repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
shyamalschandra/scikit-learn
examples/feature_selection/plot_select_from_model_boston.py
146
1527
""" =================================================== Feature selection using SelectFromModel and LassoCV =================================================== Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the Boston dataset. """ # Author: Manoj Kumar <[email protected]> # License: BSD 3 clause print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_boston from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import LassoCV # Load the boston dataset. boston = load_boston() X, y = boston['data'], boston['target'] # We use the base estimator LassoCV since the L1 norm promotes sparsity of features. clf = LassoCV() # Set a minimum threshold of 0.25 sfm = SelectFromModel(clf, threshold=0.25) sfm.fit(X, y) n_features = sfm.transform(X).shape[1] # Reset the threshold till the number of features equals two. # Note that the attribute can be set directly instead of repeatedly # fitting the metatransformer. while n_features > 2: sfm.threshold += 0.1 X_transform = sfm.transform(X) n_features = X_transform.shape[1] # Plot the selected two features from X. plt.title( "Features selected from Boston using SelectFromModel with " "threshold %0.3f." % sfm.threshold) feature1 = X_transform[:, 0] feature2 = X_transform[:, 1] plt.plot(feature1, feature2, 'r.') plt.xlabel("Feature number 1") plt.ylabel("Feature number 2") plt.ylim([np.min(feature2), np.max(feature2)]) plt.show()
bsd-3-clause
lazywei/scikit-learn
examples/cluster/plot_segmentation_toy.py
258
3336
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
abalkin/numpy
numpy/lib/twodim_base.py
6
27555
""" Basic functions for manipulating 2d arrays """ import functools from numpy.core.numeric import ( asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, nonzero ) from numpy.core.overrides import set_module from numpy.core import overrides from numpy.core import iinfo __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def _flip_dispatcher(m): return (m,) @array_function_dispatch(_flip_dispatcher) def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.fliplr(A) array([[0., 0., 1.], [0., 2., 0.], [3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] @array_function_dispatch(_flip_dispatcher) def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.flipud(A) array([[0., 0., 3.], [0., 2., 0.], [1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] @set_module('numpy') def eye(N, M=None, k=0, dtype=float, order='C'): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. order : {'C', 'F'}, optional Whether the output should be stored in row-major (C-style) or column-major (Fortran-style) order in memory. .. versionadded:: 1.14.0 Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype, order=order) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def _diag_dispatcher(v, k=None): return (v,) @array_function_dispatch(_diag_dispatcher) def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") @array_function_dispatch(_diag_dispatcher) def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) @set_module('numpy') def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def _trilu_dispatcher(m, k=None): return (m,) @array_function_dispatch(_trilu_dispatcher) def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) @array_function_dispatch(_trilu_dispatcher) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) def _vander_dispatcher(x, N=None, increasing=None): return (x,) # Originally borrowed from John Hunter and matplotlib @array_function_dispatch(_vander_dispatcher) def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 # may vary >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None, weights=None, density=None): yield x yield y # This terrible logic is adapted from the checks in histogram2d try: N = len(bins) except TypeError: N = 1 if N == 2: yield from bins # bins=[x, y] else: yield bins yield weights @array_function_dispatch(_histogram2d_dispatcher) def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. density : bool, optional If False, the default, returns the number of samples in each bin. If True, returns the probability *density* function at the bin, ``bin_count / sample_count / bin_area``. normed : bool, optional An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to `histogram`, `density` should be preferred. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx+1,) The bin edges along the first dimension. yedges : ndarray, shape(ny+1,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> from matplotlib.image import NonUniformImage >>> import matplotlib.pyplot as plt Construct a 2-D histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(2, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) >>> H = H.T # Let each row list bins with common y range. :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131, title='imshow: square bins') >>> plt.imshow(H, interpolation='nearest', origin='low', ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) <matplotlib.image.AxesImage object at 0x...> :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', ... aspect='equal') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) <matplotlib.collections.QuadMesh object at 0x...> :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to display actual bin edges with interpolation: >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) >>> im = NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights, density) return hist, edges[0], edges[1] @set_module('numpy') def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return nonzero(a != 0) @set_module('numpy') def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, ..., 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return nonzero(tri(n, m, k=k, dtype=bool)) def _trilu_indices_form_dispatcher(arr, k=None): return (arr,) @array_function_dispatch(_trilu_indices_form_dispatcher) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) @set_module('numpy') def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, ..., 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return nonzero(~tri(n, m, k=k-1, dtype=bool)) @array_function_dispatch(_trilu_indices_form_dispatcher) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
appapantula/scikit-learn
sklearn/feature_extraction/text.py
110
50157
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. Only applies if ``analyzer == 'word'``. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df of min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
liangz0707/scikit-learn
sklearn/utils/metaestimators.py
283
2353
"""Utilities for meta-estimators""" # Author: Joel Nothman # Andreas Mueller # Licence: BSD from operator import attrgetter from functools import update_wrapper __all__ = ['if_delegate_has_method'] class _IffHasAttrDescriptor(object): """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if the ``attribute_name`` is not present on the base object. This allows ducktyping of the decorated method based on ``attribute_name``. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, attribute_name): self.fn = fn self.get_attribute = attrgetter(attribute_name) # update the docstring of the descriptor update_wrapper(self, fn) def __get__(self, obj, type=None): # raise an AttributeError if the attribute is not present on the object if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self.get_attribute(obj) # lambda, but not partial, allows help() to work with update_wrapper out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # update the docstring of the returned function update_wrapper(out, self.fn) return out def if_delegate_has_method(delegate): """Create a decorator for methods that are delegated to a sub-estimator This enables ducktyping by hasattr returning True according to the sub-estimator. >>> from sklearn.utils.metaestimators import if_delegate_has_method >>> >>> >>> class MetaEst(object): ... def __init__(self, sub_est): ... self.sub_est = sub_est ... ... @if_delegate_has_method(delegate='sub_est') ... def predict(self, X): ... return self.sub_est.predict(X) ... >>> class HasPredict(object): ... def predict(self, X): ... return X.sum(axis=1) ... >>> class HasNoPredict(object): ... pass ... >>> hasattr(MetaEst(HasPredict()), 'predict') True >>> hasattr(MetaEst(HasNoPredict()), 'predict') False """ return lambda fn: _IffHasAttrDescriptor(fn, '%s.%s' % (delegate, fn.__name__))
bsd-3-clause
djgagne/scikit-learn
examples/model_selection/plot_confusion_matrix.py
244
2496
""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the better, indicating many correct predictions. The figures show the confusion matrix with and without normalization by class support size (number of elements in each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation of which class is being misclassified. Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In real life applications this parameter is usually chosen using :ref:`grid_search`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.cross_validation import train_test_split from sklearn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Run classifier, using a model that is too regularized (C too low) to see # the impact on the results classifier = svm.SVC(kernel='linear', C=0.01) y_pred = classifier.fit(X_train, y_train).predict(X_test) def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(iris.target_names)) plt.xticks(tick_marks, iris.target_names, rotation=45) plt.yticks(tick_marks, iris.target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cm = confusion_matrix(y_test, y_pred) np.set_printoptions(precision=2) print('Confusion matrix, without normalization') print(cm) plt.figure() plot_confusion_matrix(cm) # Normalize the confusion matrix by row (i.e by the number of samples # in each class) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix') plt.show()
bsd-3-clause
dsokoler/StockAnalytics
Stock.py
1
37881
import sys, configparser, json from datetime import datetime importError = False; try: import requests except ImportError: print("Please install requests: 'pip3 install requests'"); importError = True; #MatPlotLib for visualizations try: import matplotlib.pyplot as plt; import matplotlib.ticker as mticker from matplotlib.finance import candlestick_ohlc import matplotlib.dates as mdates except ImportError: print("Please install matplotlib: 'pip3 install matplotlib'"); importError = True; #Pandas is for datetimes try: import pandas as pd except ImportError: print("Please install Pandas: 'pip3 install pandas'"); importError = True; #Numpy for line of best fit try: import numpy as np except ImportError: print("Please install Numpy: 'pip3 install numpy'"); importError = True; try: from Database import Database; except ImportError: print("Unable to find the Database module"); importError = True; if (importError): sys.exit(); class Stock: """ The object where we store all of our stock information Process: -Initialize stock object -Retrieve stock information (retrieve methods) -Perform calculations (calculate methods) -PROFIT (hopefully) For Calculate Methods: KeyError means there is NO data for that day, something being none indicates that there was PARTIAL data for that day """ #Retrieve information needed to access Intrinio API config = configparser.ConfigParser(); config.read("config.ini"); username = config["INTRINIO"]["username"]; password = config["INTRINIO"]["password"]; periods = [12, 26, 50, 200]; kamaPeriod = 7; #Methods must be in the form 'calculateCALC'. When we add a new calculation # method, add it's abbreviation and whether or not it utilizes a period here methods = { # Name : Uses Period 'SMA': True, 'TMA': True, 'SlopeMA': True, 'EMA': True, 'KAMA': True, 'Stochastics': False, 'AD': False, 'Aroon': True, 'OBV': False } def __init__(self, ticker, startDate, endDate, limit, period, database, outlier=1): """ Ticker: the abbreviation of this stock startDate: the date on which to start all our analysis endDate: the date on which to end all our analysis limit: the PE*PBV ratio limit period: 1 or more periods to calculate our MAs on """ if (type(period) == int and period not in Stock.periods): Stock.periods.append(period); elif(type(period) == list): for p in period: if (p not in Stock.periods): Stock.periods.append(p); self.ticker = ticker; #Ticker of this stock self.information = None; #Information on the stock self.ratio = None; #The ratio indicator with all data self.ratioWithoutOutliers = None; #The ratio indicator sans outliers self.decision = None; #Is this stock a good or bad pick if (startDate is None): self.startDate = pd.to_datetime('1800-01-01'); else: self.startDate = startDate; #The start of the timeframe for our analysis if (endDate is None): self.endDate = pd.to_datetime('today'); else: self.endDate = endDate; #The end of the timeframe for our analysis self.limit = limit; #The PE*PBV limit (less means a better stock, but is harder to find) self.outlier = outlier; #Number of standard deviations to be considered an outlier self.database = Database(database); self.database.updateStockInformation(ticker); #self.makeDecisionInTimeframe(startDate, endDate, outlier); self.earliestDate, self.latestDate, data = self.database.retrieveAllInformationForStock(ticker); #FIND A WAY TO AUTOMATE THIS BASED ON DATABASE COLUMNS #Dictionary is for easy analysis at certain time periods, list is for easy plotting over time periods self.opens = data['Dict']['Opens']; #Holds date to open price self.openList = data['List']['Opens']; #(Date, open) self.closes = data['Dict']['Closes']; #Holds date to close price self.closeList = data['List']['Closes']; #(Date, close) self.highs = data['Dict']['Highs']; #Holds date to high price self.highList = data['List']['Highs']; #(Date, high) self.lows = data['Dict']['Lows']; #Holds date to low price self.lowList = data['List']['Lows']; #(Date, low) self.volumes = data['Dict']['Volumes']; #Holds volumes for the stock self.volumeList = data['List']['Volumes']; #(Date, volume) self.pe = data['Dict']['PE']; #Holds Price/Earnings ratios for the stock self.peList = data['List']['PE']; #(Date, P/E) self.pbv = data['Dict']['PBV']; #Holds Price/Book Value ratios for the stock self.pbvList = data['List']['PBV'] #(Date, P/BV) #SMA, EMA, KAMA, SlopeMA self.calcs = {}; #maName: {maPeriod: {date: value}} self.calcsList = {}; #maName: {maPeriod: [date, value]} #Force 'SMA' to be first calculation, as we need it for others methodKeyList = list(Stock.methods.keys()); methodKeyList.insert(0, methodKeyList.pop(methodKeyList.index('SMA'))) #Do all our calculations for method in methodKeyList: funcToCall = getattr(Stock, 'calculate' + method); #If 'funcToCall' uses a period periodsToUse = Stock.periods; if (Stock.methods[method]): #Avoid KeyError if (method not in self.calcs.keys()): self.calcs[method] = {}; if (method not in self.calcsList.keys()): self.calcsList[method] = {}; for p in periodsToUse: #If we've already calculated this for the stock if (self.database.isCalculated(self.ticker, method, p)): self.calcs[method][p], self.calcsList[method][p] = self.database.retrieveCalculation(self.ticker, method, p, self.startDate, self.endDate); #If we haven't already calculated this else: funcToCall(self, period=p); #'funcToCall' doesn't use a period else: #If we've already calculated this for the stock if (self.database.isCalculated(self.ticker, method, None)): self.calcs[method], self.calcsList[method] = self.database.retrieveCalculation(self.ticker, method, None, self.startDate, self.endDate); #If we haven't already calculated this else: funcToCall(self); self.objects = {} #Holds items such as Doji, Marubozu, Spinning Tops, etc #self.identifyObjects(); #Marubozu, Doji, Spinning Tops, etc #self.database.printDB(self.ticker); #-----------------------------------Calculation Methods----------------------------------------- #Should probably break these up by type (trend/momentum prediction, overlap studies, etc) #KAMA > EMA > (SlopeMA == TMA == SMA) def calculateSMA(self, period=12): """ Calculates the SMA for this stock with the given time period SMA = sum(LastXAverages) / X """ date = self.earliestDate; if ('SMA' not in self.calcs.keys()): self.calcs['SMA'] = {}; elif (period in self.calcs['SMA'].keys()): print("Already calculated SMA for period " + str(period)); return; if (period not in self.calcs['SMA'].keys()): self.calcs['SMA'][period] = {}; if ('SMA' not in self.calcsList.keys()): self.calcsList['SMA'] = {}; if (period not in self.calcsList['SMA'].keys()): self.calcsList['SMA'][period] = []; lastPeriodCloses = []; while(len(lastPeriodCloses) < period): dateStr = str(date).split(' ')[0]; #Will err if we try to access a day the market was closed try: lastPeriodCloses.append( self.closes[dateStr] ); except KeyError: pass; date += pd.Timedelta('1 day'); while(date <= self.latestDate): dateStr = str(date).split(' ')[0] sma = sum(lastPeriodCloses)/period; #mean(lastPeriodCloses) #Happens when we hit a weekend todayClose = None; try: todayClose = self.closes[dateStr]; except KeyError: date += pd.Timedelta('1 day'); continue; #todayClose would be None if the API did not have close data for this date if (todayClose is not None): lastPeriodCloses.append(todayClose); if (len(lastPeriodCloses) > period): lastPeriodCloses.pop(0); self.calcs['SMA'][period][dateStr] = sma; self.calcsList['SMA'][period].append( [date, sma] ); date += pd.Timedelta('1 day'); self.database.addCalculation(self.ticker, 'SMA', period, self.calcsList['SMA'][period]); def calculateTMA(self, period=12): """ Calculates the triangular moving average for a stock over a period of time """ if ('TMA' not in self.calcs.keys()): self.calcs['TMA'] = {}; elif (period in self.calcs['TMA'].keys()): print("Already calculated TMA for period " + str(period)); return; if (period not in self.calcs['TMA'].keys()): self.calcs['TMA'][period] = {}; if ('TMA' not in self.calcsList.keys()): self.calcsList['TMA'] = {}; if (period not in self.calcsList['TMA'].keys()): self.calcsList['TMA'][period] = []; periodToTD = pd.Timedelta(str(period) + ' days'); date = self.earliestDate + periodToTD; dateStr = str(date).split(' ')[0]; #Fill the initial array of closes lastPeriodSMAs = []; while(len(lastPeriodSMAs) < (period - 1)): try: lastPeriodSMAs.append(self.calcs['SMA'][period][dateStr]); except KeyError as k: pass; date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; while(date <= self.latestDate): try: lastPeriodSMAs.append(self.calcs['SMA'][period][dateStr]); except KeyError: date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; tma = sum(lastPeriodSMAs) / period; self.calcs['TMA'][period][dateStr] = tma; self.calcsList['TMA'][period].append( [date, tma] ); date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; self.database.addCalculation(self.ticker, 'TMA', period, self.calcsList['TMA'][period]); def calculateSlopeMA(self, period=2): """ Calculates the moving average of the slope the closes over the specified period slope = (y2 - y1)/(x2 - x1) """ if ('SlopeMA' not in self.calcs.keys()): self.calcs['SlopeMA'] = {}; elif (period in self.calcs['SlopeMA'].keys()): print("Already calculated SlopeMA for period " + str(period)); return; if (period not in self.calcs['SlopeMA'].keys()): self.calcs['SlopeMA'][period] = {}; if ('SlopeMA' not in self.calcsList.keys()): self.calcsList['SlopeMA'] = {}; if (period not in self.calcsList['SlopeMA'].keys()): self.calcsList['SlopeMA'][period] = []; date = self.earliestDate; dateStr = None; lastPeriodCloses = []; lastPeriodDates = []; while(len(lastPeriodCloses) < (period - 1) ): dateStr = str(date).split(' ')[0]; #Will err if we try to access a day the market was closed try: lastPeriodCloses.append( self.closes[dateStr] ); except KeyError: pass; date += pd.Timedelta('1 day'); slopeOverPeriod = 0; while(date <= self.latestDate): dateStr = str(date).split(' ')[0]; #Occurs when we try to access a day that the market was closed todayClose = None; try: todayClose = self.closes[dateStr]; except KeyError: date += pd.Timedelta('1 day'); continue; #Occurs if the API does not have close information for this date if (todayClose is not None): lastPeriodCloses.append(todayClose); lastPeriodDates.append(dateStr); slopeOverPeriod = (lastPeriodCloses[-1] - lastPeriodCloses[0]) / np.busday_count(lastPeriodDates[-1], lastPeriodDates[0]); self.calcs['SlopeMA'][period][dateStr] = slopeOverPeriod; self.calcsList['SlopeMA'][period].append( [dateStr, slopeOverPeriod] ); if (len(lastPeriodCloses) > period): lastPeriodCloses.pop(0); lastPeriodDates.pop(0); date += pd.Timedelta('1 day'); self.database.addCalculation(self.ticker, 'SlopeMA', period, self.calcsList['SlopeMA'][period]); def calculateEMA(self, period=12, emaType='Single', percentage=None): """ Calculates the EMA for this stock based on the specified time period (in days) For regular EMA, emaType='Single' (Default) For double EMA, emaType='Double' For triple EMA, emaType='Triple' EITHER PERIOD OR PERCENTAGE SHOULD HAVE A VALUE, THE OTHER SHOULD BE NONE To convert from percentage to period: (2/percentage) - 1 Multiplier: 2/(period + 1) EMA = prevEMA + Multiplier * (Close - prevEMA) """ emaTypeToNumber = { 'Single': '', 'Double': '2', 'Triple': '3' }; toMult = period; if(period is None): toMult = (2/percentage) - 1; multiplier = 2/(toMult + 1); periodToTD = pd.Timedelta(str(period) + ' days'); if ('EMA' not in self.calcs.keys()): self.calcs['EMA'] = {}; elif (period in self.calcs['EMA'].keys()): print("Already calculated EMA for period " + str(period)); return; if (period not in self.calcs['EMA'].keys()): self.calcs['EMA'][period] = {}; if ('EMA' not in self.calcsList.keys()): self.calcsList['EMA'] = {}; if (period not in self.calcsList['EMA'].keys()): self.calcsList['EMA'][period] = []; date = self.earliestDate + periodToTD; dateStr = str(date - pd.Timedelta('1 day')).split(' ')[0]; #UGLY AF!!! Used to prevent keyerrors when the starting day is a Monday prevEma = None; if (dateStr not in self.calcs['EMA'][period].keys()): counter = 0; while (prevEma is None): d = date + pd.Timedelta(str(counter) + ' days'); dStr = str(d).split(' ')[0]; if (dStr not in self.calcs['SMA'][period].keys()): counter += 1; continue; else: prevEma = self.calcs['SMA'][period][dStr] else: prevEma = self.calcs['EMA'][period][dateStr]; #This makes it easier to do double/triple EMA def ema(prevEma, multiplier, close): return (prevEma + multiplier*(close - prevEma)); while(date <= self.latestDate): dateStr = str(date).split(' ')[0] todayClose = None; #Happens when the market wasn't open, (holiday, weekend, etc) try: #ema and ema2 MUST be equal!! todayClose = self.closes[dateStr]; except KeyError: date += pd.Timedelta('1 day'); continue; expMovAvg = None; emaName = None; #Occurs if the API didn't have close information for this date if (todayClose is None): expMovAvg = prevEma; else: expMovAvg = ema(prevEma, multiplier, todayClose); expMovAvg2 = prevEma + multiplier * (todayClose - prevEma); #( 2*EMA(n) ) – ( EMA(EMA(n)) ) where ‘n’ is #ofDays if (emaType == 'Double'): expMovAvg = 2 * ema(prevEma, multiplier, expMovAvg) - ema( prevEma, multiplier, ema(prevEma, multiplier, expMovAvg) ); #3*EMA(n) – 3*EMA(EMA(n)) + EMA(EMA(EMA(n))) elif (emaType == 'Triple'): expMovAvg = 3 * ema(prevEma, multiplier, expMovAvg) - 3 * ema( prevEma, multiplier, ema(prevEma, multiplier, expMovAvg) ) + ema(prevEma, multiplier, ema(prevEma, multiplier, ema(prevEma, multiplier, expMovAvg))); prevEma = expMovAvg; emaName = (emaTypeToNumber[emaType] + 'EMA'); self.calcs[emaName][period][dateStr] = expMovAvg; self.calcsList[emaName][period].append( [date, expMovAvg] ); date += pd.Timedelta('1 day'); self.database.addCalculation(self.ticker, 'EMA', period, self.calcsList['EMA'][period]); def calculateKAMA(self, period=10, fastest=2, slowest=30): """ Period: recommended to be 10 Fastest: recommended to be 2 Slowest: recommended to be 30 This is a Kaufman Adaptive Moving Average (KAMA): 1. Efficiency Ratio = Change / Volatility a. Change = abs(Close – close10PeriodsAgo) b. Volatility is the sum of the absolute value of the last ten price changes 2. FastestSC = 2/(FastestEMA + 1) 3. SlowestSC = 2/(SlowestEMA + 1) 4. Smoothing Constant = [ER * (FastestSC – SlowestSC) + SlowestSC]^2 = [ER * (2/3 – 2/31) + 2/31]^2 """ date = self.earliestDate; dateStr = None; if ('KAMA' not in self.calcs.keys()): self.calcs['KAMA'] = {}; elif (period in self.calcs['KAMA'].keys()): print("Already calculated KAMA for period " + str(period)); return; if (period not in self.calcs['KAMA'].keys()): self.calcs['KAMA'][period] = {}; if ('KAMA' not in self.calcsList.keys()): self.calcsList['KAMA'] = {}; if (period not in self.calcsList['KAMA'].keys()): self.calcsList['KAMA'][period] = []; lastPeriodCloses = []; lastPeriodPriceChanges = [] #index corresponds directly to the same index in lastPeriodCloses #Fill up our initial 'period' closes, so we can calculate 'Change' easily while(len(lastPeriodCloses) < period): dateStr = str(date).split(' ')[0]; #Will err if we try to access a day the market was closed try: todayClose = self.closes[dateStr] except KeyError: date += pd.Timedelta('1 day'); continue; #Occurs when the API does not have close information for this date if (todayClose is None): date += pd.Timedelta('1 day'); continue; lastPeriodCloses.append( self.closes[dateStr] ); #Calculate the most recent change if (len(lastPeriodCloses) > 1): lastPeriodPriceChanges.append( abs(lastPeriodCloses[-1] - lastPeriodCloses[-2]) ); else: lastPeriodPriceChanges.append(0); date += pd.Timedelta('1 day'); #Our first "prevKama" is just the SMA of the first 'period' closes prevKama = sum(lastPeriodCloses)/len(lastPeriodCloses); #Start doing our calculations while (date <= self.latestDate): dateStr = str(date).split(' ')[0]; #Occurs when we try to access a day that the market was closed todayClose = None; try: todayClose = self.closes[dateStr]; except KeyError: date += pd.Timedelta('1 day'); continue; kama = prevKama; #Make sure we don't do calculations on 'None' data if (todayClose is not None): #Change = abs(Close – close10PeriodsAgo) change = abs(todayClose - lastPeriodCloses[0]); #Volatility is the sum of the absolute value of the last ten price changes volatility = sum(lastPeriodPriceChanges); #Efficiency Ratio = Change / Volatility er = change/volatility; #Calculate our fastest Smoothing Constant fastestSC = None; if (fastest is None): fastestSC = 2/(2 + 1); else: fastestSC = 2/(fastest + 1); #Calculate our slowest Smoothing Constant slowestSC = None; if (slowest is None): slowestSC = 2/(10 + 1); else: slowestSC = 2/(slowest + 1); #Our real Smoothing Constant = [ER * (FastestSC – SlowestSC) + SlowestSC]^2 = [ER * (2/3 – 2/31) + 2/31]^2 sc = (er * (fastestSC - slowestSC) + slowestSC) ** 2; # '**' is exponentiation #KAMA = prevKAMA + SmoothingConstant * (Close - prevKAMA) kama = prevKama + sc * (todayClose - prevKama); self.calcs['KAMA'][period][dateStr] = kama; self.calcsList['KAMA'][period].append( [date, kama] ); #Fix our last KAMA and our last 'period' information (close and change) prevKama = kama; lastPeriodCloses.append(todayClose); lastPeriodCloses.pop(0); lastPeriodPriceChanges.append( abs(lastPeriodCloses[-1] - lastPeriodCloses[-2]) ); lastPeriodPriceChanges.pop(0) date += pd.Timedelta('1 day'); self.database.addCalculation(self.ticker, 'KAMA', period, self.calcsList['KAMA'][period]); def calculateStochastics(self): """ 'K': 100 * [(C - L5) / (H5 - L5)] 'D': Average of last three K's C: most recent closing price L5Close: lowest of the five previous closing prices HX: highest of the X previous sessions LX: lowest of the X previous sessions Starting at the earliest date, calculate the above and store Each date in stochastics is a dictionary holding 'K' and 'D' """ stochastics = {}; stochasticList = [] lastFiveCloses = []; lastFiveHighs = []; lastFiveLows = []; date = self.earliestDate; currentDate = self.latestDate; lastThreeKs = []; #Calculate stochastics for every date we have prevK = 0; prevD = 0; while(date <= currentDate): dateStr = str(date).split(' ')[0] closeValue = None; highValue = None; lowValue = None; try: #Retrieve closing value for this date closeValue = self.closes[dateStr]; #Retrieve highest value for this date highValue = self.highs[dateStr]; #Retrieve lowest value for this date lowValue = self.lows[dateStr]; except KeyError: #odds are this is caused by this date being a non-trading day, or not having today's close date += pd.Timedelta("1 day"); continue; #Occurs when the API doesn't have particular values, just take the last ones... if (closeValue is None or highValue is None or lowValue is None): k = prevK; d = prevD; else: lastFiveCloses.append(closeValue); if (len(lastFiveCloses) > 5): lastFiveCloses.pop(0); lastFiveHighs.append(highValue); if (len(lastFiveHighs) > 5): lastFiveHighs.pop(0); lastFiveLows.append(lowValue); if (len(lastFiveLows) > 5): lastFiveLows.pop(0); #Calculate 'k' point and 'd' point try: k = 100 * ( (lastFiveCloses[-1] - min(lastFiveLows)) / (max(lastFiveHighs) - min(lastFiveLows)) ) d = ( sum(lastThreeKs) / 3); except ZeroDivisionError as zde: date += pd.Timedelta("1 day"); continue; prevK = k; prevD = d; lastThreeKs.append(k); if (len(lastThreeKs) > 3): lastThreeKs.pop(0); #Store values stochastics[dateStr] = {}; stochastics[dateStr]['K'] = k; stochastics[dateStr]['D'] = d; stochasticList.append( [date, k, d] ); date += pd.Timedelta("1 day"); self.database.addCalculation(self.ticker, 'Stochastics', None, stochasticList); self.calcs['Stochastics'] = stochastics; self.calcsList['Stochastics'] = stochasticList; def calculateAD(self): """ Money Flow Multiplier = [(Close - Low) - (High - Close)] / (High - Low) | Should be -1 <= x <= 1 Money Flow Volume = MFM * (Volume for Period) Accumulation Distribution Point = (Previous AD) + MFV Period is 'day', 'month', 'year' """ adDict = {}; adList = []; ad = 0; for date in sorted(self.volumes.keys()): close = None; high = None; low = None; try: close = self.closes[date]; high = self.highs[date]; low = self.lows[date]; except KeyError: continue; #Occurs if the API does not have some data for this date if (close is not None and high is not None and low is not None): #Calculate daily MFM and MFV #-MFM as zero affects nothing, and helps avoid ZeroDivisionError (when high == low) mfm = 0; if (high != low): mfm = ((close - low) - (high - close)) / (high - low); mfv = mfm * self.volumes[date]; ad += mfv; #Fill in our data structures adDict[date] = ad; adList.append( [pd.to_datetime(date), ad] ); self.database.addCalculation(self.ticker, 'AD', None, adList); self.calcs['AD'] = adDict; self.calcsList['AD'] = adList; def calculateAroon(self, period=12): """ Measures if a security is in a trend, the magnitude of that trend, and whether that trend is likely to reverse (or not) Aroon Up: ( (25 - Days Since 25 Day High) / 25 ) * 100 Aroon Down: ( (25 - Days Since 25 Day Low) / 25 ) * 100 """ period aroonDict = {}; aroonList = []; last25Highs = []; last25Lows = []; date = self.earliestDate; currentDate = self.latestDate; #Calculate Aroon Indicators for every date we have aroonUp = 0; aroonDown = 0; while(date <= currentDate): dateStr = str(date).split(' ')[0] #Retrieve highest value for this date highValue = None; try: highValue = self.highs[dateStr]; except KeyError: date += pd.Timedelta('1 day'); continue; #Retrieve lowest value for this date lowValue = None; try: lowValue = self.lows[dateStr]; except KeyError: date += pd.Timedelta('1 day'); continue; #Occurs if the API does not have some information for that day if (highValue is not None and lowValue is not None): last25Highs.append(highValue); if (len(last25Highs) > period): last25Highs.pop(0); last25Lows.append(lowValue); if (len(last25Lows) > period): last25Lows.pop(0); #Calculate Aroon Up timeSinceHigh = period - last25Highs.index(max(last25Highs)); aroonUp = ( (period - timeSinceHigh) / period ) * 100; #Calculate Aroon Down timeSinceLow = period - last25Lows.index(min(last25Lows)); aroonDown = ( (period - timeSinceLow) / period ) * 100; #Ensure we don't get KeyErrors if (period not in aroonDict.keys()): aroonDict[period] = {}; if (dateStr not in aroonDict[period].keys()): aroonDict[period][dateStr] = {}; #Fill in our data structures aroonDict[period][dateStr]["Up"] = aroonUp; aroonDict[period][dateStr]["Down"] = aroonDown; aroonList.append( [date, aroonUp, aroonDown] ); #Increment our counter date += pd.Timedelta('1 day'); self.database.addCalculation(self.ticker, 'Aroon', period, aroonList); self.calcs['Aroon'] = aroonDict; if ('Aroon' not in self.calcsList.keys()): self.calcsList['Aroon'] = {}; self.calcsList['Aroon'][period] = aroonList; def calculateOBV(self): """ Calculates the On-Balance Volume for a stock i. If todayClose > yesterdayClose, currentOBV = prevOBV + todayVolume ii. If todayClose < yesterdayClose, currentOBV = prevOBV – todayVolume iii. If todayClose == yesterdayClose, currentOBV = prevOBV When plotting, don't have Y axis labels. We really only care about the changes from point to point (slope), and what the line looks like. -High positive slope may indicate a soon-to-be price rise -High negative slope may inticate a soon-to-be price fall """ obv = 0; date = self.earliestDate; dateStr = str(date).split(' ')[0]; obvDict = {}; obvList = []; #Get our first data point yesterdayClose = None; while(yesterdayClose is None): volume = None; try: yesterdayClose = self.closes[dateStr]; volume = self.volumes[dateStr]; obv += volume; except KeyError: pass; else: #Need to add info to data structures before increasing date! obvDict[dateStr] = obv; obvList.append( [date, obv] ); date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; #Calculate the rest of the data points while(date <= self.latestDate): todayClose = None; todayVolume = None; #KeyError occurs when we try to access a day the market was closed try: todayClose = self.closes[dateStr]; todayVolume = self.volumes[dateStr]; except KeyError: date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; continue; if (todayClose > yesterdayClose): obv = obv + todayVolume; elif (todayClose < yesterdayClose): obv = obv - todayVolume; obvDict[dateStr] = obv; obvList.append( [date, obv] ); date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; yesterdayClose = todayClose; self.calcs['OBV'] = obvDict; self.calcsList['OBV'] = obvList; self.database.addCalculation(self.ticker, 'OBV', None, obvList); #-------------------------------Trend Identifier Methods-------------------------------- def identifyObjects(self, candleOC, dojiOC, marubozuDiff): """ Identify all objects of relevance (IN THE APPROPRIATE ORDER!!) """ identifyLongCandles(candleOC); identifyDoji(dojiOC); identifyMarubozu(marubozuDiff); def identifyLongCandles(self, openCloseMultiplier): """ Identify dates that have long white or black candles hiLoMultiplier: the difference required to be a candle (i.e. high must be hiLoMultiplier*low) Long White Candle: 'LWC' : Open >>>>> Close Long Black Candle: 'LBC' : Close >>>>> Open HIGH VS LOW PERCENTAGE/MULTIPLIER TO BE A LWC/LBC? -e.g. for LWC open must be 1.5x close (or whatever it is) """ if ('Candles' in self.objects.keys()): print("Already calculated Long Candles for " + self.ticker); return; #Ensure no KeyErrors self.objects['Candles'] = {} self.objects['Candles']['LWC'] = {}; self.objects['Candles']['LBC'] = {}; #First Date! date = self.earliestDate; dateStr = str(date).split(' ')[0]; #Start Calculations dayOpen = None; dayClose = None; while(date != self.latestDate): #Occurs when we have a day that the market was closed try: dayOpen = self.opens[dateStr]; dayClose = self.closes[dateStr]; except KeyError: date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; continue; #LWC if (dayOpen >= dayClose * openCloseMultiplier): self.objects['Candles']['LWC'][dateStr] = True; #LBC elif (dayClose >= dayOpen * openCloseMultiplier): self.objects['Candles']['LBC'][dateStr] = True; date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; def identifyDoji(self, openCloseMultiplier): """ Identify any points in time where there are any form of doji (open and close extremely close together) Regular Doji: 'D' : open and close are extremely close together Doji Evening Star: 'DES' : Long White Candle + Doji Doji Morning Star: 'DMS' : Long Black Candle + Doji Long Legged Doji: 'LLD' : Small Real Body w/ long upper and lower shadows of approximately equal length Dragonfly Doji: 'DD' : Open, close, and high are all equal, with a long lower shadow : Look for Long White Candle beforehand Gravestone Doji: 'GD' : Open, close, and low are all equal, with a long upper shadow : Look for Long Black Candle beforehand """ #Day + 1 b/c we are looking for LWC or LBC before some of these if ('LWC' not in self.objects.keys()): print("Please run 'identifyLongCandles' before 'identifyDoji'"); sys.exit(); if ('Doji' in self.objects.keys()): print("Already identified Doji locations for " + self.ticker); return; self.objects['Doji'] = {}; #Doji holder self.objects['Doji']['D'] = {}; #Regular Doji self.objects['Doji']['DES'] = {}; #Doji Evening Star self.objects['Doji']['DMS'] = {}; #Doji Morning Star self.objects['Doji']['LLD'] = {}; #Long Legged Doji self.objects['Doji']['DD'] = {}; #Dragonfly Doji self.objects['Doji']['GD'] = {}; #Gravestone Doji date = self.earliestDate + pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; while(date != self.latestDate): #hasLWC = (dateStr in self.); #hasLBC = (); date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; def identifyMarubozu(self, difference): """ Identify any points in time where there are any form of marubozu difference: how much different the open/high, etc need to be to form a Marubozu Black Marubozu: open was the high and the close was the low White Marubozu: open was the low and the close was the high """ date = self.earliestDate; dateStr = str(date).split(' ')[0]; if ('Marubozu' in self.objects.keys()): print("Already calculated Marubozu Locations for " + self.ticker); self.objects['Marubozu'] = {}; self.objects['Marubozu']['B'] = {}; self.objects['Marubozu']['W'] = {}; dayOpen = None; dayClose = None; dayHigh = None; dayLow = None; dayVolume = None; while(date != self.latestDate): #Grab all the information we need try: dayOpen = self.opens[date]; dayClose = self.closes[date]; dayHigh = self.highs[date]; dayLow = self.lows[date]; except KeyError: #We need all this info, so missing any one piece means we skip the day (unfortunately) continue; #MARUBOZU IN TERMS OF PERCENTAGE? #-E.G. for Black Marubozu how close to the high does the open have to be for it to qualify? if (dayOpen == dayHigh and dayClose == dayLow): self.objects['Marubozu']['B'][dateStr] = True; elif (dayClose == dayHigh and dayOpen == dayLow): self.objects['Marubozu']['W'][dateStr] = True; date += pd.Timedelta('1 day'); dateStr = str(date).split(' ')[0]; #-------------------------------Plotting Methods---------------------------------------- def plotPEtoPBV(self, startDate, endDate): '''Plots the PE * PBV value for a stock''' #Startdate and enddate must be in pd_datetime format already lowestDecisionRatio = 0; #Get our information from the object dataList = []; for key in self.information["PE"]: date = pd.to_datetime(key); if (date < startDate or date > endDate): continue; #Calculate the decision ratio decisionRatio = None; try: decisionRatio = (self.information["PE"][key] * self.information["PBV"][key]); except KeyError: continue; if (decisionRatio < lowestDecisionRatio): lowestDecisionRatio = decisionRatio; dataList.append( [date, decisionRatio] ); fig, ax = plt.subplots(); #Plot data ax.scatter(*zip(*dataList)); ax.hlines(self.limit, startDate, endDate, color='r', linewidth=3); #Format plot fig.suptitle(self.ticker + " (P/E)*(P/BV) Score Over Time") if (startDate is not None and endDate is not None): plt.xlim(startDate, endDate); plt.ylim(lowestDecisionRatio, 100); ax.set_xlabel("Date"); ax.set_ylabel("Indicator"); fig.autofmt_xdate(); #Show plot plt.show(); def plotAD(self, startDate, endDate): """ Plot this stock's Accumulation/Distribition Line """ toPlot = self.adList #CAN EITHER TO THIS, OR JUST SET THE XLIM if (startDate is None): if (endDate is None): pass; else: toPlot = [info for info in self.adList if info[0] <= endDate]; else: if (endDate is None): toPlot = [info for info in self.adList if info[0] >= startDate]; else: toPlot = [info for info in self.adList if info[0] <= endDate and info[0] >= startDate] fig, ax = plt.subplots(); ax.plot(*zip(*toPlot)); ax.hlines(0, toPlot[0][0], toPlot[-1][0], linewidth=2); #Formatter method to get us "10M, 1M, etc" def millions(x, pos): return '%1.0fM' % (x*1e-6) formatter = mticker.FuncFormatter(millions); fig.suptitle(self.ticker + " Accumulation/Distribution Line"); ax.set_xlabel("Date"); ax.set_ylabel("A/D"); ax.yaxis.set_major_formatter(formatter); fig.autofmt_xdate(); plt.show(); def plotClosesLineGraph(self, startDate, endDate): """ Plots the closes for a stock as a line graph Rough granularity, only at the day level b/c we don't have access to intraday trade info """ fig, ax = plt.subplots(); ax.plot(*zip(*self.closeList)); fig.suptitle(self.ticker + " Closes"); ax.set_xlabel("Date"); ax.set_ylabel("Close Price"); fig.autofmt_xdate(); plt.show(); def plotClosesCandlestickOHLC(self, startDate, endDate, maAndPeriod): """ Plots the closes for a stock as a Candlestick OHLC plot takes date, open, high, low, close, volume movingAverages is a list of strings ('SMA', 'EMA', etc) identifying which MAs we plot """ dayOpen = None; dayClose = None; dayHigh = None; dayLow = None; dayVolume = None; dohlcv = []; #Date Open High Low Close Volume for date in self.opens.keys(): datetime = pd.to_datetime(date); if (datetime < startDate or datetime > endDate): continue; try: dayDate = mdates.date2num(datetime); dayOpen = self.opens[date]; dayClose = self.closes[date]; dayHigh = self.highs[date]; dayLow = self.lows[date]; dayVolume = self.volumes[date]; except KeyError: #We need all this info, so missing any one piece means we skip the day (unfortunately) continue; #Some of these seem to be randomly missing... if (dayDate is None or dayOpen is None or dayClose is None or dayHigh is None or dayLow is None or dayVolume is None): continue; dohlcv.append([dayDate, dayOpen, dayHigh, dayLow, dayClose, dayVolume]); fig, ax = plt.subplots(); candlestick_ohlc(ax, dohlcv, colorup='#77d879', colordown='#db3f3f'); haveLabel = False; for ma in maAndPeriod.keys(): p = maAndPeriod[ma]; #Haven't run the calcution for this moving average at this period if (p not in self.calcsList[ma]): funcToCall = getattr(Stock, 'calculate' + ma); #HELLO ANONYMOUS FUNCTION CALL! funcToCall(self, period=p); #Prevent error if we try to plot a MA or period that doesn't exist try: newMasList = [entry for entry in self.calcsList[ma][p] if (entry[0] >= startDate and entry[0] <= endDate)]; ax.plot(*zip(*newMasList), label=(ma + str(p))); haveLabel = True; except KeyError: print("BORKED! " + str(ma) + " :: " + str(p)); continue; ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')); ax.xaxis.set_major_locator(mticker.MaxNLocator(10)); ax.grid(True); plt.xlabel('Date'); plt.ylabel('Close'); plt.title(self.ticker.upper() + " Closes from " + str(startDate).split(' ')[0] + " to " + str(endDate).split(' ')[0]); #Only add a legend if we have things that need a legend if (haveLabel): plt.legend(); fig.autofmt_xdate(); plt.show(); #-------------------------------Decision Making Methods---------------------------------------- def makeDecisionInTimeframe(self, startDate, endDate, outlier): """ Decide if this stock meets the limit criteria for a given timeframe """ sDate = startDate; eDate = endDate if (startDate is None): sDate = pd.to_datetime('1800-01-01'); if (endDate is None): eDate = pd.to_datetime('today'); ratioList = [] for key in self.pe: keyDate = pd.to_datetime(key); if (keyDate < sDate or keyDate > eDate): continue; try: pe = self.pe[key]; pbv = self.pbv[key]; except KeyError: continue; ratio = pe*pbv; ratioList.append(ratio); npRatioList = np.asarray(ratioList); avg = np.mean(npRatioList); std = np.std(npRatioList); self.ratio = avg; #Method to reject any data points outside 'm' standard deviations from the mean def reject_outliers(data, m): return data[abs(data - np.mean(data)) < m * np.std(data)] npRatioListNoOutliers = reject_outliers(npRatioList, outlier); avg2 = np.mean(npRatioListNoOutliers); std2 = np.std(npRatioListNoOutliers); self.ratioWithoutOutliers = avg2; self.decision = (avg2 <= self.limit); self.decision = (avg <= self.limit); if __name__ == "__main__": print("Stock.py isn't made to be called directly!"); sys.exit();
mit
mutirri/bokeh
bokeh/tests/test_protocol.py
42
3959
from __future__ import absolute_import import unittest from unittest import skipIf import numpy as np try: import pandas as pd is_pandas = True except ImportError as e: is_pandas = False class TestBokehJSONEncoder(unittest.TestCase): def setUp(self): from bokeh.protocol import BokehJSONEncoder self.encoder = BokehJSONEncoder() def test_fail(self): self.assertRaises(TypeError, self.encoder.default, {'testing': 1}) @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_panda_series(self): s = pd.Series([1, 3, 5, 6, 8]) self.assertEqual(self.encoder.default(s), [1, 3, 5, 6, 8]) def test_numpyarray(self): a = np.arange(5) self.assertEqual(self.encoder.default(a), [0, 1, 2, 3, 4]) def test_numpyint(self): npint = np.asscalar(np.int64(1)) self.assertEqual(self.encoder.default(npint), 1) self.assertIsInstance(self.encoder.default(npint), int) def test_numpyfloat(self): npfloat = np.float64(1.33) self.assertEqual(self.encoder.default(npfloat), 1.33) self.assertIsInstance(self.encoder.default(npfloat), float) def test_numpybool_(self): nptrue = np.bool_(True) self.assertEqual(self.encoder.default(nptrue), True) self.assertIsInstance(self.encoder.default(nptrue), bool) @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_pd_timestamp(self): ts = pd.tslib.Timestamp('April 28, 1948') self.assertEqual(self.encoder.default(ts), -684115200000) class TestSerializeJson(unittest.TestCase): def setUp(self): from bokeh.protocol import serialize_json, deserialize_json self.serialize = serialize_json self.deserialize = deserialize_json def test_with_basic(self): self.assertEqual(self.serialize({'test': [1, 2, 3]}), '{"test": [1, 2, 3]}') def test_with_np_array(self): a = np.arange(5) self.assertEqual(self.serialize(a), '[0, 1, 2, 3, 4]') @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_with_pd_series(self): s = pd.Series([0, 1, 2, 3, 4]) self.assertEqual(self.serialize(s), '[0, 1, 2, 3, 4]') def test_nans_and_infs(self): arr = np.array([np.nan, np.inf, -np.inf, 0]) serialized = self.serialize(arr) deserialized = self.deserialize(serialized) assert deserialized[0] == 'NaN' assert deserialized[1] == 'Infinity' assert deserialized[2] == '-Infinity' assert deserialized[3] == 0 @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_nans_and_infs_pandas(self): arr = pd.Series(np.array([np.nan, np.inf, -np.inf, 0])) serialized = self.serialize(arr) deserialized = self.deserialize(serialized) assert deserialized[0] == 'NaN' assert deserialized[1] == 'Infinity' assert deserialized[2] == '-Infinity' assert deserialized[3] == 0 @skipIf(not is_pandas, "pandas does not work in PyPy.") def test_datetime_types(self): """should convert to millis """ idx = pd.date_range('2001-1-1', '2001-1-5') df = pd.DataFrame({'vals' :idx}, index=idx) serialized = self.serialize({'vals' : df.vals, 'idx' : df.index}) deserialized = self.deserialize(serialized) baseline = {u'vals': [978307200000, 978393600000, 978480000000, 978566400000, 978652800000], u'idx': [978307200000, 978393600000, 978480000000, 978566400000, 978652800000] } assert deserialized == baseline if __name__ == "__main__": unittest.main()
bsd-3-clause
luo66/scikit-learn
sklearn/utils/multiclass.py
83
12343
