, y + sign * (length + tipheight)] if angle == UP: quadrant = 3 else: quadrant = 0 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x - self.radius, y + sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y + sign * length]), (Path.LINETO, [x - self.shoulder, y + sign * length]), (Path.LINETO, tip), (Path.LINETO, [x + self.shoulder - flow, y + sign * length]), (Path.LINETO, [x - flow, y + sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=self.radius - flow, center=(x - self.radius, y + sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [tip[0], tip[1] + sign * self.offset] return tip, label_location def _revert(self, path, first_action=Path.LINETO): """ A path is not simply revertable by path[::-1] since the code specifies an action to take from the **previous** point. """ reverse_path = [] next_code = first_action for code, position in path[::-1]: reverse_path.append((next_code, position)) next_code = code return reverse_path # This might be more efficient, but it fails because 'tuple' object # doesn't support item assignment: #path[1] = path[1][-1:0:-1] #path[1][0] = first_action #path[2] = path[2][::-1] #return path @docstring.dedent_interpd def add(self, patchlabel='', flows=None, orientations=None, labels='', trunklength=1.0, pathlengths=0.25, prior=None, connect=(0, 0), rotation=0, **kwargs): """ Add a simple Sankey diagram with flows at the same hierarchical level. Return value is the instance of :class:`Sankey`. Optional keyword arguments: =============== =================================================== Keyword Description =============== =================================================== *patchlabel* label to be placed at the center of the diagram Note: *label* (not *patchlabel*) will be passed to the patch through ``**kwargs`` and can be used to create an entry in the legend. *flows* array of flow values By convention, inputs are positive and outputs are negative. *orientations* list of orientations of the paths Valid values are 1 (from/to the top), 0 (from/to the left or right), or -1 (from/to the bottom). If *orientations* == 0, inputs will break in from the left and outputs will break away to the right. *labels* list of specifications of the labels for the flows Each value may be *None* (no labels), '' (just label the quantities), or a labeling string. If a single value is provided, it will be applied to all flows. If an entry is a non-empty string, then the quantity for the corresponding flow will be shown below the string. However, if the *unit* of the main diagram is None, then quantities are never shown, regardless of the value of this argument. *trunklength* length between the bases of the input and output groups *pathlengths* list of lengths of the arrows before break-in or after break-away If a single value is given, then it will be applied to the first (inside) paths on the top and bottom, and the length of all other arrows will be justified accordingly. The *pathlengths* are not applied to the horizontal inputs and outputs. *prior* index of the prior diagram to which this diagram should be connected *connect* a (prior, this) tuple indexing the flow of the prior diagram and the flow of this diagram which should be connected If this is the first diagram or *prior* is *None*, *connect* will be ignored. *rotation* angle of rotation of the diagram [deg] *rotation* is ignored if this diagram is connected to an existing one (using *prior* and *connect*). The interpretation of the *orientations* argument will be rotated accordingly (e.g., if *rotation* == 90, an *orientations* entry of 1 means to/from the left). =============== =================================================== Valid kwargs are :meth:`matplotlib.patches.PathPatch` arguments: %(Patch)s As examples, ``fill=False`` and ``label='A legend entry'``. By default, ``facecolor='#bfd1d4'`` (light blue) and ``linewidth=0.5``. The indexing parameters (*prior* and *connect*) are zero-based. The flows are placed along the top of the diagram from the inside out in order of their index within the *flows* list or array. They are placed along the sides of the diagram from the top down and along the bottom from the outside in. If the the sum of the inputs and outputs is nonzero, the discrepancy will appear as a cubic Bezier curve along the top and bottom edges of the trunk. .. seealso:: :meth:`finish` """ # Check and preprocess the arguments. if flows is None: flows = np.array([1.0, -1.0]) else: flows = np.array(flows) n = flows.shape[0] # Number of flows if rotation is None: rotation = 0 else: # In the code below, angles are expressed in deg/90. rotation /= 90.0 if orientations is None: orientations = [0, 0] assert len(orientations) == n, ( "orientations and flows must have the same length.\n" "orientations has length %d, but flows has length %d." % (len(orientations), n)) if labels != '' and getattr(labels, '__iter__', False): # iterable() isn't used because it would give True if labels is a # string assert len(labels) == n, ( "If labels is a list, then labels and flows must have the " "same length.\nlabels has length %d, but flows has length %d." % (len(labels), n)) else: labels = [labels] * n assert trunklength >= 0, ( "trunklength is negative.\nThis isn't allowed, because it would " "cause poor layout.") if np.absolute(np.sum(flows)) > self.tolerance: verbose.report( "The sum of the flows is nonzero (%f).\nIs the " "system not at steady state?" % np.sum(flows), 'helpful') scaled_flows = self.scale * flows gain = sum(max(flow, 0) for flow in scaled_flows) loss = sum(min(flow, 0) for flow in scaled_flows) if not (0.5 <= gain <= 2.0): verbose.report( "The scaled sum of the inputs is %f.\nThis may " "cause poor layout.\nConsider changing the scale so" " that the scaled sum is approximately 1.0." % gain, 'helpful') if not (-2.0 <= loss <= -0.5): verbose.report( "The scaled sum of the outputs is %f.\nThis may " "cause poor layout.\nConsider changing the scale so" " that the scaled sum is approximately 1.0." % gain, 'helpful') if prior is not None: assert prior >= 0, "The index of the prior diagram is negative." assert min(connect) >= 0, ( "At least one of the connection indices is negative.") assert prior < len(self.diagrams), ( "The index of the prior diagram is %d, but there are " "only %d other diagrams.\nThe index is zero-based." % (prior, len(self.diagrams))) assert connect[0] < len(self.diagrams[prior].flows), ( "The connection index to the source diagram is %d, but " "that diagram has only %d flows.\nThe index is zero-based." % (connect[0], len(self.diagrams[prior].flows))) assert connect[1] < n, ( "The connection index to this diagram is %d, but this diagram" "has only %d flows.\n The index is zero-based." % (connect[1], n)) assert self.diagrams[prior].angles[connect[0]] is not None, ( "The connection cannot be made. Check that the magnitude " "of flow %d of diagram %d is greater than or equal to the " "specified tolerance." % (connect[0], prior)) flow_error = (self.diagrams[prior].flows[connect[0]] + flows[connect[1]]) assert abs(flow_error) < self.tolerance, ( "The scaled sum of the connected flows is %f, which is not " "within the tolerance (%f)." % (flow_error, self.tolerance)) # Determine if the flows are inputs. are_inputs = [None] * n for i, flow in enumerate(flows): if flow >= self.tolerance: are_inputs[i] = True elif flow <= -self.tolerance: are_inputs[i] = False else: verbose.report( "The magnitude of flow %d (%f) is below the " "tolerance (%f).\nIt will not be shown, and it " "cannot be used in a connection." % (i, flow, self.tolerance), 'helpful') # Determine the angles of the arrows (before rotation). angles = [None] * n for i, (orient, is_input) in enumerate(list(zip(orientations, are_inputs))): if orient == 1: if is_input: angles[i] = DOWN elif not is_input: # Be specific since is_input can be None. angles[i] = UP elif orient == 0: if is_input is not None: angles[i] = RIGHT else: assert orient == -1, ( "The value of orientations[%d] is %d, " "but it must be -1, 0, or 1." % (i, orient)) if is_input: angles[i] = UP elif not is_input: angles[i] = DOWN # Justify the lengths of the paths. if iterable(pathlengths): assert len(pathlengths) == n, ( "If pathlengths is a list, then pathlengths and flows must " "have the same length.\npathlengths has length %d, but flows " "has length %d." % (len(pathlengths), n)) else: # Make pathlengths into a list. urlength = pathlengths ullength = pathlengths lrlength = pathlengths lllength = pathlengths d = dict(RIGHT=pathlengths) pathlengths = [d.get(angle, 0) for angle in angles] # Determine the lengths of the top-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(list(zip(angles, are_inputs, scaled_flows))): if angle == DOWN and is_input: pathlengths[i] = ullength ullength += flow elif angle == UP and not is_input: pathlengths[i] = urlength urlength -= flow # Flow is negative for outputs. # Determine the lengths of the bottom-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(reversed(list(zip( angles, are_inputs, scaled_flows)))): if angle == UP and is_input: pathlengths[n - i - 1] = lllength lllength += flow elif angle == DOWN and not is_input: pathlengths[n - i - 1] = lrlength lrlength -= flow # Determine the lengths of the left-side arrows # from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == RIGHT: if is_input: if has_left_input: pathlengths[n - i - 1] = 0 else: has_left_input = True # Determine the lengths of the right-side arrows # from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths))))): if angle == RIGHT: if not is_input: if has_right_output: pathlengths[i] = 0 else: has_right_output = True # Begin the subpaths, and smooth the transition if the sum of the flows # is nonzero. urpath = [(Path.MOVETO, [(self.gap - trunklength / 2.0), # Upper right gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, gain / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, gain / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap), -loss / 2.0])] llpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower left loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, loss / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, loss / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0), -gain / 2.0])] lrpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower right loss / 2.0])] ulpath = [(Path.LINETO, [self.gap - trunklength / 2.0, # Upper left gain / 2.0])] # Add the subpaths and assign the locations of the tips and labels. tips = np.zeros((n, 2)) label_locations = np.zeros((n, 2)) # Add the top-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths))))): if angle == DOWN and is_input: tips[i, :], label_locations[i, :] = self._add_input( ulpath, angle, *spec) elif angle == UP and not is_input: tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Add the bottom-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == UP and is_input: tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location elif angle == DOWN and not is_input: tip, label_location = self._add_output(lrpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the left-side inputs from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == RIGHT and is_input: if not has_left_input: # Make sure the lower path extends # at least as far as the upper one. if llpath[-1][1][0] > ulpath[-1][1][0]: llpath.append((Path.LINETO, [ulpath[-1][1][0], llpath[-1][1][1]])) has_left_input = True tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the right-side outputs from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths))))): if angle == RIGHT and not is_input: if not has_right_output: # Make sure the upper path extends # at least as far as the lower one. if urpath[-1][1][0] < lrpath[-1][1][0]: urpath.append((Path.LINETO, [lrpath[-1][1][0], urpath[-1][1][1]])) has_right_output = True tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Trim any hanging vertices. if not has_left_input: ulpath.pop() llpath.pop() if not has_right_output: lrpath.pop() urpath.pop() # Concatenate the subpaths in the correct order (clockwise from top). path = (urpath + self._revert(lrpath) + llpath + self._revert(ulpath) + [(Path.CLOSEPOLY, urpath[0][1])]) # Create a patch with the Sankey outline. codes, vertices = list(zip(*path)) vertices = np.array(vertices) def _get_angle(a, r): if a is None: return None else: return a + r if prior is None: if rotation != 0: # By default, none of this is needed. angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_point tips = rotate(tips) label_locations = rotate(label_locations) vertices = rotate(vertices) text = self.ax.text(0, 0, s=patchlabel, ha='center', va='center') else: rotation = (self.diagrams[prior].angles[connect[0]] - angles[connect[1]]) angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_point tips = rotate(tips) offset = self.diagrams[prior].tips[connect[0]] - tips[connect[1]] translate = Affine2D().translate(*offset).transform_point tips = translate(tips) label_locations = translate(rotate(label_locations)) vertices = translate(rotate(vertices)) kwds = dict(s=patchlabel, ha='center', va='center') text = self.ax.text(*offset, **kwds) if False: # Debug print("llpath\n", llpath) print("ulpath\n", self._revert(ulpath)) print("urpath\n", urpath) print("lrpath\n", self._revert(lrpath)) xs, ys = list(zip(*vertices)) self.ax.plot(xs, ys, 'go-') patch = PathPatch(Path(vertices, codes), fc=kwargs.pop('fc', kwargs.pop('facecolor', '#bfd1d4')), # Custom defaults lw=kwargs.pop('lw', kwargs.pop('linewidth', 0.5)), **kwargs) self.ax.add_patch(patch) # Add the path labels. texts = [] for number, angle, label, location in zip(flows, angles, labels, label_locations): if label is None or angle is None: label = '' elif self.unit is not None: quantity = self.format % abs(number) + self.unit if label != '': label += "\n" label += quantity texts.append(self.ax.text(x=location[0], y=location[1], s=label, ha='center', va='center')) # Text objects are placed even they are empty (as long as the magnitude # of the corresponding flow is larger than the tolerance) in case the # user wants to provide labels later. # Expand the size of the diagram if necessary. self.extent = (min(np.min(vertices[:, 0]), np.min(label_locations[:, 0]), self.extent[0]), max(np.max(vertices[:, 0]), np.max(label_locations[:, 0]), self.extent[1]), min(np.min(vertices[:, 1]), np.min(label_locations[:, 1]), self.extent[2]), max(np.max(vertices[:, 1]), np.max(label_locations[:, 1]), self.extent[3])) # Include both vertices _and_ label locations in the extents; there are # where either could determine the margins (e.g., arrow shoulders). # Add this diagram as a subdiagram. self.diagrams.append(Bunch(patch=patch, flows=flows, angles=angles, tips=tips, text=text, texts=texts)) # Allow a daisy-chained call structure (see docstring for the class). return self def finish(self): """ Adjust the axes and return a list of information about the Sankey subdiagram(s). Return value is a list of subdiagrams represented with the following fields: =============== =================================================== Field Description =============== =================================================== *patch* Sankey outline (an instance of :class:`~maplotlib.patches.PathPatch`) *flows* values of the flows (positive for input, negative for output) *angles* list of angles of the arrows [deg/90] For example, if the diagram has not been rotated, an input to the top side will have an angle of 3 (DOWN), and an output from the top side will have an angle of 1 (UP). If a flow has been skipped (because its magnitude is less than *tolerance*), then its angle will be *None*. *tips* array in which each row is an [x, y] pair indicating the positions of the tips (or "dips") of the flow paths If the magnitude of a flow is less the *tolerance* for the instance of :class:`Sankey`, the flow is skipped and its tip will be at the center of the diagram. *text* :class:`~matplotlib.text.Text` instance for the label of the diagram *texts* list of :class:`~matplotlib.text.Text` instances for the labels of flows =============== =================================================== .. seealso:: :meth:`add` """ self.ax.axis([self.extent[0] - self.margin, self.extent[1] + self.margin, self.extent[2] - self.margin, self.extent[3] + self.margin]) self.ax.set_aspect('equal', adjustable='datalim') return self.diagrams
gpl-3.0
tapomayukh/projects_in_python
classification/Classification_with_kNN/Single_Contact_Classification/Feature_Comparison/multiple_features/best_kNN_PCA/test11_cross_validate_categories_1200ms_scaled_method_v_force_motion.py
1
5088
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_kNN/Scaled') from data_method_V import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) ###### Sanity Check ###### i=0 n=0 while i < 82: j=0 while j < 140: if X[i,j] != X[i,j]: print X[i,j] print i,j n=n+1 j = j+1 i=i+1 print n ########################## print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov def my_mvpa(Y,num2): #Using PYMVPA PCA_data = np.array(Y) PCA_label_1 = ['Rigid-Fixed']*35 + ['Rigid-Movable']*35 + ['Soft-Fixed']*35 + ['Soft-Movable']*35 PCA_chunk_1 = ['Styrofoam-Fixed']*5 + ['Books-Fixed']*5 + ['Bucket-Fixed']*5 + ['Bowl-Fixed']*5 + ['Can-Fixed']*5 + ['Box-Fixed']*5 + ['Pipe-Fixed']*5 + ['Styrofoam-Movable']*5 + ['Container-Movable']*5 + ['Books-Movable']*5 + ['Cloth-Roll-Movable']*5 + ['Black-Rubber-Movable']*5 + ['Can-Movable']*5 + ['Box-Movable']*5 + ['Rug-Fixed']*5 + ['Bubble-Wrap-1-Fixed']*5 + ['Pillow-1-Fixed']*5 + ['Bubble-Wrap-2-Fixed']*5 + ['Sponge-Fixed']*5 + ['Foliage-Fixed']*5 + ['Pillow-2-Fixed']*5 + ['Rug-Movable']*5 + ['Bubble-Wrap-1-Movable']*5 + ['Pillow-1-Movable']*5 + ['Bubble-Wrap-2-Movable']*5 + ['Pillow-2-Movable']*5 + ['Cushion-Movable']*5 + ['Sponge-Movable']*5 clf = kNN(k=num2) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_1,chunks=PCA_chunk_1) cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) return (1-error)*100 def result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC): # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:num_PC] m_W, n_W = np.shape(W) # Normalizes the data set with respect to its variance (Not an Integral part of PCA, but useful) length = len(eigval_total) s = np.matrix(np.zeros(length)).T i = 0 while i < length: s[i] = sqrt(C[i,i]) i = i+1 Z = np.divide(B,s) m_Z, n_Z = np.shape(Z) #Projected Data: Y = (W.T)*B # 'B' for my Laptop: otherwise 'Z' instead of 'B' m_Y, n_Y = np.shape(Y.T) return Y.T if __name__ == '__main__': Fmat = np.row_stack([Fmat_original[0:41,:], Fmat_original[82:123,:]]) # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) num_PC=1 while num_PC <=20: Proj = np.zeros((140,num_PC)) Proj = result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC) # PYMVPA: num=0 cv_acc = np.zeros(21) while num <=20: cv_acc[num] = my_mvpa(Proj,num) num = num+1 plot(np.arange(21),cv_acc,'-s') grid('True') hold('True') num_PC = num_PC+1 legend(('1-PC', '2-PCs', '3-PCs', '4-PCs', '5-PCs', '6-PCs', '7-PCs', '8-PCs', '9-PCs', '10-PCs', '11-PC', '12-PCs', '13-PCs', '14-PCs', '15-PCs', '16-PCs', '17-PCs', '18-PCs', '19-PCs', '20-PCs')) ylabel('Cross-Validation Accuracy') xlabel('k in k-NN Classifier') show()
mit
rayNymous/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/__init__.py
72
2225
import matplotlib import inspect import warnings # ipython relies on interactive_bk being defined here from matplotlib.rcsetup import interactive_bk __all__ = ['backend','show','draw_if_interactive', 'new_figure_manager', 'backend_version'] backend = matplotlib.get_backend() # validates, to match all_backends def pylab_setup(): 'return new_figure_manager, draw_if_interactive and show for pylab' # Import the requested backend into a generic module object if backend.startswith('module://'): backend_name = backend[9:] else: backend_name = 'backend_'+backend backend_name = backend_name.lower() # until we banish mixed case backend_name = 'matplotlib.backends.%s'%backend_name.lower() backend_mod = __import__(backend_name, globals(),locals(),[backend_name]) # Things we pull in from all backends new_figure_manager = backend_mod.new_figure_manager # image backends like pdf, agg or svg do not need to do anything # for "show" or "draw_if_interactive", so if they are not defined # by the backend, just do nothing def do_nothing_show(*args, **kwargs): frame = inspect.currentframe() fname = frame.f_back.f_code.co_filename if fname in ('<stdin>', '<ipython console>'): warnings.warn(""" Your currently selected backend, '%s' does not support show(). Please select a GUI backend in your matplotlibrc file ('%s') or with matplotlib.use()""" % (backend, matplotlib.matplotlib_fname())) def do_nothing(*args, **kwargs): pass backend_version = getattr(backend_mod,'backend_version', 'unknown') show = getattr(backend_mod, 'show', do_nothing_show) draw_if_interactive = getattr(backend_mod, 'draw_if_interactive', do_nothing) # Additional imports which only happen for certain backends. This section # should probably disappear once all backends are uniform. if backend.lower() in ['wx','wxagg']: Toolbar = backend_mod.Toolbar __all__.append('Toolbar') matplotlib.verbose.report('backend %s version %s' % (backend,backend_version)) return new_figure_manager, draw_if_interactive, show
agpl-3.0
harta55/EnTAP
libs/TransDecoder-v5.3.0/util/misc/plot_indiv_seq_likelihood_profile.py
2
3191
#!/usr/bin/env python import os,sys import re import matplotlib.pyplot as plt import argparse import subprocess import numpy as np import collections parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter, description="plot likelihood profile for sequence ") parser.add_argument("--orf_id", type=str, required=True, help="orf accession") parser.add_argument("--longest_orfs_cds", type=str, required=True, help="long orfs cds file") parser.add_argument("--kmer_scores", type=str, required=True, help= "kmer likelihood score file") parser.add_argument("--sort", action='store_true') parser.add_argument("--cumsum", action='store_true') parser.add_argument("--max_repeat", type=int, required=False, default=None, help="max repeat count for framed hexamer") args = parser.parse_args() def main(): seq = get_seq(args.orf_id, args.longest_orfs_cds) framed_kmers_to_likelihoods = parse_kmer_likelihoods(args.kmer_scores) score_vec = score_seq(seq, framed_kmers_to_likelihoods) print("sum: {}".format(sum(score_vec))) if args.sort: score_vec.sort() if args.cumsum: plt.plot(range(1,len(score_vec)+1), np.cumsum(score_vec), marker ='o') else: plt.plot(range(1,len(score_vec)+1), score_vec, marker ='+') plt.show() def score_seq(seq, framed_kmer_likelihoods): score_vec = [] seq = seq.upper() framed_kmer_counter = collections.defaultdict(int) for i in range(0, len(seq)): frame = i % 3 markov_use = min(i, 5) kmer = seq[i-markov_use:i+1] codon = seq[i:i+3] #print "codon: {}, frame: {}".format(codon, frame) # don't include stop codon if i == len(seq)-2-1 and frame == 0: if codon in ('TAA', 'TAG', 'TGA'): break #print("i:{}, markov_use:{}, kmer:{}".format(i, markov_use, kmer)) framed_kmer = "{}-{}".format(kmer, frame) framed_kmer_counter[framed_kmer] += 1 if args.max_repeat is not None and framed_kmer_counter[framed_kmer] > args.max_repeat: continue loglikelihood = framed_kmer_likelihoods[framed_kmer] print("i:{}, {}, likelihood: {}".format(i, framed_kmer, loglikelihood)) score_vec.append(loglikelihood) return score_vec def parse_kmer_likelihoods(kmer_scores_file): framed_kmers_to_likelihoods = {} with open(kmer_scores_file) as fh: for line in fh: if re.search("^#", line): continue line = line.rstrip() (framed_kmer, count, countkmerminus1, likelihood) = line.split("\t") framed_kmers_to_likelihoods[framed_kmer] = float(likelihood) return framed_kmers_to_likelihoods def get_seq(orf_id, fasta_file): cmd = "samtools faidx {} \"{}\"".format(fasta_file, orf_id) fasta_entry = subprocess.check_output(cmd, shell=True) print(fasta_entry) lines = fasta_entry.split("\n") header = lines.pop(0) seq = "".join(lines) seq = seq.replace(" ", "") return seq if __name__ == '__main__': main()
gpl-3.0
GaZ3ll3/scikit-image
skimage/filters/_gabor.py
4
6920
import numpy as np from scipy import ndimage as ndi from .._shared.utils import assert_nD __all__ = ['gabor_kernel', 'gabor_filter'] def _sigma_prefactor(bandwidth): b = bandwidth # See http://www.cs.rug.nl/~imaging/simplecell.html return 1.0 / np.pi * np.sqrt(np.log(2) / 2.0) * \ (2.0 ** b + 1) / (2.0 ** b - 1) def gabor_kernel(frequency, theta=0, bandwidth=1, sigma_x=None, sigma_y=None, n_stds=3, offset=0): """Return complex 2D Gabor filter kernel. Gabor kernel is a Gaussian kernel modulated by a complex harmonic function. Harmonic function consists of an imaginary sine function and a real cosine function. Spatial frequency is inversely proportional to the wavelength of the harmonic and to the standard deviation of a Gaussian kernel. The bandwidth is also inversely proportional to the standard deviation. Parameters ---------- frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, `sigma_x` and `sigma_y` will decrease with increasing frequency. This value is ignored if `sigma_x` and `sigma_y` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that `sigma_x` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations offset : float, optional Phase offset of harmonic function in radians. Returns ------- g : complex array Complex filter kernel. References ---------- .. [1] http://en.wikipedia.org/wiki/Gabor_filter .. [2] http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> from skimage.filter import gabor_kernel >>> from skimage import io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> gk = gabor_kernel(frequency=0.2) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # more ripples (equivalent to increasing the size of the >>> # Gaussian spread) >>> gk = gabor_kernel(frequency=0.2, bandwidth=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ if sigma_x is None: sigma_x = _sigma_prefactor(bandwidth) / frequency if sigma_y is None: sigma_y = _sigma_prefactor(bandwidth) / frequency x0 = np.ceil(max(np.abs(n_stds * sigma_x * np.cos(theta)), np.abs(n_stds * sigma_y * np.sin(theta)), 1)) y0 = np.ceil(max(np.abs(n_stds * sigma_y * np.cos(theta)), np.abs(n_stds * sigma_x * np.sin(theta)), 1)) y, x = np.mgrid[-y0:y0 + 1, -x0:x0 + 1] rotx = x * np.cos(theta) + y * np.sin(theta) roty = -x * np.sin(theta) + y * np.cos(theta) g = np.zeros(y.shape, dtype=np.complex) g[:] = np.exp(-0.5 * (rotx ** 2 / sigma_x ** 2 + roty ** 2 / sigma_y ** 2)) g /= 2 * np.pi * sigma_x * sigma_y g *= np.exp(1j * (2 * np.pi * frequency * rotx + offset)) return g def gabor_filter(image, frequency, theta=0, bandwidth=1, sigma_x=None, sigma_y=None, n_stds=3, offset=0, mode='reflect', cval=0): """Return real and imaginary responses to Gabor filter. The real and imaginary parts of the Gabor filter kernel are applied to the image and the response is returned as a pair of arrays. Gabor filter is a linear filter with a Gaussian kernel which is modulated by a sinusoidal plane wave. Frequency and orientation representations of the Gabor filter are similar to those of the human visual system. Gabor filter banks are commonly used in computer vision and image processing. They are especially suitable for edge detection and texture classification. Parameters ---------- image : 2-D array Input image. frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, `sigma_x` and `sigma_y` will decrease with increasing frequency. This value is ignored if `sigma_x` and `sigma_y` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that `sigma_x` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations. offset : float, optional Phase offset of harmonic function in radians. mode : string, optional Mode used to convolve image with a kernel, passed to `ndi.convolve` cval : scalar, optional Value to fill past edges of input if `mode` of convolution is 'constant'. The parameter is passed to `ndi.convolve`. Returns ------- real, imag : arrays Filtered images using the real and imaginary parts of the Gabor filter kernel. Images are of the same dimensions as the input one. References ---------- .. [1] http://en.wikipedia.org/wiki/Gabor_filter .. [2] http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> from skimage.filter import gabor_filter >>> from skimage import data, io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> image = data.coins() >>> # detecting edges in a coin image >>> filt_real, filt_imag = gabor_filter(image, frequency=0.6) >>> plt.figure() # doctest: +SKIP >>> io.imshow(filt_real) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # less sensitivity to finer details with the lower frequency kernel >>> filt_real, filt_imag = gabor_filter(image, frequency=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(filt_real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ assert_nD(image, 2) g = gabor_kernel(frequency, theta, bandwidth, sigma_x, sigma_y, n_stds, offset) filtered_real = ndi.convolve(image, np.real(g), mode=mode, cval=cval) filtered_imag = ndi.convolve(image, np.imag(g), mode=mode, cval=cval) return filtered_real, filtered_imag
bsd-3-clause
vincentdumont/nuri
nuri/utils.py
1
1449
#!/usr/bin/env python import sys,nuri,os,numpy import matplotlib.pyplot as plt import matplotlib.dates as md from datetime import datetime,timedelta def check24hrs(t0,t1,station): """ This operation will display the active periods for which data are available from every sensors. Parameters ---------- date : str Year and month to display activity from. The format shoud be YYYY-MM. """ # Download metadata from Google Drive sys.stderr.write('Retrieve information from Google Drive...') os.system('skicka ls -r /MagneticFieldData/ > data') data = numpy.loadtxt('data',dtype=str,delimiter='\n') print >>sys.stderr,' done!' # Get date list t0 = datetime(*numpy.array(t0.split('-'),dtype=int)) t1 = datetime(*numpy.array(t1.split('-'),dtype=int)) dt = timedelta(hours=1) dates = numpy.arange(t0,t1,dt) # List file path for each date and each station tick = 0 for d in dates: year = d.astype(object).year month = d.astype(object).month day = d.astype(object).day hour = d.astype(object).hour path = 'MagneticFieldData/%i/%i/%i/%i/'%(year,month,day,hour) fname = '%i-%i-%i_%i-xx.zip'%(year,month,day,hour) if path+'NURI-station-%02i/'%station+fname in data: tick+=1 if tick==24: print year,month,day,hour if hour==23: tick = 0 os.system('rm data')
mit
hitszxp/scikit-learn
sklearn/datasets/tests/test_lfw.py
50
6849
"""This test for the LFW require medium-size data dowloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np from sklearn.externals import six try: try: from scipy.misc import imsave except ImportError: from scipy.misc.pilutil import imsave except ImportError: imsave = None from sklearn.datasets import load_lfw_pairs from sklearn.datasets import load_lfw_people from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import raises SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, 'lfw_home') FAKE_NAMES = [ 'Abdelatif_Smith', 'Abhati_Kepler', 'Camara_Alvaro', 'Chen_Dupont', 'John_Lee', 'Lin_Bauman', 'Onur_Lopez', ] def setup_module(): """Test fixture run once and common to all tests of this module""" if imsave is None: raise SkipTest("PIL not installed.") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, 'lfw_funneled', name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + '_%04d.jpg' % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) try: imsave(file_path, uniface) except ImportError: raise SkipTest("PIL not installed") # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, 'lfw_funneled', '.test.swp'), 'wb') as f: f.write(six.b('Text file to be ignored by the dataset loader.')) # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, 'pairsDevTrain.txt'), 'wb') as f: f.write(six.b("10\n")) more_than_two = [name for name, count in six.iteritems(counts) if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(six.b('%s\t%d\t%d\n' % (name, first, second))) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write(six.b('%s\t%d\t%s\t%d\n' % (first_name, first_index, second_name, second_index))) with open(os.path.join(LFW_HOME, 'pairsDevTest.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) with open(os.path.join(LFW_HOME, 'pairs.txt'), 'wb') as f: f.write(six.b("Fake place holder that won't be tested")) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) @raises(IOError) def test_load_empty_lfw_people(): load_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA) def test_load_fake_lfw_people(): lfw_people = load_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = load_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) @raises(ValueError) def test_load_fake_lfw_people_too_restrictive(): load_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100) @raises(IOError) def test_load_empty_lfw_pairs(): load_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA) def test_load_fake_lfw_pairs(): lfw_pairs_train = load_lfw_pairs(data_home=SCIKIT_LEARN_DATA) # The data is croped around the center as a rectangular bounding box # arounthe the face. Colors are converted to gray levels: assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 62, 47)) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ['Different persons', 'Same person'] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = load_lfw_pairs(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True) assert_equal(lfw_pairs_train.pairs.shape, (10, 2, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes)
bsd-3-clause
fabianp/scikit-learn
examples/cross_decomposition/plot_compare_cross_decomposition.py
142
4761
""" =================================== Compare cross decomposition methods =================================== Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate response, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the 'directions of covariance', i.e. the components of each datasets that explain the most shared variance between both datasets. This is apparent on the **scatterplot matrix** display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different components is weak: the point cloud is very spherical. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA ############################################################################### # Dataset based latent variables model n = 500 # 2 latents vars: l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X_train = X[:n / 2] Y_train = Y[:n / 2] X_test = X[n / 2:] Y_test = Y[n / 2:] print("Corr(X)") print(np.round(np.corrcoef(X.T), 2)) print("Corr(Y)") print(np.round(np.corrcoef(Y.T), 2)) ############################################################################### # Canonical (symmetric) PLS # Transform data # ~~~~~~~~~~~~~~ plsca = PLSCanonical(n_components=2) plsca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test) # Scatter plot of scores # ~~~~~~~~~~~~~~~~~~~~~~ # 1) On diagonal plot X vs Y scores on each components plt.figure(figsize=(12, 8)) plt.subplot(221) plt.plot(X_train_r[:, 0], Y_train_r[:, 0], "ob", label="train") plt.plot(X_test_r[:, 0], Y_test_r[:, 0], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 1: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") plt.subplot(224) plt.plot(X_train_r[:, 1], Y_train_r[:, 1], "ob", label="train") plt.plot(X_test_r[:, 1], Y_test_r[:, 1], "or", label="test") plt.xlabel("x scores") plt.ylabel("y scores") plt.title('Comp. 2: X vs Y (test corr = %.2f)' % np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1]) plt.xticks(()) plt.yticks(()) plt.legend(loc="best") # 2) Off diagonal plot components 1 vs 2 for X and Y plt.subplot(222) plt.plot(X_train_r[:, 0], X_train_r[:, 1], "*b", label="train") plt.plot(X_test_r[:, 0], X_test_r[:, 1], "*r", label="test") plt.xlabel("X comp. 1") plt.ylabel("X comp. 2") plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)' % np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.subplot(223) plt.plot(Y_train_r[:, 0], Y_train_r[:, 1], "*b", label="train") plt.plot(Y_test_r[:, 0], Y_test_r[:, 1], "*r", label="test") plt.xlabel("Y comp. 1") plt.ylabel("Y comp. 2") plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)' % np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1]) plt.legend(loc="best") plt.xticks(()) plt.yticks(()) plt.show() ############################################################################### # PLS regression, with multivariate response, a.k.a. PLS2 n = 1000 q = 3 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) B = np.array([[1, 2] + [0] * (p - 2)] * q).T # each Yj = 1*X1 + 2*X2 + noize Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5 pls2 = PLSRegression(n_components=3) pls2.fit(X, Y) print("True B (such that: Y = XB + Err)") print(B) # compare pls2.coefs with B print("Estimated B") print(np.round(pls2.coefs, 1)) pls2.predict(X) ############################################################################### # PLS regression, with univariate response, a.k.a. PLS1 n = 1000 p = 10 X = np.random.normal(size=n * p).reshape((n, p)) y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5 pls1 = PLSRegression(n_components=3) pls1.fit(X, y) # note that the number of compements exceeds 1 (the dimension of y) print("Estimated betas") print(np.round(pls1.coefs, 1)) ############################################################################### # CCA (PLS mode B with symmetric deflation) cca = CCA(n_components=2) cca.fit(X_train, Y_train) X_train_r, Y_train_r = plsca.transform(X_train, Y_train) X_test_r, Y_test_r = plsca.transform(X_test, Y_test)
bsd-3-clause
johnchase/scikit-bio
skbio/stats/distance/tests/test_anosim.py
13
4920
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from six import StringIO from functools import partial from unittest import TestCase, main import numpy as np import pandas as pd from pandas.util.testing import assert_series_equal from skbio import DistanceMatrix from skbio.stats.distance import anosim class TestANOSIM(TestCase): """All results were verified with R (vegan::anosim).""" def setUp(self): # Distance matrices with and without ties in the ranks, with 2 groups # of equal size. dm_ids = ['s1', 's2', 's3', 's4'] self.grouping_equal = ['Control', 'Control', 'Fast', 'Fast'] self.df = pd.read_csv( StringIO('ID,Group\ns2,Control\ns3,Fast\ns4,Fast\ns5,Control\n' 's1,Control'), index_col=0) self.dm_ties = DistanceMatrix([[0, 1, 1, 4], [1, 0, 3, 2], [1, 3, 0, 3], [4, 2, 3, 0]], dm_ids) self.dm_no_ties = DistanceMatrix([[0, 1, 5, 4], [1, 0, 3, 2], [5, 3, 0, 3], [4, 2, 3, 0]], dm_ids) # Test with 3 groups of unequal size. This data also generates a # negative R statistic. self.grouping_unequal = ['Control', 'Treatment1', 'Treatment2', 'Treatment1', 'Control', 'Control'] # Equivalent grouping but with different labels -- groups should be # assigned different integer labels but results should be the same. self.grouping_unequal_relabeled = ['z', 42, 'abc', 42, 'z', 'z'] self.dm_unequal = DistanceMatrix( [[0.0, 1.0, 0.1, 0.5678, 1.0, 1.0], [1.0, 0.0, 0.002, 0.42, 0.998, 0.0], [0.1, 0.002, 0.0, 1.0, 0.123, 1.0], [0.5678, 0.42, 1.0, 0.0, 0.123, 0.43], [1.0, 0.998, 0.123, 0.123, 0.0, 0.5], [1.0, 0.0, 1.0, 0.43, 0.5, 0.0]], ['s1', 's2', 's3', 's4', 's5', 's6']) # Expected series index is the same across all tests. self.exp_index = ['method name', 'test statistic name', 'sample size', 'number of groups', 'test statistic', 'p-value', 'number of permutations'] # Stricter series equality testing than the default. self.assert_series_equal = partial(assert_series_equal, check_index_type=True, check_series_type=True) def test_ties(self): # Ensure we get the same results if we rerun the method using the same # inputs. Also ensure we get the same results if we run the method # using a grouping vector or a data frame with equivalent groupings. exp = pd.Series(index=self.exp_index, data=['ANOSIM', 'R', 4, 2, 0.25, 0.671, 999], name='ANOSIM results') for _ in range(2): np.random.seed(0) obs = anosim(self.dm_ties, self.grouping_equal) self.assert_series_equal(obs, exp) for _ in range(2): np.random.seed(0) obs = anosim(self.dm_ties, self.df, column='Group') self.assert_series_equal(obs, exp) def test_no_ties(self): exp = pd.Series(index=self.exp_index, data=['ANOSIM', 'R', 4, 2, 0.625, 0.332, 999], name='ANOSIM results') np.random.seed(0) obs = anosim(self.dm_no_ties, self.grouping_equal) self.assert_series_equal(obs, exp) def test_no_permutations(self): exp = pd.Series(index=self.exp_index, data=['ANOSIM', 'R', 4, 2, 0.625, np.nan, 0], name='ANOSIM results') obs = anosim(self.dm_no_ties, self.grouping_equal, permutations=0) self.assert_series_equal(obs, exp) def test_unequal_group_sizes(self): exp = pd.Series(index=self.exp_index, data=['ANOSIM', 'R', 6, 3, -0.363636, 0.878, 999], name='ANOSIM results') np.random.seed(0) obs = anosim(self.dm_unequal, self.grouping_unequal) self.assert_series_equal(obs, exp) np.random.seed(0) obs = anosim(self.dm_unequal, self.grouping_unequal_relabeled) self.assert_series_equal(obs, exp) if __name__ == '__main__': main()
bsd-3-clause
xiaoxiamii/scikit-learn
examples/manifold/plot_mds.py
261
2616
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <[email protected]> # Licence: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) plt.scatter(X_true[:, 0], X_true[:, 1], c='r', s=20) plt.scatter(pos[:, 0], pos[:, 1], s=20, c='g') plt.scatter(npos[:, 0], npos[:, 1], s=20, c='b') plt.legend(('True position', 'MDS', 'NMDS'), loc='best') similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
JonnyCE/project-platform
thesis/proto_direct.py
2
10487
from matplotlib.pyplot import * import math from thesis.proto_shared import * # 1 node 1 part batch job, verification def batch_job_verification(filename='./exp_batch.json'): config = json_parser(filename) title_postfix = config['MTTR'] ckpt_candidates = get_checkpoint_candidates(config) exp, l_median, l_mean, dev = dict_to_execute(config, ckpt_candidates, single_node=True) fig, ax = subplots() ax.plot( ckpt_candidates, exp, label="exp. of running time", color=yellow, alpha=0.8, marker='o', markersize=4, markeredgecolor=yellow, markerfacecolor=yellow) ax.errorbar(ckpt_candidates, l_mean, dev, alpha=0.8, marker='o', markersize=4, label="Running time w/ std dev") ax.set_title("Single-node Batch Job (MTTR: {})".format(title_postfix)) ax.set_xlabel("Checkpoint write interval (unit)") ax.set_ylabel("Running time (unit)") legend() start, end = ax.get_xlim() ax.xaxis.set_ticks(np.arange(start, end, 2)) savefig("graph_batch_MTTR{}".format(title_postfix), format='pdf') # 10 nodes, 40 parts, multi nodes are down, non-detachable or detachable # ============================================================================== def proto_multi_2cases( file_non_detachable='./exp_1node_down_part_not_detachable.json', file_detachable='./exp_1node_down_part_detachable.json'): victim_nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] config = json_parser(file_non_detachable) ckpt_candidates = get_checkpoint_candidates(config) lines_dependent = [] for vn in victim_nums: print("non-detachable partition, victim number: {}".format(vn)) config = json_parser('./exp_1node_down_part_not_detachable.json') exp1, median1, mean1, stdev1 = dict_to_execute(config, ckpt_candidates, False, vn) lines_dependent.append(median1) lines_independent = [] for vn in victim_nums: print("detachable partition, victim number: {}".format(vn)) config = json_parser(file_detachable) exp2, median2, mean2, std2 = dict_to_execute(config, ckpt_candidates, False, vn) lines_independent.append(median2) # fig 3 and 4 fig, (ax3, ax4) = subplots(1, 2, sharey='all') # draw lines for median in lines_dependent: vn = lines_dependent.index(median) ax3.t(ckpt_candidates, median, color=blue, alpha=0.2 + 0.1 * vn, marker='o', markersize=4, markeredgecolor=blue, markerfacecolor=blue, label="{} nodes down".format(vn + 1)) ax3.set_xlabel("Checkpoint interval (unit)") ax3.set_ylabel("Median running time (unit)") tick_params(axis='both', which='major', labelsize=9) ax3.set_title("Cluster w/ non-detachable partitions") ax3.legend(fontsize=9, loc='lower right') start, end = ax3.get_xlim() ax3.xaxis.set_ticks(np.arange(start, end, 2)) # draw lines for median in lines_independent: vn = lines_independent.index(median) ax4.t(ckpt_candidates, median, color=blue, alpha=0.2 + 0.1 * vn, marker='o', markersize=4, markeredgecolor=blue, markerfacecolor=blue, label="{} nodes down".format(vn + 1)) ax4.set_xlabel("Checkpoint interval (unit)") ax4.set_ylabel("Median running time (unit)") tick_params(axis='both', which='major', labelsize=9) ax4.set_title("Cluster w/ detachable partitions") ax4.legend(fontsize=9, loc='lower right') start, end = ax4.get_xlim() ax4.xaxis.set_ticks(np.arange(start, end, 2)) savefig("graph_multi") # 10 nodes, 40 parts, multi nodes are down, interdependent or not # ============================================================================== def proto_multi_detachable( file_detachable='./exp_1node_down_part_detachable.json'): victim_nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] config = json_parser(file_detachable) ckpt_candidates = get_checkpoint_candidates(config) lines_independent = [] for vn in victim_nums: print("detachable partition, victim number: {}".format(vn)) config = json_parser(file_detachable) exp2, median, mean, std = dict_to_execute(config, ckpt_candidates, False, vn) fig, ax4 = subplots(1, 1, sharey='all') ax4.t(ckpt_candidates, median, color=blue, alpha=0.9, marker='o', markersize=4, markeredgecolor=blue, markerfacecolor=blue, label="{} nodes down".format(vn + 1)) ax4.set_xlabel("Checkpoint interval (unit)") ax4.set_ylabel("Median running time (unit)") tick_params(axis='both', which='major', labelsize=9) ax4.set_title("Cluster w/ detachable partitions") ax4.legend(fontsize=9, loc='lower right') start, end = ax4.get_xlim() ax4.xaxis.set_ticks(np.arange(start, end, 2)) # vertical lines mttr, delta = config['MTTR'], config['checkpoint_write_time'] nnodes = config['node'] optimum0 = math.sqrt(2 * mttr * delta) optimum1 = math.sqrt(2 * mttr * delta * vn / nnodes) axvline(x=optimum0) axvline(x=optimum1) ymin, ymax = ax4.get_ylim() ymid = (ymin + ymax) / 2 ax4.annotate(r'$\sqrt{2M\delta}$', xy=(optimum0, ymid), xytext=(2, 2)) ax4.annotate(r'$\sqrt{\frac{2M\delta\cdot i}{N}}$', xy=(optimum1, ymid), xytext=(2, 2)) savefig("graph_multi_detachable_victim{}".format(vn)) # 10 nodes, 40 parts, multi nodes are down, interdependent or not # ============================================================================== def proto_multi_2in1( file_non_detachable='./exp_1node_down_part_not_detachable.json', file_detachable='./exp_1node_down_part_detachable.json', non_detachable=False, detachable=False): victim_nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] config = json_parser(file_non_detachable) ckpt_candidates = get_checkpoint_candidates(config) if non_detachable: lines_dependent = [] for vn in victim_nums: print("non-detachable partition, victim number: {}".format(vn)) config = json_parser('./exp_1node_down_part_not_detachable.json') exp1, median1, mean1, std1 = dict_to_execute(config, ckpt_candidates, False, vn) lines_dependent.append(median1) # draw lines fig, ax3 = subplots(1, 1, sharey='all') for median in lines_dependent: vn = lines_dependent.index(median) ax3.t(ckpt_candidates, median, color=blue, alpha=0.2 + 0.1 * vn, marker='o', markersize=4, markeredgecolor=blue, markerfacecolor=blue, label="{} nodes down".format(vn + 1)) ax3.set_xlabel("Checkpoint interval (unit)") ax3.set_ylabel("Median running time (unit)") tick_params(axis='both', which='major', labelsize=9) ax3.set_title("Cluster w/ non-detachable partitions") ax3.legend(fontsize=9, loc='lower right') start, end = ax3.get_xlim() ax3.xaxis.set_ticks(np.arange(start, end, 2)) savefig("graph_multi_nondetachable.pdf") if detachable: lines_independent = [] exp2, median2, mean2, stdev2 = None, None, None, None for vn in victim_nums: print("detachable partition, victim number: {}".format(vn)) config = json_parser(file_detachable) exp2, median2, mean2, stdev2 = dict_to_execute(config, ckpt_candidates, False, vn) lines_independent.append(median2) # draw lines fig, ax4 = subplots(1, 1, sharey='all') for median in lines_independent: vn = lines_independent.index(median) ax4.plot( ckpt_candidates, exp2, label="exp. of running time", color=yellow, alpha=0.8, marker='o', markersize=4, markeredgecolor=yellow, markerfacecolor=yellow) ax4.plot( ckpt_candidates, median, color=blue, alpha=0.2 + 0.1 * vn, marker='o', markersize=4, markeredgecolor=blue, markerfacecolor=blue, label="{} nodes down".format(vn + 1)) ax4.set_xlabel("Checkpoint interval (unit)") ax4.set_ylabel("Median running time (unit)") tick_params(axis='both', which='major', labelsize=9) ax4.set_title("Cluster w/ detachable partitions") ax4.legend(fontsize=9, loc='lower right') start, end = ax4.get_xlim() ax4.xaxis.set_ticks(np.arange(start, end, 2)) savefig("graph_multi_detachable.pdf") def one_down(): # data config = json_parser('./exp_1node_down_part_not_detachable.json') config_detachable = json_parser('./exp_1node_down_part_detachable.json') ckpt_candidates = get_checkpoint_candidates(config) exp, l_median1, l_mean1, dev1 = dict_to_execute(config, ckpt_candidates) exp, l_median2, l_mean2, dev2 = dict_to_execute(config_detachable, ckpt_candidates) # figure fig, (ax1, ax2) = subplots(1, 2, sharey='all') ax1.t(ckpt_candidates, exp, label="expected completion time", color=yellow, alpha=0.8, marker='o', markersize=4, markeredgecolor=yellow, markerfacecolor=yellow) ax1.errorbar(ckpt_candidates, l_mean1, dev1, color=blue, alpha=0.8, marker='o', markersize=4, label="Running time w/ std dev") ax1.set_xlabel("Checkpoint write interval (unit)") ax1.set_ylabel("Running time (unit)") tick_params(axis='both', which='major', labelsize=9) ax1.set_title("1 node down, part non-detachable") legend(fontsize=9, loc=0) start, end = ax1.get_xlim() ax1.xaxis.set_ticks(np.arange(start, end, 2)) ax2.t(ckpt_candidates, exp, label="expected completion time", color=yellow, alpha=0.8, marker='o', markersize=4, markeredgecolor=yellow, markerfacecolor=yellow) ax2.errorbar(ckpt_candidates, l_mean2, dev2, color=blue, alpha=0.8, marker='o', markersize=4, label="Running time w/ std dev") ax2.set_xlabel("Checkpoint write interval (unit)") ax2.set_ylabel("Running time (unit)") tick_params(axis='both', which='major', labelsize=9) ax2.set_title("1 node down, part detachable") legend(fontsize=9, loc=0) start, end = ax2.get_xlim() ax2.xaxis.set_ticks(np.arange(start, end, 2)) savefig("graph_1down.pdf") batch_job_verification()
mit
khkaminska/scikit-learn
sklearn/externals/joblib/__init__.py
72
4795
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.9.0b4' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
OGGM/oggm
oggm/core/flowline.py
1
126363