# Author: Arnaud Joly, Joel Nothman, Hamzeh Alsalhi # # License: BSD 3 clause """ Multi-class / multi-label utility function ========================================== """ from __future__ import division from collections import Sequence from itertools import chain from scipy.sparse import issparse from scipy.sparse.base import spmatrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix import numpy as np from ..externals.six import string_types from .validation import check_array from ..utils.fixes import bincount def _unique_multiclass(y): if hasattr(y, '__array__'): return np.unique(np.asarray(y)) else: return set(y) def _unique_indicator(y): return np.arange(check_array(y, ['csr', 'csc', 'coo']).shape[1]) _FN_UNIQUE_LABELS = { 'binary': _unique_multiclass, 'multiclass': _unique_multiclass, 'multilabel-indicator': _unique_indicator, } def unique_labels(*ys): """Extract an ordered array of unique labels We don't allow: - mix of multilabel and multiclass (single label) targets - mix of label indicator matrix and anything else, because there are no explicit labels) - mix of label indicator matrices of different sizes - mix of string and integer labels At the moment, we also don't allow "multiclass-multioutput" input type. Parameters ---------- *ys : array-likes, Returns ------- out : numpy array of shape [n_unique_labels] An ordered array of unique labels. Examples -------- >>> from sklearn.utils.multiclass import unique_labels >>> unique_labels([3, 5, 5, 5, 7, 7]) array([3, 5, 7]) >>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4]) array([1, 2, 3, 4]) >>> unique_labels([1, 2, 10], [5, 11]) array([ 1, 2, 5, 10, 11]) """ if not ys: raise ValueError('No argument has been passed.') # Check that we don't mix label format ys_types = set(type_of_target(x) for x in ys) if ys_types == set(["binary", "multiclass"]): ys_types = set(["multiclass"]) if len(ys_types) > 1: raise ValueError("Mix type of y not allowed, got types %s" % ys_types) label_type = ys_types.pop() # Check consistency for the indicator format if (label_type == "multilabel-indicator" and len(set(check_array(y, ['csr', 'csc', 'coo']).shape[1] for y in ys)) > 1): raise ValueError("Multi-label binary indicator input with " "different numbers of labels") # Get the unique set of labels _unique_labels = _FN_UNIQUE_LABELS.get(label_type, None) if not _unique_labels: raise ValueError("Unknown label type: %s" % repr(ys)) ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys)) # Check that we don't mix string type with number type if (len(set(isinstance(label, string_types) for label in ys_labels)) > 1): raise ValueError("Mix of label input types (string and number)") return np.array(sorted(ys_labels)) def _is_integral_float(y): return y.dtype.kind == 'f' and np.all(y.astype(int) == y) def is_multilabel(y): """ Check if ``y`` is in a multilabel format. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- out : bool, Return ``True``, if ``y`` is in a multilabel format, else ```False``. Examples -------- >>> import numpy as np >>> from sklearn.utils.multiclass import is_multilabel >>> is_multilabel([0, 1, 0, 1]) False >>> is_multilabel([[1], [0, 2], []]) False >>> is_multilabel(np.array([[1, 0], [0, 0]])) True >>> is_multilabel(np.array([[1], [0], [0]])) False >>> is_multilabel(np.array([[1, 0, 0]])) True """ if hasattr(y, '__array__'): y = np.asarray(y) if not (hasattr(y, "shape") and y.ndim == 2 and y.shape[1] > 1): return False if issparse(y): if isinstance(y, (dok_matrix, lil_matrix)): y = y.tocsr() return (len(y.data) == 0 or np.ptp(y.data) == 0 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(np.unique(y.data)))) else: labels = np.unique(y) return len(labels) < 3 and (y.dtype.kind in 'biu' or # bool, int, uint _is_integral_float(labels)) def type_of_target(y): """Determine the type of data indicated by target `y` Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multiclass-multioutput' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, string_types)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], string_types)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], string_types)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary' # [1, 2] or [["a"], ["b"]] def _check_partial_fit_first_call(clf, classes=None): """Private helper function for factorizing common classes param logic Estimators that implement the ``partial_fit`` API need to be provided with the list of possible classes at the first call to partial_fit. Subsequent calls to partial_fit should check that ``classes`` is still consistent with a previous value of ``clf.classes_`` when provided. This function returns True if it detects that this was the first call to ``partial_fit`` on ``clf``. In that case the ``classes_`` attribute is also set on ``clf``. """ if getattr(clf, 'classes_', None) is None and classes is None: raise ValueError("classes must be passed on the first call " "to partial_fit.") elif classes is not None: if getattr(clf, 'classes_', None) is not None: if not np.all(clf.classes_ == unique_labels(classes)): raise ValueError( "`classes=%r` is not the same as on last call " "to partial_fit, was: %r" % (classes, clf.classes_)) else: # This is the first call to partial_fit clf.classes_ = unique_labels(classes) return True # classes is None and clf.classes_ has already previously been set: # nothing to do return False def class_distribution(y, sample_weight=None): """Compute class priors from multioutput-multiclass target data Parameters ---------- y : array like or sparse matrix of size (n_samples, n_outputs) The labels for each example. sample_weight : array-like of shape = (n_samples,), optional Sample weights. Returns ------- classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. n_classes : list of integrs of size n_outputs Number of classes in each column class_prior : list of size n_outputs of arrays of size (n_classes,) Class distribution of each column. """ classes = [] n_classes = [] class_prior = [] n_samples, n_outputs = y.shape if issparse(y): y = y.tocsc() y_nnz = np.diff(y.indptr) for k in range(n_outputs): col_nonzero = y.indices[y.indptr[k]:y.indptr[k + 1]] # separate sample weights for zero and non-zero elements if sample_weight is not None: nz_samp_weight = np.asarray(sample_weight)[col_nonzero] zeros_samp_weight_sum = (np.sum(sample_weight) - np.sum(nz_samp_weight)) else: nz_samp_weight = None zeros_samp_weight_sum = y.shape[0] - y_nnz[k] classes_k, y_k = np.unique(y.data[y.indptr[k]:y.indptr[k + 1]], return_inverse=True) class_prior_k = bincount(y_k, weights=nz_samp_weight) # An explicit zero was found, combine its wieght with the wieght # of the implicit zeros if 0 in classes_k: class_prior_k[classes_k == 0] += zeros_samp_weight_sum # If an there is an implict zero and it is not in classes and # class_prior, make an entry for it if 0 not in classes_k and y_nnz[k] < y.shape[0]: classes_k = np.insert(classes_k, 0, 0) class_prior_k = np.insert(class_prior_k, 0, zeros_samp_weight_sum) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior.append(class_prior_k / class_prior_k.sum()) else: for k in range(n_outputs): classes_k, y_k = np.unique(y[:, k], return_inverse=True) classes.append(classes_k) n_classes.append(classes_k.shape[0]) class_prior_k = bincount(y_k, weights=sample_weight) class_prior.append(class_prior_k / class_prior_k.sum()) return (classes, n_classes, class_prior)
bsd-3-clause
pravsripad/mne-python
examples/decoding/plot_decoding_unsupervised_spatial_filter.py
29
2496
""" ================================================================== Analysis of evoked response using ICA and PCA reduction techniques ================================================================== This example computes PCA and ICA of evoked or epochs data. Then the PCA / ICA components, a.k.a. spatial filters, are used to transform the channel data to new sources / virtual channels. The output is visualized on the average of all the epochs. """ # Authors: Jean-Remi King <[email protected]> # Asish Panda <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.decoding import UnsupervisedSpatialFilter from sklearn.decomposition import PCA, FastICA print(__doc__) # Preprocess data data_path = sample.data_path() # Load and filter data, set up epochs raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0.1, 0.3 event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4) raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(1, 20, fir_design='firwin') events = mne.read_events(event_fname) picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks, baseline=None, preload=True, verbose=False) X = epochs.get_data() ############################################################################## # Transform data with PCA computed on the average ie evoked response pca = UnsupervisedSpatialFilter(PCA(30), average=False) pca_data = pca.fit_transform(X) ev = mne.EvokedArray(np.mean(pca_data, axis=0), mne.create_info(30, epochs.info['sfreq'], ch_types='eeg'), tmin=tmin) ev.plot(show=False, window_title="PCA", time_unit='s') ############################################################################## # Transform data with ICA computed on the raw epochs (no averaging) ica = UnsupervisedSpatialFilter(FastICA(30), average=False) ica_data = ica.fit_transform(X) ev1 = mne.EvokedArray(np.mean(ica_data, axis=0), mne.create_info(30, epochs.info['sfreq'], ch_types='eeg'), tmin=tmin) ev1.plot(show=False, window_title='ICA', time_unit='s') plt.show()
bsd-3-clause
walterreade/scikit-learn
benchmarks/bench_isotonic.py
38
3047
""" Benchmarks of isotonic regression performance. We generate a synthetic dataset of size 10^n, for n in [min, max], and examine the time taken to run isotonic regression over the dataset. The timings are then output to stdout, or visualized on a log-log scale with matplotlib. This allows the scaling of the algorithm with the problem size to be visualized and understood. """ from __future__ import print_function import numpy as np import gc from datetime import datetime from sklearn.isotonic import isotonic_regression from sklearn.utils.bench import total_seconds import matplotlib.pyplot as plt import argparse def generate_perturbed_logarithm_dataset(size): return np.random.randint(-50, 50, size=n) \ + 50. * np.log(1 + np.arange(n)) def generate_logistic_dataset(size): X = np.sort(np.random.normal(size=size)) return np.random.random(size=size) < 1.0 / (1.0 + np.exp(-X)) DATASET_GENERATORS = { 'perturbed_logarithm': generate_perturbed_logarithm_dataset, 'logistic': generate_logistic_dataset } def bench_isotonic_regression(Y): """ Runs a single iteration of isotonic regression on the input data, and reports the total time taken (in seconds). """ gc.collect() tstart = datetime.now() isotonic_regression(Y) delta = datetime.now() - tstart return total_seconds(delta) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Isotonic Regression benchmark tool") parser.add_argument('--iterations', type=int, required=True, help="Number of iterations to average timings over " "for each problem size") parser.add_argument('--log_min_problem_size', type=int, required=True, help="Base 10 logarithm of the minimum problem size") parser.add_argument('--log_max_problem_size', type=int, required=True, help="Base 10 logarithm of the maximum problem size") parser.add_argument('--show_plot', action='store_true', help="Plot timing output with matplotlib") parser.add_argument('--dataset', choices=DATASET_GENERATORS.keys(), required=True) args = parser.parse_args() timings = [] for exponent in range(args.log_min_problem_size, args.log_max_problem_size): n = 10 ** exponent Y = DATASET_GENERATORS[args.dataset](n) time_per_iteration = \ [bench_isotonic_regression(Y) for i in range(args.iterations)] timing = (n, np.mean(time_per_iteration)) timings.append(timing) # If we're not plotting, dump the timing to stdout if not args.show_plot: print(n, np.mean(time_per_iteration)) if args.show_plot: plt.plot(*zip(*timings)) plt.title("Average time taken running isotonic regression") plt.xlabel('Number of observations') plt.ylabel('Time (s)') plt.axis('tight') plt.loglog() plt.show()
bsd-3-clause
krbeverx/Firmware
Tools/process_sensor_caldata.py
2
48768
#! /usr/bin/env python from __future__ import print_function import argparse import os import math import matplotlib.pyplot as plt import numpy as np from pyulog import * """ Reads in IMU data from a static thermal calibration test and performs a curve fit of gyro, accel and baro bias vs temperature Data can be gathered using the following sequence: 1) Power up the board and set the TC_A_ENABLE, TC_B_ENABLE and TC_G_ENABLE parameters to 1 2) Set all CAL_GYR and CAL_ACC parameters to defaults 3) Set the parameter SDLOG_MODE to 2, and SDLOG_PROFILE "Thermal calibration" bit (2) to enable logging of sensor data for calibration and power off 4) Cold soak the board for 30 minutes 5) Move to a warm dry, still air, constant pressure environment. 6) Apply power for 45 minutes, keeping the board still. 7) Remove power and extract the .ulog file 8) Open a terminal window in the Firmware/Tools directory and run the python calibration script script file: 'python process_sensor_caldata.py <full path name to .ulog file> 9) Power the board, connect QGC and load the parameter from the generated .params file onto the board using QGC. Due to the number of parameters, loading them may take some time. 10) TODO - we need a way for user to reliably tell when parameters have all been changed and saved. 11) After parameters have finished loading, set SDLOG_MODE and SDLOG_PROFILE to their respective values prior to step 4) and remove power. 12) Power the board and perform a normal gyro and accelerometer sensor calibration using QGC. The board must be repowered after this step before flying due to large parameter changes and the thermal compensation parameters only being read on startup. Outputs thermal compensation parameters in a file named <inputfilename>.params which can be loaded onto the board using QGroundControl Outputs summary plots in a pdf file named <inputfilename>.pdf """ def resampleWithDeltaX(x,y): xMin = np.amin(x) xMax = np.amax(x) nbInterval = 2000 interval = (xMax-xMin)/nbInterval resampledY = np.zeros(nbInterval) resampledX = np.zeros(nbInterval) resampledCount = np.zeros(nbInterval) for idx in range(0,len(x)): if x[idx]<xMin: binIdx = 0 elif x[idx]<xMax: binIdx = int((x[idx]-xMin)/(interval)) else: binIdx = nbInterval-1 resampledY[binIdx] += y[idx] resampledX[binIdx] += x[idx] resampledCount[binIdx] += 1 idxNotEmpty = np.where(resampledCount != 0) resampledCount = resampledCount[idxNotEmpty] resampledY = resampledY[idxNotEmpty] resampledX = resampledX[idxNotEmpty] resampledY /= resampledCount resampledX /= resampledCount return resampledX,resampledY parser = argparse.ArgumentParser(description='Reads in IMU data from a static thermal calibration test and performs a curve fit of gyro, accel and baro bias vs temperature') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') parser.add_argument('--no_resample', dest='noResample', action='store_const', const=True, default=False, help='skip resampling and use raw data') def is_valid_directory(parser, arg): if os.path.isdir(arg): # Directory exists so return the directory return arg else: parser.error('The directory {} does not exist'.format(arg)) args = parser.parse_args() ulog_file_name = args.filename noResample = args.noResample ulog = ULog(ulog_file_name, None) data = ulog.data_list # extract gyro data num_gyros = 0 for d in data: if d.name == 'sensor_gyro': if d.multi_id == 0: sensor_gyro_0 = d.data print('found gyro 0 data') num_gyros += 1 elif d.multi_id == 1: sensor_gyro_1 = d.data print('found gyro 1 data') num_gyros += 1 elif d.multi_id == 2: sensor_gyro_2 = d.data print('found gyro 2 data') num_gyros += 1 elif d.multi_id == 3: sensor_gyro_3 = d.data print('found gyro 3 data') num_gyros += 1 # extract accel data num_accels = 0 for d in data: if d.name == 'sensor_accel': if d.multi_id == 0: sensor_accel_0 = d.data print('found accel 0 data') num_accels += 1 elif d.multi_id == 1: sensor_accel_1 = d.data print('found accel 1 data') num_accels += 1 elif d.multi_id == 2: sensor_accel_2 = d.data print('found accel 2 data') num_accels += 1 elif d.multi_id == 3: sensor_accel_3 = d.data print('found accel 3 data') num_accels += 1 # extract baro data num_baros = 0 for d in data: if d.name == 'sensor_baro': if d.multi_id == 0: sensor_baro_0 = d.data print('found baro 0 data') num_baros += 1 elif d.multi_id == 1: sensor_baro_1 = d.data print('found baro 1 data') num_baros += 1 elif d.multi_id == 2: sensor_baro_2 = d.data print('found baro 2 data') num_baros += 1 elif d.multi_id == 3: sensor_baro_3 = d.data print('found baro 3 data') num_baros += 1 # open file to save plots to PDF from matplotlib.backends.backend_pdf import PdfPages output_plot_filename = ulog_file_name + ".pdf" pp = PdfPages(output_plot_filename) ################################################################################# # define data dictionary of gyro 0 thermal correction parameters gyro_0_params = { 'TC_G0_ID':0, 'TC_G0_TMIN':0.0, 'TC_G0_TMAX':0.0, 'TC_G0_TREF':0.0, 'TC_G0_X0_0':0.0, 'TC_G0_X1_0':0.0, 'TC_G0_X2_0':0.0, 'TC_G0_X3_0':0.0, 'TC_G0_X0_1':0.0, 'TC_G0_X1_1':0.0, 'TC_G0_X2_1':0.0, 'TC_G0_X3_1':0.0, 'TC_G0_X0_2':0.0, 'TC_G0_X1_2':0.0, 'TC_G0_X2_2':0.0, 'TC_G0_X3_2':0.0 } # curve fit the data for gyro 0 corrections if num_gyros >= 1 and not math.isnan(sensor_gyro_0['temperature'][0]): gyro_0_params['TC_G0_ID'] = int(np.median(sensor_gyro_0['device_id'])) # find the min, max and reference temperature gyro_0_params['TC_G0_TMIN'] = np.amin(sensor_gyro_0['temperature']) gyro_0_params['TC_G0_TMAX'] = np.amax(sensor_gyro_0['temperature']) gyro_0_params['TC_G0_TREF'] = 0.5 * (gyro_0_params['TC_G0_TMIN'] + gyro_0_params['TC_G0_TMAX']) temp_rel = sensor_gyro_0['temperature'] - gyro_0_params['TC_G0_TREF'] temp_rel_resample = np.linspace(gyro_0_params['TC_G0_TMIN']-gyro_0_params['TC_G0_TREF'], gyro_0_params['TC_G0_TMAX']-gyro_0_params['TC_G0_TREF'], 100) temp_resample = temp_rel_resample + gyro_0_params['TC_G0_TREF'] # fit X axis if noResample: coef_gyro_0_x = np.polyfit(temp_rel,sensor_gyro_0['x'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_0['x']) coef_gyro_0_x = np.polyfit(temp, sens ,3) gyro_0_params['TC_G0_X3_0'] = coef_gyro_0_x[0] gyro_0_params['TC_G0_X2_0'] = coef_gyro_0_x[1] gyro_0_params['TC_G0_X1_0'] = coef_gyro_0_x[2] gyro_0_params['TC_G0_X0_0'] = coef_gyro_0_x[3] fit_coef_gyro_0_x = np.poly1d(coef_gyro_0_x) gyro_0_x_resample = fit_coef_gyro_0_x(temp_rel_resample) # fit Y axis if noResample: coef_gyro_0_y = np.polyfit(temp_rel,sensor_gyro_0['y'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_0['y']) coef_gyro_0_y = np.polyfit(temp, sens ,3) gyro_0_params['TC_G0_X3_1'] = coef_gyro_0_y[0] gyro_0_params['TC_G0_X2_1'] = coef_gyro_0_y[1] gyro_0_params['TC_G0_X1_1'] = coef_gyro_0_y[2] gyro_0_params['TC_G0_X0_1'] = coef_gyro_0_y[3] fit_coef_gyro_0_y = np.poly1d(coef_gyro_0_y) gyro_0_y_resample = fit_coef_gyro_0_y(temp_rel_resample) # fit Z axis if noResample: coef_gyro_0_z = np.polyfit(temp_rel,sensor_gyro_0['z'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_0['z']) coef_gyro_0_z = np.polyfit(temp, sens ,3) gyro_0_params['TC_G0_X3_2'] = coef_gyro_0_z[0] gyro_0_params['TC_G0_X2_2'] = coef_gyro_0_z[1] gyro_0_params['TC_G0_X1_2'] = coef_gyro_0_z[2] gyro_0_params['TC_G0_X0_2'] = coef_gyro_0_z[3] fit_coef_gyro_0_z = np.poly1d(coef_gyro_0_z) gyro_0_z_resample = fit_coef_gyro_0_z(temp_rel_resample) # gyro0 vs temperature plt.figure(1,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['x'],'b') plt.plot(temp_resample,gyro_0_x_resample,'r') plt.title('Gyro 0 ({}) Bias vs Temperature'.format(gyro_0_params['TC_G0_ID'])) plt.ylabel('X bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['y'],'b') plt.plot(temp_resample,gyro_0_y_resample,'r') plt.ylabel('Y bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_gyro_0['temperature'],sensor_gyro_0['z'],'b') plt.plot(temp_resample,gyro_0_z_resample,'r') plt.ylabel('Z bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of gyro 1 thermal correction parameters gyro_1_params = { 'TC_G1_ID':0, 'TC_G1_TMIN':0.0, 'TC_G1_TMAX':0.0, 'TC_G1_TREF':0.0, 'TC_G1_X0_0':0.0, 'TC_G1_X1_0':0.0, 'TC_G1_X2_0':0.0, 'TC_G1_X3_0':0.0, 'TC_G1_X0_1':0.0, 'TC_G1_X1_1':0.0, 'TC_G1_X2_1':0.0, 'TC_G1_X3_1':0.0, 'TC_G1_X0_2':0.0, 'TC_G1_X1_2':0.0, 'TC_G1_X2_2':0.0, 'TC_G1_X3_2':0.0 } # curve fit the data for gyro 1 corrections if num_gyros >= 2 and not math.isnan(sensor_gyro_1['temperature'][0]): gyro_1_params['TC_G1_ID'] = int(np.median(sensor_gyro_1['device_id'])) # find the min, max and reference temperature gyro_1_params['TC_G1_TMIN'] = np.amin(sensor_gyro_1['temperature']) gyro_1_params['TC_G1_TMAX'] = np.amax(sensor_gyro_1['temperature']) gyro_1_params['TC_G1_TREF'] = 0.5 * (gyro_1_params['TC_G1_TMIN'] + gyro_1_params['TC_G1_TMAX']) temp_rel = sensor_gyro_1['temperature'] - gyro_1_params['TC_G1_TREF'] temp_rel_resample = np.linspace(gyro_1_params['TC_G1_TMIN']-gyro_1_params['TC_G1_TREF'], gyro_1_params['TC_G1_TMAX']-gyro_1_params['TC_G1_TREF'], 100) temp_resample = temp_rel_resample + gyro_1_params['TC_G1_TREF'] # fit X axis if noResample: coef_gyro_1_x = np.polyfit(temp_rel,sensor_gyro_1['x'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_1['x']) coef_gyro_1_x = np.polyfit(temp, sens ,3) gyro_1_params['TC_G1_X3_0'] = coef_gyro_1_x[0] gyro_1_params['TC_G1_X2_0'] = coef_gyro_1_x[1] gyro_1_params['TC_G1_X1_0'] = coef_gyro_1_x[2] gyro_1_params['TC_G1_X0_0'] = coef_gyro_1_x[3] fit_coef_gyro_1_x = np.poly1d(coef_gyro_1_x) gyro_1_x_resample = fit_coef_gyro_1_x(temp_rel_resample) # fit Y axis if noResample: coef_gyro_1_y = np.polyfit(temp_rel,sensor_gyro_1['y'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_1['y']) coef_gyro_1_y = np.polyfit(temp, sens ,3) gyro_1_params['TC_G1_X3_1'] = coef_gyro_1_y[0] gyro_1_params['TC_G1_X2_1'] = coef_gyro_1_y[1] gyro_1_params['TC_G1_X1_1'] = coef_gyro_1_y[2] gyro_1_params['TC_G1_X0_1'] = coef_gyro_1_y[3] fit_coef_gyro_1_y = np.poly1d(coef_gyro_1_y) gyro_1_y_resample = fit_coef_gyro_1_y(temp_rel_resample) # fit Z axis if noResample: coef_gyro_1_z = np.polyfit(temp_rel,sensor_gyro_1['z'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_1['z']) coef_gyro_1_z = np.polyfit(temp, sens ,3) gyro_1_params['TC_G1_X3_2'] = coef_gyro_1_z[0] gyro_1_params['TC_G1_X2_2'] = coef_gyro_1_z[1] gyro_1_params['TC_G1_X1_2'] = coef_gyro_1_z[2] gyro_1_params['TC_G1_X0_2'] = coef_gyro_1_z[3] fit_coef_gyro_1_z = np.poly1d(coef_gyro_1_z) gyro_1_z_resample = fit_coef_gyro_1_z(temp_rel_resample) # gyro1 vs temperature plt.figure(2,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['x'],'b') plt.plot(temp_resample,gyro_1_x_resample,'r') plt.title('Gyro 1 ({}) Bias vs Temperature'.format(gyro_1_params['TC_G1_ID'])) plt.ylabel('X bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['y'],'b') plt.plot(temp_resample,gyro_1_y_resample,'r') plt.ylabel('Y bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_gyro_1['temperature'],sensor_gyro_1['z'],'b') plt.plot(temp_resample,gyro_1_z_resample,'r') plt.ylabel('Z bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of gyro 2 thermal correction parameters gyro_2_params = { 'TC_G2_ID':0, 'TC_G2_TMIN':0.0, 'TC_G2_TMAX':0.0, 'TC_G2_TREF':0.0, 'TC_G2_X0_0':0.0, 'TC_G2_X1_0':0.0, 'TC_G2_X2_0':0.0, 'TC_G2_X3_0':0.0, 'TC_G2_X0_1':0.0, 'TC_G2_X1_1':0.0, 'TC_G2_X2_1':0.0, 'TC_G2_X3_1':0.0, 'TC_G2_X0_2':0.0, 'TC_G2_X1_2':0.0, 'TC_G2_X2_2':0.0, 'TC_G2_X3_2':0.0 } # curve fit the data for gyro 2 corrections if num_gyros >= 3 and not math.isnan(sensor_gyro_2['temperature'][0]): gyro_2_params['TC_G2_ID'] = int(np.median(sensor_gyro_2['device_id'])) # find the min, max and reference temperature gyro_2_params['TC_G2_TMIN'] = np.amin(sensor_gyro_2['temperature']) gyro_2_params['TC_G2_TMAX'] = np.amax(sensor_gyro_2['temperature']) gyro_2_params['TC_G2_TREF'] = 0.5 * (gyro_2_params['TC_G2_TMIN'] + gyro_2_params['TC_G2_TMAX']) temp_rel = sensor_gyro_2['temperature'] - gyro_2_params['TC_G2_TREF'] temp_rel_resample = np.linspace(gyro_2_params['TC_G2_TMIN']-gyro_2_params['TC_G2_TREF'], gyro_2_params['TC_G2_TMAX']-gyro_2_params['TC_G2_TREF'], 100) temp_resample = temp_rel_resample + gyro_2_params['TC_G2_TREF'] # fit X axis if noResample: coef_gyro_2_x = np.polyfit(temp_rel,sensor_gyro_2['x'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_2['x']) coef_gyro_2_x = np.polyfit(temp, sens ,3) gyro_2_params['TC_G2_X3_0'] = coef_gyro_2_x[0] gyro_2_params['TC_G2_X2_0'] = coef_gyro_2_x[1] gyro_2_params['TC_G2_X1_0'] = coef_gyro_2_x[2] gyro_2_params['TC_G2_X0_0'] = coef_gyro_2_x[3] fit_coef_gyro_2_x = np.poly1d(coef_gyro_2_x) gyro_2_x_resample = fit_coef_gyro_2_x(temp_rel_resample) # fit Y axis if noResample: coef_gyro_2_y = np.polyfit(temp_rel,sensor_gyro_2['y'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_2['y']) coef_gyro_2_y = np.polyfit(temp, sens ,3) gyro_2_params['TC_G2_X3_1'] = coef_gyro_2_y[0] gyro_2_params['TC_G2_X2_1'] = coef_gyro_2_y[1] gyro_2_params['TC_G2_X1_1'] = coef_gyro_2_y[2] gyro_2_params['TC_G2_X0_1'] = coef_gyro_2_y[3] fit_coef_gyro_2_y = np.poly1d(coef_gyro_2_y) gyro_2_y_resample = fit_coef_gyro_2_y(temp_rel_resample) # fit Z axis if noResample: coef_gyro_2_z = np.polyfit(temp_rel,sensor_gyro_2['z'],3) else: temp, sens = resampleWithDeltaX(temp_rel,sensor_gyro_2['z']) coef_gyro_2_z = np.polyfit(temp, sens ,3) gyro_2_params['TC_G2_X3_2'] = coef_gyro_2_z[0] gyro_2_params['TC_G2_X2_2'] = coef_gyro_2_z[1] gyro_2_params['TC_G2_X1_2'] = coef_gyro_2_z[2] gyro_2_params['TC_G2_X0_2'] = coef_gyro_2_z[3] fit_coef_gyro_2_z = np.poly1d(coef_gyro_2_z) gyro_2_z_resample = fit_coef_gyro_2_z(temp_rel_resample) # gyro2 vs temperature plt.figure(3,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['x'],'b') plt.plot(temp_resample,gyro_2_x_resample,'r') plt.title('Gyro 2 ({}) Bias vs Temperature'.format(gyro_2_params['TC_G2_ID'])) plt.ylabel('X bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['y'],'b') plt.plot(temp_resample,gyro_2_y_resample,'r') plt.ylabel('Y bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_gyro_2['temperature'],sensor_gyro_2['z'],'b') plt.plot(temp_resample,gyro_2_z_resample,'r') plt.ylabel('Z bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of gyro 3 thermal correction parameters gyro_3_params = { 'TC_G3_ID':0, 'TC_G3_TMIN':0.0, 'TC_G3_TMAX':0.0, 'TC_G3_TREF':0.0, 'TC_G3_X0_0':0.0, 'TC_G3_X1_0':0.0, 'TC_G3_X2_0':0.0, 'TC_G3_X3_0':0.0, 'TC_G3_X0_1':0.0, 'TC_G3_X1_1':0.0, 'TC_G3_X2_1':0.0, 'TC_G3_X3_1':0.0, 'TC_G3_X0_2':0.0, 'TC_G3_X1_2':0.0, 'TC_G3_X2_2':0.0, 'TC_G3_X3_2':0.0 } # curve fit the data for gyro 3 corrections if num_gyros >= 4 and not math.isnan(sensor_gyro_3['temperature'][0]): gyro_3_params['TC_G3_ID'] = int(np.median(sensor_gyro_3['device_id'])) # find the min, max and reference temperature gyro_3_params['TC_G3_TMIN'] = np.amin(sensor_gyro_3['temperature']) gyro_3_params['TC_G3_TMAX'] = np.amax(sensor_gyro_3['temperature']) gyro_3_params['TC_G3_TREF'] = 0.5 * (gyro_3_params['TC_G3_TMIN'] + gyro_3_params['TC_G3_TMAX']) temp_rel = sensor_gyro_3['temperature'] - gyro_3_params['TC_G3_TREF'] temp_rel_resample = np.linspace(gyro_3_params['TC_G3_TMIN']-gyro_3_params['TC_G3_TREF'], gyro_3_params['TC_G3_TMAX']-gyro_3_params['TC_G3_TREF'], 100) temp_resample = temp_rel_resample + gyro_3_params['TC_G3_TREF'] # fit X axis coef_gyro_3_x = np.polyfit(temp_rel,sensor_gyro_3['x'],3) gyro_3_params['TC_G3_X3_0'] = coef_gyro_3_x[0] gyro_3_params['TC_G3_X2_0'] = coef_gyro_3_x[1] gyro_3_params['TC_G3_X1_0'] = coef_gyro_3_x[2] gyro_3_params['TC_G3_X0_0'] = coef_gyro_3_x[3] fit_coef_gyro_3_x = np.poly1d(coef_gyro_3_x) gyro_3_x_resample = fit_coef_gyro_3_x(temp_rel_resample) # fit Y axis coef_gyro_3_y = np.polyfit(temp_rel,sensor_gyro_3['y'],3) gyro_3_params['TC_G3_X3_1'] = coef_gyro_3_y[0] gyro_3_params['TC_G3_X2_1'] = coef_gyro_3_y[1] gyro_3_params['TC_G3_X1_1'] = coef_gyro_3_y[2] gyro_3_params['TC_G3_X0_1'] = coef_gyro_3_y[3] fit_coef_gyro_3_y = np.poly1d(coef_gyro_3_y) gyro_3_y_resample = fit_coef_gyro_3_y(temp_rel_resample) # fit Z axis coef_gyro_3_z = np.polyfit(temp_rel,sensor_gyro_3['z'],3) gyro_3_params['TC_G3_X3_2'] = coef_gyro_3_z[0] gyro_3_params['TC_G3_X2_2'] = coef_gyro_3_z[1] gyro_3_params['TC_G3_X1_2'] = coef_gyro_3_z[2] gyro_3_params['TC_G3_X0_2'] = coef_gyro_3_z[3] fit_coef_gyro_3_z = np.poly1d(coef_gyro_3_z) gyro_3_z_resample = fit_coef_gyro_3_z(temp_rel_resample) # gyro3 vs temperature plt.figure(4,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_gyro_3['temperature'],sensor_gyro_3['x'],'b') plt.plot(temp_resample,gyro_3_x_resample,'r') plt.title('Gyro 2 ({}) Bias vs Temperature'.format(gyro_3_params['TC_G3_ID'])) plt.ylabel('X bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_gyro_3['temperature'],sensor_gyro_3['y'],'b') plt.plot(temp_resample,gyro_3_y_resample,'r') plt.ylabel('Y bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_gyro_3['temperature'],sensor_gyro_3['z'],'b') plt.plot(temp_resample,gyro_3_z_resample,'r') plt.ylabel('Z bias (rad/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of accel 0 thermal correction parameters accel_0_params = { 'TC_A0_ID':0, 'TC_A0_TMIN':0.0, 'TC_A0_TMAX':0.0, 'TC_A0_TREF':0.0, 'TC_A0_X0_0':0.0, 'TC_A0_X1_0':0.0, 'TC_A0_X2_0':0.0, 'TC_A0_X3_0':0.0, 'TC_A0_X0_1':0.0, 'TC_A0_X1_1':0.0, 'TC_A0_X2_1':0.0, 'TC_A0_X3_1':0.0, 'TC_A0_X0_2':0.0, 'TC_A0_X1_2':0.0, 'TC_A0_X2_2':0.0, 'TC_A0_X3_2':0.0 } # curve fit the data for accel 0 corrections if num_accels >= 1 and not math.isnan(sensor_accel_0['temperature'][0]): accel_0_params['TC_A0_ID'] = int(np.median(sensor_accel_0['device_id'])) # find the min, max and reference temperature accel_0_params['TC_A0_TMIN'] = np.amin(sensor_accel_0['temperature']) accel_0_params['TC_A0_TMAX'] = np.amax(sensor_accel_0['temperature']) accel_0_params['TC_A0_TREF'] = 0.5 * (accel_0_params['TC_A0_TMIN'] + accel_0_params['TC_A0_TMAX']) temp_rel = sensor_accel_0['temperature'] - accel_0_params['TC_A0_TREF'] temp_rel_resample = np.linspace(accel_0_params['TC_A0_TMIN']-accel_0_params['TC_A0_TREF'], accel_0_params['TC_A0_TMAX']-accel_0_params['TC_A0_TREF'], 100) temp_resample = temp_rel_resample + accel_0_params['TC_A0_TREF'] # fit X axis correction_x = sensor_accel_0['x'] - np.median(sensor_accel_0['x']) if noResample: coef_accel_0_x = np.polyfit(temp_rel,correction_x,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_x) coef_accel_0_x = np.polyfit(temp, sens ,3) accel_0_params['TC_A0_X3_0'] = coef_accel_0_x[0] accel_0_params['TC_A0_X2_0'] = coef_accel_0_x[1] accel_0_params['TC_A0_X1_0'] = coef_accel_0_x[2] accel_0_params['TC_A0_X0_0'] = coef_accel_0_x[3] fit_coef_accel_0_x = np.poly1d(coef_accel_0_x) correction_x_resample = fit_coef_accel_0_x(temp_rel_resample) # fit Y axis correction_y = sensor_accel_0['y']-np.median(sensor_accel_0['y']) if noResample: coef_accel_0_y = np.polyfit(temp_rel,correction_y,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_y) coef_accel_0_y = np.polyfit(temp, sens ,3) accel_0_params['TC_A0_X3_1'] = coef_accel_0_y[0] accel_0_params['TC_A0_X2_1'] = coef_accel_0_y[1] accel_0_params['TC_A0_X1_1'] = coef_accel_0_y[2] accel_0_params['TC_A0_X0_1'] = coef_accel_0_y[3] fit_coef_accel_0_y = np.poly1d(coef_accel_0_y) correction_y_resample = fit_coef_accel_0_y(temp_rel_resample) # fit Z axis correction_z = sensor_accel_0['z']-np.median(sensor_accel_0['z']) if noResample: coef_accel_0_z = np.polyfit(temp_rel,correction_z,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_z) coef_accel_0_z = np.polyfit(temp, sens ,3) accel_0_params['TC_A0_X3_2'] = coef_accel_0_z[0] accel_0_params['TC_A0_X2_2'] = coef_accel_0_z[1] accel_0_params['TC_A0_X1_2'] = coef_accel_0_z[2] accel_0_params['TC_A0_X0_2'] = coef_accel_0_z[3] fit_coef_accel_0_z = np.poly1d(coef_accel_0_z) correction_z_resample = fit_coef_accel_0_z(temp_rel_resample) # accel 0 vs temperature plt.figure(5,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_accel_0['temperature'],correction_x,'b') plt.plot(temp_resample,correction_x_resample,'r') plt.title('Accel 0 ({}) Bias vs Temperature'.format(accel_0_params['TC_A0_ID'])) plt.ylabel('X bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_accel_0['temperature'],correction_y,'b') plt.plot(temp_resample,correction_y_resample,'r') plt.ylabel('Y bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_accel_0['temperature'],correction_z,'b') plt.plot(temp_resample,correction_z_resample,'r') plt.ylabel('Z bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of accel 1 thermal correction parameters accel_1_params = { 'TC_A1_ID':0, 'TC_A1_TMIN':0.0, 'TC_A1_TMAX':0.0, 'TC_A1_TREF':0.0, 'TC_A1_X0_0':0.0, 'TC_A1_X1_0':0.0, 'TC_A1_X2_0':0.0, 'TC_A1_X3_0':0.0, 'TC_A1_X0_1':0.0, 'TC_A1_X1_1':0.0, 'TC_A1_X2_1':0.0, 'TC_A1_X3_1':0.0, 'TC_A1_X0_2':0.0, 'TC_A1_X1_2':0.0, 'TC_A1_X2_2':0.0, 'TC_A1_X3_2':0.0 } # curve fit the data for accel 1 corrections if num_accels >= 2 and not math.isnan(sensor_accel_1['temperature'][0]): accel_1_params['TC_A1_ID'] = int(np.median(sensor_accel_1['device_id'])) # find the min, max and reference temperature accel_1_params['TC_A1_TMIN'] = np.amin(sensor_accel_1['temperature']) accel_1_params['TC_A1_TMAX'] = np.amax(sensor_accel_1['temperature']) accel_1_params['TC_A1_TREF'] = 0.5 * (accel_1_params['TC_A1_TMIN'] + accel_1_params['TC_A1_TMAX']) temp_rel = sensor_accel_1['temperature'] - accel_1_params['TC_A1_TREF'] temp_rel_resample = np.linspace(accel_1_params['TC_A1_TMIN']-accel_1_params['TC_A1_TREF'], accel_1_params['TC_A1_TMAX']-accel_1_params['TC_A1_TREF'], 100) temp_resample = temp_rel_resample + accel_1_params['TC_A1_TREF'] # fit X axis correction_x = sensor_accel_1['x']-np.median(sensor_accel_1['x']) if noResample: coef_accel_1_x = np.polyfit(temp_rel,correction_x,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_x) coef_accel_1_x = np.polyfit(temp, sens ,3) accel_1_params['TC_A1_X3_0'] = coef_accel_1_x[0] accel_1_params['TC_A1_X2_0'] = coef_accel_1_x[1] accel_1_params['TC_A1_X1_0'] = coef_accel_1_x[2] accel_1_params['TC_A1_X0_0'] = coef_accel_1_x[3] fit_coef_accel_1_x = np.poly1d(coef_accel_1_x) correction_x_resample = fit_coef_accel_1_x(temp_rel_resample) # fit Y axis correction_y = sensor_accel_1['y']-np.median(sensor_accel_1['y']) if noResample: coef_accel_1_y = np.polyfit(temp_rel,correction_y,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_y) coef_accel_1_y = np.polyfit(temp, sens ,3) accel_1_params['TC_A1_X3_1'] = coef_accel_1_y[0] accel_1_params['TC_A1_X2_1'] = coef_accel_1_y[1] accel_1_params['TC_A1_X1_1'] = coef_accel_1_y[2] accel_1_params['TC_A1_X0_1'] = coef_accel_1_y[3] fit_coef_accel_1_y = np.poly1d(coef_accel_1_y) correction_y_resample = fit_coef_accel_1_y(temp_rel_resample) # fit Z axis correction_z = (sensor_accel_1['z'])-np.median(sensor_accel_1['z']) if noResample: coef_accel_1_z = np.polyfit(temp_rel,correction_z,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_z) coef_accel_1_z = np.polyfit(temp, sens ,3) accel_1_params['TC_A1_X3_2'] = coef_accel_1_z[0] accel_1_params['TC_A1_X2_2'] = coef_accel_1_z[1] accel_1_params['TC_A1_X1_2'] = coef_accel_1_z[2] accel_1_params['TC_A1_X0_2'] = coef_accel_1_z[3] fit_coef_accel_1_z = np.poly1d(coef_accel_1_z) correction_z_resample = fit_coef_accel_1_z(temp_rel_resample) # accel 1 vs temperature plt.figure(6,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_accel_1['temperature'],correction_x,'b') plt.plot(temp_resample,correction_x_resample,'r') plt.title('Accel 1 ({}) Bias vs Temperature'.format(accel_1_params['TC_A1_ID'])) plt.ylabel('X bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_accel_1['temperature'],correction_y,'b') plt.plot(temp_resample,correction_y_resample,'r') plt.ylabel('Y bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_accel_1['temperature'],correction_z,'b') plt.plot(temp_resample,correction_z_resample,'r') plt.ylabel('Z bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of accel 2 thermal correction parameters accel_2_params = { 'TC_A2_ID':0, 'TC_A2_TMIN':0.0, 'TC_A2_TMAX':0.0, 'TC_A2_TREF':0.0, 'TC_A2_X0_0':0.0, 'TC_A2_X1_0':0.0, 'TC_A2_X2_0':0.0, 'TC_A2_X3_0':0.0, 'TC_A2_X0_1':0.0, 'TC_A2_X1_1':0.0, 'TC_A2_X2_1':0.0, 'TC_A2_X3_1':0.0, 'TC_A2_X0_2':0.0, 'TC_A2_X1_2':0.0, 'TC_A2_X2_2':0.0, 'TC_A2_X3_2':0.0 } # curve fit the data for accel 2 corrections if num_accels >= 3 and not math.isnan(sensor_accel_2['temperature'][0]): accel_2_params['TC_A2_ID'] = int(np.median(sensor_accel_2['device_id'])) # find the min, max and reference temperature accel_2_params['TC_A2_TMIN'] = np.amin(sensor_accel_2['temperature']) accel_2_params['TC_A2_TMAX'] = np.amax(sensor_accel_2['temperature']) accel_2_params['TC_A2_TREF'] = 0.5 * (accel_2_params['TC_A2_TMIN'] + accel_2_params['TC_A2_TMAX']) temp_rel = sensor_accel_2['temperature'] - accel_2_params['TC_A2_TREF'] temp_rel_resample = np.linspace(accel_2_params['TC_A2_TMIN']-accel_2_params['TC_A2_TREF'], accel_2_params['TC_A2_TMAX']-accel_2_params['TC_A2_TREF'], 100) temp_resample = temp_rel_resample + accel_2_params['TC_A2_TREF'] # fit X axis correction_x = sensor_accel_2['x']-np.median(sensor_accel_2['x']) if noResample: coef_accel_2_x = np.polyfit(temp_rel,correction_x,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_x) coef_accel_2_x = np.polyfit(temp, sens ,3) accel_2_params['TC_A2_X3_0'] = coef_accel_2_x[0] accel_2_params['TC_A2_X2_0'] = coef_accel_2_x[1] accel_2_params['TC_A2_X1_0'] = coef_accel_2_x[2] accel_2_params['TC_A2_X0_0'] = coef_accel_2_x[3] fit_coef_accel_2_x = np.poly1d(coef_accel_2_x) correction_x_resample = fit_coef_accel_2_x(temp_rel_resample) # fit Y axis correction_y = sensor_accel_2['y']-np.median(sensor_accel_2['y']) if noResample: coef_accel_2_y = np.polyfit(temp_rel,correction_y,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_y) coef_accel_2_y = np.polyfit(temp, sens ,3) accel_2_params['TC_A2_X3_1'] = coef_accel_2_y[0] accel_2_params['TC_A2_X2_1'] = coef_accel_2_y[1] accel_2_params['TC_A2_X1_1'] = coef_accel_2_y[2] accel_2_params['TC_A2_X0_1'] = coef_accel_2_y[3] fit_coef_accel_2_y = np.poly1d(coef_accel_2_y) correction_y_resample = fit_coef_accel_2_y(temp_rel_resample) # fit Z axis correction_z = sensor_accel_2['z']-np.median(sensor_accel_2['z']) if noResample: coef_accel_2_z = np.polyfit(temp_rel,correction_z,3) else: temp, sens = resampleWithDeltaX(temp_rel,correction_z) coef_accel_2_z = np.polyfit(temp, sens ,3) accel_2_params['TC_A2_X3_2'] = coef_accel_2_z[0] accel_2_params['TC_A2_X2_2'] = coef_accel_2_z[1] accel_2_params['TC_A2_X1_2'] = coef_accel_2_z[2] accel_2_params['TC_A2_X0_2'] = coef_accel_2_z[3] fit_coef_accel_2_z = np.poly1d(coef_accel_2_z) correction_z_resample = fit_coef_accel_2_z(temp_rel_resample) # accel 2 vs temperature plt.figure(7,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_accel_2['temperature'],correction_x,'b') plt.plot(temp_resample,correction_x_resample,'r') plt.title('Accel 2 ({}) Bias vs Temperature'.format(accel_2_params['TC_A2_ID'])) plt.ylabel('X bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_accel_2['temperature'],correction_y,'b') plt.plot(temp_resample,correction_y_resample,'r') plt.ylabel('Y bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_accel_2['temperature'],correction_z,'b') plt.plot(temp_resample,correction_z_resample,'r') plt.ylabel('Z bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of accel 3 thermal correction parameters accel_3_params = { 'TC_A3_ID':0, 'TC_A3_TMIN':0.0, 'TC_A3_TMAX':0.0, 'TC_A3_TREF':0.0, 'TC_A3_X0_0':0.0, 'TC_A3_X1_0':0.0, 'TC_A3_X2_0':0.0, 'TC_A3_X3_0':0.0, 'TC_A3_X0_1':0.0, 'TC_A3_X1_1':0.0, 'TC_A3_X2_1':0.0, 'TC_A3_X3_1':0.0, 'TC_A3_X0_2':0.0, 'TC_A3_X1_2':0.0, 'TC_A3_X2_2':0.0, 'TC_A3_X3_2':0.0 } # curve fit the data for accel 2 corrections if num_accels >= 4 and not math.isnan(sensor_accel_3['temperature'][0]): accel_3_params['TC_A3_ID'] = int(np.median(sensor_accel_3['device_id'])) # find the min, max and reference temperature accel_3_params['TC_A3_TMIN'] = np.amin(sensor_accel_3['temperature']) accel_3_params['TC_A3_TMAX'] = np.amax(sensor_accel_3['temperature']) accel_3_params['TC_A3_TREF'] = 0.5 * (accel_3_params['TC_A3_TMIN'] + accel_3_params['TC_A3_TMAX']) temp_rel = sensor_accel_3['temperature'] - accel_3_params['TC_A3_TREF'] temp_rel_resample = np.linspace(accel_3_params['TC_A3_TMIN']-accel_3_params['TC_A3_TREF'], accel_3_params['TC_A3_TMAX']-accel_3_params['TC_A3_TREF'], 100) temp_resample = temp_rel_resample + accel_3_params['TC_A3_TREF'] # fit X axis correction_x = sensor_accel_3['x']-np.median(sensor_accel_3['x']) coef_accel_3_x = np.polyfit(temp_rel,correction_x,3) accel_3_params['TC_A3_X3_0'] = coef_accel_3_x[0] accel_3_params['TC_A3_X2_0'] = coef_accel_3_x[1] accel_3_params['TC_A3_X1_0'] = coef_accel_3_x[2] accel_3_params['TC_A3_X0_0'] = coef_accel_3_x[3] fit_coef_accel_3_x = np.poly1d(coef_accel_3_x) correction_x_resample = fit_coef_accel_3_x(temp_rel_resample) # fit Y axis correction_y = sensor_accel_3['y']-np.median(sensor_accel_3['y']) coef_accel_3_y = np.polyfit(temp_rel,correction_y,3) accel_3_params['TC_A3_X3_1'] = coef_accel_3_y[0] accel_3_params['TC_A3_X2_1'] = coef_accel_3_y[1] accel_3_params['TC_A3_X1_1'] = coef_accel_3_y[2] accel_3_params['TC_A3_X0_1'] = coef_accel_3_y[3] fit_coef_accel_3_y = np.poly1d(coef_accel_3_y) correction_y_resample = fit_coef_accel_3_y(temp_rel_resample) # fit Z axis correction_z = sensor_accel_3['z']-np.median(sensor_accel_3['z']) coef_accel_3_z = np.polyfit(temp_rel,correction_z,3) accel_3_params['TC_A3_X3_2'] = coef_accel_3_z[0] accel_3_params['TC_A3_X2_2'] = coef_accel_3_z[1] accel_3_params['TC_A3_X1_2'] = coef_accel_3_z[2] accel_3_params['TC_A3_X0_2'] = coef_accel_3_z[3] fit_coef_accel_3_z = np.poly1d(coef_accel_3_z) correction_z_resample = fit_coef_accel_3_z(temp_rel_resample) # accel 3 vs temperature plt.figure(8,figsize=(20,13)) # draw plots plt.subplot(3,1,1) plt.plot(sensor_accel_3['temperature'],correction_x,'b') plt.plot(temp_resample,correction_x_resample,'r') plt.title('Accel 3 ({}) Bias vs Temperature'.format(accel_3_params['TC_A3_ID'])) plt.ylabel('X bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,2) plt.plot(sensor_accel_3['temperature'],correction_y,'b') plt.plot(temp_resample,correction_y_resample,'r') plt.ylabel('Y bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() # draw plots plt.subplot(3,1,3) plt.plot(sensor_accel_3['temperature'],correction_z,'b') plt.plot(temp_resample,correction_z_resample,'r') plt.ylabel('Z bias (m/s/s)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# ################################################################################# # define data dictionary of baro 0 thermal correction parameters baro_0_params = { 'TC_B0_ID':0, 'TC_B0_TMIN':0.0, 'TC_B0_TMAX':0.0, 'TC_B0_TREF':0.0, 'TC_B0_X0':0.0, 'TC_B0_X1':0.0, 'TC_B0_X2':0.0, 'TC_B0_X3':0.0, 'TC_B0_X4':0.0, 'TC_B0_X5':0.0 } # curve fit the data for baro 0 corrections baro_0_params['TC_B0_ID'] = int(np.median(sensor_baro_0['device_id'])) # find the min, max and reference temperature baro_0_params['TC_B0_TMIN'] = np.amin(sensor_baro_0['temperature']) baro_0_params['TC_B0_TMAX'] = np.amax(sensor_baro_0['temperature']) baro_0_params['TC_B0_TREF'] = 0.5 * (baro_0_params['TC_B0_TMIN'] + baro_0_params['TC_B0_TMAX']) temp_rel = sensor_baro_0['temperature'] - baro_0_params['TC_B0_TREF'] temp_rel_resample = np.linspace(baro_0_params['TC_B0_TMIN']-baro_0_params['TC_B0_TREF'], baro_0_params['TC_B0_TMAX']-baro_0_params['TC_B0_TREF'], 100) temp_resample = temp_rel_resample + baro_0_params['TC_B0_TREF'] # fit data median_pressure = np.median(sensor_baro_0['pressure']); if noResample: coef_baro_0_x = np.polyfit(temp_rel,100*(sensor_baro_0['pressure']-median_pressure),5) # convert from hPa to Pa else: temperature, baro = resampleWithDeltaX(temp_rel,100*(sensor_baro_0['pressure']-median_pressure)) # convert from hPa to Pa coef_baro_0_x = np.polyfit(temperature,baro,5) baro_0_params['TC_B0_X5'] = coef_baro_0_x[0] baro_0_params['TC_B0_X4'] = coef_baro_0_x[1] baro_0_params['TC_B0_X3'] = coef_baro_0_x[2] baro_0_params['TC_B0_X2'] = coef_baro_0_x[3] baro_0_params['TC_B0_X1'] = coef_baro_0_x[4] baro_0_params['TC_B0_X0'] = coef_baro_0_x[5] fit_coef_baro_0_x = np.poly1d(coef_baro_0_x) baro_0_x_resample = fit_coef_baro_0_x(temp_rel_resample) # baro 0 vs temperature plt.figure(9,figsize=(20,13)) # draw plots plt.plot(sensor_baro_0['temperature'],100*sensor_baro_0['pressure']-100*median_pressure,'b') plt.plot(temp_resample,baro_0_x_resample,'r') plt.title('Baro 0 ({}) Bias vs Temperature'.format(baro_0_params['TC_B0_ID'])) plt.ylabel('Z bias (Pa)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() # define data dictionary of baro 1 thermal correction parameters baro_1_params = { 'TC_B1_ID':0, 'TC_B1_TMIN':0.0, 'TC_B1_TMAX':0.0, 'TC_B1_TREF':0.0, 'TC_B1_X0':0.0, 'TC_B1_X1':0.0, 'TC_B1_X2':0.0, 'TC_B1_X3':0.0, 'TC_B1_X4':0.0, 'TC_B1_X5':0.0, } if num_baros >= 2: # curve fit the data for baro 1 corrections baro_1_params['TC_B1_ID'] = int(np.median(sensor_baro_1['device_id'])) # find the min, max and reference temperature baro_1_params['TC_B1_TMIN'] = np.amin(sensor_baro_1['temperature']) baro_1_params['TC_B1_TMAX'] = np.amax(sensor_baro_1['temperature']) baro_1_params['TC_B1_TREF'] = 0.5 * (baro_1_params['TC_B1_TMIN'] + baro_1_params['TC_B1_TMAX']) temp_rel = sensor_baro_1['temperature'] - baro_1_params['TC_B1_TREF'] temp_rel_resample = np.linspace(baro_1_params['TC_B1_TMIN']-baro_1_params['TC_B1_TREF'], baro_1_params['TC_B1_TMAX']-baro_1_params['TC_B1_TREF'], 100) temp_resample = temp_rel_resample + baro_1_params['TC_B1_TREF'] # fit data median_pressure = np.median(sensor_baro_1['pressure']); if noResample: coef_baro_1_x = np.polyfit(temp_rel,100*(sensor_baro_1['pressure']-median_pressure),5) # convert from hPa to Pa else: temperature, baro = resampleWithDeltaX(temp_rel,100*(sensor_baro_1['pressure']-median_pressure)) # convert from hPa to Pa coef_baro_1_x = np.polyfit(temperature,baro,5) baro_1_params['TC_B1_X5'] = coef_baro_1_x[0] baro_1_params['TC_B1_X4'] = coef_baro_1_x[1] baro_1_params['TC_B1_X3'] = coef_baro_1_x[2] baro_1_params['TC_B1_X2'] = coef_baro_1_x[3] baro_1_params['TC_B1_X1'] = coef_baro_1_x[4] baro_1_params['TC_B1_X0'] = coef_baro_1_x[5] fit_coef_baro_1_x = np.poly1d(coef_baro_1_x) baro_1_x_resample = fit_coef_baro_1_x(temp_rel_resample) # baro 2 vs temperature plt.figure(9,figsize=(20,13)) # draw plots plt.plot(sensor_baro_1['temperature'],100*sensor_baro_1['pressure']-100*median_pressure,'b') plt.plot(temp_resample,baro_1_x_resample,'r') plt.title('Baro 1 ({}) Bias vs Temperature'.format(baro_1_params['TC_B1_ID'])) plt.ylabel('Z bias (Pa)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() # define data dictionary of baro 2 thermal correction parameters baro_2_params = { 'TC_B2_ID':0, 'TC_B2_TMIN':0.0, 'TC_B2_TMAX':0.0, 'TC_B2_TREF':0.0, 'TC_B2_X0':0.0, 'TC_B2_X1':0.0, 'TC_B2_X2':0.0, 'TC_B2_X3':0.0, 'TC_B2_X4':0.0, 'TC_B2_X5':0.0, 'TC_B2_SCL':1.0, } if num_baros >= 3: # curve fit the data for baro 2 corrections baro_2_params['TC_B2_ID'] = int(np.median(sensor_baro_2['device_id'])) # find the min, max and reference temperature baro_2_params['TC_B2_TMIN'] = np.amin(sensor_baro_2['temperature']) baro_2_params['TC_B2_TMAX'] = np.amax(sensor_baro_2['temperature']) baro_2_params['TC_B2_TREF'] = 0.5 * (baro_2_params['TC_B2_TMIN'] + baro_2_params['TC_B2_TMAX']) temp_rel = sensor_baro_2['temperature'] - baro_2_params['TC_B2_TREF'] temp_rel_resample = np.linspace(baro_2_params['TC_B2_TMIN']-baro_2_params['TC_B2_TREF'], baro_2_params['TC_B2_TMAX']-baro_2_params['TC_B2_TREF'], 100) temp_resample = temp_rel_resample + baro_2_params['TC_B2_TREF'] # fit data median_pressure = np.median(sensor_baro_2['pressure']); if noResample: coef_baro_2_x = np.polyfit(temp_rel,100*(sensor_baro_2['pressure']-median_pressure),5) # convert from hPa to Pa else: temperature, baro = resampleWithDeltaX(temp_rel,100*(sensor_baro_2['pressure']-median_pressure)) # convert from hPa to Pa coef_baro_2_x = np.polyfit(temperature,baro,5) baro_2_params['TC_B2_X5'] = coef_baro_2_x[0] baro_2_params['TC_B2_X4'] = coef_baro_2_x[1] baro_2_params['TC_B2_X3'] = coef_baro_2_x[2] baro_2_params['TC_B2_X2'] = coef_baro_2_x[3] baro_2_params['TC_B2_X1'] = coef_baro_2_x[4] baro_2_params['TC_B2_X0'] = coef_baro_2_x[5] fit_coef_baro_2_x = np.poly1d(coef_baro_2_x) baro_2_x_resample = fit_coef_baro_2_x(temp_rel_resample) # baro 2 vs temperature plt.figure(10,figsize=(20,13)) # draw plots plt.plot(sensor_baro_2['temperature'],100*sensor_baro_2['pressure']-100*median_pressure,'b') plt.plot(temp_resample,baro_2_x_resample,'r') plt.title('Baro 2 ({}) Bias vs Temperature'.format(baro_2_params['TC_B2_ID'])) plt.ylabel('Z bias (Pa)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() # define data dictionary of baro 3 thermal correction parameters baro_3_params = { 'TC_B3_ID':0, 'TC_B3_TMIN':0.0, 'TC_B3_TMAX':0.0, 'TC_B3_TREF':0.0, 'TC_B3_X0':0.0, 'TC_B3_X1':0.0, 'TC_B3_X2':0.0, 'TC_B3_X3':0.0, 'TC_B3_X4':0.0, 'TC_B3_X5':0.0, 'TC_B3_SCL':1.0, } if num_baros >= 4: # curve fit the data for baro 2 corrections baro_3_params['TC_B3_ID'] = int(np.median(sensor_baro_3['device_id'])) # find the min, max and reference temperature baro_3_params['TC_B3_TMIN'] = np.amin(sensor_baro_3['temperature']) baro_3_params['TC_B3_TMAX'] = np.amax(sensor_baro_3['temperature']) baro_3_params['TC_B3_TREF'] = 0.5 * (baro_3_params['TC_B3_TMIN'] + baro_3_params['TC_B3_TMAX']) temp_rel = sensor_baro_3['temperature'] - baro_3_params['TC_B3_TREF'] temp_rel_resample = np.linspace(baro_3_params['TC_B3_TMIN']-baro_3_params['TC_B3_TREF'], baro_3_params['TC_B3_TMAX']-baro_3_params['TC_B3_TREF'], 100) temp_resample = temp_rel_resample + baro_3_params['TC_B3_TREF'] # fit data median_pressure = np.median(sensor_baro_3['pressure']) coef_baro_3_x = np.polyfit(temp_rel,100*(sensor_baro_3['pressure']-median_pressure),5) # convert from hPa to Pa baro_3_params['TC_B3_X5'] = coef_baro_3_x[0] baro_3_params['TC_B3_X4'] = coef_baro_3_x[1] baro_3_params['TC_B3_X3'] = coef_baro_3_x[2] baro_3_params['TC_B3_X2'] = coef_baro_3_x[3] baro_3_params['TC_B3_X1'] = coef_baro_3_x[4] baro_3_params['TC_B3_X0'] = coef_baro_3_x[5] fit_coef_baro_3_x = np.poly1d(coef_baro_3_x) baro_3_x_resample = fit_coef_baro_3_x(temp_rel_resample) # baro 3 vs temperature plt.figure(11,figsize=(20,13)) # draw plots plt.plot(sensor_baro_3['temperature'],100*sensor_baro_3['pressure']-100*median_pressure,'b') plt.plot(temp_resample,baro_3_x_resample,'r') plt.title('Baro 3 ({}) Bias vs Temperature'.format(baro_3_params['TC_B3_ID'])) plt.ylabel('Z bias (Pa)') plt.xlabel('temperature (degC)') plt.grid() pp.savefig() ################################################################################# # close the pdf file pp.close() # clase all figures plt.close("all") # write correction parameters to file test_results_filename = ulog_file_name + ".params" file = open(test_results_filename,"w") file.write("# Sensor thermal compensation parameters\n") file.write("#\n") file.write("# Vehicle-Id Component-Id Name Value Type\n") # accel 0 corrections key_list_accel = list(accel_0_params.keys()) key_list_accel.sort for key in key_list_accel: if key == 'TC_A0_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_0_params[key])+"\t"+type+"\n") # accel 1 corrections key_list_accel = list(accel_1_params.keys()) key_list_accel.sort for key in key_list_accel: if key == 'TC_A1_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_1_params[key])+"\t"+type+"\n") # accel 2 corrections key_list_accel = list(accel_2_params.keys()) key_list_accel.sort for key in key_list_accel: if key == 'TC_A2_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_2_params[key])+"\t"+type+"\n") # accel 3 corrections key_list_accel = list(accel_3_params.keys()) key_list_accel.sort for key in key_list_accel: if key == 'TC_A3_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(accel_3_params[key])+"\t"+type+"\n") # baro 0 corrections key_list_baro = list(baro_0_params.keys()) key_list_baro.sort for key in key_list_baro: if key == 'TC_B0_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_0_params[key])+"\t"+type+"\n") # baro 1 corrections key_list_baro = list(baro_1_params.keys()) key_list_baro.sort for key in key_list_baro: if key == 'TC_B1_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_1_params[key])+"\t"+type+"\n") # baro 2 corrections key_list_baro = list(baro_2_params.keys()) key_list_baro.sort for key in key_list_baro: if key == 'TC_B2_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_2_params[key])+"\t"+type+"\n") # baro 3 corrections key_list_baro = list(baro_3_params.keys()) key_list_baro.sort for key in key_list_baro: if key == 'TC_B3_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(baro_3_params[key])+"\t"+type+"\n") # gyro 0 corrections key_list_gyro = list(gyro_0_params.keys()) key_list_gyro.sort() for key in key_list_gyro: if key == 'TC_G0_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_0_params[key])+"\t"+type+"\n") # gyro 1 corrections key_list_gyro = list(gyro_1_params.keys()) key_list_gyro.sort() for key in key_list_gyro: if key == 'TC_G1_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_1_params[key])+"\t"+type+"\n") # gyro 2 corrections key_list_gyro = list(gyro_2_params.keys()) key_list_gyro.sort() for key in key_list_gyro: if key == 'TC_G2_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_2_params[key])+"\t"+type+"\n") # gyro 3 corrections key_list_gyro = list(gyro_3_params.keys()) key_list_gyro.sort() for key in key_list_gyro: if key == 'TC_G3_ID': type = "6" else: type = "9" file.write("1"+"\t"+"1"+"\t"+key+"\t"+str(gyro_3_params[key])+"\t"+type+"\n") file.close() print('Correction parameters written to ' + test_results_filename) print('Plots saved to ' + output_plot_filename)
bsd-3-clause
NelisVerhoef/scikit-learn
sklearn/utils/metaestimators.py
283
2353
"""Utilities for meta-estimators""" # Author: Joel Nothman # Andreas Mueller # Licence: BSD from operator import attrgetter from functools import update_wrapper __all__ = ['if_delegate_has_method'] class _IffHasAttrDescriptor(object): """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if the ``attribute_name`` is not present on the base object. This allows ducktyping of the decorated method based on ``attribute_name``. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, attribute_name): self.fn = fn self.get_attribute = attrgetter(attribute_name) # update the docstring of the descriptor update_wrapper(self, fn) def __get__(self, obj, type=None): # raise an AttributeError if the attribute is not present on the object if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self.get_attribute(obj) # lambda, but not partial, allows help() to work with update_wrapper out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # update the docstring of the returned function update_wrapper(out, self.fn) return out def if_delegate_has_method(delegate): """Create a decorator for methods that are delegated to a sub-estimator This enables ducktyping by hasattr returning True according to the sub-estimator. >>> from sklearn.utils.metaestimators import if_delegate_has_method >>> >>> >>> class MetaEst(object): ... def __init__(self, sub_est): ... self.sub_est = sub_est ... ... @if_delegate_has_method(delegate='sub_est') ... def predict(self, X): ... return self.sub_est.predict(X) ... >>> class HasPredict(object): ... def predict(self, X): ... return X.sum(axis=1) ... >>> class HasNoPredict(object): ... pass ... >>> hasattr(MetaEst(HasPredict()), 'predict') True >>> hasattr(MetaEst(HasNoPredict()), 'predict') False """ return lambda fn: _IffHasAttrDescriptor(fn, '%s.%s' % (delegate, fn.__name__))
bsd-3-clause
BlueBrain/deap
deap/gp.py
9
46662
# This file is part of DEAP. # # DEAP is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as # published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # DEAP is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with DEAP. If not, see <http://www.gnu.org/licenses/>. """The :mod:`gp` module provides the methods and classes to perform Genetic Programming with DEAP. It essentially contains the classes to build a Genetic Program Tree, and the functions to evaluate it. This module support both strongly and loosely typed GP. """ import copy import math import random import re import sys import warnings from collections import defaultdict, deque from functools import partial, wraps from inspect import isclass from operator import eq, lt import tools # Needed by HARM-GP ###################################### # GP Data structure # ###################################### # Define the name of type for any types. __type__ = object class PrimitiveTree(list): """Tree specifically formatted for optimization of genetic programming operations. The tree is represented with a list where the nodes are appended in a depth-first order. The nodes appended to the tree are required to have an attribute *arity* which defines the arity of the primitive. An arity of 0 is expected from terminals nodes. """ def __init__(self, content): list.__init__(self, content) def __deepcopy__(self, memo): new = self.__class__(self) new.__dict__.update(copy.deepcopy(self.__dict__, memo)) return new def __setitem__(self, key, val): # Check for most common errors # Does NOT check for STGP constraints if isinstance(key, slice): if key.start >= len(self): raise IndexError("Invalid slice object (try to assign a %s" " in a tree of size %d). Even if this is allowed by the" " list object slice setter, this should not be done in" " the PrimitiveTree context, as this may lead to an" " unpredictable behavior for searchSubtree or evaluate." % (key, len(self))) total = val[0].arity for node in val[1:]: total += node.arity - 1 if total != 0: raise ValueError("Invalid slice assignation : insertion of" " an incomplete subtree is not allowed in PrimitiveTree." " A tree is defined as incomplete when some nodes cannot" " be mapped to any position in the tree, considering the" " primitives' arity. For instance, the tree [sub, 4, 5," " 6] is incomplete if the arity of sub is 2, because it" " would produce an orphan node (the 6).") elif val.arity != self[key].arity: raise ValueError("Invalid node replacement with a node of a" " different arity.") list.__setitem__(self, key, val) def __str__(self): """Return the expression in a human readable string. """ string = "" stack = [] for node in self: stack.append((node, [])) while len(stack[-1][1]) == stack[-1][0].arity: prim, args = stack.pop() string = prim.format(*args) if len(stack) == 0: break # If stack is empty, all nodes should have been seen stack[-1][1].append(string) return string @classmethod def from_string(cls, string, pset): """Try to convert a string expression into a PrimitiveTree given a PrimitiveSet *pset*. The primitive set needs to contain every primitive present in the expression. :param string: String representation of a Python expression. :param pset: Primitive set from which primitives are selected. :returns: PrimitiveTree populated with the deserialized primitives. """ tokens = re.split("[ \t\n\r\f\v(),]", string) expr = [] ret_types = deque() for token in tokens: if token == '': continue if len(ret_types) != 0: type_ = ret_types.popleft() else: type_ = None if token in pset.mapping: primitive = pset.mapping[token] if type_ is not None and not issubclass(primitive.ret, type_): raise TypeError("Primitive {} return type {} does not " "match the expected one: {}." .format(primitive, primitive.ret, type_)) expr.append(primitive) if isinstance(primitive, Primitive): ret_types.extendleft(reversed(primitive.args)) else: try: token = eval(token) except NameError: raise TypeError("Unable to evaluate terminal: {}.".format(token)) if type_ is None: type_ = type(token) if not issubclass(type(token), type_): raise TypeError("Terminal {} type {} does not " "match the expected one: {}." .format(token, type(token), type_)) expr.append(Terminal(token, False, type_)) return cls(expr) @property def height(self): """Return the height of the tree, or the depth of the deepest node. """ stack = [0] max_depth = 0 for elem in self: depth = stack.pop() max_depth = max(max_depth, depth) stack.extend([depth + 1] * elem.arity) return max_depth @property def root(self): """Root of the tree, the element 0 of the list. """ return self[0] def searchSubtree(self, begin): """Return a slice object that corresponds to the range of values that defines the subtree which has the element with index *begin* as its root. """ end = begin + 1 total = self[begin].arity while total > 0: total += self[end].arity - 1 end += 1 return slice(begin, end) class Primitive(object): """Class that encapsulates a primitive and when called with arguments it returns the Python code to call the primitive with the arguments. >>> pr = Primitive("mul", (int, int), int) >>> pr.format(1, 2) 'mul(1, 2)' """ __slots__ = ('name', 'arity', 'args', 'ret', 'seq') def __init__(self, name, args, ret): self.name = name self.arity = len(args) self.args = args self.ret = ret args = ", ".join(map("{{{0}}}".format, range(self.arity))) self.seq = "{name}({args})".format(name=self.name, args=args) def format(self, *args): return self.seq.format(*args) def __eq__(self, other): if type(self) is type(other): return all(getattr(self, slot) == getattr(other, slot) for slot in self.__slots__) else: return NotImplemented class Terminal(object): """Class that encapsulates terminal primitive in expression. Terminals can be values or 0-arity functions. """ __slots__ = ('name', 'value', 'ret', 'conv_fct') def __init__(self, terminal, symbolic, ret): self.ret = ret self.value = terminal self.name = str(terminal) self.conv_fct = str if symbolic else repr @property def arity(self): return 0 def format(self): return self.conv_fct(self.value) def __eq__(self, other): if type(self) is type(other): return all(getattr(self, slot) == getattr(other, slot) for slot in self.__slots__) else: return NotImplemented class Ephemeral(Terminal): """Class that encapsulates a terminal which value is set when the object is created. To mutate the value, a new object has to be generated. This is an abstract base class. When subclassing, a staticmethod 'func' must be defined. """ def __init__(self): Terminal.__init__(self, self.func(), symbolic=False, ret=self.ret) @staticmethod def func(): """Return a random value used to define the ephemeral state. """ raise NotImplementedError class PrimitiveSetTyped(object): """Class that contains the primitives that can be used to solve a Strongly Typed GP problem. The set also defined the researched function return type, and input arguments type and number. """ def __init__(self, name, in_types, ret_type, prefix="ARG"): self.terminals = defaultdict(list) self.primitives = defaultdict(list) self.arguments = [] # setting "__builtins__" to None avoid the context # being polluted by builtins function when evaluating # GP expression. self.context = {"__builtins__": None} self.mapping = dict() self.terms_count = 0 self.prims_count = 0 self.name = name self.ret = ret_type self.ins = in_types for i, type_ in enumerate(in_types): arg_str = "{prefix}{index}".format(prefix=prefix, index=i) self.arguments.append(arg_str) term = Terminal(arg_str, True, type_) self._add(term) self.terms_count += 1 def renameArguments(self, **kargs): """Rename function arguments with new names from *kargs*. """ for i, old_name in enumerate(self.arguments): if old_name in kargs: new_name = kargs[old_name] self.arguments[i] = new_name self.mapping[new_name] = self.mapping[old_name] self.mapping[new_name].value = new_name del self.mapping[old_name] def _add(self, prim): def addType(dict_, ret_type): if not ret_type in dict_: new_list = [] for type_, list_ in dict_.items(): if issubclass(type_, ret_type): for item in list_: if not item in new_list: new_list.append(item) dict_[ret_type] = new_list addType(self.primitives, prim.ret) addType(self.terminals, prim.ret) self.mapping[prim.name] = prim if isinstance(prim, Primitive): for type_ in prim.args: addType(self.primitives, type_) addType(self.terminals, type_) dict_ = self.primitives else: dict_ = self.terminals for type_ in dict_: if issubclass(prim.ret, type_): dict_[type_].append(prim) def addPrimitive(self, primitive, in_types, ret_type, name=None): """Add a primitive to the set. :param primitive: callable object or a function. :parma in_types: list of primitives arguments' type :param ret_type: type returned by the primitive. :param name: alternative name for the primitive instead of its __name__ attribute. """ if name is None: name = primitive.__name__ prim = Primitive(name, in_types, ret_type) assert name not in self.context or \ self.context[name] is primitive, \ "Primitives are required to have a unique name. " \ "Consider using the argument 'name' to rename your "\ "second '%s' primitive." % (name,) self._add(prim) self.context[prim.name] = primitive self.prims_count += 1 def addTerminal(self, terminal, ret_type, name=None): """Add a terminal to the set. Terminals can be named using the optional *name* argument. This should be used : to define named constant (i.e.: pi); to speed the evaluation time when the object is long to build; when the object does not have a __repr__ functions that returns the code to build the object; when the object class is not a Python built-in. :param terminal: Object, or a function with no arguments. :param ret_type: Type of the terminal. :param name: defines the name of the terminal in the expression. """ symbolic = False if name is None and callable(terminal): name = terminal.__name__ assert name not in self.context, \ "Terminals are required to have a unique name. " \ "Consider using the argument 'name' to rename your "\ "second %s terminal." % (name,) if name is not None: self.context[name] = terminal terminal = name symbolic = True elif terminal in (True, False): # To support True and False terminals with Python 2. self.context[str(terminal)] = terminal prim = Terminal(terminal, symbolic, ret_type) self._add(prim) self.terms_count += 1 def addEphemeralConstant(self, name, ephemeral, ret_type): """Add an ephemeral constant to the set. An ephemeral constant is a no argument function that returns a random value. The value of the constant is constant for a Tree, but may differ from one Tree to another. :param name: name used to refers to this ephemeral type. :param ephemeral: function with no arguments returning a random value. :param ret_type: type of the object returned by *ephemeral*. """ module_gp = globals() if not name in module_gp: class_ = type(name, (Ephemeral,), {'func': staticmethod(ephemeral), 'ret': ret_type}) module_gp[name] = class_ else: class_ = module_gp[name] if issubclass(class_, Ephemeral): if class_.func is not ephemeral: raise Exception("Ephemerals with different functions should " "be named differently, even between psets.") elif class_.ret is not ret_type: raise Exception("Ephemerals with the same name and function " "should have the same type, even between psets.") else: raise Exception("Ephemerals should be named differently " "than classes defined in the gp module.") self._add(class_) self.terms_count += 1 def addADF(self, adfset): """Add an Automatically Defined Function (ADF) to the set. :param adfset: PrimitiveSetTyped containing the primitives with which the ADF can be built. """ prim = Primitive(adfset.name, adfset.ins, adfset.ret) self._add(prim) self.prims_count += 1 @property def terminalRatio(self): """Return the ratio of the number of terminals on the number of all kind of primitives. """ return self.terms_count / float(self.terms_count + self.prims_count) class PrimitiveSet(PrimitiveSetTyped): """Class same as :class:`~deap.gp.PrimitiveSetTyped`, except there is no definition of type. """ def __init__(self, name, arity, prefix="ARG"): args = [__type__] * arity PrimitiveSetTyped.__init__(self, name, args, __type__, prefix) def addPrimitive(self, primitive, arity, name=None): """Add primitive *primitive* with arity *arity* to the set. If a name *name* is provided, it will replace the attribute __name__ attribute to represent/identify the primitive. """ assert arity > 0, "arity should be >= 1" args = [__type__] * arity PrimitiveSetTyped.addPrimitive(self, primitive, args, __type__, name) def addTerminal(self, terminal, name=None): """Add a terminal to the set.""" PrimitiveSetTyped.addTerminal(self, terminal, __type__, name) def addEphemeralConstant(self, name, ephemeral): """Add an ephemeral constant to the set.""" PrimitiveSetTyped.addEphemeralConstant(self, name, ephemeral, __type__) ###################################### # GP Tree compilation functions # ###################################### def compile(expr, pset): """Compile the expression *expr*. :param expr: Expression to compile. It can either be a PrimitiveTree, a string of Python code or any object that when converted into string produced a valid Python code expression. :param pset: Primitive set against which the expression is compile. :returns: a function if the primitive set has 1 or more arguments, or return the results produced by evaluating the tree. """ code = str(expr) if len(pset.arguments) > 0: # This section is a stripped version of the lambdify # function of SymPy 0.6.6. args = ",".join(arg for arg in pset.arguments) code = "lambda {args}: {code}".format(args=args, code=code) try: return eval(code, pset.context, {}) except MemoryError: _, _, traceback = sys.exc_info() raise MemoryError, ("DEAP : Error in tree evaluation :" " Python cannot evaluate a tree higher than 90. " "To avoid this problem, you should use bloat control on your " "operators. See the DEAP documentation for more information. " "DEAP will now abort."), traceback def compileADF(expr, psets): """Compile the expression represented by a list of trees. The first element of the list is the main tree, and the following elements are automatically defined functions (ADF) that can be called by the first tree. :param expr: Expression to compile. It can either be a PrimitiveTree, a string of Python code or any object that when converted into string produced a valid Python code expression. :param psets: List of primitive sets. Each set corresponds to an ADF while the last set is associated with the expression and should contain reference to the preceding ADFs. :returns: a function if the main primitive set has 1 or more arguments, or return the results produced by evaluating the tree. """ adfdict = {} func = None for pset, subexpr in reversed(zip(psets, expr)): pset.context.update(adfdict) func = compile(subexpr, pset) adfdict.update({pset.name: func}) return func ###################################### # GP Program generation functions # ###################################### def genFull(pset, min_, max_, type_=None): """Generate an expression where each leaf has a the same depth between *min* and *max*. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: A full tree with all leaves at the same depth. """ def condition(height, depth): """Expression generation stops when the depth is equal to height.""" return depth == height return generate(pset, min_, max_, condition, type_) def genGrow(pset, min_, max_, type_=None): """Generate an expression where each leaf might have a different depth between *min* and *max*. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: A grown tree with leaves at possibly different depths. """ def condition(height, depth): """Expression generation stops when the depth is equal to height or when it is randomly determined that a a node should be a terminal. """ return depth == height or \ (depth >= min_ and random.random() < pset.terminalRatio) return generate(pset, min_, max_, condition, type_) def genHalfAndHalf(pset, min_, max_, type_=None): """Generate an expression with a PrimitiveSet *pset*. Half the time, the expression is generated with :func:`~deap.gp.genGrow`, the other half, the expression is generated with :func:`~deap.gp.genFull`. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: Either, a full or a grown tree. """ method = random.choice((genGrow, genFull)) return method(pset, min_, max_, type_) def genRamped(pset, min_, max_, type_=None): """ .. deprecated:: 1.0 The function has been renamed. Use :func:`~deap.gp.genHalfAndHalf` instead. """ warnings.warn("gp.genRamped has been renamed. Use genHalfAndHalf instead.", FutureWarning) return genHalfAndHalf(pset, min_, max_, type_) def generate(pset, min_, max_, condition, type_=None): """Generate a Tree as a list of list. The tree is build from the root to the leaves, and it stop growing when the condition is fulfilled. :param pset: Primitive set from which primitives are selected. :param min_: Minimum height of the produced trees. :param max_: Maximum Height of the produced trees. :param condition: The condition is a function that takes two arguments, the height of the tree to build and the current depth in the tree. :param type_: The type that should return the tree when called, when :obj:`None` (default) the type of :pset: (pset.ret) is assumed. :returns: A grown tree with leaves at possibly different depths dependending on the condition function. """ if type_ is None: type_ = pset.ret expr = [] height = random.randint(min_, max_) stack = [(0, type_)] while len(stack) != 0: depth, type_ = stack.pop() if condition(height, depth): try: term = random.choice(pset.terminals[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError, "The gp.generate function tried to add "\ "a terminal of type '%s', but there is "\ "none available." % (type_,), traceback if isclass(term): term = term() expr.append(term) else: try: prim = random.choice(pset.primitives[type_]) except IndexError: _, _, traceback = sys.exc_info() raise IndexError, "The gp.generate function tried to add "\ "a primitive of type '%s', but there is "\ "none available." % (type_,), traceback expr.append(prim) for arg in reversed(prim.args): stack.append((depth + 1, arg)) return expr ###################################### # GP Crossovers # ###################################### def cxOnePoint(ind1, ind2): """Randomly select in each individual and exchange each subtree with the point as root between each individual. :param ind1: First tree participating in the crossover. :param ind2: Second tree participating in the crossover. :returns: A tuple of two trees. """ if len(ind1) < 2 or len(ind2) < 2: # No crossover on single node tree return ind1, ind2 # List all available primitive types in each individual types1 = defaultdict(list) types2 = defaultdict(list) if ind1.root.ret == __type__: # Not STGP optimization types1[__type__] = xrange(1, len(ind1)) types2[__type__] = xrange(1, len(ind2)) common_types = [__type__] else: for idx, node in enumerate(ind1[1:], 1): types1[node.ret].append(idx) for idx, node in enumerate(ind2[1:], 1): types2[node.ret].append(idx) common_types = set(types1.keys()).intersection(set(types2.keys())) if len(common_types) > 0: type_ = random.choice(list(common_types)) index1 = random.choice(types1[type_]) index2 = random.choice(types2[type_]) slice1 = ind1.searchSubtree(index1) slice2 = ind2.searchSubtree(index2) ind1[slice1], ind2[slice2] = ind2[slice2], ind1[slice1] return ind1, ind2 def cxOnePointLeafBiased(ind1, ind2, termpb): """Randomly select crossover point in each individual and exchange each subtree with the point as root between each individual. :param ind1: First typed tree participating in the crossover. :param ind2: Second typed tree participating in the crossover. :param termpb: The probability of chosing a terminal node (leaf). :returns: A tuple of two typed trees. When the nodes are strongly typed, the operator makes sure the second node type corresponds to the first node type. The parameter *termpb* sets the probability to choose between a terminal or non-terminal crossover point. For instance, as defined by Koza, non- terminal primitives are selected for 90% of the crossover points, and terminals for 10%, so *termpb* should be set to 0.1. """ if len(ind1) < 2 or len(ind2) < 2: # No crossover on single node tree return ind1, ind2 # Determine wether we keep terminals or primitives for each individual terminal_op = partial(eq, 0) primitive_op = partial(lt, 0) arity_op1 = terminal_op if random.random() < termpb else primitive_op arity_op2 = terminal_op if random.random() < termpb else primitive_op # List all available primitive or terminal types in each individual types1 = defaultdict(list) types2 = defaultdict(list) for idx, node in enumerate(ind1[1:], 1): if arity_op1(node.arity): types1[node.ret].append(idx) for idx, node in enumerate(ind2[1:], 1): if arity_op2(node.arity): types2[node.ret].append(idx) common_types = set(types1.keys()).intersection(set(types2.keys())) if len(common_types) > 0: # Set does not support indexing type_ = random.sample(common_types, 1)[0] index1 = random.choice(types1[type_]) index2 = random.choice(types2[type_]) slice1 = ind1.searchSubtree(index1) slice2 = ind2.searchSubtree(index2) ind1[slice1], ind2[slice2] = ind2[slice2], ind1[slice1] return ind1, ind2 ###################################### # GP Mutations # ###################################### def mutUniform(individual, expr, pset): """Randomly select a point in the tree *individual*, then replace the subtree at that point as a root by the expression generated using method :func:`expr`. :param individual: The tree to be mutated. :param expr: A function object that can generate an expression when called. :returns: A tuple of one tree. """ index = random.randrange(len(individual)) slice_ = individual.searchSubtree(index) type_ = individual[index].ret individual[slice_] = expr(pset=pset, type_=type_) return individual, def mutNodeReplacement(individual, pset): """Replaces a randomly chosen primitive from *individual* by a randomly chosen primitive with the same number of arguments from the :attr:`pset` attribute of the individual. :param individual: The normal or typed tree to be mutated. :returns: A tuple of one tree. """ if len(individual) < 2: return individual, index = random.randrange(1, len(individual)) node = individual[index] if node.arity == 0: # Terminal term = random.choice(pset.terminals[node.ret]) if isclass(term): term = term() individual[index] = term else: # Primitive prims = [p for p in pset.primitives[node.ret] if p.args == node.args] individual[index] = random.choice(prims) return individual, def mutEphemeral(individual, mode): """This operator works on the constants of the tree *individual*. In *mode* ``"one"``, it will change the value of one of the individual ephemeral constants by calling its generator function. In *mode* ``"all"``, it will change the value of **all** the ephemeral constants. :param individual: The normal or typed tree to be mutated. :param mode: A string to indicate to change ``"one"`` or ``"all"`` ephemeral constants. :returns: A tuple of one tree. """ if mode not in ["one", "all"]: raise ValueError("Mode must be one of \"one\" or \"all\"") ephemerals_idx = [index for index, node in enumerate(individual) if isinstance(node, Ephemeral)] if len(ephemerals_idx) > 0: if mode == "one": ephemerals_idx = (random.choice(ephemerals_idx),) for i in ephemerals_idx: individual[i] = type(individual[i])() return individual, def mutInsert(individual, pset): """Inserts a new branch at a random position in *individual*. The subtree at the chosen position is used as child node of the created subtree, in that way, it is really an insertion rather than a replacement. Note that the original subtree will become one of the children of the new primitive inserted, but not perforce the first (its position is randomly selected if the new primitive has more than one child). :param individual: The normal or typed tree to be mutated. :returns: A tuple of one tree. """ index = random.randrange(len(individual)) node = individual[index] slice_ = individual.searchSubtree(index) choice = random.choice # As we want to keep the current node as children of the new one, # it must accept the return value of the current node primitives = [p for p in pset.primitives[node.ret] if node.ret in p.args] if len(primitives) == 0: return individual, new_node = choice(primitives) new_subtree = [None] * len(new_node.args) position = choice([i for i, a in enumerate(new_node.args) if a == node.ret]) for i, arg_type in enumerate(new_node.args): if i != position: term = choice(pset.terminals[arg_type]) if isclass(term): term = term() new_subtree[i] = term new_subtree[position:position + 1] = individual[slice_] new_subtree.insert(0, new_node) individual[slice_] = new_subtree return individual, def mutShrink(individual): """This operator shrinks the *individual* by chosing randomly a branch and replacing it with one of the branch's arguments (also randomly chosen). :param individual: The tree to be shrinked. :returns: A tuple of one tree. """ # We don't want to "shrink" the root if len(individual) < 3 or individual.height <= 1: return individual, iprims = [] for i, node in enumerate(individual[1:], 1): if isinstance(node, Primitive) and node.ret in node.args: iprims.append((i, node)) if len(iprims) != 0: index, prim = random.choice(iprims) arg_idx = random.choice([i for i, type_ in enumerate(prim.args) if type_ == prim.ret]) rindex = index + 1 for _ in range(arg_idx + 1): rslice = individual.searchSubtree(rindex) subtree = individual[rslice] rindex += len(subtree) slice_ = individual.searchSubtree(index) individual[slice_] = subtree return individual, ###################################### # GP bloat control decorators # ###################################### def staticLimit(key, max_value): """Implement a static limit on some measurement on a GP tree, as defined by Koza in [Koza1989]. It may be used to decorate both crossover and mutation operators. When an invalid (over the limit) child is generated, it is simply replaced by one of its parents, randomly selected. This operator can be used to avoid memory errors occuring when the tree gets higher than 90 levels (as Python puts a limit on the call stack depth), because it can ensure that no tree higher than this limit will ever be accepted in the population, except if it was generated at initialization time. :param key: The function to use in order the get the wanted value. For instance, on a GP tree, ``operator.attrgetter('height')`` may be used to set a depth limit, and ``len`` to set a size limit. :param max_value: The maximum value allowed for the given measurement. :returns: A decorator that can be applied to a GP operator using \ :func:`~deap.base.Toolbox.decorate` .. note:: If you want to reproduce the exact behavior intended by Koza, set *key* to ``operator.attrgetter('height')`` and *max_value* to 17. .. [Koza1989] J.R. Koza, Genetic Programming - On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, 1992) """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): keep_inds = [copy.deepcopy(ind) for ind in args] new_inds = list(func(*args, **kwargs)) for i, ind in enumerate(new_inds): if key(ind) > max_value: new_inds[i] = random.choice(keep_inds) return new_inds return wrapper return decorator ###################################### # GP bloat control algorithms # ###################################### def harm(population, toolbox, cxpb, mutpb, ngen, alpha, beta, gamma, rho, nbrindsmodel=-1, mincutoff=20, stats=None, halloffame=None, verbose=__debug__): """Implement bloat control on a GP evolution using HARM-GP, as defined in [Gardner2015]. It is implemented in the form of an evolution algorithm (similar to :func:`~deap.algorithms.eaSimple`). :param population: A list of individuals. :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param cxpb: The probability of mating two individuals. :param mutpb: The probability of mutating an individual. :param ngen: The number of generation. :param alpha: The HARM *alpha* parameter. :param beta: The HARM *beta* parameter. :param gamma: The HARM *gamma* parameter. :param rho: The HARM *rho* parameter. :param nbrindsmodel: The number of individuals to generate in order to model the natural distribution. -1 is a special value which uses the equation proposed in [Gardner2015] to set the value of this parameter : max(2000, len(population)) :param mincutoff: The absolute minimum value for the cutoff point. It is used to ensure that HARM does not shrink the population too much at the beginning of the evolution. The default value is usually fine. :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace, optional. :param halloffame: A :class:`~deap.tools.HallOfFame` object that will contain the best individuals, optional. :param verbose: Whether or not to log the statistics. :returns: The final population :returns: A class:`~deap.tools.Logbook` with the statistics of the evolution This function expects the :meth:`toolbox.mate`, :meth:`toolbox.mutate`, :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be registered in the toolbox. .. note:: The recommended values for the HARM-GP parameters are *alpha=0.05*, *beta=10*, *gamma=0.25*, *rho=0.9*. However, these parameters can be adjusted to perform better on a specific problem (see the relevant paper for tuning information). The number of individuals used to model the natural distribution and the minimum cutoff point are less important, their default value being effective in most cases. .. [Gardner2015] M.-A. Gardner, C. Gagne, and M. Parizeau, Controlling Code Growth by Dynamically Shaping the Genotype Size Distribution, Genetic Programming and Evolvable Machines, 2015, DOI 10.1007/s10710-015-9242-8 """ def _genpop(n, pickfrom=[], acceptfunc=lambda s: True, producesizes=False): # Generate a population of n individuals, using individuals in # *pickfrom* if possible, with a *acceptfunc* acceptance function. # If *producesizes* is true, also return a list of the produced # individuals sizes. # This function is used 1) to generate the natural distribution # (in this case, pickfrom and acceptfunc should be let at their # default values) and 2) to generate the final population, in which # case pickfrom should be the natural population previously generated # and acceptfunc a function implementing the HARM-GP algorithm. producedpop = [] producedpopsizes = [] while len(producedpop) < n: if len(pickfrom) > 0: # If possible, use the already generated # individuals (more efficient) aspirant = pickfrom.pop() if acceptfunc(len(aspirant)): producedpop.append(aspirant) if producesizes: producedpopsizes.append(len(aspirant)) else: opRandom = random.random() if opRandom < cxpb: # Crossover aspirant1, aspirant2 = toolbox.mate(*map(toolbox.clone, toolbox.select(population, 2))) del aspirant1.fitness.values, aspirant2.fitness.values if acceptfunc(len(aspirant1)): producedpop.append(aspirant1) if producesizes: producedpopsizes.append(len(aspirant1)) if len(producedpop) < n and acceptfunc(len(aspirant2)): producedpop.append(aspirant2) if producesizes: producedpopsizes.append(len(aspirant2)) else: aspirant = toolbox.clone(toolbox.select(population, 1)[0]) if opRandom - cxpb < mutpb: # Mutation aspirant = toolbox.mutate(aspirant)[0] del aspirant.fitness.values if acceptfunc(len(aspirant)): producedpop.append(aspirant) if producesizes: producedpopsizes.append(len(aspirant)) if producesizes: return producedpop, producedpopsizes else: return producedpop halflifefunc = lambda x: (x * float(alpha) + beta) if nbrindsmodel == -1: nbrindsmodel = max(2000, len(population)) logbook = tools.Logbook() logbook.header = ['gen', 'nevals'] + (stats.fields if stats else []) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if halloffame is not None: halloffame.update(population) record = stats.compile(population) if stats else {} logbook.record(gen=0, nevals=len(invalid_ind), **record) if verbose: print logbook.stream # Begin the generational process for gen in range(1, ngen + 1): # Estimation population natural distribution of sizes naturalpop, naturalpopsizes = _genpop(nbrindsmodel, producesizes=True) naturalhist = [0] * (max(naturalpopsizes) + 3) for indsize in naturalpopsizes: # Kernel density estimation application naturalhist[indsize] += 0.4 naturalhist[indsize - 1] += 0.2 naturalhist[indsize + 1] += 0.2 naturalhist[indsize + 2] += 0.1 if indsize - 2 >= 0: naturalhist[indsize - 2] += 0.1 # Normalization naturalhist = [val * len(population) / nbrindsmodel for val in naturalhist] # Cutoff point selection sortednatural = sorted(naturalpop, key=lambda ind: ind.fitness) cutoffcandidates = sortednatural[int(len(population) * rho - 1):] # Select the cutoff point, with an absolute minimum applied # to avoid weird cases in the first generations cutoffsize = max(mincutoff, len(min(cutoffcandidates, key=len))) # Compute the target distribution targetfunc = lambda x: (gamma * len(population) * math.log(2) / halflifefunc(x)) * math.exp(-math.log(2) * (x - cutoffsize) / halflifefunc(x)) targethist = [naturalhist[binidx] if binidx <= cutoffsize else targetfunc(binidx) for binidx in range(len(naturalhist))] # Compute the probabilities distribution probhist = [t / n if n > 0 else t for n, t in zip(naturalhist, targethist)] probfunc = lambda s: probhist[s] if s < len(probhist) else targetfunc(s) acceptfunc = lambda s: random.random() <= probfunc(s) # Generate offspring using the acceptance probabilities # previously computed offspring = _genpop(len(population), pickfrom=naturalpop, acceptfunc=acceptfunc, producesizes=False) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # Replace the current population by the offspring population[:] = offspring # Append the current generation statistics to the logbook record = stats.compile(population) if stats else {} logbook.record(gen=gen, nevals=len(invalid_ind), **record) if verbose: print logbook.stream return population, logbook def graph(expr): """Construct the graph of a tree expression. The tree expression must be valid. It returns in order a node list, an edge list, and a dictionary of the per node labels. The node are represented by numbers, the edges are tuples connecting two nodes (number), and the labels are values of a dictionary for which keys are the node numbers. :param expr: A tree expression to convert into a graph. :returns: A node list, an edge list, and a dictionary of labels. The returned objects can be used directly to populate a `pygraphviz <http://networkx.lanl.gov/pygraphviz/>`_ graph:: import pygraphviz as pgv # [...] Execution of code that produce a tree expression nodes, edges, labels = graph(expr) g = pgv.AGraph() g.add_nodes_from(nodes) g.add_edges_from(edges) g.layout(prog="dot") for i in nodes: n = g.get_node(i) n.attr["label"] = labels[i] g.draw("tree.pdf") or a `NetworX <http://networkx.github.com/>`_ graph:: import matplotlib.pyplot as plt import networkx as nx # [...] Execution of code that produce a tree expression nodes, edges, labels = graph(expr) g = nx.Graph() g.add_nodes_from(nodes) g.add_edges_from(edges) pos = nx.graphviz_layout(g, prog="dot") nx.draw_networkx_nodes(g, pos) nx.draw_networkx_edges(g, pos) nx.draw_networkx_labels(g, pos, labels) plt.show() .. note:: We encourage you to use `pygraphviz <http://networkx.lanl.gov/pygraphviz/>`_ as the nodes might be plotted out of order when using `NetworX <http://networkx.github.com/>`_. """ nodes = range(len(expr)) edges = list() labels = dict() stack = [] for i, node in enumerate(expr): if stack: edges.append((stack[-1][0], i)) stack[-1][1] -= 1 labels[i] = node.name if isinstance(node, Primitive) else node.value stack.append([i, node.arity]) while stack and stack[-1][1] == 0: stack.pop() return nodes, edges, labels if __name__ == "__main__": import doctest doctest.testmod()
lgpl-3.0
miloszz/DIRAC
Core/Utilities/Graphs/CurveGraph.py
10
5056
######################################################################## # $HeadURL$ ######################################################################## """ CurveGraph represents simple line graphs with markers. The DIRAC Graphs package is derived from the GraphTool plotting package of the CMS/Phedex Project by ... <to be added> """ __RCSID__ = "$Id$" from DIRAC.Core.Utilities.Graphs.PlotBase import PlotBase from DIRAC.Core.Utilities.Graphs.GraphUtilities import darkenColor, to_timestamp, PrettyDateLocator, \ PrettyDateFormatter, PrettyScalarFormatter from matplotlib.lines import Line2D from matplotlib.dates import date2num import datetime class CurveGraph( PlotBase ): """ The CurveGraph class is a straightforward line graph with markers """ def __init__(self,data,ax,prefs,*args,**kw): PlotBase.__init__(self,data,ax,prefs,*args,**kw) def draw( self ): PlotBase.draw(self) self.x_formatter_cb(self.ax) if self.gdata.isEmpty(): return None start_plot = 0 end_plot = 0 if "starttime" in self.prefs and "endtime" in self.prefs: start_plot = date2num( datetime.datetime.fromtimestamp(to_timestamp(self.prefs['starttime']))) end_plot = date2num( datetime.datetime.fromtimestamp(to_timestamp(self.prefs['endtime']))) labels = self.gdata.getLabels() labels.reverse() # If it is a simple plot, no labels are used # Evaluate the most appropriate color in this case if self.gdata.isSimplePlot(): labels = [('SimplePlot',0.)] color = self.prefs.get('plot_color','Default') if color.find('#') != -1: self.palette.setColor('SimplePlot',color) else: labels = [(color,0.)] tmp_max_y = [] tmp_min_y = [] tmp_x = [] for label,num in labels: xdata = [] ydata = [] xerror = [] yerror = [] color = self.palette.getColor(label) plot_data = self.gdata.getPlotNumData(label) for key, value, error in plot_data: if value is None: continue tmp_x.append( key ) tmp_max_y.append( value + error ) tmp_min_y.append( value - error ) xdata.append( key ) ydata.append( value ) xerror.append( 0. ) yerror.append( error ) linestyle = self.prefs.get( 'linestyle', '-' ) marker = self.prefs.get( 'marker', 'o' ) markersize = self.prefs.get( 'markersize', 8. ) markeredgewidth = self.prefs.get( 'markeredgewidth', 1. ) if not self.prefs.get( 'error_bars', False ): line = Line2D( xdata, ydata, color=color, linewidth=1., marker=marker, linestyle=linestyle, markersize=markersize, markeredgewidth=markeredgewidth, markeredgecolor = darkenColor( color ) ) self.ax.add_line( line ) else: self.ax.errorbar( xdata, ydata, color=color, linewidth=2., marker=marker, linestyle=linestyle, markersize=markersize, markeredgewidth=markeredgewidth, markeredgecolor = darkenColor( color ), xerr = xerror, yerr = yerror, ecolor=color ) ymax = max( tmp_max_y ) ymax *= 1.1 ymin = min( tmp_min_y, 0. ) ymin *= 1.1 if self.prefs.has_key('log_yaxis'): ymin = 0.001 xmax=max(tmp_x)*1.1 if self.log_xaxis: xmin = 0.001 else: xmin = 0 ymin = self.prefs.get( 'ymin', ymin ) ymax = self.prefs.get( 'ymax', ymax ) xmin = self.prefs.get( 'xmin', xmin ) xmax = self.prefs.get( 'xmax', xmax ) self.ax.set_xlim( xmin=xmin, xmax=xmax ) self.ax.set_ylim( ymin=ymin, ymax=ymax ) if self.gdata.key_type == 'time': if start_plot and end_plot: self.ax.set_xlim( xmin=start_plot, xmax=end_plot) else: self.ax.set_xlim( xmin=min(tmp_x), xmax=max(tmp_x)) def x_formatter_cb( self, ax ): if self.gdata.key_type == "string": smap = self.gdata.getStringMap() reverse_smap = {} for key, val in smap.items(): reverse_smap[val] = key ticks = smap.values() ticks.sort() ax.set_xticks( [i+.5 for i in ticks] ) ax.set_xticklabels( [reverse_smap[i] for i in ticks] ) labels = ax.get_xticklabels() ax.grid( False ) if self.log_xaxis: xmin = 0.001 else: xmin = 0 ax.set_xlim( xmin=xmin,xmax=len(ticks) ) elif self.gdata.key_type == "time": dl = PrettyDateLocator() df = PrettyDateFormatter( dl ) ax.xaxis.set_major_locator( dl ) ax.xaxis.set_major_formatter( df ) ax.xaxis.set_clip_on(False) sf = PrettyScalarFormatter( ) ax.yaxis.set_major_formatter( sf ) else: try: super(CurveGraph, self).x_formatter_cb( ax ) except: return None
gpl-3.0
wanggang3333/scikit-learn
sklearn/decomposition/tests/test_factor_analysis.py
222
3055
# Author: Christian Osendorfer <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD3 import numpy as np from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.decomposition import FactorAnalysis def test_factor_analysis(): # Test FactorAnalysis ability to recover the data covariance structure rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise assert_raises(ValueError, FactorAnalysis, svd_method='foo') fa_fail = FactorAnalysis() fa_fail.svd_method = 'foo' assert_raises(ValueError, fa_fail.fit, X) fas = [] for method in ['randomized', 'lapack']: fa = FactorAnalysis(n_components=n_components, svd_method=method) fa.fit(X) fas.append(fa) X_t = fa.transform(X) assert_equal(X_t.shape, (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum()) assert_almost_equal(fa.score_samples(X).mean(), fa.score(X)) diff = np.all(np.diff(fa.loglike_)) assert_greater(diff, 0., 'Log likelihood dif not increase') # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_less(diff, 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2]) f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal fa1, fa2 = fas for attr in ['loglike_', 'components_', 'noise_variance_']: assert_almost_equal(f(fa1, attr), f(fa2, attr)) fa1.max_iter = 1 fa1.verbose = True assert_warns(ConvergenceWarning, fa1.fit, X) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: fa.n_components = n_components fa.fit(X) cov = fa.get_covariance() precision = fa.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
bsd-3-clause
zangsir/sms-tools
lectures/03-Fourier-properties/plots-code/linearity.py
26
1183