"""Flowline modelling: bed shapes and model numerics. """ # Builtins import logging import copy from collections import OrderedDict from functools import partial from time import gmtime, strftime import os import shutil import warnings # External libs import numpy as np import shapely.geometry as shpg import xarray as xr # Optional libs try: import salem except ImportError: pass import pandas as pd # Locals from oggm import __version__ import oggm.cfg as cfg from oggm import utils from oggm import entity_task from oggm.exceptions import InvalidParamsError, InvalidWorkflowError from oggm.core.massbalance import (MultipleFlowlineMassBalance, ConstantMassBalance, PastMassBalance, RandomMassBalance) from oggm.core.centerlines import Centerline, line_order from oggm.core.inversion import find_sia_flux_from_thickness # Constants from oggm.cfg import SEC_IN_DAY, SEC_IN_YEAR from oggm.cfg import G, GAUSSIAN_KERNEL # Module logger log = logging.getLogger(__name__) class Flowline(Centerline): """A Centerline with additional properties: input to the FlowlineModel """ def __init__(self, line=None, dx=1, map_dx=None, surface_h=None, bed_h=None, rgi_id=None, water_level=None): """ Initialize a Flowline Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` dx : float Grid spacing in pixel coordinates map_dx : float DEM grid spacing in meters surface_h: :py:class:`numpy.ndarray` elevation [m] of the flowline grid points bed_h: :py:class:`numpy.ndarray` elevation[m] of the bedrock at the flowline grid points rgi_id : str The glacier's RGI identifier water_level : float The water level (to compute volume below sea-level) """ # This is do add flexibility for testing if dx is None: dx = 1. if line is None: coords = np.arange(len(surface_h)) * dx line = shpg.LineString(np.vstack([coords, coords * 0.]).T) super(Flowline, self).__init__(line, dx, surface_h) self._thick = utils.clip_min(surface_h - bed_h, 0.) self.map_dx = map_dx self.dx_meter = map_dx * self.dx self.bed_h = bed_h self.rgi_id = rgi_id self.water_level = water_level # volume not yet removed from the flowline self.calving_bucket_m3 = 0 def has_ice(self): return np.any(self.thick > 0) @Centerline.widths.getter def widths(self): """Compute the widths out of H and shape""" return self.widths_m / self.map_dx @property def thick(self): """Needed for overriding later""" return self._thick @thick.setter def thick(self, value): self._thick = utils.clip_min(value, 0) @Centerline.surface_h.getter def surface_h(self): return self._thick + self.bed_h @surface_h.setter def surface_h(self, value): self.thick = value - self.bed_h @property def bin_area_m2(self): # area of the grid point # this takes the ice thickness into account return np.where(self.thick > 0, self.widths_m, 0) * self.dx_meter @property def length_m(self): # TODO: take calving bucket into account for fine tuned length? lt = cfg.PARAMS.get('min_ice_thick_for_length', 0) if cfg.PARAMS.get('glacier_length_method') == 'consecutive': if (self.thick > lt).all(): nx = len(self.thick) else: nx = np.where(self.thick <= lt)[0][0] else: nx = len(np.where(self.thick > lt)[0]) return nx * self.dx_meter @property def terminus_index(self): # the index of the last point with ice thickness above # min_ice_thick_for_length and consistent with length lt = cfg.PARAMS.get('min_ice_thick_for_length', 0) if cfg.PARAMS.get('glacier_length_method') == 'consecutive': if (self.thick > lt).all(): ix = len(self.thick) - 1 else: ix = np.where(self.thick <= lt)[0][0] - 1 else: try: ix = np.where(self.thick > lt)[0][-1] except IndexError: ix = -1 return ix @property def volume_m3(self): return utils.clip_min(np.sum(self.section * self.dx_meter) - getattr(self, 'calving_bucket_m3', 0), 0) @property def volume_km3(self): return self.volume_m3 * 1e-9 def _vol_below_level(self, water_level=0): thick = np.copy(self.thick) n_thick = np.copy(thick) bwl = (self.bed_h < water_level) & (thick > 0) n_thick[~bwl] = 0 self.thick = n_thick vol_tot = np.sum(self.section * self.dx_meter) n_thick[bwl] = utils.clip_max(self.surface_h[bwl], water_level) - self.bed_h[bwl] self.thick = n_thick vol_bwl = np.sum(self.section * self.dx_meter) self.thick = thick fac = vol_bwl / vol_tot if vol_tot > 0 else 0 return utils.clip_min(vol_bwl - getattr(self, 'calving_bucket_m3', 0) * fac, 0) @property def volume_bsl_m3(self): return self._vol_below_level(water_level=0) @property def volume_bsl_km3(self): return self.volume_bsl_m3 * 1e-9 @property def volume_bwl_m3(self): return self._vol_below_level(water_level=self.water_level) @property def volume_bwl_km3(self): return self.volume_bwl_m3 * 1e-9 @property def area_m2(self): # TODO: take calving bucket into account return np.sum(self.bin_area_m2) @property def area_km2(self): return self.area_m2 * 1e-6 def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" raise NotImplementedError() def to_dataset(self): """Makes an xarray Dataset out of the flowline.""" h = self.surface_h nx = len(h) ds = xr.Dataset() ds.coords['x'] = np.arange(nx) ds.coords['c'] = [0, 1] try: ds['linecoords'] = (['x', 'c'], np.asarray(self.line.coords)) except AttributeError: # squeezed lines pass ds['surface_h'] = (['x'], h) ds['bed_h'] = (['x'], self.bed_h) ds.attrs['class'] = type(self).__name__ ds.attrs['map_dx'] = self.map_dx ds.attrs['dx'] = self.dx self._add_attrs_to_dataset(ds) return ds class ParabolicBedFlowline(Flowline): """A parabolic shaped Flowline with one degree of freedom """ def __init__(self, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, bed_shape=None, rgi_id=None, water_level=None): """ Instanciate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` Properties ---------- #TODO: document properties """ super(ParabolicBedFlowline, self).__init__(line, dx, map_dx, surface_h, bed_h, rgi_id=rgi_id, water_level=water_level) assert np.all(np.isfinite(bed_shape)) self.bed_shape = bed_shape @property def widths_m(self): """Compute the widths out of H and shape""" return np.sqrt(4*self.thick/self.bed_shape) @property def section(self): return 2./3. * self.widths_m * self.thick @section.setter def section(self, val): self.thick = (0.75 * val * np.sqrt(self.bed_shape))**(2./3.) @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" return np.repeat('parabolic', self.nx) def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['bed_shape'] = (['x'], self.bed_shape) class RectangularBedFlowline(Flowline): """Simple shaped Flowline, glacier width does not change with ice thickness """ def __init__(self, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, widths=None, rgi_id=None, water_level=None): """ Instanciate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` Properties ---------- #TODO: document properties """ super(RectangularBedFlowline, self).__init__(line, dx, map_dx, surface_h, bed_h, rgi_id=rgi_id, water_level=water_level) self._widths = widths @property def widths_m(self): """Compute the widths out of H and shape""" return self._widths * self.map_dx @property def section(self): return self.widths_m * self.thick @section.setter def section(self, val): self.thick = val / self.widths_m @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" return np.repeat('rectangular', self.nx) def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['widths'] = (['x'], self._widths) class TrapezoidalBedFlowline(Flowline): """A Flowline with trapezoidal shape and two degrees of freedom """ def __init__(self, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, widths=None, lambdas=None, rgi_id=None, water_level=None): """ Instanciate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` Properties ---------- #TODO: document properties """ super(TrapezoidalBedFlowline, self).__init__(line, dx, map_dx, surface_h, bed_h, rgi_id=rgi_id, water_level=water_level) self._w0_m = widths * self.map_dx - lambdas * self.thick if np.any(self._w0_m <= 0): raise ValueError('Trapezoid beds need to have origin widths > 0.') self._prec = np.where(lambdas == 0)[0] self._lambdas = lambdas @property def widths_m(self): """Compute the widths out of H and shape""" return self._w0_m + self._lambdas * self.thick @property def section(self): return (self.widths_m + self._w0_m) / 2 * self.thick @section.setter def section(self, val): b = 2 * self._w0_m a = 2 * self._lambdas with np.errstate(divide='ignore', invalid='ignore'): thick = (np.sqrt(b**2 + 4 * a * val) - b) / a thick[self._prec] = val[self._prec] / self._w0_m[self._prec] self.thick = thick @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" return np.repeat('trapezoid', self.nx) def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['widths'] = (['x'], self.widths) ds['lambdas'] = (['x'], self._lambdas) class MixedBedFlowline(Flowline): """A Flowline which can take a combination of different shapes (default) The default shape is parabolic. At ice divides a rectangular shape is used. And if the parabola gets too flat a trapezoidal shape is used. """ def __init__(self, *, line=None, dx=None, map_dx=None, surface_h=None, bed_h=None, section=None, bed_shape=None, is_trapezoid=None, lambdas=None, widths_m=None, rgi_id=None, water_level=None): """ Instanciate. Parameters ---------- line : :py:class:`shapely.geometry.LineString` the geometrical line of a :py:class:`oggm.Centerline` Properties ---------- #TODO: document properties width_m is optional - for thick=0 """ super(MixedBedFlowline, self).__init__(line=line, dx=dx, map_dx=map_dx, surface_h=surface_h.copy(), bed_h=bed_h.copy(), rgi_id=rgi_id, water_level=water_level) # To speedup calculations if no trapezoid bed is present self._do_trapeze = np.any(is_trapezoid) # Parabolic assert len(bed_shape) == self.nx self.bed_shape = bed_shape.copy() self._sqrt_bed = np.sqrt(bed_shape) # Trapeze assert len(lambdas) == self.nx assert len(is_trapezoid) == self.nx self._lambdas = lambdas.copy() self._ptrap = np.where(is_trapezoid)[0] self.is_trapezoid = is_trapezoid self.is_rectangular = self.is_trapezoid & (self._lambdas == 0) # Sanity self.bed_shape[is_trapezoid] = np.NaN self._lambdas[~is_trapezoid] = np.NaN # Here we have to compute the widths out of section and lambda thick = surface_h - bed_h with np.errstate(divide='ignore', invalid='ignore'): self._w0_m = section / thick - lambdas * thick / 2 assert np.all(section >= 0) need_w = (section == 0) & is_trapezoid if np.any(need_w): if widths_m is None: raise ValueError('We need a non-zero section for trapezoid ' 'shapes unless you provide widths_m.') self._w0_m[need_w] = widths_m[need_w] self._w0_m[~is_trapezoid] = np.NaN if (np.any(self._w0_m[self._ptrap] <= 0) or np.any(~np.isfinite(self._w0_m[self._ptrap]))): raise ValueError('Trapezoid beds need to have origin widths > 0.') assert np.all(self.bed_shape[~is_trapezoid] > 0) self._prec = np.where(is_trapezoid & (lambdas == 0))[0] assert np.allclose(section, self.section) @property def widths_m(self): """Compute the widths out of H and shape""" out = np.sqrt(4*self.thick/self.bed_shape) if self._do_trapeze: out[self._ptrap] = (self._w0_m[self._ptrap] + self._lambdas[self._ptrap] * self.thick[self._ptrap]) return out @property def section(self): out = 2./3. * self.widths_m * self.thick if self._do_trapeze: out[self._ptrap] = ((self.widths_m[self._ptrap] + self._w0_m[self._ptrap]) / 2 * self.thick[self._ptrap]) return out @section.setter def section(self, val): out = (0.75 * val * self._sqrt_bed)**(2./3.) if self._do_trapeze: b = 2 * self._w0_m[self._ptrap] a = 2 * self._lambdas[self._ptrap] with np.errstate(divide='ignore', invalid='ignore'): out[self._ptrap] = ((np.sqrt(b ** 2 + 4 * a * val[self._ptrap]) - b) / a) out[self._prec] = val[self._prec] / self._w0_m[self._prec] self.thick = out @utils.lazy_property def shape_str(self): """The bed shape in text (for debug and other things)""" out = np.repeat('rectangular', self.nx) out[~ self.is_trapezoid] = 'parabolic' out[self.is_trapezoid & ~ self.is_rectangular] = 'trapezoid' return out def _add_attrs_to_dataset(self, ds): """Add bed specific parameters.""" ds['section'] = (['x'], self.section) ds['bed_shape'] = (['x'], self.bed_shape) ds['is_trapezoid'] = (['x'], self.is_trapezoid) ds['widths_m'] = (['x'], self._w0_m) ds['lambdas'] = (['x'], self._lambdas) class FlowlineModel(object): """Interface to OGGM's flowline models""" def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=None, inplace=False, smooth_trib_influx=True, is_tidewater=False, is_lake_terminating=False, mb_elev_feedback='annual', check_for_boundaries=None, water_level=None): """Create a new flowline model from the flowlines and a MB model. Parameters ---------- flowlines : list a list of :py:class:`oggm.Flowline` instances, sorted by order mb_model : :py:class:`oggm.core.massbalance.MassBalanceModel` the MB model to use y0 : int the starting year of the simulation glen_a : float glen's parameter A fs: float sliding parameter inplace : bool whether or not to make a copy of the flowline objects for the run setting to True implies that your objects will be modified at run time by the model (can help to spare memory) smooth_trib_influx : bool whether to smooth the mass influx from the incoming tributary. The default is to use a gaussian kernel on a 9 grid points window. is_tidewater: bool, default: False is this a tidewater glacier? is_lake_terminating: bool, default: False is this a lake terminating glacier? mb_elev_feedback : str, default: 'annual' 'never', 'always', 'annual', or 'monthly': how often the mass-balance should be recomputed from the mass balance model. 'Never' is equivalent to 'annual' but without elevation feedback at all (the heights are taken from the first call). check_for_boundaries : bool whether the model should raise an error when the glacier exceeds the domain boundaries. The default is to follow PARAMS['error_when_glacier_reaches_boundaries'] """ self.is_tidewater = is_tidewater self.is_lake_terminating = is_lake_terminating self.is_marine_terminating = is_tidewater and not is_lake_terminating if water_level is None: self.water_level = 0 if self.is_lake_terminating: if not flowlines[-1].has_ice(): raise InvalidParamsError('Set `water_level` for lake ' 'terminating glaciers in ' 'idealized runs') # Arbitrary water level 1m below last grid points elevation min_h = flowlines[-1].surface_h[flowlines[-1].thick > 0][-1] self.water_level = (min_h - cfg.PARAMS['free_board_lake_terminating']) else: self.water_level = water_level # Mass balance self.mb_elev_feedback = mb_elev_feedback.lower() if self.mb_elev_feedback in ['never', 'annual']: self.mb_step = 'annual' elif self.mb_elev_feedback in ['always', 'monthly']: self.mb_step = 'monthly' self.mb_model = mb_model # Defaults if glen_a is None: glen_a = cfg.PARAMS['glen_a'] if fs is None: fs = cfg.PARAMS['fs'] self.glen_a = glen_a self.fs = fs self.glen_n = cfg.PARAMS['glen_n'] self.rho = cfg.PARAMS['ice_density'] if check_for_boundaries is None: check_for_boundaries = cfg.PARAMS[('error_when_glacier_reaches_' 'boundaries')] self.check_for_boundaries = check_for_boundaries # we keep glen_a as input, but for optimisation we stick to "fd" self._fd = 2. / (cfg.PARAMS['glen_n']+2) * self.glen_a # Calving shenanigans self.calving_m3_since_y0 = 0. # total calving since time y0 self.calving_rate_myr = 0. self.y0 = None self.t = None self.reset_y0(y0) self.fls = None self._tributary_indices = None self.reset_flowlines(flowlines, inplace=inplace, smooth_trib_influx=smooth_trib_influx) @property def mb_model(self): return self._mb_model @mb_model.setter def mb_model(self, value): # We need a setter because the MB func is stored as an attr too _mb_call = None if value: if self.mb_elev_feedback in ['always', 'monthly']: _mb_call = value.get_monthly_mb elif self.mb_elev_feedback in ['annual', 'never']: _mb_call = value.get_annual_mb else: raise ValueError('mb_elev_feedback not understood') self._mb_model = value self._mb_call = _mb_call self._mb_current_date = None self._mb_current_out = dict() self._mb_current_heights = dict() def reset_y0(self, y0): """Reset the initial model time""" self.y0 = y0 self.t = 0 def reset_flowlines(self, flowlines, inplace=False, smooth_trib_influx=True): """Reset the initial model flowlines""" if not inplace: flowlines = copy.deepcopy(flowlines) try: len(flowlines) except TypeError: flowlines = [flowlines] self.fls = flowlines # list of tributary coordinates and stuff trib_ind = [] for fl in self.fls: # Important also fl.water_level = self.water_level if fl.flows_to is None: trib_ind.append((None, None, None, None)) continue idl = self.fls.index(fl.flows_to) ide = fl.flows_to_indice if not smooth_trib_influx: gk = 1 id0 = ide id1 = ide+1 elif fl.flows_to.nx >= 9: gk = GAUSSIAN_KERNEL[9] id0 = ide-4 id1 = ide+5 elif fl.flows_to.nx >= 7: gk = GAUSSIAN_KERNEL[7] id0 = ide-3 id1 = ide+4 elif fl.flows_to.nx >= 5: gk = GAUSSIAN_KERNEL[5] id0 = ide-2 id1 = ide+3 trib_ind.append((idl, id0, id1, gk)) self._tributary_indices = trib_ind @property def yr(self): return self.y0 + self.t / SEC_IN_YEAR @property def area_m2(self): return np.sum([f.area_m2 for f in self.fls]) @property def volume_m3(self): return np.sum([f.volume_m3 for f in self.fls]) @property def volume_km3(self): return self.volume_m3 * 1e-9 @property def volume_bsl_m3(self): return np.sum([f.volume_bsl_m3 for f in self.fls]) @property def volume_bsl_km3(self): return self.volume_bsl_m3 * 1e-9 @property def volume_bwl_m3(self): return np.sum([f.volume_bwl_m3 for f in self.fls]) @property def volume_bwl_km3(self): return self.volume_bwl_m3 * 1e-9 @property def area_km2(self): return self.area_m2 * 1e-6 @property def length_m(self): return self.fls[-1].length_m def get_mb(self, heights, year=None, fl_id=None, fls=None): """Get the mass balance at the requested height and time. Optimized so that no mb model call is necessary at each step. """ # Do we even have to optimise? if self.mb_elev_feedback == 'always': return self._mb_call(heights, year=year, fl_id=fl_id, fls=fls) # Ok, user asked for it if fl_id is None: raise ValueError('Need fls_id') if self.mb_elev_feedback == 'never': # The very first call we take the heights if fl_id not in self._mb_current_heights: # We need to reset just this tributary self._mb_current_heights[fl_id] = heights # All calls we replace heights = self._mb_current_heights[fl_id] date = utils.floatyear_to_date(year) if self.mb_elev_feedback in ['annual', 'never']: # ignore month changes date = (date[0], date[0]) if self._mb_current_date == date: if fl_id not in self._mb_current_out: # We need to reset just this tributary self._mb_current_out[fl_id] = self._mb_call(heights, year=year, fl_id=fl_id, fls=fls) else: # We need to reset all self._mb_current_date = date self._mb_current_out = dict() self._mb_current_out[fl_id] = self._mb_call(heights, year=year, fl_id=fl_id, fls=fls) return self._mb_current_out[fl_id] def to_netcdf(self, path): """Creates a netcdf group file storing the state of the model.""" flows_to_id = [] for trib in self._tributary_indices: flows_to_id.append(trib[0] if trib[0] is not None else -1) ds = xr.Dataset() try: ds.attrs['description'] = 'OGGM model output' ds.attrs['oggm_version'] = __version__ ds.attrs['calendar'] = '365-day no leap' ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) ds['flowlines'] = ('flowlines', np.arange(len(flows_to_id))) ds['flows_to_id'] = ('flowlines', flows_to_id) ds.to_netcdf(path) for i, fl in enumerate(self.fls): ds = fl.to_dataset() ds.to_netcdf(path, 'a', group='fl_{}'.format(i)) finally: ds.close() def check_domain_end(self): """Returns False if the glacier reaches the domains bound.""" return np.isclose(self.fls[-1].thick[-1], 0) def step(self, dt): """Advance the numerical simulation of one single step. Important: the step dt is a maximum boundary that is *not* guaranteed to be met if dt is too large for the underlying numerical implementation. However, ``step(dt)`` should never cross the desired time step, i.e. if dt is small enough to ensure stability, step should match it. The caller will know how much has been actually advanced by looking at the output of ``step()`` or by monitoring ``self.t`` or `self.yr`` Parameters ---------- dt : float the step length in seconds Returns ------- the actual dt chosen by the numerical implementation. Guaranteed to be dt or lower. """ raise NotImplementedError def run_until(self, y1): """Runs the model from the current year up to a given year date y1. This function runs the model for the time difference y1-self.y0 If self.y0 has not been specified at some point, it is 0 and y1 will be the time span in years to run the model for. Parameters ---------- y1 : float Upper time span for how long the model should run """ # We force timesteps to monthly frequencies for consistent results # among use cases (monthly or yearly output) and also to prevent # "too large" steps in the adaptive scheme. ts = utils.monthly_timeseries(self.yr, y1) # Add the last date to be sure we end on it ts = np.append(ts, y1) # Loop over the steps we want to meet for y in ts: t = (y - self.y0) * SEC_IN_YEAR # because of CFL, step() doesn't ensure that the end date is met # lets run the steps until we reach our desired date while self.t < t: self.step(t-self.t) # Check for domain bounds if self.check_for_boundaries: if self.fls[-1].thick[-1] > 10: raise RuntimeError('Glacier exceeds domain boundaries, ' 'at year: {}'.format(self.yr)) # Check for NaNs for fl in self.fls: if np.any(~np.isfinite(fl.thick)): raise FloatingPointError('NaN in numerical solution, ' 'at year: {}'.format(self.yr)) def run_until_and_store(self, y1, run_path=None, geom_path=None, diag_path=None, store_monthly_step=None): """Runs the model and returns intermediate steps in xarray datasets. This function repeatedly calls FlowlineModel.run_until for either monthly or yearly time steps up till the upper time boundary y1. Parameters ---------- y1 : int Upper time span for how long the model should run (needs to be a full year) run_path : str Deprecated and renamed to geom_path geom_path : str or bool Path and filename where to store the model geometry dataset. This dataset contains all necessary info to retrieve the full glacier geometry after the run, with a FileModel. This is stored on an annual basis. The default (None) will not store the dataset to disk but return the dataset to the user after execution. Set this to False to prevent creating this dataset altogether (for optimisation). diag_path : str Path and filename where to store the model diagnostics dataset store_monthly_step : Bool If True (False) model diagnostics will be stored monthly (yearly). If unspecified, we follow the update of the MB model, which defaults to yearly (see __init__). Returns ------- geom_ds : xarray.Dataset or None stores the entire glacier geometry. It is useful to visualize the glacier geometry or to restart a new run from a modelled geometry. The glacier state is stored at the beginning of each hydrological year (not in between in order to spare disk space). diag_ds : xarray.Dataset stores a few diagnostic variables such as the volume, area, length and ELA of the glacier. """ if int(y1) != y1: raise InvalidParamsError('run_until_and_store only accepts ' 'integer year dates.') if not self.mb_model.hemisphere: raise InvalidParamsError('run_until_and_store needs a ' 'mass-balance model with an unambiguous ' 'hemisphere.') if run_path is not None: warnings.warn("`run_path` has been renamed to `geom_path` and " "will be deleted in the future.", FutureWarning) geom_path = run_path # Do we need to create a geometry dataset? do_geom = geom_path is None or geom_path # time yearly_time = np.arange(np.floor(self.yr), np.floor(y1)+1) if store_monthly_step is None: store_monthly_step = self.mb_step == 'monthly' if store_monthly_step: monthly_time = utils.monthly_timeseries(self.yr, y1) else: monthly_time = np.arange(np.floor(self.yr), np.floor(y1)+1) sm = cfg.PARAMS['hydro_month_' + self.mb_model.hemisphere] yrs, months = utils.floatyear_to_date(monthly_time) cyrs, cmonths = utils.hydrodate_to_calendardate(yrs, months, start_month=sm) # init output if geom_path: self.to_netcdf(geom_path) ny = len(yearly_time) if ny == 1: yrs = [yrs] cyrs = [cyrs] months = [months] cmonths = [cmonths] nm = len(monthly_time) if do_geom: sects = [(np.zeros((ny, fl.nx)) * np.NaN) for fl in self.fls] widths = [(np.zeros((ny, fl.nx)) * np.NaN) for fl in self.fls] bucket = [np.zeros(ny) for _ in self.fls] # Diagnostics dataset diag_ds = xr.Dataset() # Global attributes diag_ds.attrs['description'] = 'OGGM model output' diag_ds.attrs['oggm_version'] = __version__ diag_ds.attrs['calendar'] = '365-day no leap' diag_ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) diag_ds.attrs['water_level'] = self.water_level diag_ds.attrs['glen_a'] = self.glen_a diag_ds.attrs['fs'] = self.fs # Add MB model attributes diag_ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__ for k, v in self.mb_model.__dict__.items(): if np.isscalar(v) and not k.startswith('_'): diag_ds.attrs['mb_model_{}'.format(k)] = v # Coordinates diag_ds.coords['time'] = ('time', monthly_time) diag_ds.coords['hydro_year'] = ('time', yrs) diag_ds.coords['hydro_month'] = ('time', months) diag_ds.coords['calendar_year'] = ('time', cyrs) diag_ds.coords['calendar_month'] = ('time', cmonths) diag_ds['time'].attrs['description'] = 'Floating hydrological year' diag_ds['hydro_year'].attrs['description'] = 'Hydrological year' diag_ds['hydro_month'].attrs['description'] = 'Hydrological month' diag_ds['calendar_year'].attrs['description'] = 'Calendar year' diag_ds['calendar_month'].attrs['description'] = 'Calendar month' # Variables and attributes ovars = cfg.PARAMS['store_diagnostic_variables'] if 'volume' in ovars: diag_ds['volume_m3'] = ('time', np.zeros(nm) * np.NaN) diag_ds['volume_m3'].attrs['description'] = 'Total glacier volume' diag_ds['volume_m3'].attrs['unit'] = 'm 3' if 'volume_bsl' in ovars: diag_ds['volume_bsl_m3'] = ('time', np.zeros(nm) * np.NaN) diag_ds['volume_bsl_m3'].attrs['description'] = ('Glacier volume ' 'below ' 'sea-level') diag_ds['volume_bsl_m3'].attrs['unit'] = 'm 3' if 'volume_bwl' in ovars: diag_ds['volume_bwl_m3'] = ('time', np.zeros(nm) * np.NaN) diag_ds['volume_bwl_m3'].attrs['description'] = ('Glacier volume ' 'below ' 'water-level') diag_ds['volume_bwl_m3'].attrs['unit'] = 'm 3' if 'area' in ovars: diag_ds['area_m2'] = ('time', np.zeros(nm) * np.NaN) diag_ds['area_m2'].attrs['description'] = 'Total glacier area' diag_ds['area_m2'].attrs['unit'] = 'm 2' if 'length' in ovars: diag_ds['length_m'] = ('time', np.zeros(nm) * np.NaN) diag_ds['length_m'].attrs['description'] = 'Glacier length' diag_ds['length_m'].attrs['unit'] = 'm' if 'calving' in ovars: diag_ds['calving_m3'] = ('time', np.zeros(nm) * np.NaN) diag_ds['calving_m3'].attrs['description'] = ('Total accumulated ' 'calving flux') diag_ds['calving_m3'].attrs['unit'] = 'm 3' if 'calving_rate' in ovars: diag_ds['calving_rate_myr'] = ('time', np.zeros(nm) * np.NaN) diag_ds['calving_rate_myr'].attrs['description'] = 'Calving rate' diag_ds['calving_rate_myr'].attrs['unit'] = 'm yr-1' for gi in range(10): vn = f'terminus_thick_{gi}' if vn in ovars: diag_ds[vn] = ('time', np.zeros(nm) * np.NaN) diag_ds[vn].attrs['description'] = ('Thickness of grid point ' f'{gi} from terminus.') diag_ds[vn].attrs['unit'] = 'm' # Run j = 0 for i, (yr, mo) in enumerate(zip(monthly_time, months)): # Model run self.run_until(yr) # Glacier geometry if do_geom and mo == 1: for s, w, b, fl in zip(sects, widths, bucket, self.fls): s[j, :] = fl.section w[j, :] = fl.widths_m if self.is_tidewater: try: b[j] = fl.calving_bucket_m3 except AttributeError: pass j += 1 # Diagnostics if 'volume' in ovars: diag_ds['volume_m3'].data[i] = self.volume_m3 if 'area' in ovars: diag_ds['area_m2'].data[i] = self.area_m2 if 'length' in ovars: diag_ds['length_m'].data[i] = self.length_m if 'calving' in ovars: diag_ds['calving_m3'].data[i] = self.calving_m3_since_y0 if 'calving_rate' in ovars: diag_ds['calving_rate_myr'].data[i] = self.calving_rate_myr if 'volume_bsl' in ovars: diag_ds['volume_bsl_m3'].data[i] = self.volume_bsl_m3 if 'volume_bwl' in ovars: diag_ds['volume_bwl_m3'].data[i] = self.volume_bwl_m3 # Terminus thick is a bit more logic ti = None for gi in range(10): vn = f'terminus_thick_{gi}' if vn in ovars: if ti is None: ti = self.fls[-1].terminus_index diag_ds[vn].data[i] = self.fls[-1].thick[ti - gi] # to datasets geom_ds = None if do_geom: geom_ds = [] for (s, w, b) in zip(sects, widths, bucket): ds = xr.Dataset() ds.attrs['description'] = 'OGGM model output' ds.attrs['oggm_version'] = __version__ ds.attrs['calendar'] = '365-day no leap' ds.attrs['creation_date'] = strftime("%Y-%m-%d %H:%M:%S", gmtime()) ds.attrs['water_level'] = self.water_level ds.attrs['glen_a'] = self.glen_a ds.attrs['fs'] = self.fs # Add MB model attributes ds.attrs['mb_model_class'] = self.mb_model.__class__.__name__ for k, v in self.mb_model.__dict__.items(): if np.isscalar(v) and not k.startswith('_'): ds.attrs['mb_model_{}'.format(k)] = v ds.coords['time'] = yearly_time ds['time'].attrs['description'] = 'Floating hydrological year' varcoords = OrderedDict(time=('time', yearly_time), year=('time', yearly_time)) ds['ts_section'] = xr.DataArray(s, dims=('time', 'x'), coords=varcoords) ds['ts_width_m'] = xr.DataArray(w, dims=('time', 'x'), coords=varcoords) ds['ts_calving_bucket_m3'] = xr.DataArray(b, dims=('time', ), coords=varcoords) geom_ds.append(ds) # write output? if do_geom and geom_path is not None: encode = {'ts_section': {'zlib': True, 'complevel': 5}, 'ts_width_m': {'zlib': True, 'complevel': 5}, } for i, ds in enumerate(geom_ds): ds.to_netcdf(geom_path, 'a', group='fl_{}'.format(i), encoding=encode) # Add other diagnostics (Fabien in 2021: why?) diag_ds.to_netcdf(geom_path, 'a') if diag_path is not None: diag_ds.to_netcdf(diag_path) return geom_ds, diag_ds def run_until_equilibrium(self, rate=0.001, ystep=5, max_ite=200): """ Runs the model until an equilibrium state is reached. Be careful: This only works for CONSTANT (not time-dependant) mass-balance models. Otherwise the returned state will not be in equilibrium! Don't try to calculate an equilibrium state with a RandomMassBalance model! """ ite = 0 was_close_zero = 0 t_rate = 1 while (t_rate > rate) and (ite <= max_ite) and (was_close_zero < 5): ite += 1 v_bef = self.volume_m3 self.run_until(self.yr + ystep) v_af = self.volume_m3 if np.isclose(v_bef, 0., atol=1): t_rate = 1 was_close_zero += 1 else: t_rate = np.abs(v_af - v_bef) / v_bef if ite > max_ite: raise RuntimeError('Did not find equilibrium.') def flux_gate_with_build_up(year, flux_value=None, flux_gate_yr=None): """Default scalar flux gate with build up period""" fac = 1 - (flux_gate_yr - year) / flux_gate_yr return flux_value * utils.clip_scalar(fac, 0, 1) class FluxBasedModel(FlowlineModel): """The flowline model used by OGGM in production. It solves for the SIA along the flowline(s) using a staggered grid. It computes the *ice flux* between grid points and transports the mass accordingly (also between flowlines). This model is numerically less stable than fancier schemes, but it is fast and works with multiple flowlines of any bed shape (rectangular, parabolic, trapeze, and any combination of them). We test that it conserves mass in most cases, but not on very stiff cliffs. """ def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=0., inplace=False, fixed_dt=None, cfl_number=None, min_dt=None, flux_gate_thickness=None, flux_gate=None, flux_gate_build_up=100, do_kcalving=None, calving_k=None, calving_use_limiter=None, calving_limiter_frac=None, water_level=None, **kwargs): """Instanciate the model. Parameters ---------- flowlines : list the glacier flowlines mb_model : MassBalanceModel the mass-balance model y0 : int initial year of the simulation glen_a : float Glen's creep parameter fs : float Oerlemans sliding parameter inplace : bool whether or not to make a copy of the flowline objects for the run setting to True implies that your objects will be modified at run time by the model (can help to spare memory) fixed_dt : float set to a value (in seconds) to prevent adaptive time-stepping. cfl_number : float Defaults to cfg.PARAMS['cfl_number']. For adaptive time stepping (the default), dt is chosen from the CFL criterion (dt = cfl_number * dx / max_u). To choose the "best" CFL number we would need a stability analysis - we used an empirical analysis (see blog post) and settled on 0.02 for the default cfg.PARAMS['cfl_number']. min_dt : float Defaults to cfg.PARAMS['cfl_min_dt']. At high velocities, time steps can become very small and your model might run very slowly. In production, it might be useful to set a limit below which the model will just error. is_tidewater: bool, default: False is this a tidewater glacier? is_lake_terminating: bool, default: False is this a lake terminating glacier? mb_elev_feedback : str, default: 'annual' 'never', 'always', 'annual', or 'monthly': how often the mass-balance should be recomputed from the mass balance model. 'Never' is equivalent to 'annual' but without elevation feedback at all (the heights are taken from the first call). check_for_boundaries: bool, default: True raise an error when the glacier grows bigger than the domain boundaries flux_gate_thickness : float or array flux of ice from the left domain boundary (and tributaries). Units of m of ice thickness. Note that unrealistic values won't be met by the model, so this is really just a rough guidance. It's better to use `flux_gate` instead. flux_gate : float or function or array of floats or array of functions flux of ice from the left domain boundary (and tributaries) (unit: m3 of ice per second). If set to a high value, consider changing the flux_gate_buildup time. You can also provide a function (or an array of functions) returning the flux (unit: m3 of ice per second) as a function of time. This is overriden by `flux_gate_thickness` if provided. flux_gate_buildup : int number of years used to build up the flux gate to full value do_kcalving : bool switch on the k-calving parameterisation. Ignored if not a tidewater glacier. Use the option from PARAMS per default calving_k : float the calving proportionality constant (units: yr-1). Use the one from PARAMS per default calving_use_limiter : bool whether to switch on the calving limiter on the parameterisation makes the calving fronts thicker but the model is more stable calving_limiter_frac : float limit the front slope to a fraction of the calving front. "3" means 1/3. Setting it to 0 limits the slope to sea-level. water_level : float the water level. It should be zero m a.s.l, but: - sometimes the frontal elevation is unrealistically high (or low). - lake terminating glaciers - other uncertainties The default is 0. For lake terminating glaciers, it is inferred from PARAMS['free_board_lake_terminating']. The best way to set the water level for real glaciers is to use the same as used for the inversion (this is what `flowline_model_run` does for you) """ super(FluxBasedModel, self).__init__(flowlines, mb_model=mb_model, y0=y0, glen_a=glen_a, fs=fs, inplace=inplace, water_level=water_level, **kwargs) self.fixed_dt = fixed_dt if min_dt is None: min_dt = cfg.PARAMS['cfl_min_dt'] if cfl_number is None: cfl_number = cfg.PARAMS['cfl_number'] self.min_dt = min_dt self.cfl_number = cfl_number # Do we want to use shape factors? self.sf_func = None use_sf = cfg.PARAMS.get('use_shape_factor_for_fluxbasedmodel') if use_sf == 'Adhikari' or use_sf == 'Nye': self.sf_func = utils.shape_factor_adhikari elif use_sf == 'Huss': self.sf_func = utils.shape_factor_huss # Calving params if do_kcalving is None: do_kcalving = cfg.PARAMS['use_kcalving_for_run'] self.do_calving = do_kcalving and self.is_tidewater if calving_k is None: calving_k = cfg.PARAMS['calving_k'] self.calving_k = calving_k / cfg.SEC_IN_YEAR if calving_use_limiter is None: calving_use_limiter = cfg.PARAMS['calving_use_limiter'] self.calving_use_limiter = calving_use_limiter if calving_limiter_frac is None: calving_limiter_frac = cfg.PARAMS['calving_limiter_frac'] if calving_limiter_frac > 0: raise NotImplementedError('calving limiter other than 0 not ' 'implemented yet') self.calving_limiter_frac = calving_limiter_frac # Flux gate self.flux_gate = utils.tolist(flux_gate, length=len(self.fls)) self.flux_gate_m3_since_y0 = 0. if flux_gate_thickness is not None: # Compute the theoretical ice flux from the slope at the top flux_gate_thickness = utils.tolist(flux_gate_thickness, length=len(self.fls)) self.flux_gate = [] for fl, fgt in zip(self.fls, flux_gate_thickness): # We set the thickness to the desired value so that # the widths work ok fl = copy.deepcopy(fl) fl.thick = fl.thick * 0 + fgt slope = (fl.surface_h[0] - fl.surface_h[1]) / fl.dx_meter if slope == 0: raise ValueError('I need a slope to compute the flux') flux = find_sia_flux_from_thickness(slope, fl.widths_m[0], fgt, shape=fl.shape_str[0], glen_a=self.glen_a, fs=self.fs) self.flux_gate.append(flux) # convert the floats to function calls for i, fg in enumerate(self.flux_gate): if fg is None: continue try: # Do we have a function? If yes all good fg(self.yr) except TypeError: # If not, make one self.flux_gate[i] = partial(flux_gate_with_build_up, flux_value=fg, flux_gate_yr=(flux_gate_build_up + self.y0)) # Optim self.slope_stag = [] self.thick_stag = [] self.section_stag = [] self.u_stag = [] self.shapefac_stag = [] self.flux_stag = [] self.trib_flux = [] for fl, trib in zip(self.fls, self._tributary_indices): nx = fl.nx # This is not staggered self.trib_flux.append(np.zeros(nx)) # We add an additional fake grid point at the end of tributaries if trib[0] is not None: nx = fl.nx + 1 # +1 is for the staggered grid self.slope_stag.append(np.zeros(nx+1)) self.thick_stag.append(np.zeros(nx+1)) self.section_stag.append(np.zeros(nx+1)) self.u_stag.append(np.zeros(nx+1)) self.shapefac_stag.append(np.ones(nx+1)) # beware the ones! self.flux_stag.append(np.zeros(nx+1)) def step(self, dt): """Advance one step.""" # Just a check to avoid useless computations if dt <= 0: raise InvalidParamsError('dt needs to be strictly positive') # Simple container mbs = [] # Loop over tributaries to determine the flux rate for fl_id, fl in enumerate(self.fls): # This is possibly less efficient than zip() but much clearer trib = self._tributary_indices[fl_id] slope_stag = self.slope_stag[fl_id] thick_stag = self.thick_stag[fl_id] section_stag = self.section_stag[fl_id] sf_stag = self.shapefac_stag[fl_id] flux_stag = self.flux_stag[fl_id] trib_flux = self.trib_flux[fl_id] u_stag = self.u_stag[fl_id] flux_gate = self.flux_gate[fl_id] # Flowline state surface_h = fl.surface_h thick = fl.thick section = fl.section dx = fl.dx_meter # If it is a tributary, we use the branch it flows into to compute # the slope of the last grid point is_trib = trib[0] is not None if is_trib: fl_to = self.fls[trib[0]] ide = fl.flows_to_indice surface_h = np.append(surface_h, fl_to.surface_h[ide]) thick = np.append(thick, thick[-1]) section = np.append(section, section[-1]) elif self.do_calving and self.calving_use_limiter: # We lower the max possible ice deformation # by clipping the surface slope here. It is completely # arbitrary but reduces ice deformation at the calving front. # I think that in essence, it is also partly # a "calving process", because this ice deformation must # be less at the calving front. The result is that calving # front "free boards" are quite high. # Note that 0 is arbitrary, it could be any value below SL surface_h = utils.clip_min(surface_h, self.water_level) # Staggered gradient slope_stag[0] = 0 slope_stag[1:-1] = (surface_h[0:-1] - surface_h[1:]) / dx slope_stag[-1] = slope_stag[-2] # Staggered thick thick_stag[1:-1] = (thick[0:-1] + thick[1:]) / 2. thick_stag[[0, -1]] = thick[[0, -1]] if self.sf_func is not None: # TODO: maybe compute new shape factors only every year? sf = self.sf_func(fl.widths_m, fl.thick, fl.is_rectangular) if is_trib: # for inflowing tributary, the sf makes no sense sf = np.append(sf, 1.) sf_stag[1:-1] = (sf[0:-1] + sf[1:]) / 2. sf_stag[[0, -1]] = sf[[0, -1]] # Staggered velocity (Deformation + Sliding) # _fd = 2/(N+2) * self.glen_a N = self.glen_n rhogh = (self.rho*G*slope_stag)**N u_stag[:] = (thick_stag**(N+1)) * self._fd * rhogh * sf_stag**N + \ (thick_stag**(N-1)) * self.fs * rhogh # Staggered section section_stag[1:-1] = (section[0:-1] + section[1:]) / 2. section_stag[[0, -1]] = section[[0, -1]] # Staggered flux rate flux_stag[:] = u_stag * section_stag # Add boundary condition if flux_gate is not None: flux_stag[0] = flux_gate(self.yr) # CFL condition if not self.fixed_dt: maxu = np.max(np.abs(u_stag)) if maxu > cfg.FLOAT_EPS: cfl_dt = self.cfl_number * dx / maxu else: cfl_dt = dt # Update dt only if necessary if cfl_dt < dt: dt = cfl_dt if cfl_dt < self.min_dt: raise RuntimeError( 'CFL error: required time step smaller ' 'than the minimum allowed: ' '{:.1f}s vs {:.1f}s. Happening at ' 'simulation year {:.1f}, fl_id {}, ' 'bin_id {} and max_u {:.3f} m yr-1.' ''.format(cfl_dt, self.min_dt, self.yr, fl_id, np.argmax(np.abs(u_stag)), maxu * cfg.SEC_IN_YEAR)) # Since we are in this loop, reset the tributary flux trib_flux[:] = 0 # We compute MB in this loop, before mass-redistribution occurs, # so that MB models which rely on glacier geometry to decide things # (like PyGEM) can do wo with a clean glacier state mbs.append(self.get_mb(fl.surface_h, self.yr, fl_id=fl_id, fls=self.fls)) # Time step if self.fixed_dt: # change only if step dt is larger than the chosen dt if self.fixed_dt < dt: dt = self.fixed_dt # A second loop for the mass exchange for fl_id, fl in enumerate(self.fls): flx_stag = self.flux_stag[fl_id] trib_flux = self.trib_flux[fl_id] tr = self._tributary_indices[fl_id] dx = fl.dx_meter is_trib = tr[0] is not None # For these we had an additional grid point if is_trib: flx_stag = flx_stag[:-1] # Mass-balance widths = fl.widths_m mb = mbs[fl_id] # Allow parabolic beds to grow mb = dt * mb * np.where((mb > 0.) & (widths == 0), 10., widths) # Update section with ice flow and mass balance new_section = (fl.section + (flx_stag[0:-1] - flx_stag[1:])*dt/dx + trib_flux*dt/dx + mb) # Keep positive values only and store fl.section = utils.clip_min(new_section, 0) # If we use a flux-gate, store the total volume that came in self.flux_gate_m3_since_y0 += flx_stag[0] * dt # Add the last flux to the tributary # this works because the lines are sorted in order if is_trib: # tr tuple: line_index, start, stop, gaussian_kernel self.trib_flux[tr[0]][tr[1]:tr[2]] += \ utils.clip_min(flx_stag[-1], 0) * tr[3] # --- The rest is for calving only --- self.calving_rate_myr = 0. # If tributary, do calving only if we are not transferring mass if is_trib and flx_stag[-1] > 0: continue # No need to do calving in these cases either if not self.do_calving or not fl.has_ice(): continue # We do calving only if the last glacier bed pixel is below water # (this is to avoid calving elsewhere than at the front) if fl.bed_h[fl.thick > 0][-1] > self.water_level: continue # We do calving only if there is some ice above wl last_above_wl = np.nonzero((fl.surface_h > self.water_level) & (fl.thick > 0))[0][-1] if fl.bed_h[last_above_wl] > self.water_level: continue # OK, we're really calving section = fl.section # Calving law h = fl.thick[last_above_wl] d = h - (fl.surface_h[last_above_wl] - self.water_level) k = self.calving_k q_calving = k * d * h * fl.widths_m[last_above_wl] # Add to the bucket and the diagnostics fl.calving_bucket_m3 += q_calving * dt self.calving_m3_since_y0 += q_calving * dt self.calving_rate_myr = (q_calving / section[last_above_wl] * cfg.SEC_IN_YEAR) # See if we have ice below sea-water to clean out first below_sl = (fl.surface_h < self.water_level) & (fl.thick > 0) to_remove = np.sum(section[below_sl]) * fl.dx_meter if 0 < to_remove < fl.calving_bucket_m3: # This is easy, we remove everything section[below_sl] = 0 fl.calving_bucket_m3 -= to_remove elif to_remove > 0: # We can only remove part of if section[below_sl] = 0 section[last_above_wl+1] = ((to_remove - fl.calving_bucket_m3) / fl.dx_meter) fl.calving_bucket_m3 = 0 # The rest of the bucket might calve an entire grid point (or more?) vol_last = section[last_above_wl] * fl.dx_meter while fl.calving_bucket_m3 > vol_last: fl.calving_bucket_m3 -= vol_last section[last_above_wl] = 0 # OK check if we need to continue (unlikely) last_above_wl -= 1 vol_last = section[last_above_wl] * fl.dx_meter # We update the glacier with our changes fl.section = section # Next step self.t += dt return dt def get_diagnostics(self, fl_id=-1): """Obtain model diagnostics in a pandas DataFrame. Parameters ---------- fl_id : int the index of the flowline of interest, from 0 to n_flowline-1. Default is to take the last (main) one Returns ------- a pandas DataFrame, which index is distance along flowline (m). Units: - surface_h, bed_h, ice_tick, section_width: m - section_area: m2 - slope: - - ice_flux, tributary_flux: m3 of *ice* per second - ice_velocity: m per second (depth-section integrated) """ import pandas as pd fl = self.fls[fl_id] nx = fl.nx df = pd.DataFrame(index=fl.dx_meter * np.arange(nx)) df.index.name = 'distance_along_flowline' df['surface_h'] = fl.surface_h df['bed_h'] = fl.bed_h df['ice_thick'] = fl.thick df['section_width'] = fl.widths_m df['section_area'] = fl.section # Staggered var = self.slope_stag[fl_id] df['slope'] = (var[1:nx+1] + var[:nx])/2 var = self.flux_stag[fl_id] df['ice_flux'] = (var[1:nx+1] + var[:nx])/2 var = self.u_stag[fl_id] df['ice_velocity'] = (var[1:nx+1] + var[:nx])/2 var = self.shapefac_stag[fl_id] df['shape_fac'] = (var[1:nx+1] + var[:nx])/2 # Not Staggered df['tributary_flux'] = self.trib_flux[fl_id] return df class MassConservationChecker(FluxBasedModel): """This checks if the FluxBasedModel is conserving mass.""" def __init__(self, flowlines, **kwargs): """ Instanciate. Parameters ---------- Properties ---------- #TODO: document properties """ super(MassConservationChecker, self).__init__(flowlines, **kwargs) self.total_mass = 0. def step(self, dt): mbs = [] sections = [] for fl in self.fls: # Mass balance widths = fl.widths_m mb = self.get_mb(fl.surface_h, self.yr, fl_id=id(fl)) mbs.append(mb * widths) sections.append(np.copy(fl.section)) dx = fl.dx_meter dt = super(MassConservationChecker, self).step(dt) for mb, sec in zip(mbs, sections): mb = dt * mb # there can't be more negative mb than there is section # this isn't an exact solution unfortunately # TODO: exact solution for mass conservation mb = utils.clip_min(mb, -sec) self.total_mass += np.sum(mb * dx) class KarthausModel(FlowlineModel): """The actual model""" def __init__(self, flowlines, mb_model=None, y0=0., glen_a=None, fs=0., fixed_dt=None, min_dt=SEC_IN_DAY, max_dt=31*SEC_IN_DAY, inplace=False, **kwargs): """ Instanciate. Parameters ---------- Properties ---------- #TODO: document properties #TODO: Changed from assumed N=3 to N """ if len(flowlines) > 1: raise ValueError('Karthaus model does not work with tributaries.') super(KarthausModel, self).__init__(flowlines, mb_model=mb_model, y0=y0, glen_a=glen_a, fs=fs, inplace=inplace, **kwargs) self.dt_warning = False, if fixed_dt is not None: min_dt = fixed_dt max_dt = fixed_dt self.min_dt = min_dt self.max_dt = max_dt def step(self, dt): """Advance one step.""" # Just a check to avoid useless computations if dt <= 0: raise InvalidParamsError('dt needs to be strictly positive') # This is to guarantee a precise arrival on a specific date if asked min_dt = dt if dt < self.min_dt else self.min_dt dt = utils.clip_scalar(dt, min_dt, self.max_dt) fl = self.fls[0] dx = fl.dx_meter width = fl.widths_m thick = fl.thick MassBalance = self.get_mb(fl.surface_h, self.yr, fl_id=id(fl)) SurfaceHeight = fl.surface_h # Surface gradient SurfaceGradient = np.zeros(fl.nx) SurfaceGradient[1:fl.nx-1] = (SurfaceHeight[2:] - SurfaceHeight[:fl.nx-2])/(2*dx) SurfaceGradient[-1] = 0 SurfaceGradient[0] = 0 # Diffusivity N = self.glen_n Diffusivity = width * (self.rho*G)**3 * thick**3 * SurfaceGradient**2 Diffusivity *= 2/(N+2) * self.glen_a * thick**2 + self.fs # on stagger DiffusivityStaggered = np.zeros(fl.nx) SurfaceGradientStaggered = np.zeros(fl.nx) DiffusivityStaggered[1:] = (Diffusivity[:fl.nx-1] + Diffusivity[1:])/2. DiffusivityStaggered[0] = Diffusivity[0] SurfaceGradientStaggered[1:] = (SurfaceHeight[1:] - SurfaceHeight[:fl.nx-1])/dx SurfaceGradientStaggered[0] = 0 GradxDiff = SurfaceGradientStaggered * DiffusivityStaggered # Yo NewIceThickness = np.zeros(fl.nx) NewIceThickness[:fl.nx-1] = (thick[:fl.nx-1] + (dt/width[0:fl.nx-1]) * (GradxDiff[1:]-GradxDiff[:fl.nx-1])/dx + dt * MassBalance[:fl.nx-1]) NewIceThickness[-1] = thick[fl.nx-2] fl.thick = utils.clip_min(NewIceThickness, 0) # Next step self.t += dt return dt class FileModel(object): """Duck FlowlineModel which actually reads data out of a nc file.""" def __init__(self, path): """ Instanciate. Parameters ---------- Properties ---------- #TODO: document properties """ self.fls = glacier_from_netcdf(path) fl_tss = [] for flid, fl in enumerate(self.fls): with xr.open_dataset(path, group='fl_{}'.format(flid)) as ds: if flid == 0: # Populate time self.time = ds.time.values try: self.years = ds.year.values except AttributeError: raise InvalidWorkflowError('The provided model output ' 'file is incomplete (likely ' 'when the previous ' 'run failed) or corrupt.') try: self.months = ds.month.values except AttributeError: self.months = self.years * 0 + 1 # Read out the data fl_data = { 'ts_section': ds.ts_section.values, 'ts_width_m': ds.ts_width_m.values, } try: fl_data['ts_calving_bucket_m3'] = ds.ts_calving_bucket_m3.values except AttributeError: fl_data['ts_calving_bucket_m3'] = self.years * 0 fl_tss.append(fl_data) self.fl_tss = fl_tss self.last_yr = float(ds.time[-1]) # Calving diags try: with xr.open_dataset(path) as ds: self._calving_m3_since_y0 = ds.calving_m3.values self.do_calving = True except AttributeError: self._calving_m3_since_y0 = 0 self.do_calving = False # time self.reset_y0() def __enter__(self): warnings.warn('FileModel no longer needs to be run as a ' 'context manager. You can safely remove the ' '`with` statement.', FutureWarning) return self def __exit__(self, exc_type, exc_value, traceback): pass def reset_y0(self, y0=None): """Reset the initial model time""" if y0 is None: y0 = float(self.time[0]) self.y0 = y0 self.yr = y0 self._current_index = 0 @property def area_m2(self): return np.sum([f.area_m2 for f in self.fls]) @property def volume_m3(self): return np.sum([f.volume_m3 for f in self.fls]) @property def volume_km3(self): return self.volume_m3 * 1e-9 @property def area_km2(self): return self.area_m2 * 1e-6 @property def length_m(self): return self.fls[-1].length_m @property def calving_m3_since_y0(self): if self.do_calving: return self._calving_m3_since_y0[self._current_index] else: return 0 def run_until(self, year=None, month=None): """Mimics the model's behavior. Is quite slow tbh. """ try: if month is not None: pok = np.nonzero((self.years == year) & (self.months == month))[0][0] else: pok = np.nonzero(self.time == year)[0][0] except IndexError as err: raise IndexError('Index year={}, month={} not available in ' 'FileModel.'