import matplotlib.pyplot as plt import numpy as np from scipy.io.wavfile import read from scipy.fftpack import fft, ifft a = 0.5 b = 1.0 k1 = 20 k2 = 25 N = 128 x1 = a*np.exp(1j*2*np.pi*k1/N*np.arange(N)) x2 = b*np.exp(1j*2*np.pi*k2/N*np.arange(N)) plt.figure(1, figsize=(9.5, 7)) plt.subplot(321) plt.title('x1 (amp=.5, freq=20)') plt.plot(np.arange(0, N, 1.0), np.real(x1), lw=1.5) plt.axis([0, N, -1, 1]) plt.subplot(322) plt.title('x2 (amp=1, freq=25)') plt.plot(np.arange(0, N, 1.0), np.real(x2), lw=1.5) plt.axis([0, N, -1, 1]) X1 = fft(x1) mX1 = abs(X1)/N plt.subplot(323) plt.title('mX1 (amp=.5, freq=20)') plt.plot(np.arange(0, N, 1.0), mX1, 'r', lw=1.5) plt.axis([0,N,0,1]) X2 = fft(x2) mX2 = abs(X2)/N plt.subplot(324) plt.title('mX2 (amp=1, freq=25)') plt.plot(np.arange(0, N, 1.0), mX2, 'r', lw=1.5) plt.axis([0,N,0,1]) x = x1 + x2 plt.subplot(325) plt.title('mX1+mX2') plt.plot(np.arange(0, N, 1.0), mX1+mX2, 'r', lw=1.5) plt.axis([0, N, 0, 1]) X = fft(x) mX= abs(X)/N plt.subplot(326) plt.title('DFT(x1+x2)') plt.plot(np.arange(0, N, 1.0), mX, 'r', lw=1.5) plt.axis([0,N,0,1]) plt.tight_layout() plt.savefig('linearity.png') plt.show()
agpl-3.0
JEB12345/PhD_Docs_UCSC
Dissertation/tex/ASME-journal/results/testing/logs/script-python-analyzelogs.py
6
5096
import numpy as np import matplotlib.pyplot as plt import matplotlib import prettyplotlib as ppl data = np.loadtxt("muscleRestLengths.csv", delimiter=",")[200:,1:] #discard first 2 seconds and time column data_normalized = data-data.mean(0) data_normalized /= data_normalized.std(0) #plot box data plt.figure() plt.boxplot(data,0,'') #from matplotlib.mlab import PCA #r = PCA(data_normalized) #plt.plot(r.fracs,'+-') #only four "principal" components! #because there are only four steps in the signal! #plt.figure() #plt.title("PCA first 4 principal components") #plt.plot(r.project(data_normalized)[:,:4]+8*np.arange(4)) #now do something useful #signal periodicity is 400 BTW #plt.figure() #plt.plot(data_normalized+np.arange(24)*4,'blue') #plt.plot(data_normalized[:,11]+11*4,'red',linewidth=4) #plt.title('Actuator 11 is different!') #plt.ylabel("muscleRestLengths") #slow ncc = np.zeros((data_normalized.shape[1],data_normalized.shape[1])) for i in xrange(data_normalized.shape[1]): for j in xrange(data_normalized.shape[1]): ncc[i,j] = np.abs(np.correlate(data_normalized[:,i],data_normalized[:,j],mode='full')/(data_normalized.shape[0]-1)).max() #most signals are highly correlated!!! #let's look at the delays ncc_delay = np.zeros((data_normalized.shape[1],data_normalized.shape[1])) for i in xrange(data_normalized.shape[1]): for j in xrange(data_normalized.shape[1]): ncc_delay[i,j] = (np.correlate(data_normalized[:,i],data_normalized[:,j],mode='full')).argmax()-5800+1 #time for something simple: the average equilibrium length of each motor #plt.figure() #plt.plot(np.sort(data.mean(0)),'+-') #they all seem different, so the algorithm hasn't learned a symmetric gait #combine results #plt.figure() #plt.subplot(1,2,1) #plt.imshow(ncc,interpolation='nearest',cmap=plt.cm.gray_r) #plt.title("Normalized Cross-Correlation") #plt.colorbar() #plt.subplot(1,2,2) #plt.imshow(np.where(np.abs(ncc_delay)%400>=200,400-np.abs(ncc_delay)%400,np.abs(ncc_delay)%400),interpolation='nearest',cmap=plt.cm.gray_r) #plt.title("Optimal time delay") #plt.colorbar() #Let's time shift all the signals to align with signal 0 data_normalized_aligned = np.zeros(data.shape) for i in xrange(24): data_normalized_aligned[:,i] = (np.roll(data_normalized[:,i],int(ncc_delay[0,i]))) #THIS LOOKS FUNNY #plt.figure() #plt.plot(data_normalized_aligned) #plt.title("time aligned normalized signals") #plt.figure() #for i in xrange(24): # plt.plot(data_normalized[:,np.argsort(ncc_delay[0])[i]]+2*i) #plt.title("signals ordered by time diff wrt signal 0, black = delay") #for i in xrange(10): # plt.plot(-np.sort(ncc_delay[0])+400*i,np.arange(24)*2,'black',linewidth=4) #if we look at the PCA of this, then 98% of the variance is explained by the first 2 components! #plt.figure() #r2 = PCA(data_normalized_aligned) #plt.plot(r2.project(data_normalized_aligned)[:,:2]+8*np.arange(2)) #you need a sign wave and a double frequency sign wave #td = np.zeros(ncc.shape) #for i in xrange(24): # td[i,:] = np.sort((ncc_delay[i]+400+int(ncc_delay[0,i]))%800) #plt.figure() #plt.title("sequential activation of motors") #plt.plot(td.T) ##Atil import scipy.cluster.hierarchy as hclus #do clustering using the correlation matrix # (1-ncc) or ncc doesn't matter plt.figure() linkage_matrix=hclus.linkage(1-ncc,method='ward'); dend = hclus.dendrogram(linkage_matrix, color_threshold=0.3, show_leaf_counts=True) #order the correlation matrix according to the clustering ncc_ordered = np.zeros((data_normalized.shape[1],data_normalized.shape[1])) for i in xrange(data_normalized.shape[1]): for j in xrange(data_normalized.shape[1]): ncc_ordered[i,j]=ncc[dend['leaves'][i],j] #show normalized cross correlation coeff f, axarr = plt.subplots(1,2) im1 = axarr[0].imshow(ncc,interpolation='nearest',cmap=plt.cm.gray_r) im2 = axarr[1].imshow(ncc_ordered,interpolation='nearest',cmap=plt.cm.gray_r) f.colorbar(im2) #order signals according to the clustering data_normalized_aligned_ordered = np.zeros(data.shape) for i in xrange(24): ii=dend['leaves'][i]; data_normalized_aligned_ordered[:,i] = data_normalized_aligned[:,ii] f, axarr = plt.subplots(2,1) im2 = axarr[0].plot(data_normalized+np.arange(24)*4,'blue') im1 = axarr[1].plot(data_normalized_aligned_ordered+np.arange(24)*4,'blue') f.axes[0].get_xaxis().set_visible(False) f.axes[0].get_yaxis().set_visible(False) f.axes[1].get_yaxis().set_visible(False) #f.axes[1].text(0.3,0.3,'s\nd\nf\ng',fontsize=10) for i in xrange(24): axarr[0].annotate(i,xy=(5800,4*i),xytext=(0,0),textcoords='offset points',fontsize=10) rect1 = matplotlib.patches.Rectangle((2350-ncc_delay[0,i],4*i-2), 1200, 4, color='red',alpha=0.2) axarr[0].add_patch(rect1) rect1 = matplotlib.patches.Rectangle((2750-ncc_delay[0,i],4*i-2), 400, 4, color='yellow') axarr[0].add_patch(rect1) axarr[1].annotate(dend['leaves'][i],xy=(5800,4*i),xytext=((i%1),0),textcoords='offset points',fontsize=10) axarr[1].axvspan(2350,3550,color='red',alpha=0.2) axarr[1].axvspan(2750,3150,color='yellow')
mit
RJT1990/pyflux
pyflux/gas/gasreg.py
1
32794
import sys if sys.version_info < (3,): range = xrange import numpy as np import pandas as pd import scipy.stats as ss import scipy.special as sp from patsy import dmatrices, dmatrix, demo_data from .. import families as fam from .. import tsm as tsm from .. import data_check as dc from .gas_core_recursions import gas_reg_recursion class GASReg(tsm.TSM): """ Inherits time series methods from TSM class. **** GENERALIZED AUTOREGRESSIVE SCORE (GAS) REGRESSION MODELS **** Parameters ---------- formula : string patsy string describing the regression data : pd.DataFrame or np.array Field to specify the data that will be used family : GAS family object Which distribution to use, e.g. GASNormal() """ def __init__(self, formula, data, family): # Initialize TSM object super(GASReg,self).__init__('GASReg') # Latent Variables self.max_lag = 0 self._z_hide = 0 # Whether to cutoff variance latent variables from results self.supported_methods = ["MLE","PML","Laplace","M-H","BBVI"] self.default_method = "MLE" self.multivariate_model = False self.skewness = False # Format the data self.is_pandas = True # This is compulsory for this model type self.data_original = data self.formula = formula self.y, self.X = dmatrices(formula, data) self.y_name = self.y.design_info.describe() self.X_names = self.X.design_info.describe().split(" + ") self.y = self.y.astype(np.float) self.X = self.X.astype(np.float) self.z_no = self.X.shape[1] self.data_name = self.y_name self.y = np.array([self.y]).ravel() self.data = self.y self.X = np.array([self.X])[0] self.index = data.index self.initial_values = np.zeros(self.z_no) self.data_length = self.data.shape[0] self._create_model_matrices() self._create_latent_variables() self.family = family self.model_name2, self.link, self.scale, self.shape, self.skewness, self.mean_transform, self.cythonized = self.family.setup() # Identify whether model has cythonized backend - then choose update type if self.cythonized is True: self._model = self._cythonized_model self._mb_model = self._cythonized_mb_model self.recursion = self.family.gradientreg_recursion() else: self._model = self._uncythonized_model self._mb_model = self._uncythonized_mb_model self.model_name = self.model_name2 + " GAS Regression" # Build any remaining latent variables that are specific to the family chosen for no, i in enumerate(self.family.build_latent_variables()): self.latent_variables.add_z(i[0],i[1],i[2]) self.latent_variables.z_list[no+self.z_no].start = i[3] self.family_z_no = len(self.family.build_latent_variables()) self.z_no += len(self.family.build_latent_variables()) def _create_model_matrices(self): """ Creates model matrices/vectors Returns ---------- None (changes model attributes) """ self.model_Y = self.data self.model_scores = np.zeros((self.X.shape[1], self.model_Y.shape[0]+1)) def _create_latent_variables(self): """ Creates model latent variables Returns ---------- None (changes model attributes) """ for parm in range(self.z_no): self.latent_variables.add_z('Scale ' + self.X_names[parm], fam.Flat(transform='exp'), fam.Normal(0, 3)) self.latent_variables.z_list[parm].start = -5.0 self.z_no = len(self.latent_variables.z_list) def _get_scale_and_shape(self,parm): """ Obtains appropriate model scale and shape latent variables Parameters ---------- parm : np.array Transformed latent variable vector Returns ---------- None (changes model attributes) """ if self.scale is True: if self.shape is True: model_shape = parm[-1] model_scale = parm[-2] else: model_shape = 0 model_scale = parm[-1] else: model_scale = 0 model_shape = 0 if self.skewness is True: model_skewness = parm[-3] else: model_skewness = 0 return model_scale, model_shape, model_skewness def _get_scale_and_shape_sim(self, transformed_lvs): """ Obtains model scale, shape, skewness latent variables for a 2d array of simulations. Parameters ---------- transformed_lvs : np.array Transformed latent variable vector (2d - with draws of each variable) Returns ---------- - Tuple of np.arrays (each being scale, shape and skewness draws) """ if self.scale is True: if self.shape is True: model_shape = self.latent_variables.z_list[-1].prior.transform(transformed_lvs[-1, :]) model_scale = self.latent_variables.z_list[-2].prior.transform(transformed_lvs[-2, :]) else: model_shape = np.zeros(transformed_lvs.shape[1]) model_scale = self.latent_variables.z_list[-1].prior.transform(transformed_lvs[-1, :]) else: model_scale = np.zeros(transformed_lvs.shape[1]) model_shape = np.zeros(transformed_lvs.shape[1]) if self.skewness is True: model_skewness = self.latent_variables.z_list[-3].prior.transform(transformed_lvs[-3, :]) else: model_skewness = np.zeros(transformed_lvs.shape[1]) return model_scale, model_shape, model_skewness def _cythonized_model(self, beta): """ Creates the structure of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables Returns ---------- theta : np.array Contains the predicted values for the time series Y : np.array Contains the length-adjusted time series (accounting for lags) scores : np.array Contains the scores for the time series """ parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) coefficients = np.zeros((self.X.shape[1],self.model_Y.shape[0]+1)) coefficients[:,0] = self.initial_values theta = np.zeros(self.model_Y.shape[0]+1) model_scale, model_shape, model_skewness = self._get_scale_and_shape(parm) # Loop over time series theta, self.model_scores, coefficients = self.recursion(parm, theta, self.X, coefficients, self.model_scores, self.model_Y, self.model_Y.shape[0], model_scale, model_shape, model_skewness) return np.array(theta[:-1]), self.model_Y, self.model_scores, coefficients def _cythonized_mb_model(self, beta, mini_batch): """ Creates the structure of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables mini_batch : int Size of each mini batch of data Returns ---------- theta : np.array Contains the predicted values for the time series Y : np.array Contains the length-adjusted time series (accounting for lags) scores : np.array Contains the scores for the time series """ rand_int = np.random.randint(low=0, high=self.data_length-mini_batch-self.max_lag+1) sample = np.arange(start=rand_int, stop=rand_int+mini_batch) data = self.data[sample] X = self.X[sample, :] Y = data[self.max_lag:] parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) coefficients = np.zeros((X.shape[1], Y.shape[0]+1)) coefficients[:,0] = self.initial_values theta = np.zeros(Y.shape[0]+1) model_scale, model_shape, model_skewness = self._get_scale_and_shape(parm) # Loop over time series theta, self.model_scores, coefficients = self.recursion(parm, theta, X, coefficients, self.model_scores, Y, Y.shape[0], model_scale, model_shape, model_skewness) return np.array(theta[:-1]), Y, self.model_scores, coefficients def _uncythonized_model(self, beta): """ Creates the structure of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables Returns ---------- theta : np.array Contains the predicted values for the time series Y : np.array Contains the length-adjusted time series (accounting for lags) scores : np.array Contains the scores for the time series """ parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) coefficients = np.zeros((self.X.shape[1],self.model_Y.shape[0]+1)) coefficients[:,0] = self.initial_values theta = np.zeros(self.model_Y.shape[0]+1) model_scale, model_shape, model_skewness = self._get_scale_and_shape(parm) # Loop over time series theta, self.model_scores, coefficients = gas_reg_recursion(parm, theta, self.X, coefficients, self.model_scores, self.model_Y, self.model_Y.shape[0], self.family.reg_score_function, self.link, model_scale, model_shape, model_skewness, self.max_lag) return theta[:-1], self.model_Y, self.model_scores, coefficients def _uncythonized_model(self, beta, mini_batch): """ Creates the structure of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables mini_batch : int Size of each mini batch of data Returns ---------- theta : np.array Contains the predicted values for the time series Y : np.array Contains the length-adjusted time series (accounting for lags) scores : np.array Contains the scores for the time series """ rand_int = np.random.randint(low=0, high=self.data_length-mini_batch-self.max_lag+1) sample = np.arange(start=rand_int, stop=rand_int+mini_batch) data = self.data[sample] X = self.X[sample, :] Y = data[self.max_lag:] parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) coefficients = np.zeros((X.shape[1], Y.shape[0]+1)) coefficients[:,0] = self.initial_values theta = np.zeros(Y.shape[0]+1) model_scale, model_shape, model_skewness = self._get_scale_and_shape(parm) # Loop over time series theta, self.model_scores, coefficients = gas_reg_recursion(parm, theta, X, coefficients, self.model_scores, Y, Y.shape[0], self.family.reg_score_function, self.link, model_scale, model_shape, model_skewness, self.max_lag) return theta[:-1], Y, self.model_scores, coefficients def _preoptimize_model(self, initials, method): """ Preoptimizes the model by estimating a static model, then a quick search of good dynamic parameters Parameters ---------- initials : np.array A vector of inital values method : str One of 'MLE' or 'PML' (the optimization options) Returns ---------- Y_exp : np.array Vector of past values and predictions """ # Random search for good starting values start_values = [] start_values.append(np.ones(len(self.X_names))*-2.0) start_values.append(np.ones(len(self.X_names))*-3.0) start_values.append(np.ones(len(self.X_names))*-4.0) start_values.append(np.ones(len(self.X_names))*-5.0) best_start = self.latent_variables.get_z_starting_values() best_lik = self.neg_loglik(self.latent_variables.get_z_starting_values()) proposal_start = best_start.copy() for start in start_values: proposal_start[:len(self.X_names)] = start proposal_likelihood = self.neg_loglik(proposal_start) if proposal_likelihood < best_lik: best_lik = proposal_likelihood best_start = proposal_start.copy() return best_start def neg_loglik(self, beta): """ Returns the negative loglikelihood of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables """ theta, Y, scores,_ = self._model(beta) parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) model_scale, model_shape, model_skewness = self._get_scale_and_shape(parm) return self.family.neg_loglikelihood(Y,self.link(theta),model_scale,model_shape,model_skewness) def mb_neg_loglik(self, beta, mini_batch): """ Returns the negative loglikelihood of the model Parameters ---------- beta : np.array Contains untransformed starting values for latent variables mini_batch : int Size of each mini batch of data """ theta, Y, scores,_ = self._mb_model(beta, mini_batch) parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])]) model_scale, model_shape, model_skewness = self._get_scale_and_shape(parm) return self.family.neg_loglikelihood(Y,self.link(theta),model_scale,model_shape,model_skewness) def plot_fit(self, **kwargs): """ Plots the fit of the model Notes ---------- Intervals are bootstrapped as follows: take the filtered values from the algorithm (thetas). Use these thetas to generate a pseudo data stream from the measurement density. Use the GAS algorithm and estimated latent variables to filter the pseudo data. Repeat this N times. Returns ---------- None (plots data and the fit) """ import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) if self.latent_variables.estimated is False: raise Exception("No latent variables estimated!") else: date_index = self.index.copy() mu, Y, scores, coefficients = self._model(self.latent_variables.get_z_values()) if self.model_name2 == "Exponential": values_to_plot = 1.0/self.link(mu) elif self.model_name2 == "Skewt": t_params = self.transform_z() model_scale, model_shape, model_skewness = self._get_scale_and_shape(t_params) m1 = (np.sqrt(model_shape)*sp.gamma((model_shape-1.0)/2.0))/(np.sqrt(np.pi)*sp.gamma(model_shape/2.0)) additional_loc = (model_skewness - (1.0/model_skewness))*model_scale*m1 values_to_plot = mu + additional_loc else: values_to_plot = self.link(mu) plt.figure(figsize=figsize) plt.subplot(len(self.X_names)+1, 1, 1) plt.title(self.y_name + " Filtered") plt.plot(date_index,Y,label='Data') plt.plot(date_index,values_to_plot,label='GAS Filter',c='black') plt.legend(loc=2) for coef in range(0,len(self.X_names)): plt.subplot(len(self.X_names)+1, 1, 2+coef) plt.title("Beta " + self.X_names[coef]) plt.plot(date_index,coefficients[coef,0:-1],label='Coefficient') plt.legend(loc=2) plt.show() def plot_predict(self, h=5, past_values=20, intervals=True, oos_data=None, **kwargs): """ Makes forecast with the estimated model Parameters ---------- h : int (default : 5) How many steps ahead would you like to forecast? past_values : int (default : 20) How many past observations to show on the forecast graph? intervals : Boolean Would you like to show prediction intervals for the forecast? oos_data : pd.DataFrame Data for the variables to be used out of sample (ys can be NaNs) Returns ---------- - Plot of the forecast """ import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) if self.latent_variables.estimated is False: raise Exception("No latent variables estimated!") else: # Sort/manipulate the out-of-sample data _, X_oos = dmatrices(self.formula, oos_data) X_oos = np.array([X_oos])[0] X_pred = X_oos[:h] date_index = self.shift_dates(h) if self.latent_variables.estimation_method in ['M-H']: sim_vector = np.zeros([15000,h]) for n in range(0, 15000): t_z = self.draw_latent_variables(nsims=1).T[0] _, Y, _, coefficients = self._model(t_z) coefficients_star = coefficients.T[-1] theta_pred = np.dot(np.array([coefficients_star]), X_pred.T)[0] t_z = np.array([self.latent_variables.z_list[k].prior.transform(t_z[k]) for k in range(t_z.shape[0])]) model_scale, model_shape, model_skewness = self._get_scale_and_shape(t_z) sim_vector[n,:] = self.family.draw_variable(self.link(theta_pred), model_scale, model_shape, model_skewness, theta_pred.shape[0]) mean_values = np.append(Y, self.link(np.array([np.mean(i) for i in sim_vector.T]))) else: # Retrieve data, dates and (transformed) latent variables _, Y, _, coefficients = self._model(self.latent_variables.get_z_values()) coefficients_star = coefficients.T[-1] theta_pred = np.dot(np.array([coefficients_star]), X_pred.T)[0] t_z = self.transform_z() sim_vector = np.zeros([15000,h]) mean_values = np.append(Y, self.link(theta_pred)) model_scale, model_shape, model_skewness = self._get_scale_and_shape(t_z) if self.model_name2 == "Skewt": m1 = (np.sqrt(model_shape)*sp.gamma((model_shape-1.0)/2.0))/(np.sqrt(np.pi)*sp.gamma(model_shape/2.0)) mean_values += (model_skewness - (1.0/model_skewness))*model_scale*m1 for n in range(0,15000): sim_vector[n,:] = self.family.draw_variable(self.link(theta_pred),model_scale,model_shape,model_skewness,theta_pred.shape[0]) sim_vector = sim_vector.T error_bars = [] for pre in range(5,100,5): error_bars.append(np.insert([np.percentile(i,pre) for i in sim_vector], 0, mean_values[-h-1])) forecasted_values = mean_values[-h-1:] plot_values = mean_values[-h-past_values:] plot_index = date_index[-h-past_values:] plt.figure(figsize=figsize) if intervals == True: alpha =[0.15*i/float(100) for i in range(50,12,-2)] for count in range(9): plt.fill_between(date_index[-h-1:], error_bars[count], error_bars[-count], alpha=alpha[count]) plt.plot(plot_index,plot_values) plt.title("Forecast for " + self.data_name) plt.xlabel("Time") plt.ylabel(self.data_name) plt.show() def plot_predict_is(self, h=5, fit_once=True, fit_method='MLE', **kwargs): """ Plots forecasts with the estimated model against data (Simulated prediction with data) Parameters ---------- h : int (default : 5) How many steps to forecast fit_once : boolean (default: True) Fits only once before the in-sample prediction; if False, fits after every new datapoint fit_method : string Which method to fit the model with Returns ---------- - Plot of the forecast against data """ import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize', (10,7)) plt.figure(figsize=figsize) predictions = self.predict_is(h=h, fit_method=fit_method, fit_once=fit_once) data = self.data[-h:] plt.plot(predictions.index,data,label='Data') plt.plot(predictions.index,predictions,label='Predictions',c='black') plt.title(self.y_name) plt.legend(loc=2) plt.show() def predict(self, h=5, oos_data=None, intervals=False, **kwargs): """ Makes forecast with the estimated model Parameters ---------- h : int (default : 5) How many steps ahead would you like to forecast? oos_data : pd.DataFrame Data for the variables to be used out of sample (ys can be NaNs) intervals : boolean (default: False) Whether to return prediction intervals Returns ---------- - pd.DataFrame with predicted values """ if self.latent_variables.estimated is False: raise Exception("No latent variables estimated!") else: # Sort/manipulate the out-of-sample data _, X_oos = dmatrices(self.formula, oos_data) X_oos = np.array([X_oos])[0] X_pred = X_oos[:h] date_index = self.shift_dates(h) if self.latent_variables.estimation_method in ['M-H']: sim_vector = np.zeros([15000,h]) for n in range(0, 15000): t_z = self.draw_latent_variables(nsims=1).T[0] _, Y, _, coefficients = self._model(t_z) coefficients_star = coefficients.T[-1] theta_pred = np.dot(np.array([coefficients_star]), X_pred.T)[0] t_z = np.array([self.latent_variables.z_list[k].prior.transform(t_z[k]) for k in range(t_z.shape[0])]) model_scale, model_shape, model_skewness = self._get_scale_and_shape(t_z) sim_vector[n,:] = self.family.draw_variable(self.link(theta_pred), model_scale, model_shape, model_skewness, theta_pred.shape[0]) sim_vector = sim_vector.T forecasted_values = np.array([np.mean(i) for i in sim_vector]) prediction_01 = np.array([np.percentile(i, 1) for i in sim_vector]) prediction_05 = np.array([np.percentile(i, 5) for i in sim_vector]) prediction_95 = np.array([np.percentile(i, 95) for i in sim_vector]) prediction_99 = np.array([np.percentile(i, 99) for i in sim_vector]) else: # Retrieve data, dates and (transformed) latent variables _, Y, _, coefficients = self._model(self.latent_variables.get_z_values()) coefficients_star = coefficients.T[-1] theta_pred = np.dot(np.array([coefficients_star]), X_pred.T)[0] t_z = self.transform_z() mean_values = np.append(Y, self.link(theta_pred)) model_scale, model_shape, model_skewness = self._get_scale_and_shape(t_z) if self.model_name2 == "Skewt": m1 = (np.sqrt(model_shape)*sp.gamma((model_shape-1.0)/2.0))/(np.sqrt(np.pi)*sp.gamma(model_shape/2.0)) forecasted_values = mean_values[-h:] + (model_skewness - (1.0/model_skewness))*model_scale*m1 else: forecasted_values = mean_values[-h:] if intervals is False: result = pd.DataFrame(forecasted_values) result.rename(columns={0:self.data_name}, inplace=True) else: # Get mean prediction and simulations (for errors) if self.latent_variables.estimation_method not in ['M-H']: sim_values = np.zeros([15000,h]) if intervals is True: for n in range(0,15000): sim_values[n,:] = self.family.draw_variable(self.link(theta_pred),model_scale,model_shape,model_skewness,theta_pred.shape[0]) sim_values = sim_values.T prediction_01 = np.array([np.percentile(i, 1) for i in sim_values]) prediction_05 = np.array([np.percentile(i, 5) for i in sim_values]) prediction_95 = np.array([np.percentile(i, 95) for i in sim_values]) prediction_99 = np.array([np.percentile(i, 99) for i in sim_values]) result = pd.DataFrame([forecasted_values, prediction_01, prediction_05, prediction_95, prediction_99]).T result.rename(columns={0:self.data_name, 1: "1% Prediction Interval", 2: "5% Prediction Interval", 3: "95% Prediction Interval", 4: "99% Prediction Interval"}, inplace=True) result.index = date_index[-h:] return result def predict_is(self, h=5, fit_once=True, fit_method='MLE', intervals=False): """ Makes dynamic in-sample predictions with the estimated model Parameters ---------- h : int (default : 5) How many steps would you like to forecast? fit_once : boolean (default: True) Fits only once before the in-sample prediction; if False, fits after every new datapoint fit_method : string Which method to fit the model with intervals : boolean (default: False) Whether to return prediction intervals Returns ---------- - pd.DataFrame with predicted values """ predictions = [] for t in range(0,h): data1 = self.data_original.iloc[:-h+t,:] data2 = self.data_original.iloc[-h+t:,:] x = GASReg(formula=self.formula, data=self.data_original[:(-h+t)], family=self.family) if fit_once is False: x.fit(method=fit_method, printer=False) if t == 0: if fit_once is True: x.fit(method=fit_method, printer=False) saved_lvs = x.latent_variables predictions = x.predict(h=1, oos_data=data2, intervals=intervals) else: if fit_once is True: x.latent_variables = saved_lvs predictions = pd.concat([predictions,x.predict(h=1, oos_data=data2, intervals=intervals)]) predictions.rename(columns={0:self.y_name}, inplace=True) predictions.index = self.index[-h:] return predictions def sample(self, nsims=1000): """ Samples from the posterior predictive distribution Parameters ---------- nsims : int (default : 1000) How many draws from the posterior predictive distribution Returns ---------- - np.ndarray of draws from the data """ if self.latent_variables.estimation_method not in ['BBVI', 'M-H']: raise Exception("No latent variables estimated!") else: lv_draws = self.draw_latent_variables(nsims=nsims) mus = [self._model(lv_draws[:,i])[0] for i in range(nsims)] model_scale, model_shape, model_skewness = self._get_scale_and_shape_sim(lv_draws) data_draws = np.array([self.family.draw_variable(self.link(mus[i]), np.repeat(model_scale[i], mus[i].shape[0]), np.repeat(model_shape[i], mus[i].shape[0]), np.repeat(model_skewness[i], mus[i].shape[0]), mus[i].shape[0]) for i in range(nsims)]) return data_draws def plot_sample(self, nsims=10, plot_data=True, **kwargs): """ Plots draws from the posterior predictive density against the data Parameters ---------- nsims : int (default : 1000) How many draws from the posterior predictive distribution plot_data boolean Whether to plot the data or not """ if self.latent_variables.estimation_method not in ['BBVI', 'M-H']: raise Exception("No latent variables estimated!") else: import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) plt.figure(figsize=figsize) date_index = self.index.copy() _, Y, _, _ = self._model(self.latent_variables.get_z_values()) draws = self.sample(nsims).T plt.plot(date_index, draws, label='Posterior Draws', alpha=1.0) if plot_data is True: plt.plot(date_index, Y, label='Data', c='black', alpha=0.5, linestyle='', marker='s') plt.title(self.data_name) plt.show() def ppc(self, nsims=1000, T=np.mean): """ Computes posterior predictive p-value Parameters ---------- nsims : int (default : 1000) How many draws for the PPC T : function A discrepancy measure - e.g. np.mean, np.std, np.max Returns ---------- - float (posterior predictive p-value) """ if self.latent_variables.estimation_method not in ['BBVI', 'M-H']: raise Exception("No latent variables estimated!") else: lv_draws = self.draw_latent_variables(nsims=nsims) mus = [self._model(lv_draws[:,i])[0] for i in range(nsims)] model_scale, model_shape, model_skewness = self._get_scale_and_shape_sim(lv_draws) data_draws = np.array([self.family.draw_variable(self.link(mus[i]), np.repeat(model_scale[i], mus[i].shape[0]), np.repeat(model_shape[i], mus[i].shape[0]), np.repeat(model_skewness[i], mus[i].shape[0]), mus[i].shape[0]) for i in range(nsims)]) T_sims = T(self.sample(nsims=nsims), axis=1) T_actual = T(self.data) return len(T_sims[T_sims>T_actual])/nsims def plot_ppc(self, nsims=1000, T=np.mean, **kwargs): """ Plots histogram of the discrepancy from draws of the posterior Parameters ---------- nsims : int (default : 1000) How many draws for the PPC T : function A discrepancy measure - e.g. np.mean, np.std, np.max """ if self.latent_variables.estimation_method not in ['BBVI', 'M-H']: raise Exception("No latent variables estimated!") else: import matplotlib.pyplot as plt import seaborn as sns figsize = kwargs.get('figsize',(10,7)) lv_draws = self.draw_latent_variables(nsims=nsims) mus = [self._model(lv_draws[:,i])[0] for i in range(nsims)] model_scale, model_shape, model_skewness = self._get_scale_and_shape_sim(lv_draws) data_draws = np.array([self.family.draw_variable(self.link(mus[i]), np.repeat(model_scale[i], mus[i].shape[0]), np.repeat(model_shape[i], mus[i].shape[0]), np.repeat(model_skewness[i], mus[i].shape[0]), mus[i].shape[0]) for i in range(nsims)]) T_sim = T(self.sample(nsims=nsims), axis=1) T_actual = T(self.data) if T == np.mean: description = " of the mean" elif T == np.max: description = " of the maximum" elif T == np.min: description = " of the minimum" elif T == np.median: description = " of the median" else: description = "" plt.figure(figsize=figsize) ax = plt.subplot() ax.axvline(T_actual) sns.distplot(T_sim, kde=False, ax=ax) ax.set(title='Posterior predictive' + description, xlabel='T(x)', ylabel='Frequency'); plt.show()
bsd-3-clause
dyoung418/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/data_feeder.py
15
31142
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementations of different data feeders to provide data for TF trainer.""" # TODO(ipolosukhin): Replace this module with feed-dict queue runners & queues. from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import math import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging # pylint: disable=g-multiple-import,g-bad-import-order from .pandas_io import HAS_PANDAS, extract_pandas_data, extract_pandas_matrix, extract_pandas_labels from .dask_io import HAS_DASK, extract_dask_data, extract_dask_labels # pylint: enable=g-multiple-import,g-bad-import-order def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): """Returns shape for input and output of the data feeder.""" x_is_dict, y_is_dict = isinstance( x_shape, dict), y_shape is not None and isinstance(y_shape, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) if batch_size is None: batch_size = list(x_shape.values())[0][0] if x_is_dict else x_shape[0] elif batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) if x_is_dict: input_shape = {} for k, v in list(x_shape.items()): input_shape[k] = [batch_size] + (list(v[1:]) if len(v) > 1 else [1]) else: x_shape = list(x_shape[1:]) if len(x_shape) > 1 else [1] input_shape = [batch_size] + x_shape if y_shape is None: return input_shape, None, batch_size def out_el_shape(out_shape, num_classes): out_shape = list(out_shape[1:]) if len(out_shape) > 1 else [] # Skip first dimension if it is 1. if out_shape and out_shape[0] == 1: out_shape = out_shape[1:] if num_classes is not None and num_classes > 1: return [batch_size] + out_shape + [num_classes] else: return [batch_size] + out_shape if not y_is_dict: output_shape = out_el_shape(y_shape, n_classes) else: output_shape = dict([ (k, out_el_shape(v, n_classes[k] if n_classes is not None and k in n_classes else None)) for k, v in list(y_shape.items()) ]) return input_shape, output_shape, batch_size def _data_type_filter(x, y): """Filter data types into acceptable format.""" if HAS_DASK: x = extract_dask_data(x) if y is not None: y = extract_dask_labels(y) if HAS_PANDAS: x = extract_pandas_data(x) if y is not None: y = extract_pandas_labels(y) return x, y def _is_iterable(x): return hasattr(x, 'next') or hasattr(x, '__next__') def setup_train_data_feeder(x, y, n_classes, batch_size=None, shuffle=True, epochs=None): """Create data feeder, to sample inputs from dataset. If `x` and `y` are iterators, use `StreamingDataFeeder`. Args: x: numpy, pandas or Dask matrix or dictionary of aforementioned. Also supports iterables. y: numpy, pandas or Dask array or dictionary of aforementioned. Also supports iterables. n_classes: number of classes. Must be None or same type as y. In case, `y` is `dict` (or iterable which returns dict) such that `n_classes[key] = n_classes for y[key]` batch_size: size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: DataFeeder object that returns training data. Raises: ValueError: if one of `x` and `y` is iterable and the other is not. """ x, y = _data_type_filter(x, y) if HAS_DASK: # pylint: disable=g-import-not-at-top import dask.dataframe as dd if (isinstance(x, (dd.Series, dd.DataFrame)) and (y is None or isinstance(y, (dd.Series, dd.DataFrame)))): data_feeder_cls = DaskDataFeeder else: data_feeder_cls = DataFeeder else: data_feeder_cls = DataFeeder if _is_iterable(x): if y is not None and not _is_iterable(y): raise ValueError('Both x and y should be iterators for ' 'streaming learning to work.') return StreamingDataFeeder(x, y, n_classes, batch_size) return data_feeder_cls( x, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs) def _batch_data(x, batch_size=None): if (batch_size is not None) and (batch_size <= 0): raise ValueError('Invalid batch_size %d.' % batch_size) x_first_el = six.next(x) x = itertools.chain([x_first_el], x) chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False for data in x: if isinstance(data, dict): for k, v in list(data.items()): chunk[k].append(v) if (batch_size is not None) and (len(chunk[k]) >= batch_size): chunk[k] = np.matrix(chunk[k]) chunk_filled = True if chunk_filled: yield chunk chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False else: chunk.append(data) if (batch_size is not None) and (len(chunk) >= batch_size): yield np.matrix(chunk) chunk = [] if isinstance(x_first_el, dict): for k, v in list(data.items()): chunk[k] = np.matrix(chunk[k]) yield chunk else: yield np.matrix(chunk) def setup_predict_data_feeder(x, batch_size=None): """Returns an iterable for feeding into predict step. Args: x: numpy, pandas, Dask array or dictionary of aforementioned. Also supports iterable. batch_size: Size of batches to split data into. If `None`, returns one batch of full size. Returns: List or iterator (or dictionary thereof) of parts of data to predict on. Raises: ValueError: if `batch_size` <= 0. """ if HAS_DASK: x = extract_dask_data(x) if HAS_PANDAS: x = extract_pandas_data(x) if _is_iterable(x): return _batch_data(x, batch_size) if len(x.shape) == 1: x = np.reshape(x, (-1, 1)) if batch_size is not None: if batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) n_batches = int(math.ceil(float(len(x)) / batch_size)) return [x[i * batch_size:(i + 1) * batch_size] for i in xrange(n_batches)] return [x] def setup_processor_data_feeder(x): """Sets up processor iterable. Args: x: numpy, pandas or iterable. Returns: Iterable of data to process. """ if HAS_PANDAS: x = extract_pandas_matrix(x) return x def check_array(array, dtype): """Checks array on dtype and converts it if different. Args: array: Input array. dtype: Expected dtype. Returns: Original array or converted. """ # skip check if array is instance of other classes, e.g. h5py.Dataset # to avoid copying array and loading whole data into memory if isinstance(array, (np.ndarray, list)): array = np.array(array, dtype=dtype, order=None, copy=False) return array def _access(data, iloc): """Accesses an element from collection, using integer location based indexing. Args: data: array-like. The collection to access iloc: `int` or `list` of `int`s. Location(s) to access in `collection` Returns: The element of `a` found at location(s) `iloc`. """ if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if isinstance(data, pd.Series) or isinstance(data, pd.DataFrame): return data.iloc[iloc] return data[iloc] def _check_dtype(dtype): if dtypes.as_dtype(dtype) == dtypes.float64: logging.warn( 'float64 is not supported by many models, consider casting to float32.') return dtype class DataFeeder(object): """Data feeder is an example class to sample data for TF trainer.""" def __init__(self, x, y, n_classes, batch_size=None, shuffle=True, random_state=None, epochs=None): """Initializes a DataFeeder instance. Args: x: One feature sample which can either Nd numpy matrix of shape `[n_samples, n_features, ...]` or dictionary of Nd numpy matrix. y: label vector, either floats for regression or class id for classification. If matrix, will consider as a sequence of labels. Can be `None` for unsupervised setting. Also supports dictionary of labels. n_classes: Number of classes, 0 and 1 are considered regression, `None` will pass through the input labels without one-hot conversion. Also, if `y` is `dict`, then `n_classes` must be `dict` such that `n_classes[key] = n_classes for label y[key]`, `None` otherwise. batch_size: Mini-batch size to accumulate samples in one mini batch. shuffle: Whether to shuffle `x`. random_state: Numpy `RandomState` object to reproduce sampling. epochs: Number of times to iterate over input data before raising `StopIteration` exception. Attributes: x: Input features (ndarray or dictionary of ndarrays). y: Input label (ndarray or dictionary of ndarrays). n_classes: Number of classes (if `None`, pass through indices without one-hot conversion). batch_size: Mini-batch size to accumulate. input_shape: Shape of the input (or dictionary of shapes). output_shape: Shape of the output (or dictionary of shapes). input_dtype: DType of input (or dictionary of shapes). output_dtype: DType of output (or dictionary of shapes. """ x_is_dict, y_is_dict = isinstance(x, dict), y is not None and isinstance( y, dict) if isinstance(y, list): y = np.array(y) self._x = dict([(k, check_array(v, v.dtype)) for k, v in list(x.items()) ]) if x_is_dict else check_array(x, x.dtype) self._y = None if y is None else ( dict([(k, check_array(v, v.dtype)) for k, v in list(y.items())]) if y_is_dict else check_array(y, y.dtype)) # self.n_classes is not None means we're converting raw target indices # to one-hot. if n_classes is not None: if not y_is_dict: y_dtype = (np.int64 if n_classes is not None and n_classes > 1 else np.float32) self._y = (None if y is None else check_array(y, dtype=y_dtype)) self.n_classes = n_classes self.max_epochs = epochs x_shape = dict([(k, v.shape) for k, v in list(self._x.items()) ]) if x_is_dict else self._x.shape y_shape = dict([(k, v.shape) for k, v in list(self._y.items()) ]) if y_is_dict else None if y is None else self._y.shape self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) # Input dtype matches dtype of x. self._input_dtype = ( dict([(k, _check_dtype(v.dtype)) for k, v in list(self._x.items())]) if x_is_dict else _check_dtype(self._x.dtype)) # self._output_dtype == np.float32 when y is None self._output_dtype = ( dict([(k, _check_dtype(v.dtype)) for k, v in list(self._y.items())]) if y_is_dict else ( _check_dtype(self._y.dtype) if y is not None else np.float32)) # self.n_classes is None means we're passing in raw target indices if n_classes is not None and y_is_dict: for key in list(n_classes.keys()): if key in self._output_dtype: self._output_dtype[key] = np.float32 self._shuffle = shuffle self.random_state = np.random.RandomState( 42) if random_state is None else random_state num_samples = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] if self._shuffle: self.indices = self.random_state.permutation(num_samples) else: self.indices = np.array(range(num_samples)) self.offset = 0 self.epoch = 0 self._epoch_placeholder = None @property def x(self): return self._x @property def y(self): return self._y @property def shuffle(self): return self._shuffle @property def input_dtype(self): return self._input_dtype @property def output_dtype(self): return self._output_dtype @property def batch_size(self): return self._batch_size def make_epoch_variable(self): """Adds a placeholder variable for the epoch to the graph. Returns: The epoch placeholder. """ self._epoch_placeholder = array_ops.placeholder( dtypes.int32, [1], name='epoch') return self._epoch_placeholder def input_builder(self): """Builds inputs in the graph. Returns: Two placeholders for inputs and outputs. """ def get_placeholder(shape, dtype, name_prepend): if shape is None: return None if isinstance(shape, dict): placeholder = {} for key in list(shape.keys()): placeholder[key] = array_ops.placeholder( dtypes.as_dtype(dtype[key]), [None] + shape[key][1:], name=name_prepend + '_' + key) else: placeholder = array_ops.placeholder( dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend) return placeholder self._input_placeholder = get_placeholder(self.input_shape, self._input_dtype, 'input') self._output_placeholder = get_placeholder(self.output_shape, self._output_dtype, 'output') return self._input_placeholder, self._output_placeholder def set_placeholders(self, input_placeholder, output_placeholder): """Sets placeholders for this data feeder. Args: input_placeholder: Placeholder for `x` variable. Should match shape of the examples in the x dataset. output_placeholder: Placeholder for `y` variable. Should match shape of the examples in the y dataset. Can be `None`. """ self._input_placeholder = input_placeholder self._output_placeholder = output_placeholder def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return { 'epoch': self.epoch, 'offset': self.offset, 'batch_size': self._batch_size } def get_feed_dict_fn(self): """Returns a function that samples data into given placeholders. Returns: A function that when called samples a random subset of batch size from `x` and `y`. """ x_is_dict, y_is_dict = isinstance( self._x, dict), self._y is not None and isinstance(self._y, dict) # Assign input features from random indices. def extract(data, indices): return (np.array(_access(data, indices)).reshape((indices.shape[0], 1)) if len(data.shape) == 1 else _access(data, indices)) # assign labels from random indices def assign_label(data, shape, dtype, n_classes, indices): shape[0] = indices.shape[0] out = np.zeros(shape, dtype=dtype) for i in xrange(out.shape[0]): sample = indices[i] # self.n_classes is None means we're passing in raw target indices if n_classes is None: out[i] = _access(data, sample) else: if n_classes > 1: if len(shape) == 2: out.itemset((i, int(_access(data, sample))), 1.0) else: for idx, value in enumerate(_access(data, sample)): out.itemset(tuple([i, idx, value]), 1.0) else: out[i] = _access(data, sample) return out def _feed_dict_fn(): """Function that samples data into given placeholders.""" if self.max_epochs is not None and self.epoch + 1 > self.max_epochs: raise StopIteration assert self._input_placeholder is not None feed_dict = {} if self._epoch_placeholder is not None: feed_dict[self._epoch_placeholder.name] = [self.epoch] # Take next batch of indices. x_len = list(self._x.values())[0].shape[ 0] if x_is_dict else self._x.shape[0] end = min(x_len, self.offset + self._batch_size) batch_indices = self.indices[self.offset:end] # adding input placeholder feed_dict.update( dict([(self._input_placeholder[k].name, extract(v, batch_indices)) for k, v in list(self._x.items())]) if x_is_dict else {self._input_placeholder.name: extract(self._x, batch_indices)}) # move offset and reset it if necessary self.offset += self._batch_size if self.offset >= x_len: self.indices = self.random_state.permutation( x_len) if self._shuffle else np.array(range(x_len)) self.offset = 0 self.epoch += 1 # return early if there are no labels if self._output_placeholder is None: return feed_dict # adding output placeholders if y_is_dict: for k, v in list(self._y.items()): n_classes = (self.n_classes[k] if k in self.n_classes else None) if self.n_classes is not None else None shape, dtype = self.output_shape[k], self._output_dtype[k] feed_dict.update({ self._output_placeholder[k].name: assign_label(v, shape, dtype, n_classes, batch_indices) }) else: shape, dtype, n_classes = self.output_shape, self._output_dtype, self.n_classes feed_dict.update({ self._output_placeholder.name: assign_label(self._y, shape, dtype, n_classes, batch_indices) }) return feed_dict return _feed_dict_fn class StreamingDataFeeder(DataFeeder): """Data feeder for TF trainer that reads data from iterator. Streaming data feeder allows to read data as it comes it from disk or somewhere else. It's custom to have this iterators rotate infinetly over the dataset, to allow control of how much to learn on the trainer side. """ def __init__(self, x, y, n_classes, batch_size): """Initializes a StreamingDataFeeder instance. Args: x: iterator each element of which returns one feature sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices. y: iterator each element of which returns one label sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices with 1 or many classes regression values. n_classes: indicator of how many classes the corresponding label sample has for the purposes of one-hot conversion of label. In case where `y` is a dictionary, `n_classes` must be dictionary (with same keys as `y`) of how many classes there are in each label in `y`. If key is present in `y` and missing in `n_classes`, the value is assumed `None` and no one-hot conversion will be applied to the label with that key. batch_size: Mini batch size to accumulate samples in one batch. If set `None`, then assumes that iterator to return already batched element. Attributes: x: input features (or dictionary of input features). y: input label (or dictionary of output features). n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input (can be dictionary depending on `x`). output_shape: shape of the output (can be dictionary depending on `y`). input_dtype: dtype of input (can be dictionary depending on `x`). output_dtype: dtype of output (can be dictionary depending on `y`). """ # pylint: disable=invalid-name,super-init-not-called x_first_el = six.next(x) self._x = itertools.chain([x_first_el], x) if y is not None: y_first_el = six.next(y) self._y = itertools.chain([y_first_el], y) else: y_first_el = None self._y = None self.n_classes = n_classes x_is_dict = isinstance(x_first_el, dict) y_is_dict = y is not None and isinstance(y_first_el, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) # extract shapes for first_elements if x_is_dict: x_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(x_first_el.items())]) else: x_first_el_shape = [1] + list(x_first_el.shape) if y_is_dict: y_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(y_first_el.items())]) elif y is None: y_first_el_shape = None else: y_first_el_shape = ([1] + list(y_first_el[0].shape if isinstance( y_first_el, list) else y_first_el.shape)) self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_first_el_shape, y_first_el_shape, n_classes, batch_size) # Input dtype of x_first_el. if x_is_dict: self._input_dtype = dict( [(k, _check_dtype(v.dtype)) for k, v in list(x_first_el.items())]) else: self._input_dtype = _check_dtype(x_first_el.dtype) # Output dtype of y_first_el. def check_y_dtype(el): if isinstance(el, np.ndarray): return el.dtype elif isinstance(el, list): return check_y_dtype(el[0]) else: return _check_dtype(np.dtype(type(el))) # Output types are floats, due to both softmaxes and regression req. if n_classes is not None and (y is None or not y_is_dict) and n_classes > 0: self._output_dtype = np.float32 elif y_is_dict: self._output_dtype = dict( [(k, check_y_dtype(v)) for k, v in list(y_first_el.items())]) elif y is None: self._output_dtype = None else: self._output_dtype = check_y_dtype(y_first_el) def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self): """Returns a function, that will sample data and provide it to placeholders. Returns: A function that when called samples a random subset of batch size from x and y. """ self.stopped = False def _feed_dict_fn(): """Samples data and provides it to placeholders. Returns: `dict` of input and output tensors. """ def init_array(shape, dtype): """Initialize array of given shape or dict of shapes and dtype.""" if shape is None: return None elif isinstance(shape, dict): return dict([(k, np.zeros(shape[k], dtype[k])) for k in list(shape.keys())]) else: return np.zeros(shape, dtype=dtype) def put_data_array(dest, index, source=None, n_classes=None): """Puts data array into container.""" if source is None: dest = dest[:index] elif n_classes is not None and n_classes > 1: if len(self.output_shape) == 2: dest.itemset((index, source), 1.0) else: for idx, value in enumerate(source): dest.itemset(tuple([index, idx, value]), 1.0) else: if len(dest.shape) > 1: dest[index, :] = source else: dest[index] = source[0] if isinstance(source, list) else source return dest def put_data_array_or_dict(holder, index, data=None, n_classes=None): """Puts data array or data dictionary into container.""" if holder is None: return None if isinstance(holder, dict): if data is None: data = {k: None for k in holder.keys()} assert isinstance(data, dict) for k in holder.keys(): num_classes = n_classes[k] if (n_classes is not None and k in n_classes) else None holder[k] = put_data_array(holder[k], index, data[k], num_classes) else: holder = put_data_array(holder, index, data, n_classes) return holder if self.stopped: raise StopIteration inp = init_array(self.input_shape, self._input_dtype) out = init_array(self.output_shape, self._output_dtype) for i in xrange(self._batch_size): # Add handling when queue ends. try: next_inp = six.next(self._x) inp = put_data_array_or_dict(inp, i, next_inp, None) except StopIteration: self.stopped = True if i == 0: raise inp = put_data_array_or_dict(inp, i, None, None) out = put_data_array_or_dict(out, i, None, None) break if self._y is not None: next_out = six.next(self._y) out = put_data_array_or_dict(out, i, next_out, self.n_classes) # creating feed_dict if isinstance(inp, dict): feed_dict = dict([(self._input_placeholder[k].name, inp[k]) for k in list(self._input_placeholder.keys())]) else: feed_dict = {self._input_placeholder.name: inp} if self._y is not None: if isinstance(out, dict): feed_dict.update( dict([(self._output_placeholder[k].name, out[k]) for k in list(self._output_placeholder.keys())])) else: feed_dict.update({self._output_placeholder.name: out}) return feed_dict return _feed_dict_fn class DaskDataFeeder(object): """Data feeder for that reads data from dask.Series and dask.DataFrame. Numpy arrays can be serialized to disk and it's possible to do random seeks into them. DaskDataFeeder will remove requirement to have full dataset in the memory and still do random seeks for sampling of batches. """ def __init__(self, x, y, n_classes, batch_size, shuffle=True, random_state=None, epochs=None): """Initializes a DaskDataFeeder instance. Args: x: iterator that returns for each element, returns features. y: iterator that returns for each element, returns 1 or many classes / regression values. n_classes: indicator of how many classes the label has. batch_size: Mini batch size to accumulate. shuffle: Whether to shuffle the inputs. random_state: random state for RNG. Note that it will mutate so use a int value for this if you want consistent sized batches. epochs: Number of epochs to run. Attributes: x: input features. y: input label. n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input. output_shape: shape of the output. input_dtype: dtype of input. output_dtype: dtype of output. Raises: ValueError: if `x` or `y` are `dict`, as they are not supported currently. """ if isinstance(x, dict) or isinstance(y, dict): raise ValueError( 'DaskDataFeeder does not support dictionaries at the moment.') # pylint: disable=invalid-name,super-init-not-called import dask.dataframe as dd # pylint: disable=g-import-not-at-top # TODO(terrytangyuan): check x and y dtypes in dask_io like pandas self._x = x self._y = y # save column names self._x_columns = list(x.columns) if isinstance(y.columns[0], str): self._y_columns = list(y.columns) else: # deal with cases where two DFs have overlapped default numeric colnames self._y_columns = len(self._x_columns) + 1 self._y = self._y.rename(columns={y.columns[0]: self._y_columns}) # TODO(terrytangyuan): deal with unsupervised cases # combine into a data frame self.df = dd.multi.concat([self._x, self._y], axis=1) self.n_classes = n_classes x_count = x.count().compute()[0] x_shape = (x_count, len(self._x.columns)) y_shape = (x_count, len(self._y.columns)) # TODO(terrytangyuan): Add support for shuffle and epochs. self._shuffle = shuffle self.epochs = epochs self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) self.sample_fraction = self._batch_size / float(x_count) self._input_dtype = _check_dtype(self._x.dtypes[0]) self._output_dtype = _check_dtype(self._y.dtypes[self._y_columns]) if random_state is None: self.random_state = 66 else: self.random_state = random_state def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self, input_placeholder, output_placeholder): """Returns a function, that will sample data and provide it to placeholders. Args: input_placeholder: tf.Placeholder for input features mini batch. output_placeholder: tf.Placeholder for output labels. Returns: A function that when called samples a random subset of batch size from x and y. """ def _feed_dict_fn(): """Samples data and provides it to placeholders.""" # TODO(ipolosukhin): option for with/without replacement (dev version of # dask) sample = self.df.random_split( [self.sample_fraction, 1 - self.sample_fraction], random_state=self.random_state) inp = extract_pandas_matrix(sample[0][self._x_columns].compute()).tolist() out = extract_pandas_matrix(sample[0][self._y_columns].compute()) # convert to correct dtype inp = np.array(inp, dtype=self._input_dtype) # one-hot encode out for each class for cross entropy loss if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if not isinstance(out, pd.Series): out = out.flatten() out_max = self._y.max().compute().values[0] encoded_out = np.zeros((out.size, out_max + 1), dtype=self._output_dtype) encoded_out[np.arange(out.size), out] = 1 return {input_placeholder.name: inp, output_placeholder.name: encoded_out} return _feed_dict_fn
apache-2.0
ky822/scikit-learn
sklearn/externals/joblib/__init__.py
72
4795
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.9.0b4' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
pulinagrawal/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/text.py
69
55366
""" Classes for including text in a figure. """ from __future__ import division import math import numpy as np from matplotlib import cbook from matplotlib import rcParams import artist from artist import Artist from cbook import is_string_like, maxdict from font_manager import FontProperties from patches import bbox_artist, YAArrow, FancyBboxPatch, \ FancyArrowPatch, Rectangle import transforms as mtransforms from transforms import Affine2D, Bbox from lines import Line2D import matplotlib.nxutils as nxutils def _process_text_args(override, fontdict=None, **kwargs): "Return an override dict. See :func:`~pyplot.text' docstring for info" if fontdict is not None: override.update(fontdict) override.update(kwargs) return override # Extracted from Text's method to serve as a function def get_rotation(rotation): """ Return the text angle as float. *rotation* may be 'horizontal', 'vertical', or a numeric value in degrees. """ if rotation in ('horizontal', None): angle = 0. elif rotation == 'vertical': angle = 90. else: angle = float(rotation) return angle%360 # these are not available for the object inspector until after the # class is build so we define an initial set here for the init # function and they will be overridden after object defn artist.kwdocd['Text'] = """ ========================== ========================================================================= Property Value ========================== ========================================================================= alpha float animated [True | False] backgroundcolor any matplotlib color bbox rectangle prop dict plus key 'pad' which is a pad in points clip_box a matplotlib.transform.Bbox instance clip_on [True | False] color any matplotlib color family [ 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ] figure a matplotlib.figure.Figure instance fontproperties a matplotlib.font_manager.FontProperties instance horizontalalignment or ha [ 'center' | 'right' | 'left' ] label any string linespacing float lod [True | False] multialignment ['left' | 'right' | 'center' ] name or fontname string eg, ['Sans' | 'Courier' | 'Helvetica' ...] position (x,y) rotation [ angle in degrees 'vertical' | 'horizontal' size or fontsize [ size in points | relative size eg 'smaller', 'x-large' ] style or fontstyle [ 'normal' | 'italic' | 'oblique'] text string transform a matplotlib.transform transformation instance variant [ 'normal' | 'small-caps' ] verticalalignment or va [ 'center' | 'top' | 'bottom' | 'baseline' ] visible [True | False] weight or fontweight [ 'normal' | 'bold' | 'heavy' | 'light' | 'ultrabold' | 'ultralight'] x float y float zorder any number ========================== ========================================================================= """ # TODO : This function may move into the Text class as a method. As a # matter of fact, The information from the _get_textbox function # should be available during the Text._get_layout() call, which is # called within the _get_textbox. So, it would better to move this # function as a method with some refactoring of _get_layout method. def _get_textbox(text, renderer): """ Calculate the bounding box of the text. Unlike :meth:`matplotlib.text.Text.get_extents` method, The bbox size of the text before the rotation is calculated. """ projected_xs = [] projected_ys = [] theta = text.get_rotation()/180.*math.pi tr = mtransforms.Affine2D().rotate(-theta) for t, wh, x, y in text._get_layout(renderer)[1]: w, h = wh xt1, yt1 = tr.transform_point((x, y)) xt2, yt2 = xt1+w, yt1+h projected_xs.extend([xt1, xt2]) projected_ys.extend([yt1, yt2]) xt_box, yt_box = min(projected_xs), min(projected_ys) w_box, h_box = max(projected_xs) - xt_box, max(projected_ys) - yt_box tr = mtransforms.Affine2D().rotate(theta) x_box, y_box = tr.transform_point((xt_box, yt_box)) return x_box, y_box, w_box, h_box class Text(Artist): """ Handle storing and drawing of text in window or data coordinates. """ zorder = 3 def __str__(self): return "Text(%g,%g,%s)"%(self._y,self._y,repr(self._text)) def __init__(self, x=0, y=0, text='', color=None, # defaults to rc params verticalalignment='bottom', horizontalalignment='left', multialignment=None, fontproperties=None, # defaults to FontProperties() rotation=None, linespacing=None, **kwargs ): """ Create a :class:`~matplotlib.text.Text` instance at *x*, *y* with string *text*. Valid kwargs are %(Text)s """ Artist.__init__(self) self.cached = maxdict(5) self._x, self._y = x, y if color is None: color = rcParams['text.color'] if fontproperties is None: fontproperties=FontProperties() elif is_string_like(fontproperties): fontproperties=FontProperties(fontproperties) self.set_text(text) self.set_color(color) self._verticalalignment = verticalalignment self._horizontalalignment = horizontalalignment self._multialignment = multialignment self._rotation = rotation self._fontproperties = fontproperties self._bbox = None self._bbox_patch = None # a FancyBboxPatch instance self._renderer = None if linespacing is None: linespacing = 1.2 # Maybe use rcParam later. self._linespacing = linespacing self.update(kwargs) #self.set_bbox(dict(pad=0)) def contains(self,mouseevent): """Test whether the mouse event occurred in the patch. In the case of text, a hit is true anywhere in the axis-aligned bounding-box containing the text. Returns True or False. """ if callable(self._contains): return self._contains(self,mouseevent) if not self.get_visible() or self._renderer is None: return False,{} l,b,w,h = self.get_window_extent().bounds r = l+w t = b+h xyverts = (l,b), (l, t), (r, t), (r, b) x, y = mouseevent.x, mouseevent.y inside = nxutils.pnpoly(x, y, xyverts) return inside,{} def _get_xy_display(self): 'get the (possibly unit converted) transformed x, y in display coords' x, y = self.get_position() return self.get_transform().transform_point((x,y)) def _get_multialignment(self): if self._multialignment is not None: return self._multialignment else: return self._horizontalalignment def get_rotation(self): 'return the text angle as float in degrees' return get_rotation(self._rotation) # string_or_number -> number def update_from(self, other): 'Copy properties from other to self' Artist.update_from(self, other) self._color = other._color self._multialignment = other._multialignment self._verticalalignment = other._verticalalignment self._horizontalalignment = other._horizontalalignment self._fontproperties = other._fontproperties.copy() self._rotation = other._rotation self._picker = other._picker self._linespacing = other._linespacing def _get_layout(self, renderer): key = self.get_prop_tup() if key in self.cached: return self.cached[key] horizLayout = [] thisx, thisy = 0.0, 0.0 xmin, ymin = 0.0, 0.0 width, height = 0.0, 0.0 lines = self._text.split('\n') whs = np.zeros((len(lines), 2)) horizLayout = np.zeros((len(lines), 4)) # Find full vertical extent of font, # including ascenders and descenders: tmp, heightt, bl = renderer.get_text_width_height_descent( 'lp', self._fontproperties, ismath=False) offsety = heightt * self._linespacing baseline = None for i, line in enumerate(lines): clean_line, ismath = self.is_math_text(line) w, h, d = renderer.get_text_width_height_descent( clean_line, self._fontproperties, ismath=ismath) if baseline is None: baseline = h - d whs[i] = w, h horizLayout[i] = thisx, thisy, w, h thisy -= offsety width = max(width, w) ymin = horizLayout[-1][1] ymax = horizLayout[0][1] + horizLayout[0][3] height = ymax-ymin xmax = xmin + width # get the rotation matrix M = Affine2D().rotate_deg(self.get_rotation()) offsetLayout = np.zeros((len(lines), 2)) offsetLayout[:] = horizLayout[:, 0:2] # now offset the individual text lines within the box if len(lines)>1: # do the multiline aligment malign = self._get_multialignment() if malign == 'center': offsetLayout[:, 0] += width/2.0 - horizLayout[:, 2] / 2.0 elif malign == 'right': offsetLayout[:, 0] += width - horizLayout[:, 2] # the corners of the unrotated bounding box cornersHoriz = np.array( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)], np.float_) # now rotate the bbox cornersRotated = M.transform(cornersHoriz) txs = cornersRotated[:, 0] tys = cornersRotated[:, 1] # compute the bounds of the rotated box xmin, xmax = txs.min(), txs.max() ymin, ymax = tys.min(), tys.max() width = xmax - xmin height = ymax - ymin # Now move the box to the targe position offset the display bbox by alignment halign = self._horizontalalignment valign = self._verticalalignment # compute the text location in display coords and the offsets # necessary to align the bbox with that location if halign=='center': offsetx = (xmin + width/2.0) elif halign=='right': offsetx = (xmin + width) else: offsetx = xmin if valign=='center': offsety = (ymin + height/2.0) elif valign=='top': offsety = (ymin + height) elif valign=='baseline': offsety = (ymin + height) - baseline else: offsety = ymin xmin -= offsetx ymin -= offsety bbox = Bbox.from_bounds(xmin, ymin, width, height) # now rotate the positions around the first x,y position xys = M.transform(offsetLayout) xys -= (offsetx, offsety) xs, ys = xys[:, 0], xys[:, 1] ret = bbox, zip(lines, whs, xs, ys) self.cached[key] = ret return ret def set_bbox(self, rectprops): """ Draw a bounding box around self. rectprops are any settable properties for a rectangle, eg facecolor='red', alpha=0.5. t.set_bbox(dict(facecolor='red', alpha=0.5)) If rectprops has "boxstyle" key. A FancyBboxPatch is initialized with rectprops and will be drawn. The mutation scale of the FancyBboxPath is set to the fontsize. ACCEPTS: rectangle prop dict """ # The self._bbox_patch object is created only if rectprops has # boxstyle key. Otherwise, self._bbox will be set to the # rectprops and the bbox will be drawn using bbox_artist # function. This is to keep the backward compatibility. if rectprops is not None and "boxstyle" in rectprops: props = rectprops.copy() boxstyle = props.pop("boxstyle") bbox_transmuter = props.pop("bbox_transmuter", None) self._bbox_patch = FancyBboxPatch((0., 0.), 1., 1., boxstyle=boxstyle, bbox_transmuter=bbox_transmuter, transform=mtransforms.IdentityTransform(), **props) self._bbox = None else: self._bbox_patch = None self._bbox = rectprops def get_bbox_patch(self): """ Return the bbox Patch object. Returns None if the the FancyBboxPatch is not made. """ return self._bbox_patch def update_bbox_position_size(self, renderer): """ Update the location and the size of the bbox. This method should be used when the position and size of the bbox needs to be updated before actually drawing the bbox. """ # For arrow_patch, use textbox as patchA by default. if not isinstance(self.arrow_patch, FancyArrowPatch): return if self._bbox_patch: trans = self.get_transform() # don't use self.get_position here, which refers to text position # in Text, and dash position in TextWithDash: posx = float(self.convert_xunits(self._x)) posy = float(self.convert_yunits(self._y)) posx, posy = trans.transform_point((posx, posy)) x_box, y_box, w_box, h_box = _get_textbox(self, renderer) self._bbox_patch.set_bounds(0., 0., w_box, h_box) theta = self.get_rotation()/180.*math.pi tr = mtransforms.Affine2D().rotate(theta) tr = tr.translate(posx+x_box, posy+y_box) self._bbox_patch.set_transform(tr) fontsize_in_pixel = renderer.points_to_pixels(self.get_size()) self._bbox_patch.set_mutation_scale(fontsize_in_pixel) #self._bbox_patch.draw(renderer) else: props = self._bbox if props is None: props = {} props = props.copy() # don't want to alter the pad externally pad = props.pop('pad', 4) pad = renderer.points_to_pixels(pad) bbox = self.get_window_extent(renderer) l,b,w,h = bbox.bounds l-=pad/2. b-=pad/2. w+=pad h+=pad r = Rectangle(xy=(l,b), width=w, height=h, ) r.set_transform(mtransforms.IdentityTransform()) r.set_clip_on( False ) r.update(props) self.arrow_patch.set_patchA(r) def _draw_bbox(self, renderer, posx, posy): """ Update the location and the size of the bbox (FancyBoxPatch), and draw """ x_box, y_box, w_box, h_box = _get_textbox(self, renderer) self._bbox_patch.set_bounds(0., 0., w_box, h_box) theta = self.get_rotation()/180.*math.pi tr = mtransforms.Affine2D().rotate(theta) tr = tr.translate(posx+x_box, posy+y_box) self._bbox_patch.set_transform(tr) fontsize_in_pixel = renderer.points_to_pixels(self.get_size()) self._bbox_patch.set_mutation_scale(fontsize_in_pixel) self._bbox_patch.draw(renderer) def draw(self, renderer): """ Draws the :class:`Text` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return if self._text=='': return bbox, info = self._get_layout(renderer) trans = self.get_transform() # don't use self.get_position here, which refers to text position # in Text, and dash position in TextWithDash: posx = float(self.convert_xunits(self._x)) posy = float(self.convert_yunits(self._y)) posx, posy = trans.transform_point((posx, posy)) canvasw, canvash = renderer.get_canvas_width_height() # draw the FancyBboxPatch if self._bbox_patch: self._draw_bbox(renderer, posx, posy) gc = renderer.new_gc() gc.set_foreground(self._color) gc.set_alpha(self._alpha) gc.set_url(self._url) if self.get_clip_on(): gc.set_clip_rectangle(self.clipbox) if self._bbox: bbox_artist(self, renderer, self._bbox) angle = self.get_rotation() if rcParams['text.usetex']: for line, wh, x, y in info: x = x + posx y = y + posy if renderer.flipy(): y = canvash-y clean_line, ismath = self.is_math_text(line) renderer.draw_tex(gc, x, y, clean_line, self._fontproperties, angle) return for line, wh, x, y in info: x = x + posx y = y + posy if renderer.flipy(): y = canvash-y clean_line, ismath = self.is_math_text(line) renderer.draw_text(gc, x, y, clean_line, self._fontproperties, angle, ismath=ismath) def get_color(self): "Return the color of the text" return self._color def get_fontproperties(self): "Return the :class:`~font_manager.FontProperties` object" return self._fontproperties def get_font_properties(self): 'alias for get_fontproperties' return self.get_fontproperties def get_family(self): "Return the list of font families used for font lookup" return self._fontproperties.get_family() def get_fontfamily(self): 'alias for get_family' return self.get_family() def get_name(self): "Return the font name as string" return self._fontproperties.get_name() def get_style(self): "Return the font style as string" return self._fontproperties.get_style() def get_size(self): "Return the font size as integer" return self._fontproperties.get_size_in_points() def get_variant(self): "Return the font variant as a string" return self._fontproperties.get_variant() def get_fontvariant(self): 'alias for get_variant' return self.get_variant() def get_weight(self): "Get the font weight as string or number" return self._fontproperties.get_weight() def get_fontname(self): 'alias for get_name' return self.get_name() def get_fontstyle(self): 'alias for get_style' return self.get_style() def get_fontsize(self): 'alias for get_size' return self.get_size() def get_fontweight(self): 'alias for get_weight' return self.get_weight() def get_stretch(self): 'Get the font stretch as a string or number' return self._fontproperties.get_stretch() def get_fontstretch(self): 'alias for get_stretch' return self.get_stretch() def get_ha(self): 'alias for get_horizontalalignment' return self.get_horizontalalignment() def get_horizontalalignment(self): """ Return the horizontal alignment as string. Will be one of 'left', 'center' or 'right'. """ return self._horizontalalignment def get_position(self): "Return the position of the text as a tuple (*x*, *y*)" x = float(self.convert_xunits(self._x)) y = float(self.convert_yunits(self._y)) return x, y def get_prop_tup(self): """ Return a hashable tuple of properties. Not intended to be human readable, but useful for backends who want to cache derived information about text (eg layouts) and need to know if the text has changed. """ x, y = self.get_position() return (x, y, self._text, self._color, self._verticalalignment, self._horizontalalignment, hash(self._fontproperties), self._rotation, self.figure.dpi, id(self._renderer), ) def get_text(self): "Get the text as string" return self._text def get_va(self): 'alias for :meth:`getverticalalignment`' return self.get_verticalalignment() def get_verticalalignment(self): """ Return the vertical alignment as string. Will be one of 'top', 'center', 'bottom' or 'baseline'. """ return self._verticalalignment def get_window_extent(self, renderer=None, dpi=None): ''' Return a :class:`~matplotlib.transforms.Bbox` object bounding the text, in display units. In addition to being used internally, this is useful for specifying clickable regions in a png file on a web page. *renderer* defaults to the _renderer attribute of the text object. This is not assigned until the first execution of :meth:`draw`, so you must use this kwarg if you want to call :meth:`get_window_extent` prior to the first :meth:`draw`. For getting web page regions, it is simpler to call the method after saving the figure. *dpi* defaults to self.figure.dpi; the renderer dpi is irrelevant. For the web application, if figure.dpi is not the value used when saving the figure, then the value that was used must be specified as the *dpi* argument. ''' #return _unit_box if not self.get_visible(): return Bbox.unit() if dpi is not None: dpi_orig = self.figure.dpi self.figure.dpi = dpi if self._text == '': tx, ty = self._get_xy_display() return Bbox.from_bounds(tx,ty,0,0) if renderer is not None: self._renderer = renderer if self._renderer is None: raise RuntimeError('Cannot get window extent w/o renderer') bbox, info = self._get_layout(self._renderer) x, y = self.get_position() x, y = self.get_transform().transform_point((x, y)) bbox = bbox.translated(x, y) if dpi is not None: self.figure.dpi = dpi_orig return bbox def set_backgroundcolor(self, color): """ Set the background color of the text by updating the bbox. .. seealso:: :meth:`set_bbox` ACCEPTS: any matplotlib color """ if self._bbox is None: self._bbox = dict(facecolor=color, edgecolor=color) else: self._bbox.update(dict(facecolor=color)) def set_color(self, color): """ Set the foreground color of the text ACCEPTS: any matplotlib color """ # Make sure it is hashable, or get_prop_tup will fail. try: hash(color) except TypeError: color = tuple(color) self._color = color def set_ha(self, align): 'alias for set_horizontalalignment' self.set_horizontalalignment(align) def set_horizontalalignment(self, align): """ Set the horizontal alignment to one of ACCEPTS: [ 'center' | 'right' | 'left' ] """ legal = ('center', 'right', 'left') if align not in legal: raise ValueError('Horizontal alignment must be one of %s' % str(legal)) self._horizontalalignment = align def set_ma(self, align): 'alias for set_verticalalignment' self.set_multialignment(align) def set_multialignment(self, align): """ Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is determined bu the horizontalalignment and verticalalignment properties, but the multiline text within that box can be ACCEPTS: ['left' | 'right' | 'center' ] """ legal = ('center', 'right', 'left') if align not in legal: raise ValueError('Horizontal alignment must be one of %s' % str(legal)) self._multialignment = align def set_linespacing(self, spacing): """ Set the line spacing as a multiple of the font size. Default is 1.2. ACCEPTS: float (multiple of font size) """ self._linespacing = spacing def set_family(self, fontname): """ Set the font family. May be either a single string, or a list of strings in decreasing priority. Each string may be either a real font name or a generic font class name. If the latter, the specific font names will be looked up in the :file:`matplotlibrc` file. ACCEPTS: [ FONTNAME | 'serif' | 'sans-serif' | 'cursive' | 'fantasy' | 'monospace' ] """ self._fontproperties.set_family(fontname) def set_variant(self, variant): """ Set the font variant, either 'normal' or 'small-caps'. ACCEPTS: [ 'normal' | 'small-caps' ] """ self._fontproperties.set_variant(variant) def set_fontvariant(self, variant): 'alias for set_variant' return self.set_variant(variant) def set_name(self, fontname): """alias for set_family""" return self.set_family(fontname) def set_fontname(self, fontname): """alias for set_family""" self.set_family(fontname) def set_style(self, fontstyle): """ Set the font style. ACCEPTS: [ 'normal' | 'italic' | 'oblique'] """ self._fontproperties.set_style(fontstyle) def set_fontstyle(self, fontstyle): 'alias for set_style' return self.set_style(fontstyle) def set_size(self, fontsize): """ Set the font size. May be either a size string, relative to the default font size, or an absolute font size in points. ACCEPTS: [ size in points | 'xx-small' | 'x-small' | 'small' | 'medium' | 'large' | 'x-large' | 'xx-large' ] """ self._fontproperties.set_size(fontsize) def set_fontsize(self, fontsize): 'alias for set_size' return self.set_size(fontsize) def set_weight(self, weight): """ Set the font weight. ACCEPTS: [ a numeric value in range 0-1000 | 'ultralight' | 'light' | 'normal' | 'regular' | 'book' | 'medium' | 'roman' | 'semibold' | 'demibold' | 'demi' | 'bold' | 'heavy' | 'extra bold' | 'black' ] """ self._fontproperties.set_weight(weight) def set_fontweight(self, weight): 'alias for set_weight' return self.set_weight(weight) def set_stretch(self, stretch): """ Set the font stretch (horizontal condensation or expansion). ACCEPTS: [ a numeric value in range 0-1000 | 'ultra-condensed' | 'extra-condensed' | 'condensed' | 'semi-condensed' | 'normal' | 'semi-expanded' | 'expanded' | 'extra-expanded' | 'ultra-expanded' ] """ self._fontproperties.set_stretch(stretch) def set_fontstretch(self, stretch): 'alias for set_stretch' return self.set_stretch(stretch) def set_position(self, xy): """ Set the (*x*, *y*) position of the text ACCEPTS: (x,y) """ self.set_x(xy[0]) self.set_y(xy[1]) def set_x(self, x): """ Set the *x* position of the text ACCEPTS: float """ self._x = x def set_y(self, y): """ Set the *y* position of the text ACCEPTS: float """ self._y = y def set_rotation(self, s): """ Set the rotation of the text ACCEPTS: [ angle in degrees | 'vertical' | 'horizontal' ] """ self._rotation = s def set_va(self, align): 'alias for set_verticalalignment' self.set_verticalalignment(align) def set_verticalalignment(self, align): """ Set the vertical alignment ACCEPTS: [ 'center' | 'top' | 'bottom' | 'baseline' ] """ legal = ('top', 'bottom', 'center', 'baseline') if align not in legal: raise ValueError('Vertical alignment must be one of %s' % str(legal)) self._verticalalignment = align def set_text(self, s): """ Set the text string *s* It may contain newlines (``\\n``) or math in LaTeX syntax. ACCEPTS: string or anything printable with '%s' conversion. """ self._text = '%s' % (s,) def is_math_text(self, s): """ Returns True if the given string *s* contains any mathtext. """ # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) if rcParams['text.usetex']: return s, 'TeX' if even_dollars: return s, True else: return s.replace(r'\$', '$'), False def set_fontproperties(self, fp): """ Set the font properties that control the text. *fp* must be a :class:`matplotlib.font_manager.FontProperties` object. ACCEPTS: a :class:`matplotlib.font_manager.FontProperties` instance """ if is_string_like(fp): fp = FontProperties(fp) self._fontproperties = fp.copy() def set_font_properties(self, fp): 'alias for set_fontproperties' self.set_fontproperties(fp) artist.kwdocd['Text'] = artist.kwdoc(Text) Text.__init__.im_func.__doc__ = cbook.dedent(Text.__init__.__doc__) % artist.kwdocd class TextWithDash(Text): """ This is basically a :class:`~matplotlib.text.Text` with a dash (drawn with a :class:`~matplotlib.lines.Line2D`) before/after it. It is intended to be a drop-in replacement for :class:`~matplotlib.text.Text`, and should behave identically to it when *dashlength* = 0.0. The dash always comes between the point specified by :meth:`~matplotlib.text.Text.set_position` and the text. When a dash exists, the text alignment arguments (*horizontalalignment*, *verticalalignment*) are ignored. *dashlength* is the length of the dash in canvas units. (default = 0.0). *dashdirection* is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0). *dashrotation* specifies the rotation of the dash, and should generally stay *None*. In this case :meth:`~matplotlib.text.TextWithDash.get_dashrotation` returns :meth:`~matplotlib.text.Text.get_rotation`. (I.e., the dash takes its rotation from the text's rotation). Because the text center is projected onto the dash, major deviations in the rotation cause what may be considered visually unappealing results. (default = *None*) *dashpad* is a padding length to add (or subtract) space between the text and the dash, in canvas units. (default = 3) *dashpush* "pushes" the dash and text away from the point specified by :meth:`~matplotlib.text.Text.set_position` by the amount in canvas units. (default = 0) .. note:: The alignment of the two objects is based on the bounding box of the :class:`~matplotlib.text.Text`, as obtained by :meth:`~matplotlib.artist.Artist.get_window_extent`. This, in turn, appears to depend on the font metrics as given by the rendering backend. Hence the quality of the "centering" of the label text with respect to the dash varies depending on the backend used. .. note:: I'm not sure that I got the :meth:`~matplotlib.text.TextWithDash.get_window_extent` right, or whether that's sufficient for providing the object bounding box. """ __name__ = 'textwithdash' def __str__(self): return "TextWithDash(%g,%g,%s)"%(self._x,self._y,repr(self._text)) def __init__(self, x=0, y=0, text='', color=None, # defaults to rc params verticalalignment='center', horizontalalignment='center', multialignment=None, fontproperties=None, # defaults to FontProperties() rotation=None, linespacing=None, dashlength=0.0, dashdirection=0, dashrotation=None, dashpad=3, dashpush=0, ): Text.__init__(self, x=x, y=y, text=text, color=color, verticalalignment=verticalalignment, horizontalalignment=horizontalalignment, multialignment=multialignment, fontproperties=fontproperties, rotation=rotation, linespacing=linespacing) # The position (x,y) values for text and dashline # are bogus as given in the instantiation; they will # be set correctly by update_coords() in draw() self.dashline = Line2D(xdata=(x, x), ydata=(y, y), color='k', linestyle='-') self._dashx = float(x) self._dashy = float(y) self._dashlength = dashlength self._dashdirection = dashdirection self._dashrotation = dashrotation self._dashpad = dashpad self._dashpush = dashpush #self.set_bbox(dict(pad=0)) def get_position(self): "Return the position of the text as a tuple (*x*, *y*)" x = float(self.convert_xunits(self._dashx)) y = float(self.convert_yunits(self._dashy)) return x, y def get_prop_tup(self): """ Return a hashable tuple of properties. Not intended to be human readable, but useful for backends who want to cache derived information about text (eg layouts) and need to know if the text has changed. """ props = [p for p in Text.get_prop_tup(self)] props.extend([self._x, self._y, self._dashlength, self._dashdirection, self._dashrotation, self._dashpad, self._dashpush]) return tuple(props) def draw(self, renderer): """ Draw the :class:`TextWithDash` object to the given *renderer*. """ self.update_coords(renderer) Text.draw(self, renderer) if self.get_dashlength() > 0.0: self.dashline.draw(renderer) def update_coords(self, renderer): """ Computes the actual *x*, *y* coordinates for text based on the input *x*, *y* and the *dashlength*. Since the rotation is with respect to the actual canvas's coordinates we need to map back and forth. """ dashx, dashy = self.get_position() dashlength = self.get_dashlength() # Shortcircuit this process if we don't have a dash if dashlength == 0.0: self._x, self._y = dashx, dashy return dashrotation = self.get_dashrotation() dashdirection = self.get_dashdirection() dashpad = self.get_dashpad() dashpush = self.get_dashpush() angle = get_rotation(dashrotation) theta = np.pi*(angle/180.0+dashdirection-1) cos_theta, sin_theta = np.cos(theta), np.sin(theta) transform = self.get_transform() # Compute the dash end points # The 'c' prefix is for canvas coordinates cxy = transform.transform_point((dashx, dashy)) cd = np.array([cos_theta, sin_theta]) c1 = cxy+dashpush*cd c2 = cxy+(dashpush+dashlength)*cd inverse = transform.inverted() (x1, y1) = inverse.transform_point(tuple(c1)) (x2, y2) = inverse.transform_point(tuple(c2)) self.dashline.set_data((x1, x2), (y1, y2)) # We now need to extend this vector out to # the center of the text area. # The basic problem here is that we're "rotating" # two separate objects but want it to appear as # if they're rotated together. # This is made non-trivial because of the # interaction between text rotation and alignment - # text alignment is based on the bbox after rotation. # We reset/force both alignments to 'center' # so we can do something relatively reasonable. # There's probably a better way to do this by # embedding all this in the object's transformations, # but I don't grok the transformation stuff # well enough yet. we = Text.get_window_extent(self, renderer=renderer) w, h = we.width, we.height # Watch for zeros if sin_theta == 0.0: dx = w dy = 0.0 elif cos_theta == 0.0: dx = 0.0 dy = h else: tan_theta = sin_theta/cos_theta dx = w dy = w*tan_theta if dy > h or dy < -h: dy = h dx = h/tan_theta cwd = np.array([dx, dy])/2 cwd *= 1+dashpad/np.sqrt(np.dot(cwd,cwd)) cw = c2+(dashdirection*2-1)*cwd newx, newy = inverse.transform_point(tuple(cw)) self._x, self._y = newx, newy # Now set the window extent # I'm not at all sure this is the right way to do this. we = Text.get_window_extent(self, renderer=renderer) self._twd_window_extent = we.frozen() self._twd_window_extent.update_from_data_xy(np.array([c1]), False) # Finally, make text align center Text.set_horizontalalignment(self, 'center') Text.set_verticalalignment(self, 'center') def get_window_extent(self, renderer=None): ''' Return a :class:`~matplotlib.transforms.Bbox` object bounding the text, in display units. In addition to being used internally, this is useful for specifying clickable regions in a png file on a web page. *renderer* defaults to the _renderer attribute of the text object. This is not assigned until the first execution of :meth:`draw`, so you must use this kwarg if you want to call :meth:`get_window_extent` prior to the first :meth:`draw`. For getting web page regions, it is simpler to call the method after saving the figure. ''' self.update_coords(renderer) if self.get_dashlength() == 0.0: return Text.get_window_extent(self, renderer=renderer) else: return self._twd_window_extent def get_dashlength(self): """ Get the length of the dash. """ return self._dashlength def set_dashlength(self, dl): """ Set the length of the dash. ACCEPTS: float (canvas units) """ self._dashlength = dl def get_dashdirection(self): """ Get the direction dash. 1 is before the text and 0 is after. """ return self._dashdirection def set_dashdirection(self, dd): """ Set the direction of the dash following the text. 1 is before the text and 0 is after. The default is 0, which is what you'd want for the typical case of ticks below and on the left of the figure. ACCEPTS: int (1 is before, 0 is after) """ self._dashdirection = dd def get_dashrotation(self): """ Get the rotation of the dash in degrees. """ if self._dashrotation == None: return self.get_rotation() else: return self._dashrotation def set_dashrotation(self, dr): """ Set the rotation of the dash, in degrees ACCEPTS: float (degrees) """ self._dashrotation = dr def get_dashpad(self): """ Get the extra spacing between the dash and the text, in canvas units. """ return self._dashpad def set_dashpad(self, dp): """ Set the "pad" of the TextWithDash, which is the extra spacing between the dash and the text, in canvas units. ACCEPTS: float (canvas units) """ self._dashpad = dp def get_dashpush(self): """ Get the extra spacing between the dash and the specified text position, in canvas units. """ return self._dashpush def set_dashpush(self, dp): """ Set the "push" of the TextWithDash, which is the extra spacing between the beginning of the dash and the specified position. ACCEPTS: float (canvas units) """ self._dashpush = dp def set_position(self, xy): """ Set the (*x*, *y*) position of the :class:`TextWithDash`. ACCEPTS: (x, y) """ self.set_x(xy[0]) self.set_y(xy[1]) def set_x(self, x): """ Set the *x* position of the :class:`TextWithDash`. ACCEPTS: float """ self._dashx = float(x) def set_y(self, y): """ Set the *y* position of the :class:`TextWithDash`. ACCEPTS: float """ self._dashy = float(y) def set_transform(self, t): """ Set the :class:`matplotlib.transforms.Transform` instance used by this artist. ACCEPTS: a :class:`matplotlib.transforms.Transform` instance """ Text.set_transform(self, t) self.dashline.set_transform(t) def get_figure(self): 'return the figure instance the artist belongs to' return self.figure def set_figure(self, fig): """ Set the figure instance the artist belong to. ACCEPTS: a :class:`matplotlib.figure.Figure` instance """ Text.set_figure(self, fig) self.dashline.set_figure(fig) artist.kwdocd['TextWithDash'] = artist.kwdoc(TextWithDash) class Annotation(Text): """ A :class:`~matplotlib.text.Text` class to make annotating things in the figure, such as :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes`, :class:`~matplotlib.patches.Rectangle`, etc., easier. """ def __str__(self): return "Annotation(%g,%g,%s)"%(self.xy[0],self.xy[1],repr(self._text)) def __init__(self, s, xy, xytext=None, xycoords='data', textcoords=None, arrowprops=None, **kwargs): """ Annotate the *x*, *y* point *xy* with text *s* at *x*, *y* location *xytext*. (If *xytext* = *None*, defaults to *xy*, and if *textcoords* = *None*, defaults to *xycoords*). *arrowprops*, if not *None*, is a dictionary of line properties (see :class:`matplotlib.lines.Line2D`) for the arrow that connects annotation to the point. If the dictionary has a key *arrowstyle*, a FancyArrowPatch instance is created with the given dictionary and is drawn. Otherwise, a YAArow patch instance is created and drawn. Valid keys for YAArow are ========= ============================================================= Key Description ========= ============================================================= width the width of the arrow in points frac the fraction of the arrow length occupied by the head headwidth the width of the base of the arrow head in points shrink oftentimes it is convenient to have the arrowtip and base a bit away from the text and point being annotated. If *d* is the distance between the text and annotated point, shrink will shorten the arrow so the tip and base are shink percent of the distance *d* away from the endpoints. ie, ``shrink=0.05 is 5%%`` ? any key for :class:`matplotlib.patches.polygon` ========= ============================================================= Valid keys for FancyArrowPatch are =============== ====================================================== Key Description =============== ====================================================== arrowstyle the arrow style connectionstyle the connection style relpos default is (0.5, 0.5) patchA default is bounding box of the text patchB default is None shrinkA default is 2 points shrinkB default is 2 points mutation_scale default is text size (in points) mutation_aspect default is 1. ? any key for :class:`matplotlib.patches.PathPatch` =============== ====================================================== *xycoords* and *textcoords* are strings that indicate the coordinates of *xy* and *xytext*. ================= =================================================== Property Description ================= =================================================== 'figure points' points from the lower left corner of the figure 'figure pixels' pixels from the lower left corner of the figure 'figure fraction' 0,0 is lower left of figure and 1,1 is upper, right 'axes points' points from lower left corner of axes 'axes pixels' pixels from lower left corner of axes 'axes fraction' 0,1 is lower left of axes and 1,1 is upper right 'data' use the coordinate system of the object being annotated (default) 'offset points' Specify an offset (in points) from the *xy* value 'polar' you can specify *theta*, *r* for the annotation, even in cartesian plots. Note that if you are using a polar axes, you do not need to specify polar for the coordinate system since that is the native "data" coordinate system. ================= =================================================== If a 'points' or 'pixels' option is specified, values will be added to the bottom-left and if negative, values will be subtracted from the top-right. Eg:: # 10 points to the right of the left border of the axes and # 5 points below the top border xy=(10,-5), xycoords='axes points' Additional kwargs are Text properties: %(Text)s """ if xytext is None: xytext = xy if textcoords is None: textcoords = xycoords # we'll draw ourself after the artist we annotate by default x,y = self.xytext = xytext Text.__init__(self, x, y, s, **kwargs) self.xy = xy self.xycoords = xycoords self.textcoords = textcoords self.arrowprops = arrowprops self.arrow = None if arrowprops and arrowprops.has_key("arrowstyle"): self._arrow_relpos = arrowprops.pop("relpos", (0.5, 0.5)) self.arrow_patch = FancyArrowPatch((0, 0), (1,1), **arrowprops) else: self.arrow_patch = None __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def contains(self,event): t,tinfo = Text.contains(self,event) if self.arrow is not None: a,ainfo=self.arrow.contains(event) t = t or a # self.arrow_patch is currently not checked as this can be a line - JJ return t,tinfo def set_figure(self, fig): if self.arrow is not None: self.arrow.set_figure(fig) if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) Artist.set_figure(self, fig) def _get_xy(self, x, y, s): if s=='data': trans = self.axes.transData x = float(self.convert_xunits(x)) y = float(self.convert_yunits(y)) return trans.transform_point((x, y)) elif s=='offset points': # convert the data point dx, dy = self.xy # prevent recursion if self.xycoords == 'offset points': return self._get_xy(dx, dy, 'data') dx, dy = self._get_xy(dx, dy, self.xycoords) # convert the offset dpi = self.figure.get_dpi() x *= dpi/72. y *= dpi/72. # add the offset to the data point x += dx y += dy return x, y elif s=='polar': theta, r = x, y x = r*np.cos(theta) y = r*np.sin(theta) trans = self.axes.transData return trans.transform_point((x,y)) elif s=='figure points': #points from the lower left corner of the figure dpi = self.figure.dpi l,b,w,h = self.figure.bbox.bounds r = l+w t = b+h x *= dpi/72. y *= dpi/72. if x<0: x = r + x if y<0: y = t + y return x,y elif s=='figure pixels': #pixels from the lower left corner of the figure l,b,w,h = self.figure.bbox.bounds r = l+w t = b+h if x<0: x = r + x if y<0: y = t + y return x, y elif s=='figure fraction': #(0,0) is lower left, (1,1) is upper right of figure trans = self.figure.transFigure return trans.transform_point((x,y)) elif s=='axes points': #points from the lower left corner of the axes dpi = self.figure.dpi l,b,w,h = self.axes.bbox.bounds r = l+w t = b+h if x<0: x = r + x*dpi/72. else: x = l + x*dpi/72. if y<0: y = t + y*dpi/72. else: y = b + y*dpi/72. return x, y elif s=='axes pixels': #pixels from the lower left corner of the axes l,b,w,h = self.axes.bbox.bounds r = l+w t = b+h if x<0: x = r + x else: x = l + x if y<0: y = t + y else: y = b + y return x, y elif s=='axes fraction': #(0,0) is lower left, (1,1) is upper right of axes trans = self.axes.transAxes return trans.transform_point((x, y)) def update_positions(self, renderer): x, y = self.xytext self._x, self._y = self._get_xy(x, y, self.textcoords) x, y = self.xy x, y = self._get_xy(x, y, self.xycoords) ox0, oy0 = self._x, self._y ox1, oy1 = x, y if self.arrowprops: x0, y0 = x, y l,b,w,h = self.get_window_extent(renderer).bounds r = l+w t = b+h xc = 0.5*(l+r) yc = 0.5*(b+t) d = self.arrowprops.copy() # Use FancyArrowPatch if self.arrowprops has "arrowstyle" key. # Otherwise, fallback to YAArrow. #if d.has_key("arrowstyle"): if self.arrow_patch: # adjust the starting point of the arrow relative to # the textbox. # TODO : Rotation needs to be accounted. relpos = self._arrow_relpos bbox = self.get_window_extent(renderer) ox0 = bbox.x0 + bbox.width * relpos[0] oy0 = bbox.y0 + bbox.height * relpos[1] # The arrow will be drawn from (ox0, oy0) to (ox1, # oy1). It will be first clipped by patchA and patchB. # Then it will be shrinked by shirnkA and shrinkB # (in points). If patch A is not set, self.bbox_patch # is used. self.arrow_patch.set_positions((ox0, oy0), (ox1,oy1)) mutation_scale = d.pop("mutation_scale", self.get_size()) mutation_scale = renderer.points_to_pixels(mutation_scale) self.arrow_patch.set_mutation_scale(mutation_scale) if self._bbox_patch: patchA = d.pop("patchA", self._bbox_patch) self.arrow_patch.set_patchA(patchA) else: patchA = d.pop("patchA", self._bbox) self.arrow_patch.set_patchA(patchA) else: # pick the x,y corner of the text bbox closest to point # annotated dsu = [(abs(val-x0), val) for val in l, r, xc] dsu.sort() _, x = dsu[0] dsu = [(abs(val-y0), val) for val in b, t, yc] dsu.sort() _, y = dsu[0] shrink = d.pop('shrink', 0.0) theta = math.atan2(y-y0, x-x0) r = math.sqrt((y-y0)**2. + (x-x0)**2.) dx = shrink*r*math.cos(theta) dy = shrink*r*math.sin(theta) width = d.pop('width', 4) headwidth = d.pop('headwidth', 12) frac = d.pop('frac', 0.1) self.arrow = YAArrow(self.figure, (x0+dx,y0+dy), (x-dx, y-dy), width=width, headwidth=headwidth, frac=frac, **d) self.arrow.set_clip_box(self.get_clip_box()) def draw(self, renderer): """ Draw the :class:`Annotation` object to the given *renderer*. """ self.update_positions(renderer) self.update_bbox_position_size(renderer) if self.arrow is not None: if self.arrow.figure is None and self.figure is not None: self.arrow.figure = self.figure self.arrow.draw(renderer) if self.arrow_patch is not None: if self.arrow_patch.figure is None and self.figure is not None: self.arrow_patch.figure = self.figure self.arrow_patch.draw(renderer) Text.draw(self, renderer) artist.kwdocd['Annotation'] = Annotation.__init__.__doc__