.format(year, month)) from err self.yr = self.time[pok] self._current_index = pok for fl, fl_ts in zip(self.fls, self.fl_tss): fl.section = fl_ts['ts_section'][pok, :] fl.calving_bucket_m3 = fl_ts['ts_calving_bucket_m3'][pok] def area_m2_ts(self, rollmin=0): """rollmin is the number of years you want to smooth onto""" sel = 0 for fl, fl_ts in zip(self.fls, self.fl_tss): widths = np.where(fl_ts['ts_section'] > 0., fl_ts['ts_width_m'], 0.) sel += widths.sum(axis=1) * fl.dx_meter sel = pd.Series(data=sel, index=self.time, name='area_m2') if rollmin != 0: sel = sel.rolling(rollmin).min() sel.iloc[0:rollmin] = sel.iloc[rollmin] return sel def area_km2_ts(self, **kwargs): return self.area_m2_ts(**kwargs) * 1e-6 def volume_m3_ts(self): sel = 0 for fl, fl_ts in zip(self.fls, self.fl_tss): sel += fl_ts['ts_section'].sum(axis=1) * fl.dx_meter sel -= fl_ts['ts_calving_bucket_m3'] return pd.Series(data=sel, index=self.time, name='volume_m3') def volume_km3_ts(self): return self.volume_m3_ts() * 1e-9 def length_m_ts(self, rollmin=0): raise NotImplementedError('length_m_ts is no longer available in the ' 'full output files. To obtain the length ' 'time series, refer to the diagnostic ' 'output file.') def flowline_from_dataset(ds): """Instanciates a flowline from an xarray Dataset.""" cl = globals()[ds.attrs['class']] line = shpg.LineString(ds['linecoords'].values) args = dict(line=line, dx=ds.dx, map_dx=ds.map_dx, surface_h=ds['surface_h'].values, bed_h=ds['bed_h'].values) have = {'c', 'x', 'surface_h', 'linecoords', 'bed_h', 'z', 'p', 'n', 'time', 'month', 'year', 'ts_width_m', 'ts_section', 'ts_calving_bucket_m3'} missing_vars = set(ds.variables.keys()).difference(have) for k in missing_vars: data = ds[k].values if ds[k].dims[0] == 'z': data = data[0] args[k] = data return cl(**args) def glacier_from_netcdf(path): """Instanciates a list of flowlines from an xarray Dataset.""" with xr.open_dataset(path) as ds: fls = [] for flid in ds['flowlines'].values: with xr.open_dataset(path, group='fl_{}'.format(flid)) as _ds: fls.append(flowline_from_dataset(_ds)) for i, fid in enumerate(ds['flows_to_id'].values): if fid != -1: fls[i].set_flows_to(fls[fid]) # Adds the line level for fl in fls: fl.order = line_order(fl) return fls def calving_glacier_downstream_line(line, n_points): """Extends a calving glacier flowline past the terminus.""" if line is None: return None x, y = line.coords.xy dx = x[-1] - x[-2] dy = y[-1] - y[-2] x = np.append(x, x[-1] + dx * np.arange(1, n_points+1)) y = np.append(y, y[-1] + dy * np.arange(1, n_points+1)) return shpg.LineString(np.array([x, y]).T) def old_init_present_time_glacier(gdir): """Init_present_time_glacier when trapezoid inversion was not possible.""" # Some vars map_dx = gdir.grid.dx def_lambda = cfg.PARAMS['trapezoid_lambdas'] min_shape = cfg.PARAMS['mixed_min_shape'] cls = gdir.read_pickle('inversion_flowlines') invs = gdir.read_pickle('inversion_output') # Fill the tributaries new_fls = [] flows_to_ids = [] for cl, inv in zip(cls, invs): # Get the data to make the model flowlines line = cl.line section = inv['volume'] / (cl.dx * map_dx) surface_h = cl.surface_h bed_h = surface_h - inv['thick'] widths_m = cl.widths * map_dx assert np.all(widths_m > 0) bed_shape = 4 * inv['thick'] / (cl.widths * map_dx) ** 2 lambdas = inv['thick'] * np.NaN lambdas[bed_shape < min_shape] = def_lambda lambdas[inv['is_rectangular']] = 0. # Last pix of not tidewater are always parab (see below) if not gdir.is_tidewater and inv['is_last']: lambdas[-5:] = np.nan # Update bed_h where we now have a trapeze w0_m = cl.widths * map_dx - lambdas * inv['thick'] b = 2 * w0_m a = 2 * lambdas with np.errstate(divide='ignore', invalid='ignore'): thick = (np.sqrt(b ** 2 + 4 * a * section) - b) / a ptrap = (lambdas != 0) & np.isfinite(lambdas) bed_h[ptrap] = cl.surface_h[ptrap] - thick[ptrap] # For the very last pixs of a glacier, the section might be zero after # the inversion, and the bedshapes are chaotic. We interpolate from # the downstream. This is not volume conservative if not gdir.is_tidewater and inv['is_last']: dic_ds = gdir.read_pickle('downstream_line') bed_shape[-5:] = np.nan # Interpolate bed_shape = utils.interp_nans(np.append(bed_shape, dic_ds['bedshapes'][0])) bed_shape = utils.clip_min(bed_shape[:-1], min_shape) # Correct the section volume h = inv['thick'] section[-5:] = (2 / 3 * h * np.sqrt(4 * h / bed_shape))[-5:] # Add the downstream bed_shape = np.append(bed_shape, dic_ds['bedshapes']) lambdas = np.append(lambdas, dic_ds['bedshapes'] * np.NaN) section = np.append(section, dic_ds['bedshapes'] * 0.) surface_h = np.append(surface_h, dic_ds['surface_h']) bed_h = np.append(bed_h, dic_ds['surface_h']) widths_m = np.append(widths_m, dic_ds['bedshapes'] * 0.) line = dic_ds['full_line'] if gdir.is_tidewater and inv['is_last']: # Continue the bed a little n_points = cfg.PARAMS['calving_line_extension'] cf_slope = cfg.PARAMS['calving_front_slope'] deepening = n_points * cl.dx * map_dx * cf_slope line = calving_glacier_downstream_line(line, n_points=n_points) bed_shape = np.append(bed_shape, np.zeros(n_points)) lambdas = np.append(lambdas, np.zeros(n_points)) section = np.append(section, np.zeros(n_points)) # The bed slowly deepens bed_down = np.linspace(bed_h[-1], bed_h[-1]-deepening, n_points) bed_h = np.append(bed_h, bed_down) surface_h = np.append(surface_h, bed_down) widths_m = np.append(widths_m, np.zeros(n_points) + np.mean(widths_m[-5:])) nfl = MixedBedFlowline(line=line, dx=cl.dx, map_dx=map_dx, surface_h=surface_h, bed_h=bed_h, section=section, bed_shape=bed_shape, is_trapezoid=np.isfinite(lambdas), lambdas=lambdas, widths_m=widths_m, rgi_id=cl.rgi_id) # Update attrs nfl.mu_star = cl.mu_star if cl.flows_to: flows_to_ids.append(cls.index(cl.flows_to)) else: flows_to_ids.append(None) new_fls.append(nfl) # Finalize the linkages for fl, fid in zip(new_fls, flows_to_ids): if fid: fl.set_flows_to(new_fls[fid]) # Adds the line level for fl in new_fls: fl.order = line_order(fl) # Write the data gdir.write_pickle(new_fls, 'model_flowlines') @entity_task(log, writes=['model_flowlines']) def init_present_time_glacier(gdir): """Merges data from preprocessing tasks. First task after inversion! This updates the `mode_flowlines` file and creates a stand-alone numerical glacier ready to run. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process """ # Some vars invs = gdir.read_pickle('inversion_output') if invs[0].get('is_trapezoid', None) is None: return old_init_present_time_glacier(gdir) map_dx = gdir.grid.dx def_lambda = cfg.PARAMS['trapezoid_lambdas'] cls = gdir.read_pickle('inversion_flowlines') # Fill the tributaries new_fls = [] flows_to_ids = [] for cl, inv in zip(cls, invs): # Get the data to make the model flowlines line = cl.line section = inv['volume'] / (cl.dx * map_dx) surface_h = cl.surface_h bed_h = surface_h - inv['thick'] widths_m = cl.widths * map_dx assert np.all(widths_m > 0) bed_shape = 4 * inv['thick'] / (cl.widths * map_dx) ** 2 lambdas = inv['thick'] * np.NaN lambdas[inv['is_trapezoid']] = def_lambda lambdas[inv['is_rectangular']] = 0. # Where the flux and the thickness is zero we just assume trapezoid: lambdas[bed_shape == 0] = def_lambda if not gdir.is_tidewater and inv['is_last']: # for valley glaciers, simply add the downstream line dic_ds = gdir.read_pickle('downstream_line') bed_shape = np.append(bed_shape, dic_ds['bedshapes']) lambdas = np.append(lambdas, dic_ds['bedshapes'] * np.NaN) section = np.append(section, dic_ds['bedshapes'] * 0.) surface_h = np.append(surface_h, dic_ds['surface_h']) bed_h = np.append(bed_h, dic_ds['surface_h']) widths_m = np.append(widths_m, dic_ds['bedshapes'] * 0.) line = dic_ds['full_line'] if gdir.is_tidewater and inv['is_last']: # Continue the bed a little n_points = cfg.PARAMS['calving_line_extension'] cf_slope = cfg.PARAMS['calving_front_slope'] deepening = n_points * cl.dx * map_dx * cf_slope line = calving_glacier_downstream_line(line, n_points=n_points) bed_shape = np.append(bed_shape, np.zeros(n_points)) lambdas = np.append(lambdas, np.zeros(n_points)) section = np.append(section, np.zeros(n_points)) # The bed slowly deepens bed_down = np.linspace(bed_h[-1], bed_h[-1]-deepening, n_points) bed_h = np.append(bed_h, bed_down) surface_h = np.append(surface_h, bed_down) widths_m = np.append(widths_m, np.zeros(n_points) + np.mean(widths_m[-5:])) nfl = MixedBedFlowline(line=line, dx=cl.dx, map_dx=map_dx, surface_h=surface_h, bed_h=bed_h, section=section, bed_shape=bed_shape, is_trapezoid=np.isfinite(lambdas), lambdas=lambdas, widths_m=widths_m, rgi_id=cl.rgi_id) # Update attrs nfl.mu_star = cl.mu_star if cl.flows_to: flows_to_ids.append(cls.index(cl.flows_to)) else: flows_to_ids.append(None) new_fls.append(nfl) # Finalize the linkages for fl, fid in zip(new_fls, flows_to_ids): if fid: fl.set_flows_to(new_fls[fid]) # Adds the line level for fl in new_fls: fl.order = line_order(fl) # Write the data gdir.write_pickle(new_fls, 'model_flowlines') def robust_model_run(*args, **kwargs): warnings.warn('The task `robust_model_run` is deprecated.', FutureWarning) return flowline_model_run(*args, **kwargs) @entity_task(log) def flowline_model_run(gdir, output_filesuffix=None, mb_model=None, ys=None, ye=None, zero_initial_glacier=False, init_model_fls=None, store_monthly_step=False, store_model_geometry=None, water_level=None, **kwargs): """Runs a model simulation with the default time stepping scheme. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process output_filesuffix : str this add a suffix to the output file (useful to avoid overwriting previous experiments) mb_model : :py:class:`core.MassBalanceModel` a MassBalanceModel instance ys : int start year of the model run (default: from the config file) ye : int end year of the model run (default: from the config file) zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation init_model_fls : [] list of flowlines to use to initialise the model (the default is the present_time_glacier file from the glacier directory) store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) water_level : float the water level. It should be zero m a.s.l, but: - sometimes the frontal elevation is unrealistically high (or low). - lake terminating glaciers - other uncertainties The default is to take the water level obtained from the ice thickness inversion. kwargs : dict kwargs to pass to the FluxBasedModel instance """ mb_elev_feedback = kwargs.get('mb_elev_feedback', 'annual') if store_monthly_step and (mb_elev_feedback == 'annual'): warnings.warn("The mass-balance used to drive the ice dynamics model " "is updated yearly. If you want the output to be stored " "monthly and also reflect reflect monthly processes," "set store_monthly_step=True and " "mb_elev_feedback='monthly'. This is not recommended " "though: for monthly MB applications, we recommend to " "use the `run_with_hydro` task.") if cfg.PARAMS['use_inversion_params_for_run']: diag = gdir.get_diagnostics() fs = diag.get('inversion_fs', cfg.PARAMS['fs']) glen_a = diag.get('inversion_glen_a', cfg.PARAMS['glen_a']) else: fs = cfg.PARAMS['fs'] glen_a = cfg.PARAMS['glen_a'] kwargs.setdefault('fs', fs) kwargs.setdefault('glen_a', glen_a) if store_model_geometry is None: store_model_geometry = cfg.PARAMS['store_model_geometry'] if store_model_geometry: geom_path = gdir.get_filepath('model_geometry', filesuffix=output_filesuffix, delete=True) else: geom_path = False diag_path = gdir.get_filepath('model_diagnostics', filesuffix=output_filesuffix, delete=True) if init_model_fls is None: fls = gdir.read_pickle('model_flowlines') else: fls = copy.deepcopy(init_model_fls) if zero_initial_glacier: for fl in fls: fl.thick = fl.thick * 0. if (cfg.PARAMS['use_kcalving_for_run'] and gdir.is_tidewater and water_level is None): # check for water level water_level = gdir.get_diagnostics().get('calving_water_level', None) if water_level is None: raise InvalidWorkflowError('This tidewater glacier seems to not ' 'have been inverted with the ' '`find_inversion_calving` task. Set ' "PARAMS['use_kcalving_for_run'] to " '`False` or set `water_level` ' 'to prevent this error.') model = FluxBasedModel(fls, mb_model=mb_model, y0=ys, inplace=True, is_tidewater=gdir.is_tidewater, is_lake_terminating=gdir.is_lake_terminating, water_level=water_level, **kwargs) with np.warnings.catch_warnings(): # For operational runs we ignore the warnings np.warnings.filterwarnings('ignore', category=RuntimeWarning) model.run_until_and_store(ye, geom_path=geom_path, diag_path=diag_path, store_monthly_step=store_monthly_step) return model @entity_task(log) def run_random_climate(gdir, nyears=1000, y0=None, halfsize=15, bias=None, seed=None, temperature_bias=None, precipitation_factor=None, store_monthly_step=False, store_model_geometry=None, climate_filename='climate_historical', climate_input_filesuffix='', output_filesuffix='', init_model_fls=None, zero_initial_glacier=False, unique_samples=False, **kwargs): """Runs the random mass-balance model for a given number of years. This will initialize a :py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`, and run a :py:func:`oggm.core.flowline.flowline_model_run`. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process nyears : int length of the simulation y0 : int, optional central year of the random climate period. The default is to be centred on t*. halfsize : int, optional the half-size of the time window (window size = 2 * halfsize + 1) bias : float bias of the mb model. Default is to use the calibrated one, which is often a better idea. For t* experiments it can be useful to set it to zero seed : int seed for the random generator. If you ignore this, the runs will be different each time. Setting it to a fixed seed across glaciers can be useful if you want to have the same climate years for all of them temperature_bias : float add a bias to the temperature timeseries precipitation_factor: float multiply a factor to the precipitation time series default is None and means that the precipitation factor from the calibration is applied which is cfg.PARAMS['prcp_scaling_factor'] store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) climate_filename : str name of the climate file, e.g. 'climate_historical' (default) or 'gcm_data' climate_input_filesuffix: str filesuffix for the input climate file output_filesuffix : str this add a suffix to the output file (useful to avoid overwriting previous experiments) init_model_fls : [] list of flowlines to use to initialise the model (the default is the present_time_glacier file from the glacier directory) zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation unique_samples: bool if true, chosen random mass-balance years will only be available once per random climate period-length if false, every model year will be chosen from the random climate period with the same probability kwargs : dict kwargs to pass to the FluxBasedModel instance """ mb = MultipleFlowlineMassBalance(gdir, mb_model_class=RandomMassBalance, y0=y0, halfsize=halfsize, bias=bias, seed=seed, filename=climate_filename, input_filesuffix=climate_input_filesuffix, unique_samples=unique_samples) if temperature_bias is not None: mb.temp_bias = temperature_bias if precipitation_factor is not None: mb.prcp_fac = precipitation_factor return flowline_model_run(gdir, output_filesuffix=output_filesuffix, mb_model=mb, ys=0, ye=nyears, store_monthly_step=store_monthly_step, store_model_geometry=store_model_geometry, init_model_fls=init_model_fls, zero_initial_glacier=zero_initial_glacier, **kwargs) @entity_task(log) def run_constant_climate(gdir, nyears=1000, y0=None, halfsize=15, bias=None, temperature_bias=None, precipitation_factor=None, store_monthly_step=False, store_model_geometry=None, init_model_filesuffix=None, init_model_yr=None, output_filesuffix='', climate_filename='climate_historical', climate_input_filesuffix='', init_model_fls=None, zero_initial_glacier=False, **kwargs): """Runs the constant mass-balance model for a given number of years. This will initialize a :py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`, and run a :py:func:`oggm.core.flowline.flowline_model_run`. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process nyears : int length of the simulation (default: as long as needed for reaching equilibrium) y0 : int central year of the requested climate period. The default is to be centred on t*. halfsize : int, optional the half-size of the time window (window size = 2 * halfsize + 1) bias : float bias of the mb model. Default is to use the calibrated one, which is often a better idea. For t* experiments it can be useful to set it to zero temperature_bias : float add a bias to the temperature timeseries precipitation_factor: float multiply a factor to the precipitation time series default is None and means that the precipitation factor from the calibration is applied which is cfg.PARAMS['prcp_scaling_factor'] store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) init_model_filesuffix : str if you want to start from a previous model run state. Can be combined with `init_model_yr` init_model_yr : int the year of the initial run you want to start from. The default is to take the last year of the simulation. climate_filename : str name of the climate file, e.g. 'climate_historical' (default) or 'gcm_data' climate_input_filesuffix: str filesuffix for the input climate file output_filesuffix : str this add a suffix to the output file (useful to avoid overwriting previous experiments) zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation init_model_fls : [] list of flowlines to use to initialise the model (the default is the present_time_glacier file from the glacier directory) kwargs : dict kwargs to pass to the FluxBasedModel instance """ if init_model_filesuffix is not None: fp = gdir.get_filepath('model_geometry', filesuffix=init_model_filesuffix) fmod = FileModel(fp) if init_model_yr is None: init_model_yr = fmod.last_yr fmod.run_until(init_model_yr) init_model_fls = fmod.fls mb = MultipleFlowlineMassBalance(gdir, mb_model_class=ConstantMassBalance, y0=y0, halfsize=halfsize, bias=bias, filename=climate_filename, input_filesuffix=climate_input_filesuffix) if temperature_bias is not None: mb.temp_bias = temperature_bias if precipitation_factor is not None: mb.prcp_fac = precipitation_factor return flowline_model_run(gdir, output_filesuffix=output_filesuffix, mb_model=mb, ys=0, ye=nyears, store_monthly_step=store_monthly_step, store_model_geometry=store_model_geometry, init_model_fls=init_model_fls, zero_initial_glacier=zero_initial_glacier, **kwargs) @entity_task(log) def run_from_climate_data(gdir, ys=None, ye=None, min_ys=None, max_ys=None, store_monthly_step=False, store_model_geometry=None, climate_filename='climate_historical', climate_input_filesuffix='', output_filesuffix='', init_model_filesuffix=None, init_model_yr=None, init_model_fls=None, zero_initial_glacier=False, bias=None, temperature_bias=None, precipitation_factor=None, **kwargs): """ Runs a glacier with climate input from e.g. CRU or a GCM. This will initialize a :py:class:`oggm.core.massbalance.MultipleFlowlineMassBalance`, and run a :py:func:`oggm.core.flowline.flowline_model_run`. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process ys : int start year of the model run (default: from the glacier geometry date if init_model_filesuffix is None, else init_model_yr) ye : int end year of the model run (default: last year of the provided climate file) min_ys : int if you want to impose a minimum start year, regardless if the glacier inventory date is earlier (e.g. if climate data does not reach). max_ys : int if you want to impose a maximum start year, regardless if the glacier inventory date is later (e.g. if climate data does not reach). store_monthly_step : bool whether to store the diagnostic data at a monthly time step or not (default is yearly) store_model_geometry : bool whether to store the full model geometry run file to disk or not. (new in OGGM v1.4.1: default is to follow cfg.PARAMS['store_model_geometry']) climate_filename : str name of the climate file, e.g. 'climate_historical' (default) or 'gcm_data' climate_input_filesuffix: str filesuffix for the input climate file output_filesuffix : str for the output file init_model_filesuffix : str if you want to start from a previous model run state. Can be combined with `init_model_yr` init_model_yr : int the year of the initial run you want to start from. The default is to take the last year of the simulation. init_model_fls : [] list of flowlines to use to initialise the model (the default is the present_time_glacier file from the glacier directory). Ignored if `init_model_filesuffix` is set zero_initial_glacier : bool if true, the ice thickness is set to zero before the simulation bias : float bias of the mb model. Default is to use the calibrated one, which is often a better idea. For t* experiments it can be useful to set it to zero temperature_bias : float add a bias to the temperature timeseries precipitation_factor: float multiply a factor to the precipitation time series default is None and means that the precipitation factor from the calibration is applied which is cfg.PARAMS['prcp_scaling_factor'] kwargs : dict kwargs to pass to the FluxBasedModel instance """ if init_model_filesuffix is not None: fp = gdir.get_filepath('model_geometry', filesuffix=init_model_filesuffix) fmod = FileModel(fp) if init_model_yr is None: init_model_yr = fmod.last_yr fmod.run_until(init_model_yr) init_model_fls = fmod.fls if ys is None: ys = init_model_yr # Take from rgi date if not set yet if ys is None: try: ys = gdir.rgi_date.year except AttributeError: ys = gdir.rgi_date # The RGI timestamp is in calendar date - we convert to hydro date, # i.e. 2003 becomes 2004 if hydro_month is not 1 (January) # (so that we don't count the MB year 2003 in the simulation) # See also: https://github.com/OGGM/oggm/issues/1020 # even if hydro_month is 1, we prefer to start from Jan 2004 # as in the alps the rgi is from Aug 2003 ys += 1 # Final crop if min_ys is not None: ys = ys if ys > min_ys else min_ys if max_ys is not None: ys = ys if ys < max_ys else max_ys mb = MultipleFlowlineMassBalance(gdir, mb_model_class=PastMassBalance, filename=climate_filename, bias=bias, input_filesuffix=climate_input_filesuffix) if temperature_bias is not None: mb.temp_bias = temperature_bias if precipitation_factor is not None: mb.prcp_fac = precipitation_factor if ye is None: # Decide from climate (we can run the last year with data as well) ye = mb.flowline_mb_models[0].ye + 1 return flowline_model_run(gdir, output_filesuffix=output_filesuffix, mb_model=mb, ys=ys, ye=ye, store_monthly_step=store_monthly_step, store_model_geometry=store_model_geometry, init_model_fls=init_model_fls, zero_initial_glacier=zero_initial_glacier, **kwargs) @entity_task(log) def run_with_hydro(gdir, run_task=None, store_monthly_hydro=False, ref_area_from_y0=False, **kwargs): """Run the flowline model and add hydro diagnostics (experimental!). TODOs: - Add the possibility to merge with previous model runs - Add the possibility to prescribe glacier area (e.g. with starting area) - Add the possibility to record MB during run to improve performance (requires change in API) - ... Parameters ---------- run_task : func any of the `run_*`` tasks in the oggm.flowline module. The mass-balance model used needs to have the `add_climate` output kwarg available though. store_monthly_hydro : bool also compute monthly hydrological diagnostics. The monthly ouptputs are stored in 2D fields (years, months) ref_area_from_y0 : bool the hydrological output is computed over a reference area, which per default is the largest area covered by the glacier in the simulation period. Use this kwarg to force a specifi area to the state of the glacier at the provided simulation year. **kwargs : all valid kwargs for ``run_task`` """ # Make sure it'll return something kwargs['return_value'] = True # Check that kwargs are compatible if kwargs.get('store_monthly_step', False): raise InvalidParamsError('run_with_hydro only compatible with ' 'store_monthly_step=False.') if kwargs.get('mb_elev_feedback', 'annual') != 'annual': raise InvalidParamsError('run_with_hydro only compatible with ' "mb_elev_feedback='annual' (yes, even " "when asked for monthly hydro output).") out = run_task(gdir, **kwargs) if out is None: raise InvalidWorkflowError('The run task ({}) did not run ' 'successfully.'.format(run_task.__name__)) # Mass balance model used during the run mb_mod = out.mb_model # Glacier geometry during the run suffix = kwargs.get('output_filesuffix', '') # We start by fetching mass balance data and geometry for all years # model_geometry files always retrieve yearly timesteps fmod = FileModel(gdir.get_filepath('model_geometry', filesuffix=suffix)) # The last one is the final state - we can't compute MB for that years = fmod.years[:-1] # Geometry at y0 to start with + off-glacier snow bucket bin_area_2ds = [] bin_elev_2ds = [] ref_areas = [] snow_buckets = [] for fl in fmod.fls: # Glacier area on bins bin_area = fl.bin_area_m2 ref_areas.append(bin_area) snow_buckets.append(bin_area * 0) # Output 2d data shape = len(years), len(bin_area) bin_area_2ds.append(np.empty(shape, np.float64)) bin_elev_2ds.append(np.empty(shape, np.float64)) # Ok now fetch all geometry data in a first loop # We do that because we might want to get the largest possible area (default) # and we want to minimize the number of calls to run_until for i, yr in enumerate(years): fmod.run_until(yr) for fl_id, (fl, bin_area_2d, bin_elev_2d) in \ enumerate(zip(fmod.fls, bin_area_2ds, bin_elev_2ds)): # Time varying bins bin_area_2d[i, :] = fl.bin_area_m2 bin_elev_2d[i, :] = fl.surface_h if not ref_area_from_y0: # Ok we get the max area instead for ref_area, bin_area_2d in zip(ref_areas, bin_area_2ds): ref_area[:] = bin_area_2d.max(axis=0) # Ok now we have arrays, we can work with that # -> second time varying loop is for mass-balance months = [1] seconds = cfg.SEC_IN_YEAR ntime = len(years) + 1 oshape = (ntime, 1) if store_monthly_hydro: months = np.arange(1, 13) seconds = cfg.SEC_IN_MONTH oshape = (ntime, 12) out = { 'off_area': { 'description': 'Off-glacier area', 'unit': 'm 2', 'data': np.zeros(ntime), }, 'on_area': { 'description': 'On-glacier area', 'unit': 'm 2', 'data': np.zeros(ntime), }, 'melt_off_glacier': { 'description': 'Off-glacier melt', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'melt_on_glacier': { 'description': 'On-glacier melt', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'melt_residual_off_glacier': { 'description': 'Off-glacier melt due to MB model residual', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'melt_residual_on_glacier': { 'description': 'On-glacier melt due to MB model residual', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'liq_prcp_off_glacier': { 'description': 'Off-glacier liquid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'liq_prcp_on_glacier': { 'description': 'On-glacier liquid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'snowfall_off_glacier': { 'description': 'Off-glacier solid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'snowfall_on_glacier': { 'description': 'On-glacier solid precipitation', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, 'snow_bucket': { 'description': 'Off-glacier snow reservoir (state variable)', 'unit': 'kg', 'data': np.zeros(oshape), }, 'model_mb': { 'description': 'Annual mass-balance from dynamical model', 'unit': 'kg yr-1', 'data': np.zeros(ntime), }, 'residual_mb': { 'description': 'Difference (before correction) between mb model and dyn model melt', 'unit': 'kg yr-1', 'data': np.zeros(oshape), }, } # Initialize fmod.run_until(years[0]) prev_model_vol = fmod.volume_m3 for i, yr in enumerate(years): # Now the loop over the months for m in months: # A bit silly but avoid double counting in monthly ts off_area_out = 0 on_area_out = 0 for fl_id, (ref_area, snow_bucket, bin_area_2d, bin_elev_2d) in \ enumerate(zip(ref_areas, snow_buckets, bin_area_2ds, bin_elev_2ds)): bin_area = bin_area_2d[i, :] bin_elev = bin_elev_2d[i, :] # Make sure we have no negative contribution when glaciers are out off_area = utils.clip_min(ref_area - bin_area, 0) try: if store_monthly_hydro: flt_yr = utils.date_to_floatyear(int(yr), m) mb_out = mb_mod.get_monthly_mb(bin_elev, fl_id=fl_id, year=flt_yr, add_climate=True) mb, _, _, prcp, prcpsol = mb_out else: mb_out = mb_mod.get_annual_mb(bin_elev, fl_id=fl_id, year=yr, add_climate=True) mb, _, _, prcp, prcpsol = mb_out except ValueError as e: if 'too many values to unpack' in str(e): raise InvalidWorkflowError('Run with hydro needs a MB ' 'model able to add climate ' 'info to `get_annual_mb`.') raise # Here we use mass (kg yr-1) not ice volume mb *= seconds * cfg.PARAMS['ice_density'] # Bias of the mb model is a fake melt term that we need to deal with mb_bias = mb_mod.bias * seconds / cfg.SEC_IN_YEAR liq_prcp_on_g = (prcp - prcpsol) * bin_area liq_prcp_off_g = (prcp - prcpsol) * off_area prcpsol_on_g = prcpsol * bin_area prcpsol_off_g = prcpsol * off_area # IMPORTANT: this does not guarantee that melt cannot be negative # the reason is the MB residual that here can only be understood # as a fake melt process. # In particular at the monthly scale this can lead to negative # or winter positive melt - we try to mitigate this # issue at the end of the year melt_on_g = (prcpsol - mb) * bin_area melt_off_g = (prcpsol - mb) * off_area # This is the bad boy bias_on_g = mb_bias * bin_area bias_off_g = mb_bias * off_area # Update bucket with accumulation and melt snow_bucket += prcpsol_off_g # It can only melt that much melt_off_g = np.where((snow_bucket - melt_off_g) >= 0, melt_off_g, snow_bucket) # Update bucket snow_bucket -= melt_off_g # This is recomputed each month but well off_area_out += np.sum(off_area) on_area_out += np.sum(bin_area) # Monthly out out['melt_off_glacier']['data'][i, m-1] += np.sum(melt_off_g) out['melt_on_glacier']['data'][i, m-1] += np.sum(melt_on_g) out['melt_residual_off_glacier']['data'][i, m-1] += np.sum(bias_off_g) out['melt_residual_on_glacier']['data'][i, m-1] += np.sum(bias_on_g) out['liq_prcp_off_glacier']['data'][i, m-1] += np.sum(liq_prcp_off_g) out['liq_prcp_on_glacier']['data'][i, m-1] += np.sum(liq_prcp_on_g) out['snowfall_off_glacier']['data'][i, m-1] += np.sum(prcpsol_off_g) out['snowfall_on_glacier']['data'][i, m-1] += np.sum(prcpsol_on_g) # Snow bucket is a state variable - stored at end of timestamp if store_monthly_hydro: if m == 12: out['snow_bucket']['data'][i+1, 0] += np.sum(snow_bucket) else: out['snow_bucket']['data'][i, m] += np.sum(snow_bucket) else: out['snow_bucket']['data'][i+1, m-1] += np.sum(snow_bucket) # Update the annual data out['off_area']['data'][i] = off_area_out out['on_area']['data'][i] = on_area_out # If monthly, put the residual where we can if store_monthly_hydro: for melt, bias in zip( [ out['melt_on_glacier']['data'][i, :], out['melt_off_glacier']['data'][i, :], ], [ out['melt_residual_on_glacier']['data'][i, :], out['melt_residual_off_glacier']['data'][i, :], ], ): real_melt = melt - bias real_melt_sum = np.sum(real_melt) bias_sum = np.sum(bias) if real_melt_sum > 0: # Ok we correct the positive melt instead fac = 1 + bias_sum / real_melt_sum melt[:] = real_melt * fac # Correct for mass-conservation and match the ice-dynamics model fmod.run_until(yr + 1) model_mb = (fmod.volume_m3 - prev_model_vol) * cfg.PARAMS['ice_density'] prev_model_vol = fmod.volume_m3 reconstructed_mb = (out['snowfall_on_glacier']['data'][i, :].sum() - out['melt_on_glacier']['data'][i, :].sum()) residual_mb = model_mb - reconstructed_mb # Now correct if store_monthly_hydro: # We try to correct the melt only where there is some asum = out['melt_on_glacier']['data'][i, :].sum() if asum > 1e-7 and (residual_mb / asum < 1): # try to find a fac fac = 1 - residual_mb / asum corr = out['melt_on_glacier']['data'][i, :] * fac residual_mb = out['melt_on_glacier']['data'][i, :] - corr out['melt_on_glacier']['data'][i, :] = corr else: # We simply spread over the months residual_mb /= 12 out['melt_on_glacier']['data'][i, :] = (out['melt_on_glacier']['data'][i, :] - residual_mb) else: # We simply apply the residual - no choice here out['melt_on_glacier']['data'][i, :] = (out['melt_on_glacier']['data'][i, :] - residual_mb) out['model_mb']['data'][i] = model_mb out['residual_mb']['data'][i] = residual_mb # Convert to xarray out_vars = cfg.PARAMS['store_diagnostic_variables'] ods = xr.Dataset() ods.coords['time'] = fmod.years if store_monthly_hydro: ods.coords['month_2d'] = ('month_2d', np.arange(1, 13)) # For the user later sm = cfg.PARAMS['hydro_month_' + mb_mod.hemisphere] ods.coords['calendar_month_2d'] = ('month_2d', (np.arange(12) + sm - 1) % 12 + 1) for varname, d in out.items(): data = d.pop('data') if varname not in out_vars: continue if len(data.shape) == 2: # First the annual agg if varname == 'snow_bucket': # Snowbucket is a state variable ods[varname] = ('time', data[:, 0]) else: # Last year is never good data[-1, :] = np.NaN ods[varname] = ('time', np.sum(data, axis=1)) # Then the monthly ones if store_monthly_hydro: ods[varname + '_monthly'] = (('time', 'month_2d'), data) else: assert varname != 'snow_bucket' data[-1] = np.NaN ods[varname] = ('time', data) for k, v in d.items(): ods[varname].attrs[k] = v # Append the output to the existing diagnostics fpath = gdir.get_filepath('model_diagnostics', filesuffix=suffix) ods.to_netcdf(fpath, mode='a') def merge_to_one_glacier(main, tribs, filename='climate_historical', input_filesuffix=''): """Merge multiple tributary glacier flowlines to a main glacier This function will merge multiple tributary glaciers to a main glacier and write modified `model_flowlines` to the main GlacierDirectory. The provided tributaries must have an intersecting downstream line. To be sure about this, use `intersect_downstream_lines` first. This function is mainly responsible to reproject the flowlines, set flowline attributes and to copy additional files, like the necessary climate files. Parameters ---------- main : oggm.GlacierDirectory The new GDir of the glacier of interest tribs : list or dictionary containing oggm.GlacierDirectories true tributary glaciers to the main glacier filename: str Baseline climate file input_filesuffix: str Filesuffix to the climate file """ # read flowlines of the Main glacier fls = main.read_pickle('model_flowlines') mfl = fls.pop(-1) # remove main line from list and treat seperately for trib in tribs: # read tributary flowlines and append to list tfls = trib.read_pickle('model_flowlines') # copy climate file and local_mustar to new gdir # if we have a merge-merge situation we need to copy multiple files rgiids = set([fl.rgi_id for fl in tfls]) for uid in rgiids: if len(rgiids) == 1: # we do not have a merge-merge situation in_id = '' out_id = trib.rgi_id else: in_id = '_' + uid out_id = uid climfile_in = filename + in_id + input_filesuffix + '.nc' climfile_out = filename + '_' + out_id + input_filesuffix + '.nc' shutil.copyfile(os.path.join(trib.dir, climfile_in), os.path.join(main.dir, climfile_out)) _m = os.path.basename(trib.get_filepath('local_mustar')).split('.') muin = _m[0] + in_id + '.' + _m[1] muout = _m[0] + '_' + out_id + '.' + _m[1] shutil.copyfile(os.path.join(trib.dir, muin), os.path.join(main.dir, muout)) # sort flowlines descending tfls.sort(key=lambda x: x.order, reverse=True) # loop over tributaries and reproject to main glacier for nr, tfl in enumerate(tfls): # 1. Step: Change projection to the main glaciers grid _line = salem.transform_geometry(tfl.line, crs=trib.grid, to_crs=main.grid) # 2. set new line tfl.set_line(_line) # 3. set map attributes dx = [shpg.Point(tfl.line.coords[i]).distance( shpg.Point(tfl.line.coords[i+1])) for i, pt in enumerate(tfl.line.coords[:-1])] # get distance # and check if equally spaced if not np.allclose(dx, np.mean(dx), atol=1e-2): raise RuntimeError('Flowline is not evenly spaced.') tfl.dx = np.mean(dx).round(2) tfl.map_dx = mfl.map_dx tfl.dx_meter = tfl.map_dx * tfl.dx # 3. remove attributes, they will be set again later tfl.inflow_points = [] tfl.inflows = [] # 4. set flows to, mainly to update flows_to_point coordinates if tfl.flows_to is not None: tfl.set_flows_to(tfl.flows_to) # append tributary flowlines to list fls += tfls # add main flowline to the end fls = fls + [mfl] # Finally write the flowlines main.write_pickle(fls, 'model_flowlines') def clean_merged_flowlines(gdir, buffer=None): """Order and cut merged flowlines to size. After matching flowlines were found and merged to one glacier directory this function makes them nice: There should only be one flowline per bed, so overlapping lines have to be cut, attributed to a another flowline and ordered. Parameters ---------- gdir : oggm.GlacierDirectory The GDir of the glacier of interest buffer: float Buffer around the flowlines to find overlaps """ # No buffer does not work if buffer is None: buffer = cfg.PARAMS['kbuffer'] # Number of pixels to arbitrarily remove at junctions lid = int(cfg.PARAMS['flowline_junction_pix']) fls = gdir.read_pickle('model_flowlines') # seperate the main main flowline mainfl = fls.pop(-1) # split fls in main and tribs mfls = [fl for fl in fls if fl.flows_to is None] tfls = [fl for fl in fls if fl not in mfls] # --- first treat the main flowlines --- # sort by order and length as a second choice mfls.sort(key=lambda x: (x.order, len(x.inflows), x.length_m), reverse=False) merged = [] # for fl1 in mfls: while len(mfls) > 0: fl1 = mfls.pop(0) ol_index = [] # list of index from first overlap # loop over other main lines and main main line for fl2 in mfls + [mainfl]: # calculate overlap, maybe use larger buffer here only to find it _overlap = fl1.line.intersection(fl2.line.buffer(buffer*2)) # calculate indice of first overlap if overlap length > 0 oix = 9999 if _overlap.length > 0 and fl1 != fl2 and fl2.flows_to != fl1: if isinstance(_overlap, shpg.MultiLineString): if _overlap[0].coords[0] == fl1.line.coords[0]: # if the head of overlap is same as the first line, # best guess is, that the heads are close topgether! _ov1 = _overlap[1].coords[1] else: _ov1 = _overlap[0].coords[1] else: _ov1 = _overlap.coords[1] for _i, _p in enumerate(fl1.line.coords): if _p == _ov1: oix = _i # low indices are more likely due to an wrong overlap if oix < 10: oix = 9999 ol_index.append(oix) ol_index = np.array(ol_index) if np.all(ol_index == 9999): log.warning('Glacier %s could not be merged, removed!' % fl1.rgi_id) # remove possible tributary flowlines tfls = [fl for fl in tfls if fl.rgi_id != fl1.rgi_id] # skip rest of this while loop continue # make this based on first overlap, but consider order and or length minx = ol_index[ol_index <= ol_index.min()+10][-1] i = np.where(ol_index == minx)[0][-1] _olline = (mfls + [mainfl])[i] # 1. cut line to size _line = fl1.line bufferuse = buffer while bufferuse > 0: _overlap = _line.intersection(_olline.line.buffer(bufferuse)) _linediff = _line.difference(_overlap) # cut to new line # if the tributary flowline is longer than the main line, # _line will contain multiple LineStrings: only keep the first if isinstance(_linediff, shpg.MultiLineString): _linediff = _linediff[0] if len(_linediff.coords) < 10: bufferuse -= 1 else: break if bufferuse <= 0: log.warning('Glacier %s would be to short after merge, removed!' % fl1.rgi_id) # remove possible tributary flowlines tfls = [fl for fl in tfls if fl.rgi_id != fl1.rgi_id] # skip rest of this while loop continue # remove cfg.PARAMS['flowline_junction_pix'] from the _line # gives a bigger gap at the junction and makes sure the last # point is not corrupted in terms of spacing _line = shpg.LineString(_linediff.coords[:-lid]) # 2. set new line fl1.set_line(_line) # 3. set flow to attributes. This also adds inflow values to other fl1.set_flows_to(_olline) # change the array size of tributary flowline attributs for atr, value in fl1.__dict__.items(): if atr in ['_ptrap', '_prec']: # those are indices, remove those above nx fl1.__setattr__(atr, value[value < fl1.nx]) elif isinstance(value, np.ndarray) and (len(value) > fl1.nx): # those are actual parameters on the grid fl1.__setattr__(atr, value[:fl1.nx]) merged.append(fl1) allfls = merged + tfls # now check all lines for possible cut offs for fl in allfls: try: fl.flows_to_indice except AssertionError: mfl = fl.flows_to # remove it from original mfl.inflow_points.remove(fl.flows_to_point) mfl.inflows.remove(fl) prdis = mfl.line.project(fl.tail) mfl_keep = mfl while mfl.flows_to is not None: prdis2 = mfl.flows_to.line.project(fl.tail) if prdis2 < prdis: mfl_keep = mfl prdis = prdis2 mfl = mfl.flows_to # we should be good to add this line here fl.set_flows_to(mfl_keep.flows_to) allfls = allfls + [mainfl] for fl in allfls: fl.inflows = [] fl.inflow_points = [] if hasattr(fl, '_lazy_flows_to_indice'): delattr(fl, '_lazy_flows_to_indice') if hasattr(fl, '_lazy_inflow_indices'): delattr(fl, '_lazy_inflow_indices') for fl in allfls: if fl.flows_to is not None: fl.set_flows_to(fl.flows_to) for fl in allfls: fl.order = line_order(fl) # order flowlines in descending way allfls.sort(key=lambda x: x.order, reverse=False) # assert last flowline is main flowline assert allfls[-1] == mainfl # Finally write the flowlines gdir.write_pickle(allfls, 'model_flowlines')
bsd-3-clause
mikebenfield/scikit-learn
sklearn/cluster/tests/test_mean_shift.py
48
3653
""" Testing for mean shift clustering methods """ import numpy as np import warnings from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raise_message from sklearn.cluster import MeanShift from sklearn.cluster import mean_shift from sklearn.cluster import estimate_bandwidth from sklearn.cluster import get_bin_seeds from sklearn.datasets.samples_generator import make_blobs n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=300, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=11) def test_estimate_bandwidth(): # Test estimate_bandwidth bandwidth = estimate_bandwidth(X, n_samples=200) assert_true(0.9 <= bandwidth <= 1.5) def test_mean_shift(): # Test MeanShift algorithm bandwidth = 1.2 ms = MeanShift(bandwidth=bandwidth) labels = ms.fit(X).labels_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) cluster_centers, labels = mean_shift(X, bandwidth=bandwidth) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) def test_parallel(): ms1 = MeanShift(n_jobs=2) ms1.fit(X) ms2 = MeanShift() ms2.fit(X) assert_array_equal(ms1.cluster_centers_, ms2.cluster_centers_) assert_array_equal(ms1.labels_, ms2.labels_) def test_meanshift_predict(): # Test MeanShift.predict ms = MeanShift(bandwidth=1.2) labels = ms.fit_predict(X) labels2 = ms.predict(X) assert_array_equal(labels, labels2) def test_meanshift_all_orphans(): # init away from the data, crash with a sensible warning ms = MeanShift(bandwidth=0.1, seeds=[[-9, -9], [-10, -10]]) msg = "No point was within bandwidth=0.1" assert_raise_message(ValueError, msg, ms.fit, X,) def test_unfitted(): # Non-regression: before fit, there should be not fitted attributes. ms = MeanShift() assert_false(hasattr(ms, "cluster_centers_")) assert_false(hasattr(ms, "labels_")) def test_bin_seeds(): # Test the bin seeding technique which can be used in the mean shift # algorithm # Data is just 6 points in the plane X = np.array([[1., 1.], [1.4, 1.4], [1.8, 1.2], [2., 1.], [2.1, 1.1], [0., 0.]]) # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be # found ground_truth = set([(1., 1.), (2., 1.), (0., 0.)]) test_bins = get_bin_seeds(X, 1, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be # found ground_truth = set([(1., 1.), (2., 1.)]) test_bins = get_bin_seeds(X, 1, 2) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found # we bail and use the whole data here. with warnings.catch_warnings(record=True): test_bins = get_bin_seeds(X, 0.01, 1) assert_array_equal(test_bins, X) # tight clusters around [0, 0] and [1, 1], only get two bins X, _ = make_blobs(n_samples=100, n_features=2, centers=[[0, 0], [1, 1]], cluster_std=0.1, random_state=0) test_bins = get_bin_seeds(X, 1) assert_array_equal(test_bins, [[0, 0], [1, 1]])
bsd-3-clause
ogrisel/scipy
scipy/signal/ltisys.py
5
30979
""" ltisys -- a collection of classes and functions for modeling linear time invariant systems. """ from __future__ import division, print_function, absolute_import # # Author: Travis Oliphant 2001 # # Feb 2010: Warren Weckesser # Rewrote lsim2 and added impulse2. # Aug 2013: Juan Luis Cano # Rewrote abcd_normalize. # from .filter_design import tf2zpk, zpk2tf, normalize, freqs import numpy from numpy import product, zeros, array, dot, transpose, ones, \ nan_to_num, zeros_like, linspace import scipy.interpolate as interpolate import scipy.integrate as integrate import scipy.linalg as linalg from scipy.lib.six import xrange from numpy import r_, eye, real, atleast_1d, atleast_2d, poly, \ squeeze, diag, asarray __all__ = ['tf2ss', 'ss2tf', 'abcd_normalize', 'zpk2ss', 'ss2zpk', 'lti', 'lsim', 'lsim2', 'impulse', 'impulse2', 'step', 'step2', 'bode', 'freqresp'] def tf2ss(num, den): """Transfer function to state-space representation. Parameters ---------- num, den : array_like Sequences representing the numerator and denominator polynomials. The denominator needs to be at least as long as the numerator. Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form. """ # Controller canonical state-space representation. # if M+1 = len(num) and K+1 = len(den) then we must have M <= K # states are found by asserting that X(s) = U(s) / D(s) # then Y(s) = N(s) * X(s) # # A, B, C, and D follow quite naturally. # num, den = normalize(num, den) # Strips zeros, checks arrays nn = len(num.shape) if nn == 1: num = asarray([num], num.dtype) M = num.shape[1] K = len(den) if M > K: msg = "Improper transfer function. `num` is longer than `den`." raise ValueError(msg) if M == 0 or K == 0: # Null system return array([], float), array([], float), array([], float), \ array([], float) # pad numerator to have same number of columns has denominator num = r_['-1', zeros((num.shape[0], K - M), num.dtype), num] if num.shape[-1] > 0: D = num[:, 0] else: D = array([], float) if K == 1: return array([], float), array([], float), array([], float), D frow = -array([den[1:]]) A = r_[frow, eye(K - 2, K - 1)] B = eye(K - 1, 1) C = num[:, 1:] - num[:, 0] * den[1:] return A, B, C, D def _none_to_empty_2d(arg): if arg is None: return zeros((0, 0)) else: return arg def _atleast_2d_or_none(arg): if arg is not None: return atleast_2d(arg) def _shape_or_none(M): if M is not None: return M.shape else: return (None,) * 2 def _choice_not_none(*args): for arg in args: if arg is not None: return arg def _restore(M, shape): if M.shape == (0, 0): return zeros(shape) else: if M.shape != shape: raise ValueError("The input arrays have incompatible shapes.") return M def abcd_normalize(A=None, B=None, C=None, D=None): """Check state-space matrices and ensure they are rank-2. If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function, the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise a ValueError is raised. Parameters ---------- A, B, C, D : array_like, optional State-space matrices. All of them are None (missing) by default. Returns ------- A, B, C, D : array Properly shaped state-space matrices. Raises ------ ValueError If not enough information on the system was provided. """ A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D)) MA, NA = _shape_or_none(A) MB, NB = _shape_or_none(B) MC, NC = _shape_or_none(C) MD, ND = _shape_or_none(D) p = _choice_not_none(MA, MB, NC) q = _choice_not_none(NB, ND) r = _choice_not_none(MC, MD) if p is None or q is None or r is None: raise ValueError("Not enough information on the system.") A, B, C, D = map(_none_to_empty_2d, (A, B, C, D)) A = _restore(A, (p, p)) B = _restore(B, (p, q)) C = _restore(C, (r, p)) D = _restore(D, (r, q)) return A, B, C, D def ss2tf(A, B, C, D, input=0): """State-space to transfer function. Parameters ---------- A, B, C, D : ndarray State-space representation of linear system. input : int, optional For multiple-input systems, the input to use. Returns ------- num : 2-D ndarray Numerator(s) of the resulting transfer function(s). `num` has one row for each of the system's outputs. Each row is a sequence representation of the numerator polynomial. den : 1-D ndarray Denominator of the resulting transfer function(s). `den` is a sequence representation of the denominator polynomial. """ # transfer function is C (sI - A)**(-1) B + D A, B, C, D = map(asarray, (A, B, C, D)) # Check consistency and make them all rank-2 arrays A, B, C, D = abcd_normalize(A, B, C, D) nout, nin = D.shape if input >= nin: raise ValueError("System does not have the input specified.") # make MOSI from possibly MOMI system. if B.shape[-1] != 0: B = B[:, input] B.shape = (B.shape[0], 1) if D.shape[-1] != 0: D = D[:, input] try: den = poly(A) except ValueError: den = 1 if (product(B.shape, axis=0) == 0) and (product(C.shape, axis=0) == 0): num = numpy.ravel(D) if (product(D.shape, axis=0) == 0) and (product(A.shape, axis=0) == 0): den = [] return num, den num_states = A.shape[0] type_test = A[:, 0] + B[:, 0] + C[0, :] + D num = numpy.zeros((nout, num_states + 1), type_test.dtype) for k in range(nout): Ck = atleast_2d(C[k, :]) num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den return num, den def zpk2ss(z, p, k): """Zero-pole-gain representation to state-space representation Parameters ---------- z, p : sequence Zeros and poles. k : float System gain. Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form. """ return tf2ss(*zpk2tf(z, p, k)) def ss2zpk(A, B, C, D, input=0): """State-space representation to zero-pole-gain representation. Parameters ---------- A, B, C, D : ndarray State-space representation of linear system. input : int, optional For multiple-input systems, the input to use. Returns ------- z, p : sequence Zeros and poles. k : float System gain. """ return tf2zpk(*ss2tf(A, B, C, D, input=input)) class lti(object): """Linear Time Invariant class which simplifies representation. Parameters ---------- args : arguments The `lti` class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of elements in the tuple and the interpretation: * 2: (numerator, denominator) * 3: (zeros, poles, gain) * 4: (A, B, C, D) Each argument can be an array or sequence. Notes ----- `lti` instances have all types of representations available; for example after creating an instance s with ``(zeros, poles, gain)`` the transfer function representation (numerator, denominator) can be accessed as ``s.num`` and ``s.den``. """ def __init__(self, *args, **kwords): """ Initialize the LTI system using either: - (numerator, denominator) - (zeros, poles, gain) - (A, B, C, D) : state-space. """ N = len(args) if N == 2: # Numerator denominator transfer function input self._num, self._den = normalize(*args) self._update(N) self.inputs = 1 if len(self.num.shape) > 1: self.outputs = self.num.shape[0] else: self.outputs = 1 elif N == 3: # Zero-pole-gain form self._zeros, self._poles, self._gain = args self._update(N) # make sure we have numpy arrays self.zeros = numpy.asarray(self.zeros) self.poles = numpy.asarray(self.poles) self.inputs = 1 if len(self.zeros.shape) > 1: self.outputs = self.zeros.shape[0] else: self.outputs = 1 elif N == 4: # State-space form self._A, self._B, self._C, self._D = abcd_normalize(*args) self._update(N) self.inputs = self.B.shape[-1] self.outputs = self.C.shape[0] else: raise ValueError("Needs 2, 3, or 4 arguments.") def __repr__(self): """ Canonical representation using state-space to preserve numerical precision and any MIMO information """ return '{0}(\n{1},\n{2},\n{3},\n{4}\n)'.format( self.__class__.__name__, repr(self.A), repr(self.B), repr(self.C), repr(self.D), ) @property def num(self): return self._num @num.setter def num(self, value): self._num = value self._update(2) @property def den(self): return self._den @den.setter def den(self, value): self._den = value self._update(2) @property def zeros(self): return self._zeros @zeros.setter def zeros(self, value): self._zeros = value self._update(3) @property def poles(self): return self._poles @poles.setter def poles(self, value): self._poles = value self._update(3) @property def gain(self): return self._gain @gain.setter def gain(self, value): self._gain = value self._update(3) @property def A(self): return self._A @A.setter def A(self, value): self._A = value self._update(4) @property def B(self): return self._B @B.setter def B(self, value): self._B = value self._update(4) @property def C(self): return self._C @C.setter def C(self, value): self._C = value self._update(4) @property def D(self): return self._D @D.setter def D(self, value): self._D = value self._update(4) def _update(self, N): if N == 2: self._zeros, self._poles, self._gain = tf2zpk(self.num, self.den) self._A, self._B, self._C, self._D = tf2ss(self.num, self.den) if N == 3: self._num, self._den = zpk2tf(self.zeros, self.poles, self.gain) self._A, self._B, self._C, self._D = zpk2ss(self.zeros, self.poles, self.gain) if N == 4: self._num, self._den = ss2tf(self.A, self.B, self.C, self.D) self._zeros, self._poles, self._gain = ss2zpk(self.A, self.B, self.C, self.D) def impulse(self, X0=None, T=None, N=None): return impulse(self, X0=X0, T=T, N=N) def step(self, X0=None, T=None, N=None): return step(self, X0=X0, T=T, N=N) def output(self, U, T, X0=None): return lsim(self, U, T, X0=X0) def bode(self, w=None, n=100): """ Calculate Bode magnitude and phase data. Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See scipy.signal.bode for details. .. versionadded:: 0.11.0 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> s1 = signal.lti([1], [1, 1]) >>> w, mag, phase = s1.bode() >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ return bode(self, w=w, n=n) def freqresp(self, w=None, n=10000): """Calculate the frequency response of a continuous-time system. Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See scipy.signal.freqresp for details. """ return freqresp(self, w=w, n=n) def lsim2(system, U=None, T=None, X0=None, **kwargs): """ Simulate output of a continuous-time linear system, by using the ODE solver `scipy.integrate.odeint`. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D) U : array_like (1D or 2D), optional An input array describing the input at each time T. Linear interpolation is used between given times. If there are multiple inputs, then each column of the rank-2 array represents an input. If U is not given, the input is assumed to be zero. T : array_like (1D or 2D), optional The time steps at which the input is defined and at which the output is desired. The default is 101 evenly spaced points on the interval [0,10.0]. X0 : array_like (1D), optional The initial condition of the state vector. If `X0` is not given, the initial conditions are assumed to be 0. kwargs : dict Additional keyword arguments are passed on to the function `odeint`. See the notes below for more details. Returns ------- T : 1D ndarray The time values for the output. yout : ndarray The response of the system. xout : ndarray The time-evolution of the state-vector. Notes ----- This function uses `scipy.integrate.odeint` to solve the system's differential equations. Additional keyword arguments given to `lsim2` are passed on to `odeint`. See the documentation for `scipy.integrate.odeint` for the full list of arguments. """ if isinstance(system, lti): sys = system else: sys = lti(*system) if X0 is None: X0 = zeros(sys.B.shape[0], sys.A.dtype) if T is None: # XXX T should really be a required argument, but U was # changed from a required positional argument to a keyword, # and T is after U in the argument list. So we either: change # the API and move T in front of U; check here for T being # None and raise an exception; or assign a default value to T # here. This code implements the latter. T = linspace(0, 10.0, 101) T = atleast_1d(T) if len(T.shape) != 1: raise ValueError("T must be a rank-1 array.") if U is not None: U = atleast_1d(U) if len(U.shape) == 1: U = U.reshape(-1, 1) sU = U.shape if sU[0] != len(T): raise ValueError("U must have the same number of rows " "as elements in T.") if sU[1] != sys.inputs: raise ValueError("The number of inputs in U (%d) is not " "compatible with the number of system " "inputs (%d)" % (sU[1], sys.inputs)) # Create a callable that uses linear interpolation to # calculate the input at any time. ufunc = interpolate.interp1d(T, U, kind='linear', axis=0, bounds_error=False) def fprime(x, t, sys, ufunc): """The vector field of the linear system.""" return dot(sys.A, x) + squeeze(dot(sys.B, nan_to_num(ufunc([t])))) xout = integrate.odeint(fprime, X0, T, args=(sys, ufunc), **kwargs) yout = dot(sys.C, transpose(xout)) + dot(sys.D, transpose(U)) else: def fprime(x, t, sys): """The vector field of the linear system.""" return dot(sys.A, x) xout = integrate.odeint(fprime, X0, T, args=(sys,), **kwargs) yout = dot(sys.C, transpose(xout)) return T, squeeze(transpose(yout)), xout def _cast_to_array_dtype(in1, in2): """Cast array to dtype of other array, while avoiding ComplexWarning. Those can be raised when casting complex to real. """ if numpy.issubdtype(in2.dtype, numpy.float): # dtype to cast to is not complex, so use .real in1 = in1.real.astype(in2.dtype) else: in1 = in1.astype(in2.dtype) return in1 def lsim(system, U, T, X0=None, interp=1): """ Simulate output of a continuous-time linear system. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D) U : array_like An input array describing the input at each time `T` (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. T : array_like The time steps at which the input is defined and at which the output is desired. X0 : The initial conditions on the state vector (zero by default). interp : {1, 0} Whether to use linear (1) or zero-order hold (0) interpolation. Returns ------- T : 1D ndarray Time values for the output. yout : 1D ndarray System response. xout : ndarray Time-evolution of the state-vector. """ if isinstance(system, lti): sys = system else: sys = lti(*system) U = atleast_1d(U) T = atleast_1d(T) if len(U.shape) == 1: U = U.reshape((U.shape[0], 1)) sU = U.shape if len(T.shape) != 1: raise ValueError("T must be a rank-1 array.") if sU[0] != len(T): raise ValueError("U must have the same number of rows " "as elements in T.") if sU[1] != sys.inputs: raise ValueError("System does not define that many inputs.") if X0 is None: X0 = zeros(sys.B.shape[0], sys.A.dtype) xout = zeros((len(T), sys.B.shape[0]), sys.A.dtype) xout[0] = X0 A = sys.A AT, BT = transpose(sys.A), transpose(sys.B) dt = T[1] - T[0] lam, v = linalg.eig(A) vt = transpose(v) vti = linalg.inv(vt) GT = dot(dot(vti, diag(numpy.exp(dt * lam))), vt) GT = _cast_to_array_dtype(GT, xout) ATm1 = linalg.inv(AT) ATm2 = dot(ATm1, ATm1) I = eye(A.shape[0], dtype=A.dtype) GTmI = GT - I F1T = dot(dot(BT, GTmI), ATm1) if interp: F2T = dot(BT, dot(GTmI, ATm2) / dt - ATm1) for k in xrange(1, len(T)): dt1 = T[k] - T[k - 1] if dt1 != dt: dt = dt1 GT = dot(dot(vti, diag(numpy.exp(dt * lam))), vt) GT = _cast_to_array_dtype(GT, xout) GTmI = GT - I F1T = dot(dot(BT, GTmI), ATm1) if interp: F2T = dot(BT, dot(GTmI, ATm2) / dt - ATm1) xout[k] = dot(xout[k - 1], GT) + dot(U[k - 1], F1T) if interp: xout[k] = xout[k] + dot((U[k] - U[k - 1]), F2T) yout = (squeeze(dot(U, transpose(sys.D))) + squeeze(dot(xout, transpose(sys.C)))) return T, squeeze(yout), squeeze(xout) def _default_response_times(A, n): """Compute a reasonable set of time samples for the response time. This function is used by `impulse`, `impulse2`, `step` and `step2` to compute the response time when the `T` argument to the function is None. Parameters ---------- A : ndarray The system matrix, which is square. n : int The number of time samples to generate. Returns ------- t : ndarray The 1-D array of length `n` of time samples at which the response is to be computed. """ # Create a reasonable time interval. # TODO: This could use some more work. # For example, what is expected when the system is unstable? vals = linalg.eigvals(A) r = min(abs(real(vals))) if r == 0.0: r = 1.0 tc = 1.0 / r t = linspace(0.0, 7 * tc, n) return t def impulse(system, X0=None, T=None, N=None): """Impulse response of continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector. Defaults to zero. T : array_like, optional Time points. Computed if not given. N : int, optional The number of time points to compute (if `T` is not given). Returns ------- T : ndarray A 1-D array of time points. yout : ndarray A 1-D array containing the impulse response of the system (except for singularities at zero). """ if isinstance(system, lti): sys = system else: sys = lti(*system) if X0 is None: B = sys.B else: B = sys.B + X0 if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) h = zeros(T.shape, sys.A.dtype) s, v = linalg.eig(sys.A) vi = linalg.inv(v) C = sys.C for k in range(len(h)): es = diag(numpy.exp(s * T[k])) eA = dot(dot(v, es), vi) eA = _cast_to_array_dtype(eA, h) h[k] = squeeze(dot(dot(C, eA), B)) return T, h def impulse2(system, X0=None, T=None, N=None, **kwargs): """ Impulse response of a single-input, continuous-time linear system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : 1-D array_like, optional The initial condition of the state vector. Default: 0 (the zero vector). T : 1-D array_like, optional The time steps at which the input is defined and at which the output is desired. If `T` is not given, the function will generate a set of time samples automatically. N : int, optional Number of time points to compute. Default: 100. kwargs : various types Additional keyword arguments are passed on to the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`; see the latter's documentation for information about these arguments. Returns ------- T : ndarray The time values for the output. yout : ndarray The output response of the system. See Also -------- impulse, lsim2, integrate.odeint Notes ----- The solution is generated by calling `scipy.signal.lsim2`, which uses the differential equation solver `scipy.integrate.odeint`. .. versionadded:: 0.8.0 Examples -------- Second order system with a repeated root: x''(t) + 2*x(t) + x(t) = u(t) >>> from scipy import signal >>> system = ([1.0], [1.0, 2.0, 1.0]) >>> t, y = signal.impulse2(system) >>> import matplotlib.pyplot as plt >>> plt.plot(t, y) """ if isinstance(system, lti): sys = system else: sys = lti(*system) B = sys.B if B.shape[-1] != 1: raise ValueError("impulse2() requires a single-input system.") B = B.squeeze() if X0 is None: X0 = zeros_like(B) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) # Move the impulse in the input to the initial conditions, and then # solve using lsim2(). ic = B + X0 Tr, Yr, Xr = lsim2(sys, T=T, X0=ic, **kwargs) return Tr, Yr def step(system, X0=None, T=None, N=None): """Step response of continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int Number of time points to compute if `T` is not given. Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system. See also -------- scipy.signal.step2 """ if isinstance(system, lti): sys = system else: sys = lti(*system) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) U = ones(T.shape, sys.A.dtype) vals = lsim(sys, U, T, X0=X0) return vals[0], vals[1] def step2(system, X0=None, T=None, N=None, **kwargs): """Step response of continuous-time system. This function is functionally the same as `scipy.signal.step`, but it uses the function `scipy.signal.lsim2` to compute the step response. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int Number of time points to compute if `T` is not given. kwargs : various types Additional keyword arguments are passed on the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`. See the documentation for `scipy.integrate.odeint` for information about these arguments. Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system. See also -------- scipy.signal.step Notes ----- .. versionadded:: 0.8.0 """ if isinstance(system, lti): sys = system else: sys = lti(*system) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) U = ones(T.shape, sys.A.dtype) vals = lsim2(sys, U, T, X0=X0, **kwargs) return vals[0], vals[1] def bode(system, w=None, n=100): """ Calculate Bode magnitude and phase data of a continuous-time system. .. versionadded:: 0.11.0 Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. Returns ------- w : 1D ndarray Frequency array [rad/s] mag : 1D ndarray Magnitude array [dB] phase : 1D ndarray Phase array [deg] Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> s1 = signal.lti([1], [1, 1]) >>> w, mag, phase = signal.bode(s1) >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ w, y = freqresp(system, w=w, n=n) mag = 20.0 * numpy.log10(abs(y)) phase = numpy.unwrap(numpy.arctan2(y.imag, y.real)) * 180.0 / numpy.pi return w, mag, phase def freqresp(system, w=None, n=10000): """Calculate the frequency response of a continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. Returns ------- w : 1D ndarray Frequency array [rad/s] H : 1D ndarray Array of complex magnitude values Examples -------- # Generating the Nyquist plot of a transfer function >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> s1 = signal.lti([], [1, 1, 1], [5]) # transfer function: H(s) = 5 / (s-1)^3 >>> w, H = signal.freqresp(s1) >>> plt.figure() >>> plt.plot(H.real, H.imag, "b") >>> plt.plot(H.real, -H.imag, "r") >>> plt.show() """ if isinstance(system, lti): sys = system else: sys = lti(*system) if sys.inputs != 1 or sys.outputs != 1: raise ValueError("freqresp() requires a SISO (single input, single " "output) system.") if w is not None: worN = w else: worN = n # In the call to freqs(), sys.num.ravel() is used because there are # cases where sys.num is a 2-D array with a single row. w, h = freqs(sys.num.ravel(), sys.den, worN=worN) return w, h
bsd-3-clause
Scapogo/zipline
zipline/algorithm_live.py
1
10219
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import time import os.path import logbook import pandas as pd import zipline.protocol as zp from zipline.algorithm import TradingAlgorithm from zipline.gens.realtimeclock import RealtimeClock from zipline.gens.tradesimulation import AlgorithmSimulator from zipline.errors import (OrderInBeforeTradingStart, ScheduleFunctionOutsideTradingStart) from zipline.utils.input_validation import error_keywords from zipline.utils.api_support import ( ZiplineAPI, api_method, disallowed_in_before_trading_start, allowed_only_in_before_trading_start) from zipline.utils.calendars.trading_calendar import days_at_time from zipline.utils.serialization_utils import load_context, store_context log = logbook.Logger("Live Trading") class LiveAlgorithmExecutor(AlgorithmSimulator): def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) class LiveTradingAlgorithm(TradingAlgorithm): def __init__(self, *args, **kwargs): self.broker = kwargs.pop('broker', None) self.orders = {} self.algo_filename = kwargs.get('algo_filename', "<algorithm>") self.state_filename = kwargs.pop('state_filename', None) self.realtime_bar_target = kwargs.pop('realtime_bar_target', None) self._context_persistence_excludes = [] super(self.__class__, self).__init__(*args, **kwargs) log.info("initialization done") def initialize(self, *args, **kwargs): self._context_persistence_excludes = (list(self.__dict__.keys()) + ['trading_client']) if os.path.isfile(self.state_filename): log.info("Loading state from {}".format(self.state_filename)) load_context(self.state_filename, context=self, checksum=self.algo_filename) return with ZiplineAPI(self): super(self.__class__, self).initialize(*args, **kwargs) store_context(self.state_filename, context=self, checksum=self.algo_filename, exclude_list=self._context_persistence_excludes) def handle_data(self, data): super(self.__class__, self).handle_data(data) store_context(self.state_filename, context=self, checksum=self.algo_filename, exclude_list=self._context_persistence_excludes) def _create_clock(self): # This method is taken from TradingAlgorithm. # The clock has been replaced to use RealtimeClock trading_o_and_c = self.trading_calendar.schedule.ix[ self.sim_params.sessions] assert self.sim_params.emission_rate == 'minute' minutely_emission = True market_opens = trading_o_and_c['market_open'] market_closes = trading_o_and_c['market_close'] # The calendar's execution times are the minutes over which we actually # want to run the clock. Typically the execution times simply adhere to # the market open and close times. In the case of the futures calendar, # for example, we only want to simulate over a subset of the full 24 # hour calendar, so the execution times dictate a market open time of # 6:31am US/Eastern and a close of 5:00pm US/Eastern. execution_opens = \ self.trading_calendar.execution_time_from_open(market_opens) execution_closes = \ self.trading_calendar.execution_time_from_close(market_closes) # FIXME generalize these values before_trading_start_minutes = days_at_time( self.sim_params.sessions, time(8, 45), "US/Eastern" ) return RealtimeClock( self.sim_params.sessions, execution_opens, execution_closes, before_trading_start_minutes, minute_emission=minutely_emission, time_skew=self.broker.time_skew ) def _create_generator(self, sim_params): # Call the simulation trading algorithm for side-effects: # it creates the perf tracker TradingAlgorithm._create_generator(self, sim_params) self.trading_client = LiveAlgorithmExecutor( self, sim_params, self.data_portal, self._create_clock(), self._create_benchmark_source(), self.restrictions, universe_func=self._calculate_universe ) return self.trading_client.transform() def updated_portfolio(self): return self.broker.portfolio def updated_account(self): return self.broker.account @api_method @allowed_only_in_before_trading_start( ScheduleFunctionOutsideTradingStart()) def schedule_function(self, func, date_rule=None, time_rule=None, half_days=True, calendar=None): # If the scheduled_function() is called from initalize() # then the state persistence would need to take care of storing and # restoring the scheduled functions too (as initialize() only called # once in the algorithm's life). Persisting scheduled functions are # difficult as they are not serializable by default. # We enforce scheduled functions to be called only from # before_trading_start() in live trading with a decorator. super(self.__class__, self).schedule_function(func, date_rule, time_rule, half_days, calendar) @api_method def symbol(self, symbol_str): # This method works around the problem of not being able to trade # assets which does not have ingested data for the day of trade. # Normally historical data is loaded to bundle and the asset's # end_date and auto_close_date is set based on the last entry from # the bundle db. LiveTradingAlgorithm does not override order_value(), # order_percent() & order_target(). Those higher level ordering # functions provide a safety net to not to trade de-listed assets. # If the asset is returned as it was ingested (end_date=yesterday) # then CannotOrderDelistedAsset exception will be raised from the # higher level order functions. # # Hence, we are increasing the asset's end_date by 10,000 days. # The ample buffer is provided for two reasons: # 1) assets are often stored in algo's context through initialize(), # which is called once and persisted at live trading. 10,000 days # enables 27+ years of trading, which is more than enough. # 2) Tool - 10,000 Days is brilliant! asset = super(self.__class__, self).symbol(symbol_str) tradeable_asset = asset.to_dict() tradeable_asset['end_date'] = (pd.Timestamp('now', tz='UTC') + pd.Timedelta('10000 days')) tradeable_asset['auto_close_date'] = tradeable_asset['end_date'] return asset.from_dict(tradeable_asset) @api_method @disallowed_in_before_trading_start(OrderInBeforeTradingStart()) def order(self, asset, amount, limit_price=None, stop_price=None, style=None): amount, style = self._calculate_order(asset, amount, limit_price, stop_price, style) return self.broker.order(asset, amount, limit_price, stop_price, style) @api_method def batch_market_order(self, share_counts): raise NotImplementedError() @error_keywords(sid='Keyword argument `sid` is no longer supported for ' 'get_open_orders. Use `asset` instead.') @api_method def get_open_orders(self, asset=None): return self.broker.get_open_orders(asset) @api_method def get_order(self, order_id): return self.broker.get_order(order_id) @api_method def cancel_order(self, order_param): order_id = order_param if isinstance(order_param, zp.Order): order_id = order_param.id self.broker.cancel_order(order_id) def run(self, *args, **kwargs): daily_stats = super(self.__class__, self).run(*args, **kwargs) self.on_exit() return daily_stats def on_exit(self): if not self.realtime_bar_target: return log.info("Storing realtime bars to: {}".format( self.realtime_bar_target)) today = str(pd.to_datetime('today').date()) subscribed_assets = self.broker.subscribed_assets realtime_history = self.broker.get_realtime_bars(subscribed_assets, '1m') if not os.path.exists(self.realtime_bar_target): os.mkdir(self.realtime_bar_target) for asset in subscribed_assets: filename = "zipline-live-%s-%s.csv" % (asset.symbol, today) path = os.path.join(self.realtime_bar_target, filename) realtime_history[asset].to_csv(path, mode='a', index_label='datetime', header=not os.path.exists(path))
apache-2.0
Canpio/Paddle
python/paddle/v2/plot/plot.py
7
2729
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os class PlotData(object): def __init__(self): self.step = [] self.value = [] def append(self, step, value): self.step.append(step) self.value.append(value) def reset(self): self.step = [] self.value = [] class Ploter(object): def __init__(self, *args): self.__args__ = args self.__plot_data__ = {} for title in args: self.__plot_data__[title] = PlotData() # demo in notebooks will use Ploter to plot figure, but when we convert # the ipydb to py file for testing, the import of matplotlib will make the # script crash. So we can use `export DISABLE_PLOT=True` to disable import # these libs self.__disable_plot__ = os.environ.get("DISABLE_PLOT") if not self.__plot_is_disabled__(): import matplotlib.pyplot as plt from IPython import display self.plt = plt self.display = display def __plot_is_disabled__(self): return self.__disable_plot__ == "True" def append(self, title, step, value): assert isinstance(title, basestring) assert self.__plot_data__.has_key(title) data = self.__plot_data__[title] assert isinstance(data, PlotData) data.append(step, value) def plot(self, path=None): if self.__plot_is_disabled__(): return titles = [] for title in self.__args__: data = self.__plot_data__[title] assert isinstance(data, PlotData) if len(data.step) > 0: titles.append(title) self.plt.plot(data.step, data.value) self.plt.legend(titles, loc='upper left') if path is None: self.display.clear_output(wait=True) self.display.display(self.plt.gcf()) else: self.plt.savefig(path) self.plt.gcf().clear() def reset(self): for key in self.__plot_data__: data = self.__plot_data__[key] assert isinstance(data, PlotData) data.reset()
apache-2.0
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/tests/io/msgpack/test_except.py
7
1068
# coding: utf-8 import pytest from pandas.io.msgpack import packb, unpackb class DummyException(Exception): pass class TestExceptions(object): def test_raise_on_find_unsupported_value(self): import datetime pytest.raises(TypeError, packb, datetime.datetime.now()) def test_raise_from_object_hook(self): def hook(obj): raise DummyException pytest.raises(DummyException, unpackb, packb({}), object_hook=hook) pytest.raises(DummyException, unpackb, packb({'fizz': 'buzz'}), object_hook=hook) pytest.raises(DummyException, unpackb, packb({'fizz': 'buzz'}), object_pairs_hook=hook) pytest.raises(DummyException, unpackb, packb({'fizz': {'buzz': 'spam'}}), object_hook=hook) pytest.raises(DummyException, unpackb, packb({'fizz': {'buzz': 'spam'}}), object_pairs_hook=hook) def test_invalidvalue(self): pytest.raises(ValueError, unpackb, b'\xd9\x97#DL_')
mit
ccasotto/rmtk
rmtk/plotting/hazard_outputs/plot_hazard_outputs.py
3
12351
#!/usr/bin/env python # LICENSE # # Copyright (c) 2015, GEM Foundation. # # The nrml_convertes is free software: you can redistribute # it and/or modify it under the terms of the GNU Affero General Public # License as published by the Free Software Foundation, either version # 3 of the License, or (at your option) any later version. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/> # # DISCLAIMER # # The software nrml_convertes provided herein is released as a prototype # implementation on behalf of scientists and engineers working within the GEM # Foundation (Global Earthquake Model). # # It is distributed for the purpose of open collaboration and in the # hope that it will be useful to the scientific, engineering, disaster # risk and software design communities. # # The software is NOT distributed as part of GEM's OpenQuake suite # (http://www.globalquakemodel.org/openquake) and must be considered as a # separate entity. The software provided herein is designed and implemented # by scientific staff. It is not developed to the design standards, nor # subject to same level of critical review by professional software # developers, as GEM's OpenQuake software suite. # # Feedback and contribution to the software is welcome, and can be # directed to the hazard scientific staff of the GEM Model Facility # ([email protected]). # # The nrml_convertes is therefore distributed WITHOUT ANY WARRANTY; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR # PURPOSE. See the GNU General Public License for more details. # # The GEM Foundation, and the authors of the software, assume no liability for # use of the software. """ RMTK Tools for the parsing and visualisation of hazard data """ import os import numpy as np from lxml import etree import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from matplotlib.colors import LogNorm, Normalize from rmtk.parsers.hazard_parsers import HazardCurveXMLParser NRML='{http://openquake.org/xmlns/nrml/0.5}' GML='{http://www.opengis.net/gml}' def _set_curves_matrix(hcm): """ Store locations and poes in :class:`openquake.nrml.models.HazardCurveModel` in numpy array. """ curves = [] for loc, poes in hcm: row = [loc.x, loc.y] row.extend(poes) curves.append(row) return np.array(curves) def _set_header(hcm): """ Save metadata in :class:`openquake.nrml.models.HazardCurveModel` in a string to be used as header """ header = ','.join( ['%s=%s' % (k,v) for k,v in hcm.metadata.items() if v is not None and k != 'imls'] ) header = '# ' + header header += '\nlon,lat,'+','.join([str(iml) for iml in hcm.metadata['imls']]) return header class HazardCurve(object): """ Class to hold hazard curve information """ def __init__(self, input_filename): """ Read in the hazard curve from the filename """ self.hcm = HazardCurveXMLParser(input_filename).parse() self.data = _set_curves_matrix(self.hcm) self.loc_list = ["{:.6f}|{:.6f}".format(row[0], row[1]) for row in self.data] def plot(self, idx, output_file=None, dpi=300, fmt="png", papertype="a4"): """ Creates the hazard curve plot """ if ("PGA" in self.hcm.metadata["imt"]) or\ ("SA" in self.hcm.metadata["imt"]): imt_units = "g" else: imt_units = "cm/s" if isinstance(idx, int): longitude, latitude, curve = self._get_curve_from_id(idx) elif isinstance(idx, str): longitude, latitude, curve = self._get_curve_from_string(idx) else: raise ValueError("Index not recognised!") fig = plt.figure(figsize=(7, 5)) #fig.set_tight_layout(True) plt.loglog(self.hcm.metadata["imls"], curve, 'bo-', linewidth=2.0) plt.xlabel("%s (%s)" %(self.hcm.metadata["imt"], imt_units), fontsize=14) plt.ylabel("Probability of Being Exceeded in %s years" % self.hcm.metadata["investigation_time"], fontsize=14) if longitude < 0.0: long_ind = "W" else: long_ind = "E" if latitude < 0.0: lat_ind = "S" else: lat_ind = "N" plt.title("Location: %12.6f %s, %12.6f %s" %( np.abs(longitude), long_ind, np.abs(latitude), lat_ind)) if output_file: plt.savefig(output_file, dpi=dpi, format=fmt, papertype="a4") def _get_curve_from_id(self, idx): """ Returns the curve based on the location in the array """ return self.data[idx,0], self.data[idx, 1], self.data[idx, 2:] def _get_curve_from_string(self, idx): """ Returns the curve based on the location defined by a string """ if idx in self.loc_list: idx = self.loc_list.index(idx) else: raise ValueError("Location index %s not in curve list" % idx) return self.data[idx,0], self.data[idx, 1], self.data[idx, 2:] def parse_nrml_uhs_curves(nrml_uhs_map): """ Parse NRML uhs file. """ metadata = {} periods = None values = [] parse_args = dict(source=nrml_uhs_map) for _, element in etree.iterparse(**parse_args): if element.tag == '%suniformHazardSpectra' % NRML: a = element.attrib metadata['statistics'] = a.get('statistics') metadata['quantile_value'] = a.get('quantileValue') metadata['smlt_path'] = a.get('sourceModelTreePath') metadata['gsimlt_path'] = a.get('gsimTreePath') metadata['investigation_time'] = a['investigationTime'] metadata['poe'] = a.get('poE') elif element.tag == '%speriods' % NRML: periods = map(float, element.text.split()) elif element.tag == '%suhs' % NRML: lon, lat = map( float, element.find('%sPoint/%spos' % (GML, GML)).text.split() ) imls = map(float, element.find('%sIMLs' % NRML).text.split()) uhs = [lon, lat] uhs.extend(imls) values.append(uhs) return metadata, periods, np.array(values) class UniformHazardSpectra(HazardCurve): """ Class to hold and plot uniform hazard spectra information """ def __init__(self, input_filename): """ Instantiation and parsing """ self.metadata, self.periods, self.data = parse_nrml_uhs_curves( input_filename) self.loc_list = ["{:.6f}|{:.6f}".format(row[0], row[1]) for row in self.data] def plot(self, idx, output_file=None, dpi=300, fmt="png", papertype="a4"): """ Creates the UHS plot """ if not self.metadata["statistics"]: self.metadata["statistics"] = "" if isinstance(idx, int): longitude, latitude, spectrum = self._get_curve_from_id(idx) elif isinstance(idx, str): longitude, latitude, spectrum = self._get_curve_from_string(idx) else: raise ValueError("Index not recognised!") fig = plt.figure(figsize=(7, 5)) #fig.set_tight_layout(True) plt.plot(self.periods, spectrum, 'bo-', linewidth=2.0) plt.xlabel("Period (s)", fontsize=14) plt.ylabel("Spectral Acceleration (g)", fontsize=14) plt.grid(b=True, color='0.66', linestyle="--") if longitude < 0.0: long_ind = "W" else: long_ind = "E" if latitude < 0.0: lat_ind = "S" else: lat_ind = "N" title_string_upper = "{:s} UHS with a {:s} PoE in {:s} Years\n".format( self.metadata["statistics"], self.metadata["poe"], self.metadata["investigation_time"]) title_string_lower = "Location: {:.6f}{:s}, {:.6f}{:s}".format( np.abs(longitude), long_ind, np.abs(latitude), lat_ind) plt.title(title_string_upper + title_string_lower, fontsize=16) if output_file: plt.savefig(output_file, dpi=dpi, format=fmt, papertype="a4") def parse_nrml_hazard_map(nrml_hazard_map): """ Parse NRML hazard map file. """ metadata = {} values = [] parse_args = dict(source=nrml_hazard_map) for _, element in etree.iterparse(**parse_args): if element.tag == '%shazardMap' % NRML: a = element.attrib metadata['smlt_path'] = a.get('sourceModelTreePath') metadata['gsimlt_path'] = a.get('gsimTreePath') metadata['imt'] = a['IMT'] metadata['investigation_time'] = a['investigationTime'] metadata['poe'] = a.get('poE') metadata['sa_period'] = a.get('saPeriod') metadata['sa_damping'] = a.get('saDamping') metadata['statistics'] = a.get('statistics') metadata['quantile_value'] = a.get('quantileValue') elif element.tag == '%snode' % NRML: a = element.attrib values.append( map(float, [a.get('lon'), a.get('lat'), a.get('iml')]) ) return metadata, np.array(values) class HazardMap(object): """ Class to hold and plot hazard map information """ def __init__(self, input_filename): """ Instantiate and parse input file """ self.metadata, self.data = parse_nrml_hazard_map(input_filename) self.box = {} self.box["lon_1"] = min(self.data[:,0]) self.box["lon_2"] = max(self.data[:,0]) self.box["lat_1"] = min(self.data[:,1]) self.box["lat_2"] = max(self.data[:,1]) self.box["lat_length"] = abs(self.box["lat_2"] - self.box["lat_1"]) self.box["lon_length"] = abs(self.box["lon_2"] - self.box["lon_1"]) def plot(self, log_scale=False, marker_size=20, output_file=None, dpi=300, fmt="png", papertype="a4"): """ """ plt.figure(figsize=(8, 6), dpi=300, facecolor='w', edgecolor='k') map_func = Basemap(llcrnrlon=self.box["lon_1"], llcrnrlat=self.box["lat_1"], urcrnrlon=self.box["lon_2"], urcrnrlat=self.box["lat_2"], projection='mill', resolution='i') x, y = map_func(self.data[:, 0], self.data[:, 1]) #map_func.shadedrelief() map_func.drawcoastlines(linewidth = 0.25, color = "gray") map_func.drawcountries(linewidth = 1.00, color = "gray") map_func.drawstates(linewidth = 0.25, color = "gray") map_func.drawmapboundary(fill_color = 'lightblue') map_func.fillcontinents(color = 'white', lake_color = 'lightblue') if log_scale: scale = LogNorm() else: scale = Normalize() plt.scatter(x, y , s=marker_size, c=self.data[:, 2], zorder=4, cmap='bwr',edgecolor='None',norm = scale) cbar = map_func.colorbar(location='right',pad="5%") if self.metadata["imt"] == "PGV": imt_units = "cm/s" else: imt_units = "g" cbar.set_label("{:s} ({:s})".format( self.metadata["imt"], imt_units)) if self.box["lat_length"] < 2: parallels = np.arange(0., 81, 0.25) else: parallels = np.arange(0., 81, 1.00) # labels = [left,right,top,bottom] map_func.drawparallels(parallels,labels=[True,False,True,False]) if self.box["lon_length"] < 2: meridians = np.arange(0., 360, 0.25) else: meridians = np.arange(0., 360, 1.00) map_func.drawmeridians(meridians,labels=[True,False,False,True]) title_string = "Hazard Map with a {:s} PoE in {:s} Years\n".format( self.metadata["poe"], self.metadata["investigation_time"]) plt.title(title_string, fontsize=16) plt.show() if output_file: plt.savefig(output_file, dpi=dpi, format=fmt, papertype="a4")
agpl-3.0
crackhopper/TFS-toolbox
tfs/data_processor/sklearn_processor.py
1
2638
from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import preprocessing from tfs.data_processor.base import * from tfs.dataset.subset import DataSubset class _SKLearnType(object): undecide = 0 data = 1 labels = 2 both = 3 class SKLearnTransformer(BaseProcessor): _type=_SKLearnType.undecide def _apply(self,op,dataset): if self._type ==_SKLearnType.undecide: raise RuntimeError("%s does not define _type variable"%type(self).__name__) elif self._type ==_SKLearnType.data: res = op(dataset.data) return DataSubset(res,dataset.labels) elif self._type ==_SKLearnType.labels: res=op(dataset.labels) return DataSubset(dataset.data,res) elif self._type ==_SKLearnType.both: res=op(dataset.data,dataset.labels) return DataSubset(res,dataset.labels) else: raise RuntimeError("%s define an unsupported _type variable"%type(self).__name__) def fit_transform(self,dataset): return self._apply(self.p.fit_transform,dataset) def transform(self,dataset): return self._apply(self.p.transform,dataset) def inverse_transform(self,dataset): return self._apply(self.p.inverse_transform,dataset) class LabelBinarizer(SKLearnTransformer): """ a wrapper for sklearn.preprocessing.LabelBinarizer see http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html """ _type=_SKLearnType.labels def __init__(self,neg_label=0, pos_label=1, sparse_output=False): self.p = preprocessing.LabelBinarizer(neg_label, pos_label, sparse_output) class StandardScaler(SKLearnTransformer): """ a wrapper for sklearn.preprocessing.StandardScaler see http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html """ _type=_SKLearnType.data def __init__(self,copy=True, with_mean=True, with_std=True): self.p = preprocessing.StandardScaler(copy, with_mean, with_std) class MinMaxScaler(SKLearnTransformer): """ a wrapper for sklearn.preprocessing.MinMaxScaler see http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html """ _type=_SKLearnType.data def __init__(self,feature_range=(0, 1), copy=True): self.p = preprocessing.MinMaxScaler(feature_range, copy) class Normalizer(SKLearnTransformer): """ a wrapper for sklearn.preprocessing.Normalizer see http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html """ _type=_SKLearnType.data def __init__(self,norm='l2', copy=True): self.p = preprocessing.Normalizer(norm,copy)
mit
lazywei/scikit-learn
examples/model_selection/plot_train_error_vs_test_error.py
349
2577
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn import linear_model ############################################################################### # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] ############################################################################### # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ ############################################################################### # Plot results functions import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.semilogx(alphas, train_errors, label='Train') plt.semilogx(alphas, test_errors, label='Test') plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') plt.legend(loc='lower left') plt.ylim([0, 1.2]) plt.xlabel('Regularization parameter') plt.ylabel('Performance') # Show estimated coef_ vs true coef plt.subplot(2, 1, 2) plt.plot(coef, label='True coef') plt.plot(coef_, label='Estimated coef') plt.legend() plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) plt.show()
bsd-3-clause
aneeshusa/servo
tests/heartbeats/process_logs.py
139
16143
#!/usr/bin/env python # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import argparse import matplotlib.pyplot as plt import numpy as np import os from os import path import sys import warnings HB_LOG_IDX_START_TIME = 7 HB_LOG_IDX_END_TIME = HB_LOG_IDX_START_TIME + 1 HB_LOG_IDX_START_ENERGY = 14 HB_LOG_IDX_END_ENERGY = HB_LOG_IDX_START_ENERGY + 1 ENERGY_PROFILER_NAME = 'ApplicationHeartbeat' SUMMARY_OUTPUT = "summary.txt" SUMMARY_TIME_IDX = 8 SUMMARY_ENERGY_IDX = SUMMARY_TIME_IDX + 1 SUMMARY_POWER_IDX = SUMMARY_ENERGY_IDX + 1 def autolabel(rects, ax): """Attach some text labels. """ for rect in rects: ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * rect.get_height(), '', ha='center', va='bottom') def plot_raw_totals(config, plot_data, max_time, max_time_std, max_energy, max_energy_std, output_dir, normalize): """Plot the raw totals for a configuration. Keyword arguments: config -- configuration name plot_data -- (profiler name, total_time, total_time_std, total_energy, total_energy_std) max_time, max_time_std, max_energy, max_energy_std -- single values normalize -- True/False """ plot_data = sorted(plot_data) keys = [p for (p, tt, tts, te, tes) in plot_data] total_times = [tt for (p, tt, tts, te, tes) in plot_data] total_times_std = [tts for (p, tt, tts, te, tes) in plot_data] total_energies = [te for (p, tt, tts, te, tes) in plot_data] total_energies_std = [tes for (p, tt, tts, te, tes) in plot_data] fig, ax1 = plt.subplots() ind = np.arange(len(keys)) # the x locations for the groups width = 0.35 # the width of the bars # add some text for labels, title and axes ticks ax1.set_title('Time/Energy Data for Configuration ' + config) ax1.set_xticks(ind + width) ax1.set_xticklabels(keys, rotation=45) fig.set_tight_layout(True) fig.set_size_inches(len(plot_data) / 1.5, 8) ax2 = ax1.twinx() # Normalize if normalize: total_times_std /= np.sum(total_times) total_times /= np.sum(total_times) total_energies_std /= np.sum(total_energies) total_energies /= np.sum(total_energies) ax1.set_ylabel('Time (Normalized)') ax2.set_ylabel('Energy (Normalized)') else: # set time in us instead of ns total_times_std /= np.array(1000000.0) total_times /= np.array(1000000.0) total_energies_std /= np.array(1000000.0) total_energies /= np.array(1000000.0) ax1.set_ylabel('Time (ms)') ax2.set_ylabel('Energy (Joules)') rects1 = ax1.bar(ind, total_times, width, color='r', yerr=total_times_std) rects2 = ax2.bar(ind + width, total_energies, width, color='y', yerr=total_energies_std) ax1.legend([rects1[0], rects2[0]], ['Time', 'Energy']) # set axis x1, x2, y1, y2 = plt.axis() if normalize: ax1.set_ylim(ymin=0, ymax=1) ax2.set_ylim(ymin=0, ymax=1) else: ax1.set_ylim(ymin=0, ymax=((max_time + max_time_std) * 1.25 / 1000000.0)) ax2.set_ylim(ymin=0, ymax=((max_energy + max_energy_std) * 1.25 / 1000000.0)) autolabel(rects1, ax1) autolabel(rects2, ax2) # plt.show() plt.savefig(path.join(output_dir, config + ".png")) plt.close(fig) def create_raw_total_data(config_data): """Get the raw data to plot for a configuration Return: [(profiler, time_mean, time_stddev, energy_mean, energy_stddev)] Keyword arguments: config_data -- (trial, trial_data) """ # We can't assume that the same number of heartbeats are always issued across trials # key: profiler name; value: list of timing sums for each trial profiler_total_times = {} # key: profiler name; value: list of energy sums for each trial profiler_total_energies = {} for (t, td) in config_data: for (profiler, ts, te, es, ee) in td: # sum the total times and energies for each profiler in this trial total_time = np.sum(te - ts) total_energy = np.sum(ee - es) # add to list to be averaged later time_list = profiler_total_times.get(profiler, []) time_list.append(total_time) profiler_total_times[profiler] = time_list energy_list = profiler_total_energies.get(profiler, []) energy_list.append(total_energy) profiler_total_energies[profiler] = energy_list # Get mean and stddev for time and energy totals return [(profiler, np.mean(profiler_total_times[profiler]), np.std(profiler_total_times[profiler]), np.mean(profiler_total_energies[profiler]), np.std(profiler_total_energies[profiler])) for profiler in profiler_total_times.keys()] def plot_all_raw_totals(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ raw_total_norm_out_dir = path.join(output_dir, 'raw_totals_normalized') os.makedirs(raw_total_norm_out_dir) raw_total_out_dir = path.join(output_dir, 'raw_totals') os.makedirs(raw_total_out_dir) # (name, (profiler, (time_mean, time_stddev, energy_mean, energy_stddev))) raw_totals_data = [(config, create_raw_total_data(config_data)) for (config, config_data) in config_list] mean_times = [] mean_times_std = [] mean_energies = [] mean_energies_std = [] for profiler_tup in [config_tup[1] for config_tup in raw_totals_data]: for (p, tt, tts, te, tes) in profiler_tup: mean_times.append(tt) mean_times_std.append(tts) mean_energies.append(te) mean_energies_std.append(tes) # get consistent max time/energy values across plots max_t = np.max(mean_times) max_t_std = np.max(mean_times_std) max_e = np.max(mean_energies) max_e_std = np.max(mean_energies_std) [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_norm_out_dir, True) for data in raw_totals_data] [plot_raw_totals(data[0], data[1], max_t, max_t_std, max_e, max_e_std, raw_total_out_dir, False) for data in raw_totals_data] def plot_trial_time_series(config, trial, trial_data, max_end_time, max_power, output_dir): """Plot time series for a single trial. Keyword arguments: config -- the config name trial -- the trial name trial_data -- [(profiler, [start times], [end times], [start energies], [end energies])] max_end_time -- single value to use as max X axis value (for consistency across trials) output_dir -- the output directory """ # TODO: Some profilers may have parallel tasks - need to identify this on plots max_end_time = max_end_time / 1000000.0 trial_data = sorted(trial_data) fig, ax1 = plt.subplots() keys = [p for (p, ts, te, es, ee) in trial_data] # add some text for labels, title and axes ticks ax1.set_title('Profiler Activity for ' + config + ', ' + trial) ax1.set_xlabel('Time (ms)') ax1.grid(True) width = 8 # the width of the bars ax1.set_yticks(10 * np.arange(1, len(keys) + 2)) ax1.set_yticklabels(keys) ax1.set_ylim(ymin=0, ymax=((len(trial_data) + 1) * 10)) ax1.set_xlim(xmin=0, xmax=max_end_time) fig.set_tight_layout(True) fig.set_size_inches(16, len(trial_data) / 3) i = 10 for (p, ts, te, es, ee) in trial_data: xranges = [(ts[j] / 1000000.0, (te[j] - ts[j]) / 1000000.0) for j in xrange(len(ts))] ax1.broken_barh(xranges, (i - 0.5 * width, width)) i += 10 # place a vbar at the final time for this trial last_profiler_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in trial_data])) plt.axvline(np.max(last_profiler_times) / 1000000.0, color='black') power_times = [] power_values = [] for (p, ts, te, es, ee) in trial_data: if p == ENERGY_PROFILER_NAME: power_times = te / 1000000.0 power_values = (ee - es) / ((te - ts) / 1000.0) ax2 = ax1.twinx() ax2.set_xlim(xmin=0, xmax=max_end_time) ax2.set_ylim(ymin=0, ymax=max_power) ax2.set_ylabel('Power (Watts)') ax2.plot(power_times, power_values, color='r') # plt.show() plt.savefig(path.join(output_dir, "ts_" + config + "_" + trial + ".png")) plt.close(fig) def hb_energy_times_to_power(es, ee, ts, te): """Compute power from start and end energy and times. Return: power values """ return (ee - es) / ((te - ts) / 1000.0) def plot_all_time_series(config_list, output_dir): """Plot column charts of the raw total time/energy spent in each profiler category. Keyword arguments: config_list -- [(config, result of process_config_dir(...))] output_dir -- where to write plots to """ time_series_out_dir = path.join(output_dir, 'time_series') os.makedirs(time_series_out_dir) max_end_times = [] max_power_values = [] for (c, cd) in config_list: for (t, td) in cd: trial_max_end_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in td])) max_end_times.append(np.nanmax(trial_max_end_times)) for (p, ts, te, es, ee) in td: # We only care about the energy profiler (others aren't reliable for instant power anyway) if p == ENERGY_PROFILER_NAME and len(te) > 0: max_power_values.append(np.nanmax(hb_energy_times_to_power(es, ee, ts, te))) max_time = np.nanmax(max_end_times) max_power = np.nanmax(np.array(max_power_values)) * 1.2 # leave a little space at the top for (config, config_data) in config_list: [plot_trial_time_series(config, trial, trial_data, max_time, max_power, time_series_out_dir) for (trial, trial_data) in config_data] def read_heartbeat_log(profiler_hb_log): """Read a heartbeat log file. Return: (profiler name, [start times], [end times], [start energies], [end energies], [instant powers]) Keyword arguments: profiler_hb_log -- the file to read """ with warnings.catch_warnings(): try: warnings.simplefilter("ignore") time_start, time_end, energy_start, energy_end = \ np.loadtxt(profiler_hb_log, dtype=np.dtype('uint64'), skiprows=1, usecols=(HB_LOG_IDX_START_TIME, HB_LOG_IDX_END_TIME, HB_LOG_IDX_START_ENERGY, HB_LOG_IDX_END_ENERGY), unpack=True, ndmin=1) except ValueError: time_start, time_end, energy_start, energy_end = [], [], [], [] name = path.split(profiler_hb_log)[1].split('-')[1].split('.')[0] return (name, np.atleast_1d(time_start), np.atleast_1d(time_end), np.atleast_1d(energy_start), np.atleast_1d(energy_end)) def process_trial_dir(trial_dir): """Process trial directory. Return: [(profiler name, [start times], [end times], [start energies], [end energies])] Time and energy are normalized to 0 start values. Keyword arguments: trial_dir -- the directory for this trial """ log_data = map(lambda h: read_heartbeat_log(path.join(trial_dir, h)), filter(lambda f: f.endswith(".log"), os.listdir(trial_dir))) # Find the earliest timestamps and energy readings min_t = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [ts for (profiler, ts, te, es, ee) in log_data]))) min_e = np.nanmin(map(np.nanmin, filter(lambda x: len(x) > 0, [es for (profiler, ts, te, es, ee) in log_data]))) # Normalize timing/energy data to start values of 0 return [(profiler, ts - min_t, te - min_t, es - min_e, ee - min_e) for (profiler, ts, te, es, ee) in log_data] def process_config_dir(config_dir): """Process a configuration directory. Return: [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])] Keyword arguments: config_dir -- the directory for this configuration - contains subdirectories for each trial """ return [(trial_dir, process_trial_dir(path.join(config_dir, trial_dir))) for trial_dir in os.listdir(config_dir)] def process_logs(log_dir): """Process log directory. Return: [(config, [(trial, [(profiler name, [start times], [end times], [start energies], [end energies])])])] Keyword arguments: log_dir -- the log directory to process - contains subdirectories for each configuration """ return [((config_dir.split('_')[1], process_config_dir(path.join(log_dir, config_dir)))) for config_dir in os.listdir(log_dir)] def find_best_executions(log_dir): """Get the best time, energy, and power from the characterization summaries. Return: ((config, trial, min_time), (config, trial, min_energy), (config, trial, min_power)) Keyword arguments: results -- the results from process_logs(...). """ DEFAULT = ('', '', 1000000000.0) min_time = DEFAULT min_energy = DEFAULT min_power = DEFAULT for config_dir in os.listdir(log_dir): for trial_dir in os.listdir(path.join(log_dir, config_dir)): with open(path.join(log_dir, config_dir, trial_dir, SUMMARY_OUTPUT), "r") as s: lines = s.readlines() time = float(lines[SUMMARY_TIME_IDX].split(':')[1]) energy = int(lines[SUMMARY_ENERGY_IDX].split(':')[1]) power = float(lines[SUMMARY_POWER_IDX].split(':')[1]) if time < min_time[2]: min_time = (config_dir, trial_dir, time) if energy < min_energy[2]: min_energy = (config_dir, trial_dir, energy) if power < min_power: min_power = (config_dir, trial_dir, power) return (min_time, min_energy, min_power) def main(): """This script processes the log files from the "characterize.py" script and produces visualizations. """ # Default log directory directory = 'heartbeat_logs' # Default output directory output_dir = 'plots' # Default android android = False # Parsing the input of the script parser = argparse.ArgumentParser(description="Process Heartbeat log files from characterization") parser.add_argument("-d", "--directory", default=directory, help="Heartbeat log directory \"-d heartbeat_logs\"") parser.add_argument("-o", "--output", default=output_dir, help="Specify the log output directory, for example \"-o plots\"") parser.add_argument("--android", action="store_true", dest="android", default=False, help="Specify if processing results from Android") args = parser.parse_args() if args.directory: directory = args.directory if args.output: output_dir = args.output if args.android: android = args.android if not os.path.exists(directory): print "Input directory does not exist: " + directory sys.exit(1) if os.path.exists(output_dir): print "Output directory already exists: " + output_dir sys.exit(1) res = process_logs(directory) if not android: best = find_best_executions(directory) print 'Best time:', best[0] print 'Best energy:', best[1] print 'Best power:', best[2] os.makedirs(output_dir) plot_all_raw_totals(res, output_dir) plot_all_time_series(res, output_dir) if __name__ == "__main__": main()
mpl-2.0
kushalbhola/MyStuff
Practice/PythonApplication/env/Lib/site-packages/pandas/tests/arrays/sparse/test_arithmetics.py
2
20166
import operator import numpy as np import pytest import pandas as pd from pandas.core import ops from pandas.core.sparse.api import SparseDtype import pandas.util.testing as tm @pytest.fixture(params=["integer", "block"]) def kind(request): """kind kwarg to pass to SparseArray/SparseSeries""" return request.param @pytest.fixture(params=[True, False]) def mix(request): # whether to operate op(sparse, dense) instead of op(sparse, sparse) return request.param @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning") class TestSparseArrayArithmetics: _base = np.array _klass = pd.SparseArray def _assert(self, a, b): tm.assert_numpy_array_equal(a, b) def _check_numeric_ops(self, a, b, a_dense, b_dense, mix, op): with np.errstate(invalid="ignore", divide="ignore"): if op in [operator.floordiv, ops.rfloordiv]: # FIXME: GH#13843 if self._base == pd.Series and a.dtype.subtype == np.dtype("int64"): pytest.xfail("Not defined/working. See GH#13843") if mix: result = op(a, b_dense).to_dense() else: result = op(a, b).to_dense() if op in [operator.truediv, ops.rtruediv]: # pandas uses future division expected = op(a_dense * 1.0, b_dense) else: expected = op(a_dense, b_dense) if op in [operator.floordiv, ops.rfloordiv]: # Series sets 1//0 to np.inf, which SparseArray does not do (yet) mask = np.isinf(expected) if mask.any(): expected[mask] = np.nan self._assert(result, expected) def _check_bool_result(self, res): assert isinstance(res, self._klass) assert isinstance(res.dtype, SparseDtype) assert res.dtype.subtype == np.bool assert isinstance(res.fill_value, bool) def _check_comparison_ops(self, a, b, a_dense, b_dense): with np.errstate(invalid="ignore"): # Unfortunately, trying to wrap the computation of each expected # value is with np.errstate() is too tedious. # # sparse & sparse self._check_bool_result(a == b) self._assert((a == b).to_dense(), a_dense == b_dense) self._check_bool_result(a != b) self._assert((a != b).to_dense(), a_dense != b_dense) self._check_bool_result(a >= b) self._assert((a >= b).to_dense(), a_dense >= b_dense) self._check_bool_result(a <= b) self._assert((a <= b).to_dense(), a_dense <= b_dense) self._check_bool_result(a > b) self._assert((a > b).to_dense(), a_dense > b_dense) self._check_bool_result(a < b) self._assert((a < b).to_dense(), a_dense < b_dense) # sparse & dense self._check_bool_result(a == b_dense) self._assert((a == b_dense).to_dense(), a_dense == b_dense) self._check_bool_result(a != b_dense) self._assert((a != b_dense).to_dense(), a_dense != b_dense) self._check_bool_result(a >= b_dense) self._assert((a >= b_dense).to_dense(), a_dense >= b_dense) self._check_bool_result(a <= b_dense) self._assert((a <= b_dense).to_dense(), a_dense <= b_dense) self._check_bool_result(a > b_dense) self._assert((a > b_dense).to_dense(), a_dense > b_dense) self._check_bool_result(a < b_dense) self._assert((a < b_dense).to_dense(), a_dense < b_dense) def _check_logical_ops(self, a, b, a_dense, b_dense): # sparse & sparse self._check_bool_result(a & b) self._assert((a & b).to_dense(), a_dense & b_dense) self._check_bool_result(a | b) self._assert((a | b).to_dense(), a_dense | b_dense) # sparse & dense self._check_bool_result(a & b_dense) self._assert((a & b_dense).to_dense(), a_dense & b_dense) self._check_bool_result(a | b_dense) self._assert((a | b_dense).to_dense(), a_dense | b_dense) @pytest.mark.parametrize("scalar", [0, 1, 3]) @pytest.mark.parametrize("fill_value", [None, 0, 2]) def test_float_scalar( self, kind, mix, all_arithmetic_functions, fill_value, scalar ): op = all_arithmetic_functions values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) a = self._klass(values, kind=kind, fill_value=fill_value) self._check_numeric_ops(a, scalar, values, scalar, mix, op) def test_float_scalar_comparison(self, kind): values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) a = self._klass(values, kind=kind) self._check_comparison_ops(a, 1, values, 1) self._check_comparison_ops(a, 0, values, 0) self._check_comparison_ops(a, 3, values, 3) a = self._klass(values, kind=kind, fill_value=0) self._check_comparison_ops(a, 1, values, 1) self._check_comparison_ops(a, 0, values, 0) self._check_comparison_ops(a, 3, values, 3) a = self._klass(values, kind=kind, fill_value=2) self._check_comparison_ops(a, 1, values, 1) self._check_comparison_ops(a, 0, values, 0) self._check_comparison_ops(a, 3, values, 3) def test_float_same_index(self, kind, mix, all_arithmetic_functions): # when sp_index are the same op = all_arithmetic_functions values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan]) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_numeric_ops(a, b, values, rvalues, mix, op) values = self._base([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0]) rvalues = self._base([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0]) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_numeric_ops(a, b, values, rvalues, mix, op) def test_float_same_index_comparison(self, kind): # when sp_index are the same values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan]) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_comparison_ops(a, b, values, rvalues) values = self._base([0.0, 1.0, 2.0, 6.0, 0.0, 0.0, 1.0, 2.0, 1.0, 0.0]) rvalues = self._base([0.0, 2.0, 3.0, 4.0, 0.0, 0.0, 1.0, 3.0, 2.0, 0.0]) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_comparison_ops(a, b, values, rvalues) def test_float_array(self, kind, mix, all_arithmetic_functions): op = all_arithmetic_functions values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan]) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_numeric_ops(a, b, values, rvalues, mix, op) self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) self._check_numeric_ops(a, b, values, rvalues, mix, op) def test_float_array_different_kind(self, mix, all_arithmetic_functions): op = all_arithmetic_functions values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan]) a = self._klass(values, kind="integer") b = self._klass(rvalues, kind="block") self._check_numeric_ops(a, b, values, rvalues, mix, op) self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op) a = self._klass(values, kind="integer", fill_value=0) b = self._klass(rvalues, kind="block") self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, kind="integer", fill_value=0) b = self._klass(rvalues, kind="block", fill_value=0) self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, kind="integer", fill_value=1) b = self._klass(rvalues, kind="block", fill_value=2) self._check_numeric_ops(a, b, values, rvalues, mix, op) def test_float_array_comparison(self, kind): values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan]) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_comparison_ops(a, b, values, rvalues) self._check_comparison_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) self._check_comparison_ops(a, b, values, rvalues) def test_int_array(self, kind, mix, all_arithmetic_functions): op = all_arithmetic_functions # have to specify dtype explicitly until fixing GH 667 dtype = np.int64 values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype) a = self._klass(values, dtype=dtype, kind=kind) assert a.dtype == SparseDtype(dtype) b = self._klass(rvalues, dtype=dtype, kind=kind) assert b.dtype == SparseDtype(dtype) self._check_numeric_ops(a, b, values, rvalues, mix, op) self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op) a = self._klass(values, fill_value=0, dtype=dtype, kind=kind) assert a.dtype == SparseDtype(dtype) b = self._klass(rvalues, dtype=dtype, kind=kind) assert b.dtype == SparseDtype(dtype) self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, fill_value=0, dtype=dtype, kind=kind) assert a.dtype == SparseDtype(dtype) b = self._klass(rvalues, fill_value=0, dtype=dtype, kind=kind) assert b.dtype == SparseDtype(dtype) self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, fill_value=1, dtype=dtype, kind=kind) assert a.dtype == SparseDtype(dtype, fill_value=1) b = self._klass(rvalues, fill_value=2, dtype=dtype, kind=kind) assert b.dtype == SparseDtype(dtype, fill_value=2) self._check_numeric_ops(a, b, values, rvalues, mix, op) def test_int_array_comparison(self, kind): dtype = "int64" # int32 NI ATM values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype) a = self._klass(values, dtype=dtype, kind=kind) b = self._klass(rvalues, dtype=dtype, kind=kind) self._check_comparison_ops(a, b, values, rvalues) self._check_comparison_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, dtype=dtype, kind=kind, fill_value=0) b = self._klass(rvalues, dtype=dtype, kind=kind) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, dtype=dtype, kind=kind, fill_value=0) b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=0) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, dtype=dtype, kind=kind, fill_value=1) b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=2) self._check_comparison_ops(a, b, values, rvalues) @pytest.mark.parametrize("fill_value", [True, False, np.nan]) def test_bool_same_index(self, kind, fill_value): # GH 14000 # when sp_index are the same values = self._base([True, False, True, True], dtype=np.bool) rvalues = self._base([True, False, True, True], dtype=np.bool) a = self._klass(values, kind=kind, dtype=np.bool, fill_value=fill_value) b = self._klass(rvalues, kind=kind, dtype=np.bool, fill_value=fill_value) self._check_logical_ops(a, b, values, rvalues) @pytest.mark.parametrize("fill_value", [True, False, np.nan]) def test_bool_array_logical(self, kind, fill_value): # GH 14000 # when sp_index are the same values = self._base([True, False, True, False, True, True], dtype=np.bool) rvalues = self._base([True, False, False, True, False, True], dtype=np.bool) a = self._klass(values, kind=kind, dtype=np.bool, fill_value=fill_value) b = self._klass(rvalues, kind=kind, dtype=np.bool, fill_value=fill_value) self._check_logical_ops(a, b, values, rvalues) def test_mixed_array_float_int(self, kind, mix, all_arithmetic_functions): op = all_arithmetic_functions rdtype = "int64" values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) assert b.dtype == SparseDtype(rdtype) self._check_numeric_ops(a, b, values, rvalues, mix, op) self._check_numeric_ops(a, b * 0, values, rvalues * 0, mix, op) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) assert b.dtype == SparseDtype(rdtype) self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) assert b.dtype == SparseDtype(rdtype) self._check_numeric_ops(a, b, values, rvalues, mix, op) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) assert b.dtype == SparseDtype(rdtype, fill_value=2) self._check_numeric_ops(a, b, values, rvalues, mix, op) def test_mixed_array_comparison(self, kind): rdtype = "int64" # int32 NI ATM values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) assert b.dtype == SparseDtype(rdtype) self._check_comparison_ops(a, b, values, rvalues) self._check_comparison_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) assert b.dtype == SparseDtype(rdtype) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) assert b.dtype == SparseDtype(rdtype) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) assert b.dtype == SparseDtype(rdtype, fill_value=2) self._check_comparison_ops(a, b, values, rvalues) class TestSparseSeriesArithmetic(TestSparseArrayArithmetics): _base = pd.Series _klass = pd.SparseSeries def _assert(self, a, b): tm.assert_series_equal(a, b) def test_alignment(self, mix, all_arithmetic_functions): op = all_arithmetic_functions da = pd.Series(np.arange(4)) db = pd.Series(np.arange(4), index=[1, 2, 3, 4]) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=0) sb = pd.SparseSeries( np.arange(4), index=[1, 2, 3, 4], dtype=np.int64, fill_value=0 ) self._check_numeric_ops(sa, sb, da, db, mix, op) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=np.nan) sb = pd.SparseSeries( np.arange(4), index=[1, 2, 3, 4], dtype=np.int64, fill_value=np.nan ) self._check_numeric_ops(sa, sb, da, db, mix, op) da = pd.Series(np.arange(4)) db = pd.Series(np.arange(4), index=[10, 11, 12, 13]) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=0) sb = pd.SparseSeries( np.arange(4), index=[10, 11, 12, 13], dtype=np.int64, fill_value=0 ) self._check_numeric_ops(sa, sb, da, db, mix, op) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=np.nan) sb = pd.SparseSeries( np.arange(4), index=[10, 11, 12, 13], dtype=np.int64, fill_value=np.nan ) self._check_numeric_ops(sa, sb, da, db, mix, op) @pytest.mark.parametrize("op", [operator.eq, operator.add]) def test_with_list(op): arr = pd.SparseArray([0, 1], fill_value=0) result = op(arr, [0, 1]) expected = op(arr, pd.SparseArray([0, 1])) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.abs, np.exp]) @pytest.mark.parametrize( "arr", [pd.SparseArray([0, 0, -1, 1]), pd.SparseArray([None, None, -1, 1])] ) def test_ufuncs(ufunc, arr): result = ufunc(arr) fill_value = ufunc(arr.fill_value) expected = pd.SparseArray(ufunc(np.asarray(arr)), fill_value=fill_value) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize( "a, b", [ (pd.SparseArray([0, 0, 0]), np.array([0, 1, 2])), (pd.SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])), (pd.SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])), (pd.SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])), (pd.SparseArray([0, 0, 0], fill_value=1), np.array([0, 1, 2])), ], ) @pytest.mark.parametrize("ufunc", [np.add, np.greater]) def test_binary_ufuncs(ufunc, a, b): # can't say anything about fill value here. result = ufunc(a, b) expected = ufunc(np.asarray(a), np.asarray(b)) assert isinstance(result, pd.SparseArray) tm.assert_numpy_array_equal(np.asarray(result), expected) def test_ndarray_inplace(): sparray = pd.SparseArray([0, 2, 0, 0]) ndarray = np.array([0, 1, 2, 3]) ndarray += sparray expected = np.array([0, 3, 2, 3]) tm.assert_numpy_array_equal(ndarray, expected) def test_sparray_inplace(): sparray = pd.SparseArray([0, 2, 0, 0]) ndarray = np.array([0, 1, 2, 3]) sparray += ndarray expected = pd.SparseArray([0, 3, 2, 3], fill_value=0) tm.assert_sp_array_equal(sparray, expected) @pytest.mark.parametrize("fill_value", [True, False]) def test_invert(fill_value): arr = np.array([True, False, False, True]) sparray = pd.SparseArray(arr, fill_value=fill_value) result = ~sparray expected = pd.SparseArray(~arr, fill_value=not fill_value) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize("fill_value", [0, np.nan]) @pytest.mark.parametrize("op", [operator.pos, operator.neg]) def test_unary_op(op, fill_value): arr = np.array([0, 1, np.nan, 2]) sparray = pd.SparseArray(arr, fill_value=fill_value) result = op(sparray) expected = pd.SparseArray(op(arr), fill_value=op(fill_value)) tm.assert_sp_array_equal(result, expected)
apache-2.0
fmv1992/data_utilities
setup.py
1
4168
"""data_utilities setup file. Based on https://github.com/pypa/sampleproject/blob/master/setup.py and also based on the guide: https://packaging.python.org/distributing/#requirements-for-packaging-and-distributing # noqa See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'readme.md'), encoding='utf-8') as f: long_description = f.read() setup( name='data_utilities', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='1.2.8', description='A data analysis and visualization helper module.', long_description=long_description, # The project's main homepage. url='https://github.com/fmv1992/data_utilities', # Author details author='Felipe M. Vieira', author_email='[email protected]', # Choose your license license='GPLv2 or any later', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: End Users/Desktop', 'Topic :: Scientific/Engineering :: Information Analysis', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.6', ], # What does your project relate to? keywords='data sciences', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(), # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[ 'numpy', 'scipy', 'pandas', 'matplotlib', 'seaborn', 'scikit-learn', ], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] # extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. See: # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. # entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], # }, )
gpl-3.0
Intel-Corporation/tensorflow
tensorflow/tools/compatibility/renames_v2.py
1
55971
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=line-too-long """List of renames to apply when converting from TF 1.0 to TF 2.0. THIS FILE IS AUTOGENERATED: To update, please run: bazel build tensorflow/tools/compatibility/update:generate_v2_renames_map bazel-bin/tensorflow/tools/compatibility/update/generate_v2_renames_map This file should be updated whenever endpoints are deprecated. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function renames = { 'tf.AUTO_REUSE': 'tf.compat.v1.AUTO_REUSE', 'tf.AttrValue': 'tf.compat.v1.AttrValue', 'tf.COMPILER_VERSION': 'tf.version.COMPILER_VERSION', 'tf.CXX11_ABI_FLAG': 'tf.sysconfig.CXX11_ABI_FLAG', 'tf.ConditionalAccumulator': 'tf.compat.v1.ConditionalAccumulator', 'tf.ConditionalAccumulatorBase': 'tf.compat.v1.ConditionalAccumulatorBase', 'tf.ConfigProto': 'tf.compat.v1.ConfigProto', 'tf.Dimension': 'tf.compat.v1.Dimension', 'tf.Event': 'tf.compat.v1.Event', 'tf.FIFOQueue': 'tf.queue.FIFOQueue', 'tf.FixedLenFeature': 'tf.io.FixedLenFeature', 'tf.FixedLenSequenceFeature': 'tf.io.FixedLenSequenceFeature', 'tf.FixedLengthRecordReader': 'tf.compat.v1.FixedLengthRecordReader', 'tf.GIT_VERSION': 'tf.version.GIT_VERSION', 'tf.GPUOptions': 'tf.compat.v1.GPUOptions', 'tf.GRAPH_DEF_VERSION': 'tf.version.GRAPH_DEF_VERSION', 'tf.GRAPH_DEF_VERSION_MIN_CONSUMER': 'tf.version.GRAPH_DEF_VERSION_MIN_CONSUMER', 'tf.GRAPH_DEF_VERSION_MIN_PRODUCER': 'tf.version.GRAPH_DEF_VERSION_MIN_PRODUCER', 'tf.GraphDef': 'tf.compat.v1.GraphDef', 'tf.GraphKeys': 'tf.compat.v1.GraphKeys', 'tf.GraphOptions': 'tf.compat.v1.GraphOptions', 'tf.HistogramProto': 'tf.compat.v1.HistogramProto', 'tf.IdentityReader': 'tf.compat.v1.IdentityReader', 'tf.InteractiveSession': 'tf.compat.v1.InteractiveSession', 'tf.LMDBReader': 'tf.compat.v1.LMDBReader', 'tf.LogMessage': 'tf.compat.v1.LogMessage', 'tf.MONOLITHIC_BUILD': 'tf.sysconfig.MONOLITHIC_BUILD', 'tf.MetaGraphDef': 'tf.compat.v1.MetaGraphDef', 'tf.NameAttrList': 'tf.compat.v1.NameAttrList', 'tf.NoGradient': 'tf.no_gradient', 'tf.NodeDef': 'tf.compat.v1.NodeDef', 'tf.NotDifferentiable': 'tf.no_gradient', 'tf.OpError': 'tf.errors.OpError', 'tf.OptimizerOptions': 'tf.compat.v1.OptimizerOptions', 'tf.PaddingFIFOQueue': 'tf.queue.PaddingFIFOQueue', 'tf.Print': 'tf.compat.v1.Print', 'tf.PriorityQueue': 'tf.queue.PriorityQueue', 'tf.QUANTIZED_DTYPES': 'tf.dtypes.QUANTIZED_DTYPES', 'tf.QueueBase': 'tf.queue.QueueBase', 'tf.RandomShuffleQueue': 'tf.queue.RandomShuffleQueue', 'tf.ReaderBase': 'tf.compat.v1.ReaderBase', 'tf.RunMetadata': 'tf.compat.v1.RunMetadata', 'tf.RunOptions': 'tf.compat.v1.RunOptions', 'tf.Session': 'tf.compat.v1.Session', 'tf.SessionLog': 'tf.compat.v1.SessionLog', 'tf.SparseConditionalAccumulator': 'tf.sparse.SparseConditionalAccumulator', 'tf.SparseFeature': 'tf.io.SparseFeature', 'tf.SparseTensorValue': 'tf.compat.v1.SparseTensorValue', 'tf.Summary': 'tf.compat.v1.Summary', 'tf.SummaryMetadata': 'tf.compat.v1.SummaryMetadata', 'tf.TFRecordReader': 'tf.compat.v1.TFRecordReader', 'tf.TensorInfo': 'tf.compat.v1.TensorInfo', 'tf.TextLineReader': 'tf.compat.v1.TextLineReader', 'tf.VERSION': 'tf.version.VERSION', 'tf.VarLenFeature': 'tf.io.VarLenFeature', 'tf.VariableScope': 'tf.compat.v1.VariableScope', 'tf.WholeFileReader': 'tf.compat.v1.WholeFileReader', 'tf.accumulate_n': 'tf.math.accumulate_n', 'tf.add_check_numerics_ops': 'tf.compat.v1.add_check_numerics_ops', 'tf.add_to_collection': 'tf.compat.v1.add_to_collection', 'tf.add_to_collections': 'tf.compat.v1.add_to_collections', 'tf.all_variables': 'tf.compat.v1.all_variables', 'tf.angle': 'tf.math.angle', 'tf.app.run': 'tf.compat.v1.app.run', 'tf.assert_greater_equal': 'tf.compat.v1.assert_greater_equal', 'tf.assert_integer': 'tf.compat.v1.assert_integer', 'tf.assert_less_equal': 'tf.compat.v1.assert_less_equal', 'tf.assert_near': 'tf.compat.v1.assert_near', 'tf.assert_negative': 'tf.compat.v1.assert_negative', 'tf.assert_non_negative': 'tf.compat.v1.assert_non_negative', 'tf.assert_non_positive': 'tf.compat.v1.assert_non_positive', 'tf.assert_none_equal': 'tf.compat.v1.assert_none_equal', 'tf.assert_positive': 'tf.compat.v1.assert_positive', 'tf.assert_proper_iterable': 'tf.debugging.assert_proper_iterable', 'tf.assert_rank_at_least': 'tf.compat.v1.assert_rank_at_least', 'tf.assert_rank_in': 'tf.compat.v1.assert_rank_in', 'tf.assert_same_float_dtype': 'tf.debugging.assert_same_float_dtype', 'tf.assert_scalar': 'tf.compat.v1.assert_scalar', 'tf.assert_type': 'tf.compat.v1.assert_type', 'tf.assert_variables_initialized': 'tf.compat.v1.assert_variables_initialized', 'tf.assign': 'tf.compat.v1.assign', 'tf.assign_add': 'tf.compat.v1.assign_add', 'tf.assign_sub': 'tf.compat.v1.assign_sub', 'tf.batch_scatter_update': 'tf.compat.v1.batch_scatter_update', 'tf.betainc': 'tf.math.betainc', 'tf.ceil': 'tf.math.ceil', 'tf.check_numerics': 'tf.debugging.check_numerics', 'tf.cholesky': 'tf.linalg.cholesky', 'tf.cholesky_solve': 'tf.linalg.cholesky_solve', 'tf.clip_by_average_norm': 'tf.compat.v1.clip_by_average_norm', 'tf.colocate_with': 'tf.compat.v1.colocate_with', 'tf.conj': 'tf.math.conj', 'tf.container': 'tf.compat.v1.container', 'tf.convert_to_tensor_or_indexed_slices': 'tf.compat.v1.convert_to_tensor_or_indexed_slices', 'tf.convert_to_tensor_or_sparse_tensor': 'tf.compat.v1.convert_to_tensor_or_sparse_tensor', 'tf.count_up_to': 'tf.compat.v1.count_up_to', 'tf.create_partitioned_variables': 'tf.compat.v1.create_partitioned_variables', 'tf.cross': 'tf.linalg.cross', 'tf.cumprod': 'tf.math.cumprod', 'tf.data.get_output_classes': 'tf.compat.v1.data.get_output_classes', 'tf.data.get_output_shapes': 'tf.compat.v1.data.get_output_shapes', 'tf.data.get_output_types': 'tf.compat.v1.data.get_output_types', 'tf.data.make_initializable_iterator': 'tf.compat.v1.data.make_initializable_iterator', 'tf.data.make_one_shot_iterator': 'tf.compat.v1.data.make_one_shot_iterator', 'tf.debugging.is_finite': 'tf.math.is_finite', 'tf.debugging.is_inf': 'tf.math.is_inf', 'tf.debugging.is_nan': 'tf.math.is_nan', 'tf.debugging.is_non_decreasing': 'tf.math.is_non_decreasing', 'tf.debugging.is_strictly_increasing': 'tf.math.is_strictly_increasing', 'tf.decode_base64': 'tf.io.decode_base64', 'tf.decode_compressed': 'tf.io.decode_compressed', 'tf.decode_json_example': 'tf.io.decode_json_example', 'tf.decode_raw': 'tf.io.decode_raw', 'tf.delete_session_tensor': 'tf.compat.v1.delete_session_tensor', 'tf.depth_to_space': 'tf.compat.v1.depth_to_space', 'tf.dequantize': 'tf.quantization.dequantize', 'tf.deserialize_many_sparse': 'tf.io.deserialize_many_sparse', 'tf.diag': 'tf.linalg.tensor_diag', 'tf.diag_part': 'tf.linalg.tensor_diag_part', 'tf.digamma': 'tf.math.digamma', 'tf.dimension_at_index': 'tf.compat.dimension_at_index', 'tf.dimension_value': 'tf.compat.dimension_value', 'tf.disable_eager_execution': 'tf.compat.v1.disable_eager_execution', 'tf.disable_resource_variables': 'tf.compat.v1.disable_resource_variables', 'tf.disable_v2_behavior': 'tf.compat.v1.disable_v2_behavior', 'tf.disable_v2_tensorshape': 'tf.compat.v1.disable_v2_tensorshape', 'tf.distribute.get_loss_reduction': 'tf.compat.v1.distribute.get_loss_reduction', 'tf.distributions.Bernoulli': 'tf.compat.v1.distributions.Bernoulli', 'tf.distributions.Beta': 'tf.compat.v1.distributions.Beta', 'tf.distributions.Categorical': 'tf.compat.v1.distributions.Categorical', 'tf.distributions.Dirichlet': 'tf.compat.v1.distributions.Dirichlet', 'tf.distributions.DirichletMultinomial': 'tf.compat.v1.distributions.DirichletMultinomial', 'tf.distributions.Distribution': 'tf.compat.v1.distributions.Distribution', 'tf.distributions.Exponential': 'tf.compat.v1.distributions.Exponential', 'tf.distributions.FULLY_REPARAMETERIZED': 'tf.compat.v1.distributions.FULLY_REPARAMETERIZED', 'tf.distributions.Gamma': 'tf.compat.v1.distributions.Gamma', 'tf.distributions.Laplace': 'tf.compat.v1.distributions.Laplace', 'tf.distributions.Multinomial': 'tf.compat.v1.distributions.Multinomial', 'tf.distributions.NOT_REPARAMETERIZED': 'tf.compat.v1.distributions.NOT_REPARAMETERIZED', 'tf.distributions.Normal': 'tf.compat.v1.distributions.Normal', 'tf.distributions.RegisterKL': 'tf.compat.v1.distributions.RegisterKL', 'tf.distributions.ReparameterizationType': 'tf.compat.v1.distributions.ReparameterizationType', 'tf.distributions.StudentT': 'tf.compat.v1.distributions.StudentT', 'tf.distributions.Uniform': 'tf.compat.v1.distributions.Uniform', 'tf.distributions.kl_divergence': 'tf.compat.v1.distributions.kl_divergence', 'tf.div': 'tf.compat.v1.div', 'tf.div_no_nan': 'tf.math.divide_no_nan', 'tf.dtypes.as_string': 'tf.strings.as_string', 'tf.enable_eager_execution': 'tf.compat.v1.enable_eager_execution', 'tf.enable_resource_variables': 'tf.compat.v1.enable_resource_variables', 'tf.enable_v2_behavior': 'tf.compat.v1.enable_v2_behavior', 'tf.enable_v2_tensorshape': 'tf.compat.v1.enable_v2_tensorshape', 'tf.encode_base64': 'tf.io.encode_base64', 'tf.erf': 'tf.math.erf', 'tf.erfc': 'tf.math.erfc', 'tf.estimator.experimental.KMeans': 'tf.compat.v1.estimator.experimental.KMeans', 'tf.estimator.experimental.dnn_logit_fn_builder': 'tf.compat.v1.estimator.experimental.dnn_logit_fn_builder', 'tf.estimator.experimental.linear_logit_fn_builder': 'tf.compat.v1.estimator.experimental.linear_logit_fn_builder', 'tf.estimator.inputs.numpy_input_fn': 'tf.compat.v1.estimator.inputs.numpy_input_fn', 'tf.estimator.inputs.pandas_input_fn': 'tf.compat.v1.estimator.inputs.pandas_input_fn', 'tf.expm1': 'tf.math.expm1', 'tf.fake_quant_with_min_max_args': 'tf.quantization.fake_quant_with_min_max_args', 'tf.fake_quant_with_min_max_args_gradient': 'tf.quantization.fake_quant_with_min_max_args_gradient', 'tf.fake_quant_with_min_max_vars': 'tf.quantization.fake_quant_with_min_max_vars', 'tf.fake_quant_with_min_max_vars_gradient': 'tf.quantization.fake_quant_with_min_max_vars_gradient', 'tf.fake_quant_with_min_max_vars_per_channel': 'tf.quantization.fake_quant_with_min_max_vars_per_channel', 'tf.fake_quant_with_min_max_vars_per_channel_gradient': 'tf.quantization.fake_quant_with_min_max_vars_per_channel_gradient', 'tf.feature_column.input_layer': 'tf.compat.v1.feature_column.input_layer', 'tf.feature_column.linear_model': 'tf.compat.v1.feature_column.linear_model', 'tf.feature_column.shared_embedding_columns': 'tf.compat.v1.feature_column.shared_embedding_columns', 'tf.fft': 'tf.signal.fft', 'tf.fft2d': 'tf.signal.fft2d', 'tf.fft3d': 'tf.signal.fft3d', 'tf.fixed_size_partitioner': 'tf.compat.v1.fixed_size_partitioner', 'tf.floordiv': 'tf.math.floordiv', 'tf.get_collection': 'tf.compat.v1.get_collection', 'tf.get_collection_ref': 'tf.compat.v1.get_collection_ref', 'tf.get_default_graph': 'tf.compat.v1.get_default_graph', 'tf.get_default_session': 'tf.compat.v1.get_default_session', 'tf.get_local_variable': 'tf.compat.v1.get_local_variable', 'tf.get_seed': 'tf.compat.v1.get_seed', 'tf.get_session_handle': 'tf.compat.v1.get_session_handle', 'tf.get_session_tensor': 'tf.compat.v1.get_session_tensor', 'tf.get_variable': 'tf.compat.v1.get_variable', 'tf.get_variable_scope': 'tf.compat.v1.get_variable_scope', 'tf.gfile.FastGFile': 'tf.compat.v1.gfile.FastGFile', 'tf.global_norm': 'tf.linalg.global_norm', 'tf.global_variables': 'tf.compat.v1.global_variables', 'tf.global_variables_initializer': 'tf.compat.v1.global_variables_initializer', 'tf.graph_util.convert_variables_to_constants': 'tf.compat.v1.graph_util.convert_variables_to_constants', 'tf.graph_util.extract_sub_graph': 'tf.compat.v1.graph_util.extract_sub_graph', 'tf.graph_util.must_run_on_cpu': 'tf.compat.v1.graph_util.must_run_on_cpu', 'tf.graph_util.remove_training_nodes': 'tf.compat.v1.graph_util.remove_training_nodes', 'tf.graph_util.tensor_shape_from_node_def_name': 'tf.compat.v1.graph_util.tensor_shape_from_node_def_name', 'tf.ifft': 'tf.signal.ifft', 'tf.ifft2d': 'tf.signal.ifft2d', 'tf.ifft3d': 'tf.signal.ifft3d', 'tf.igamma': 'tf.math.igamma', 'tf.igammac': 'tf.math.igammac', 'tf.imag': 'tf.math.imag', 'tf.image.resize_area': 'tf.compat.v1.image.resize_area', 'tf.image.resize_bicubic': 'tf.compat.v1.image.resize_bicubic', 'tf.image.resize_bilinear': 'tf.compat.v1.image.resize_bilinear', 'tf.image.resize_image_with_pad': 'tf.compat.v1.image.resize_image_with_pad', 'tf.image.resize_nearest_neighbor': 'tf.compat.v1.image.resize_nearest_neighbor', 'tf.image.transpose_image': 'tf.compat.v1.image.transpose_image', 'tf.initialize_all_tables': 'tf.compat.v1.initialize_all_tables', 'tf.initialize_all_variables': 'tf.compat.v1.initialize_all_variables', 'tf.initialize_local_variables': 'tf.compat.v1.initialize_local_variables', 'tf.initialize_variables': 'tf.compat.v1.initialize_variables', 'tf.initializers.global_variables': 'tf.compat.v1.initializers.global_variables', 'tf.initializers.local_variables': 'tf.compat.v1.initializers.local_variables', 'tf.initializers.tables_initializer': 'tf.compat.v1.initializers.tables_initializer', 'tf.initializers.uniform_unit_scaling': 'tf.compat.v1.initializers.uniform_unit_scaling', 'tf.initializers.variables': 'tf.compat.v1.initializers.variables', 'tf.invert_permutation': 'tf.math.invert_permutation', 'tf.io.PaddingFIFOQueue': 'tf.queue.PaddingFIFOQueue', 'tf.io.PriorityQueue': 'tf.queue.PriorityQueue', 'tf.io.QueueBase': 'tf.queue.QueueBase', 'tf.io.RandomShuffleQueue': 'tf.queue.RandomShuffleQueue', 'tf.io.TFRecordCompressionType': 'tf.compat.v1.io.TFRecordCompressionType', 'tf.io.tf_record_iterator': 'tf.compat.v1.io.tf_record_iterator', 'tf.is_finite': 'tf.math.is_finite', 'tf.is_inf': 'tf.math.is_inf', 'tf.is_nan': 'tf.math.is_nan', 'tf.is_non_decreasing': 'tf.math.is_non_decreasing', 'tf.is_numeric_tensor': 'tf.debugging.is_numeric_tensor', 'tf.is_strictly_increasing': 'tf.math.is_strictly_increasing', 'tf.is_variable_initialized': 'tf.compat.v1.is_variable_initialized', 'tf.keras.backend.get_session': 'tf.compat.v1.keras.backend.get_session', 'tf.keras.layers.CuDNNGRU': 'tf.compat.v1.keras.layers.CuDNNGRU', 'tf.keras.layers.CuDNNLSTM': 'tf.compat.v1.keras.layers.CuDNNLSTM', 'tf.keras.losses.cosine': 'tf.keras.losses.cosine_similarity', 'tf.keras.losses.cosine_proximity': 'tf.keras.losses.cosine_similarity', 'tf.keras.metrics.cosine': 'tf.keras.losses.cosine_similarity', 'tf.keras.metrics.cosine_proximity': 'tf.keras.losses.cosine_similarity', 'tf.layers.AveragePooling1D': 'tf.compat.v1.layers.AveragePooling1D', 'tf.layers.AveragePooling2D': 'tf.compat.v1.layers.AveragePooling2D', 'tf.layers.AveragePooling3D': 'tf.compat.v1.layers.AveragePooling3D', 'tf.layers.BatchNormalization': 'tf.compat.v1.layers.BatchNormalization', 'tf.layers.Conv1D': 'tf.compat.v1.layers.Conv1D', 'tf.layers.Conv2D': 'tf.compat.v1.layers.Conv2D', 'tf.layers.Conv2DTranspose': 'tf.compat.v1.layers.Conv2DTranspose', 'tf.layers.Conv3D': 'tf.compat.v1.layers.Conv3D', 'tf.layers.Conv3DTranspose': 'tf.compat.v1.layers.Conv3DTranspose', 'tf.layers.Dense': 'tf.compat.v1.layers.Dense', 'tf.layers.Dropout': 'tf.compat.v1.layers.Dropout', 'tf.layers.Flatten': 'tf.compat.v1.layers.Flatten', 'tf.layers.InputSpec': 'tf.keras.layers.InputSpec', 'tf.layers.Layer': 'tf.compat.v1.layers.Layer', 'tf.layers.MaxPooling1D': 'tf.compat.v1.layers.MaxPooling1D', 'tf.layers.MaxPooling2D': 'tf.compat.v1.layers.MaxPooling2D', 'tf.layers.MaxPooling3D': 'tf.compat.v1.layers.MaxPooling3D', 'tf.layers.SeparableConv1D': 'tf.compat.v1.layers.SeparableConv1D', 'tf.layers.SeparableConv2D': 'tf.compat.v1.layers.SeparableConv2D', 'tf.layers.average_pooling1d': 'tf.compat.v1.layers.average_pooling1d', 'tf.layers.average_pooling2d': 'tf.compat.v1.layers.average_pooling2d', 'tf.layers.average_pooling3d': 'tf.compat.v1.layers.average_pooling3d', 'tf.layers.batch_normalization': 'tf.compat.v1.layers.batch_normalization', 'tf.layers.conv1d': 'tf.compat.v1.layers.conv1d', 'tf.layers.conv2d': 'tf.compat.v1.layers.conv2d', 'tf.layers.conv2d_transpose': 'tf.compat.v1.layers.conv2d_transpose', 'tf.layers.conv3d': 'tf.compat.v1.layers.conv3d', 'tf.layers.conv3d_transpose': 'tf.compat.v1.layers.conv3d_transpose', 'tf.layers.dense': 'tf.compat.v1.layers.dense', 'tf.layers.dropout': 'tf.compat.v1.layers.dropout', 'tf.layers.experimental.keras_style_scope': 'tf.compat.v1.layers.experimental.keras_style_scope', 'tf.layers.experimental.set_keras_style': 'tf.compat.v1.layers.experimental.set_keras_style', 'tf.layers.flatten': 'tf.compat.v1.layers.flatten', 'tf.layers.max_pooling1d': 'tf.compat.v1.layers.max_pooling1d', 'tf.layers.max_pooling2d': 'tf.compat.v1.layers.max_pooling2d', 'tf.layers.max_pooling3d': 'tf.compat.v1.layers.max_pooling3d', 'tf.layers.separable_conv1d': 'tf.compat.v1.layers.separable_conv1d', 'tf.layers.separable_conv2d': 'tf.compat.v1.layers.separable_conv2d', 'tf.lbeta': 'tf.math.lbeta', 'tf.lgamma': 'tf.math.lgamma', 'tf.lin_space': 'tf.linspace', 'tf.linalg.transpose': 'tf.linalg.matrix_transpose', 'tf.lite.OpHint': 'tf.compat.v1.lite.OpHint', 'tf.lite.TocoConverter': 'tf.compat.v1.lite.TocoConverter', 'tf.lite.constants.GRAPHVIZ_DOT': 'tf.compat.v1.lite.constants.GRAPHVIZ_DOT', 'tf.lite.constants.INT8': 'tf.compat.v1.lite.constants.INT8', 'tf.lite.constants.TFLITE': 'tf.compat.v1.lite.constants.TFLITE', 'tf.lite.experimental.convert_op_hints_to_stubs': 'tf.compat.v1.lite.experimental.convert_op_hints_to_stubs', 'tf.lite.experimental.nn.TFLiteLSTMCell': 'tf.compat.v1.lite.experimental.nn.TFLiteLSTMCell', 'tf.lite.experimental.nn.TfLiteRNNCell': 'tf.compat.v1.lite.experimental.nn.TfLiteRNNCell', 'tf.lite.experimental.nn.dynamic_rnn': 'tf.compat.v1.lite.experimental.nn.dynamic_rnn', 'tf.lite.toco_convert': 'tf.compat.v1.lite.toco_convert', 'tf.local_variables': 'tf.compat.v1.local_variables', 'tf.local_variables_initializer': 'tf.compat.v1.local_variables_initializer', 'tf.log': 'tf.math.log', 'tf.log1p': 'tf.math.log1p', 'tf.log_sigmoid': 'tf.math.log_sigmoid', 'tf.logging.DEBUG': 'tf.compat.v1.logging.DEBUG', 'tf.logging.ERROR': 'tf.compat.v1.logging.ERROR', 'tf.logging.FATAL': 'tf.compat.v1.logging.FATAL', 'tf.logging.INFO': 'tf.compat.v1.logging.INFO', 'tf.logging.TaskLevelStatusMessage': 'tf.compat.v1.logging.TaskLevelStatusMessage', 'tf.logging.WARN': 'tf.compat.v1.logging.WARN', 'tf.logging.debug': 'tf.compat.v1.logging.debug', 'tf.logging.error': 'tf.compat.v1.logging.error', 'tf.logging.fatal': 'tf.compat.v1.logging.fatal', 'tf.logging.flush': 'tf.compat.v1.logging.flush', 'tf.logging.get_verbosity': 'tf.compat.v1.logging.get_verbosity', 'tf.logging.info': 'tf.compat.v1.logging.info', 'tf.logging.log': 'tf.compat.v1.logging.log', 'tf.logging.log_every_n': 'tf.compat.v1.logging.log_every_n', 'tf.logging.log_first_n': 'tf.compat.v1.logging.log_first_n', 'tf.logging.log_if': 'tf.compat.v1.logging.log_if', 'tf.logging.set_verbosity': 'tf.compat.v1.logging.set_verbosity', 'tf.logging.vlog': 'tf.compat.v1.logging.vlog', 'tf.logging.warn': 'tf.compat.v1.logging.warn', 'tf.logging.warning': 'tf.compat.v1.logging.warning', 'tf.logical_xor': 'tf.math.logical_xor', 'tf.losses.Reduction': 'tf.compat.v1.losses.Reduction', 'tf.losses.absolute_difference': 'tf.compat.v1.losses.absolute_difference', 'tf.losses.add_loss': 'tf.compat.v1.losses.add_loss', 'tf.losses.compute_weighted_loss': 'tf.compat.v1.losses.compute_weighted_loss', 'tf.losses.cosine_distance': 'tf.compat.v1.losses.cosine_distance', 'tf.losses.get_losses': 'tf.compat.v1.losses.get_losses', 'tf.losses.get_regularization_loss': 'tf.compat.v1.losses.get_regularization_loss', 'tf.losses.get_regularization_losses': 'tf.compat.v1.losses.get_regularization_losses', 'tf.losses.get_total_loss': 'tf.compat.v1.losses.get_total_loss', 'tf.losses.hinge_loss': 'tf.compat.v1.losses.hinge_loss', 'tf.losses.huber_loss': 'tf.compat.v1.losses.huber_loss', 'tf.losses.log_loss': 'tf.compat.v1.losses.log_loss', 'tf.losses.mean_pairwise_squared_error': 'tf.compat.v1.losses.mean_pairwise_squared_error', 'tf.losses.mean_squared_error': 'tf.compat.v1.losses.mean_squared_error', 'tf.losses.sigmoid_cross_entropy': 'tf.compat.v1.losses.sigmoid_cross_entropy', 'tf.losses.softmax_cross_entropy': 'tf.compat.v1.losses.softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy': 'tf.compat.v1.losses.sparse_softmax_cross_entropy', 'tf.make_template': 'tf.compat.v1.make_template', 'tf.make_tensor_proto': 'tf.compat.v1.make_tensor_proto', 'tf.manip.gather_nd': 'tf.compat.v1.manip.gather_nd', 'tf.manip.reshape': 'tf.reshape', 'tf.manip.reverse': 'tf.reverse', 'tf.manip.roll': 'tf.roll', 'tf.manip.scatter_nd': 'tf.scatter_nd', 'tf.manip.space_to_batch_nd': 'tf.space_to_batch_nd', 'tf.manip.tile': 'tf.tile', 'tf.matching_files': 'tf.io.matching_files', 'tf.matrix_band_part': 'tf.linalg.band_part', 'tf.matrix_determinant': 'tf.linalg.det', 'tf.matrix_diag': 'tf.linalg.diag', 'tf.matrix_diag_part': 'tf.linalg.diag_part', 'tf.matrix_inverse': 'tf.linalg.inv', 'tf.matrix_set_diag': 'tf.linalg.set_diag', 'tf.matrix_solve': 'tf.linalg.solve', 'tf.matrix_solve_ls': 'tf.linalg.lstsq', 'tf.matrix_transpose': 'tf.linalg.matrix_transpose', 'tf.matrix_triangular_solve': 'tf.linalg.triangular_solve', 'tf.metrics.accuracy': 'tf.compat.v1.metrics.accuracy', 'tf.metrics.auc': 'tf.compat.v1.metrics.auc', 'tf.metrics.average_precision_at_k': 'tf.compat.v1.metrics.average_precision_at_k', 'tf.metrics.false_negatives': 'tf.compat.v1.metrics.false_negatives', 'tf.metrics.false_negatives_at_thresholds': 'tf.compat.v1.metrics.false_negatives_at_thresholds', 'tf.metrics.false_positives': 'tf.compat.v1.metrics.false_positives', 'tf.metrics.false_positives_at_thresholds': 'tf.compat.v1.metrics.false_positives_at_thresholds', 'tf.metrics.mean': 'tf.compat.v1.metrics.mean', 'tf.metrics.mean_absolute_error': 'tf.compat.v1.metrics.mean_absolute_error', 'tf.metrics.mean_cosine_distance': 'tf.compat.v1.metrics.mean_cosine_distance', 'tf.metrics.mean_iou': 'tf.compat.v1.metrics.mean_iou', 'tf.metrics.mean_per_class_accuracy': 'tf.compat.v1.metrics.mean_per_class_accuracy', 'tf.metrics.mean_relative_error': 'tf.compat.v1.metrics.mean_relative_error', 'tf.metrics.mean_squared_error': 'tf.compat.v1.metrics.mean_squared_error', 'tf.metrics.mean_tensor': 'tf.compat.v1.metrics.mean_tensor', 'tf.metrics.percentage_below': 'tf.compat.v1.metrics.percentage_below', 'tf.metrics.precision': 'tf.compat.v1.metrics.precision', 'tf.metrics.precision_at_k': 'tf.compat.v1.metrics.precision_at_k', 'tf.metrics.precision_at_thresholds': 'tf.compat.v1.metrics.precision_at_thresholds', 'tf.metrics.precision_at_top_k': 'tf.compat.v1.metrics.precision_at_top_k', 'tf.metrics.recall': 'tf.compat.v1.metrics.recall', 'tf.metrics.recall_at_k': 'tf.compat.v1.metrics.recall_at_k', 'tf.metrics.recall_at_thresholds': 'tf.compat.v1.metrics.recall_at_thresholds', 'tf.metrics.recall_at_top_k': 'tf.compat.v1.metrics.recall_at_top_k', 'tf.metrics.root_mean_squared_error': 'tf.compat.v1.metrics.root_mean_squared_error', 'tf.metrics.sensitivity_at_specificity': 'tf.compat.v1.metrics.sensitivity_at_specificity', 'tf.metrics.sparse_average_precision_at_k': 'tf.compat.v1.metrics.sparse_average_precision_at_k', 'tf.metrics.sparse_precision_at_k': 'tf.compat.v1.metrics.sparse_precision_at_k', 'tf.metrics.specificity_at_sensitivity': 'tf.compat.v1.metrics.specificity_at_sensitivity', 'tf.metrics.true_negatives': 'tf.compat.v1.metrics.true_negatives', 'tf.metrics.true_negatives_at_thresholds': 'tf.compat.v1.metrics.true_negatives_at_thresholds', 'tf.metrics.true_positives': 'tf.compat.v1.metrics.true_positives', 'tf.metrics.true_positives_at_thresholds': 'tf.compat.v1.metrics.true_positives_at_thresholds', 'tf.min_max_variable_partitioner': 'tf.compat.v1.min_max_variable_partitioner', 'tf.model_variables': 'tf.compat.v1.model_variables', 'tf.moving_average_variables': 'tf.compat.v1.moving_average_variables', 'tf.nn.avg_pool_v2': 'tf.nn.avg_pool', 'tf.nn.bidirectional_dynamic_rnn': 'tf.compat.v1.nn.bidirectional_dynamic_rnn', 'tf.nn.conv2d_backprop_filter': 'tf.compat.v1.nn.conv2d_backprop_filter', 'tf.nn.conv3d_backprop_filter': 'tf.compat.v1.nn.conv3d_backprop_filter', 'tf.nn.conv3d_backprop_filter_v2': 'tf.compat.v1.nn.conv3d_backprop_filter_v2', 'tf.nn.ctc_beam_search_decoder_v2': 'tf.nn.ctc_beam_search_decoder', 'tf.nn.ctc_loss_v2': 'tf.nn.ctc_loss', 'tf.nn.depthwise_conv2d_native': 'tf.compat.v1.nn.depthwise_conv2d_native', 'tf.nn.depthwise_conv2d_native_backprop_filter': 'tf.nn.depthwise_conv2d_backprop_filter', 'tf.nn.depthwise_conv2d_native_backprop_input': 'tf.nn.depthwise_conv2d_backprop_input', 'tf.nn.dynamic_rnn': 'tf.compat.v1.nn.dynamic_rnn', 'tf.nn.log_uniform_candidate_sampler': 'tf.random.log_uniform_candidate_sampler', 'tf.nn.max_pool_v2': 'tf.nn.max_pool', 'tf.nn.quantized_avg_pool': 'tf.compat.v1.nn.quantized_avg_pool', 'tf.nn.quantized_conv2d': 'tf.compat.v1.nn.quantized_conv2d', 'tf.nn.quantized_max_pool': 'tf.compat.v1.nn.quantized_max_pool', 'tf.nn.quantized_relu_x': 'tf.compat.v1.nn.quantized_relu_x', 'tf.nn.raw_rnn': 'tf.compat.v1.nn.raw_rnn', 'tf.nn.relu_layer': 'tf.compat.v1.nn.relu_layer', 'tf.nn.rnn_cell.BasicLSTMCell': 'tf.compat.v1.nn.rnn_cell.BasicLSTMCell', 'tf.nn.rnn_cell.BasicRNNCell': 'tf.compat.v1.nn.rnn_cell.BasicRNNCell', 'tf.nn.rnn_cell.DeviceWrapper': 'tf.compat.v1.nn.rnn_cell.DeviceWrapper', 'tf.nn.rnn_cell.DropoutWrapper': 'tf.compat.v1.nn.rnn_cell.DropoutWrapper', 'tf.nn.rnn_cell.GRUCell': 'tf.compat.v1.nn.rnn_cell.GRUCell', 'tf.nn.rnn_cell.LSTMCell': 'tf.compat.v1.nn.rnn_cell.LSTMCell', 'tf.nn.rnn_cell.LSTMStateTuple': 'tf.compat.v1.nn.rnn_cell.LSTMStateTuple', 'tf.nn.rnn_cell.MultiRNNCell': 'tf.compat.v1.nn.rnn_cell.MultiRNNCell', 'tf.nn.rnn_cell.RNNCell': 'tf.compat.v1.nn.rnn_cell.RNNCell', 'tf.nn.rnn_cell.ResidualWrapper': 'tf.compat.v1.nn.rnn_cell.ResidualWrapper', 'tf.nn.static_bidirectional_rnn': 'tf.compat.v1.nn.static_bidirectional_rnn', 'tf.nn.static_rnn': 'tf.compat.v1.nn.static_rnn', 'tf.nn.static_state_saving_rnn': 'tf.compat.v1.nn.static_state_saving_rnn', 'tf.nn.uniform_candidate_sampler': 'tf.random.uniform_candidate_sampler', 'tf.nn.xw_plus_b': 'tf.compat.v1.nn.xw_plus_b', 'tf.op_scope': 'tf.compat.v1.op_scope', 'tf.parse_single_sequence_example': 'tf.io.parse_single_sequence_example', 'tf.parse_tensor': 'tf.io.parse_tensor', 'tf.placeholder': 'tf.compat.v1.placeholder', 'tf.placeholder_with_default': 'tf.compat.v1.placeholder_with_default', 'tf.polygamma': 'tf.math.polygamma', 'tf.profiler.AdviceProto': 'tf.compat.v1.profiler.AdviceProto', 'tf.profiler.GraphNodeProto': 'tf.compat.v1.profiler.GraphNodeProto', 'tf.profiler.MultiGraphNodeProto': 'tf.compat.v1.profiler.MultiGraphNodeProto', 'tf.profiler.OpLogProto': 'tf.compat.v1.profiler.OpLogProto', 'tf.profiler.ProfileOptionBuilder': 'tf.compat.v1.profiler.ProfileOptionBuilder', 'tf.profiler.Profiler': 'tf.compat.v1.profiler.Profiler', 'tf.profiler.advise': 'tf.compat.v1.profiler.advise', 'tf.profiler.profile': 'tf.compat.v1.profiler.profile', 'tf.profiler.write_op_log': 'tf.compat.v1.profiler.write_op_log', 'tf.py_func': 'tf.compat.v1.py_func', 'tf.python_io.TFRecordCompressionType': 'tf.compat.v1.python_io.TFRecordCompressionType', 'tf.python_io.TFRecordOptions': 'tf.io.TFRecordOptions', 'tf.python_io.TFRecordWriter': 'tf.io.TFRecordWriter', 'tf.python_io.tf_record_iterator': 'tf.compat.v1.python_io.tf_record_iterator', 'tf.qr': 'tf.linalg.qr', 'tf.quantize': 'tf.quantization.quantize', 'tf.quantized_concat': 'tf.quantization.quantized_concat', 'tf.ragged.RaggedTensorValue': 'tf.compat.v1.ragged.RaggedTensorValue', 'tf.ragged.constant_value': 'tf.compat.v1.ragged.constant_value', 'tf.random.get_seed': 'tf.compat.v1.random.get_seed', 'tf.random.set_random_seed': 'tf.compat.v1.random.set_random_seed', 'tf.random_crop': 'tf.image.random_crop', 'tf.random_gamma': 'tf.random.gamma', 'tf.random_normal': 'tf.random.normal', 'tf.random_shuffle': 'tf.random.shuffle', 'tf.random_uniform': 'tf.random.uniform', 'tf.read_file': 'tf.io.read_file', 'tf.real': 'tf.math.real', 'tf.reciprocal': 'tf.math.reciprocal', 'tf.regex_replace': 'tf.strings.regex_replace', 'tf.report_uninitialized_variables': 'tf.compat.v1.report_uninitialized_variables', 'tf.reset_default_graph': 'tf.compat.v1.reset_default_graph', 'tf.resource_loader.get_data_files_path': 'tf.compat.v1.resource_loader.get_data_files_path', 'tf.resource_loader.get_path_to_datafile': 'tf.compat.v1.resource_loader.get_path_to_datafile', 'tf.resource_loader.get_root_dir_with_all_resources': 'tf.compat.v1.resource_loader.get_root_dir_with_all_resources', 'tf.resource_loader.load_resource': 'tf.compat.v1.resource_loader.load_resource', 'tf.resource_loader.readahead_file_path': 'tf.compat.v1.resource_loader.readahead_file_path', 'tf.resource_variables_enabled': 'tf.compat.v1.resource_variables_enabled', 'tf.reverse_v2': 'tf.reverse', 'tf.rint': 'tf.math.rint', 'tf.rsqrt': 'tf.math.rsqrt', 'tf.saved_model.Builder': 'tf.compat.v1.saved_model.Builder', 'tf.saved_model.LEGACY_INIT_OP_KEY': 'tf.compat.v1.saved_model.LEGACY_INIT_OP_KEY', 'tf.saved_model.MAIN_OP_KEY': 'tf.compat.v1.saved_model.MAIN_OP_KEY', 'tf.saved_model.build_signature_def': 'tf.compat.v1.saved_model.build_signature_def', 'tf.saved_model.build_tensor_info': 'tf.compat.v1.saved_model.build_tensor_info', 'tf.saved_model.builder.SavedModelBuilder': 'tf.compat.v1.saved_model.builder.SavedModelBuilder', 'tf.saved_model.classification_signature_def': 'tf.compat.v1.saved_model.classification_signature_def', 'tf.saved_model.constants.ASSETS_DIRECTORY': 'tf.saved_model.ASSETS_DIRECTORY', 'tf.saved_model.constants.ASSETS_KEY': 'tf.saved_model.ASSETS_KEY', 'tf.saved_model.constants.LEGACY_INIT_OP_KEY': 'tf.compat.v1.saved_model.constants.LEGACY_INIT_OP_KEY', 'tf.saved_model.constants.MAIN_OP_KEY': 'tf.compat.v1.saved_model.constants.MAIN_OP_KEY', 'tf.saved_model.constants.SAVED_MODEL_FILENAME_PB': 'tf.saved_model.SAVED_MODEL_FILENAME_PB', 'tf.saved_model.constants.SAVED_MODEL_FILENAME_PBTXT': 'tf.saved_model.SAVED_MODEL_FILENAME_PBTXT', 'tf.saved_model.constants.SAVED_MODEL_SCHEMA_VERSION': 'tf.saved_model.SAVED_MODEL_SCHEMA_VERSION', 'tf.saved_model.constants.VARIABLES_DIRECTORY': 'tf.saved_model.VARIABLES_DIRECTORY', 'tf.saved_model.constants.VARIABLES_FILENAME': 'tf.saved_model.VARIABLES_FILENAME', 'tf.saved_model.experimental.save': 'tf.saved_model.save', 'tf.saved_model.get_tensor_from_tensor_info': 'tf.compat.v1.saved_model.get_tensor_from_tensor_info', 'tf.saved_model.is_valid_signature': 'tf.compat.v1.saved_model.is_valid_signature', 'tf.saved_model.loader.load': 'tf.compat.v1.saved_model.loader.load', 'tf.saved_model.loader.maybe_saved_model_directory': 'tf.compat.v1.saved_model.loader.maybe_saved_model_directory', 'tf.saved_model.main_op.main_op': 'tf.compat.v1.saved_model.main_op.main_op', 'tf.saved_model.main_op.main_op_with_restore': 'tf.compat.v1.saved_model.main_op.main_op_with_restore', 'tf.saved_model.main_op_with_restore': 'tf.compat.v1.saved_model.main_op_with_restore', 'tf.saved_model.maybe_saved_model_directory': 'tf.compat.v1.saved_model.maybe_saved_model_directory', 'tf.saved_model.predict_signature_def': 'tf.compat.v1.saved_model.predict_signature_def', 'tf.saved_model.regression_signature_def': 'tf.compat.v1.saved_model.regression_signature_def', 'tf.saved_model.signature_constants.CLASSIFY_INPUTS': 'tf.saved_model.CLASSIFY_INPUTS', 'tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME': 'tf.saved_model.CLASSIFY_METHOD_NAME', 'tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES': 'tf.saved_model.CLASSIFY_OUTPUT_CLASSES', 'tf.saved_model.signature_constants.CLASSIFY_OUTPUT_SCORES': 'tf.saved_model.CLASSIFY_OUTPUT_SCORES', 'tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY': 'tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY', 'tf.saved_model.signature_constants.PREDICT_INPUTS': 'tf.saved_model.PREDICT_INPUTS', 'tf.saved_model.signature_constants.PREDICT_METHOD_NAME': 'tf.saved_model.PREDICT_METHOD_NAME', 'tf.saved_model.signature_constants.PREDICT_OUTPUTS': 'tf.saved_model.PREDICT_OUTPUTS', 'tf.saved_model.signature_constants.REGRESS_INPUTS': 'tf.saved_model.REGRESS_INPUTS', 'tf.saved_model.signature_constants.REGRESS_METHOD_NAME': 'tf.saved_model.REGRESS_METHOD_NAME', 'tf.saved_model.signature_constants.REGRESS_OUTPUTS': 'tf.saved_model.REGRESS_OUTPUTS', 'tf.saved_model.signature_def_utils.build_signature_def': 'tf.compat.v1.saved_model.signature_def_utils.build_signature_def', 'tf.saved_model.signature_def_utils.classification_signature_def': 'tf.compat.v1.saved_model.signature_def_utils.classification_signature_def', 'tf.saved_model.signature_def_utils.is_valid_signature': 'tf.compat.v1.saved_model.signature_def_utils.is_valid_signature', 'tf.saved_model.signature_def_utils.predict_signature_def': 'tf.compat.v1.saved_model.signature_def_utils.predict_signature_def', 'tf.saved_model.signature_def_utils.regression_signature_def': 'tf.compat.v1.saved_model.signature_def_utils.regression_signature_def', 'tf.saved_model.simple_save': 'tf.compat.v1.saved_model.simple_save', 'tf.saved_model.tag_constants.GPU': 'tf.saved_model.GPU', 'tf.saved_model.tag_constants.SERVING': 'tf.saved_model.SERVING', 'tf.saved_model.tag_constants.TPU': 'tf.saved_model.TPU', 'tf.saved_model.tag_constants.TRAINING': 'tf.saved_model.TRAINING', 'tf.saved_model.utils.build_tensor_info': 'tf.compat.v1.saved_model.utils.build_tensor_info', 'tf.saved_model.utils.get_tensor_from_tensor_info': 'tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info', 'tf.scatter_add': 'tf.compat.v1.scatter_add', 'tf.scatter_div': 'tf.compat.v1.scatter_div', 'tf.scatter_max': 'tf.compat.v1.scatter_max', 'tf.scatter_min': 'tf.compat.v1.scatter_min', 'tf.scatter_mul': 'tf.compat.v1.scatter_mul', 'tf.scatter_nd_add': 'tf.compat.v1.scatter_nd_add', 'tf.scatter_nd_sub': 'tf.compat.v1.scatter_nd_sub', 'tf.scatter_nd_update': 'tf.compat.v1.scatter_nd_update', 'tf.scatter_sub': 'tf.compat.v1.scatter_sub', 'tf.scatter_update': 'tf.compat.v1.scatter_update', 'tf.segment_max': 'tf.math.segment_max', 'tf.segment_mean': 'tf.math.segment_mean', 'tf.segment_min': 'tf.math.segment_min', 'tf.segment_prod': 'tf.math.segment_prod', 'tf.segment_sum': 'tf.math.segment_sum', 'tf.self_adjoint_eig': 'tf.linalg.eigh', 'tf.self_adjoint_eigvals': 'tf.linalg.eigvalsh', 'tf.serialize_many_sparse': 'tf.compat.v1.serialize_many_sparse', 'tf.serialize_sparse': 'tf.compat.v1.serialize_sparse', 'tf.serialize_tensor': 'tf.io.serialize_tensor', 'tf.set_random_seed': 'tf.compat.v1.set_random_seed', 'tf.setdiff1d': 'tf.compat.v1.setdiff1d', 'tf.sets.set_difference': 'tf.sets.difference', 'tf.sets.set_intersection': 'tf.sets.intersection', 'tf.sets.set_size': 'tf.sets.size', 'tf.sets.set_union': 'tf.sets.union', 'tf.space_to_depth': 'tf.compat.v1.space_to_depth', 'tf.sparse.matmul': 'tf.sparse.sparse_dense_matmul', 'tf.sparse.merge': 'tf.compat.v1.sparse.merge', 'tf.sparse.placeholder': 'tf.compat.v1.sparse.placeholder', 'tf.sparse.reduce_max_sparse': 'tf.compat.v1.sparse.reduce_max_sparse', 'tf.sparse.reduce_sum_sparse': 'tf.compat.v1.sparse.reduce_sum_sparse', 'tf.sparse_fill_empty_rows': 'tf.sparse.fill_empty_rows', 'tf.sparse_mask': 'tf.sparse.mask', 'tf.sparse_maximum': 'tf.sparse.maximum', 'tf.sparse_merge': 'tf.compat.v1.sparse_merge', 'tf.sparse_minimum': 'tf.sparse.minimum', 'tf.sparse_placeholder': 'tf.compat.v1.sparse_placeholder', 'tf.sparse_reduce_max_sparse': 'tf.compat.v1.sparse_reduce_max_sparse', 'tf.sparse_reduce_sum_sparse': 'tf.compat.v1.sparse_reduce_sum_sparse', 'tf.sparse_reorder': 'tf.sparse.reorder', 'tf.sparse_reset_shape': 'tf.sparse.reset_shape', 'tf.sparse_reshape': 'tf.sparse.reshape', 'tf.sparse_retain': 'tf.sparse.retain', 'tf.sparse_segment_mean': 'tf.compat.v1.sparse_segment_mean', 'tf.sparse_segment_sqrt_n': 'tf.compat.v1.sparse_segment_sqrt_n', 'tf.sparse_segment_sum': 'tf.compat.v1.sparse_segment_sum', 'tf.sparse_slice': 'tf.sparse.slice', 'tf.sparse_softmax': 'tf.sparse.softmax', 'tf.sparse_tensor_dense_matmul': 'tf.sparse.sparse_dense_matmul', 'tf.sparse_tensor_to_dense': 'tf.sparse.to_dense', 'tf.sparse_to_dense': 'tf.compat.v1.sparse_to_dense', 'tf.sparse_to_indicator': 'tf.sparse.to_indicator', 'tf.sparse_transpose': 'tf.sparse.transpose', 'tf.spectral.dct': 'tf.signal.dct', 'tf.spectral.fft': 'tf.signal.fft', 'tf.spectral.fft2d': 'tf.signal.fft2d', 'tf.spectral.fft3d': 'tf.signal.fft3d', 'tf.spectral.idct': 'tf.signal.idct', 'tf.spectral.ifft': 'tf.signal.ifft', 'tf.spectral.ifft2d': 'tf.signal.ifft2d', 'tf.spectral.ifft3d': 'tf.signal.ifft3d', 'tf.spectral.irfft': 'tf.signal.irfft', 'tf.spectral.irfft2d': 'tf.signal.irfft2d', 'tf.spectral.irfft3d': 'tf.signal.irfft3d', 'tf.spectral.rfft': 'tf.signal.rfft', 'tf.spectral.rfft2d': 'tf.signal.rfft2d', 'tf.spectral.rfft3d': 'tf.signal.rfft3d', 'tf.squared_difference': 'tf.math.squared_difference', 'tf.string_join': 'tf.strings.join', 'tf.string_strip': 'tf.strings.strip', 'tf.string_to_hash_bucket_fast': 'tf.strings.to_hash_bucket_fast', 'tf.string_to_hash_bucket_strong': 'tf.strings.to_hash_bucket_strong', 'tf.summary.Event': 'tf.compat.v1.summary.Event', 'tf.summary.FileWriter': 'tf.compat.v1.summary.FileWriter', 'tf.summary.FileWriterCache': 'tf.compat.v1.summary.FileWriterCache', 'tf.summary.SessionLog': 'tf.compat.v1.summary.SessionLog', 'tf.summary.Summary': 'tf.compat.v1.summary.Summary', 'tf.summary.SummaryDescription': 'tf.compat.v1.summary.SummaryDescription', 'tf.summary.TaggedRunMetadata': 'tf.compat.v1.summary.TaggedRunMetadata', 'tf.summary.audio': 'tf.compat.v1.summary.audio', 'tf.summary.get_summary_description': 'tf.compat.v1.summary.get_summary_description', 'tf.summary.histogram': 'tf.compat.v1.summary.histogram', 'tf.summary.image': 'tf.compat.v1.summary.image', 'tf.summary.initialize': 'tf.compat.v1.summary.initialize', 'tf.summary.merge': 'tf.compat.v1.summary.merge', 'tf.summary.merge_all': 'tf.compat.v1.summary.merge_all', 'tf.summary.scalar': 'tf.compat.v1.summary.scalar', 'tf.summary.tensor_summary': 'tf.compat.v1.summary.tensor_summary', 'tf.summary.text': 'tf.compat.v1.summary.text', 'tf.svd': 'tf.linalg.svd', 'tf.tables_initializer': 'tf.compat.v1.tables_initializer', 'tf.tensor_scatter_add': 'tf.tensor_scatter_nd_add', 'tf.tensor_scatter_sub': 'tf.tensor_scatter_nd_sub', 'tf.tensor_scatter_update': 'tf.tensor_scatter_nd_update', 'tf.test.StubOutForTesting': 'tf.compat.v1.test.StubOutForTesting', 'tf.test.compute_gradient_error': 'tf.compat.v1.test.compute_gradient_error', 'tf.test.get_temp_dir': 'tf.compat.v1.test.get_temp_dir', 'tf.test.mock': 'tf.compat.v1.test.mock', 'tf.test.test_src_dir_path': 'tf.compat.v1.test.test_src_dir_path', 'tf.to_bfloat16': 'tf.compat.v1.to_bfloat16', 'tf.to_complex128': 'tf.compat.v1.to_complex128', 'tf.to_complex64': 'tf.compat.v1.to_complex64', 'tf.to_double': 'tf.compat.v1.to_double', 'tf.to_float': 'tf.compat.v1.to_float', 'tf.to_int32': 'tf.compat.v1.to_int32', 'tf.to_int64': 'tf.compat.v1.to_int64', 'tf.trace': 'tf.linalg.trace', 'tf.train.AdadeltaOptimizer': 'tf.compat.v1.train.AdadeltaOptimizer', 'tf.train.AdagradDAOptimizer': 'tf.compat.v1.train.AdagradDAOptimizer', 'tf.train.AdagradOptimizer': 'tf.compat.v1.train.AdagradOptimizer', 'tf.train.AdamOptimizer': 'tf.compat.v1.train.AdamOptimizer', 'tf.train.CheckpointSaverHook': 'tf.estimator.CheckpointSaverHook', 'tf.train.CheckpointSaverListener': 'tf.estimator.CheckpointSaverListener', 'tf.train.ChiefSessionCreator': 'tf.compat.v1.train.ChiefSessionCreator', 'tf.train.FeedFnHook': 'tf.estimator.FeedFnHook', 'tf.train.FinalOpsHook': 'tf.estimator.FinalOpsHook', 'tf.train.FtrlOptimizer': 'tf.compat.v1.train.FtrlOptimizer', 'tf.train.GlobalStepWaiterHook': 'tf.estimator.GlobalStepWaiterHook', 'tf.train.GradientDescentOptimizer': 'tf.compat.v1.train.GradientDescentOptimizer', 'tf.train.LoggingTensorHook': 'tf.estimator.LoggingTensorHook', 'tf.train.LooperThread': 'tf.compat.v1.train.LooperThread', 'tf.train.MomentumOptimizer': 'tf.compat.v1.train.MomentumOptimizer', 'tf.train.MonitoredSession': 'tf.compat.v1.train.MonitoredSession', 'tf.train.MonitoredTrainingSession': 'tf.compat.v1.train.MonitoredTrainingSession', 'tf.train.NanLossDuringTrainingError': 'tf.estimator.NanLossDuringTrainingError', 'tf.train.NanTensorHook': 'tf.estimator.NanTensorHook', 'tf.train.NewCheckpointReader': 'tf.compat.v1.train.NewCheckpointReader', 'tf.train.Optimizer': 'tf.compat.v1.train.Optimizer', 'tf.train.ProfilerHook': 'tf.estimator.ProfilerHook', 'tf.train.ProximalAdagradOptimizer': 'tf.compat.v1.train.ProximalAdagradOptimizer', 'tf.train.ProximalGradientDescentOptimizer': 'tf.compat.v1.train.ProximalGradientDescentOptimizer', 'tf.train.QueueRunner': 'tf.compat.v1.train.QueueRunner', 'tf.train.RMSPropOptimizer': 'tf.compat.v1.train.RMSPropOptimizer', 'tf.train.Saver': 'tf.compat.v1.train.Saver', 'tf.train.SaverDef': 'tf.compat.v1.train.SaverDef', 'tf.train.Scaffold': 'tf.compat.v1.train.Scaffold', 'tf.train.SecondOrStepTimer': 'tf.estimator.SecondOrStepTimer', 'tf.train.Server': 'tf.distribute.Server', 'tf.train.SessionCreator': 'tf.compat.v1.train.SessionCreator', 'tf.train.SessionManager': 'tf.compat.v1.train.SessionManager', 'tf.train.SessionRunArgs': 'tf.estimator.SessionRunArgs', 'tf.train.SessionRunContext': 'tf.estimator.SessionRunContext', 'tf.train.SessionRunHook': 'tf.estimator.SessionRunHook', 'tf.train.SessionRunValues': 'tf.estimator.SessionRunValues', 'tf.train.SingularMonitoredSession': 'tf.compat.v1.train.SingularMonitoredSession', 'tf.train.StepCounterHook': 'tf.estimator.StepCounterHook', 'tf.train.StopAtStepHook': 'tf.estimator.StopAtStepHook', 'tf.train.SummarySaverHook': 'tf.estimator.SummarySaverHook', 'tf.train.Supervisor': 'tf.compat.v1.train.Supervisor', 'tf.train.SyncReplicasOptimizer': 'tf.compat.v1.train.SyncReplicasOptimizer', 'tf.train.VocabInfo': 'tf.estimator.VocabInfo', 'tf.train.WorkerSessionCreator': 'tf.compat.v1.train.WorkerSessionCreator', 'tf.train.add_queue_runner': 'tf.compat.v1.train.add_queue_runner', 'tf.train.assert_global_step': 'tf.compat.v1.train.assert_global_step', 'tf.train.basic_train_loop': 'tf.compat.v1.train.basic_train_loop', 'tf.train.batch': 'tf.compat.v1.train.batch', 'tf.train.batch_join': 'tf.compat.v1.train.batch_join', 'tf.train.checkpoint_exists': 'tf.compat.v1.train.checkpoint_exists', 'tf.train.cosine_decay': 'tf.compat.v1.train.cosine_decay', 'tf.train.cosine_decay_restarts': 'tf.compat.v1.train.cosine_decay_restarts', 'tf.train.create_global_step': 'tf.compat.v1.train.create_global_step', 'tf.train.do_quantize_training_on_graphdef': 'tf.compat.v1.train.do_quantize_training_on_graphdef', 'tf.train.experimental.MixedPrecisionLossScaleOptimizer': 'tf.compat.v1.train.experimental.MixedPrecisionLossScaleOptimizer', 'tf.train.exponential_decay': 'tf.compat.v1.train.exponential_decay', 'tf.train.export_meta_graph': 'tf.compat.v1.train.export_meta_graph', 'tf.train.generate_checkpoint_state_proto': 'tf.compat.v1.train.generate_checkpoint_state_proto', 'tf.train.get_checkpoint_mtimes': 'tf.compat.v1.train.get_checkpoint_mtimes', 'tf.train.get_global_step': 'tf.compat.v1.train.get_global_step', 'tf.train.get_or_create_global_step': 'tf.compat.v1.train.get_or_create_global_step', 'tf.train.global_step': 'tf.compat.v1.train.global_step', 'tf.train.import_meta_graph': 'tf.compat.v1.train.import_meta_graph', 'tf.train.init_from_checkpoint': 'tf.compat.v1.train.init_from_checkpoint', 'tf.train.input_producer': 'tf.compat.v1.train.input_producer', 'tf.train.inverse_time_decay': 'tf.compat.v1.train.inverse_time_decay', 'tf.train.limit_epochs': 'tf.compat.v1.train.limit_epochs', 'tf.train.linear_cosine_decay': 'tf.compat.v1.train.linear_cosine_decay', 'tf.train.match_filenames_once': 'tf.io.match_filenames_once', 'tf.train.maybe_batch': 'tf.compat.v1.train.maybe_batch', 'tf.train.maybe_batch_join': 'tf.compat.v1.train.maybe_batch_join', 'tf.train.maybe_shuffle_batch': 'tf.compat.v1.train.maybe_shuffle_batch', 'tf.train.maybe_shuffle_batch_join': 'tf.compat.v1.train.maybe_shuffle_batch_join', 'tf.train.natural_exp_decay': 'tf.compat.v1.train.natural_exp_decay', 'tf.train.noisy_linear_cosine_decay': 'tf.compat.v1.train.noisy_linear_cosine_decay', 'tf.train.piecewise_constant': 'tf.compat.v1.train.piecewise_constant', 'tf.train.piecewise_constant_decay': 'tf.compat.v1.train.piecewise_constant_decay', 'tf.train.polynomial_decay': 'tf.compat.v1.train.polynomial_decay', 'tf.train.queue_runner.QueueRunner': 'tf.compat.v1.train.queue_runner.QueueRunner', 'tf.train.queue_runner.add_queue_runner': 'tf.compat.v1.train.queue_runner.add_queue_runner', 'tf.train.queue_runner.start_queue_runners': 'tf.compat.v1.train.queue_runner.start_queue_runners', 'tf.train.range_input_producer': 'tf.compat.v1.train.range_input_producer', 'tf.train.remove_checkpoint': 'tf.compat.v1.train.remove_checkpoint', 'tf.train.replica_device_setter': 'tf.compat.v1.train.replica_device_setter', 'tf.train.shuffle_batch': 'tf.compat.v1.train.shuffle_batch', 'tf.train.shuffle_batch_join': 'tf.compat.v1.train.shuffle_batch_join', 'tf.train.slice_input_producer': 'tf.compat.v1.train.slice_input_producer', 'tf.train.start_queue_runners': 'tf.compat.v1.train.start_queue_runners', 'tf.train.string_input_producer': 'tf.compat.v1.train.string_input_producer', 'tf.train.summary_iterator': 'tf.compat.v1.train.summary_iterator', 'tf.train.update_checkpoint_state': 'tf.compat.v1.train.update_checkpoint_state', 'tf.train.warm_start': 'tf.compat.v1.train.warm_start', 'tf.train.write_graph': 'tf.io.write_graph', 'tf.trainable_variables': 'tf.compat.v1.trainable_variables', 'tf.truncated_normal': 'tf.random.truncated_normal', 'tf.uniform_unit_scaling_initializer': 'tf.compat.v1.uniform_unit_scaling_initializer', 'tf.unsorted_segment_max': 'tf.math.unsorted_segment_max', 'tf.unsorted_segment_mean': 'tf.math.unsorted_segment_mean', 'tf.unsorted_segment_min': 'tf.math.unsorted_segment_min', 'tf.unsorted_segment_prod': 'tf.math.unsorted_segment_prod', 'tf.unsorted_segment_sqrt_n': 'tf.math.unsorted_segment_sqrt_n', 'tf.unsorted_segment_sum': 'tf.math.unsorted_segment_sum', 'tf.variable_axis_size_partitioner': 'tf.compat.v1.variable_axis_size_partitioner', 'tf.variable_op_scope': 'tf.compat.v1.variable_op_scope', 'tf.variable_scope': 'tf.compat.v1.variable_scope', 'tf.variables_initializer': 'tf.compat.v1.variables_initializer', 'tf.verify_tensor_all_finite': 'tf.compat.v1.verify_tensor_all_finite', 'tf.wrap_function': 'tf.compat.v1.wrap_function', 'tf.write_file': 'tf.io.write_file', 'tf.zeta': 'tf.math.zeta' }