agpl-3.0
sujithvm/internationality-journals
src/SNIPvsourSNIPv2.py
3
2366
__author__ = 'Sukrit' import pandas as pd import csv f = open('../output/both_journal_list.txt', 'r') #reading list of journals present in Aminer and Elesevier x = f.readlines() f.close() bothjs = [] for line in x: bothjs.append(line.rstrip()) # list of common journals, removing '\n' # OUR SNIP our_SNIP = pd.read_csv('../output/SNIP_all_journals.csv',usecols=[1,3]) # reading SNIP values calculated by US our_SNIP.sort_values('Jname',inplace = True) #sorting alphabetically our_SNIP = our_SNIP[ our_SNIP['SNIP'] != 0 ] our_SNIP2 = pd.DataFrame() our_SNIP2 = our_SNIP2.append(our_SNIP,ignore_index = True) #resetting index value our_SNIP = our_SNIP2 oSNIPnames = our_SNIP['Jname'] #print our_SNIP # SNIP SNIP = pd.read_csv("../data/journal_SNIP_values.csv") journals = SNIP['Source Title'] #taking only 'Source Title' column SNIPlist = [] ''' for jname in oSNIPnames : for name in journals : if jname == name : SNIPlist.append(jname) ''' SNIP_2 = pd.DataFrame() #now we corroborate SNIP values. for name in oSNIPnames : SNIP_2 = SNIP_2.append(SNIP[ SNIP['Source Title'] == name ],ignore_index = True) # copy all SNIP/IPP values for which we have citations in Aminer #print SNIP_2 SNIP_2010 = SNIP_2[['Source Title','2010 SNIP']].copy() # copying 'Source Title' and '2010 SNIP' columns to new df SNIP_2010 = SNIP_2010.fillna(0) # replacing NaN values with 0 #print SNIP_2010 #print our_SNIP xarray = [] xarray2 = [] yarray = [] yarray2 = [] names = [] for name in oSNIPnames : a = our_SNIP['SNIP'][ our_SNIP['Jname']== name ].values b = SNIP_2010['2010 SNIP'][ SNIP_2010['Source Title'] == name ].values #if ( a != 0 and a <10 and b != 0 and b < 10 and a > 0.01 ) : if ( a != 0 and b!= 0 ) : xarray.append(our_SNIP['SNIP'][our_SNIP['Jname']== name ].values) yarray.append(SNIP_2010['2010 SNIP'][SNIP_2010['Source Title'] == name ].values) names.append(name) yarray = [float(i) for i in yarray] for item in yarray : yarray2.append(item) xarray = [float(i) for i in xarray] for item in xarray : xarray2.append(item) print len(xarray) print len(yarray) print len(names) print "\n\n" data = [names,xarray,yarray] with open('../data/SNIP_ourSNIP_ALL.csv','wb') as f: out = csv.writer(f, delimiter=',',quoting=csv.QUOTE_ALL) out.writerows(zip(*data))
mit
willu47/pyrate
pyrate/utils.py
1
9677
import datetime from geographiclib.geodesic import Geodesic from geopy.distance import distance def valid_mmsi(mmsi): """Checks if a given MMSI number is valid. Arguments --------- mmsi : int An MMSI number Returns ------- Returns True if the MMSI number is 9 digits long. """ return not mmsi is None and len(str(int(mmsi))) == 9 VALID_MESSAGE_IDS = range(1, 28) def valid_message_id(message_id): return message_id in VALID_MESSAGE_IDS VALID_NAVIGATIONAL_STATUSES = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15]) def valid_navigational_status(status): return status in VALID_NAVIGATIONAL_STATUSES def valid_longitude(lon): """Check valid longitude. Arguments --------- lon : integer A longitude Returns ------- True if the longitude is valid """ return lon != None and lon >= -180 and lon <= 180 def valid_latitude(lat): """Check valid latitude. Arguments --------- lon : integer A latitude Returns ------- True if the latitude is valid """ return lat != None and lat >= -90 and lat <= 90 def valid_imo(imo=0): """Check valid IMO using checksum. Arguments --------- imo : integer An IMO ship identifier Returns ------- True if the IMO number is valid Notes ----- Taken from Eoin O'Keeffe's `checksum_valid` function in pyAIS """ try: str_imo = str(int(imo)) if len(str_imo) != 7: return False sum_val = 0 for ii, chk in enumerate(range(7, 1, -1)): sum_val += chk * int(str_imo[ii]) if str_imo[6] == str(sum_val)[len(str(sum_val))-1]: return True except: return False return False def is_valid_sog(sog): """Validates speed over ground Arguments --------- sog : float Speed over ground Returns ------- True if speed over ground is greater than zero and less than 102.2 """ return sog >= 0 and sog <= 102.2 def is_valid_cog(cog): """Validates course over ground Arguments --------- cog : float Course over ground Returns ------- True if course over ground is greater than zero and less than 360 degrees """ return cog >= 0 and cog < 360 def is_valid_heading(heading): """Validates heading Arguments --------- heading : float The heading of the ship in degrees Returns ------- True if heading is greater than zero and less than 360 degrees """ try: return (heading >= 0 and heading < 360) or heading == 511 except: #getting errors on none type for heading return False def speed_calc(msg_stream, index1, index2): """Computes the speed between two messages in the message stream Parameters ---------- msg_stream : A list of dictionaries representing AIS messages for a single MMSI number. Dictionary keys correspond to the column names from the `ais_clean` table. The list of messages should be ordered by timestamp in ascending order. index1 : int The index of the first message index2 : int The index of the second message Returns ------- timediff : datetime The difference in time between the two messages in datetime dist : float The distance between messages in nautical miles speed : float The speed in knots """ timediff = abs(msg_stream[index2]['Time'] - msg_stream[index1]['Time']) try: dist = distance((msg_stream[index1]['Latitude'], msg_stream[index1]['Longitude']),\ (msg_stream[index2]['Latitude'], msg_stream[index2]['Longitude'])).m except ValueError: dist = Geodesic.WGS84.Inverse(msg_stream[index1]['Latitude'], msg_stream[index1]['Longitude'],\ msg_stream[index2]['Latitude'], msg_stream[index2]['Longitude'])['s12'] #in metres if timediff > datetime.timedelta(0): convert_metres_to_nautical_miles = 0.0005399568 speed = (dist * convert_metres_to_nautical_miles) / (timediff.days * 24 + timediff.seconds / 3600) else: speed = 102.2 return timediff, dist, speed def detect_location_outliers(msg_stream, as_df=False): """Detects outlier messages by submitting messages to a speed test The algorithm proceeds as follows: 1) Create a linked list of all messages with non-null locations (pointing to next message) 2) Loop through linked list and check for location outliers: * A location outlier is who does not pass the speed test (<= 50kn; link is 'discarded' when not reached in time) * No speed test is performed when - distance too small (< 0.054nm ~ 100m; catches most positioning inaccuracies) => no outlier - time gap too big (>= 215h ~ 9d; time it takes to get anywhere on the globe at 50kn not respecting land) => next message is new 'start' If an alledged outlier is found its link is set to be the current message's link 3) The start of a linked list becomes special attention: if speed check fails, the subsequent link is tested Line of thinking is: Can I get to the next message in time? If not 'next' must be an outlier, go to next but one. Parameters ---------- msg_stream : A list of dictionaries representing AIS messages for a single MMSI number. Dictionary keys correspond to the column names from the `ais_clean` table. The list of messages should be ordered by timestamp in ascending order. as_df : bool, optional Set to True if `msg_stream` are passed as a pandas DataFrame Returns ------- outlier_rows : The rows in the message stream which are outliers """ if as_df: raise NotImplementedError('msg_stream cannot be DataFrame, as_df=True does not work yet.') # 1) linked list linked_rows = [None]*len(msg_stream) link = None has_location_count = 0 for row_index in reversed(range(len(msg_stream))): if msg_stream[row_index]['Longitude'] is not None and msg_stream[row_index]['Latitude'] is not None: linked_rows[row_index] = link link = row_index has_location_count = has_location_count + 1 # 2) outlier_rows = [False] * len(msg_stream) if has_location_count < 2: # no messages that could be outliers available return outlier_rows index = next((i for i, j in enumerate(linked_rows) if j), None) at_start = True while linked_rows[index] is not None: # time difference, distance and speed beetween rows of index and corresponding link timediff, dist, speed = speed_calc(msg_stream, index, linked_rows[index]) if timediff > datetime.timedelta(hours=215): index = linked_rows[index] at_start = True #restart elif dist < 100: index = linked_rows[index] #skip over gap (at_start remains same) elif speed > 50: if at_start is False: #for now just skip single outliers, i.e. test current index with next but one outlier_rows[linked_rows[index]] = True linked_rows[index] = linked_rows[linked_rows[index]] elif at_start is True and linked_rows[linked_rows[index]] is None: #no subsequent message outlier_rows[index] = True outlier_rows[linked_rows[index]] = True index = linked_rows[index] else: # explore first three messages A, B, C (at_start is True) indexA = index indexB = linked_rows[index] indexC = linked_rows[indexB] timediffAC, distAC, speedAC = speed_calc(msg_stream, indexA, indexC) timediffBC, distBC, speedBC = speed_calc(msg_stream, indexB, indexC) #if speedtest A->C ok or distance small, then B is outlier, next index is C if timediffAC <= datetime.timedelta(hours=215) and (distAC < 100 or speedAC <= 50): outlier_rows[indexB] = True index = indexC at_start = False #elif speedtest B->C ok or distance, then A is outlier, next index is C elif timediffBC <= datetime.timedelta(hours=215) and (distBC < 100 or speedBC <= 50): outlier_rows[indexA] = True index = indexC at_start = False #else bot not ok, dann A and B outlier, set C to new start else: outlier_rows[indexA] = True outlier_rows[indexB] = True index = indexC at_start = True else: #all good index = linked_rows[index] at_start = False return outlier_rows def interpolate_passages(msg_stream): """Interpolate far apart points in an ordered stream of messages. Parameters ---------- msg_stream : A list of dictionaries representing AIS messages for a single MMSI number. Dictionary keys correspond to the column names from the `ais_clean` table. The list of messages should be ordered by timestamp in ascending order. Returns ------- artificial_messages : list A list of artificial messages to fill in gaps/navigate around land. """ artificial_messages = [] return artificial_messages
mit
plazowicz/salib
salib/models/svm/preprocess_gop.py
1
1829
""" Dumps gop debate data into pickle, structure: { id: "sentences":[[first sentence], [second, sentence]], "label": label } """ import argparse import pickle import pandas as pd from __builtin__ import unicode from nltk.tokenize.casual import TweetTokenizer def main(): data_path = '../../data/GOP_REL_ONLY.csv' out_path = '../../data/gop_data.pkl' data = {} df = pd.read_csv(data_path) tokenizer = TweetTokenizer(strip_handles=True, reduce_len=True) for idx, row_data in enumerate(df.iterrows()): row = row_data[1] data[idx] = { "candidate": row[0], "candidate:confidence": str(row[1]), "sentiment": row[4], "sentiment:confidence": float(row[5]), "subject_matter": row[6], "text": tokenizer.tokenize(unicode(row[14], errors='ignore')), "tweet_location": row[18] } with open(out_path, 'w') as f_out: pickle.dump(data, f_out) def make_id_mapping(dict): result = {} for key, value in dict.iteritems(): result[value] = key return result def preprocess_imdb(imdb, imdb_data_dict): with open(imdb, 'r') as f_in: imdb_data = pickle.load(f_in) with open(imdb_data_dict, 'r') as f_in: imdb_dict = pickle.load(f_in) data = {} mapping = make_id_mapping(imdb_dict) i = 0 for ids, labels in zip(imdb_data[0], imdb_data[1]): text = [] for id in ids: text.append(mapping[id]) data[i] = { 'sentiment': labels, 'text': text } i += 1 with open('../../data/imdb_data.pkl', 'w') as f_out: pickle.dump(data, f_out) if __name__ == '__main__': preprocess_imdb('../lstm/imdb.pkl', '../lstm/imdb.dict.pkl')
mit
NeuralEnsemble/NeuroTools
examples/matlab_vs_python/smallnet_inlineC.py
3
5107
# Created by Eugene M. Izhikevich, 2003 Modified by S. Fusi 2007 # Ported to Python by Eilif Muller, 2008. # # Notes: # # Requires matplotlib,ipython,numpy>=1.0.3 # On a debian/ubuntu based system: # $ apt-get install python-matplotlib python-numpy ipython # # Start ipython with threaded plotting support: # $ ipython -pylab # # At the resulting prompt, run the file by: # In [1]: execfile('smallnet.py') # Modules required import numpy import numpy.random as random # Bug fix for numpy version 1.0.4 for numpy.histogram numpy.lib.function_base.any = numpy.any # For inline C optimization from scipy import weave # For measuring performance import time t1 = time.time() # Excitatory and inhibitory neuron counts Ne = 1000 Ni = 4 N = Ne+Ni # Synaptic couplings Je = 250.0/Ne Ji = 0.0 # Synaptic couplings (mV) #S = numpy.zeros((N,N)) #S[:,:Ne] = Je*random.uniform(size=(N,Ne)) #S[:,Ne:] = -Ji*random.uniform(size=(N,Ni)) # Connectivity #S[:,:Ne][random.uniform(size=(N,Ne))-0.9<=0.0]=0.0 #S[:,Ne:][random.uniform(size=(N,Ni))-0.9<=0.0]=0.0 # 10% Connectivity targets = [] weights = [] # excitatory for i in xrange(Ne): targets.append(random.permutation(numpy.arange(N))[:random.poisson(N*0.1)]) weights.append(Je*ones_like(targets[i])) # inhibitory for i in xrange(Ne,N): targets.append(random.permutation(numpy.arange(N))[:random.poisson(N*0.1)]) weights.append(-Ji*ones_like(targets[i])) # Statistics of the background external current #mb = 3.0; sb = 4.0 #mue = mb; sigmae=sb #sigmai = 0.0 # State variable v, initial value of 0 v = numpy.zeros(N) # Refractory period state variable r = numpy.zeros(N) # storage for intermediate calculations I = numpy.zeros(N) Isyn = numpy.zeros(N) # Spike timings in a list spikes = [[] for x in xrange(N)] #print 'mu(nu=5Hz)=%f' % (mb+Ne*Je*.015-leak,) #print 'mu(nu=100Hz)=%f' % (mb+Ne*Je*.1-leak,) # total duration of the simulation (ms) dt = 0.05 duration = 400.0 t = numpy.arange(0.0,duration,dt) vt = numpy.zeros_like(t) # This is inline C code c_code = """ const double mb = 3.0; const double sb = 4.0; double mue = mb; double sigmae = sb; double sigmai = 0.0; //double dt = 0.05; // (ms) double leak = 5.0; // (mV/ms) double sdt = sqrt(dt); double reset = 0.0; //(mV) double refr = 2.5; //(ms) double threshold = 20.0; //(mv) double Je = 250.0/Ne; double Ji = 0.0; int i,j,k; // GSL random number generation setup const gsl_rng_type * T_gsl; gsl_rng * r_gsl; gsl_rng_env_setup(); T_gsl = gsl_rng_default; r_gsl = gsl_rng_alloc (T_gsl); py::list l; for(i=0;i<Nt[0];i++) { // time for a strong external input if (t(i)>150.0) { mue = 6.5; sigmae = 7.5; } // time to restore the initial statistics of the external input if (t(i)>300.0) { mue = mb; sigmae = sb; } // Noise plus synaptic input from last step for (j=0;j<Ne;j++) { I(j)=sdt*sigmae*gsl_ran_gaussian(r_gsl,1.0)+Isyn(j); //I(j) = 0.0; Isyn(j)=0.0; } for (j=Ne;j<N;j++) { I(j)=sdt*sigmai*gsl_ran_gaussian(r_gsl,1.0)+Isyn(j); //I(j)=0.0; Isyn(j)=0.0; } // Euler's method for each neuron for (j=0;j<N;j++) { if (v(j)>=threshold) { l = py::list((PyObject*)(spikes[j])); l.append(t(i)); for (k=0;k<targets[j].size();k++) { Isyn(targets[j][k]) += (const double)weights[j][k]; } v(j) = reset; r(j) = refr; } if(r(j)<0) { I(j) -= dt*(leak-mue); v(j) +=I(j); v(j) = v(j)>=0.0 ? v(j) : 0.0; } else { r(j)-=dt; } } vt(i) = v(0); } // Clean-up the GSL random number generator gsl_rng_free (r_gsl); l = py::list((PyObject*)spikes[0]); l.append(3.0); """ t2 = time.time() print 'Elapsed time is ', str(t2-t1), ' seconds.' t1 = time.time() weave.inline(c_code, ['v','r','t','vt','dt', 'spikes','I','Isyn','Ne','Ni','N','targets','weights'], type_converters=weave.converters.blitz, headers = ["<gsl/gsl_rng.h>", "<gsl/gsl_randist.h>"], libraries = ["gsl","gslcblas"]) t2 = time.time() print 'Elapsed time is ', str(t2-t1), ' seconds.' def myplot(): global firings t1 = time.time() figure() # Membrane potential trace of the zeroeth neuron subplot(3,1,1) vt[vt>=20.0]=65.0 plot(t,vt) ylabel(r'$V-V_{rest}\ \left[\rm{mV}\right]$') # Raster plot of the spikes of the network subplot(3,1,2) myfirings = array(firings) myfirings_100 = myfirings[myfirings[:,0]<min(100,Ne)] plot(myfirings_100[:,1],myfirings_100[:,0],'.') axis([0, duration, 0, min(100,Ne)]) ylabel('Neuron index') # Mean firing rate of the excitatory population as a function of time subplot(3,1,3) # 1 ms resultion of rate histogram dx = 1.0 x = arange(0,duration,dx) myfirings_Ne = myfirings[myfirings[:,0]<Ne] mean_fe,x = numpy.histogram(myfirings_Ne[:,1],x) plot(x,mean_fe/dx/Ne*1000.0,ls='steps') ylabel('Hz') xlabel('time [ms]') t2 = time.time() print 'Finished. Elapsed', str(t2-t1), ' seconds.' #myplot()
gpl-2.0
bmazin/SDR
Setup/PSFit_ml_diffAttens.py
1
40224
''' Author Rupert Dodkins A script to automate the identification of resonator attenuations normally performed by PSFit.py. This is accomplished using Google's Tensor Flow machine learning package which implements a pattern recognition algorithm on the IQ velocity spectrum. The code implements a 2D image classification algorithm similar to the MNIST test. This code creates a 2D image from a 1D variable by populating a matrix of zeros with ones at the y location of each datapoint Usage: python PSFit_ml.py 20160712/ps_r115_FL1_1_20160712-225809.h5 20160720/ps_r118_FL1_b_pos_20160720-231653.h5 Inputs: 20160712/ps_r115_FL1_1.txt: list of resonator frequencies and correct attenuations 20160712/ps_r115_FL1_1_20160712-225809.h5: corresponding powersweep file 20160720/ps_r118_FL1_b_pos_20160720-231653.h5: powersweep file the user wishes to infer attenuations for Intermediaries: SDR/Setup/ps_peaks_train_w<x>_s<y>.pkl: images and corresponding labels used to train the algorithm Outputs: 20160712/ps_r115_FL1_1.pkl: frequencies, IQ velocities, Is, Qs, attenuations formatted for quick use 20160720/ps_r118_FL1_b_pos_20160720-231653-ml.txt: to be used with PSFit.py (temporary) 20160720/ps_r118_FL1_b_pos.txt: final list of frequencies and attenuations How it works: For each resonator and attenuation the script first assesses if the IQ loop appears saturated. If the unstaurated IQ velocity spectrum for that attenuation is compared with the pattern recognition machine. A list of attenuations for each resonator, where the loop is not saturated and the IQ velocity peak looks the correct shape, and the attenuation value is chosen which has the highest 2nd largest IQ velocity. This identifier was chosen because the optimum attenuation value has a high max IQ velocity and a low ratio of max IQ velocity to 2nd max IQ velocity which is equivalent to choosing the highest 2nd max IQ velocity. This list of attenuation values and frequencies are either fed PSFit.py to checked manually or dumped to ps_r118_FL1_b_pos.txt The machine learning algorithm requires a series of images to train and test the algorithm with. If they exist the image data will be loaded from a train pkl file Alternatively, if the user does not have a train pkl file but does have a powersweep file and corresponding list of resonator attenuations this should be used as the initial file and training data will be made. The 3 classes are an overpowered peak (saturated), peak with the correct amount of power, or an underpowered peak. These new image data will be saved as pkl files (or appened to existing pkl files) and reloaded The machine is then trained and its ability to predict the type of image is validated The weights used to make predictions for each class can be displayed using the plotWeights function to do: change training txt file freq comparison function so its able to match all frequencies ''' import os,sys,inspect from PSFit import * from lib.iqsweep import * import numpy as np import sys, os import matplotlib.pyplot as plt import tensorflow as tf import pickle import random import time import math from scipy import interpolate #removes visible depreciation warnings from lib.iqsweep import warnings warnings.filterwarnings("ignore") class PSFitting(): '''Class has been lifted from PSFit.py and modified to incorporate the machine learning algorithms from WideAna_ml.py ''' def __init__(self, initialFile=None): self.initialFile = initialFile self.resnum = 0 def loadres(self): ''' Outputs Freqs: the span of frequencies for a given resonator iq_vels: the IQ velocities for all attenuations for a given resonator Is: the I component of the frequencies for a given resonator Qs: the Q component of the frequencies for a given resonator attens: the span of attenuations. The same for all resonators ''' self.Res1=IQsweep() self.Res1.LoadPowers(self.initialFile, 'r0', self.freq[self.resnum]) self.resfreq = self.freq[self.resnum] self.NAttens = len(self.Res1.atten1s) self.res1_iq_vels=numpy.zeros((self.NAttens,self.Res1.fsteps-1)) self.res1_iq_amps=numpy.zeros((self.NAttens,self.Res1.fsteps)) for iAtt in range(self.NAttens): for i in range(1,self.Res1.fsteps-1): self.res1_iq_vels[iAtt,i]=sqrt((self.Res1.Qs[iAtt][i]-self.Res1.Qs[iAtt][i-1])**2+(self.Res1.Is[iAtt][i]-self.Res1.Is[iAtt][i-1])**2) self.res1_iq_amps[iAtt,:]=sqrt((self.Res1.Qs[iAtt])**2+(self.Res1.Is[iAtt])**2) #Sort the IQ velocities for each attenuation, to pick out the maximums sorted_vels = numpy.sort(self.res1_iq_vels,axis=1) #Last column is maximum values for each atten (row) self.res1_max_vels = sorted_vels[:,-1] #Second to last column has second highest value self.res1_max2_vels = sorted_vels[:,-2] #Also get indices for maximum of each atten, and second highest sort_indices = numpy.argsort(self.res1_iq_vels,axis=1) max_indices = sort_indices[:,-1] max2_indices = sort_indices[:,-2] max_neighbor = max_indices.copy() #for each attenuation find the ratio of the maximum velocity to the second highest velocity self.res1_max_ratio = self.res1_max_vels.copy() max_neighbors = zeros(self.NAttens) max2_neighbors = zeros(self.NAttens) self.res1_max2_ratio = self.res1_max2_vels.copy() for iAtt in range(self.NAttens): if max_indices[iAtt] == 0: max_neighbor = self.res1_iq_vels[iAtt,max_indices[iAtt]+1] elif max_indices[iAtt] == len(self.res1_iq_vels[iAtt,:])-1: max_neighbor = self.res1_iq_vels[iAtt,max_indices[iAtt]-1] else: max_neighbor = maximum(self.res1_iq_vels[iAtt,max_indices[iAtt]-1], self.res1_iq_vels[iAtt,max_indices[iAtt]+1]) max_neighbors[iAtt]=max_neighbor self.res1_max_ratio[iAtt] = self.res1_max_vels[iAtt]/max_neighbor if max2_indices[iAtt] == 0: max2_neighbor = self.res1_iq_vels[iAtt,max2_indices[iAtt]+1] elif max2_indices[iAtt] == len(self.res1_iq_vels[iAtt,:])-1: max2_neighbor = self.res1_iq_vels[iAtt,max2_indices[iAtt]-1] else: max2_neighbor = maximum(self.res1_iq_vels[iAtt,max2_indices[iAtt]-1], self.res1_iq_vels[iAtt,max2_indices[iAtt]+1]) max2_neighbors[iAtt]=max2_neighbor self.res1_max2_ratio[iAtt] = self.res1_max2_vels[iAtt]/max2_neighbor #normalize the new arrays self.res1_max_vels /= numpy.max(self.res1_max_vels) self.res1_max_vels *= numpy.max(self.res1_max_ratio) self.res1_max2_vels /= numpy.max(self.res1_max2_vels) max_ratio_threshold = 2.5#1.5 rule_of_thumb_offset = 1#2 # require ROTO adjacent elements to be all below the MRT bool_remove = np.ones(len(self.res1_max_ratio)) for ri in range(len(self.res1_max_ratio)-rule_of_thumb_offset-2): bool_remove[ri] = bool((self.res1_max_ratio[ri:ri+rule_of_thumb_offset+1]< max_ratio_threshold).all()) guess_atten_idx = np.extract(bool_remove,np.arange(len(self.res1_max_ratio))) # require the attenuation value to be past the initial peak in MRT guess_atten_idx = guess_atten_idx[where(guess_atten_idx > argmax(self.res1_max_ratio) )[0]] if size(guess_atten_idx) >= 1: if guess_atten_idx[0]+rule_of_thumb_offset < len(self.Res1.atten1s): guess_atten_idx[0] += rule_of_thumb_offset guess_atten_idx = int(guess_atten_idx[0]) else: guess_atten_idx = self.NAttens/2 return {'freq': self.Res1.freq, 'iq_vels': self.res1_iq_vels, 'Is': self.Res1.Is, 'Qs': self.Res1.Qs, 'attens':self.Res1.atten1s} def loadps(self): hd5file=openFile(self.initialFile,mode='r') group = hd5file.getNode('/','r0') self.freq=empty(0,dtype='float32') for sweep in group._f_walkNodes('Leaf'): k=sweep.read() self.scale = k['scale'][0] #print "Scale factor is ", self.scale self.freq=append(self.freq,[k['f0'][0]]) hd5file.close() class mlClassification(): def __init__(self, initialFile=None): ''' Implements the machine learning pattern recognition algorithm on IQ velocity data as well as other tests to choose the optimum attenuation for each resonator ''' self.nClass = 3 self.xWidth = 40#np.shape(res1_freqs[1]) self.scalexWidth = 0.5 self.oAttDist = -1 # rule of thumb attenuation steps to reach the overpowered peak #self.uAttDist = +2 # rule of thumb attenuation steps to reach the underpowed peak self.initialFile = initialFile self.baseFile = ('.').join(initialFile.split('.')[:-1]) self.PSFile = self.baseFile[:-16] + '.txt'#os.environ['MKID_DATA_DIR']+'20160712/ps_FL1_1.txt' # power sweep fit, .txt self.trainFile = 'ps_peaks_train_w%i_s%.2f.pkl' % (self.xWidth, self.scalexWidth) self.trainFrac = 0.8 self.testFrac=1 - self.trainFrac def makeWindowImage(self, res_num, iAtten, xCenter, showFrames=False, test_if_noisy=False): '''Using a given x coordinate a frame is created at that location of size xWidth x xWidth, and then flattened into a 1d array. Called multiple times in each function. inputs xCenter: center location of frame in wavelength space res_num: index of resonator in question iAtten: index of attenuation in question self.scalexWidth: typical values: 1/2, 1/4, 1/8 uses interpolation to put data from an xWidth x xWidth grid to a (xWidth/scalexWidth) x (xWidth/scalexWidth) grid. This allows the user to probe the spectrum using a smaller window while utilizing the higher resolution training data showFrames: pops up a window of the frame plotted using matplotlib.plot test_if_noisy: test spectrum by comparing heights of the outer quadrants to the center. A similar test to what the pattern recognition classification does ''' xWidth= self.xWidth start = int(xCenter - xWidth/2) end = int(xCenter + xWidth/2) scalexWidth = self.scalexWidth # for spectra where the peak is close enough to the edge that some points falls across the bounadry, pad zeros if start < 0: start_diff = abs(start) start = 0 iq_vels = self.iq_vels[res_num, iAtten, start:end] iq_vels = np.lib.pad(iq_vels, (start_diff,0), 'constant', constant_values=(0)) elif end >= np.shape(self.freqs)[1]: iq_vels = self.iq_vels[res_num, iAtten, start:end] iq_vels = np.lib.pad(iq_vels, (0,end-np.shape(self.freqs)[1]+1), 'constant', constant_values=(0)) else: iq_vels = self.iq_vels[res_num, iAtten, start:end] iq_vels = np.round(iq_vels * xWidth / max(self.iq_vels[res_num, iAtten, :]) ) if showFrames: fig = plt.figure(frameon=False) fig.add_subplot(111) plt.plot( iq_vels) plt.ylim((0,xWidth)) plt.show() plt.close() # interpolate iq_vels onto a finer grid if scalexWidth!=None: x = np.arange(0, xWidth+1) iq_vels = np.append(iq_vels, iq_vels[-1]) f = interpolate.interp1d(x, iq_vels) xnew = np.arange(0, xWidth, scalexWidth) iq_vels = f(xnew)/ scalexWidth xWidth = int(xWidth/scalexWidth) if test_if_noisy: peak_iqv = mean(iq_vels[int(xWidth/4): int(3*xWidth/4)]) nonpeak_indicies=np.delete(np.arange(xWidth),np.arange(int(xWidth/4),int(3*xWidth/4))) nonpeak_iqv = iq_vels[nonpeak_indicies] nonpeak_iqv = mean(nonpeak_iqv[np.where(nonpeak_iqv!=0)]) # since it spans a larger area noise_condition = 0.7 if (peak_iqv/nonpeak_iqv < noise_condition): return None # populates 2d image with ones at location of iq_vel image = np.zeros((xWidth, xWidth)) for i in range(xWidth-1): if iq_vels[i]>=xWidth: iq_vels[i] = xWidth-1 if iq_vels[i] < iq_vels[i+1]: image[int(iq_vels[i]):int(iq_vels[i+1]),i]=1 else: image[int(iq_vels[i]):int(iq_vels[i-1]),i]=1 if iq_vels[i] == iq_vels[i+1]: image[int(iq_vels[i]),i]=1 try: image[map(int,iq_vels), range(xWidth)]=1 except IndexError: pass image = image.flatten() return image def get_peak_idx(self,res_num,iAtten): print 'IQVel Shape', shape(self.iq_vels) print 'res_num, iAtten', res_num, iAtten return argmax(self.iq_vels[res_num,iAtten,:]) def makeTrainData(self): '''creates images of each class with associated labels and saves to pkl file 0: saturated peak, too much power 1: goldilocks, not too narrow or short 2: underpowered peak, too little power outputs train file.pkl. contains... trainImages: cube of size- xWidth * xWidth * xCenters*trainFrac trainLabels: 1d array of size- xCenters*trainFrac testImages: cube of size- xWidth * xWidth * xCenters*testFrac testLabels: 1d array of size- xCenters*testFrac ''' self.freqs, self.iq_vels,self.Is,self.Qs, self.attens = get_PS_data_all_attens(h5File=initialFile, searchAllRes=True) self.res_nums = np.shape(self.freqs)[0] if os.path.isfile(self.PSFile): print 'loading peak location data from %s' % self.PSFile PSFile = np.loadtxt(self.PSFile, skiprows=0)[:self.res_nums] print 'psfile shape', PSFile.shape good_res = np.array(PSFile[:,0]-PSFile[0,0],dtype='int') self.res_nums = len(good_res) print 'goodres',good_res print 'resnums', self.res_nums #print 'good_res', good_res opt_freqs = PSFile[:,1] opt_attens = PSFile[:,2] self.attens = self.attens[good_res,:] #print 'Min Atten', min(opt_attens) print 'opt_attens shape', shape(opt_attens) print 'self.attens shape', shape(self.attens) #print 'self.attens', self.attens #print 'opt attens range', max(opt_attens)-min(opt_attens) optAttenLocs = np.where(np.transpose(np.transpose(np.array(self.attens))==np.array(opt_attens))) #find optimal atten indices #print np.array(self.attens) #print np.array(opt_attens) #print np.transpose(opt_attens)==self.attens optAttenExists = optAttenLocs[0] self.opt_iAttens = optAttenLocs[1] attenSkips = optAttenLocs[0]-np.arange(len(optAttenLocs[0])) attenSkips = np.where(np.diff(attenSkips))[0]+1 #indices where opt atten was not found for resSkip in attenSkips: print 'resSkip', resSkip if(opt_attens[resSkip]<self.attens[resSkip,0]): opt_attens[resSkip] = self.attens[resSkip,0] self.opt_iAttens = np.insert(self.opt_iAttens,resSkip,0) elif(opt_attens[resSkip]>self.attens[resSkip,-1]): opt_attens[resSkip] = self.attens[resSkip,-1] self.opt_iAttens = np.insert(self.opt_iAttens,resSkip,np.shape(self.attens)[1]-1) print '129 opt_atten', opt_attens[129] print '129 atten', self.attens[129,:] print '129 opt_freq', opt_freqs[129] print '129 freq', self.freqs[129] print 'opt_iAtten shape', np.shape(self.opt_iAttens) #self.opt_iAttens = opt_attens - min(opt_attens) print 'attenSkipIndices', attenSkips else: print 'no PS.txt file found' exit() #good_res = np.arange(self.res_nums) iAttens = np.zeros((self.res_nums,self.nClass)) iAttens[:,0] = self.opt_iAttens[:self.res_nums] + self.oAttDist iAttens[:,1] = self.opt_iAttens[:self.res_nums] # goldilocks attenuation iAttens[:,2] = np.ones((self.res_nums))*20#self.opt_iAttens[:self.res_nums] + self.uAttDist lb_rej = np.where(iAttens[:,0]<0)[0] print 'lb_rej', lb_rej if len(lb_rej) != 0: iAttens = np.delete(iAttens,lb_rej,axis=0) # when index is below zero good_res = np.delete(good_res,lb_rej) self.res_nums = self.res_nums-len(lb_rej) ub_rej = np.where(iAttens[:,2]>len(self.attens))[0] if len(ub_rej) != 0: iAttens = np.delete(iAttens,ub_rej,axis=0) good_res = np.delete(good_res,ub_rej) self.res_nums = self.res_nums-len(ub_rej) self.res_indicies = np.zeros((self.res_nums,self.nClass)) print 'goodresshape', np.shape(good_res) for i, rn in enumerate(good_res): self.res_indicies[i,0] = self.get_peak_idx(rn,iAttens[i,0]) self.res_indicies[i,1] = self.get_peak_idx(rn,iAttens[i,1]) self.res_indicies[i,2] = self.get_peak_idx(rn,iAttens[i,2]) self.iq_vels=self.iq_vels[good_res] self.freqs=self.freqs[good_res] self.Is = self.Is[good_res] self.Qs = self.Qs[good_res] trainImages, trainLabels, testImages, testLabels = [], [], [], [] for c in range(self.nClass): for rn in range(int(self.trainFrac*self.res_nums) ): image = self.makeWindowImage(res_num = rn, iAtten= iAttens[rn,c], xCenter=self.res_indicies[rn,c]) if image!=None: trainImages.append(image) one_hot = np.zeros(self.nClass) one_hot[c] = 1 trainLabels.append(one_hot) # A more simple way would be to separate the train and test data after they were read but this did not occur to me #before most of the code was written for c in range(self.nClass): for rn in range(int(self.trainFrac*self.res_nums), int(self.trainFrac*self.res_nums + self.testFrac*self.res_nums)) : image = self.makeWindowImage(res_num = rn, iAtten= iAttens[rn,c], xCenter=self.res_indicies[rn,c]) if image!=None: testImages.append(image) one_hot = np.zeros(self.nClass) one_hot[c] = 1 testLabels.append(one_hot) append = None if os.path.isfile(self.trainFile): append = raw_input('Do you want to append this training data to previous data [y/n]') if (append == 'y') or (os.path.isfile(self.trainFile)== False): print 'saving files %s & to %s' % (self.trainFile, os.path.dirname(os.path.abspath(self.trainFile)) ) with open(self.trainFile, 'ab') as tf: pickle.dump([trainImages, trainLabels], tf) pickle.dump([testImages, testLabels], tf) def mlClass(self): '''Code adapted from the tensor flow MNIST tutorial 1. Using training images and labels the machine learning class (mlClass) "learns" how to classify IQ velocity peaks. Using similar data the ability of mlClass to classify peaks is tested The training and test matricies are loaded from file (those made earlier if chosen to not be appended to file will not be used) ''' if not os.path.isfile(self.trainFile): self.makeTrainData() trainImages, trainLabels, testImages, testLabels = loadPkl(self.trainFile) print 'Number of training images:', np.shape(trainImages)[0], ' Number of test images:', np.shape(testImages)[0] if self.scalexWidth != None: self.xWidth = self.xWidth/self.scalexWidth if np.shape(trainImages)[1]!=self.xWidth**2: print 'Please make new training images of the correct size' exit() self.nClass = np.shape(trainLabels)[1] self.x = tf.placeholder(tf.float32, [None, self.xWidth**2]) # correspond to the images self.W = tf.Variable(tf.zeros([self.xWidth**2, self.nClass])) #the weights used to make predictions on classes self.b = tf.Variable(tf.zeros([self.nClass])) # the biases also used to make class predictions self.y = tf.nn.softmax(tf.matmul(self.x, self.W) + self.b) # class lables predictions made from x,W,b y_ = tf.placeholder(tf.float32, [None, self.nClass]) # true class lables identified by user cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(self.y,1e-10,1.0)) ) # find out how right you are by finding out how wrong you are train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) # the best result is when the wrongness is minimal init = tf.initialize_all_variables() self.sess = tf.Session() self.sess.run(init) # need to do this everytime you want to access a tf variable (for example the true class labels calculation or plotweights) trainReps = 500 batches = 100 if np.shape(trainLabels)[0]< batches: batches = np.shape(trainLabels)[0]/2 print 'Performing', trainReps, 'training repeats, using batches of', batches for i in range(trainReps): #perform the training step using random batches of images and according labels batch_xs, batch_ys = next_batch(trainImages, trainLabels, batches) self.sess.run(train_step, feed_dict={self.x: batch_xs, y_: batch_ys}) #calculate train_step using feed_dict print 'true class labels: ', self.sess.run(tf.argmax(y_,1), feed_dict={self.x: testImages, y_: testLabels})[:25] print 'class estimates: ', self.sess.run(tf.argmax(self.y,1), feed_dict={self.x: testImages, y_: testLabels})[:25] #1st 25 printed #print self.sess.run(self.y, feed_dict={self.x: testImages, y_: testLabels})[:100] # print the scores for each class correct_prediction = tf.equal(tf.argmax(self.y,1), tf.argmax(y_,1)) #which ones did it get right? accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) score = self.sess.run(accuracy, feed_dict={self.x: testImages, y_: testLabels}) * 100 print 'Accuracy of model in testing: ', score, '%' if score < 95: print 'Consider making more training images' del trainImages, trainLabels, testImages, testLabels def plotWeights(self): '''creates a 2d map showing the positive and negative weights for each class''' weights = self.sess.run(self.W) weights = np.reshape(weights,(self.xWidth,self.xWidth,self.nClass)) weights = np.flipud(weights) for nc in range(self.nClass): plt.imshow(weights[:,:, nc]) plt.title('class %i' % nc) plt.show() plt.close() def checkLoopAtten(self, res_num, iAtten, showLoop=False, min_theta = 135, max_theta = 200, max_ratio_threshold = 1.5): '''function to check if the IQ loop at a certain attenuation is saturated. 3 checks are made. if the angle on either side of the sides connected to the longest edge is < min_theta or > max_theta the loop is saturated. Or if the ratio between the 1st and 2nd largest edge is > max_ratio_threshold. A True result means that the loop is unsaturated. Inputs: res_num: index of resonator in question iAtten: index of attenuation in question showLoop: pops up a window of the frame plotted using matplotlib.plot min/max_theta: limits outside of which the loop is considered saturated max_ratio_threshold: maximum largest/ 2nd largest IQ velocity allowed before loop is considered saturated Output: Boolean. True if unsaturated ''' vindx = (-self.iq_vels[res_num,iAtten,:]).argsort()[:3] max_theta_vel = math.atan2(self.Qs[res_num,iAtten,vindx[0]-1] - self.Qs[res_num,iAtten,vindx[0]], self.Is[res_num,iAtten,vindx[0]-1] - self.Is[res_num,iAtten,vindx[0]]) low_theta_vel = math.atan2(self.Qs[res_num,iAtten,vindx[0]-2] - self.Qs[res_num,iAtten,vindx[0]-1], self.Is[res_num,iAtten,vindx[0]-2] - self.Is[res_num,iAtten,vindx[0]-1]) upp_theta_vel = math.atan2(self.Qs[res_num,iAtten,vindx[0]] - self.Qs[res_num,iAtten,vindx[0]+1], self.Is[res_num,iAtten,vindx[0]] - self.Is[res_num,iAtten,vindx[0]+1]) theta1 = (math.pi + max_theta_vel - low_theta_vel)/math.pi * 180 theta2 = (math.pi + upp_theta_vel - max_theta_vel)/math.pi * 180 theta1 = abs(theta1) if theta1 > 360: theta1 = theta1-360 theta2= abs(theta2) if theta2 > 360: theta2 = theta2-360 max_ratio = self.iq_vels[res_num,iAtten,vindx[0]]/ self.iq_vels[res_num,iAtten,vindx[1]] if showLoop: plt.plot(self.Is[res_num,iAtten,:],self.Qs[res_num,iAtten,:]) plt.show() return bool((max_theta >theta1 > min_theta) * (max_theta > theta2 > min_theta) * (max_ratio < max_ratio_threshold)) def findAtten(self, inferenceFile, wsFile, res_nums =20, searchAllRes=True, showFrames = True, usePSFit=True, useWSID=True): '''The trained machine learning class (mlClass) finds the optimum attenuation for each resonator using peak shapes in IQ velocity Inputs inferenceFile: widesweep data file to be used searchAllRes: if only a few resonator attenuations need to be identified set to False res_nums: if searchAllRes is False, the number of resonators the atteunation value will be estimated for usePSFit: if true once all the resonator attenuations have been estimated these values are fed into PSFit which opens the window where the user can manually check all the peaks have been found and make corrections if neccessary Outputs Goodfile: either immediately after the peaks have been located or through WideAna if useWideAna =True mlFile: temporary file read in to PSFit.py containing an attenuation estimate for each resonator ''' try: self.sess except AttributeError: print 'You have to train the model first' exit() if self.scalexWidth!= None: self.xWidth=self.xWidth*self.scalexWidth #reset ready for get_PS_data self.freqs, self.iq_vels, self.Is, self.Qs, self.attens = get_PS_data(h5File=inferenceFile, searchAllRes=searchAllRes, res_nums=res_nums) total_res_nums = np.shape(self.freqs)[0] print 'number of res in sweep file', total_res_nums print 'freqs', self.freqs print 'freqShape', np.shape(self.freqs) if searchAllRes: res_nums = total_res_nums span = range(res_nums) self.inferenceLabels = np.zeros((res_nums,len(self.attens),self.nClass)) print 'Using trained algorithm on images on each resonator' skip = [] for i,rn in enumerate(span): sys.stdout.write("\r%d of %i" % (i+1,res_nums) ) sys.stdout.flush() for ia in range(len(self.attens)): # first check the loop for saturation nonsaturated_loop = self.checkLoopAtten(res_num=rn, iAtten= ia, showLoop=showFrames) if nonsaturated_loop: # each image is formatted into a single element of a list so sess.run can receive a single values dictionary # argument and save memory image = self.makeWindowImage(res_num = rn, iAtten= ia, xCenter=self.get_peak_idx(rn,ia), showFrames=showFrames) inferenceImage=[] inferenceImage.append(image) # inferenceImage is just reformatted image self.inferenceLabels[rn,ia,:] = self.sess.run(self.y, feed_dict={self.x: inferenceImage} ) del inferenceImage del image else: self.inferenceLabels[rn,ia,:] = [1,0,0] # would just skip these if certain if np.all(self.inferenceLabels[rn,:,1] ==0): # if all loops appear saturated for resonator then set attenuation to highest self.inferenceLabels[rn,-1,:] = [0,1,0] # or omit from list #skip.append(rn) print '\n' max_2nd_vels = np.zeros((res_nums,len(self.attens))) for r in range(res_nums): for iAtten in range(len(self.attens)): vindx = (-self.iq_vels[r,iAtten,:]).argsort()[:2] max_2nd_vels[r,iAtten] = self.iq_vels[r,iAtten,vindx[1]] atten_guess=numpy.zeros((res_nums)) # choose attenuation where there is the maximum in the 2nd highest IQ velocity for r in range(res_nums): class_guess = np.argmax(self.inferenceLabels[r,:,:], 1) if np.any(class_guess==1): atten_guess[r] = np.where(class_guess==1)[0][argmax(max_2nd_vels[r,:][np.where(class_guess==1)[0]] )] else: atten_guess[r] = argmax(self.inferenceLabels[r,:,1]) wsIds = np.loadtxt(wsFile)[:,0] if usePSFit: if skip != None: atten_guess = np.delete(atten_guess,skip) self.mlFile = ('.').join(inferenceFile.split('.')[:-1]) + '-ml.txt' if os.path.isfile(self.mlFile): self.mlFile = self.mlFile+time.strftime("-%Y-%m-%d-%H-%M-%S") #shutil.copy(self.mlFile, self.mlFile+time.strftime("-%Y-%m-%d-%H-%M-%S")) print 'wrote', self.mlFile mlf = open(self.mlFile,'wb') #mlf machine learning file is temporary for ag in atten_guess: line = "%12d\n" % ag mlf.write(line) mlf.close() #on ubuntu 14.04 and matplotlib-1.5.1 backend 'Qt4Agg' running matplotlib.show() prior to this causes segmentation fault os.system("python PSFit.py 1") #os.remove(self.mlFile) else: baseFile = ('.').join(inferenceFile.split('.')[:-1]) #saveFile = baseFile + '.txt' saveFile = baseFile[:-16] + '.txt' #saveFile = 'newAttens.txt' sf = open(saveFile,'wb') print 'saving file', saveFile print 'baseFile', baseFile #sf.write('1\t1\t1\t1 \n') for r in np.delete(range(len(atten_guess)),skip): line = "%4i \t %10.9e \t %4i \n" % (wsIds[r], self.freqs[r, self.get_peak_idx(r, atten_guess[r])], self.attens[atten_guess[r]] ) sf.write(line) print line sf.close() def next_batch(trainImages, trainLabels, batch_size): '''selects a random batch of batch_size from trainImages and trainLabels''' perm = random.sample(range(len(trainImages)), batch_size) trainImages = np.array(trainImages)[perm,:] trainLabels = np.array(trainLabels)[perm,:] return trainImages, trainLabels def loadPkl(filename): '''load the train and test data to train and test mlClass pkl file hirerachy is as follows: -The file is split in two, one side for train data and one side for test data -These halfs are further divdided into image data and labels -makeTrainData creates image data of size: xWidth * xWidth * res_nums and the label data of size: res_nums -each time makeTrainData is run a new image cube and label array is created and appended to the old data so the final size of the file is (xWidth * xWidth * res_nums * "no of train runs") + (res_nums * "no of train runs") + [the equivalent test data structure] A more simple way would be to separate the train and test data after they were read but this did not occur to the me before most of the code was written Input pkl filename to be read. Outputs image cube and label array ''' file =[] with open(filename, 'rb') as f: while 1: try: file.append(pickle.load(f)) except EOFError: break trainImages = file[0][0] trainLabels = file[0][1] testImages = file[1][0] testLabels = file[1][1] if np.shape(file)[0]/2 > 1: for i in range(1, np.shape(file)[0]/2-1): trainImages = np.append(trainImages, file[2*i][0], axis=0) trainLabels = np.append(trainLabels, file[2*i][1], axis=0) testImages = np.append(testImages, file[2*i+1][0], axis=0) testLabels = np.append(testLabels, file[2*i+1][1], axis=0) print "loaded dataset from ", filename return trainImages, trainLabels, testImages, testLabels def get_PS_data(h5File=None, searchAllRes=False, res_nums=50): '''A function to read and write all resonator information so stop having to run the PSFit function on all resonators if running the script more than once. This is used on both the initial and inference file Inputs: h5File: the power sweep h5 file for the information to be extracted from. Can be initialFile or inferenceFile ''' print 'get_PS_data H5 file', h5File baseFile = ('.').join(h5File.split('.')[:-1]) PSPFile = baseFile[:-16] + '.pkl' print 'resNums', res_nums if os.path.isfile(PSPFile): file = [] with open(PSPFile, 'rb') as f: for v in range(5): file.append(pickle.load(f)) if searchAllRes: res_nums = -1 freqs = file[0][:res_nums] print 'freqshape get_PS_data', np.shape(freqs) iq_vels = file[1][:res_nums] Is = file[2][:res_nums] Qs= file[3][:res_nums] attens = file[4] else: PSFit = PSFitting(initialFile=h5File) PSFit.loadps() tot_res_nums= len(PSFit.freq) print 'totalResNums in getPSdata', tot_res_nums if searchAllRes: res_nums = tot_res_nums res_size = np.shape(PSFit.loadres()['iq_vels']) freqs = np.zeros((res_nums, res_size[1]+1)) iq_vels = np.zeros((res_nums, res_size[0], res_size[1])) Is = np.zeros((res_nums, res_size[0], res_size[1]+1)) Qs = np.zeros((res_nums, res_size[0], res_size[1]+1)) attens = np.zeros((res_size[0])) for r in range(res_nums): sys.stdout.write("\r%d of %i" % (r+1,res_nums) ) sys.stdout.flush() res = PSFit.loadres() freqs[r,:] =res['freq'] iq_vels[r,:,:] = res['iq_vels'] Is[r,:,:] = res['Is'] Qs[r,:,:] = res['Qs'] attens[:] = res['attens'] PSFit.resnum += 1 with open(PSPFile, "wb") as f: pickle.dump(freqs, f) pickle.dump(iq_vels, f) pickle.dump(Is, f) pickle.dump(Qs, f) pickle.dump(attens, f) return freqs, iq_vels, Is, Qs, attens def get_PS_data_all_attens(h5File=None, searchAllRes=False, res_nums=50): '''A function to read and write all resonator information so stop having to run the PSFit function on all resonators if running the script more than once. This is used on both the initial and inference file Inputs: h5File: the power sweep h5 file for the information to be extracted from. Can be initialFile or inferenceFile ''' print 'get_PS_data_all_attens H5 file', h5File baseFile = ('.').join(h5File.split('.')[:-1]) PSPFile = baseFile[:-16] + '.pkl' print 'resNums', res_nums if os.path.isfile(PSPFile): file = [] with open(PSPFile, 'rb') as f: for v in range(5): file.append(pickle.load(f)) if searchAllRes: res_nums = -1 freqs = file[0][:] print 'freqshape get_PS_data', np.shape(freqs) iq_vels = file[1][:] Is = file[2][:] Qs= file[3][:] attens = file[4] else: freqs = file[0][:res_nums] print 'freqshape get_PS_data', np.shape(freqs) iq_vels = file[1][:res_nums] Is = file[2][:res_nums] Qs= file[3][:res_nums] attens = file[4] else: PSFit = PSFitting(initialFile=h5File) PSFit.loadps() tot_res_nums= len(PSFit.freq) print 'totalResNums in getPSdata', tot_res_nums if searchAllRes: res_nums = tot_res_nums res_size = np.shape(PSFit.loadres()['iq_vels']) freqs = np.zeros((res_nums, res_size[1]+1)) iq_vels = np.zeros((res_nums, res_size[0], res_size[1])) Is = np.zeros((res_nums, res_size[0], res_size[1]+1)) Qs = np.zeros((res_nums, res_size[0], res_size[1]+1)) attens = np.zeros((res_nums, res_size[0])) for r in range(res_nums): sys.stdout.write("\r%d of %i" % (r+1,res_nums) ) sys.stdout.flush() res = PSFit.loadres() freqs[r,:] =res['freq'] iq_vels[r,:,:] = res['iq_vels'] Is[r,:,:] = res['Is'] Qs[r,:,:] = res['Qs'] attens[r,:] = res['attens'] PSFit.resnum += 1 with open(PSPFile, "wb") as f: pickle.dump(freqs, f) pickle.dump(iq_vels, f) pickle.dump(Is, f) pickle.dump(Qs, f) pickle.dump(attens, f) print 'attenshape',shape(attens) return freqs, iq_vels, Is, Qs, attens def main(initialFile=None, inferenceFile=None, wsFile=None, res_nums=497): mlClass = mlClassification(initialFile=initialFile) #mlClass.makeTrainData() mlClass.mlClass() mlClass.plotWeights() mlClass.findAtten(inferenceFile=inferenceFile, wsFile=wsFile, searchAllRes=True, usePSFit=False, showFrames=False, res_nums=497) if __name__ == "__main__": initialFile = None inferenceFile = None if len(sys.argv) > 2: initialFileName = sys.argv[1] inferenceFileName = sys.argv[2] wsFileName = sys.argv[3] #mdd = os.environ['pwd'] initialFile = os.path.join('./mlTrainingData',initialFileName) #inferenceFile = os.path.join(mdd,inferenceFileName) #initialFile = initialFileName inferenceFile = os.path.join('/home/neelay/DarknessData/powerSweeps', inferenceFileName) wsFile = os.path.join('/home/neelay/DarknessData/wideSweeps', wsFileName) else: print "need to specify an initial and inference filename located in MKID_DATA_DIR" exit() main(initialFile=initialFile, inferenceFile=inferenceFile, wsFile=wsFile)