apache-2.0
kelseyoo14/Wander
venv_2_7/lib/python2.7/site-packages/IPython/lib/tests/test_latextools.py
8
3877
# encoding: utf-8 """Tests for IPython.utils.path.py""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. try: from unittest.mock import patch except ImportError: from mock import patch import nose.tools as nt from IPython.lib import latextools from IPython.testing.decorators import onlyif_cmds_exist, skipif_not_matplotlib from IPython.utils.process import FindCmdError def test_latex_to_png_dvipng_fails_when_no_cmd(): """ `latex_to_png_dvipng` should return None when there is no required command """ for command in ['latex', 'dvipng']: yield (check_latex_to_png_dvipng_fails_when_no_cmd, command) def check_latex_to_png_dvipng_fails_when_no_cmd(command): def mock_find_cmd(arg): if arg == command: raise FindCmdError with patch.object(latextools, "find_cmd", mock_find_cmd): nt.assert_equals(latextools.latex_to_png_dvipng("whatever", True), None) @onlyif_cmds_exist('latex', 'dvipng') def test_latex_to_png_dvipng_runs(): """ Test that latex_to_png_dvipng just runs without error. """ def mock_kpsewhich(filename): nt.assert_equals(filename, "breqn.sty") return None for (s, wrap) in [(u"$$x^2$$", False), (u"x^2", True)]: yield (latextools.latex_to_png_dvipng, s, wrap) with patch.object(latextools, "kpsewhich", mock_kpsewhich): yield (latextools.latex_to_png_dvipng, s, wrap) @skipif_not_matplotlib def test_latex_to_png_mpl_runs(): """ Test that latex_to_png_mpl just runs without error. """ def mock_kpsewhich(filename): nt.assert_equals(filename, "breqn.sty") return None for (s, wrap) in [("$x^2$", False), ("x^2", True)]: yield (latextools.latex_to_png_mpl, s, wrap) with patch.object(latextools, "kpsewhich", mock_kpsewhich): yield (latextools.latex_to_png_mpl, s, wrap) @skipif_not_matplotlib def test_latex_to_html(): img = latextools.latex_to_html("$x^2$") nt.assert_in("", img) def test_genelatex_no_wrap(): """ Test genelatex with wrap=False. """ def mock_kpsewhich(filename): assert False, ("kpsewhich should not be called " "(called with {0})".format(filename)) with patch.object(latextools, "kpsewhich", mock_kpsewhich): nt.assert_equals( '\n'.join(latextools.genelatex("body text", False)), r'''\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amssymb} \usepackage{bm} \pagestyle{empty} \begin{document} body text \end{document}''') def test_genelatex_wrap_with_breqn(): """ Test genelatex with wrap=True for the case breqn.sty is installed. """ def mock_kpsewhich(filename): nt.assert_equals(filename, "breqn.sty") return "path/to/breqn.sty" with patch.object(latextools, "kpsewhich", mock_kpsewhich): nt.assert_equals( '\n'.join(latextools.genelatex("x^2", True)), r'''\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amssymb} \usepackage{bm} \usepackage{breqn} \pagestyle{empty} \begin{document} \begin{dmath*} x^2 \end{dmath*} \end{document}''') def test_genelatex_wrap_without_breqn(): """ Test genelatex with wrap=True for the case breqn.sty is not installed. """ def mock_kpsewhich(filename): nt.assert_equals(filename, "breqn.sty") return None with patch.object(latextools, "kpsewhich", mock_kpsewhich): nt.assert_equals( '\n'.join(latextools.genelatex("x^2", True)), r'''\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amssymb} \usepackage{bm} \pagestyle{empty} \begin{document} $$x^2$$ \end{document}''')
artistic-2.0
drpngx/tensorflow
tensorflow/contrib/gan/python/estimator/python/gan_estimator_test.py
9
12615
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TFGAN's estimator.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import tempfile import numpy as np import six from tensorflow.contrib import layers from tensorflow.contrib.gan.python import namedtuples from tensorflow.contrib.gan.python.estimator.python import gan_estimator_impl as estimator from tensorflow.contrib.gan.python.losses.python import tuple_losses as losses from tensorflow.contrib.learn.python.learn.learn_io import graph_io from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.estimator import model_fn as model_fn_lib from tensorflow.python.estimator.canned import head as head_lib from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import metrics as metrics_lib from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import input as input_lib from tensorflow.python.training import learning_rate_decay from tensorflow.python.training import monitored_session from tensorflow.python.training import training from tensorflow.python.training import training_util def generator_fn(noise_dict, mode): del mode noise = noise_dict['x'] return layers.fully_connected(noise, noise.shape[1].value) def discriminator_fn(data, unused_conditioning, mode): del unused_conditioning, mode return layers.fully_connected(data, 1) def mock_head(testcase, expected_generator_inputs, expected_real_data, generator_scope_name): """Returns a mock head that validates logits values and variable names.""" discriminator_scope_name = 'Discriminator' # comes from TFGAN defaults generator_var_names = set([ '%s/fully_connected/weights:0' % generator_scope_name, '%s/fully_connected/biases:0' % generator_scope_name]) discriminator_var_names = set([ '%s/fully_connected/weights:0' % discriminator_scope_name, '%s/fully_connected/biases:0' % discriminator_scope_name]) def _create_estimator_spec(features, mode, logits, labels): gan_model = logits # renaming for clarity is_predict = mode == model_fn_lib.ModeKeys.PREDICT testcase.assertIsNone(features) testcase.assertIsNone(labels) testcase.assertIsInstance(gan_model, namedtuples.GANModel) trainable_vars = ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES) expected_var_names = (generator_var_names if is_predict else generator_var_names | discriminator_var_names) testcase.assertItemsEqual(expected_var_names, [var.name for var in trainable_vars]) assertions = [] def _or_none(x): return None if is_predict else x testcase.assertEqual(expected_generator_inputs, gan_model.generator_inputs) # TODO(joelshor): Add check on `generated_data`. testcase.assertItemsEqual( generator_var_names, set([x.name for x in gan_model.generator_variables])) testcase.assertEqual(generator_scope_name, gan_model.generator_scope.name) testcase.assertEqual(_or_none(expected_real_data), gan_model.real_data) # TODO(joelshor): Add check on `discriminator_real_outputs`. # TODO(joelshor): Add check on `discriminator_gen_outputs`. if is_predict: testcase.assertIsNone(gan_model.discriminator_scope) else: testcase.assertEqual(discriminator_scope_name, gan_model.discriminator_scope.name) with ops.control_dependencies(assertions): if mode == model_fn_lib.ModeKeys.TRAIN: return model_fn_lib.EstimatorSpec( mode=mode, loss=array_ops.zeros([]), train_op=control_flow_ops.no_op(), training_hooks=[]) elif mode == model_fn_lib.ModeKeys.EVAL: return model_fn_lib.EstimatorSpec( mode=mode, predictions=gan_model.generated_data, loss=array_ops.zeros([])) elif mode == model_fn_lib.ModeKeys.PREDICT: return model_fn_lib.EstimatorSpec( mode=mode, predictions=gan_model.generated_data) else: testcase.fail('Invalid mode: {}'.format(mode)) head = test.mock.NonCallableMagicMock(spec=head_lib._Head) head.create_estimator_spec = test.mock.MagicMock( wraps=_create_estimator_spec) return head class GANModelFnTest(test.TestCase): """Tests that _gan_model_fn passes expected logits to mock head.""" def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_logits_helper(self, mode): """Tests that the expected logits are passed to mock head.""" with ops.Graph().as_default(): training_util.get_or_create_global_step() generator_inputs = {'x': array_ops.zeros([5, 4])} real_data = (None if mode == model_fn_lib.ModeKeys.PREDICT else array_ops.zeros([5, 4])) generator_scope_name = 'generator' head = mock_head(self, expected_generator_inputs=generator_inputs, expected_real_data=real_data, generator_scope_name=generator_scope_name) estimator_spec = estimator._gan_model_fn( features=generator_inputs, labels=real_data, mode=mode, generator_fn=generator_fn, discriminator_fn=discriminator_fn, generator_scope_name=generator_scope_name, head=head) with monitored_session.MonitoredTrainingSession( checkpoint_dir=self._model_dir) as sess: if mode == model_fn_lib.ModeKeys.TRAIN: sess.run(estimator_spec.train_op) elif mode == model_fn_lib.ModeKeys.EVAL: sess.run(estimator_spec.loss) elif mode == model_fn_lib.ModeKeys.PREDICT: sess.run(estimator_spec.predictions) else: self.fail('Invalid mode: {}'.format(mode)) def test_logits_predict(self): self._test_logits_helper(model_fn_lib.ModeKeys.PREDICT) def test_logits_eval(self): self._test_logits_helper(model_fn_lib.ModeKeys.EVAL) def test_logits_train(self): self._test_logits_helper(model_fn_lib.ModeKeys.TRAIN) # TODO(joelshor): Add pandas test. class GANEstimatorIntegrationTest(test.TestCase): def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow( self, train_input_fn, eval_input_fn, predict_input_fn, prediction_size, lr_decay=False): def make_opt(): gstep = training_util.get_or_create_global_step() lr = learning_rate_decay.exponential_decay(1.0, gstep, 10, 0.9) return training.GradientDescentOptimizer(lr) def get_metrics(gan_model): return { 'mse_custom_metric': metrics_lib.mean_squared_error( gan_model.real_data, gan_model.generated_data) } gopt = make_opt if lr_decay else training.GradientDescentOptimizer(1.0) dopt = make_opt if lr_decay else training.GradientDescentOptimizer(1.0) est = estimator.GANEstimator( generator_fn=generator_fn, discriminator_fn=discriminator_fn, generator_loss_fn=losses.wasserstein_generator_loss, discriminator_loss_fn=losses.wasserstein_discriminator_loss, generator_optimizer=gopt, discriminator_optimizer=dopt, get_eval_metric_ops_fn=get_metrics, model_dir=self._model_dir) # TRAIN num_steps = 10 est.train(train_input_fn, steps=num_steps) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn('loss', six.iterkeys(scores)) self.assertEqual(scores['discriminator_loss'] + scores['generator_loss'], scores['loss']) self.assertIn('mse_custom_metric', six.iterkeys(scores)) # PREDICT predictions = np.array([x for x in est.predict(predict_input_fn)]) self.assertAllEqual(prediction_size, predictions.shape) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" input_dim = 4 batch_size = 5 data = np.zeros([batch_size, input_dim]) train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, prediction_size=[batch_size, input_dim]) def test_numpy_input_fn_lrdecay(self): """Tests complete flow with numpy_input_fn.""" input_dim = 4 batch_size = 5 data = np.zeros([batch_size, input_dim]) train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, prediction_size=[batch_size, input_dim], lr_decay=True) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" input_dim = 4 batch_size = 6 data = np.zeros([batch_size, input_dim]) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), 'y': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=datum)), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dim], dtypes.float32), 'y': parsing_ops.FixedLenFeature([input_dim], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example( serialized_examples, feature_spec) _, features = graph_io.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) _, features = graph_io.queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) _, features = graph_io.queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, prediction_size=[batch_size, input_dim]) if __name__ == '__main__': test.main()
apache-2.0
wxgeo/geophar
wxgeometrie/sympy/utilities/runtests.py
1
85989
""" This is our testing framework. Goals: * it should be compatible with py.test and operate very similarly (or identically) * doesn't require any external dependencies * preferably all the functionality should be in this file only * no magic, just import the test file and execute the test functions, that's it * portable """ from __future__ import print_function, division import os import sys import platform import inspect import traceback import pdb import re import linecache import time from fnmatch import fnmatch from timeit import default_timer as clock import doctest as pdoctest # avoid clashing with our doctest() function from doctest import DocTestFinder, DocTestRunner import random import subprocess import signal import stat from sympy.core.cache import clear_cache from sympy.core.compatibility import exec_, PY3, string_types, range, unwrap from sympy.utilities.misc import find_executable from sympy.external import import_module from sympy.utilities.exceptions import SymPyDeprecationWarning IS_WINDOWS = (os.name == 'nt') ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None) # emperically generated list of the proportion of time spent running # an even split of tests. This should periodically be regenerated. # A list of [.6, .1, .3] would mean that if the tests are evenly split # into '1/3', '2/3', '3/3', the first split would take 60% of the time, # the second 10% and the third 30%. These lists are normalized to sum # to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3]. # # This list can be generated with the code: # from time import time # import sympy # # delays, num_splits = [], 30 # for i in range(1, num_splits + 1): # tic = time() # sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # delays.append(time() - tic) # tot = sum(delays) # print([round(x / tot, 4) for x in delays])) SPLIT_DENSITY = [0.2464, 0.0507, 0.0328, 0.0113, 0.0418, 0.012, 0.0269, 0.0095, 0.091, 0.0215, 0.001, 0.0023, 0.0116, 0.0137, 0.0041, 0.0039, 0.0145, 0.0172, 0.059, 0.0017, 0.0112, 0.0128, 0.0012, 0.0293, 0.0705, 0.0284, 0.1495, 0.0073, 0.0052, 0.0115] SPLIT_DENSITY_SLOW = [0.3616, 0.0003, 0.0004, 0.0004, 0.0255, 0.0005, 0.0674, 0.0337, 0.1057, 0.0329, 0.0002, 0.0002, 0.0184, 0.0028, 0.0046, 0.0148, 0.0046, 0.0083, 0.0004, 0.0002, 0.0069, 0.0004, 0.0004, 0.0046, 0.0205, 0.1378, 0.1451, 0.0003, 0.0006, 0.0006] class Skipped(Exception): pass class TimeOutError(Exception): pass # add more flags ?? future_flags = division.compiler_flag def _indent(s, indent=4): """ Add the given number of space characters to the beginning of every non-blank line in ``s``, and return the result. If the string ``s`` is Unicode, it is encoded using the stdout encoding and the ``backslashreplace`` error handler. """ # After a 2to3 run the below code is bogus, so wrap it with a version check if not PY3: if isinstance(s, unicode): s = s.encode(pdoctest._encoding, 'backslashreplace') # This regexp matches the start of non-blank lines: return re.sub('(?m)^(?!$)', indent*' ', s) pdoctest._indent = _indent # override reporter to maintain windows and python3 def _report_failure(self, out, test, example, got): """ Report that the given example failed. """ s = self._checker.output_difference(example, got, self.optionflags) s = s.encode('raw_unicode_escape').decode('utf8', 'ignore') out(self._failure_header(test, example) + s) if PY3 and IS_WINDOWS: DocTestRunner.report_failure = _report_failure def convert_to_native_paths(lst): """ Converts a list of '/' separated paths into a list of native (os.sep separated) paths and converts to lowercase if the system is case insensitive. """ newlst = [] for i, rv in enumerate(lst): rv = os.path.join(*rv.split("/")) # on windows the slash after the colon is dropped if sys.platform == "win32": pos = rv.find(':') if pos != -1: if rv[pos + 1] != '\\': rv = rv[:pos + 1] + '\\' + rv[pos + 1:] newlst.append(os.path.normcase(rv)) return newlst def get_sympy_dir(): """ Returns the root sympy directory and set the global value indicating whether the system is case sensitive or not. """ this_file = os.path.abspath(__file__) sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..") sympy_dir = os.path.normpath(sympy_dir) return os.path.normcase(sympy_dir) def setup_pprint(): from sympy import pprint_use_unicode, init_printing # force pprint to be in ascii mode in doctests pprint_use_unicode(False) # hook our nice, hash-stable strprinter init_printing(pretty_print=False) def run_in_subprocess_with_hash_randomization( function, function_args=(), function_kwargs=None, command=sys.executable, module='sympy.utilities.runtests', force=False): """ Run a function in a Python subprocess with hash randomization enabled. If hash randomization is not supported by the version of Python given, it returns False. Otherwise, it returns the exit value of the command. The function is passed to sys.exit(), so the return value of the function will be the return value. The environment variable PYTHONHASHSEED is used to seed Python's hash randomization. If it is set, this function will return False, because starting a new subprocess is unnecessary in that case. If it is not set, one is set at random, and the tests are run. Note that if this environment variable is set when Python starts, hash randomization is automatically enabled. To force a subprocess to be created even if PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a subprocess in Python versions that do not support hash randomization (see below), because those versions of Python do not support the ``-R`` flag. ``function`` should be a string name of a function that is importable from the module ``module``, like "_test". The default for ``module`` is "sympy.utilities.runtests". ``function_args`` and ``function_kwargs`` should be a repr-able tuple and dict, respectively. The default Python command is sys.executable, which is the currently running Python command. This function is necessary because the seed for hash randomization must be set by the environment variable before Python starts. Hence, in order to use a predetermined seed for tests, we must start Python in a separate subprocess. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. Examples ======== >>> from sympy.utilities.runtests import ( ... run_in_subprocess_with_hash_randomization) >>> # run the core tests in verbose mode >>> run_in_subprocess_with_hash_randomization("_test", ... function_args=("core",), ... function_kwargs={'verbose': True}) # doctest: +SKIP # Will return 0 if sys.executable supports hash randomization and tests # pass, 1 if they fail, and False if it does not support hash # randomization. """ # Note, we must return False everywhere, not None, as subprocess.call will # sometimes return None. # First check if the Python version supports hash randomization # If it doesn't have this support, it won't reconize the -R flag p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) p.communicate() if p.returncode != 0: return False hash_seed = os.getenv("PYTHONHASHSEED") if not hash_seed: os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32)) else: if not force: return False function_kwargs = function_kwargs or {} # Now run the command commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" % (module, function, function, repr(function_args), repr(function_kwargs))) try: p = subprocess.Popen([command, "-R", "-c", commandstring]) p.communicate() except KeyboardInterrupt: p.wait() finally: # Put the environment variable back, so that it reads correctly for # the current Python process. if hash_seed is None: del os.environ["PYTHONHASHSEED"] else: os.environ["PYTHONHASHSEED"] = hash_seed return p.returncode def run_all_tests(test_args=(), test_kwargs=None, doctest_args=(), doctest_kwargs=None, examples_args=(), examples_kwargs=None): """ Run all tests. Right now, this runs the regular tests (bin/test), the doctests (bin/doctest), the examples (examples/all.py), and the sage tests (see sympy/external/tests/test_sage.py). This is what ``setup.py test`` uses. You can pass arguments and keyword arguments to the test functions that support them (for now, test, doctest, and the examples). See the docstrings of those functions for a description of the available options. For example, to run the solvers tests with colors turned off: >>> from sympy.utilities.runtests import run_all_tests >>> run_all_tests(test_args=("solvers",), ... test_kwargs={"colors:False"}) # doctest: +SKIP """ tests_successful = True test_kwargs = test_kwargs or {} doctest_kwargs = doctest_kwargs or {} examples_kwargs = examples_kwargs or {'quiet': True} try: # Regular tests if not test(*test_args, **test_kwargs): # some regular test fails, so set the tests_successful # flag to false and continue running the doctests tests_successful = False # Doctests print() if not doctest(*doctest_args, **doctest_kwargs): tests_successful = False # Examples print() sys.path.append("examples") from all import run_examples # examples/all.py if not run_examples(*examples_args, **examples_kwargs): tests_successful = False # Sage tests if sys.platform != "win32" and not PY3 and os.path.exists("bin/test"): # run Sage tests; Sage currently doesn't support Windows or Python 3 # Only run Sage tests if 'bin/test' is present (it is missing from # our release because everything in the 'bin' directory gets # installed). dev_null = open(os.devnull, 'w') if subprocess.call("sage -v", shell=True, stdout=dev_null, stderr=dev_null) == 0: if subprocess.call("sage -python bin/test " "sympy/external/tests/test_sage.py", shell=True, cwd=os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) != 0: tests_successful = False if tests_successful: return else: # Return nonzero exit code sys.exit(1) except KeyboardInterrupt: print() print("DO *NOT* COMMIT!") sys.exit(1) def test(*paths, **kwargs): """ Run tests in the specified test_*.py files. Tests in a particular test_*.py file are run if any of the given strings in ``paths`` matches a part of the test file's path. If ``paths=[]``, tests in all test_*.py files are run. Notes: - If sort=False, tests are run in random order (not default). - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. **Explanation of test results** ====== =============================================================== Output Meaning ====== =============================================================== . passed F failed X XPassed (expected to fail but passed) f XFAILed (expected to fail and indeed failed) s skipped w slow T timeout (e.g., when ``--timeout`` is used) K KeyboardInterrupt (when running the slow tests with ``--slow``, you can interrupt one of them without killing the test runner) ====== =============================================================== Colors have no additional meaning and are used just to facilitate interpreting the output. Examples ======== >>> import sympy Run all tests: >>> sympy.test() # doctest: +SKIP Run one file: >>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP >>> sympy.test("_basic") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.test("sympy/core/tests/test_basic.py", ... "sympy/functions") # doctest: +SKIP Run all tests in sympy/core and sympy/utilities: >>> sympy.test("/core", "/util") # doctest: +SKIP Run specific test from a file: >>> sympy.test("sympy/core/tests/test_basic.py", ... kw="test_equality") # doctest: +SKIP Run specific test from any file: >>> sympy.test(kw="subs") # doctest: +SKIP Run the tests with verbose mode on: >>> sympy.test(verbose=True) # doctest: +SKIP Don't sort the test output: >>> sympy.test(sort=False) # doctest: +SKIP Turn on post-mortem pdb: >>> sympy.test(pdb=True) # doctest: +SKIP Turn off colors: >>> sympy.test(colors=False) # doctest: +SKIP Force colors, even when the output is not to a terminal (this is useful, e.g., if you are piping to ``less -r`` and you still want colors) >>> sympy.test(force_colors=False) # doctest: +SKIP The traceback verboseness can be set to "short" or "no" (default is "short") >>> sympy.test(tb='no') # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. For instance, to run the first half of the test suite: >>> sympy.test(split='1/2') # doctest: +SKIP The ``time_balance`` option can be passed in conjunction with ``split``. If ``time_balance=True`` (the default for ``sympy.test``), sympy will attempt to split the tests such that each split takes equal time. This heuristic for balancing is based on pre-recorded test data. >>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP You can disable running the tests in a separate subprocess using ``subprocess=False``. This is done to support seeding hash randomization, which is enabled by default in the Python versions where it is supported. If subprocess=False, hash randomization is enabled/disabled according to whether it has been enabled or not in the calling Python process. However, even if it is enabled, the seed cannot be printed unless it is called from a new Python process. Hash randomization was added in the minor Python versions 2.6.8, 2.7.3, 3.1.5, and 3.2.3, and is enabled by default in all Python versions after and including 3.3.0. If hash randomization is not supported ``subprocess=False`` is used automatically. >>> sympy.test(subprocess=False) # doctest: +SKIP To set the hash randomization seed, set the environment variable ``PYTHONHASHSEED`` before running the tests. This can be done from within Python using >>> import os >>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP Or from the command line using $ PYTHONHASHSEED=42 ./bin/test If the seed is not set, a random seed will be chosen. Note that to reproduce the same hash values, you must use both the same seed as well as the same architecture (32-bit vs. 64-bit). """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_test", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_test(*paths, **kwargs)) if not val or i == 0: return val def _test(*paths, **kwargs): """ Internal function that actually runs the tests. All keyword arguments from ``test()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstring of ``test()`` for more information. """ verbose = kwargs.get("verbose", False) tb = kwargs.get("tb", "short") kw = kwargs.get("kw", None) or () # ensure that kw is a tuple if isinstance(kw, str): kw = (kw, ) post_mortem = kwargs.get("pdb", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) sort = kwargs.get("sort", True) seed = kwargs.get("seed", None) if seed is None: seed = random.randrange(100000000) timeout = kwargs.get("timeout", False) fail_on_timeout = kwargs.get("fail_on_timeout", False) if ON_TRAVIS and timeout is False: # Travis times out if no activity is seen for 10 minutes. timeout = 595 fail_on_timeout = True slow = kwargs.get("slow", False) enhance_asserts = kwargs.get("enhance_asserts", False) split = kwargs.get('split', None) time_balance = kwargs.get('time_balance', True) blacklist = kwargs.get('blacklist', []) blacklist = convert_to_native_paths(blacklist) fast_threshold = kwargs.get('fast_threshold', None) slow_threshold = kwargs.get('slow_threshold', None) r = PyTestReporter(verbose=verbose, tb=tb, colors=colors, force_colors=force_colors, split=split) t = SymPyTests(r, kw, post_mortem, seed, fast_threshold=fast_threshold, slow_threshold=slow_threshold) # Disable warnings for external modules import sympy.external sympy.external.importtools.WARN_OLD_VERSION = False sympy.external.importtools.WARN_NOT_INSTALLED = False # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') test_files = t.get_test_files('sympy') not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break density = None if time_balance: if slow: density = SPLIT_DENSITY_SLOW else: density = SPLIT_DENSITY if split: matched = split_list(matched, split, density=density) t._testfiles.extend(matched) return int(not t.test(sort=sort, timeout=timeout, slow=slow, enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout)) def doctest(*paths, **kwargs): r""" Runs doctests in all \*.py files in the sympy directory which match any of the given strings in ``paths`` or all tests if paths=[]. Notes: - Paths can be entered in native system format or in unix, forward-slash format. - Files that are on the blacklist can be tested by providing their path; they are only excluded if no paths are given. Examples ======== >>> import sympy Run all tests: >>> sympy.doctest() # doctest: +SKIP Run one file: >>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP >>> sympy.doctest("polynomial.rst") # doctest: +SKIP Run all tests in sympy/functions/ and some particular file: >>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP Run any file having polynomial in its name, doc/src/modules/polynomial.rst, sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py: >>> sympy.doctest("polynomial") # doctest: +SKIP The ``split`` option can be passed to split the test run into parts. The split currently only splits the test files, though this may change in the future. ``split`` should be a string of the form 'a/b', which will run part ``a`` of ``b``. Note that the regular doctests and the Sphinx doctests are split independently. For instance, to run the first half of the test suite: >>> sympy.doctest(split='1/2') # doctest: +SKIP The ``subprocess`` and ``verbose`` options are the same as with the function ``test()``. See the docstring of that function for more information. """ subprocess = kwargs.pop("subprocess", True) rerun = kwargs.pop("rerun", 0) # count up from 0, do not print 0 print_counter = lambda i : (print("rerun %d" % (rerun-i)) if rerun-i else None) if subprocess: # loop backwards so last i is 0 for i in range(rerun, -1, -1): print_counter(i) ret = run_in_subprocess_with_hash_randomization("_doctest", function_args=paths, function_kwargs=kwargs) if ret is False: break val = not bool(ret) # exit on the first failure or if done if not val or i == 0: return val # rerun even if hash randomization is not supported for i in range(rerun, -1, -1): print_counter(i) val = not bool(_doctest(*paths, **kwargs)) if not val or i == 0: return val def _doctest(*paths, **kwargs): """ Internal function that actually runs the doctests. All keyword arguments from ``doctest()`` are passed to this function except for ``subprocess``. Returns 0 if tests passed and 1 if they failed. See the docstrings of ``doctest()`` and ``test()`` for more information. """ normal = kwargs.get("normal", False) verbose = kwargs.get("verbose", False) colors = kwargs.get("colors", True) force_colors = kwargs.get("force_colors", False) blacklist = kwargs.get("blacklist", []) split = kwargs.get('split', None) blacklist.extend([ "doc/src/modules/plotting.rst", # generates live plots "sympy/physics/gaussopt.py", # raises deprecation warning "sympy/galgebra.py", # raises ImportError "sympy/this.py", # Prints text to the terminal "sympy/matrices/densearith.py", # raises deprecation warning "sympy/matrices/densesolve.py", # raises deprecation warning "sympy/matrices/densetools.py", # raises deprecation warning "sympy/physics/unitsystems.py", # raises deprecation warning "sympy/parsing/latex/_antlr/latexlexer.py", # generated code "sympy/parsing/latex/_antlr/latexparser.py", # generated code ]) if import_module('numpy') is None: blacklist.extend([ "sympy/plotting/experimental_lambdify.py", "sympy/plotting/plot_implicit.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py", "examples/intermediate/sample.py", "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py", "doc/src/modules/numeric-computation.rst" ]) else: if import_module('matplotlib') is None: blacklist.extend([ "examples/intermediate/mplot2d.py", "examples/intermediate/mplot3d.py" ]) else: # Use a non-windowed backend, so that the tests work on Travis import matplotlib matplotlib.use('Agg') # don't display matplotlib windows from sympy.plotting.plot import unset_show unset_show() if import_module('pyglet') is None: blacklist.extend(["sympy/plotting/pygletplot"]) if import_module('theano') is None: blacklist.extend(["doc/src/modules/numeric-computation.rst"]) # disabled because of doctest failures in asmeurer's bot blacklist.extend([ "sympy/utilities/autowrap.py", "examples/advanced/autowrap_integrators.py", "examples/advanced/autowrap_ufuncify.py" ]) # blacklist these modules until issue 4840 is resolved blacklist.extend([ "sympy/conftest.py", "sympy/utilities/benchmarking.py" ]) blacklist = convert_to_native_paths(blacklist) # Disable warnings for external modules import sympy.external sympy.external.importtools.WARN_OLD_VERSION = False sympy.external.importtools.WARN_NOT_INSTALLED = False # Show deprecation warnings import warnings warnings.simplefilter("error", SymPyDeprecationWarning) warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*') r = PyTestReporter(verbose, split=split, colors=colors,\ force_colors=force_colors) t = SymPyDocTests(r, normal) test_files = t.get_test_files('sympy') test_files.extend(t.get_test_files('examples', init_only=False)) not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # take only what was requested...but not blacklisted items # and allow for partial match anywhere or fnmatch of name paths = convert_to_native_paths(paths) matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) t._testfiles.extend(matched) # run the tests and record the result for this *py portion of the tests if t._testfiles: failed = not t.test() else: failed = False # N.B. # -------------------------------------------------------------------- # Here we test *.rst files at or below doc/src. Code from these must # be self supporting in terms of imports since there is no importing # of necessary modules by doctest.testfile. If you try to pass *.py # files through this they might fail because they will lack the needed # imports and smarter parsing that can be done with source code. # test_files = t.get_test_files('doc/src', '*.rst', init_only=False) test_files.sort() not_blacklisted = [f for f in test_files if not any(b in f for b in blacklist)] if len(paths) == 0: matched = not_blacklisted else: # Take only what was requested as long as it's not on the blacklist. # Paths were already made native in *py tests so don't repeat here. # There's no chance of having a *py file slip through since we # only have *rst files in test_files. matched = [] for f in not_blacklisted: basename = os.path.basename(f) for p in paths: if p in f or fnmatch(basename, p): matched.append(f) break if split: matched = split_list(matched, split) setup_pprint() first_report = True for rst_file in matched: if not os.path.isfile(rst_file): continue old_displayhook = sys.displayhook try: out = sympytestfile( rst_file, module_relative=False, encoding='utf-8', optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) finally: # make sure we return to the original displayhook in case some # doctest has changed that sys.displayhook = old_displayhook rstfailed, tested = out if tested: failed = rstfailed or failed if first_report: first_report = False msg = 'rst doctests start' if not t._testfiles: r.start(msg=msg) else: r.write_center(msg) print() # use as the id, everything past the first 'sympy' file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:] print(file_id, end=" ") # get at least the name out so it is know who is being tested wid = r.terminal_width - len(file_id) - 1 # update width test_file = '[%s]' % (tested) report = '[%s]' % (rstfailed or 'OK') print(''.join( [test_file, ' '*(wid - len(test_file) - len(report)), report]) ) # the doctests for *py will have printed this message already if there was # a failure, so now only print it if there was intervening reporting by # testing the *rst as evidenced by first_report no longer being True. if not first_report and failed: print() print("DO *NOT* COMMIT!") return int(failed) sp = re.compile(r'([0-9]+)/([1-9][0-9]*)') def split_list(l, split, density=None): """ Splits a list into part a of b split should be a string of the form 'a/b'. For instance, '1/3' would give the split one of three. If the length of the list is not divisible by the number of splits, the last split will have more items. `density` may be specified as a list. If specified, tests will be balanced so that each split has as equal-as-possible amount of mass according to `density`. >>> from sympy.utilities.runtests import split_list >>> a = list(range(10)) >>> split_list(a, '1/3') [0, 1, 2] >>> split_list(a, '2/3') [3, 4, 5] >>> split_list(a, '3/3') [6, 7, 8, 9] """ m = sp.match(split) if not m: raise ValueError("split must be a string of the form a/b where a and b are ints") i, t = map(int, m.groups()) if not density: return l[(i - 1)*len(l)//t : i*len(l)//t] # normalize density tot = sum(density) density = [x / tot for x in density] def density_inv(x): """Interpolate the inverse to the cumulative distribution function given by density""" if x <= 0: return 0 if x >= sum(density): return 1 # find the first time the cumulative sum surpasses x # and linearly interpolate cumm = 0 for i, d in enumerate(density): cumm += d if cumm >= x: break frac = (d - (cumm - x)) / d return (i + frac) / len(density) lower_frac = density_inv((i - 1) / t) higher_frac = density_inv(i / t) return l[int(lower_frac*len(l)) : int(higher_frac*len(l))] from collections import namedtuple SymPyTestResults = namedtuple('TestResults', 'failed attempted') def sympytestfile(filename, module_relative=True, name=None, package=None, globs=None, verbose=None, report=True, optionflags=0, extraglobs=None, raise_on_error=False, parser=pdoctest.DocTestParser(), encoding=None): """ Test examples in the given file. Return (#failures, #tests). Optional keyword arg ``module_relative`` specifies how filenames should be interpreted: - If ``module_relative`` is True (the default), then ``filename`` specifies a module-relative path. By default, this path is relative to the calling module's directory; but if the ``package`` argument is specified, then it is relative to that package. To ensure os-independence, ``filename`` should use "/" characters to separate path segments, and should not be an absolute path (i.e., it may not begin with "/"). - If ``module_relative`` is False, then ``filename`` specifies an os-specific path. The path may be absolute or relative (to the current working directory). Optional keyword arg ``name`` gives the name of the test; by default use the file's basename. Optional keyword argument ``package`` is a Python package or the name of a Python package whose directory should be used as the base directory for a module relative filename. If no package is specified, then the calling module's directory is used as the base directory for module relative filenames. It is an error to specify ``package`` if ``module_relative`` is False. Optional keyword arg ``globs`` gives a dict to be used as the globals when executing examples; by default, use {}. A copy of this dict is actually used for each docstring, so that each docstring's examples start with a clean slate. Optional keyword arg ``extraglobs`` gives a dictionary that should be merged into the globals that are used to execute examples. By default, no extra globals are used. Optional keyword arg ``verbose`` prints lots of stuff if true, prints only failures if false; by default, it's true iff "-v" is in sys.argv. Optional keyword arg ``report`` prints a summary at the end when true, else prints nothing at the end. In verbose mode, the summary is detailed, else very brief (in fact, empty if all tests passed). Optional keyword arg ``optionflags`` or's together module constants, and defaults to 0. Possible values (see the docs for details): - DONT_ACCEPT_TRUE_FOR_1 - DONT_ACCEPT_BLANKLINE - NORMALIZE_WHITESPACE - ELLIPSIS - SKIP - IGNORE_EXCEPTION_DETAIL - REPORT_UDIFF - REPORT_CDIFF - REPORT_NDIFF - REPORT_ONLY_FIRST_FAILURE Optional keyword arg ``raise_on_error`` raises an exception on the first unexpected exception or failure. This allows failures to be post-mortem debugged. Optional keyword arg ``parser`` specifies a DocTestParser (or subclass) that should be used to extract tests from the files. Optional keyword arg ``encoding`` specifies an encoding that should be used to convert the file to unicode. Advanced tomfoolery: testmod runs methods of a local instance of class doctest.Tester, then merges the results into (or creates) global Tester instance doctest.master. Methods of doctest.master can be called directly too, if you want to do something unusual. Passing report=0 to testmod is especially useful then, to delay displaying a summary. Invoke doctest.master.summarize(verbose) when you're done fiddling. """ if package and not module_relative: raise ValueError("Package may only be specified for module-" "relative paths.") # Relativize the path if not PY3: text, filename = pdoctest._load_testfile( filename, package, module_relative) if encoding is not None: text = text.decode(encoding) else: text, filename = pdoctest._load_testfile( filename, package, module_relative, encoding) # If no name was given, then use the file's name. if name is None: name = os.path.basename(filename) # Assemble the globals. if globs is None: globs = {} else: globs = globs.copy() if extraglobs is not None: globs.update(extraglobs) if '__name__' not in globs: globs['__name__'] = '__main__' if raise_on_error: runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags) else: runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags) runner._checker = SymPyOutputChecker() # Read the file, convert it to a test, and run it. test = parser.get_doctest(text, globs, name, filename, 0) runner.run(test, compileflags=future_flags) if report: runner.summarize() if pdoctest.master is None: pdoctest.master = runner else: pdoctest.master.merge(runner) return SymPyTestResults(runner.failures, runner.tries) class SymPyTests(object): def __init__(self, reporter, kw="", post_mortem=False, seed=None, fast_threshold=None, slow_threshold=None): self._post_mortem = post_mortem self._kw = kw self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._testfiles = [] self._seed = seed if seed is not None else random.random() # Defaults in seconds, from human / UX design limits # http://www.nngroup.com/articles/response-times-3-important-limits/ # # These defaults are *NOT* set in stone as we are measuring different # things, so others feel free to come up with a better yardstick :) if fast_threshold: self._fast_threshold = float(fast_threshold) else: self._fast_threshold = 0.1 if slow_threshold: self._slow_threshold = float(slow_threshold) else: self._slow_threshold = 10 def test(self, sort=False, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): """ Runs the tests returning True if all tests pass, otherwise False. If sort=False run tests in random order. """ if sort: self._testfiles.sort() elif slow: pass else: random.seed(self._seed) random.shuffle(self._testfiles) self._reporter.start(self._seed) for f in self._testfiles: try: self.test_file(f, sort, timeout, slow, enhance_asserts, fail_on_timeout) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def _enhance_asserts(self, source): from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple, Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations) ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=', "Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not', "In": 'in', "NotIn": 'not in'} class Transform(NodeTransformer): def visit_Assert(self, stmt): if isinstance(stmt.test, Compare): compare = stmt.test values = [compare.left] + compare.comparators names = [ "_%s" % i for i, _ in enumerate(values) ] names_store = [ Name(n, Store()) for n in names ] names_load = [ Name(n, Load()) for n in names ] target = Tuple(names_store, Store()) value = Tuple(values, Load()) assign = Assign([target], value) new_compare = Compare(names_load[0], compare.ops, names_load[1:]) msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s" msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load())) test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset) return [assign, test] else: return stmt tree = parse(source) new_tree = Transform().visit(tree) return fix_missing_locations(new_tree) def test_file(self, filename, sort=True, timeout=False, slow=False, enhance_asserts=False, fail_on_timeout=False): reporter = self._reporter funcs = [] try: gl = {'__file__': filename} try: if PY3: open_file = lambda: open(filename, encoding="utf8") else: open_file = lambda: open(filename) with open_file() as f: source = f.read() if self._kw: for l in source.splitlines(): if l.lstrip().startswith('def '): if any(l.find(k) != -1 for k in self._kw): break else: return if enhance_asserts: try: source = self._enhance_asserts(source) except ImportError: pass code = compile(source, filename, "exec") exec_(code, gl) except (SystemExit, KeyboardInterrupt): raise except ImportError: reporter.import_error(filename, sys.exc_info()) return except Exception: reporter.test_exception(sys.exc_info()) clear_cache() self._count += 1 random.seed(self._seed) disabled = gl.get("disabled", False) if not disabled: # we need to filter only those functions that begin with 'test_' # We have to be careful about decorated functions. As long as # the decorator uses functools.wraps, we can detect it. funcs = [] for f in gl: if (f.startswith("test_") and (inspect.isfunction(gl[f]) or inspect.ismethod(gl[f]))): func = gl[f] # Handle multiple decorators while hasattr(func, '__wrapped__'): func = func.__wrapped__ if inspect.getsourcefile(func) == filename: funcs.append(gl[f]) if slow: funcs = [f for f in funcs if getattr(f, '_slow', False)] # Sorting of XFAILed functions isn't fixed yet :-( funcs.sort(key=lambda x: inspect.getsourcelines(x)[1]) i = 0 while i < len(funcs): if inspect.isgeneratorfunction(funcs[i]): # some tests can be generators, that return the actual # test functions. We unpack it below: f = funcs.pop(i) for fg in f(): func = fg[0] args = fg[1:] fgw = lambda: func(*args) funcs.insert(i, fgw) i += 1 else: i += 1 # drop functions that are not selected with the keyword expression: funcs = [x for x in funcs if self.matches(x)] if not funcs: return except Exception: reporter.entering_filename(filename, len(funcs)) raise reporter.entering_filename(filename, len(funcs)) if not sort: random.shuffle(funcs) for f in funcs: start = time.time() reporter.entering_test(f) try: if getattr(f, '_slow', False) and not slow: raise Skipped("Slow") if timeout: self._timeout(f, timeout, fail_on_timeout) else: random.seed(self._seed) f() except KeyboardInterrupt: if getattr(f, '_slow', False): reporter.test_skip("KeyboardInterrupt") else: raise except Exception: if timeout: signal.alarm(0) # Disable the alarm. It could not be handled before. t, v, tr = sys.exc_info() if t is AssertionError: reporter.test_fail((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) elif t.__name__ == "Skipped": reporter.test_skip(v) elif t.__name__ == "XFail": reporter.test_xfail() elif t.__name__ == "XPass": reporter.test_xpass(v) else: reporter.test_exception((t, v, tr)) if self._post_mortem: pdb.post_mortem(tr) else: reporter.test_pass() taken = time.time() - start if taken > self._slow_threshold: reporter.slow_test_functions.append((f.__name__, taken)) if getattr(f, '_slow', False) and slow: if taken < self._fast_threshold: reporter.fast_test_functions.append((f.__name__, taken)) reporter.leaving_filename() def _timeout(self, function, timeout, fail_on_timeout): def callback(x, y): signal.alarm(0) if fail_on_timeout: raise TimeOutError("Timed out after %d seconds" % timeout) else: raise Skipped("Timeout") signal.signal(signal.SIGALRM, callback) signal.alarm(timeout) # Set an alarm with a given timeout function() signal.alarm(0) # Disable the alarm def matches(self, x): """ Does the keyword expression self._kw match "x"? Returns True/False. Always returns True if self._kw is "". """ if not self._kw: return True for kw in self._kw: if x.__name__.find(kw) != -1: return True return False def get_test_files(self, dir, pat='test_*.py'): """ Returns the list of test_*.py (default) files at or below directory ``dir`` relative to the sympy home directory. """ dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)]) return sorted([os.path.normcase(gi) for gi in g]) class SymPyDocTests(object): def __init__(self, reporter, normal): self._count = 0 self._root_dir = sympy_dir self._reporter = reporter self._reporter.root_dir(self._root_dir) self._normal = normal self._testfiles = [] def test(self): """ Runs the tests and returns True if all tests pass, otherwise False. """ self._reporter.start() for f in self._testfiles: try: self.test_file(f) except KeyboardInterrupt: print(" interrupted by user") self._reporter.finish() raise return self._reporter.finish() def test_file(self, filename): clear_cache() from sympy.core.compatibility import StringIO rel_name = filename[len(self._root_dir) + 1:] dirname, file = os.path.split(filename) module = rel_name.replace(os.sep, '.')[:-3] if rel_name.startswith("examples"): # Examples files do not have __init__.py files, # So we have to temporarily extend sys.path to import them sys.path.insert(0, dirname) module = file[:-3] # remove ".py" setup_pprint() try: module = pdoctest._normalize_module(module) tests = SymPyDocTestFinder().find(module) except (SystemExit, KeyboardInterrupt): raise except ImportError: self._reporter.import_error(filename, sys.exc_info()) return finally: if rel_name.startswith("examples"): del sys.path[0] tests = [test for test in tests if len(test.examples) > 0] # By default tests are sorted by alphabetical order by function name. # We sort by line number so one can edit the file sequentially from # bottom to top. However, if there are decorated functions, their line # numbers will be too large and for now one must just search for these # by text and function name. tests.sort(key=lambda x: -x.lineno) if not tests: return self._reporter.entering_filename(filename, len(tests)) for test in tests: assert len(test.examples) != 0 # check if there are external dependencies which need to be met if '_doctest_depends_on' in test.globs: has_dependencies = self._process_dependencies(test.globs['_doctest_depends_on']) if has_dependencies is not True: # has_dependencies is either True or a message self._reporter.test_skip(v="\n" + has_dependencies) continue if self._reporter._verbose: self._reporter.write("\n{} ".format(test.name)) runner = SymPyDocTestRunner(optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE | pdoctest.IGNORE_EXCEPTION_DETAIL) runner._checker = SymPyOutputChecker() old = sys.stdout new = StringIO() sys.stdout = new # If the testing is normal, the doctests get importing magic to # provide the global namespace. If not normal (the default) then # then must run on their own; all imports must be explicit within # a function's docstring. Once imported that import will be # available to the rest of the tests in a given function's # docstring (unless clear_globs=True below). if not self._normal: test.globs = {} # if this is uncommented then all the test would get is what # comes by default with a "from sympy import *" #exec('from sympy import *') in test.globs test.globs['print_function'] = print_function try: f, t = runner.run(test, compileflags=future_flags, out=new.write, clear_globs=False) except KeyboardInterrupt: raise finally: sys.stdout = old if f > 0: self._reporter.doctest_fail(test.name, new.getvalue()) else: self._reporter.test_pass() self._reporter.leaving_filename() def get_test_files(self, dir, pat='*.py', init_only=True): r""" Returns the list of \*.py files (default) from which docstrings will be tested which are at or below directory ``dir``. By default, only those that have an __init__.py in their parent directory and do not start with ``test_`` will be included. """ def importable(x): """ Checks if given pathname x is an importable module by checking for __init__.py file. Returns True/False. Currently we only test if the __init__.py file exists in the directory with the file "x" (in theory we should also test all the parent dirs). """ init_py = os.path.join(os.path.dirname(x), "__init__.py") return os.path.exists(init_py) dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0]) g = [] for path, folders, files in os.walk(dir): g.extend([os.path.join(path, f) for f in files if not f.startswith('test_') and fnmatch(f, pat)]) if init_only: # skip files that are not importable (i.e. missing __init__.py) g = [x for x in g if importable(x)] return [os.path.normcase(gi) for gi in g] def _process_dependencies(self, deps): """ Returns ``False`` if some dependencies are not met and the test should be skipped otherwise returns ``True``. """ executables = deps.get('exe', None) moduledeps = deps.get('modules', None) viewers = deps.get('disable_viewers', None) pyglet = deps.get('pyglet', None) # print deps if executables is not None: for ex in executables: found = find_executable(ex) if found is None: return "Could not find %s" % ex if moduledeps is not None: for extmod in moduledeps: if extmod == 'matplotlib': matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.0.0', catch=(RuntimeError,)) if matplotlib is not None: pass else: return "Could not import matplotlib" else: # TODO min version support mod = import_module(extmod) if mod is not None: version = "unknown" if hasattr(mod, '__version__'): version = mod.__version__ else: return "Could not import %s" % mod if viewers is not None: import tempfile tempdir = tempfile.mkdtemp() os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH']) if PY3: vw = '#!/usr/bin/env python3\n' \ 'import sys\n' \ 'if len(sys.argv) <= 1:\n' \ ' exit("wrong number of args")\n' else: vw = '#!/usr/bin/env python\n' \ 'import sys\n' \ 'if len(sys.argv) <= 1:\n' \ ' exit("wrong number of args")\n' for viewer in viewers: with open(os.path.join(tempdir, viewer), 'w') as fh: fh.write(vw) # make the file executable os.chmod(os.path.join(tempdir, viewer), stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR) if pyglet: # monkey-patch pyglet s.t. it does not open a window during # doctesting import pyglet class DummyWindow(object): def __init__(self, *args, **kwargs): self.has_exit=True self.width = 600 self.height = 400 def set_vsync(self, x): pass def switch_to(self): pass def push_handlers(self, x): pass def close(self): pass pyglet.window.Window = DummyWindow return True class SymPyDocTestFinder(DocTestFinder): """ A class used to extract the DocTests that are relevant to a given object, from its docstring and the docstrings of its contained objects. Doctests can currently be extracted from the following object types: modules, functions, classes, methods, staticmethods, classmethods, and properties. Modified from doctest's version to look harder for code that appears comes from a different module. For example, the @vectorize decorator makes it look like functions come from multidimensional.py even though their code exists elsewhere. """ def _find(self, tests, obj, name, module, source_lines, globs, seen): """ Find tests for the given object and any contained objects, and add them to ``tests``. """ if self._verbose: print('Finding tests in %s' % name) # If we've already processed this object, then ignore it. if id(obj) in seen: return seen[id(obj)] = 1 # Make sure we don't run doctests for classes outside of sympy, such # as in numpy or scipy. if inspect.isclass(obj): if obj.__module__.split('.')[0] != 'sympy': return # Find a test for this object, and add it to the list of tests. test = self._get_test(obj, name, module, globs, source_lines) if test is not None: tests.append(test) if not self._recurse: return # Look for tests in a module's contained objects. if inspect.ismodule(obj): for rawname, val in obj.__dict__.items(): # Recurse to functions & classes. if inspect.isfunction(val) or inspect.isclass(val): # Make sure we don't run doctests functions or classes # from different modules if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (rawname %s)" % (val, module, rawname) try: valname = '%s.%s' % (name, rawname) self._find(tests, val, valname, module, source_lines, globs, seen) except KeyboardInterrupt: raise # Look for tests in a module's __test__ dictionary. for valname, val in getattr(obj, '__test__', {}).items(): if not isinstance(valname, string_types): raise ValueError("SymPyDocTestFinder.find: __test__ keys " "must be strings: %r" % (type(valname),)) if not (inspect.isfunction(val) or inspect.isclass(val) or inspect.ismethod(val) or inspect.ismodule(val) or isinstance(val, string_types)): raise ValueError("SymPyDocTestFinder.find: __test__ values " "must be strings, functions, methods, " "classes, or modules: %r" % (type(val),)) valname = '%s.__test__.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) # Look for tests in a class's contained objects. if inspect.isclass(obj): for valname, val in obj.__dict__.items(): # Special handling for staticmethod/classmethod. if isinstance(val, staticmethod): val = getattr(obj, valname) if isinstance(val, classmethod): val = getattr(obj, valname).__func__ # Recurse to methods, properties, and nested classes. if ((inspect.isfunction(unwrap(val)) or inspect.isclass(val) or isinstance(val, property)) and self._from_module(module, val)): # Make sure we don't run doctests functions or classes # from different modules if isinstance(val, property): if hasattr(val.fget, '__module__'): if val.fget.__module__ != module.__name__: continue else: if val.__module__ != module.__name__: continue assert self._from_module(module, val), \ "%s is not in module %s (valname %s)" % ( val, module, valname) valname = '%s.%s' % (name, valname) self._find(tests, val, valname, module, source_lines, globs, seen) def _get_test(self, obj, name, module, globs, source_lines): """ Return a DocTest for the given object, if it defines a docstring; otherwise, return None. """ lineno = None # Extract the object's docstring. If it doesn't have one, # then return None (no test for this object). if isinstance(obj, string_types): # obj is a string in the case for objects in the polys package. # Note that source_lines is a binary string (compiled polys # modules), which can't be handled by _find_lineno so determine # the line number here. docstring = obj matches = re.findall(r"line \d+", name) assert len(matches) == 1, \ "string '%s' does not contain lineno " % name # NOTE: this is not the exact linenumber but its better than no # lineno ;) lineno = int(matches[0][5:]) else: try: if obj.__doc__ is None: docstring = '' else: docstring = obj.__doc__ if not isinstance(docstring, string_types): docstring = str(docstring) except (TypeError, AttributeError): docstring = '' # Don't bother if the docstring is empty. if self._exclude_empty and not docstring: return None # check that properties have a docstring because _find_lineno # assumes it if isinstance(obj, property): if obj.fget.__doc__ is None: return None # Find the docstring's location in the file. if lineno is None: obj = unwrap(obj) # handling of properties is not implemented in _find_lineno so do # it here if hasattr(obj, 'func_closure') and obj.func_closure is not None: tobj = obj.func_closure[0].cell_contents elif isinstance(obj, property): tobj = obj.fget else: tobj = obj lineno = self._find_lineno(tobj, source_lines) if lineno is None: return None # Return a DocTest for this object. if module is None: filename = None else: filename = getattr(module, '__file__', module.__name__) if filename[-4:] in (".pyc", ".pyo"): filename = filename[:-1] if hasattr(obj, '_doctest_depends_on'): globs['_doctest_depends_on'] = obj._doctest_depends_on else: globs['_doctest_depends_on'] = {} return self._parser.get_doctest(docstring, globs, name, filename, lineno) class SymPyDocTestRunner(DocTestRunner): """ A class used to run DocTest test cases, and accumulate statistics. The ``run`` method is used to process a single DocTest case. It returns a tuple ``(f, t)``, where ``t`` is the number of test cases tried, and ``f`` is the number of test cases that failed. Modified from the doctest version to not reset the sys.displayhook (see issue 5140). See the docstring of the original DocTestRunner for more information. """ def run(self, test, compileflags=None, out=None, clear_globs=True): """ Run the examples in ``test``, and display the results using the writer function ``out``. The examples are run in the namespace ``test.globs``. If ``clear_globs`` is true (the default), then this namespace will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace after the test completes, then use ``clear_globs=False``. ``compileflags`` gives the set of flags that should be used by the Python compiler when running the examples. If not specified, then it will default to the set of future-import flags that apply to ``globs``. The output of each example is checked using ``SymPyDocTestRunner.check_output``, and the results are formatted by the ``SymPyDocTestRunner.report_*`` methods. """ self.test = test if compileflags is None: compileflags = pdoctest._extract_future_flags(test.globs) save_stdout = sys.stdout if out is None: out = save_stdout.write sys.stdout = self._fakeout # Patch pdb.set_trace to restore sys.stdout during interactive # debugging (so it's not still redirected to self._fakeout). # Note that the interactive output will go to *our* # save_stdout, even if that's not the real sys.stdout; this # allows us to write test cases for the set_trace behavior. save_set_trace = pdb.set_trace self.debugger = pdoctest._OutputRedirectingPdb(save_stdout) self.debugger.reset() pdb.set_trace = self.debugger.set_trace # Patch linecache.getlines, so we can see the example's source # when we're inside the debugger. self.save_linecache_getlines = pdoctest.linecache.getlines linecache.getlines = self.__patched_linecache_getlines try: test.globs['print_function'] = print_function return self.__run(test, compileflags, out) finally: sys.stdout = save_stdout pdb.set_trace = save_set_trace linecache.getlines = self.save_linecache_getlines if clear_globs: test.globs.clear() # We have to override the name mangled methods. SymPyDocTestRunner._SymPyDocTestRunner__patched_linecache_getlines = \ DocTestRunner._DocTestRunner__patched_linecache_getlines SymPyDocTestRunner._SymPyDocTestRunner__run = DocTestRunner._DocTestRunner__run SymPyDocTestRunner._SymPyDocTestRunner__record_outcome = \ DocTestRunner._DocTestRunner__record_outcome class SymPyOutputChecker(pdoctest.OutputChecker): """ Compared to the OutputChecker from the stdlib our OutputChecker class supports numerical comparison of floats occurring in the output of the doctest examples """ def __init__(self): # NOTE OutputChecker is an old-style class with no __init__ method, # so we can't call the base class version of __init__ here got_floats = r'(\d+\.\d*|\.\d+)' # floats in the 'want' string may contain ellipses want_floats = got_floats + r'(\.{3})?' front_sep = r'\s|\+|\-|\*|,' back_sep = front_sep + r'|j|e' fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep) self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep) fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep) self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend)) def check_output(self, want, got, optionflags): """ Return True iff the actual output from an example (`got`) matches the expected output (`want`). These strings are always considered to match if they are identical; but depending on what option flags the test runner is using, several non-exact match types are also possible. See the documentation for `TestRunner` for more information about option flags. """ # Handle the common case first, for efficiency: # if they're string-identical, always return true. if got == want: return True # TODO parse integers as well ? # Parse floats and compare them. If some of the parsed floats contain # ellipses, skip the comparison. matches = self.num_got_rgx.finditer(got) numbers_got = [match.group(1) for match in matches] # list of strs matches = self.num_want_rgx.finditer(want) numbers_want = [match.group(1) for match in matches] # list of strs if len(numbers_got) != len(numbers_want): return False if len(numbers_got) > 0: nw_ = [] for ng, nw in zip(numbers_got, numbers_want): if '...' in nw: nw_.append(ng) continue else: nw_.append(nw) if abs(float(ng)-float(nw)) > 1e-5: return False got = self.num_got_rgx.sub(r'%s', got) got = got % tuple(nw_) # <BLANKLINE> can be used as a special sequence to signify a # blank line, unless the DONT_ACCEPT_BLANKLINE flag is used. if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE): # Replace <BLANKLINE> in want with a blank line. want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER), '', want) # If a line in got contains only spaces, then remove the # spaces. got = re.sub(r'(?m)^\s*?$', '', got) if got == want: return True # This flag causes doctest to ignore any differences in the # contents of whitespace strings. Note that this can be used # in conjunction with the ELLIPSIS flag. if optionflags & pdoctest.NORMALIZE_WHITESPACE: got = ' '.join(got.split()) want = ' '.join(want.split()) if got == want: return True # The ELLIPSIS flag says to let the sequence "..." in `want` # match any substring in `got`. if optionflags & pdoctest.ELLIPSIS: if pdoctest._ellipsis_match(want, got): return True # We didn't find any match; return false. return False class Reporter(object): """ Parent class for all reporters. """ pass class PyTestReporter(Reporter): """ Py.test like reporter. Should produce output identical to py.test. """ def __init__(self, verbose=False, tb="short", colors=True, force_colors=False, split=None): self._verbose = verbose self._tb_style = tb self._colors = colors self._force_colors = force_colors self._xfailed = 0 self._xpassed = [] self._failed = [] self._failed_doctest = [] self._passed = 0 self._skipped = 0 self._exceptions = [] self._terminal_width = None self._default_width = 80 self._split = split self._active_file = '' self._active_f = None # TODO: Should these be protected? self.slow_test_functions = [] self.fast_test_functions = [] # this tracks the x-position of the cursor (useful for positioning # things on the screen), without the need for any readline library: self._write_pos = 0 self._line_wrap = False def root_dir(self, dir): self._root_dir = dir @property def terminal_width(self): if self._terminal_width is not None: return self._terminal_width def findout_terminal_width(): if sys.platform == "win32": # Windows support is based on: # # http://code.activestate.com/recipes/ # 440694-determine-size-of-console-window-on-windows/ from ctypes import windll, create_string_buffer h = windll.kernel32.GetStdHandle(-12) csbi = create_string_buffer(22) res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi) if res: import struct (_, _, _, _, _, left, _, right, _, _, _) = \ struct.unpack("hhhhHhhhhhh", csbi.raw) return right - left else: return self._default_width if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty(): return self._default_width # leave PIPEs alone try: process = subprocess.Popen(['stty', '-a'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = process.stdout.read() if PY3: stdout = stdout.decode("utf-8") except (OSError, IOError): pass else: # We support the following output formats from stty: # # 1) Linux -> columns 80 # 2) OS X -> 80 columns # 3) Solaris -> columns = 80 re_linux = r"columns\s+(?P<columns>\d+);" re_osx = r"(?P<columns>\d+)\s*columns;" re_solaris = r"columns\s+=\s+(?P<columns>\d+);" for regex in (re_linux, re_osx, re_solaris): match = re.search(regex, stdout) if match is not None: columns = match.group('columns') try: width = int(columns) except ValueError: pass if width != 0: return width return self._default_width width = findout_terminal_width() self._terminal_width = width return width def write(self, text, color="", align="left", width=None, force_colors=False): """ Prints a text on the screen. It uses sys.stdout.write(), so no readline library is necessary. Parameters ========== color : choose from the colors below, "" means default color align : "left"/"right", "left" is a normal print, "right" is aligned on the right-hand side of the screen, filled with spaces if necessary width : the screen width """ color_templates = ( ("Black", "0;30"), ("Red", "0;31"), ("Green", "0;32"), ("Brown", "0;33"), ("Blue", "0;34"), ("Purple", "0;35"), ("Cyan", "0;36"), ("LightGray", "0;37"), ("DarkGray", "1;30"), ("LightRed", "1;31"), ("LightGreen", "1;32"), ("Yellow", "1;33"), ("LightBlue", "1;34"), ("LightPurple", "1;35"), ("LightCyan", "1;36"), ("White", "1;37"), ) colors = {} for name, value in color_templates: colors[name] = value c_normal = '\033[0m' c_color = '\033[%sm' if width is None: width = self.terminal_width if align == "right": if self._write_pos + len(text) > width: # we don't fit on the current line, create a new line self.write("\n") self.write(" "*(width - self._write_pos - len(text))) if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \ sys.stdout.isatty(): # the stdout is not a terminal, this for example happens if the # output is piped to less, e.g. "bin/test | less". In this case, # the terminal control sequences would be printed verbatim, so # don't use any colors. color = "" elif sys.platform == "win32": # Windows consoles don't support ANSI escape sequences color = "" elif not self._colors: color = "" if self._line_wrap: if text[0] != "\n": sys.stdout.write("\n") # Avoid UnicodeEncodeError when printing out test failures if PY3 and IS_WINDOWS: text = text.encode('raw_unicode_escape').decode('utf8', 'ignore') elif PY3 and not sys.stdout.encoding.lower().startswith('utf'): text = text.encode(sys.stdout.encoding, 'backslashreplace' ).decode(sys.stdout.encoding) if color == "": sys.stdout.write(text) else: sys.stdout.write("%s%s%s" % (c_color % colors[color], text, c_normal)) sys.stdout.flush() l = text.rfind("\n") if l == -1: self._write_pos += len(text) else: self._write_pos = len(text) - l - 1 self._line_wrap = self._write_pos >= width self._write_pos %= width def write_center(self, text, delim="="): width = self.terminal_width if text != "": text = " %s " % text idx = (width - len(text)) // 2 t = delim*idx + text + delim*(width - idx - len(text)) self.write(t + "\n") def write_exception(self, e, val, tb): # remove the first item, as that is always runtests.py tb = tb.tb_next t = traceback.format_exception(e, val, tb) self.write("".join(t)) def start(self, seed=None, msg="test process starts"): self.write_center(msg) executable = sys.executable v = tuple(sys.version_info) python_version = "%s.%s.%s-%s-%s" % v implementation = platform.python_implementation() if implementation == 'PyPy': implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info self.write("executable: %s (%s) [%s]\n" % (executable, python_version, implementation)) from .misc import ARCH self.write("architecture: %s\n" % ARCH) from sympy.core.cache import USE_CACHE self.write("cache: %s\n" % USE_CACHE) from sympy.core.compatibility import GROUND_TYPES, HAS_GMPY version = '' if GROUND_TYPES =='gmpy': if HAS_GMPY == 1: import gmpy elif HAS_GMPY == 2: import gmpy2 as gmpy version = gmpy.version() self.write("ground types: %s %s\n" % (GROUND_TYPES, version)) numpy = import_module('numpy') self.write("numpy: %s\n" % (None if not numpy else numpy.__version__)) if seed is not None: self.write("random seed: %d\n" % seed) from .misc import HASH_RANDOMIZATION self.write("hash randomization: ") hash_seed = os.getenv("PYTHONHASHSEED") or '0' if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)): self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed) else: self.write("off\n") if self._split: self.write("split: %s\n" % self._split) self.write('\n') self._t_start = clock() def finish(self): self._t_end = clock() self.write("\n") global text, linelen text = "tests finished: %d passed, " % self._passed linelen = len(text) def add_text(mytext): global text, linelen """Break new text if too long.""" if linelen + len(mytext) > self.terminal_width: text += '\n' linelen = 0 text += mytext linelen += len(mytext) if len(self._failed) > 0: add_text("%d failed, " % len(self._failed)) if len(self._failed_doctest) > 0: add_text("%d failed, " % len(self._failed_doctest)) if self._skipped > 0: add_text("%d skipped, " % self._skipped) if self._xfailed > 0: add_text("%d expected to fail, " % self._xfailed) if len(self._xpassed) > 0: add_text("%d expected to fail but passed, " % len(self._xpassed)) if len(self._exceptions) > 0: add_text("%d exceptions, " % len(self._exceptions)) add_text("in %.2f seconds" % (self._t_end - self._t_start)) if self.slow_test_functions: self.write_center('slowest tests', '_') sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1]) for slow_func_name, taken in sorted_slow: print('%s - Took %.3f seconds' % (slow_func_name, taken)) if self.fast_test_functions: self.write_center('unexpectedly fast tests', '_') sorted_fast = sorted(self.fast_test_functions, key=lambda r: r[1]) for fast_func_name, taken in sorted_fast: print('%s - Took %.3f seconds' % (fast_func_name, taken)) if len(self._xpassed) > 0: self.write_center("xpassed tests", "_") for e in self._xpassed: self.write("%s: %s\n" % (e[0], e[1])) self.write("\n") if self._tb_style != "no" and len(self._exceptions) > 0: for e in self._exceptions: filename, f, (t, val, tb) = e self.write_center("", "_") if f is None: s = "%s" % filename else: s = "%s:%s" % (filename, f.__name__) self.write_center(s, "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed) > 0: for e in self._failed: filename, f, (t, val, tb) = e self.write_center("", "_") self.write_center("%s:%s" % (filename, f.__name__), "_") self.write_exception(t, val, tb) self.write("\n") if self._tb_style != "no" and len(self._failed_doctest) > 0: for e in self._failed_doctest: filename, msg = e self.write_center("", "_") self.write_center("%s" % filename, "_") self.write(msg) self.write("\n") self.write_center(text) ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \ len(self._failed_doctest) == 0 if not ok: self.write("DO *NOT* COMMIT!\n") return ok def entering_filename(self, filename, n): rel_name = filename[len(self._root_dir) + 1:] self._active_file = rel_name self._active_file_error = False self.write(rel_name) self.write("[%d] " % n) def leaving_filename(self): self.write(" ") if self._active_file_error: self.write("[FAIL]", "Red", align="right") else: self.write("[OK]", "Green", align="right") self.write("\n") if self._verbose: self.write("\n") def entering_test(self, f): self._active_f = f if self._verbose: self.write("\n" + f.__name__ + " ") def test_xfail(self): self._xfailed += 1 self.write("f", "Green") def test_xpass(self, v): message = str(v) self._xpassed.append((self._active_file, message)) self.write("X", "Green") def test_fail(self, exc_info): self._failed.append((self._active_file, self._active_f, exc_info)) self.write("F", "Red") self._active_file_error = True def doctest_fail(self, name, error_msg): # the first line contains "******", remove it: error_msg = "\n".join(error_msg.split("\n")[1:]) self._failed_doctest.append((name, error_msg)) self.write("F", "Red") self._active_file_error = True def test_pass(self, char="."): self._passed += 1 if self._verbose: self.write("ok", "Green") else: self.write(char, "Green") def test_skip(self, v=None): char = "s" self._skipped += 1 if v is not None: message = str(v) if message == "KeyboardInterrupt": char = "K" elif message == "Timeout": char = "T" elif message == "Slow": char = "w" if self._verbose: if v is not None: self.write(message + ' ', "Blue") else: self.write(" - ", "Blue") self.write(char, "Blue") def test_exception(self, exc_info): self._exceptions.append((self._active_file, self._active_f, exc_info)) if exc_info[0] is TimeOutError: self.write("T", "Red") else: self.write("E", "Red") self._active_file_error = True def import_error(self, filename, exc_info): self._exceptions.append((filename, None, exc_info)) rel_name = filename[len(self._root_dir) + 1:] self.write(rel_name) self.write("[?] Failed to import", "Red") self.write(" ") self.write("[FAIL]", "Red", align="right") self.write("\n") sympy_dir = get_sympy_dir()
gpl-2.0
Erotemic/hotspotter
_scripts/main.py
2
5485
#!/usr/bin/env python # For py2exe import PIL.TiffImagePlugin import PIL.Image import PIL.PngImagePlugin import PIL.JpegImagePlugin import PIL.GifImagePlugin import PIL.PpmImagePlugin import argparse import inspect import os, sys from os.path import join, dirname def emergency_msgbox(title, msg): 'Make a non modal critical QMessageBox.' from PyQt4.Qt import QMessageBox msgBox = QMessageBox(None); msgBox.setAttribute(Qt.WA_DeleteOnClose) msgBox.setStandardButtons(QMessageBox.Ok) msgBox.setWindowTitle(title) msgBox.setText(msg) msgBox.setModal(False) msgBox.open(msgBox.close) msgBox.show() return msgBox def ensure_tpl_libs(): print('Ensuring third party libraries') try: # Ensure that TPL's lib files are in PATH #from hotspotter.standalone import find_hotspotter_root_dir print('Can import hotspotter?') import hotspotter print(' ... yes') TPL_LIB_DIR = join(dirname(hotspotter.__file__), 'tpl/lib', sys.platform) sys.path.insert(0, TPL_LIB_DIR) ext = {'linux2':'.ln','darwin':'.mac','win32':'.exe'}[sys.platform] # Ensure that hesaff is executable hesaff_fname = TPL_LIB_DIR+'/hesaff'+ext is_executable = lambda fname: bin(int(oct(os.stat(fname).st_mode)[4]))[4] if not is_executable(hesaff_fname): os.system('chmod 775 '+hesaff_fname) print('Can import cv2?') import cv2 print(' ... yes') print('Can import hotspotter.tpl.pyflann?') import hotspotter.tpl.pyflann print(' ... yes') except Exception as ex: print('\n\n!!! TPL ERROR !!!') PYTHONPATH = os.getenv('PYTHONPATH') PATH = os.getenv('PATH') print('PYTHONPATH = '+repr(PYTHONPATH)) print('PATH = '+repr(PATH)) print('''You must download hotspotter\'s 3rd party libraries before you can run it. git clone https://github.com/Erotemic:tpl-hotspotter.git tpl''') raise def parse_arguments(): print('Parsing arguments') parser = argparse.ArgumentParser(description='HotSpotter - Instance Recognition', prefix_chars='+-') def_on = {'action':'store_false', 'default':True} def_off = {'action':'store_true', 'default':False} parser.add_argument('-l', '--log-all', dest='logall_bit', help='Writes all logs', **def_off) parser.add_argument('--cmd', dest='cmd_bit', help='Forces command line mode', **def_off) parser.add_argument('-g', '--gui-off', dest='gui_bit', help='Runs HotSpotter in command line mode', **def_on) parser.add_argument('-a', '--autoload-off', dest='autoload_bit', help='Starts HotSpotter without loading a database', **def_on) parser.add_argument('-dp', '--delete-preferences', dest='delpref_bit', help='Deletes preferences in ~/.hotspotter', **def_off) args, unknown = parser.parse_known_args() return args def initQtApp(): # Attach to QtConsole's QApplication if able from PyQt4.Qt import QCoreApplication, QApplication app = QCoreApplication.instance() isRootApp = app is None if isRootApp: # if not in qtconsole # configure matplotlib import matplotlib print('Configuring matplotlib for Qt4') matplotlib.use('Qt4Agg') # Run new root application print('Starting new QApplication') app = QApplication(sys.argv) else: print('Running using parent QApplication') return app, isRootApp def executeEventLoop(app): print('Running the application event loop') sys.stdout.flush() sys.exit(app.exec_()) # MAIN ENTRY POINT if __name__ == '__main__': # 1) Multiprocess Initialization from multiprocessing import freeze_support freeze_support() # 2) TPL Initialization ensure_tpl_libs() # 3) Qt Initialization args = parse_arguments() app, isRootApp = initQtApp() # 4) HotSpotter Initialization from hotspotter.other.logger import hsl from hotspotter.standalone import delete_preference_dir from hotspotter.Facade import Facade if args.logall_bit: hsl.enable_global_logs() if args.delpref_bit: delete_preference_dir() # 5) HotSpotter Execution fac = Facade(use_gui=args.gui_bit, autoload=args.autoload_bit) # Register Facade functions into current namespace # ### SNIPIT: Namespace Class Functions for (name, value) in inspect.getmembers(Facade, predicate=inspect.ismethod): if name.find('_') != 0: exec('def '+name+'(*args, **kwargs): fac.'+name+'(*args, **kwargs)') # ### --- # Defined Aliases stat, status = [lambda : fac.print_status()]*2 removec, = [lambda : fac.remove_cid()] rename, = [lambda new_name : fac.rename_cid(new_name)] # Get developer variables # ### SNIPIT: Execute File with open('dev.py', 'r') as devfile: devpy = devfile.read() exec(devpy) # ### ---- run_exec = isRootApp if args.cmd_bit: # Start IPython command line mode from hotspotter.helpers import in_IPython, have_IPython run_exec = False if not in_IPython() and have_IPython(): import IPython IPython.embed() # Run Event Loop, but do not block QTConsole or IPython if run_exec: executeEventLoop(app)
apache-2.0
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/pandas/tests/sparse/test_arithmetics.py
18
19342
import numpy as np import pandas as pd import pandas.util.testing as tm class TestSparseArrayArithmetics(object): _base = np.array _klass = pd.SparseArray def _assert(self, a, b): tm.assert_numpy_array_equal(a, b) def _check_numeric_ops(self, a, b, a_dense, b_dense): with np.errstate(invalid='ignore', divide='ignore'): # Unfortunately, trying to wrap the computation of each expected # value is with np.errstate() is too tedious. # sparse & sparse self._assert((a + b).to_dense(), a_dense + b_dense) self._assert((b + a).to_dense(), b_dense + a_dense) self._assert((a - b).to_dense(), a_dense - b_dense) self._assert((b - a).to_dense(), b_dense - a_dense) self._assert((a * b).to_dense(), a_dense * b_dense) self._assert((b * a).to_dense(), b_dense * a_dense) # pandas uses future division self._assert((a / b).to_dense(), a_dense * 1.0 / b_dense) self._assert((b / a).to_dense(), b_dense * 1.0 / a_dense) # ToDo: FIXME in GH 13843 if not (self._base == pd.Series and a.dtype == 'int64'): self._assert((a // b).to_dense(), a_dense // b_dense) self._assert((b // a).to_dense(), b_dense // a_dense) self._assert((a % b).to_dense(), a_dense % b_dense) self._assert((b % a).to_dense(), b_dense % a_dense) self._assert((a ** b).to_dense(), a_dense ** b_dense) self._assert((b ** a).to_dense(), b_dense ** a_dense) # sparse & dense self._assert((a + b_dense).to_dense(), a_dense + b_dense) self._assert((b_dense + a).to_dense(), b_dense + a_dense) self._assert((a - b_dense).to_dense(), a_dense - b_dense) self._assert((b_dense - a).to_dense(), b_dense - a_dense) self._assert((a * b_dense).to_dense(), a_dense * b_dense) self._assert((b_dense * a).to_dense(), b_dense * a_dense) # pandas uses future division self._assert((a / b_dense).to_dense(), a_dense * 1.0 / b_dense) self._assert((b_dense / a).to_dense(), b_dense * 1.0 / a_dense) # ToDo: FIXME in GH 13843 if not (self._base == pd.Series and a.dtype == 'int64'): self._assert((a // b_dense).to_dense(), a_dense // b_dense) self._assert((b_dense // a).to_dense(), b_dense // a_dense) self._assert((a % b_dense).to_dense(), a_dense % b_dense) self._assert((b_dense % a).to_dense(), b_dense % a_dense) self._assert((a ** b_dense).to_dense(), a_dense ** b_dense) self._assert((b_dense ** a).to_dense(), b_dense ** a_dense) def _check_bool_result(self, res): assert isinstance(res, self._klass) assert res.dtype == np.bool assert isinstance(res.fill_value, bool) def _check_comparison_ops(self, a, b, a_dense, b_dense): with np.errstate(invalid='ignore'): # Unfortunately, trying to wrap the computation of each expected # value is with np.errstate() is too tedious. # # sparse & sparse self._check_bool_result(a == b) self._assert((a == b).to_dense(), a_dense == b_dense) self._check_bool_result(a != b) self._assert((a != b).to_dense(), a_dense != b_dense) self._check_bool_result(a >= b) self._assert((a >= b).to_dense(), a_dense >= b_dense) self._check_bool_result(a <= b) self._assert((a <= b).to_dense(), a_dense <= b_dense) self._check_bool_result(a > b) self._assert((a > b).to_dense(), a_dense > b_dense) self._check_bool_result(a < b) self._assert((a < b).to_dense(), a_dense < b_dense) # sparse & dense self._check_bool_result(a == b_dense) self._assert((a == b_dense).to_dense(), a_dense == b_dense) self._check_bool_result(a != b_dense) self._assert((a != b_dense).to_dense(), a_dense != b_dense) self._check_bool_result(a >= b_dense) self._assert((a >= b_dense).to_dense(), a_dense >= b_dense) self._check_bool_result(a <= b_dense) self._assert((a <= b_dense).to_dense(), a_dense <= b_dense) self._check_bool_result(a > b_dense) self._assert((a > b_dense).to_dense(), a_dense > b_dense) self._check_bool_result(a < b_dense) self._assert((a < b_dense).to_dense(), a_dense < b_dense) def _check_logical_ops(self, a, b, a_dense, b_dense): # sparse & sparse self._check_bool_result(a & b) self._assert((a & b).to_dense(), a_dense & b_dense) self._check_bool_result(a | b) self._assert((a | b).to_dense(), a_dense | b_dense) # sparse & dense self._check_bool_result(a & b_dense) self._assert((a & b_dense).to_dense(), a_dense & b_dense) self._check_bool_result(a | b_dense) self._assert((a | b_dense).to_dense(), a_dense | b_dense) def test_float_scalar(self): values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) for kind in ['integer', 'block']: a = self._klass(values, kind=kind) self._check_numeric_ops(a, 1, values, 1) self._check_numeric_ops(a, 0, values, 0) self._check_numeric_ops(a, 3, values, 3) a = self._klass(values, kind=kind, fill_value=0) self._check_numeric_ops(a, 1, values, 1) self._check_numeric_ops(a, 0, values, 0) self._check_numeric_ops(a, 3, values, 3) a = self._klass(values, kind=kind, fill_value=2) self._check_numeric_ops(a, 1, values, 1) self._check_numeric_ops(a, 0, values, 0) self._check_numeric_ops(a, 3, values, 3) def test_float_scalar_comparison(self): values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) for kind in ['integer', 'block']: a = self._klass(values, kind=kind) self._check_comparison_ops(a, 1, values, 1) self._check_comparison_ops(a, 0, values, 0) self._check_comparison_ops(a, 3, values, 3) a = self._klass(values, kind=kind, fill_value=0) self._check_comparison_ops(a, 1, values, 1) self._check_comparison_ops(a, 0, values, 0) self._check_comparison_ops(a, 3, values, 3) a = self._klass(values, kind=kind, fill_value=2) self._check_comparison_ops(a, 1, values, 1) self._check_comparison_ops(a, 0, values, 0) self._check_comparison_ops(a, 3, values, 3) def test_float_same_index(self): # when sp_index are the same for kind in ['integer', 'block']: values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan]) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_numeric_ops(a, b, values, rvalues) values = self._base([0., 1., 2., 6., 0., 0., 1., 2., 1., 0.]) rvalues = self._base([0., 2., 3., 4., 0., 0., 1., 3., 2., 0.]) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_numeric_ops(a, b, values, rvalues) def test_float_same_index_comparison(self): # when sp_index are the same for kind in ['integer', 'block']: values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([np.nan, 2, 3, 4, np.nan, 0, 1, 3, 2, np.nan]) a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_comparison_ops(a, b, values, rvalues) values = self._base([0., 1., 2., 6., 0., 0., 1., 2., 1., 0.]) rvalues = self._base([0., 2., 3., 4., 0., 0., 1., 3., 2., 0.]) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_comparison_ops(a, b, values, rvalues) def test_float_array(self): values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan]) for kind in ['integer', 'block']: a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_numeric_ops(a, b, values, rvalues) self._check_numeric_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) self._check_numeric_ops(a, b, values, rvalues) def test_float_array_different_kind(self): values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan]) a = self._klass(values, kind='integer') b = self._klass(rvalues, kind='block') self._check_numeric_ops(a, b, values, rvalues) self._check_numeric_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, kind='integer', fill_value=0) b = self._klass(rvalues, kind='block') self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, kind='integer', fill_value=0) b = self._klass(rvalues, kind='block', fill_value=0) self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, kind='integer', fill_value=1) b = self._klass(rvalues, kind='block', fill_value=2) self._check_numeric_ops(a, b, values, rvalues) def test_float_array_comparison(self): values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, np.nan, 2, 3, np.nan, 0, 1, 5, 2, np.nan]) for kind in ['integer', 'block']: a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) self._check_comparison_ops(a, b, values, rvalues) self._check_comparison_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) self._check_comparison_ops(a, b, values, rvalues) def test_int_array(self): # have to specify dtype explicitly until fixing GH 667 dtype = np.int64 values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype) for kind in ['integer', 'block']: a = self._klass(values, dtype=dtype, kind=kind) assert a.dtype == dtype b = self._klass(rvalues, dtype=dtype, kind=kind) assert b.dtype == dtype self._check_numeric_ops(a, b, values, rvalues) self._check_numeric_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, fill_value=0, dtype=dtype, kind=kind) assert a.dtype == dtype b = self._klass(rvalues, dtype=dtype, kind=kind) assert b.dtype == dtype self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, fill_value=0, dtype=dtype, kind=kind) assert a.dtype == dtype b = self._klass(rvalues, fill_value=0, dtype=dtype, kind=kind) assert b.dtype == dtype self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, fill_value=1, dtype=dtype, kind=kind) assert a.dtype == dtype b = self._klass(rvalues, fill_value=2, dtype=dtype, kind=kind) assert b.dtype == dtype self._check_numeric_ops(a, b, values, rvalues) def test_int_array_comparison(self): # int32 NI ATM for dtype in ['int64']: values = self._base([0, 1, 2, 0, 0, 0, 1, 2, 1, 0], dtype=dtype) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=dtype) for kind in ['integer', 'block']: a = self._klass(values, dtype=dtype, kind=kind) b = self._klass(rvalues, dtype=dtype, kind=kind) self._check_comparison_ops(a, b, values, rvalues) self._check_comparison_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, dtype=dtype, kind=kind, fill_value=0) b = self._klass(rvalues, dtype=dtype, kind=kind) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, dtype=dtype, kind=kind, fill_value=0) b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=0) self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, dtype=dtype, kind=kind, fill_value=1) b = self._klass(rvalues, dtype=dtype, kind=kind, fill_value=2) self._check_comparison_ops(a, b, values, rvalues) def test_bool_same_index(self): # GH 14000 # when sp_index are the same for kind in ['integer', 'block']: values = self._base([True, False, True, True], dtype=np.bool) rvalues = self._base([True, False, True, True], dtype=np.bool) for fill_value in [True, False, np.nan]: a = self._klass(values, kind=kind, dtype=np.bool, fill_value=fill_value) b = self._klass(rvalues, kind=kind, dtype=np.bool, fill_value=fill_value) self._check_logical_ops(a, b, values, rvalues) def test_bool_array_logical(self): # GH 14000 # when sp_index are the same for kind in ['integer', 'block']: values = self._base([True, False, True, False, True, True], dtype=np.bool) rvalues = self._base([True, False, False, True, False, True], dtype=np.bool) for fill_value in [True, False, np.nan]: a = self._klass(values, kind=kind, dtype=np.bool, fill_value=fill_value) b = self._klass(rvalues, kind=kind, dtype=np.bool, fill_value=fill_value) self._check_logical_ops(a, b, values, rvalues) def test_mixed_array_float_int(self): for rdtype in ['int64']: values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype) for kind in ['integer', 'block']: a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) assert b.dtype == rdtype self._check_numeric_ops(a, b, values, rvalues) self._check_numeric_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) assert b.dtype == rdtype self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) assert b.dtype == rdtype self._check_numeric_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) assert b.dtype == rdtype self._check_numeric_ops(a, b, values, rvalues) def test_mixed_array_comparison(self): # int32 NI ATM for rdtype in ['int64']: values = self._base([np.nan, 1, 2, 0, np.nan, 0, 1, 2, 1, np.nan]) rvalues = self._base([2, 0, 2, 3, 0, 0, 1, 5, 2, 0], dtype=rdtype) for kind in ['integer', 'block']: a = self._klass(values, kind=kind) b = self._klass(rvalues, kind=kind) assert b.dtype == rdtype self._check_comparison_ops(a, b, values, rvalues) self._check_comparison_ops(a, b * 0, values, rvalues * 0) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind) assert b.dtype == rdtype self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=0) b = self._klass(rvalues, kind=kind, fill_value=0) assert b.dtype == rdtype self._check_comparison_ops(a, b, values, rvalues) a = self._klass(values, kind=kind, fill_value=1) b = self._klass(rvalues, kind=kind, fill_value=2) assert b.dtype == rdtype self._check_comparison_ops(a, b, values, rvalues) class TestSparseSeriesArithmetic(TestSparseArrayArithmetics): _base = pd.Series _klass = pd.SparseSeries def _assert(self, a, b): tm.assert_series_equal(a, b) def test_alignment(self): da = pd.Series(np.arange(4)) db = pd.Series(np.arange(4), index=[1, 2, 3, 4]) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=0) sb = pd.SparseSeries(np.arange(4), index=[1, 2, 3, 4], dtype=np.int64, fill_value=0) self._check_numeric_ops(sa, sb, da, db) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=np.nan) sb = pd.SparseSeries(np.arange(4), index=[1, 2, 3, 4], dtype=np.int64, fill_value=np.nan) self._check_numeric_ops(sa, sb, da, db) da = pd.Series(np.arange(4)) db = pd.Series(np.arange(4), index=[10, 11, 12, 13]) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=0) sb = pd.SparseSeries(np.arange(4), index=[10, 11, 12, 13], dtype=np.int64, fill_value=0) self._check_numeric_ops(sa, sb, da, db) sa = pd.SparseSeries(np.arange(4), dtype=np.int64, fill_value=np.nan) sb = pd.SparseSeries(np.arange(4), index=[10, 11, 12, 13], dtype=np.int64, fill_value=np.nan) self._check_numeric_ops(sa, sb, da, db)
mit
IndraVikas/scikit-learn
sklearn/utils/tests/test_extmath.py
130
16270
# Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis Engemann <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import linalg from scipy import stats from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.extmath import density from sklearn.utils.extmath import logsumexp from sklearn.utils.extmath import norm, squared_norm from sklearn.utils.extmath import randomized_svd from sklearn.utils.extmath import row_norms from sklearn.utils.extmath import weighted_mode from sklearn.utils.extmath import cartesian from sklearn.utils.extmath import log_logistic from sklearn.utils.extmath import fast_dot, _fast_dot from sklearn.utils.extmath import svd_flip from sklearn.utils.extmath import _batch_mean_variance_update from sklearn.utils.extmath import _deterministic_vector_sign_flip from sklearn.datasets.samples_generator import make_low_rank_matrix def test_density(): rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 5)) X[1, 2] = 0 X[5, 3] = 0 X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_coo = sparse.coo_matrix(X) X_lil = sparse.lil_matrix(X) for X_ in (X_csr, X_csc, X_coo, X_lil): assert_equal(density(X_), density(X)) def test_uniform_weights(): # with uniform weights, results should be identical to stats.mode rng = np.random.RandomState(0) x = rng.randint(10, size=(10, 5)) weights = np.ones(x.shape) for axis in (None, 0, 1): mode, score = stats.mode(x, axis) mode2, score2 = weighted_mode(x, weights, axis) assert_true(np.all(mode == mode2)) assert_true(np.all(score == score2)) def test_random_weights(): # set this up so that each row should have a weighted mode of 6, # with a score that is easily reproduced mode_result = 6 rng = np.random.RandomState(0) x = rng.randint(mode_result, size=(100, 10)) w = rng.random_sample(x.shape) x[:, :5] = mode_result w[:, :5] += 1 mode, score = weighted_mode(x, w, axis=1) assert_array_equal(mode, mode_result) assert_array_almost_equal(score.ravel(), w[:, :5].sum(1)) def test_logsumexp(): # Try to add some smallish numbers in logspace x = np.array([1e-40] * 1000000) logx = np.log(x) assert_almost_equal(np.exp(logsumexp(logx)), x.sum()) X = np.vstack([x, x]) logX = np.vstack([logx, logx]) assert_array_almost_equal(np.exp(logsumexp(logX, axis=0)), X.sum(axis=0)) assert_array_almost_equal(np.exp(logsumexp(logX, axis=1)), X.sum(axis=1)) def test_randomized_svd_low_rank(): # Check that extmath.randomized_svd is consistent with linalg.svd n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X of approximate effective rank `rank` and no noise # component (very structured signal): X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method U, s, V = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_equal(Ua.shape, (n_samples, k)) assert_equal(sa.shape, (k,)) assert_equal(Va.shape, (k, n_features)) # ensure that the singular values of both methods are equal up to the real # rank of the matrix assert_almost_equal(s[:k], sa) # check the singular vectors too (while not checking the sign) assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va)) # check the sparse matrix representation X = sparse.csr_matrix(X) # compute the singular values of X using the fast approximate method Ua, sa, Va = randomized_svd(X, k) assert_almost_equal(s[:rank], sa[:rank]) def test_norm_squared_norm(): X = np.random.RandomState(42).randn(50, 63) X *= 100 # check stability X += 200 assert_almost_equal(np.linalg.norm(X.ravel()), norm(X)) assert_almost_equal(norm(X) ** 2, squared_norm(X), decimal=6) assert_almost_equal(np.linalg.norm(X), np.sqrt(squared_norm(X)), decimal=6) def test_row_norms(): X = np.random.RandomState(42).randn(100, 100) sq_norm = (X ** 2).sum(axis=1) assert_array_almost_equal(sq_norm, row_norms(X, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X)) Xcsr = sparse.csr_matrix(X, dtype=np.float32) assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True), 5) assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr)) def test_randomized_svd_low_rank_with_noise(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # generate a matrix X wity structure approximate rank `rank` and an # important noisy component X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.05) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is helping getting rid of the noise: assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_infinite_rank(): # Check that extmath.randomized_svd can handle noisy matrices n_samples = 100 n_features = 500 rank = 5 k = 10 # let us try again without 'low_rank component': just regularly but slowly # decreasing singular values: the rank of the data matrix is infinite X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=1.0, random_state=0) assert_equal(X.shape, (n_samples, n_features)) # compute the singular values of X using the slow exact method _, s, _ = linalg.svd(X, full_matrices=False) # compute the singular values of X using the fast approximate method # without the iterated power method _, sa, _ = randomized_svd(X, k, n_iter=0) # the approximation does not tolerate the noise: assert_greater(np.abs(s[:k] - sa).max(), 0.1) # compute the singular values of X using the fast approximate method with # iterated power method _, sap, _ = randomized_svd(X, k, n_iter=5) # the iterated power method is still managing to get most of the structure # at the requested rank assert_almost_equal(s[:k], sap, decimal=3) def test_randomized_svd_transpose_consistency(): # Check that transposing the design matrix has limit impact n_samples = 100 n_features = 500 rank = 4 k = 10 X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=rank, tail_strength=0.5, random_state=0) assert_equal(X.shape, (n_samples, n_features)) U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False, random_state=0) U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True, random_state=0) U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto', random_state=0) U4, s4, V4 = linalg.svd(X, full_matrices=False) assert_almost_equal(s1, s4[:k], decimal=3) assert_almost_equal(s2, s4[:k], decimal=3) assert_almost_equal(s3, s4[:k], decimal=3) assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]), decimal=2) assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]), decimal=2) # in this case 'auto' is equivalent to transpose assert_almost_equal(s2, s3) def test_svd_flip(): # Check that svd_flip works in both situations, and reconstructs input. rs = np.random.RandomState(1999) n_samples = 20 n_features = 10 X = rs.randn(n_samples, n_features) # Check matrix reconstruction U, S, V = linalg.svd(X, full_matrices=False) U1, V1 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6) # Check transposed matrix reconstruction XT = X.T U, S, V = linalg.svd(XT, full_matrices=False) U2, V2 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6) # Check that different flip methods are equivalent under reconstruction U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True) assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6) U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False) assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6) def test_randomized_svd_sign_flip(): a = np.array([[2.0, 0.0], [0.0, 1.0]]) u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41) for seed in range(10): u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed) assert_almost_equal(u1, u2) assert_almost_equal(v1, v2) assert_almost_equal(np.dot(u2 * s2, v2), a) assert_almost_equal(np.dot(u2.T, u2), np.eye(2)) assert_almost_equal(np.dot(v2.T, v2), np.eye(2)) def test_cartesian(): # Check if cartesian product delivers the right results axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7])) true_out = np.array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) out = cartesian(axes) assert_array_equal(true_out, out) # check single axis x = np.arange(3) assert_array_equal(x[:, np.newaxis], cartesian((x,))) def test_logistic_sigmoid(): # Check correctness and robustness of logistic sigmoid implementation naive_logistic = lambda x: 1 / (1 + np.exp(-x)) naive_log_logistic = lambda x: np.log(naive_logistic(x)) x = np.linspace(-2, 2, 50) assert_array_almost_equal(log_logistic(x), naive_log_logistic(x)) extreme_x = np.array([-100., 100.]) assert_array_almost_equal(log_logistic(extreme_x), [-100, 0]) def test_fast_dot(): # Check fast dot blas wrapper function if fast_dot is np.dot: return rng = np.random.RandomState(42) A = rng.random_sample([2, 10]) B = rng.random_sample([2, 10]) try: linalg.get_blas_funcs(['gemm'])[0] has_blas = True except (AttributeError, ValueError): has_blas = False if has_blas: # Test _fast_dot for invalid input. # Maltyped data. for dt1, dt2 in [['f8', 'f4'], ['i4', 'i4']]: assert_raises(ValueError, _fast_dot, A.astype(dt1), B.astype(dt2).T) # Malformed data. ## ndim == 0 E = np.empty(0) assert_raises(ValueError, _fast_dot, E, E) ## ndim == 1 assert_raises(ValueError, _fast_dot, A, A[0]) ## ndim > 2 assert_raises(ValueError, _fast_dot, A.T, np.array([A, A])) ## min(shape) == 1 assert_raises(ValueError, _fast_dot, A, A[0, :][None, :]) # test for matrix mismatch error assert_raises(ValueError, _fast_dot, A, A) # Test cov-like use case + dtypes. for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) # col < row C = np.dot(A.T, A) C_ = fast_dot(A.T, A) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A, B.T) C_ = fast_dot(A, B.T) assert_almost_equal(C, C_, decimal=5) # Test square matrix * rectangular use case. A = rng.random_sample([2, 2]) for dtype in ['f8', 'f4']: A = A.astype(dtype) B = B.astype(dtype) C = np.dot(A, B) C_ = fast_dot(A, B) assert_almost_equal(C, C_, decimal=5) C = np.dot(A.T, B) C_ = fast_dot(A.T, B) assert_almost_equal(C, C_, decimal=5) if has_blas: for x in [np.array([[d] * 10] * 2) for d in [np.inf, np.nan]]: assert_raises(ValueError, _fast_dot, x, x.T) def test_incremental_variance_update_formulas(): # Test Youngs and Cramer incremental variance formulas. # Doggie data from http://www.mathsisfun.com/data/standard-deviation.html A = np.array([[600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300], [600, 470, 170, 430, 300]]).T idx = 2 X1 = A[:idx, :] X2 = A[idx:, :] old_means = X1.mean(axis=0) old_variances = X1.var(axis=0) old_sample_count = X1.shape[0] final_means, final_variances, final_count = _batch_mean_variance_update( X2, old_means, old_variances, old_sample_count) assert_almost_equal(final_means, A.mean(axis=0), 6) assert_almost_equal(final_variances, A.var(axis=0), 6) assert_almost_equal(final_count, A.shape[0]) def test_incremental_variance_ddof(): # Test that degrees of freedom parameter for calculations are correct. rng = np.random.RandomState(1999) X = rng.randn(50, 10) n_samples, n_features = X.shape for batch_size in [11, 20, 37]: steps = np.arange(0, X.shape[0], batch_size) if steps[-1] != X.shape[0]: steps = np.hstack([steps, n_samples]) for i, j in zip(steps[:-1], steps[1:]): batch = X[i:j, :] if i == 0: incremental_means = batch.mean(axis=0) incremental_variances = batch.var(axis=0) # Assign this twice so that the test logic is consistent incremental_count = batch.shape[0] sample_count = batch.shape[0] else: result = _batch_mean_variance_update( batch, incremental_means, incremental_variances, sample_count) (incremental_means, incremental_variances, incremental_count) = result sample_count += batch.shape[0] calculated_means = np.mean(X[:j], axis=0) calculated_variances = np.var(X[:j], axis=0) assert_almost_equal(incremental_means, calculated_means, 6) assert_almost_equal(incremental_variances, calculated_variances, 6) assert_equal(incremental_count, sample_count) def test_vector_sign_flip(): # Testing that sign flip is working & largest value has positive sign data = np.random.RandomState(36).randn(5, 5) max_abs_rows = np.argmax(np.abs(data), axis=1) data_flipped = _deterministic_vector_sign_flip(data) max_rows = np.argmax(data_flipped, axis=1) assert_array_equal(max_abs_rows, max_rows) signs = np.sign(data[range(data.shape[0]), max_abs_rows]) assert_array_equal(data, data_flipped * signs[:, np.newaxis])
bsd-3-clause
wkfwkf/statsmodels
statsmodels/base/tests/test_shrink_pickle.py
6
7890
# -*- coding: utf-8 -*- """ Created on Fri Mar 09 16:00:27 2012 Author: Josef Perktold """ from __future__ import print_function from statsmodels.compat.python import iterkeys, cPickle, BytesIO import numpy as np import statsmodels.api as sm import pandas as pd from numpy.testing import assert_ from nose import SkipTest import platform iswin = platform.system() == 'Windows' npversionless15 = np.__version__ < '1.5' winoldnp = iswin & npversionless15 def check_pickle(obj): fh = BytesIO() cPickle.dump(obj, fh, protocol=cPickle.HIGHEST_PROTOCOL) plen = fh.tell() fh.seek(0, 0) res = cPickle.load(fh) fh.close() return res, plen class RemoveDataPickle(object): def __init__(self): self.predict_kwds = {} @classmethod def setup_class(self): nobs = 10000 np.random.seed(987689) x = np.random.randn(nobs, 3) x = sm.add_constant(x) self.exog = x self.xf = 0.25 * np.ones((2, 4)) self.l_max = 20000 def test_remove_data_pickle(self): if winoldnp: raise SkipTest results = self.results xf = self.xf pred_kwds = self.predict_kwds pred1 = results.predict(xf, **pred_kwds) #create some cached attributes results.summary() res = results.summary2() # SMOKE test also summary2 # uncomment the following to check whether tests run (7 failures now) #np.testing.assert_equal(res, 1) #check pickle unpickle works on full results #TODO: drop of load save is tested res, l = check_pickle(results._results) #remove data arrays, check predict still works results.remove_data() pred2 = results.predict(xf, **pred_kwds) np.testing.assert_equal(pred2, pred1) #pickle, unpickle reduced array res, l = check_pickle(results._results) #for testing attach res self.res = res #Note: l_max is just a guess for the limit on the length of the pickle l_max = self.l_max assert_(l < l_max, msg='pickle length not %d < %d' % (l, l_max)) pred3 = results.predict(xf, **pred_kwds) np.testing.assert_equal(pred3, pred1) def test_remove_data_docstring(self): assert_(self.results.remove_data.__doc__ is not None) def test_pickle_wrapper(self): fh = BytesIO() # use cPickle with binary content # test unwrapped results load save pickle self.results._results.save(fh) fh.seek(0, 0) res_unpickled = self.results._results.__class__.load(fh) assert_(type(res_unpickled) is type(self.results._results)) # test wrapped results load save fh.seek(0, 0) self.results.save(fh) fh.seek(0, 0) res_unpickled = self.results.__class__.load(fh) fh.close() # print type(res_unpickled) assert_(type(res_unpickled) is type(self.results)) before = sorted(iterkeys(self.results.__dict__)) after = sorted(iterkeys(res_unpickled.__dict__)) assert_(before == after, msg='not equal %r and %r' % (before, after)) before = sorted(iterkeys(self.results._results.__dict__)) after = sorted(iterkeys(res_unpickled._results.__dict__)) assert_(before == after, msg='not equal %r and %r' % (before, after)) before = sorted(iterkeys(self.results.model.__dict__)) after = sorted(iterkeys(res_unpickled.model.__dict__)) assert_(before == after, msg='not equal %r and %r' % (before, after)) before = sorted(iterkeys(self.results._cache)) after = sorted(iterkeys(res_unpickled._cache)) assert_(before == after, msg='not equal %r and %r' % (before, after)) class TestRemoveDataPickleOLS(RemoveDataPickle): def setup(self): #fit for each test, because results will be changed by test x = self.exog np.random.seed(987689) y = x.sum(1) + np.random.randn(x.shape[0]) self.results = sm.OLS(y, self.exog).fit() class TestRemoveDataPickleWLS(RemoveDataPickle): def setup(self): #fit for each test, because results will be changed by test x = self.exog np.random.seed(987689) y = x.sum(1) + np.random.randn(x.shape[0]) self.results = sm.WLS(y, self.exog, weights=np.ones(len(y))).fit() class TestRemoveDataPicklePoisson(RemoveDataPickle): def setup(self): #fit for each test, because results will be changed by test x = self.exog np.random.seed(987689) y_count = np.random.poisson(np.exp(x.sum(1) - x.mean())) model = sm.Poisson(y_count, x) #, exposure=np.ones(nobs), offset=np.zeros(nobs)) #bug with default # use start_params to converge faster start_params = np.array([0.75334818, 0.99425553, 1.00494724, 1.00247112]) self.results = model.fit(start_params=start_params, method='bfgs', disp=0) #TODO: temporary, fixed in master self.predict_kwds = dict(exposure=1, offset=0) class TestRemoveDataPickleNegativeBinomial(RemoveDataPickle): def setup(self): #fit for each test, because results will be changed by test np.random.seed(987689) data = sm.datasets.randhie.load() exog = sm.add_constant(data.exog, prepend=False) mod = sm.NegativeBinomial(data.endog, data.exog) self.results = mod.fit(disp=0) class TestRemoveDataPickleLogit(RemoveDataPickle): def setup(self): #fit for each test, because results will be changed by test x = self.exog nobs = x.shape[0] np.random.seed(987689) y_bin = (np.random.rand(nobs) < 1.0 / (1 + np.exp(x.sum(1) - x.mean()))).astype(int) model = sm.Logit(y_bin, x) #, exposure=np.ones(nobs), offset=np.zeros(nobs)) #bug with default # use start_params to converge faster start_params = np.array([-0.73403806, -1.00901514, -0.97754543, -0.95648212]) self.results = model.fit(start_params=start_params, method='bfgs', disp=0) class TestRemoveDataPickleRLM(RemoveDataPickle): def setup(self): #fit for each test, because results will be changed by test x = self.exog np.random.seed(987689) y = x.sum(1) + np.random.randn(x.shape[0]) self.results = sm.RLM(y, self.exog).fit() class TestRemoveDataPickleGLM(RemoveDataPickle): def setup(self): #fit for each test, because results will be changed by test x = self.exog np.random.seed(987689) y = x.sum(1) + np.random.randn(x.shape[0]) self.results = sm.GLM(y, self.exog).fit() class TestPickleFormula(RemoveDataPickle): @classmethod def setup_class(cls): nobs = 10000 np.random.seed(987689) x = np.random.randn(nobs, 3) cls.exog = pd.DataFrame(x, columns=["A", "B", "C"]) cls.xf = pd.DataFrame(0.25 * np.ones((2, 3)), columns=cls.exog.columns) cls.l_max = 900000 # have to pickle endo/exog to unpickle form. def setup(self): x = self.exog np.random.seed(123) y = x.sum(1) + np.random.randn(x.shape[0]) y = pd.Series(y, name="Y") X = self.exog.copy() X["Y"] = y self.results = sm.OLS.from_formula("Y ~ A + B + C", data=X).fit() if __name__ == '__main__': for cls in [TestRemoveDataPickleOLS, TestRemoveDataPickleWLS, TestRemoveDataPicklePoisson, TestRemoveDataPickleNegativeBinomial, TestRemoveDataPickleLogit, TestRemoveDataPickleRLM, TestRemoveDataPickleGLM]: print(cls) cls.setup_class() tt = cls() tt.setup() tt.test_remove_data_pickle() tt.test_remove_data_docstring() tt.test_pickle_wrapper()
bsd-3-clause
last-one/tools
caffe/result/plot_loss_acc_curve.py
1
1617
import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import os import sys import argparse def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-l', '--log', dest='log', help='the training log') parser.add_argument('-o', '--output', dest='output_path', help='the path to save the picture', type=str, default=None) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() logs = open(args.log, 'r') lines = logs.readlines() logs.close() name = args.log.split('/')[-1].split('.')[0] + '.jpg' if args.output_path != None: name = os.path.join(args.output_path, name) train_loss = [] test_acc = [] max_iter = 0 display = 0 test_interval = -1 for line in lines: if line.find('Iteration') == -1 or line.find('loss = ') == -1: continue st_iter = line.find('Iteration') ed_iter = st_iter + 10 + line[st_iter + 10:].find(' ') display = max_iter max_iter = int(line[st_iter + 9: ed_iter]) display = max_iter - display pos_loss = line.find('loss = ') loss = float(line[pos_loss + 7: ]) train_loss.append(loss) max_iter += display _, ax1 = plt.subplots() ax2 = ax1.twinx() ax1.plot(np.arange(0, max_iter, display), train_loss) ax1.set_xlabel('iteration') ax1.set_ylabel('train loss') if test_interval != -1: ax2.plot(test_interval * np.arange(len(test_acc)), test_acc, 'r') ax2.set_ylabel('test accuracy') plt.savefig(name)
bsd-2-clause
aabadie/scikit-learn
examples/exercises/plot_cv_digits.py
135
1223
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn.model_selection import cross_val_score from sklearn import datasets, svm digits = datasets.load_digits() X = digits.data y = digits.target svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import matplotlib.pyplot as plt plt.figure(1, figsize=(4, 3)) plt.clf() plt.semilogx(C_s, scores) plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = plt.yticks() plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) plt.ylabel('CV score') plt.xlabel('Parameter C') plt.ylim(0, 1.1) plt.show()
bsd-3-clause
jdmonaco/grid-remapping-model
src/analysis/altmodels.py
1
13349
#encoding: utf-8 """ grid.analysis.altmodels -- Analysis simulating model variants for comparison Exports: ModelComparison Written by Joe Monaco, 02/05/2011. Copyright (c) 2011 Johns Hopkins University. All rights reserved. """ # Library imports from scipy.stats import sem import os, numpy as np import matplotlib as mpl import matplotlib.pylab as plt # Package imports from ..place_network import PlaceNetworkStd from ..core.analysis import AbstractAnalysis from ..tools.images import array_to_image from ..ratemap import CheckeredRatemap from ..dmec import GridCollection from .compare import compare_AB from .map_funcs import get_tuned_weights class ModelComparison(AbstractAnalysis): """ Load a standard simulation from pre-existing data (or simulate a new map) and then simulate several model variants to compare place fields size and location differences. See core.analysis.AbstractAnalysis documentation and collect_data method signature and docstring for usage. """ label = "alt models" def collect_data(self, load_dir=None, alpha=0.3, gamma=1.0, rec_tuned=False): """Run a standard simulation and then variants using the same network Keyword arguments: load_dir -- if loading pre-existing network, set directory here alpha -- learning parameter for tuned weights (get_tuned_weights) gamma -- gain of recurrent excitation (based on overlap) rec_tuned -- whether recurrent variant is based on tuned output (True) or the standard output (False) Set save_maps to True to save the spatial maps for the sample. """ self.results['model_types'] = ('std', 'fwd', 'tuned', 'rec') if load_dir is not None: if not os.path.isdir(load_dir): raise ValueError, 'invalid load directory' self.results['load_dir'] = os.path.abspath(load_dir) self.out('Loading network from\n%s...'%self.results['load_dir']) os.chdir(load_dir) l = np.load EC = GridCollection( _phi=l('phi.npy'), _psi=l('psi.npy'), spacing=l('spacing.npy')) model = PlaceNetworkStd(EC=EC, W=l('W.npy'), refresh_weights=False) os.chdir(self.datadir) else: self.out('Creating new grid inputs and place network...') EC = GridCollection() model = PlaceNetworkStd(EC=EC) W = model.W def get_norms(M): return np.sqrt((M**2).sum(axis=0)) def store_data(prefix, pmap): udata = pmap.get_unit_data() fdata = pmap.get_field_data() self.results['%s_sparsity'%prefix] = pmap.sparsity self.results['%s_num_fields'%prefix] = udata['num_fields'] self.results['%s_area'%prefix] = fdata['area'] self.results['%s_diameter'%prefix] = fdata['diameter'] self.results['%s_x'%prefix] = fdata['x'] self.results['%s_y'%prefix] = fdata['y'] if not os.path.exists('%s_map.tar.gz'%prefix): pmap.tofile('%s_map'%prefix) return # Get input strength map self.out('Computing grid input strengths...') EC_R = EC.get_z_stack() EC_norms = get_norms(EC_R) np.save('EC_norms.npy', EC_norms) array_to_image(EC_norms, 'EC_norms.png', cmap=mpl.cm.gray_r) array_to_image(EC_norms, 'EC_norms_jet.png', cmap=mpl.cm.jet) # Run the standard simulation if not os.path.exists('std_map.tar.gz'): self.out('Running standard simulation...') model.advance() pmap = CheckeredRatemap(model) else: self.out('Loading standard simulation data...') pmap = CheckeredRatemap.fromfile('std_map.tar.gz') store_data('std', pmap) std_num_active = pmap.num_active self.out('Standard active units = %d'%std_num_active) R = pmap.Map array_to_image(get_norms(R), 'std_norms.png', cmap=mpl.cm.gray_r) array_to_image(get_norms(R), 'std_norms_jet.png', cmap=mpl.cm.jet) def sparsity_match_threshold(Map): self.out('Searching for sparsity-matching threshold...') N, H, W = Map.shape I = np.empty((N,), 'd') for i in xrange(N): I[i] = Map[i].max() # Test activity peaks as thresholds to find sparsity-matching threshold I.sort() R_ = np.empty(Map.shape, 'd') # probe workspace thresh = 0 for i in xrange(N): R_[:] = Map # reset Rmax = R_.max() num_active = 0 for j in xrange(N): if (R_[j].max()>0.2*Rmax): if (R_[j]>0.2*R_[j].max()).sum() > 50: num_active += 1 self.out.printf('%d '%num_active) if num_active < std_num_active: self.out.printf('\n') self.out('... sparsity match at %.4f ...'%thresh) break thresh = I[i] # get next peak R_ -= thresh # and apply test threshold R_[R_<0] = 0 del R_ if num_active >= std_num_active: self.out.printf('\n') if thresh: Map -= thresh Map[Map<0] = 0 return # Run feedforward inhibition simulation if not os.path.exists('fwd_map.tar.gz'): self.out('Computing feedforward model variant...') R[:] = 0 # using R matrix as a spatial map workspace for i in xrange(model.N_CA): R[i] = model.beta * (W[i].reshape(model.N_EC, 1, 1) * EC_R).sum(axis=0) # Feedforward inhibition as sparsity-matching threshold sparsity_match_threshold(R) pmap.reset() pmap.compute_coverage() self.out('Feedforward active units = %d'%pmap.num_active) else: self.out('Loading feedforward model data...') pmap = CheckeredRatemap.fromfile('fwd_map.tar.gz') R = pmap.Map array_to_image(get_norms(R), 'fwd_norms.png', cmap=mpl.cm.gray_r) store_data('fwd', pmap) # Run associatively tuned simulation if not os.path.exists('tuned_map.tar.gz'): self.out('Running input tuned simulation (alpha = %.2f)...'%alpha) model.W = get_tuned_weights( CheckeredRatemap.fromfile('std_map.tar.gz'), W, EC, alpha, grow_synapses=True) model.reset() model.advance() pmap = CheckeredRatemap(model) pmap.compute_coverage() self.out('Tuned active units = %d'%pmap.num_active) else: self.out('Loading input tuned model data...') pmap = CheckeredRatemap.fromfile('tuned_map.tar.gz') R = pmap.Map array_to_image(get_norms(R), 'tuned_norms.png', cmap=mpl.cm.gray_r) store_data('tuned', pmap) # Run recurrent excitation simulation if not os.path.exists('rec_map.tar.gz'): # Construct the E-E weight matrix self.out('Constructing E-E weight matrix...') if rec_tuned: self.out('--> Using input-tuned output as base') else: self.out('--> Using standard output as base') pmap = CheckeredRatemap.fromfile('std_map.tar.gz') R = pmap.Map N, H, W = R.shape J = np.zeros((N, N), 'd') for i in xrange(N): for j in xrange(i+1, N): J[i,j] = J[j,i] = gamma * \ (pmap.single_maps[i] * pmap.single_maps[j]).sum() if J[i,j] > 0: J[i,j] = J[j,i] = J[i,j] / \ min(pmap.single_maps[i].sum(), pmap.single_maps[j].sum()) # Add in first-order recurrent excitation across the map self.out('Adding first-order recurrent excitation to map...') for i in xrange(H): for j in xrange(W): R[:,i,j] += np.dot(R[:,i,j], J) # feedforward R[:,i,j] += np.dot(R[:,i,j], J) # feedback # Feedforward threshold to maintain activity level sparsity_match_threshold(R) pmap.reset() pmap.compute_coverage() self.out('Recurrent active units = %d'%pmap.num_active) else: self.out('Loading recurrent model data...') pmap = CheckeredRatemap.fromfile('rec_map.tar.gz') R = pmap.Map array_to_image(get_norms(R), 'rec_norms.png', cmap=mpl.cm.gray_r) store_data('rec', pmap) # Good-bye! self.out('All done!') def create_plots(self, legend=False): # Move into data directoary and start logging os.chdir(self.datadir) self.out.outfd = file('figure.log', 'w') # Set up main figure for plotting self.figure = {} figsize = 8, 10 plt.rcParams['figure.figsize'] = figsize self.figure['altmodels'] = f = plt.figure(figsize=figsize) f.suptitle(self.label.title()) # Load data data = self.results models = data['model_types'] getval = lambda pre, k: data[pre + '_' + k] # Log some data def print_mean_sem(value, arr): if type(arr) is float: self.out('%s = %.4f'%(value, arr)) else: self.out('%s = %.4f +/- %.4f'%(value, arr.mean(), sem(arr))) for prefix in models: for val in ('sparsity', 'num_fields', 'area', 'diameter'): key = prefix + '_' + val print_mean_sem(key, data[key]) # Draw place fields as circles def draw_circle_field_plots(ax, prefix): x = getval(prefix, 'x') y = getval(prefix, 'y') d = getval(prefix, 'diameter') nfields = len(x) ax.plot(x, y, 'k+', ms=6, aa=False) for i in xrange(nfields): ell = mpl.patches.Ellipse((x[i], y[i]), d[i], d[i], fill=False, lw=1, ec='k') ell.clip_box = ax.bbox ax.add_artist(ell) ax.axis("image") ax.set_xlim(0, 100) ax.set_ylim(0, 100) ax.set_title(prefix) return ax # Render place field plots rows = 3 cols = 2 for i,prefix in enumerate(models): draw_circle_field_plots(plt.subplot(rows, cols, i+1), prefix) # Statistics plot ax = plt.subplot(rows, cols, 5) markers = "ods^" for i,prefix in enumerate(models): a = getval(prefix, 'area') nf = getval(prefix, 'num_fields') ax.errorbar(a.mean(), nf.mean(), xerr=sem(a), yerr=sem(nf), fmt=markers[i], ecolor='k', elinewidth=1, capsize=4, ms=6, mfc='k', mec='k', mew=1) # ax.set_ylim(1, 2) # ax.set_xlim(xmax=245) ax.set_xlabel('area') ax.set_ylabel('num. fields') # Remapping data if os.path.exists('remapping.npy'): self.out('Loading remapping/turnover values...') remapping, turnover = np.load('remapping.npy') else: self.out('Computing remapping/turnover measures...') pmaps = [CheckeredRatemap.fromfile('%s_map.tar.gz'%p) for p in models] remapping = [] turnover = [] for pm in pmaps[1:]: cmpAB = compare_AB(pmaps[0], pm) remapping.append(cmpAB['remapping']) turnover.append(cmpAB['turnover']) np.save('remapping.npy', np.array([remapping, turnover])) self.out('Remapping: %s'%str(remapping)) self.out('Turnover: %s'%str(turnover)) # Set up bar plot data ax = plt.subplot(rows, cols, 6) left = [] height = [] xticklabels = models[1:] bar_w = 1/float(len(xticklabels)) c = 0 for i in xrange(len(xticklabels)): left.extend([c-bar_w, c]) height.extend([remapping[i], turnover[i]]) c += 1 # Render the bar chart and legend bar_cols = mpl.cm.gray(([0.25, 0.6])*c) bar_h = ax.bar(left, height, width=bar_w, ec='k', color=bar_cols, linewidth=0, ecolor='k', aa=False) if legend: ax.legend(bar_h[:2], ['Remapping', 'Turnover'], loc=1) ax.hlines(1.0, xmin=-0.5, xmax=c-0.5, linestyle=':', color='k') ax.set_xlim(-0.5, c-0.5) ax.set_ylim(0.0, 1.1) ax.set_xticks(np.arange(c)) ax.set_xticklabels(xticklabels) plt.draw() plt.rcParams['figure.figsize'] = plt.rcParamsDefault['figure.figsize'] self.out.outfd.close()
mit
Transkribus/TranskribusDU
usecases/NewsEye/FeatureDefinition_PageXml_std.py
1
14652
# -*- coding: utf-8 -*- """ Standard PageXml features Copyright Xerox(C) 2016 JL. Meunier Developed for the EU project READ. The READ project has received funding from the European Union�s Horizon 2020 research and innovation programme under grant agreement No 674943. """ import numpy as np from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.feature_extraction.text import TfidfVectorizer #not robust to empty arrays, so use our robust intermediary class instead #from sklearn.preprocessing import StandardScaler from graph.Transformer import EmptySafe_QuantileTransformer as QuantileTransformer from graph.Transformer import SparseToDense from graph.Transformer_PageXml import NodeTransformerXYWH, NodeTransformerNeighbors, Node1HotFeatures from graph.Transformer_PageXml import Edge1HotFeatures, EdgeBooleanFeatures, EdgeNumericalSelector from graph.Transformer_PageXml import NodeTransformerTextEnclosed, NodeTransformerTextLen from graph.Transformer_PageXml import EdgeTransformerSourceText, EdgeTransformerTargetText from graph.PageNumberSimpleSequenciality import PageNumberSimpleSequenciality from graph.FeatureDefinition import FeatureDefinition from PageXmlSeparatorRegion import Separator_boolean, Separator_num class FeatureDefinition_PageXml_StandardOnes(FeatureDefinition): n_QUANTILES = 16 bSeparator = False def __init__(self, n_tfidf_node=None, t_ngrams_node=None, b_tfidf_node_lc=None , n_tfidf_edge=None, t_ngrams_edge=None, b_tfidf_edge_lc=None , bMirrorPage=True, bMultiPage=True): FeatureDefinition.__init__(self) self.n_tfidf_node, self.t_ngrams_node, self.b_tfidf_node_lc = n_tfidf_node, t_ngrams_node, b_tfidf_node_lc self.n_tfidf_edge, self.t_ngrams_edge, self.b_tfidf_edge_lc = n_tfidf_edge, t_ngrams_edge, b_tfidf_edge_lc self.bMirrorPage = bMirrorPage self.bMultiPage = bMultiPage tdifNodeTextVectorizer = TfidfVectorizer(lowercase=self.b_tfidf_node_lc, max_features=self.n_tfidf_node , analyzer = 'char', ngram_range=self.t_ngrams_node #(2,6) , dtype=np.float64) node_transformer = FeatureUnion( [ #CAREFUL IF YOU CHANGE THIS - see cleanTransformers method!!!! ("text", Pipeline([ ('selector', NodeTransformerTextEnclosed()), # ('tfidf', TfidfVectorizer(lowercase=self.b_tfidf_node_lc, max_features=self.n_tfidf_node # , analyzer = 'char', ngram_range=self.tNODE_NGRAMS #(2,6) # , dtype=np.float64)), ('tfidf', tdifNodeTextVectorizer), #we can use it separately from the pipleline once fitted ('todense', SparseToDense()) #pystruct needs an array, not a sparse matrix ]) ) , ("textlen", Pipeline([ ('selector', NodeTransformerTextLen()), ('textlen', QuantileTransformer(n_quantiles=self.n_QUANTILES, copy=False)) #use in-place scaling ]) ) , ("xywh", Pipeline([ ('selector', NodeTransformerXYWH()), #v1 ('xywh', StandardScaler(copy=False, with_mean=True, with_std=True)) #use in-place scaling ('xywh', QuantileTransformer(n_quantiles=self.n_QUANTILES, copy=False)) #use in-place scaling ]) ) , ("neighbors", Pipeline([ ('selector', NodeTransformerNeighbors()), #v1 ('neighbors', StandardScaler(copy=False, with_mean=True, with_std=True)) #use in-place scaling ('neighbors', QuantileTransformer(n_quantiles=self.n_QUANTILES, copy=False)) #use in-place scaling ]) ) , ("1hot", Pipeline([ ('1hot', Node1HotFeatures()) #does the 1-hot encoding directly ]) ) #, ("sem", Pipeline([ # ('sem', NodeSemanticLabels()) #add semantic labels # ]) # ) # Added by Animesh # , ('ocr' , Pipeline([ # ('ocr', NodeOCRFeatures()) # ]) # ) # , ('pnumre' , Pipeline([ # ('pnumre', NodePNumFeatures()) # ]) # ) # , ("doc_tfidf", Pipeline([ # ('zero', Zero2Features()) # #THIS ONE MUST BE LAST, because it include a placeholder column for the doculent-level tfidf # ]) # ) ]) lEdgeFeature = [ #CAREFUL IF YOU CHANGE THIS - see cleanTransformers method!!!! ("1hot", Pipeline([ ('1hot', Edge1HotFeatures(PageNumberSimpleSequenciality())) ]) ) , ("boolean", Pipeline([ ('boolean', EdgeBooleanFeatures()) ]) ) , ("numerical", Pipeline([ ('selector', EdgeNumericalSelector()), #v1 ('numerical', StandardScaler(copy=False, with_mean=True, with_std=True)) #use in-place scaling ('numerical', QuantileTransformer(n_quantiles=self.n_QUANTILES, copy=False)) #use in-place scaling ]) ) # , ("sourcetext0", Pipeline([ # ('selector', EdgeTransformerSourceText(0, bMirrorPage=bMirrorPage, bMultiPage=bMultiPage)), # ('tfidf', TfidfVectorizer(lowercase=self.b_tfidf_edge_lc, max_features=self.n_tfidf_edge # , analyzer = 'char', ngram_range=self.t_ngrams_edge #(2,6) # , dtype=np.float64)), # ('todense', SparseToDense()) #pystruct needs an array, not a sparse matrix # ]) # ) # , ("targettext0", Pipeline([ # ('selector', EdgeTransformerTargetText(0, bMirrorPage=bMirrorPage, bMultiPage=bMultiPage)), # ('tfidf', TfidfVectorizer(lowercase=self.b_tfidf_edge_lc, max_features=self.n_tfidf_edge # , analyzer = 'char', ngram_range=self.t_ngrams_edge # #, analyzer = 'word', ngram_range=self.tEDGE_NGRAMS # , dtype=np.float64)), # ('todense', SparseToDense()) #pystruct needs an array, not a sparse matrix # ]) # ) # , ("sourcetext1", Pipeline([ # ('selector', EdgeTransformerSourceText(1, bMirrorPage=bMirrorPage, bMultiPage=bMultiPage)), # ('tfidf', TfidfVectorizer(lowercase=self.b_tfidf_edge_lc, max_features=self.n_tfidf_edge # , analyzer = 'char', ngram_range=self.t_ngrams_edge #(2,6) # , dtype=np.float64)), # ('todense', SparseToDense()) #pystruct needs an array, not a sparse matrix # ]) # ) # , ("targettext1", Pipeline([ # ('selector', EdgeTransformerTargetText(1, bMirrorPage=bMirrorPage, bMultiPage=bMultiPage)), # ('tfidf', TfidfVectorizer(lowercase=self.b_tfidf_edge_lc, max_features=self.n_tfidf_edge # , analyzer = 'char', ngram_range=self.t_ngrams_edge # #, analyzer = 'word', ngram_range=self.tEDGE_NGRAMS # , dtype=np.float64)), # ('todense', SparseToDense()) #pystruct needs an array, not a sparse matrix # ]) # ) ] if self.bSeparator: lEdgeFeature = lEdgeFeature + [ ('sprtr_bool', Separator_boolean()) , ('sprtr_num' , Separator_num()) ] if bMultiPage: lEdgeFeature.extend([("sourcetext2", Pipeline([ ('selector', EdgeTransformerSourceText(2, bMirrorPage=bMirrorPage, bMultiPage=bMultiPage)), ('tfidf', TfidfVectorizer(lowercase=self.b_tfidf_edge_lc, max_features=self.n_tfidf_edge , analyzer = 'char', ngram_range=self.t_ngrams_edge #(2,6) , dtype=np.float64)), ('todense', SparseToDense()) #pystruct needs an array, not a sparse matrix ]) ) , ("targettext2", Pipeline([ ('selector', EdgeTransformerTargetText(2, bMirrorPage=bMirrorPage, bMultiPage=bMultiPage)), ('tfidf', TfidfVectorizer(lowercase=self.b_tfidf_edge_lc, max_features=self.n_tfidf_edge , analyzer = 'char', ngram_range=self.t_ngrams_edge #, analyzer = 'word', ngram_range=self.tEDGE_NGRAMS , dtype=np.float64)), ('todense', SparseToDense()) #pystruct needs an array, not a sparse matrix ]) ) ]) edge_transformer = FeatureUnion( lEdgeFeature ) #return _node_transformer, _edge_transformer, tdifNodeTextVectorizer self._node_transformer = node_transformer self._edge_transformer = edge_transformer self.tfidfNodeTextVectorizer = tdifNodeTextVectorizer def cleanTransformers(self): """ the TFIDF transformers are keeping the stop words => huge pickled file!!! Here the fix is a bit rough. There are better ways.... JL """ self._node_transformer.transformer_list[0][1].steps[1][1].stop_words_ = None #is 1st in the union... if self.bMirrorPage: imax = 9 else: imax = 7 # for i in range(3, imax): # self._edge_transformer.transformer_list[i][1].steps[1][1].stop_words_ = None #are 3rd and 4th in the union.... return self._node_transformer, self._edge_transformer class FeatureDefinition_PageXml_StandardOnes_SEP(FeatureDefinition_PageXml_StandardOnes): bSeparator = True
bsd-3-clause
xho95/BuildingMachineLearningSystemsWithPython
ch09/utils.py
24
5568
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import os import sys from matplotlib import pylab import numpy as np DATA_DIR = os.path.join( os.path.dirname(os.path.realpath(__file__)), "data") CHART_DIR = os.path.join( os.path.dirname(os.path.realpath(__file__)), "charts") for d in [DATA_DIR, CHART_DIR]: if not os.path.exists(d): os.mkdir(d) # Put your directory to the different music genres here GENRE_DIR = None GENRE_LIST = ["classical", "jazz", "country", "pop", "rock", "metal"] # Put your directory to the test dir here TEST_DIR = None if GENRE_DIR is None or TEST_DIR is None: print("Please set GENRE_DIR and TEST_DIR in utils.py") sys.exit(1) def plot_confusion_matrix(cm, genre_list, name, title): pylab.clf() pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0) ax = pylab.axes() ax.set_xticks(range(len(genre_list))) ax.set_xticklabels(genre_list) ax.xaxis.set_ticks_position("bottom") ax.set_yticks(range(len(genre_list))) ax.set_yticklabels(genre_list) pylab.title(title) pylab.colorbar() pylab.grid(False) pylab.show() pylab.xlabel('Predicted class') pylab.ylabel('True class') pylab.grid(False) pylab.savefig( os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight") def plot_pr(auc_score, name, precision, recall, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.fill_between(recall, precision, alpha=0.5) pylab.plot(recall, precision, lw=1) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('Recall') pylab.ylabel('Precision') pylab.title('P/R curve (AUC = %0.2f) / %s' % (auc_score, label)) filename = name.replace(" ", "_") pylab.savefig( os.path.join(CHART_DIR, "pr_" + filename + ".png"), bbox_inches="tight") def plot_roc(auc_score, name, tpr, fpr, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.plot([0, 1], [0, 1], 'k--') pylab.plot(fpr, tpr) pylab.fill_between(fpr, tpr, alpha=0.5) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('False Positive Rate') pylab.ylabel('True Positive Rate') pylab.title('ROC curve (AUC = %0.2f) / %s' % (auc_score, label), verticalalignment="bottom") pylab.legend(loc="lower right") filename = name.replace(" ", "_") pylab.savefig( os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight") def show_most_informative_features(vectorizer, clf, n=20): c_f = sorted(zip(clf.coef_[0], vectorizer.get_feature_names())) top = zip(c_f[:n], c_f[:-(n + 1):-1]) for (c1, f1), (c2, f2) in top: print("\t%.4f\t%-15s\t\t%.4f\t%-15s" % (c1, f1, c2, f2)) def plot_log(): pylab.clf() x = np.arange(0.001, 1, 0.001) y = np.log(x) pylab.title('Relationship between probabilities and their logarithm') pylab.plot(x, y) pylab.grid(True) pylab.xlabel('P') pylab.ylabel('log(P)') filename = 'log_probs.png' pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_feat_importance(feature_names, clf, name): pylab.clf() coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(range(len(coef))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") def plot_feat_hist(data_name_list, filename=None): pylab.clf() num_rows = 1 + (len(data_name_list) - 1) / 2 num_cols = 1 if len(data_name_list) == 1 else 2 pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Density') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, facecolor='green', alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_bias_variance(data_sizes, train_errors, test_errors, name): pylab.clf() pylab.ylim([0.0, 1.0]) pylab.xlabel('Data set size') pylab.ylabel('Error') pylab.title("Bias-Variance for '%s'" % name) pylab.plot( data_sizes, train_errors, "-", data_sizes, test_errors, "--", lw=1) pylab.legend(["train error", "test error"], loc="upper right") pylab.grid(True) pylab.savefig(os.path.join(CHART_DIR, "bv_" + name + ".png"))
mit
bcosenza/patus
tune/plot_training_amm.py
1
1291
import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages #size = [ '0.96K', '1.92K', '2.88', '3.84K', '48K', '5.76K', '6.72K', '7.68K', '8.64K', '9.6K', '16K', '32K'] size = [ 960, 1920, 2880, 3840, 4800, 5760, 6720, 7680, 8640, 9600, 16000, 32000] tra = [ 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 7, 36] reg = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] #np.arange(0., 5., 0.2) fig, ax = plt.subplots() # red dashes, blue squares and green triangles plt.plot(size, tra, linestyle=':', label='training time') plt.plot(size, reg, linestyle='--', label='regression time') #plt.axis([0,32000,0,40]) legend = plt.legend(loc='upper center',fontsize=20) #, shadow=True, fontsize='x-large') # Put a nicer background color on the legend. #legend.get_frame().set_facecolor('#00FFCC') ax.set_ylabel('time ms',fontsize=20) ax.set_xlabel('training set size',fontsize=20) #ax.set_xticks(ind + width) #ax.set_xticklabels(testcases,rotation=90) #ax.legend(rects, models ) #plt.show() fig.set_size_inches(18.5, 10.5, forward=True) plt.savefig('plots/training_amortization.png', bbox_inches='tight') with PdfPages('plots/training_amortization.pdf') as pdf: pdf.savefig(plt.gcf()) plt.close()
lgpl-2.1
arahlin/healpy
healpy/newvisufunc.py
4
7180
__all__ = ["mollview", "projplot"] import numpy as np from .pixelfunc import ang2pix, npix2nside from .rotator import Rotator from matplotlib.projections.geo import GeoAxes ###### WARNING ################# # this module is work in progress, the aim is to reimplement the healpy # plot functions using the new features of matplotlib and remove most # of the custom projection code class ThetaFormatterShiftPi(GeoAxes.ThetaFormatter): """Shifts labelling by pi Shifts labelling from -180,180 to 0-360""" def __call__(self, x, pos=None): if x != 0: x *= -1 if x < 0: x += 2 * np.pi return super(ThetaFormatterShiftPi, self).__call__(x, pos) def lonlat(theta, phi): """Converts theta and phi to longitude and latitude From colatitude to latitude and from astro longitude to geo longitude""" longitude = -1 * np.asarray(phi) latitude = np.pi / 2 - np.asarray(theta) return longitude, latitude def mollview( m=None, rot=None, coord=None, unit="", xsize=1000, nest=False, min=None, max=None, flip="astro", format="%g", cbar=True, cmap=None, norm=None, graticule=False, graticule_labels=False, **kwargs ): """Plot a healpix map (given as an array) in Mollweide projection. Parameters ---------- map : float, array-like or None An array containing the map, supports masked maps, see the `ma` function. If None, will display a blank map, useful for overplotting. rot : scalar or sequence, optional Describe the rotation to apply. In the form (lon, lat, psi) (unit: degrees) : the point at longitude *lon* and latitude *lat* will be at the center. An additional rotation of angle *psi* around this direction is applied. coord : sequence of character, optional Either one of 'G', 'E' or 'C' to describe the coordinate system of the map, or a sequence of 2 of these to rotate the map from the first to the second coordinate system. unit : str, optional A text describing the unit of the data. Default: '' xsize : int, optional The size of the image. Default: 800 nest : bool, optional If True, ordering scheme is NESTED. Default: False (RING) min : float, optional The minimum range value max : float, optional The maximum range value flip : {'astro', 'geo'}, optional Defines the convention of projection : 'astro' (default, east towards left, west towards right) or 'geo' (east towards roght, west towards left) format : str, optional The format of the scale label. Default: '%g' cbar : bool, optional Display the colorbar. Default: True norm : {'hist', 'log', None} Color normalization, hist= histogram equalized color mapping, log= logarithmic color mapping, default: None (linear color mapping) kwargs : keywords any additional keyword is passed to pcolormesh graticule : bool add graticule graticule_labels : bool longitude and latitude labels """ # not implemented features if not (norm is None): raise NotImplementedError() # Create the figure import matplotlib.pyplot as plt width = 8.5 fig = plt.figure(figsize=(width, width * 0.63)) ax = fig.add_subplot(111, projection="mollweide") # FIXME: make a more general axes creation that works also with subplots # ax = plt.gcf().add_axes((.125, .1, .9, .9), projection="mollweide") # remove white space around the image plt.subplots_adjust(left=0.02, right=0.98, top=0.95, bottom=0.05) if graticule and graticule_labels: plt.subplots_adjust(left=0.04, right=0.98, top=0.95, bottom=0.05) if not m is None: # auto min and max if min is None: min = m.min() if max is None: max = m.max() # allow callers to override the hold state by passing hold=True|False washold = ax.ishold() hold = kwargs.pop("hold", None) if hold is not None: ax.hold(hold) try: ysize = xsize / 2 theta = np.linspace(np.pi, 0, ysize) phi = np.linspace(-np.pi, np.pi, xsize) longitude = np.radians(np.linspace(-180, 180, xsize)) if flip == "astro": longitude = longitude[::-1] latitude = np.radians(np.linspace(-90, 90, ysize)) # project the map to a rectangular matrix xsize x ysize PHI, THETA = np.meshgrid(phi, theta) # coord or rotation if coord or rot: r = Rotator(coord=coord, rot=rot, inv=True) THETA, PHI = r(THETA.flatten(), PHI.flatten()) THETA = THETA.reshape(ysize, xsize) PHI = PHI.reshape(ysize, xsize) nside = npix2nside(len(m)) if not m is None: grid_pix = ang2pix(nside, THETA, PHI, nest=nest) grid_map = m[grid_pix] # plot ret = plt.pcolormesh( longitude, latitude, grid_map, vmin=min, vmax=max, rasterized=True, **kwargs ) # graticule plt.grid(graticule) if graticule: longitude_grid_spacing = 60 # deg ax.set_longitude_grid(longitude_grid_spacing) if width < 10: ax.set_latitude_grid(45) ax.set_longitude_grid_ends(90) if graticule_labels: ax.xaxis.set_major_formatter(ThetaFormatterShiftPi(longitude_grid_spacing)) else: # remove longitude and latitude labels ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) # colorbar if cbar and not m is None: cb = fig.colorbar( ret, orientation="horizontal", shrink=0.4, pad=0.05, ticks=[min, max] ) cb.ax.xaxis.set_label_text(unit) cb.ax.xaxis.labelpad = -8 # workaround for issue with viewers, see colorbar docstring cb.solids.set_edgecolor("face") plt.draw() finally: ax.hold(washold) return ret def projplot(theta, phi, fmt=None, **kwargs): """projplot is a wrapper around :func:`matplotlib.Axes.plot` to take into account the spherical projection. You can call this function as:: projplot(theta, phi) # plot a line going through points at coord (theta, phi) projplot(theta, phi, 'bo') # plot 'o' in blue at coord (theta, phi) Parameters ---------- theta, phi : float, array-like Coordinates of point to plot in radians. fmt : str A format string (see :func:`matplotlib.Axes.plot` for details) Notes ----- Other keywords are passed to :func:`matplotlib.Axes.plot`. See Also -------- projscatter, projtext """ import matplotlib.pyplot as plt longitude, latitude = lonlat(theta, phi) if fmt is None: ret = plt.plot(longitude, latitude, **kwargs) else: ret = plt.plot(longitude, latitude, fmt, **kwargs) return ret
gpl-2.0
hammerlab/vaxrank
vaxrank/gene_pathway_check.py
1
5225
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, division from collections import OrderedDict from os.path import join, dirname import pandas as pd _ENSEMBL_GENE_ID_COLUMN_NAME = 'Ensembl Gene ID' _MUTATION_COLUMN_NAME = 'Mutation' _IFNG_RESPONSE_COLUMN_NAME = 'interferon_gamma_response' _CLASS_I_MHC_COLUMN_NAME = 'class1_mhc_presentation_pathway' _DRIVER_GENE_COLUMN_NAME = 'cancer_driver_gene' _DRIVER_VARIANT_COLUMN_NAME = 'cancer_driver_variant' _CURRENT_DIR = dirname(__file__) _DATA_DIR = join(_CURRENT_DIR, "data") class GenePathwayCheck(object): """ This class is meant for use with gene/variant list files from https://github.com/openvax/gene-lists. Other files can be used as well, but need to follow a similar column structure. Most logic is based on Ensembl gene IDs. Parameters ---------- interferon_gamma_response_csv : str, optional Local path to interferon-gamma response CSV file. class1_mhc_presentation_pathway_csv : str, optional Local path to MHC class I presentation pathway CSV file. cancer_driver_genes_csv : str, optional Local path to cancer driver genes CSV file. cancer_driver_variants_csv : str, optional Local path to cancer driver variants CSV file. """ def __init__( self, interferon_gamma_response_csv=None, class1_mhc_presentation_pathway_csv=None, cancer_driver_genes_csv=None, cancer_driver_variants_csv=None): self.interferon_gamma_response_gene_set = self._load_set_from_csv( csv_path=interferon_gamma_response_csv, default_filename="interferon-gamma-response.csv", description="Interferon gamma response pathway", column_names=[_ENSEMBL_GENE_ID_COLUMN_NAME]) self.class1_mhc_presentation_pathway_gene_set = self._load_set_from_csv( csv_path=class1_mhc_presentation_pathway_csv, default_filename="class1-mhc-presentation-pathway.csv", description="Class I MHC presentation pathway", column_names=[_ENSEMBL_GENE_ID_COLUMN_NAME]) self.cancer_driver_genes_set = self._load_set_from_csv( csv_path=cancer_driver_genes_csv, default_filename="cancer-driver-genes.csv", description="Cancer driver genes", column_names=[_ENSEMBL_GENE_ID_COLUMN_NAME]) # set of gene ID, variant description pairs self.cancer_driver_variants_set = self._load_set_from_csv( csv_path=cancer_driver_variants_csv, default_filename="cancer-driver-variants.csv", description="Driver variants", column_names=[_ENSEMBL_GENE_ID_COLUMN_NAME, _MUTATION_COLUMN_NAME]) @classmethod def _load_set_from_csv(cls, csv_path, default_filename, description, column_names): if not csv_path: csv_path = join(_DATA_DIR, default_filename) df = pd.read_csv(csv_path) columns = [] for column_name in column_names: if column_name not in df.columns: raise ValueError("%s file (%s) needs column '%s'" % ( description, csv_path, column_name)) columns.append(df[column_name].values) if len(columns) == 1: return set(columns[0]) else: return set(zip(*columns)) def make_variant_dict(self, variant): """ Returns a dictionary of boolean values, depending on whether we see this variant in any relevant pathway or cancer driver files. Parameters ---------- variant : varcode.Variant Variant object to evaluate """ effect_description = variant.effects().top_priority_effect().short_description overlapping_gene_ids = variant.gene_ids variant_dict = OrderedDict() variant_dict[_IFNG_RESPONSE_COLUMN_NAME] = any([ gene_id in self.interferon_gamma_response_gene_set for gene_id in overlapping_gene_ids ]) variant_dict[_CLASS_I_MHC_COLUMN_NAME] = any([ gene_id in self.class1_mhc_presentation_pathway_gene_set for gene_id in overlapping_gene_ids ]) variant_dict[_DRIVER_GENE_COLUMN_NAME] = any([ gene_id in self.cancer_driver_genes_set for gene_id in overlapping_gene_ids ]) variant_dict[_DRIVER_VARIANT_COLUMN_NAME] = any([ (gene_id, effect_description) in self.cancer_driver_variants_set for gene_id in overlapping_gene_ids ]) return variant_dict
apache-2.0
RPGOne/scikit-learn
examples/classification/plot_lda_qda.py
30
5150
""" ==================================================================== Linear and Quadratic Discriminant Analysis with confidence ellipsoid ==================================================================== Plot the confidence ellipsoids of each class and decision boundary """ print(__doc__) from scipy import linalg import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis ############################################################################### # colormap cmap = colors.LinearSegmentedColormap( 'red_blue_classes', {'red': [(0, 1, 1), (1, 0.7, 0.7)], 'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue': [(0, 0.7, 0.7), (1, 1, 1)]}) plt.cm.register_cmap(cmap=cmap) ############################################################################### # generate datasets def dataset_fixed_cov(): '''Generate 2 Gaussians samples with the same covariance matrix''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -0.23], [0.83, .23]]) X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y def dataset_cov(): '''Generate 2 Gaussians samples with different covariance matrices''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -1.], [2.5, .7]]) * 2. X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y ############################################################################### # plot functions def plot_data(lda, X, y, y_pred, fig_index): splot = plt.subplot(2, 2, fig_index) if fig_index == 1: plt.title('Linear Discriminant Analysis') plt.ylabel('Data with fixed covariance') elif fig_index == 2: plt.title('Quadratic Discriminant Analysis') elif fig_index == 3: plt.ylabel('Data with varying covariances') tp = (y == y_pred) # True Positive tp0, tp1 = tp[y == 0], tp[y == 1] X0, X1 = X[y == 0], X[y == 1] X0_tp, X0_fp = X0[tp0], X0[~tp0] X1_tp, X1_fp = X1[tp1], X1[~tp1] alpha = 0.5 # class 0: dots plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', alpha=alpha, color='red') plt.plot(X0_fp[:, 0], X0_fp[:, 1], '*', alpha=alpha, color='#990000') # dark red # class 1: dots plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', alpha=alpha, color='blue') plt.plot(X1_fp[:, 0], X1_fp[:, 1], '*', alpha=alpha, color='#000099') # dark blue # class 0 and 1 : areas nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny)) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes', norm=colors.Normalize(0., 1.)) plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k') # means plt.plot(lda.means_[0][0], lda.means_[0][1], 'o', color='black', markersize=10) plt.plot(lda.means_[1][0], lda.means_[1][1], 'o', color='black', markersize=10) return splot def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees # filled Gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, facecolor=color, edgecolor='yellow', linewidth=2, zorder=2) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) splot.set_xticks(()) splot.set_yticks(()) def plot_lda_cov(lda, splot): plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue') def plot_qda_cov(qda, splot): plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue') ############################################################################### for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # Linear Discriminant Analysis lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) y_pred = lda.fit(X, y).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) plt.axis('tight') # Quadratic Discriminant Analysis qda = QuadraticDiscriminantAnalysis(store_covariances=True) y_pred = qda.fit(X, y).predict(X) splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2) plot_qda_cov(qda, splot) plt.axis('tight') plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant Analysis') plt.show()
bsd-3-clause