gpl-2.0
depet/scikit-learn
examples/linear_model/plot_ols_3d.py
8
2024
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import pylab as pl import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = pl.figure(fig_num, figsize=(4, 3)) pl.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) pl.show()
bsd-3-clause
MohammedWasim/deeppy
examples/convnet_cifar.py
9
2947
#!/usr/bin/env python """ Convnets for image classification (2) ===================================== """ import numpy as np import matplotlib import matplotlib.pyplot as plt import deeppy as dp # Fetch CIFAR10 data dataset = dp.dataset.CIFAR10() x_train, y_train, x_test, y_test = dataset.data(dp_dtypes=True) # Normalize pixel intensities scaler = dp.StandardScaler() scaler.fit(x_train) x_train = scaler.transform(x_train) x_test = scaler.transform(x_test) # Prepare network inputs batch_size = 128 train_input = dp.SupervisedInput(x_train, y_train, batch_size=batch_size) test_input = dp.Input(x_test, batch_size=batch_size) # Setup network def conv_layer(n_filters): return dp.Convolution( n_filters=32, filter_shape=(5, 5), border_mode='full', weights=dp.Parameter(dp.AutoFiller(gain=1.25), weight_decay=0.003), ) def pool_layer(): return dp.Pool( win_shape=(3, 3), strides=(2, 2), border_mode='same', method='max', ) net = dp.NeuralNetwork( layers=[ conv_layer(32), dp.ReLU(), pool_layer(), conv_layer(32), dp.ReLU(), pool_layer(), conv_layer(64), dp.ReLU(), pool_layer(), dp.Flatten(), dp.DropoutFullyConnected( n_out=64, weights=dp.Parameter(dp.AutoFiller(gain=1.25), weight_decay=0.03) ), dp.ReLU(), dp.FullyConnected( n_out=dataset.n_classes, weights=dp.Parameter(dp.AutoFiller(gain=1.25)), ) ], loss=dp.SoftmaxCrossEntropy(), ) # Train network def test_error(): return np.mean(net.predict(test_input) != y_test) n_epochs = [8, 8] learn_rate = 0.05 for i, max_epochs in enumerate(n_epochs): lr = learn_rate/10**i trainer = dp.StochasticGradientDescent( max_epochs=max_epochs, learn_rule=dp.Momentum(learn_rate=lr, momentum=0.9), ) trainer.train(net, train_input, test_error) # Evaluate on test data print('Test error rate: %.4f' % test_error()) # Plot image examples. def plot_img(img, title): plt.figure() plt.imshow(img, interpolation='nearest') plt.title(title) plt.axis('off') plt.tight_layout() img_bhwc = np.transpose(x_train[:70], (0, 2, 3, 1)) img_tile = dp.misc.img_tile(dp.misc.img_stretch(img_bhwc), aspect_ratio=0.75, border_color=1.0) plot_img(img_tile, title='CIFAR10 example images') # Plot convolutional filters. filters = [l.weights.array for l in net.layers if isinstance(l, dp.Convolution)] fig = plt.figure() gs = matplotlib.gridspec.GridSpec(2, 2, height_ratios=[1, 3]) subplot_idxs = [0, 2, 3] for i, f in enumerate(filters): ax = plt.subplot(gs[subplot_idxs[i]]) ax.imshow(dp.misc.conv_filter_tile(f), cmap='gray', interpolation='nearest') ax.set_title('Conv layer %i' % i) ax.axis('off') plt.tight_layout()
mit
peterwilletts24/Monsoon-Python-Scripts
geopotential/plot_geopotential.py
1
11500
""" Load mean geopotential heights and plot in colour """ import os, sys import matplotlib.pyplot as plt import matplotlib.cm as mpl_cm from mpl_toolkits.basemap import Basemap import iris import numpy as np import imp import h5py import cartopy.crs as ccrs from textwrap import wrap model_name_convert_title = imp.load_source('util', '/home/pwille/python_scripts/model_name_convert_title.py') def main(): def unrotate_pole(rotated_lons, rotated_lats, pole_lon, pole_lat): """ Convert rotated-pole lons and lats to unrotated ones. Example:: lons, lats = unrotate_pole(grid_lons, grid_lats, pole_lon, pole_lat) .. note:: Uses proj.4 to perform the conversion. """ src_proj = ccrs.RotatedGeodetic(pole_longitude=pole_lon, pole_latitude=pole_lat) target_proj = ccrs.Geodetic() res = target_proj.transform_points(x=rotated_lons, y=rotated_lats, src_crs=src_proj) unrotated_lon = res[..., 0] unrotated_lat = res[..., 1] return unrotated_lon, unrotated_lat # Set rotated pole longitude and latitude, not ideal but easier than trying to find how to get iris to tell me what it is. plot_levels = [925, 850, 700, 500] #plot_levels = [500] experiment_id = 'djzny' p_levels = [1000, 950, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10] expmin1 = experiment_id[:-1] plot_type='mean' plot_diag='temp' fname_h = '/projects/cascade/pwille/temp/408_pressure_levels_interp_pressure_%s_%s' % (experiment_id, plot_type) fname_d = '/projects/cascade/pwille/temp/%s_pressure_levels_interp_%s_%s' % (plot_diag, experiment_id, plot_type) print fname_h print fname_d # Height data file with h5py.File(fname_h, 'r') as i: mh = i['%s' % plot_type] mean_heights = mh[. . .] print mean_heights.shape with h5py.File(fname_d, 'r') as i: mh = i['%s' % plot_type] mean_var = mh[. . .] print mean_var.shape #lon_low= 60 #lon_high = 105 #lat_low = -10 #lat_high = 30 f_oro = '/projects/cascade/pwille/moose_retrievals/%s/%s/33.pp' % (expmin1, experiment_id) oro = iris.load_cube(f_oro) fu = '/projects/cascade/pwille/moose_retrievals/%s/%s/30201_mean.pp' % (expmin1, experiment_id) #fv = '/projects/cascade/pwille/moose_retrievals/%s/%s/30202.pp' % (expmin1, experiment_id) u_wind,v_wind = iris.load(fu) print u_wind.shape lat_w = u_wind.coord('grid_latitude').points lon_w = u_wind.coord('grid_longitude').points p_levs = u_wind.coord('pressure').points lat = oro.coord('grid_latitude').points lon = oro.coord('grid_longitude').points lon_low= np.min(lon) # Wind may have different number of grid points so need to do this twice lat_w = u_wind.coord('grid_latitude').points lon_w = u_wind.coord('grid_longitude').points p_levs = u_wind.coord('pressure').points lat = oro.coord('grid_latitude').points lon = oro.coord('grid_longitude').points cs_w = u_wind.coord_system('CoordSystem') cs = oro.coord_system('CoordSystem') if isinstance(cs_w, iris.coord_systems.RotatedGeogCS): print ' Wind - %s - Unrotate pole %s' % (experiment_id, cs_w) lons_w, lats_w = np.meshgrid(lon_w, lat_w) lons_w,lats_w = unrotate_pole(lons_w,lats_w, cs_w.grid_north_pole_longitude, cs_w.grid_north_pole_latitude) lon_w=lons_w[0] lat_w=lats_w[:,0] csur_w=cs_w.ellipsoid for i, coord in enumerate (u_wind.coords()): if coord.standard_name=='grid_latitude': lat_dim_coord_uwind = i if coord.standard_name=='grid_longitude': lon_dim_coord_uwind = i u_wind.remove_coord('grid_latitude') u_wind.remove_coord('grid_longitude') u_wind.add_dim_coord(iris.coords.DimCoord(points=lat_w, standard_name='grid_latitude', units='degrees', coord_system=csur_w),lat_dim_coord_uwind ) u_wind.add_dim_coord(iris.coords.DimCoord(points=lon_w, standard_name='grid_longitude', units='degrees', coord_system=csur_w), lon_dim_coord_uwind) v_wind.remove_coord('grid_latitude') v_wind.remove_coord('grid_longitude') v_wind.add_dim_coord(iris.coords.DimCoord(points=lat_w, standard_name='grid_latitude', units='degrees', coord_system=csur_w), lat_dim_coord_uwind) v_wind.add_dim_coord(iris.coords.DimCoord(points=lon_w, standard_name='grid_longitude', units='degrees', coord_system=csur_w),lon_dim_coord_uwind ) if isinstance(cs, iris.coord_systems.RotatedGeogCS): print ' 33.pp - %s - Unrotate pole %s' % (experiment_id, cs) lons, lats = np.meshgrid(lon, lat) lon_low= np.min(lons) lon_high = np.max(lons) lat_low = np.min(lats) lat_high = np.max(lats) lon_corners, lat_corners = np.meshgrid((lon_low, lon_high), (lat_low, lat_high)) lons,lats = unrotate_pole(lons,lats, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) lon_corner_u,lat_corner_u = unrotate_pole(lon_corners, lat_corners, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) #lon_highu,lat_highu = unrotate_pole(lon_high, lat_high, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) lon=lons[0] lat=lats[:,0] print lon_corners print lat_corners print lon_corner_u print lat_corner_u print lon_corner_u[0,0] print lon_corner_u[0,1] print lat_corner_u[0,0] print lat_corner_u[1,0] lon_low = lon_corner_u[0,0] lon_high = lon_corner_u[0,1] lat_low = lat_corner_u[0,0] lat_high = lat_corner_u[1,0] csur=cs.ellipsoid for i, coord in enumerate (oro.coords()): if coord.standard_name=='grid_latitude': lat_dim_coord_oro = i if coord.standard_name=='grid_longitude': lon_dim_coord_oro = i oro.remove_coord('grid_latitude') oro.remove_coord('grid_longitude') oro.add_dim_coord(iris.coords.DimCoord(points=lat, standard_name='grid_latitude', units='degrees', coord_system=csur), lat_dim_coord_oro) oro.add_dim_coord(iris.coords.DimCoord(points=lon, standard_name='grid_longitude', units='degrees', coord_system=csur), lon_dim_coord_oro) else: lons, lats = np.meshgrid(lon, lat) lons_w, lats_w = np.meshgrid(lon_w, lat_w) lon_low= np.min(lons) lon_high = np.max(lons) lat_low = np.min(lats) lat_high = np.max(lats) # 2 degree lats lon lists for wind regridding lat_wind_1deg = np.arange(lat_low,lat_high, 2) lon_wind_1deg = np.arange(lon_low,lon_high, 2) for p in plot_levels: #m_title = 'Height of %s-hPa level (m)' % (p) # Set pressure height contour min/max if p == 925: clev_min = 680. clev_max = 810. elif p == 850: clev_min = 1435. clev_max = 1530. elif p == 700: clev_min = 3090. clev_max = 3155. elif p == 500: clev_min = 5800. clev_max = 5890. else: print 'Contour min/max not set for this pressure level' # Set potential temperature min/max if p == 925: clevpt_min = 295. clevpt_max = 310. elif p == 850: clevpt_min = 300. clevpt_max = 320. elif p == 700: clevpt_min = 310. clevpt_max = 325. elif p == 500: clevpt_min = 321. clevpt_max = 335. else: print 'Potential temperature min/max not set for this pressure level' # Set specific humidity min/max if p == 925: clevsh_min = 0.012 clevsh_max = 0.022 elif p == 850: clevsh_min = 0.0035 clevsh_max = 0.018 elif p == 700: clevsh_min = 0.002 clevsh_max = 0.012 elif p == 500: clevsh_min = 0.002 clevsh_max = 0.006 else: print 'Specific humidity min/max not set for this pressure level' #clevs_col = np.arange(clev_min, clev_max) clevs_lin = np.linspace(clev_min, clev_max, num=20) s = np.searchsorted(p_levels[::-1], p) sc = np.searchsorted(p_levs, p) # Set plot contour lines for pressure levels plt_h = mean_heights[:,:,-(s+1)] plt_h[plt_h==0] = np.nan # Set plot colours for variable plt_v = mean_var[:,:,-(s+1)] plt_v[plt_v==0] = np.nan # Set u,v for winds, linear interpolate to approx. 1 degree grid u_interp = u_wind[sc,:,:] v_interp = v_wind[sc,:,:] #print u_interp.shape sample_points = [('grid_latitude', lat_wind_1deg), ('grid_longitude', lon_wind_1deg)] u = iris.analysis.interpolate.linear(u_interp, sample_points).data v = iris.analysis.interpolate.linear(v_interp, sample_points).data lons_w, lats_w = np.meshgrid(lon_wind_1deg, lat_wind_1deg) m =\ Basemap(llcrnrlon=lon_low,llcrnrlat=lat_low,urcrnrlon=lon_high,urcrnrlat=lat_high,projection='mill') x, y = m(lons, lats) x_w, y_w = m(lons_w, lats_w) print x_w.shape fig=plt.figure(figsize=(8,8)) ax = fig.add_axes([0.05,0.05,0.9,0.85]) m.drawcoastlines(color='gray') m.drawcountries(color='gray') m.drawcoastlines(linewidth=0.5) #m.fillcontinents(color='#CCFF99') m.drawparallels(np.arange(-80,81,10),labels=[1,1,0,0]) m.drawmeridians(np.arange(0,360,10),labels=[0,0,0,1]) cs_lin = m.contour(x,y, plt_h, clevs_lin,colors='k',linewidths=0.5) #wind = m.barbs(x_w,y_w, u, v, length=6) if plot_diag=='temp': cs_col = m.contourf(x,y, plt_v, np.linspace(clevpt_min, clevpt_max), cmap=plt.cm.RdBu_r) cbar = m.colorbar(cs_col,location='bottom',pad="5%", format = '%d') cbar.set_label('K') plt.suptitle('Height, Potential Temperature and Wind Vectors at %s hPa'% (p), fontsize=10) elif plot_diag=='sp_hum': cs_col = m.contourf(x,y, plt_v, np.linspace(clevsh_min, clevsh_max), cmap=plt.cm.RdBu_r) cbar = m.colorbar(cs_col,location='bottom',pad="5%", format = '%.3f') cbar.set_label('kg/kg') plt.suptitle('Height, Specific Humidity and Wind Vectors at %s hPa'% (p), fontsize=10) wind = m.quiver(x_w,y_w, u, v, scale=400) qk = plt.quiverkey(wind, 0.1, 0.1, 5, '5 m/s', labelpos='W') plt.clabel(cs_lin, fontsize=10, fmt='%d', color='black') #plt.title('%s\n%s' % (m_title, model_name_convert_title.main(experiment_id)), fontsize=10) plt.title('\n'.join(wrap('%s' % (model_name_convert_title.main(experiment_id)), 80)), fontsize=10) #plt.show() if not os.path.exists('/home/pwille/figures/%s/%s' % (experiment_id, plot_diag)): os.makedirs('/home/pwille/figures/%s/%s' % (experiment_id, plot_diag)) plt.savefig('/home/pwille/figures/%s/%s/geop_height_%shPa_%s_%s.tiff' % (experiment_id, plot_diag, p, experiment_id, plot_diag), format='tiff', transparent=True) if __name__ == '__main__': main()
mit
maxlikely/scikit-learn
sklearn/kernel_approximation.py
1
15871
# -*- coding: utf-8 -*- """ The :mod:`sklearn.kernel_approximation` module implements several approximate kernel feature maps base on Fourier transforms. """ # Author: Andreas Mueller <[email protected]> # # License: BSD Style. import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import svd from .base import BaseEstimator from .base import TransformerMixin from .utils import array2d, atleast2d_or_csr, check_random_state from .utils.extmath import safe_sparse_dot from .metrics.pairwise import pairwise_kernels class RBFSampler(BaseEstimator, TransformerMixin): """Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform. Parameters ---------- gamma: float Parameter of RBF kernel: exp(-γ × x²) n_components: int Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Notes ----- See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and Benjamin Recht. """ def __init__(self, gamma=1., n_components=100, random_state=None): self.gamma = gamma self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = atleast2d_or_csr(X) random_state = check_random_state(self.random_state) n_features = X.shape[1] self.random_weights_ = (np.sqrt(self.gamma) * random_state.normal( size=(n_features, self.n_components))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X: {array-like, sparse matrix}, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = atleast2d_or_csr(X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class SkewedChi2Sampler(BaseEstimator, TransformerMixin): """Approximates feature map of the "skewed chi-squared" kernel by Monte Carlo approximation of its Fourier transform. Parameters ---------- skewedness : float "skewedness" parameter of the kernel. Needs to be cross-validated. n_components : int number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. References ---------- See "Random Fourier Approximations for Skewed Multiplicative Histogram Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. See also -------- AdditiveChi2Sampler : A different approach for approximating an additive variant of the chi squared kernel. sklearn.metrics.chi2_kernel : The exact chi squared kernel. """ def __init__(self, skewedness=1., n_components=100, random_state=None): self.skewedness = skewedness self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = array2d(X) random_state = check_random_state(self.random_state) n_features = X.shape[1] uniform = random_state.uniform(size=(n_features, self.n_components)) # transform by inverse CDF of sech self.random_weights_ = (1. / np.pi * np.log(np.tan(np.pi / 2. * uniform))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X: array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = array2d(X, copy=True) if (X < 0).any(): raise ValueError("X may not contain entries smaller than zero.") X += self.skewedness np.log(X, X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class AdditiveChi2Sampler(BaseEstimator, TransformerMixin): """Approximate feature map for additive chi² kernel. Uses sampling the fourier transform of the kernel characteristic at regular intervals. Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2×sample_steps+1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3. Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable. Parameters ---------- sample_steps : int, optional Gives the number of (complex) sampling points. sample_interval : float, optional Sampling interval. Must be specified when sample_steps not in {1,2,3}. Notes ----- This estimator approximates a slightly different version of the additive chi squared kernel then ``metric.additive_chi2`` computes. See also -------- SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of the chi squared kernel. sklearn.metrics.chi2_kernel : The exact chi squared kernel. sklearn.metrics.additive_chi2_kernel : The exact additive chi squared kernel. References ---------- See `"Efficient additive kernels via explicit feature maps" <http://eprints.pascal-network.org/archive/00006964/01/vedaldi10.pdf>`_ Vedaldi, A. and Zisserman, A., Computer Vision and Pattern Recognition 2010 """ def __init__(self, sample_steps=2, sample_interval=None): self.sample_steps = sample_steps self.sample_interval = sample_interval def fit(self, X, y=None): """Set parameters.""" X = atleast2d_or_csr(X) if self.sample_interval is None: # See reference, figure 2 c) if self.sample_steps == 1: self.sample_interval_ = 0.8 elif self.sample_steps == 2: self.sample_interval_ = 0.5 elif self.sample_steps == 3: self.sample_interval_ = 0.4 else: raise ValueError("If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval") else: self.sample_interval_ = self.interval return self def transform(self, X, y=None): """Apply approximate feature map to X. Parameters ---------- X: {array-like, sparse matrix}, shape = (n_samples, n_features) Returns ------- X_new: {array, sparse matrix}, \ shape = (n_samples, n_features × (2×sample_steps + 1)) Whether the return value is an array of sparse matrix depends on the type of the input X. """ X = atleast2d_or_csr(X) sparse = sp.issparse(X) # check if X has negative values. Doesn't play well with np.log. if ((X.data if sparse else X) < 0).any(): raise ValueError("Entries of X must be non-negative.") # zeroth component # 1/cosh = sech # cosh(0) = 1.0 transf = self._transform_sparse if sparse else self._transform_dense return transf(X) def _transform_dense(self, X): non_zero = (X != 0.0) X_nz = X[non_zero] X_step = np.zeros_like(X) X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X_nz) step_nz = 2 * X_nz * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.cos(j * log_step_nz) X_new.append(X_step) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.sin(j * log_step_nz) X_new.append(X_step) return np.hstack(X_new) def _transform_sparse(self, X): indices = X.indices.copy() indptr = X.indptr.copy() data_step = np.sqrt(X.data * self.sample_interval_) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X.data) step_nz = 2 * X.data * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) data_step = factor_nz * np.cos(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) data_step = factor_nz * np.sin(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) return sp.hstack(X_new) class Nystroem(BaseEstimator, TransformerMixin): """Approximate a kernel map using a subset of the training data. Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis. Parameters ---------- kernel : string or callable, default="rbf" Kernel map to be approximated. n_components : int Number of features to construct. How many data points will be used to construct the mapping. gamma : float, default=1/n_features. Parameter for the RBF kernel. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Attributes ---------- `components_` : array, shape (n_components, n_features) Subset of training points used to construct the feature map. `component_indices_` : array, shape (n_components) Indices of ``components_`` in the training set. `normalization_` : array, shape (n_components, n_components) Normalization matrix needed for embedding. Square root of the kernel matrix on ``components_``. References ---------- * Williams, C.K.I. and Seeger, M. "Using the Nystrom method to speed up kernel machines", Advances in neural information processing systems 2001 * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison", Advances in Neural Information Processing Systems 2012 See also -------- RBFSampler : An approximation to the RBF kernel using random Fourier features. sklearn.metric.pairwise.kernel_metrics : List of built-in kernels. """ def __init__(self, kernel="rbf", gamma=None, coef0=1, degree=3, n_components=100, random_state=None): self.kernel = kernel self.gamma = gamma self.coef0 = coef0 self.degree = degree self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit estimator to data. Samples a subset of training points, computes kernel on these and computes normalization matrix. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Training data. """ rnd = check_random_state(self.random_state) n_samples = X.shape[0] # get basis vectors if self.n_components > n_samples: # XXX should we just bail? n_components = n_samples warnings.warn("n_components > n_samples. This is not possible.\n" "n_components was set to n_samples, which results" " in inefficient evaluation of the full kernel.") else: n_components = self.n_components n_components = min(n_samples, n_components) inds = rnd.permutation(n_samples) basis_inds = inds[:n_components] basis = X[basis_inds] if callable(self.kernel): basis_kernel = self.kernel(basis, basis) else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} basis_kernel = pairwise_kernels(basis, metric=self.kernel, filter_params=True, **params) # sqrt of kernel matrix on basis vectors U, S, V = svd(basis_kernel) self.normalization_ = np.dot(U * 1. / np.sqrt(S), V) self.components_ = basis self.component_indices_ = inds return self def transform(self, X): """Apply feature map to X. Computes an approximate feature map using the kernel between some training points and X. Parameters ---------- X : array-like, shape=(n_samples, n_features) Data to transform. Returns ------- X_transformed : array, shape=(n_samples, n_components) Transformed data. """ if callable(self.kernel): embedded = self.kernel(X, self.components_) else: embedded = pairwise_kernels(X, self.components_, metric=self.kernel, gamma=self.gamma) return np.dot(embedded, self.normalization_.T)
bsd-3-clause
miaecle/deepchem
contrib/one_shot_models/multitask_regressor.py
5
8197
""" Implements a multitask graph-convolutional regression. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "Han Altae-Tran and Bharath Ramsundar" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import warnings import os import sys import numpy as np import tensorflow as tf import sklearn.metrics import tempfile from deepchem.utils.save import log from deepchem.models import Model from deepchem.nn.copy import Input from deepchem.nn.copy import Dense from deepchem.data import pad_features from deepchem.nn import model_ops # TODO(rbharath): Find a way to get rid of this import? from deepchem.models.tf_new_models.graph_topology import merge_dicts from deepchem.models.tf_new_models.multitask_classifier import get_loss_fn class MultitaskGraphRegressor(Model): def __init__(self, model, n_tasks, n_feat, logdir=None, batch_size=50, final_loss='weighted_L2', learning_rate=.001, optimizer_type="adam", learning_rate_decay_time=1000, beta1=.9, beta2=.999, pad_batches=True, verbose=True): warnings.warn( "MultitaskGraphRegressor is deprecated. " "Will be removed in DeepChem 1.4.", DeprecationWarning) super(MultitaskGraphRegressor, self).__init__( model_dir=logdir, verbose=verbose) self.n_tasks = n_tasks self.final_loss = final_loss self.model = model self.sess = tf.Session(graph=self.model.graph) with self.model.graph.as_default(): # Extract model info self.batch_size = batch_size self.pad_batches = pad_batches # Get graph topology for x self.graph_topology = self.model.get_graph_topology() self.feat_dim = n_feat # Building outputs self.outputs = self.build() self.loss_op = self.add_training_loss(self.final_loss, self.outputs) self.learning_rate = learning_rate self.T = learning_rate_decay_time self.optimizer_type = optimizer_type self.optimizer_beta1 = beta1 self.optimizer_beta2 = beta2 # Set epsilon self.epsilon = 1e-7 self.add_optimizer() # Initialize self.init_fn = tf.global_variables_initializer() self.sess.run(self.init_fn) # Path to save checkpoint files, which matches the # replicated supervisor's default path. self._save_path = os.path.join(self.model_dir, 'model.ckpt') def build(self): # Create target inputs self.label_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="label_placeholder") self.weight_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="weight_placholder") feat = self.model.return_outputs() feat_size = feat.get_shape()[-1].value outputs = [] for task in range(self.n_tasks): outputs.append( tf.squeeze( model_ops.fully_connected_layer( tensor=feat, size=1, weight_init=tf.truncated_normal( shape=[feat_size, 1], stddev=0.01), bias_init=tf.constant(value=0., shape=[1])))) return outputs def add_optimizer(self): if self.optimizer_type == "adam": self.optimizer = tf.train.AdamOptimizer( self.learning_rate, beta1=self.optimizer_beta1, beta2=self.optimizer_beta2, epsilon=self.epsilon) else: raise ValueError("Optimizer type not recognized.") # Get train function self.train_op = self.optimizer.minimize(self.loss_op) def construct_feed_dict(self, X_b, y_b=None, w_b=None, training=True): """Get initial information about task normalization""" # TODO(rbharath): I believe this is total amount of data n_samples = len(X_b) if y_b is None: y_b = np.zeros((n_samples, self.n_tasks)) if w_b is None: w_b = np.zeros((n_samples, self.n_tasks)) targets_dict = {self.label_placeholder: y_b, self.weight_placeholder: w_b} # Get graph information atoms_dict = self.graph_topology.batch_to_feed_dict(X_b) # TODO (hraut->rhbarath): num_datapoints should be a vector, with ith element being # the number of labeled data points in target_i. This is to normalize each task # num_dat_dict = {self.num_datapoints_placeholder : self.} # Get other optimizer information # TODO(rbharath): Figure out how to handle phase appropriately feed_dict = merge_dicts([targets_dict, atoms_dict]) return feed_dict def add_training_loss(self, final_loss, outputs): """Computes loss using logits.""" loss_fn = get_loss_fn(final_loss) # Get loss function task_losses = [] # label_placeholder of shape (batch_size, n_tasks). Split into n_tasks # tensors of shape (batch_size,) task_labels = tf.split( axis=1, num_or_size_splits=self.n_tasks, value=self.label_placeholder) task_weights = tf.split( axis=1, num_or_size_splits=self.n_tasks, value=self.weight_placeholder) for task in range(self.n_tasks): task_label_vector = task_labels[task] task_weight_vector = task_weights[task] task_loss = loss_fn(outputs[task], tf.squeeze(task_label_vector), tf.squeeze(task_weight_vector)) task_losses.append(task_loss) # It's ok to divide by just the batch_size rather than the number of nonzero # examples (effect averages out) total_loss = tf.add_n(task_losses) total_loss = tf.math.divide(total_loss, self.batch_size) return total_loss def fit(self, dataset, nb_epoch=10, max_checkpoints_to_keep=5, log_every_N_batches=50, checkpoint_interval=10, **kwargs): # Perform the optimization log("Training for %d epochs" % nb_epoch, self.verbose) # TODO(rbharath): Disabling saving for now to try to debug. for epoch in range(nb_epoch): log("Starting epoch %d" % epoch, self.verbose) for batch_num, (X_b, y_b, w_b, ids_b) in enumerate( dataset.iterbatches(self.batch_size, pad_batches=self.pad_batches)): if batch_num % log_every_N_batches == 0: log("On batch %d" % batch_num, self.verbose) self.sess.run( self.train_op, feed_dict=self.construct_feed_dict(X_b, y_b, w_b)) def save(self): """ No-op since this model doesn't currently support saving... """ pass def predict(self, dataset, transformers=[], **kwargs): """Wraps predict to set batch_size/padding.""" return super(MultitaskGraphRegressor, self).predict( dataset, transformers, batch_size=self.batch_size) def predict_on_batch(self, X): """Return model output for the provided input. """ if self.pad_batches: X = pad_features(self.batch_size, X) # run eval data through the model n_tasks = self.n_tasks with self.sess.as_default(): feed_dict = self.construct_feed_dict(X) # Shape (n_samples, n_tasks) batch_outputs = self.sess.run(self.outputs, feed_dict=feed_dict) n_samples = len(X) outputs = np.zeros((n_samples, self.n_tasks)) for task, output in enumerate(batch_outputs): outputs[:, task] = output return outputs def get_num_tasks(self): """Needed to use Model.predict() from superclass.""" return self.n_tasks class DTNNMultitaskGraphRegressor(MultitaskGraphRegressor): def build(self): # Create target inputs warnings.warn( "DTNNMultitaskGraphRegressor is deprecated. " "Will be removed in DeepChem 1.4.", DeprecationWarning) self.label_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="label_placeholder") self.weight_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="weight_placholder") feat = self.model.return_outputs() outputs = [] for task in range(self.n_tasks): outputs.append(feat[:, task]) return outputs
mit
glennq/scikit-learn
examples/gaussian_process/plot_gpc_isoprobability.py
64
3049
#!/usr/bin/python # -*- coding: utf-8 -*- """ ================================================================= Iso-probability lines for Gaussian Processes classification (GPC) ================================================================= A two-dimensional classification example showing iso-probability lines for the predicted probabilities. """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Adapted to GaussianProcessClassifier: # Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from matplotlib import cm from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import DotProduct, ConstantKernel as C # A few constants lim = 8 def g(x): """The function to predict (classification will then consist in predicting whether g(x) <= 0 or not)""" return 5. - x[:, 1] - .5 * x[:, 0] ** 2. # Design of experiments X = np.array([[-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883]]) # Observations y = np.array(g(X) > 0, dtype=int) # Instanciate and fit Gaussian Process Model kernel = C(0.1, (1e-5, np.inf)) * DotProduct(sigma_0=0.1) ** 2 gp = GaussianProcessClassifier(kernel=kernel) gp.fit(X, y) print("Learned kernel: %s " % gp.kernel_) # Evaluate real function and the predicted probability res = 50 x1, x2 = np.meshgrid(np.linspace(- lim, lim, res), np.linspace(- lim, lim, res)) xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T y_true = g(xx) y_prob = gp.predict_proba(xx)[:, 1] y_true = y_true.reshape((res, res)) y_prob = y_prob.reshape((res, res)) # Plot the probabilistic classification iso-values fig = plt.figure(1) ax = fig.gca() ax.axes.set_aspect('equal') plt.xticks([]) plt.yticks([]) ax.set_xticklabels([]) ax.set_yticklabels([]) plt.xlabel('$x_1$') plt.ylabel('$x_2$') cax = plt.imshow(y_prob, cmap=cm.gray_r, alpha=0.8, extent=(-lim, lim, -lim, lim)) norm = plt.matplotlib.colors.Normalize(vmin=0., vmax=0.9) cb = plt.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm) cb.set_label('${\\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\\right]$') plt.clim(0, 1) plt.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12) plt.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12) cs = plt.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot') cs = plt.contour(x1, x2, y_prob, [0.666], colors='b', linestyles='solid') plt.clabel(cs, fontsize=11) cs = plt.contour(x1, x2, y_prob, [0.5], colors='k', linestyles='dashed') plt.clabel(cs, fontsize=11) cs = plt.contour(x1, x2, y_prob, [0.334], colors='r', linestyles='solid') plt.clabel(cs, fontsize=11) plt.show()
bsd-3-clause
low-sky/simscript
designs8_big.py
1
9485
import numpy as np import matplotlib.pyplot as plt import os import astropy.units as u import astropy.constants as const import subprocess import shutil from astropy.table import Table values = np.loadtxt('Design6.csv',skiprows=1,delimiter=',') rootdir = os.path.expanduser("~")+'/SimSuite8/' rootname = 'DesignBig' fid_rootname = 'FiducialBig' GenerateFields = True Fiducials = True NFiducials = 1 # Domain Definition # Fixed parameters for this simulation. BoxSize = 10*u.pc Tvals = 10.0*u.K*np.ones(values.shape[0]) kMin = 2*np.ones(values.shape[0]).astype('int') kMax = 4*np.ones(values.shape[0]).astype('int') RootGridSize = 512 # Design parameters logVPmin = np.log10(2) logVPmax = logVPmin+np.log10(5) bmin = 0.33 bmax = 0.66 logbetamin = -0.3 logbetamax = 0.3 MachMin = 5 MachMax = 12 np.random.seed(649810806) seeds = np.random.randint(long(2)**24,size=values.shape[0]) logVPvals = logVPmin+(logVPmax-logVPmin)*values[:,0] logbetavals = logbetamin + (logbetamax-logbetamin)*values[:,2] #fundamental design params bvals = bmin + (bmax-bmin)*values[:,1] MachVals = MachMin + (MachMax-MachMin)*values[:,3] betavals = (1e1**logbetavals) VPvals = (1e1**logVPvals) kminVals = 2+2*values[:,4] kmaxVals = 2*kminVals #Derived parameters SoundSpeed = ((const.k_B*Tvals/(2.33*const.m_n))**(0.5)).to(u.cm/u.s) density = ((5*MachVals**2*SoundSpeed**2)/ (6*const.G*VPvals*BoxSize**2)).to(u.g/u.cm**3) tcross = (BoxSize/(MachVals*SoundSpeed)).to(u.s) Bvals = ((8*np.pi*density*SoundSpeed**2/betavals)**(0.5)).value*(u.G) params = Table([Tvals,bvals,Bvals,MachVals,kMin,kMax,seeds],\ names=('Kinetic Temperature','Solenoidal Fraction','Magnetic Field','Mach Number','kMin','kMax','Seed')) params['Virial Parameter'] = VPvals params['Plasma Beta'] = betavals params['Index'] = np.arange(values.shape[0]).astype('int') params['Sound Speed']=SoundSpeed.to(u.cm/u.s) params['Crossing Time']=tcross.to(u.s) params['PL Index']=2*np.ones(values.shape[0]) params['Box Size']=RootGridSize*np.ones(values.shape[0]).astype('int') params['Density']=density params['kMin'] = kminVals params['kMax'] = kmaxVals # for idx,bval in enumerate(bvals): # dirname = rootdir+rootname+str(params['Index'][idx])+'/' # if not os.path.isdir(dirname): # os.makedirs(dirname) # # Generate a driving field into the RandomField1,2,3 etc. # if GenerateFields: # callstring = "perturbation_enzo.py --size={5} --alpha={4} --kmin={0} --kmax={1} --f_solenoidal={2:.3f} --seed={3}".\ # format(params[idx]['kMin'], # params[idx]['kMax'], # params[idx]['Solenoidal Fraction'], # params[idx]['Seed'], # params[idx]['PL Index'], # params[idx]['Box Size']) # callstring = 'python '+os.getcwd()+'/'+callstring # print(callstring) # subprocess.call(callstring,shell=True) # shutil.move(os.getcwd()+'/RandomField1',dirname) # shutil.move(os.getcwd()+'/RandomField2',dirname) # shutil.move(os.getcwd()+'/RandomField3',dirname) # shutil.copy(os.getcwd()+'/templates/MHDstart.pbs',dirname) # shutil.copy(os.getcwd()+'/templates/MHDrestart.pbs',dirname) # shutil.copy(os.getcwd()+'/templates/DrivenTurbulenceCTMHD',dirname) # with open(dirname+'DrivenTurbulenceCTMHD','a') as template: # template.write('TopGridDimensions = {0} {1} {2}\n'.\ # format(params[idx]['Box Size'], # params[idx]['Box Size'], # params[idx]['Box Size'])) # template.write('InitialBfield = {0:6e}\n'.\ # format(params[idx]['Magnetic Field']/\ # np.sqrt(4*np.pi))) # # This 4pi is for CTMHD units # template.write('MachNumber = {0:4f}\n'.\ # format(params[idx]['Mach Number'])) # template.write('RandomForcingMachNumber = {0:4f}\n'.\ # format(params[idx]['Mach Number'])) # template.write('RandomSeed = {0}\n'.\ # format(params[idx]['Seed'])) # template.write('EOSSoundSpeed = {0:6e}\n'.\ # format(params[idx]['Sound Speed'])) # template.write('SoundVelocity = {0:6e}\n'.\ # format(params[idx]['Sound Speed'])) # template.write('TimeUnits = {0:6e}\n'.\ # format(params[idx]['Crossing Time'])) # template.write('Density = {0:6e}\n'.\ # format(params[idx]['Density'])) # template.close() # print(dirname) # params.write('d8_parameter_table.ascii',format='ascii.fixed_width') # params.write('d8_parameter_table.csv',format='ascii',delimiter=',') if Fiducials: fidval = 0.5*np.ones(NFiducials) seeds = np.random.randint(long(2)**24,size=(NFiducials)) logVPvals = logVPmin+(logVPmax-logVPmin)*fidval logbetavals = logbetamin + (logbetamax-logbetamin)*fidval Tvals = 10*np.ones(NFiducials)*u.K kMin = 2*np.ones(NFiducials).astype('int') kMax = 8*np.ones(NFiducials).astype('int') bvals = bmin + (bmax-bmin)*fidval MachVals = MachMin + (MachMax-MachMin)*fidval betavals = (1e1**logbetavals) VPvals = (1e1**logVPvals) SoundSpeed = ((const.k_B*Tvals/(2.33*const.m_n))**(0.5)).to(u.cm/u.s) density = ((5*MachVals**2*SoundSpeed**2)/ (6*const.G*VPvals*BoxSize**2)).to(u.g/u.cm**3) tcross = (BoxSize/(MachVals*SoundSpeed)).to(u.s) Bvals = ((8*np.pi*density*SoundSpeed**2/betavals)**(0.5)).value*(u.G) kminVals = 2*np.ones(len(betavals)) kmaxVals = 8*np.ones(len(betavals)) fparams = Table([Tvals,bvals,Bvals,MachVals,kMin,kMax,seeds],\ names=('Kinetic Temperature','Solenoidal Fraction', 'Magnetic Field','Mach Number', 'kMin','kMax','Seed')) fparams['Virial Parameter'] = VPvals fparams['Plasma Beta'] = betavals fparams['Index'] = np.arange(NFiducials).astype('int') fparams['Sound Speed']=SoundSpeed.to(u.cm/u.s) fparams['Crossing Time']=tcross.to(u.s) fparams['PL Index']=2*np.ones(NFiducials) fparams['Box Size']=RootGridSize*np.ones(NFiducials).astype('int') fparams['Density']=density fparams['kMin'] = kminVals fparams['kMax'] = kmaxVals for idx,bval in enumerate(bvals): dirname = rootdir+fid_rootname+str(fparams['Index'][idx])+'/' if not os.path.isdir(dirname): os.makedirs(dirname) # Generate a driving field into the RandomField1,2,3 etc. if GenerateFields: callstring = "perturbation_enzo.py --size={5} --alpha={4} --kmin={0} --kmax={1} --f_solenoidal={2:.3f} --seed={3}".\ format(fparams[idx]['kMin'], fparams[idx]['kMax'], fparams[idx]['Solenoidal Fraction'], fparams[idx]['Seed'], fparams[idx]['PL Index'], fparams[idx]['Box Size']) callstring = 'python '+os.getcwd()+'/'+callstring print(callstring) subprocess.call(callstring,shell=True) shutil.move(os.getcwd()+'/RandomField1',dirname) shutil.move(os.getcwd()+'/RandomField2',dirname) shutil.move(os.getcwd()+'/RandomField3',dirname) shutil.copy(os.getcwd()+'/templates/MHDstart.pbs',dirname) shutil.copy(os.getcwd()+'/templates/MHDrestart.pbs',dirname) shutil.copy(os.getcwd()+'/templates/DrivenTurbulenceCTMHD',dirname) with open(dirname+'DrivenTurbulenceCTMHD','a') as template: template.write('TopGridDimensions = {0} {1} {2}\n'.\ format(fparams[idx]['Box Size'], fparams[idx]['Box Size'], fparams[idx]['Box Size'])) template.write('InitialBfield = {0:6e}\n'.\ format(fparams[idx]['Magnetic Field']/\ np.sqrt(4*np.pi))) # This 4pi is for CTMHD units template.write('MachNumber = {0:4f}\n'.\ format(fparams[idx]['Mach Number'])) template.write('RandomForcingMachNumber = {0:4f}\n'.\ format(params[idx]['Mach Number'])) template.write('RandomSeed = {0}\n'.\ format(fparams[idx]['Seed'])) template.write('EOSSoundSpeed = {0:6e}\n'.\ format(fparams[idx]['Sound Speed'])) template.write('SoundVelocity = {0:6e}\n'.\ format(fparams[idx]['Sound Speed'])) template.write('TimeUnits = {0:6e}\n'.\ format(fparams[idx]['Crossing Time'])) template.write('Density = {0:6e}\n'.\ format(fparams[idx]['Density'])) template.close() print(dirname) fparams.write('d8_fiducial_table.ascii',format='ascii.fixed_width') fparams.write('d8_fiducial_table.csv',format='ascii',delimiter=',')
gpl-2.0
bnaul/scikit-learn
examples/linear_model/plot_theilsen.py
76
3848
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen'} lw = 2 # ############################################################################# # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.scatter(x, y, color='indigo', marker='x', s=40) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, color=colors[name], linewidth=lw, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.title("Corrupt y") # ############################################################################# # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.scatter(x, y, color='indigo', marker='x', s=40) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, color=colors[name], linewidth=lw, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.title("Corrupt x") plt.show()
bsd-3-clause
qifeigit/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
sahat/bokeh
bokeh/mplexporter/utils.py
5
11306
""" Utility Routines for Working with Matplotlib Objects ==================================================== """ import itertools import io import base64 import numpy as np import warnings import matplotlib from matplotlib.colors import colorConverter from matplotlib.path import Path from matplotlib.markers import MarkerStyle from matplotlib.transforms import Affine2D from matplotlib import ticker def color_to_hex(color): """Convert matplotlib color code to hex color code""" if color is None or colorConverter.to_rgba(color)[3] == 0: return 'none' else: rgb = colorConverter.to_rgb(color) return '#{0:02X}{1:02X}{2:02X}'.format(*(int(255 * c) for c in rgb)) def many_to_one(input_dict): """Convert a many-to-one mapping to a one-to-one mapping""" return dict((key, val) for keys, val in input_dict.items() for key in keys) LINESTYLES = many_to_one({('solid', '-', (None, None)): "10,0", ('dashed', '--'): "6,6", ('dotted', ':'): "2,2", ('dashdot', '-.'): "4,4,2,4", ('', ' ', 'None', 'none'): "none"}) def get_dasharray(obj, i=None): """Get an SVG dash array for the given matplotlib linestyle Parameters ---------- obj : matplotlib object The matplotlib line or path object, which must have a get_linestyle() method which returns a valid matplotlib line code i : integer (optional) Returns ------- dasharray : string The HTML/SVG dasharray code associated with the object. """ if obj.__dict__.get('_dashSeq', None) is not None: return ','.join(map(str, obj._dashSeq)) else: ls = obj.get_linestyle() if i is not None: ls = ls[i] dasharray = LINESTYLES.get(ls, None) if dasharray is None: warnings.warn("dash style '{0}' not understood: " "defaulting to solid.".format(ls)) dasharray = LINESTYLES['-'] return dasharray PATH_DICT = {Path.LINETO: 'L', Path.MOVETO: 'M', Path.CURVE3: 'S', Path.CURVE4: 'C', Path.CLOSEPOLY: 'Z'} def SVG_path(path, transform=None, simplify=False): """Construct the vertices and SVG codes for the path Parameters ---------- path : matplotlib.Path object transform : matplotlib transform (optional) if specified, the path will be transformed before computing the output. Returns ------- vertices : array The shape (M, 2) array of vertices of the Path. Note that some Path codes require multiple vertices, so the length of these vertices may be longer than the list of path codes. path_codes : list A length N list of single-character path codes, N <= M. Each code is a single character, in ['L','M','S','C','Z']. See the standard SVG path specification for a description of these. """ if transform is not None: path = path.transformed(transform) vc_tuples = [(vertices if path_code != Path.CLOSEPOLY else [], PATH_DICT[path_code]) for (vertices, path_code) in path.iter_segments(simplify=simplify)] if not vc_tuples: # empty path is a special case return np.zeros((0, 2)), [] else: vertices, codes = zip(*vc_tuples) vertices = np.array(list(itertools.chain(*vertices))).reshape(-1, 2) return vertices, list(codes) def get_path_style(path, fill=True): """Get the style dictionary for matplotlib path objects""" style = {} style['alpha'] = path.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['edgecolor'] = color_to_hex(path.get_edgecolor()) if fill: style['facecolor'] = color_to_hex(path.get_facecolor()) else: style['facecolor'] = 'none' style['edgewidth'] = path.get_linewidth() style['dasharray'] = get_dasharray(path) style['zorder'] = path.get_zorder() return style def get_line_style(line): """Get the style dictionary for matplotlib line objects""" style = {} style['alpha'] = line.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['color'] = color_to_hex(line.get_color()) style['linewidth'] = line.get_linewidth() style['dasharray'] = get_dasharray(line) style['zorder'] = line.get_zorder() return style def get_marker_style(line): """Get the style dictionary for matplotlib marker objects""" style = {} style['alpha'] = line.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['facecolor'] = color_to_hex(line.get_markerfacecolor()) style['edgecolor'] = color_to_hex(line.get_markeredgecolor()) style['edgewidth'] = line.get_markeredgewidth() style['marker'] = line.get_marker() markerstyle = MarkerStyle(line.get_marker()) markersize = line.get_markersize() markertransform = (markerstyle.get_transform() + Affine2D().scale(markersize, -markersize)) style['markerpath'] = SVG_path(markerstyle.get_path(), markertransform) style['markersize'] = markersize style['zorder'] = line.get_zorder() return style def get_text_style(text): """Return the text style dict for a text instance""" style = {} style['alpha'] = text.get_alpha() if style['alpha'] is None: style['alpha'] = 1 style['fontsize'] = text.get_size() style['color'] = color_to_hex(text.get_color()) style['halign'] = text.get_horizontalalignment() # left, center, right style['valign'] = text.get_verticalalignment() # baseline, center, top style['rotation'] = text.get_rotation() style['zorder'] = text.get_zorder() return style def get_axis_properties(axis): """Return the property dictionary for a matplotlib.Axis instance""" props = {} label1On = axis._major_tick_kw.get('label1On', True) if isinstance(axis, matplotlib.axis.XAxis): if label1On: props['position'] = "bottom" else: props['position'] = "top" elif isinstance(axis, matplotlib.axis.YAxis): if label1On: props['position'] = "left" else: props['position'] = "right" else: raise ValueError("{0} should be an Axis instance".format(axis)) # Use tick values if appropriate locator = axis.get_major_locator() props['nticks'] = len(locator()) if isinstance(locator, ticker.FixedLocator): props['tickvalues'] = list(locator()) else: props['tickvalues'] = None # Find tick formats formatter = axis.get_major_formatter() if isinstance(formatter, ticker.NullFormatter): props['tickformat'] = "" elif not any(label.get_visible() for label in axis.get_ticklabels()): props['tickformat'] = "" else: props['tickformat'] = None # Get axis scale props['scale'] = axis.get_scale() # Get major tick label size (assumes that's all we really care about!) labels = axis.get_ticklabels() if labels: props['fontsize'] = labels[0].get_fontsize() else: props['fontsize'] = None # Get associated grid props['grid'] = get_grid_style(axis) return props def get_grid_style(axis): gridlines = axis.get_gridlines() if axis._gridOnMajor and len(gridlines) > 0: color = color_to_hex(gridlines[0].get_color()) alpha = gridlines[0].get_alpha() dasharray = get_dasharray(gridlines[0]) return dict(gridOn=True, color=color, dasharray=dasharray, alpha=alpha) else: return {"gridOn":False} def get_figure_properties(fig): return {'figwidth': fig.get_figwidth(), 'figheight': fig.get_figheight(), 'dpi': fig.dpi} def get_axes_properties(ax): props = {'axesbg': color_to_hex(ax.patch.get_facecolor()), 'axesbgalpha': ax.patch.get_alpha(), 'bounds': ax.get_position().bounds, 'dynamic': ax.get_navigate(), 'axes': [get_axis_properties(ax.xaxis), get_axis_properties(ax.yaxis)]} for axname in ['x', 'y']: axis = getattr(ax, axname + 'axis') domain = getattr(ax, 'get_{0}lim'.format(axname))() lim = domain if isinstance(axis.converter, matplotlib.dates.DateConverter): scale = 'date' try: import pandas as pd from pandas.tseries.converter import PeriodConverter except ImportError: pd = None if (pd is not None and isinstance(axis.converter, PeriodConverter)): _dates = [pd.Period(ordinal=int(d), freq=axis.freq) for d in domain] domain = [(d.year, d.month - 1, d.day, d.hour, d.minute, d.second, 0) for d in _dates] else: domain = [(d.year, d.month - 1, d.day, d.hour, d.minute, d.second, d.microsecond * 1E-3) for d in matplotlib.dates.num2date(domain)] else: scale = axis.get_scale() if scale not in ['date', 'linear', 'log']: raise ValueError("Unknown axis scale: " "{0}".format(axis[axname].get_scale())) props[axname + 'scale'] = scale props[axname + 'lim'] = lim props[axname + 'domain'] = domain return props def iter_all_children(obj, skipContainers=False): """ Returns an iterator over all childen and nested children using obj's get_children() method if skipContainers is true, only childless objects are returned. """ if hasattr(obj, 'get_children') and len(obj.get_children()) > 0: for child in obj.get_children(): if not skipContainers: yield child # could use `yield from` in python 3... for grandchild in iter_all_children(child, skipContainers): yield grandchild else: yield obj def get_legend_properties(ax, legend): handles, labels = ax.get_legend_handles_labels() visible = legend.get_visible() return {'handles': handles, 'labels': labels, 'visible': visible} def image_to_base64(image): """ Convert a matplotlib image to a base64 png representation Parameters ---------- image : matplotlib image object The image to be converted. Returns ------- image_base64 : string The UTF8-encoded base64 string representation of the png image. """ ax = image.axes binary_buffer = io.BytesIO() # image is saved in axes coordinates: we need to temporarily # set the correct limits to get the correct image lim = ax.axis() ax.axis(image.get_extent()) image.write_png(binary_buffer) ax.axis(lim) binary_buffer.seek(0) return base64.b64encode(binary_buffer.read()).decode('utf-8')
bsd-3-clause
gfyoung/pandas
pandas/tests/indexes/datetimes/test_pickle.py
4
1342
import pytest from pandas import NaT, date_range, to_datetime import pandas._testing as tm class TestPickle: def test_pickle(self): # GH#4606 idx = to_datetime(["2013-01-01", NaT, "2014-01-06"]) idx_p = tm.round_trip_pickle(idx) assert idx_p[0] == idx[0] assert idx_p[1] is NaT assert idx_p[2] == idx[2] def test_pickle_dont_infer_freq(self): # GH##11002 # don't infer freq idx = date_range("1750-1-1", "2050-1-1", freq="7D") idx_p = tm.round_trip_pickle(idx) tm.assert_index_equal(idx, idx_p) def test_pickle_after_set_freq(self): dti = date_range("20130101", periods=3, tz="US/Eastern", name="foo") dti = dti._with_freq(None) res = tm.round_trip_pickle(dti) tm.assert_index_equal(res, dti) def test_roundtrip_pickle_with_tz(self): # GH#8367 # round-trip of timezone index = date_range("20130101", periods=3, tz="US/Eastern", name="foo") unpickled = tm.round_trip_pickle(index) tm.assert_index_equal(index, unpickled) @pytest.mark.parametrize("freq", ["B", "C"]) def test_pickle_unpickle(self, freq): rng = date_range("2009-01-01", "2010-01-01", freq=freq) unpickled = tm.round_trip_pickle(rng) assert unpickled.freq == freq
bsd-3-clause
schreiberx/sweet
benchmarks_sphere/paper_jrn_sl_exp/test_compare_wt_dt_vs_accuracy_galewsky_M256_6hours_l_n_vd/postprocessing_consolidate_prog_vrt.py
8
6177
#! /usr/bin/env python3 import sys import math from mule.plotting.Plotting import * from mule.postprocessing.JobsData import * from mule.postprocessing.JobsDataConsolidate import * sys.path.append('../') import pretty_plotting as pp sys.path.pop() mule_plotting_usetex(False) groups = ['runtime.timestepping_method'] tagnames_y = [ 'sphere_data_diff_prog_vrt.res_norm_l1', 'sphere_data_diff_prog_vrt.res_norm_l2', 'sphere_data_diff_prog_vrt.res_norm_linf', ] j = JobsData('./job_bench_*', verbosity=0) c = JobsDataConsolidate(j) print("") print("Groups:") job_groups = c.create_groups(groups) for key, g in job_groups.items(): print(key) for tagname_y in tagnames_y: params = [] params += [ { 'tagname_x': 'runtime.timestep_size', 'xlabel': "Timestep size (seconds)", 'ylabel': pp.latex_pretty_names[tagname_y], 'title': 'Timestep size vs. error', 'xscale': 'log', 'yscale': 'log', 'convergence': True, }, ] params += [ { 'tagname_x': 'output.simulation_benchmark_timings.main_timestepping', 'xlabel': "Wallclock time (seconds)", 'ylabel': pp.latex_pretty_names[tagname_y], 'title': 'Wallclock time vs. error', 'xscale': 'log', 'yscale': 'log', 'convergence': False, }, ] for param in params: tagname_x = param['tagname_x'] xlabel = param['xlabel'] ylabel = param['ylabel'] title = param['title'] xscale = param['xscale'] yscale = param['yscale'] convergence = param['convergence'] print("*"*80) print("Processing tag "+tagname_x) print("*"*80) if True: """ Plotting format """ # Filter out errors beyond this value! def data_filter(x, y, jobdata): if y == None: return True x = float(x) y = float(y) if math.isnan(y): return True if 'l1' in tagname_y: if y > 1e1: print("Sorting out L1 data "+str(y)) return True elif 'l2' in tagname_y: if y > 1e1: print("Sorting out L2 data "+str(y)) return True elif 'linf' in tagname_y: if y > 1e2: print("Sorting out Linf data "+str(y)) return True else: raise Exception("Unknown y tag "+tagname_y) return False d = JobsData_GroupsPlottingScattered( job_groups, tagname_x, tagname_y, data_filter = data_filter ) fileid = "output_plotting_"+tagname_x.replace('.', '-').replace('_', '-')+"_vs_"+tagname_y.replace('.', '-').replace('_', '-') if True: # # Proper naming and sorting of each label # # new data dictionary data_new = {} for key, data in d.data.items(): # generate nice tex label #data['label'] = pp.get_pretty_name(key) data['label'] = key #pp.get_pretty_name(key) key_new = pp.get_pretty_name_order(key)+'_'+key # copy data data_new[key_new] = copy.copy(data) # Copy back new data table d.data = data_new p = Plotting_ScatteredData() def fun(p): from matplotlib import ticker from matplotlib.ticker import FormatStrFormatter plt.tick_params(axis='x', which='minor') p.ax.xaxis.set_minor_formatter(FormatStrFormatter("%.0f")) p.ax.xaxis.set_major_formatter(FormatStrFormatter("%.0f")) p.ax.xaxis.set_minor_locator(ticker.LogLocator(subs=[1.5, 2.0, 3.0, 5.0])) for tick in p.ax.xaxis.get_minor_ticks(): tick.label.set_fontsize(8) plt.tick_params(axis='y', which='minor') p.ax.yaxis.set_minor_formatter(FormatStrFormatter("%.1e")) p.ax.yaxis.set_major_formatter(FormatStrFormatter("%.1e")) p.ax.yaxis.set_minor_locator(ticker.LogLocator(subs=[1.5, 2.0, 3.0, 5.0])) for tick in p.ax.yaxis.get_minor_ticks(): tick.label.set_fontsize(6) # # Add convergence information # if convergence: if 'l1' in tagname_y: ps = [100, 1e-9] elif 'l2' in tagname_y: ps = [100, 5e-8] elif 'linf' in tagname_y: ps = [100, 1e-7] else: ps = [100, 1e-0] p.add_convergence(2, ps) annotate_text_template = "{:.1f} / {:.3f}" p.plot( data_plotting = d.get_data_float(), xlabel = xlabel, ylabel = ylabel, title = title, xscale = xscale, yscale = yscale, #annotate = True, #annotate_each_nth_value = 3, #annotate_fontsize = 6, #annotate_text_template = annotate_text_template, legend_fontsize = 8, grid = True, outfile = fileid+".pdf", lambda_fun = fun, ) print("Data plotting:") d.print() d.write(fileid+".csv") print("Info:") print(" NaN: Errors in simulations") print(" None: No data available")
mit
xubenben/scikit-learn
examples/bicluster/plot_spectral_biclustering.py
403
2011
""" ============================================= A demo of the Spectral Biclustering algorithm ============================================= This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering algorithm. The data is generated with the ``make_checkerboard`` function, then shuffled and passed to the Spectral Biclustering algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm. The outer product of the row and column label vectors shows a representation of the checkerboard structure. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_checkerboard from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.metrics import consensus_score n_clusters = (4, 3) data, rows, columns = make_checkerboard( shape=(300, 300), n_clusters=n_clusters, noise=10, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralBiclustering(n_clusters=n_clusters, method='log', random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.1f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.matshow(np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1), cmap=plt.cm.Blues) plt.title("Checkerboard structure of rearranged data") plt.show()
bsd-3-clause
wwf5067/statsmodels
statsmodels/examples/ex_kernel_test_functional.py
34
2246
# -*- coding: utf-8 -*- """ Created on Tue Jan 08 19:03:20 2013 Author: Josef Perktold """ from __future__ import print_function if __name__ == '__main__': import numpy as np from statsmodels.regression.linear_model import OLS #from statsmodels.nonparametric.api import KernelReg import statsmodels.sandbox.nonparametric.kernel_extras as smke seed = np.random.randint(999999) #seed = 661176 print(seed) np.random.seed(seed) sig_e = 0.5 #0.1 nobs, k_vars = 200, 1 x = np.random.uniform(-2, 2, size=(nobs, k_vars)) x.sort() order = 3 exog = x**np.arange(order + 1) beta = np.array([1, 1, 0.1, 0.0])[:order+1] # 1. / np.arange(1, order + 2) y_true = np.dot(exog, beta) y = y_true + sig_e * np.random.normal(size=nobs) endog = y print('DGP') print('nobs=%d, beta=%r, sig_e=%3.1f' % (nobs, beta, sig_e)) mod_ols = OLS(endog, exog[:,:2]) res_ols = mod_ols.fit() #'cv_ls'[1000, 0.5][0.01, 0.45] tst = smke.TestFForm(endog, exog[:,:2], bw=[0.01, 0.45], var_type='cc', fform=lambda x,p: mod_ols.predict(p,x), estimator=lambda y,x: OLS(y,x).fit().params, nboot=1000) print('bw', tst.bw) print('tst.test_stat', tst.test_stat) print(tst.sig) print('tst.boots_results mean, min, max', (tst.boots_results.mean(), tst.boots_results.min(), tst.boots_results.max())) print('lower tail bootstrap p-value', (tst.boots_results < tst.test_stat).mean()) print('upper tail bootstrap p-value', (tst.boots_results >= tst.test_stat).mean()) from scipy import stats print('aymp.normal p-value (2-sided)', stats.norm.sf(np.abs(tst.test_stat))*2) print('aymp.normal p-value (upper)', stats.norm.sf(tst.test_stat)) do_plot=True if do_plot: import matplotlib.pyplot as plt plt.figure() plt.plot(x, y, '.') plt.plot(x, res_ols.fittedvalues) plt.title('OLS fit') plt.figure() plt.hist(tst.boots_results.ravel(), bins=20) plt.title('bootstrap histogram or test statistic') plt.show()
bsd-3-clause
google-research/dreamer
setup.py
1
1488
# Copyright 2019 The Dreamer Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import setuptools setuptools.setup( name='dreamer', version='1.0.0', description=( 'Dream to Explore: Learning Behaviors by Latent Imagination'), license='Apache 2.0', url='http://github.com/google-research/dreamer', install_requires=[ 'dm_control', 'gym', 'matplotlib', 'ruamel.yaml', 'scikit-image', 'scipy', 'tensorflow-gpu==1.13.1', 'tensorflow_probability==0.6.0', ], packages=setuptools.find_packages(), classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: Apache Software License', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Intended Audience :: Science/Research', ], )
apache-2.0
jreback/pandas
pandas/tests/window/test_apply.py
2
4880
import numpy as np import pytest from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range import pandas._testing as tm @pytest.mark.parametrize("bad_raw", [None, 1, 0]) def test_rolling_apply_invalid_raw(bad_raw): with pytest.raises(ValueError, match="raw parameter must be `True` or `False`"): Series(range(3)).rolling(1).apply(len, raw=bad_raw) def test_rolling_apply_out_of_bounds(engine_and_raw): # gh-1850 engine, raw = engine_and_raw vals = Series([1, 2, 3, 4]) result = vals.rolling(10).apply(np.sum, engine=engine, raw=raw) assert result.isna().all() result = vals.rolling(10, min_periods=1).apply(np.sum, engine=engine, raw=raw) expected = Series([1, 3, 6, 10], dtype=float) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("window", [2, "2s"]) def test_rolling_apply_with_pandas_objects(window): # 5071 df = DataFrame( {"A": np.random.randn(5), "B": np.random.randint(0, 10, size=5)}, index=date_range("20130101", periods=5, freq="s"), ) # we have an equal spaced timeseries index # so simulate removing the first period def f(x): if x.index[0] == df.index[0]: return np.nan return x.iloc[-1] result = df.rolling(window).apply(f, raw=False) expected = df.iloc[2:].reindex_like(df) tm.assert_frame_equal(result, expected) with tm.external_error_raised(AttributeError): df.rolling(window).apply(f, raw=True) def test_rolling_apply(engine_and_raw): engine, raw = engine_and_raw expected = Series([], dtype="float64") result = expected.rolling(10).apply(lambda x: x.mean(), engine=engine, raw=raw) tm.assert_series_equal(result, expected) # gh-8080 s = Series([None, None, None]) result = s.rolling(2, min_periods=0).apply(lambda x: len(x), engine=engine, raw=raw) expected = Series([1.0, 2.0, 2.0]) tm.assert_series_equal(result, expected) result = s.rolling(2, min_periods=0).apply(len, engine=engine, raw=raw) tm.assert_series_equal(result, expected) def test_all_apply(engine_and_raw): engine, raw = engine_and_raw df = ( DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") * 2 ) er = df.rolling(window=1) r = df.rolling(window="1s") result = r.apply(lambda x: 1, engine=engine, raw=raw) expected = er.apply(lambda x: 1, engine=engine, raw=raw) tm.assert_frame_equal(result, expected) def test_ragged_apply(engine_and_raw): engine, raw = engine_and_raw df = DataFrame({"B": range(5)}) df.index = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] f = lambda x: 1 result = df.rolling(window="1s", min_periods=1).apply(f, engine=engine, raw=raw) expected = df.copy() expected["B"] = 1.0 tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).apply(f, engine=engine, raw=raw) expected = df.copy() expected["B"] = 1.0 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).apply(f, engine=engine, raw=raw) expected = df.copy() expected["B"] = 1.0 tm.assert_frame_equal(result, expected) def test_invalid_engine(): with pytest.raises(ValueError, match="engine must be either 'numba' or 'cython'"): Series(range(1)).rolling(1).apply(lambda x: x, engine="foo") def test_invalid_engine_kwargs_cython(): with pytest.raises(ValueError, match="cython engine does not accept engine_kwargs"): Series(range(1)).rolling(1).apply( lambda x: x, engine="cython", engine_kwargs={"nopython": False} ) def test_invalid_raw_numba(): with pytest.raises( ValueError, match="raw must be `True` when using the numba engine" ): Series(range(1)).rolling(1).apply(lambda x: x, raw=False, engine="numba") @pytest.mark.parametrize("args_kwargs", [[None, {"par": 10}], [(10,), None]]) def test_rolling_apply_args_kwargs(args_kwargs): # GH 33433 def foo(x, par): return np.sum(x + par) df = DataFrame({"gr": [1, 1], "a": [1, 2]}) idx = Index(["gr", "a"]) expected = DataFrame([[11.0, 11.0], [11.0, 12.0]], columns=idx) result = df.rolling(1).apply(foo, args=args_kwargs[0], kwargs=args_kwargs[1]) tm.assert_frame_equal(result, expected) midx = MultiIndex.from_tuples([(1, 0), (1, 1)], names=["gr", None]) expected = Series([11.0, 12.0], index=midx, name="a") gb_rolling = df.groupby("gr")["a"].rolling(1) result = gb_rolling.apply(foo, args=args_kwargs[0], kwargs=args_kwargs[1]) tm.assert_series_equal(result, expected)
bsd-3-clause
DSLituiev/scikit-learn
sklearn/manifold/tests/test_isomap.py
121
4301
from itertools import product import numpy as np from numpy.testing import (assert_almost_equal, assert_array_almost_equal, assert_equal) from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) def test_isomap_clone_bug(): # regression test for bug reported in #6062 model = manifold.Isomap() for n_neighbors in [10, 15, 20]: model.set_params(n_neighbors=n_neighbors) model.fit(np.random.rand(50, 2)) assert_equal(model.nbrs_.n_neighbors, n_neighbors)
bsd-3-clause
weld-project/weld
examples/python/grizzly/movielens.py
3
1438
import pandas as pd import time # Make display smaller pd.options.display.max_rows = 10 unames = ['user_id', 'gender', 'age', 'occupation', 'zip'] users = pd.read_table('data/ml-1m/users.dat', sep='::', header=None, names=unames) rnames = ['user_id', 'movie_id', 'rating', 'timestamp'] ratings = pd.read_table('data/ml-1m/ratings.dat', sep='::', header=None, names=rnames) mnames = ['movie_id', 'title', 'genres'] movies = pd.read_table('data/ml-1m/movies.dat', sep='::', header=None, names=mnames) start = time.time() data = pd.merge(pd.merge(ratings, users), movies) end = time.time() print data start1 = time.time() mean_ratings = data.pivot_table('rating', index='title', columns='gender', aggfunc='mean') ratings_by_title = data.groupby('title').size() active_titles = ratings_by_title.index[ratings_by_title >= 250] mean_ratings = mean_ratings.loc[active_titles] mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F'] sorted_by_diff = mean_ratings.sort_values(by='diff') rating_std_by_title = data.groupby('title')['rating'].std() rating_std_by_title = rating_std_by_title.loc[active_titles] rating_std_by_title = rating_std_by_title.sort_values(ascending=False)[:10] end1 = time.time() print sorted_by_diff print rating_std_by_title print "Time to merge:", (end - start) print "Time for analysis:", (end1 - start1)
bsd-3-clause
zhenv5/scikit-learn
examples/applications/plot_out_of_core_classification.py
255
13919
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <[email protected]> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves import urllib from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines ############################################################################### class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main ############################################################################### # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batchs of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results ############################################################################### def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() #fig = plt.gcf() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
bbengfort/cloudscope
cloudscope/viz.py
1
10416
# cloudscope.viz # Helper functions for creating output vizualiations from simulations. # # Author: Benjamin Bengfort <[email protected]> # Created: Fri Dec 04 13:49:54 2015 -0500 # # Copyright (C) 2015 University of Maryland # For license information, see LICENSE.txt # # ID: viz.py [d0f0ca1] [email protected] $ """ Helper functions for creating output vizualiations from simulations. """ ########################################################################## ## Imports ########################################################################## from operator import itemgetter from collections import defaultdict from cloudscope.config import settings from peak.util.imports import lazyModule from cloudscope.colors import ColorMap from networkx.readwrite import json_graph # Perform lazy loading of vizualiation libraries nx = lazyModule('networkx') gt = lazyModule('graph_tool.all') sns = lazyModule('seaborn') plt = lazyModule('matplotlib.pyplot') np = lazyModule('numpy') pd = lazyModule('pandas') ########################################################################## ## Helper Functions ########################################################################## def configure(**kwargs): """ Sets various configurations for Seaborn from the settings or arguments. """ # Get configurations to do modifications on them. style = kwargs.pop('style', settings.vizualization.style) context = kwargs.pop('context', settings.vizualization.context) palette = kwargs.pop('palette', settings.vizualization.palette) # Set the configurations on SNS sns.set_style(style) sns.set_context(context) sns.set_palette(palette) return kwargs ########################################################################## ## Seaborn Drawing Utilities ########################################################################## def plot_kde(series, **kwargs): """ Helper function to plot a density estimate of some distribution. """ kwargs = configure(**kwargs) return sns.distplot(np.array(series), **kwargs) def plot_time(series, **kwargs): """ Helper function to plot a simple time series on an axis. """ kwargs = configure(**kwargs) return sns.tsplot(np.array(series), **kwargs) ########################################################################## ## Traces Drawing Utilities ########################################################################## def plot_workload(results, series='devices', **kwargs): """ Helper function to make a timeline plot of reads/writes. If devices is True, plots timeline by device, else Objects. """ kwargs = configure(**kwargs) outpath = kwargs.pop('savefig', None) series = { 'devices': 0, 'locations': 1, 'objects': 2, }[series.lower()] read_color = kwargs.pop('read_color', '#E20404') write_color = kwargs.pop('write_color', '#1E05D9') locations = defaultdict(list) # Build the data from the read and write time series for key in ('read', 'write'): for item in results.results[key]: locations[item[series]].append( item + [key] ) # Sort the data by timestamp for key in locations: locations[key].sort(key=itemgetter(0)) # Create the visualization rx = [] ry = [] wx = [] wy = [] for idx, (key, lst) in enumerate(sorted(locations.items(), key=itemgetter(0), reverse=True)): for item in lst: if item[3] > 1000000: continue if item[-1] == 'read': rx.append(int(item[3])) ry.append(idx) else: wx.append(int(item[3])) wy.append(idx) fig = plt.figure(figsize=(14,4)) plt.ylim((-1,len(locations))) plt.xlim((-1000, max(max(rx), max(wx))+1000)) plt.yticks(range(len(locations)), sorted(locations.keys(), reverse=True)) plt.scatter(rx, ry, color=read_color, label="reads", alpha=0.5, s=10) plt.scatter(wx, wy, color=write_color, label="writes", alpha=0.5, s=10) plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) if outpath: return plt.savefig(outpath, format='svg', dpi=1200) return plt def plot_message_traffic(messages): """ Plots message traffic on a per-replica basis over time. Input data should be an iterable of tuples of the form: (replica, timestamp) Which (handily) is exactly what is output to the results object. """ # Create data frame from results. columns = ['replica', 'timestamp', 'type', 'latency'] tsize = pd.DataFrame([ dict(zip(columns, message)) for message in messages ]) # Aggregate messages into a single count by replica messages = tsize.groupby(['timestamp', 'replica']).agg(len).unstack('replica').fillna(0) # Plot the bar chart ax = messages.plot(figsize=(14, 6), kind='bar', stacked=True, colormap='nipy_spectral') # Configure the figure ax.set_ylabel('number of messages') ax.set_title('Message Counts by Replica over Time') return ax ########################################################################## ## Graph Drawing Utilities ########################################################################## def draw_topology(topo, kind='graph_tool', **kwargs): """ Draws a network graph from a topology with either graph tool or networkx. """ draw_funcs = { 'graph_tool': draw_graph_tool_topology, 'gt': draw_graph_tool_topology, 'networkx': draw_networkx_topology, 'nx': draw_networkx_topology, } if kind not in draw_funcs: raise BadValue( "Unknown graph draw kind '{}' chose from one of {}".format( kind, ", ".join(draw_funcs.keys()) ) ) return draw_funcs[kind](topo, **kwargs) def draw_graph_tool_topology(topo, **kwargs): """ Draws a network topology as loaded from a JSON file with graph tool. """ from cloudscope.results.graph import get_prop_type G = gt.Graph(directed=True) # Construct the Graph properties for key, value in topo['meta'].items(): tname, value, key = get_prop_type(value, key) prop = G.new_graph_property(tname) G.graph_properties[key] = prop G.graph_properties[key] = value # Add the node properties nprops = set() for node in topo['nodes']: for key, val in node.items(): if key in nprops: continue tname, value, key = get_prop_type(val, key) prop = G.new_vertex_property(tname) G.vertex_properties[key] = prop nprops.add(key) # Add the edge properties eprops = set() for edge in topo['links']: for key, val in edge.items(): if key in eprops: continue if key == 'latency': for name in ('latency_mean', 'latency_stddev', 'latency_weight'): prop = G.new_edge_property('float') G.edge_properties[name] = prop continue tname, value, key = get_prop_type(val, key) if key in {'source', 'target'}: tname = 'string' prop = G.new_edge_property(tname) G.edge_properties[key] = prop eprops.add(key) # Add the nodes vertices = {} for idx,node in enumerate(topo['nodes']): v = G.add_vertex() vertices[idx] = v # Set the vertex properties for key, value in node.items(): G.vp[key][v] = value # Add the edges for edge in topo['links']: src = vertices[edge['source']] dst = vertices[edge['target']] e = G.add_edge(src, dst) for key, value in edge.items(): if key == 'latency': G.ep['latency_mean'][e] = float(value[0]) G.ep['latency_stddev'][e] = float(value[1]) G.ep['latency_weight'][e] = 1.0 / float(value[0]) continue if key in {'source', 'target'}: G.ep[key][e] = topo['nodes'][value]['id'] else: G.ep[key][e] = value # Graph Drawing Time vlabel = G.vp['id'] vsize = 60 vcolor = G.new_vertex_property('string') vcmap = { 'stentor': "#9b59b6", 'federated': "#3498db", 'unknown': "#95a5a6", 'eventual': "#e74c3c", 'tag': "#34495e", 'strong': "#2ecc71", } for vertex in G.vertices(): vcolor[vertex] = vcmap[G.vp['consistency'][vertex]] ecolor = G.new_edge_property('string') ecmap = ColorMap('paired', shuffle=False) for edge in G.edges(): ecolor[edge] = ecmap(G.ep['area'][edge]) elabel = G.ep['connection'] esize = G.ep['latency_weight'] eweight = G.ep['latency_weight'] esize = gt.prop_to_size(esize, mi=2, ma=5) pos = gt.arf_layout(G, weight=esize) gt.graph_draw( G, pos=pos, vertex_text=vlabel, vertex_size=vsize, vertex_font_weight=1, vertex_pen_width=1.3, vertex_fill_color=vcolor, edge_pen_width=esize, edge_color=ecolor, edge_text=elabel, output_size=(1200,1200), output="{}.png".format(topo['meta']['title']), ) def draw_networkx_topology(topo, layout='circular', **kwargs): """ Draws a network topology as loaded from a JSON file with networkx. """ G = json_graph.node_link_graph(topo) cmap = { 'stentor': "#9b59b6", 'federated': "#3498db", 'unknown': "#95a5a6", 'eventual': "#e74c3c", 'tag': "#34495e", 'strong': "#2ecc71", } lmap = { 'constant': 'solid', 'variable': 'dashed', 'normal': 'dashdot', } draw = { 'circular': nx.draw_circular, 'random': nx.draw_random, 'spectral': nx.draw_spectral, 'spring': nx.draw_spring, 'shell': nx.draw_shell, 'graphviz': nx.draw_graphviz, }[layout] # Compute the colors and links for the topology colors = [cmap[n[1]['consistency']] for n in G.nodes(data=True)] links = [lmap[n[2]['connection']] for n in G.edges(data=True)] return draw( G, with_labels=True, font_weight='bold', node_size=800, node_color=colors, style=links, edge_color='#333333' )
mit
johndamen/pyeasyplot
easyplot/gui/__init__.py
1
4850
from PyQt4 import QtGui, QtCore from . import settings from .figure import FigureCanvas from .. import datasets import matplotlib.figure import matplotlib.cm from matplotlib import pyplot as plt import numpy as np from ..managers import FigureManager from . import basewidgets as bw from functools import partial class EasyPlotWindow(QtGui.QMainWindow): def __init__(self): super().__init__() self.setCentralWidget(EasyPlotWidget()) class EasyPlotWidget(QtGui.QWidget): def __init__(self, *datasets, parent=None): super().__init__(parent=parent) self.figure = matplotlib.figure.Figure(facecolor='none') self.figure_manager = FigureManager(self.figure) self.canvas = FigureCanvas(self.figure) self.layout = QtGui.QHBoxLayout(self) self.figure_layout = QtGui.QVBoxLayout() self.layout.addLayout(self.figure_layout) self.figure_layout.addWidget(self.canvas) # plot buttons self.plot_button_layout = QtGui.QHBoxLayout() self.plot_button_layout.setContentsMargins(0, 0, 0, 0) self.plot_button = QtGui.QPushButton('plot') self.plot_button.clicked.connect(self.plot) self.plot_button_layout.addWidget(self.plot_button) self.figure_layout.addLayout(self.plot_button_layout) # settings self.settings_toolbox = QtGui.QToolBox() self.settings_toolbox.setFixedWidth(300) self.layout.addWidget(self.settings_toolbox) self.dataset_selector = DatasetSelectorWidget(datasets) self.dataset_selector.added.connect(self.add_datasets) self.settings_toolbox.addItem(self.dataset_selector, 'Datasets') self.fig_settings_widget = settings.FigureSettings(self.figure_manager) self.fig_settings_widget.changed.connect(self.plot) self.fig_settings_widget.current_axes_changed.connect(self.change_current_axes) self.settings_toolbox.addItem(self.fig_settings_widget, 'Figure') self.ax_settings_widget = settings.AxesSettings() self.ax_settings_widget.changed.connect(self.set_axsettings) self.settings_toolbox.addItem(self.ax_settings_widget, 'Axes') self.plot_stack = settings.PlotStack() self.plot_stack.changed.connect(self.set_plotsettings) self.settings_toolbox.addItem(self.plot_stack, 'Plot') self.plot_settings_widget = settings.LegendSettings() self.settings_toolbox.addItem(self.plot_settings_widget, 'Legend') self.plot_settings_widget = settings.ColorbarSettings() self.settings_toolbox.addItem(self.plot_settings_widget, 'Colorbar') def change_current_axes(self, i): old, new = i old.format(**self.ax_settings_widget.kwargs) self.ax_settings_widget.set_kwargs(reset=True, **new.settings) self.canvas.draw() def set_plotsettings(self, settings): self.figure_manager.gca().layers.edit_current(**settings) self.plot() def set_axsettings(self, settings): self.figure_manager.gca().format(**settings) self.canvas.draw() def plot(self): for a in self.figure_manager.axes: a.plot() self.canvas.draw() def add_datasets(self, datasets): for d in datasets: print('adding', d) ax = self.figure_manager.gca() ax.layers.add(d) xlim, ylim = d.limits() ax.check_limits(xlim=xlim, ylim=ylim) self.plot_stack.for_dataset(d) self.settings_toolbox.setCurrentWidget(self.plot_stack) self.plot() class DatasetSelectorWidget(QtGui.QWidget): added = QtCore.pyqtSignal(list) def __init__(self, datasets): self.datasets = datasets super().__init__() self.build() def build(self): self.layout = QtGui.QVBoxLayout(self) self.layout.setContentsMargins(10, 0, 0, 0) self.list_widget = QtGui.QTreeWidget() self.list_widget.setColumnCount(2) self.list_widget.setColumnWidth(0, 150) self.list_widget.setHeaderHidden(True) self.layout.addWidget(self.list_widget) for d in self.datasets: self.list_widget.addTopLevelItem(DatasetItem(d)) self.layout.addItem(QtGui.QSpacerItem(0, 0, QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Expanding)) self.button = QtGui.QPushButton('add') self.button.clicked.connect(self.add) self.layout.addWidget(self.button) def add(self): self.added.emit([i.dataset for i in self.list_widget.selectedItems()]) class DatasetItem(QtGui.QTreeWidgetItem): def __init__(self, d): self.dataset = d super().__init__([self.dataset.LAYER_NAME]) for n, a in self.dataset: self.addChild(QtGui.QTreeWidgetItem([n, str(a.shape)]))
gpl-3.0
dsullivan7/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
mdrumond/tensorflow
tensorflow/contrib/metrics/python/kernel_tests/histogram_ops_test.py
130
9577
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for histogram_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.metrics.python.ops import histogram_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class Strict1dCumsumTest(test.TestCase): """Test this private function.""" def test_empty_tensor_returns_empty(self): with self.test_session(): tensor = constant_op.constant([]) result = histogram_ops._strict_1d_cumsum(tensor, 0) expected = constant_op.constant([]) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_1_tensor_works(self): with self.test_session(): tensor = constant_op.constant([3], dtype=dtypes.float32) result = histogram_ops._strict_1d_cumsum(tensor, 1) expected = constant_op.constant([3], dtype=dtypes.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) def test_length_3_tensor_works(self): with self.test_session(): tensor = constant_op.constant([1, 2, 3], dtype=dtypes.float32) result = histogram_ops._strict_1d_cumsum(tensor, 3) expected = constant_op.constant([1, 3, 6], dtype=dtypes.float32) np.testing.assert_array_equal(expected.eval(), result.eval()) class AUCUsingHistogramTest(test.TestCase): def setUp(self): self.rng = np.random.RandomState(0) def test_empty_labels_and_scores_gives_nan_auc(self): with self.test_session(): labels = constant_op.constant([], shape=[0], dtype=dtypes.bool) scores = constant_op.constant([], shape=[0], dtype=dtypes.float32) score_range = [0, 1.] auc, update_op = histogram_ops.auc_using_histogram(labels, scores, score_range) variables.local_variables_initializer().run() update_op.run() self.assertTrue(np.isnan(auc.eval())) def test_perfect_scores_gives_auc_1(self): self._check_auc( nbins=100, desired_auc=1.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_terrible_scores_gives_auc_0(self): self._check_auc( nbins=100, desired_auc=0.0, score_range=[0, 1.], num_records=50, frac_true=0.5, atol=0.05, num_updates=1) def test_many_common_conditions(self): for nbins in [50]: for desired_auc in [0.3, 0.5, 0.8]: for score_range in [[-1, 1], [-10, 0]]: for frac_true in [0.3, 0.8]: # Tests pass with atol = 0.03. Moved up to 0.05 to avoid flakes. self._check_auc( nbins=nbins, desired_auc=desired_auc, score_range=score_range, num_records=100, frac_true=frac_true, atol=0.05, num_updates=50) def test_large_class_imbalance_still_ok(self): # With probability frac_true ** num_records, each batch contains only True # records. In this case, ~ 95%. # Tests pass with atol = 0.02. Increased to 0.05 to avoid flakes. self._check_auc( nbins=100, desired_auc=0.8, score_range=[-1, 1.], num_records=10, frac_true=0.995, atol=0.05, num_updates=1000) def test_super_accuracy_with_many_bins_and_records(self): # Test passes with atol = 0.0005. Increased atol to avoid flakes. self._check_auc( nbins=1000, desired_auc=0.75, score_range=[0, 1.], num_records=1000, frac_true=0.5, atol=0.005, num_updates=100) def _check_auc(self, nbins=100, desired_auc=0.75, score_range=None, num_records=50, frac_true=0.5, atol=0.05, num_updates=10): """Check auc accuracy against synthetic data. Args: nbins: nbins arg from contrib.metrics.auc_using_histogram. desired_auc: Number in [0, 1]. The desired auc for synthetic data. score_range: 2-tuple, (low, high), giving the range of the resultant scores. Defaults to [0, 1.]. num_records: Positive integer. The number of records to return. frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. atol: Absolute tolerance for final AUC estimate. num_updates: Update internal histograms this many times, each with a new batch of synthetic data, before computing final AUC. Raises: AssertionError: If resultant AUC is not within atol of theoretical AUC from synthetic data. """ score_range = [0, 1.] or score_range with self.test_session(): labels = array_ops.placeholder(dtypes.bool, shape=[num_records]) scores = array_ops.placeholder(dtypes.float32, shape=[num_records]) auc, update_op = histogram_ops.auc_using_histogram( labels, scores, score_range, nbins=nbins) variables.local_variables_initializer().run() # Updates, then extract auc. for _ in range(num_updates): labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) update_op.run(feed_dict={labels: labels_a, scores: scores_a}) labels_a, scores_a = synthetic_data(desired_auc, score_range, num_records, self.rng, frac_true) # Fetch current auc, and verify that fetching again doesn't change it. auc_eval = auc.eval() self.assertAlmostEqual(auc_eval, auc.eval(), places=5) msg = ('nbins: %s, desired_auc: %s, score_range: %s, ' 'num_records: %s, frac_true: %s, num_updates: %s') % (nbins, desired_auc, score_range, num_records, frac_true, num_updates) np.testing.assert_allclose(desired_auc, auc_eval, atol=atol, err_msg=msg) def synthetic_data(desired_auc, score_range, num_records, rng, frac_true): """Create synthetic boolean_labels and scores with adjustable auc. Args: desired_auc: Number in [0, 1], the theoretical AUC of resultant data. score_range: 2-tuple, (low, high), giving the range of the resultant scores num_records: Positive integer. The number of records to return. rng: Initialized np.random.RandomState random number generator frac_true: Number in (0, 1). Expected fraction of resultant labels that will be True. This is just in expectation...more or less may actually be True. Returns: boolean_labels: np.array, dtype=bool. scores: np.array, dtype=np.float32 """ # We prove here why the method (below) for computing AUC works. Of course we # also checked this against sklearn.metrics.roc_auc_curve. # # First do this for score_range = [0, 1], then rescale. # WLOG assume AUC >= 0.5, otherwise we will solve for AUC >= 0.5 then swap # the labels. # So for AUC in [0, 1] we create False and True labels # and corresponding scores drawn from: # F ~ U[0, 1], T ~ U[x, 1] # We have, # AUC # = P[T > F] # = P[T > F | F < x] P[F < x] + P[T > F | F > x] P[F > x] # = (1 * x) + (0.5 * (1 - x)). # Inverting, we have: # x = 2 * AUC - 1, when AUC >= 0.5. assert 0 <= desired_auc <= 1 assert 0 < frac_true < 1 if desired_auc < 0.5: flip_labels = True desired_auc = 1 - desired_auc frac_true = 1 - frac_true else: flip_labels = False x = 2 * desired_auc - 1 labels = rng.binomial(1, frac_true, size=num_records).astype(bool) num_true = labels.sum() num_false = num_records - labels.sum() # Draw F ~ U[0, 1], and T ~ U[x, 1] false_scores = rng.rand(num_false) true_scores = x + rng.rand(num_true) * (1 - x) # Reshape [0, 1] to score_range. def reshape(scores): return score_range[0] + scores * (score_range[1] - score_range[0]) false_scores = reshape(false_scores) true_scores = reshape(true_scores) # Place into one array corresponding with the labels. scores = np.nan * np.ones(num_records, dtype=np.float32) scores[labels] = true_scores scores[~labels] = false_scores if flip_labels: labels = ~labels return labels, scores if __name__ == '__main__': test.main()
apache-2.0
sauliusl/seaborn
seaborn/tests/test_axisgrid.py
3
51598
import warnings import numpy as np import pandas as pd from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt from distutils.version import LooseVersion import pytest import nose.tools as nt import numpy.testing as npt from numpy.testing.decorators import skipif try: import pandas.testing as tm except ImportError: import pandas.util.testing as tm from .. import axisgrid as ag from .. import rcmod from ..palettes import color_palette from ..distributions import kdeplot, _freedman_diaconis_bins from ..categorical import pointplot from ..utils import categorical_order rs = np.random.RandomState(0) old_matplotlib = LooseVersion(mpl.__version__) < "1.4" pandas_has_categoricals = LooseVersion(pd.__version__) >= "0.15" class TestFacetGrid(object): df = pd.DataFrame(dict(x=rs.normal(size=60), y=rs.gamma(4, size=60), a=np.repeat(list("abc"), 20), b=np.tile(list("mn"), 30), c=np.tile(list("tuv"), 20), d=np.tile(list("abcdefghijkl"), 5))) def test_self_data(self): g = ag.FacetGrid(self.df) nt.assert_is(g.data, self.df) def test_self_fig(self): g = ag.FacetGrid(self.df) nt.assert_is_instance(g.fig, plt.Figure) def test_self_axes(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") for ax in g.axes.flat: nt.assert_is_instance(ax, plt.Axes) def test_axes_array_size(self): g1 = ag.FacetGrid(self.df) nt.assert_equal(g1.axes.shape, (1, 1)) g2 = ag.FacetGrid(self.df, row="a") nt.assert_equal(g2.axes.shape, (3, 1)) g3 = ag.FacetGrid(self.df, col="b") nt.assert_equal(g3.axes.shape, (1, 2)) g4 = ag.FacetGrid(self.df, hue="c") nt.assert_equal(g4.axes.shape, (1, 1)) g5 = ag.FacetGrid(self.df, row="a", col="b", hue="c") nt.assert_equal(g5.axes.shape, (3, 2)) for ax in g5.axes.flat: nt.assert_is_instance(ax, plt.Axes) def test_single_axes(self): g1 = ag.FacetGrid(self.df) nt.assert_is_instance(g1.ax, plt.Axes) g2 = ag.FacetGrid(self.df, row="a") with nt.assert_raises(AttributeError): g2.ax g3 = ag.FacetGrid(self.df, col="a") with nt.assert_raises(AttributeError): g3.ax g4 = ag.FacetGrid(self.df, col="a", row="b") with nt.assert_raises(AttributeError): g4.ax def test_col_wrap(self): n = len(self.df.d.unique()) g = ag.FacetGrid(self.df, col="d") assert g.axes.shape == (1, n) assert g.facet_axis(0, 8) is g.axes[0, 8] g_wrap = ag.FacetGrid(self.df, col="d", col_wrap=4) assert g_wrap.axes.shape == (n,) assert g_wrap.facet_axis(0, 8) is g_wrap.axes[8] assert g_wrap._ncol == 4 assert g_wrap._nrow == (n / 4) with pytest.raises(ValueError): g = ag.FacetGrid(self.df, row="b", col="d", col_wrap=4) df = self.df.copy() df.loc[df.d == "j"] = np.nan g_missing = ag.FacetGrid(df, col="d") assert g_missing.axes.shape == (1, n - 1) g_missing_wrap = ag.FacetGrid(df, col="d", col_wrap=4) assert g_missing_wrap.axes.shape == (n - 1,) g = ag.FacetGrid(self.df, col="d", col_wrap=1) assert len(list(g.facet_data())) == n def test_normal_axes(self): null = np.empty(0, object).flat g = ag.FacetGrid(self.df) npt.assert_array_equal(g._bottom_axes, g.axes.flat) npt.assert_array_equal(g._not_bottom_axes, null) npt.assert_array_equal(g._left_axes, g.axes.flat) npt.assert_array_equal(g._not_left_axes, null) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, col="c") npt.assert_array_equal(g._bottom_axes, g.axes.flat) npt.assert_array_equal(g._not_bottom_axes, null) npt.assert_array_equal(g._left_axes, g.axes[:, 0].flat) npt.assert_array_equal(g._not_left_axes, g.axes[:, 1:].flat) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, row="c") npt.assert_array_equal(g._bottom_axes, g.axes[-1, :].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:-1, :].flat) npt.assert_array_equal(g._left_axes, g.axes.flat) npt.assert_array_equal(g._not_left_axes, null) npt.assert_array_equal(g._inner_axes, null) g = ag.FacetGrid(self.df, col="a", row="c") npt.assert_array_equal(g._bottom_axes, g.axes[-1, :].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:-1, :].flat) npt.assert_array_equal(g._left_axes, g.axes[:, 0].flat) npt.assert_array_equal(g._not_left_axes, g.axes[:, 1:].flat) npt.assert_array_equal(g._inner_axes, g.axes[:-1, 1:].flat) def test_wrapped_axes(self): null = np.empty(0, object).flat g = ag.FacetGrid(self.df, col="a", col_wrap=2) npt.assert_array_equal(g._bottom_axes, g.axes[np.array([1, 2])].flat) npt.assert_array_equal(g._not_bottom_axes, g.axes[:1].flat) npt.assert_array_equal(g._left_axes, g.axes[np.array([0, 2])].flat) npt.assert_array_equal(g._not_left_axes, g.axes[np.array([1])].flat) npt.assert_array_equal(g._inner_axes, null) def test_figure_size(self): g = ag.FacetGrid(self.df, row="a", col="b") npt.assert_array_equal(g.fig.get_size_inches(), (6, 9)) g = ag.FacetGrid(self.df, row="a", col="b", height=6) npt.assert_array_equal(g.fig.get_size_inches(), (12, 18)) g = ag.FacetGrid(self.df, col="c", height=4, aspect=.5) npt.assert_array_equal(g.fig.get_size_inches(), (6, 4)) def test_figure_size_with_legend(self): g1 = ag.FacetGrid(self.df, col="a", hue="c", height=4, aspect=.5) npt.assert_array_equal(g1.fig.get_size_inches(), (6, 4)) g1.add_legend() nt.assert_greater(g1.fig.get_size_inches()[0], 6) g2 = ag.FacetGrid(self.df, col="a", hue="c", height=4, aspect=.5, legend_out=False) npt.assert_array_equal(g2.fig.get_size_inches(), (6, 4)) g2.add_legend() npt.assert_array_equal(g2.fig.get_size_inches(), (6, 4)) def test_legend_data(self): g1 = ag.FacetGrid(self.df, hue="a") g1.map(plt.plot, "x", "y") g1.add_legend() palette = color_palette(n_colors=3) nt.assert_equal(g1._legend.get_title().get_text(), "a") a_levels = sorted(self.df.a.unique()) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(a_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), len(a_levels)) for label, level in zip(labels, a_levels): nt.assert_equal(label.get_text(), level) def test_legend_data_missing_level(self): g1 = ag.FacetGrid(self.df, hue="a", hue_order=list("azbc")) g1.map(plt.plot, "x", "y") g1.add_legend() b, g, r, p = color_palette(n_colors=4) palette = [b, r, p] nt.assert_equal(g1._legend.get_title().get_text(), "a") a_levels = sorted(self.df.a.unique()) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(a_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), 4) for label, level in zip(labels, list("azbc")): nt.assert_equal(label.get_text(), level) def test_get_boolean_legend_data(self): self.df["b_bool"] = self.df.b == "m" g1 = ag.FacetGrid(self.df, hue="b_bool") g1.map(plt.plot, "x", "y") g1.add_legend() palette = color_palette(n_colors=2) nt.assert_equal(g1._legend.get_title().get_text(), "b_bool") b_levels = list(map(str, categorical_order(self.df.b_bool))) lines = g1._legend.get_lines() nt.assert_equal(len(lines), len(b_levels)) for line, hue in zip(lines, palette): nt.assert_equal(line.get_color(), hue) labels = g1._legend.get_texts() nt.assert_equal(len(labels), len(b_levels)) for label, level in zip(labels, b_levels): nt.assert_equal(label.get_text(), level) def test_legend_options(self): g1 = ag.FacetGrid(self.df, hue="b") g1.map(plt.plot, "x", "y") g1.add_legend() def test_legendout_with_colwrap(self): g = ag.FacetGrid(self.df, col="d", hue='b', col_wrap=4, legend_out=False) g.map(plt.plot, "x", "y", linewidth=3) g.add_legend() def test_subplot_kws(self): g = ag.FacetGrid(self.df, despine=False, subplot_kws=dict(projection="polar")) for ax in g.axes.flat: nt.assert_true("PolarAxesSubplot" in str(type(ax))) @skipif(old_matplotlib) def test_gridspec_kws(self): ratios = [3, 1, 2] gskws = dict(width_ratios=ratios) g = ag.FacetGrid(self.df, col='c', row='a', gridspec_kws=gskws) for ax in g.axes.flat: ax.set_xticks([]) ax.set_yticks([]) g.fig.tight_layout() for (l, m, r) in g.axes: assert l.get_position().width > m.get_position().width assert r.get_position().width > m.get_position().width @skipif(old_matplotlib) def test_gridspec_kws_col_wrap(self): ratios = [3, 1, 2, 1, 1] gskws = dict(width_ratios=ratios) with warnings.catch_warnings(): warnings.resetwarnings() warnings.simplefilter("always") npt.assert_warns(UserWarning, ag.FacetGrid, self.df, col='d', col_wrap=5, gridspec_kws=gskws) @skipif(not old_matplotlib) def test_gridsic_kws_old_mpl(self): ratios = [3, 1, 2] gskws = dict(width_ratios=ratios, height_ratios=ratios) with warnings.catch_warnings(): warnings.resetwarnings() warnings.simplefilter("always") npt.assert_warns(UserWarning, ag.FacetGrid, self.df, col='c', row='a', gridspec_kws=gskws) def test_data_generator(self): g = ag.FacetGrid(self.df, row="a") d = list(g.facet_data()) nt.assert_equal(len(d), 3) tup, data = d[0] nt.assert_equal(tup, (0, 0, 0)) nt.assert_true((data["a"] == "a").all()) tup, data = d[1] nt.assert_equal(tup, (1, 0, 0)) nt.assert_true((data["a"] == "b").all()) g = ag.FacetGrid(self.df, row="a", col="b") d = list(g.facet_data()) nt.assert_equal(len(d), 6) tup, data = d[0] nt.assert_equal(tup, (0, 0, 0)) nt.assert_true((data["a"] == "a").all()) nt.assert_true((data["b"] == "m").all()) tup, data = d[1] nt.assert_equal(tup, (0, 1, 0)) nt.assert_true((data["a"] == "a").all()) nt.assert_true((data["b"] == "n").all()) tup, data = d[2] nt.assert_equal(tup, (1, 0, 0)) nt.assert_true((data["a"] == "b").all()) nt.assert_true((data["b"] == "m").all()) g = ag.FacetGrid(self.df, hue="c") d = list(g.facet_data()) nt.assert_equal(len(d), 3) tup, data = d[1] nt.assert_equal(tup, (0, 0, 1)) nt.assert_true((data["c"] == "u").all()) def test_map(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") g.map(plt.plot, "x", "y", linewidth=3) lines = g.axes[0, 0].lines nt.assert_equal(len(lines), 3) line1, _, _ = lines nt.assert_equal(line1.get_linewidth(), 3) x, y = line1.get_data() mask = (self.df.a == "a") & (self.df.b == "m") & (self.df.c == "t") npt.assert_array_equal(x, self.df.x[mask]) npt.assert_array_equal(y, self.df.y[mask]) def test_map_dataframe(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") def plot(x, y, data=None, **kws): plt.plot(data[x], data[y], **kws) g.map_dataframe(plot, "x", "y", linestyle="--") lines = g.axes[0, 0].lines nt.assert_equal(len(lines), 3) line1, _, _ = lines nt.assert_equal(line1.get_linestyle(), "--") x, y = line1.get_data() mask = (self.df.a == "a") & (self.df.b == "m") & (self.df.c == "t") npt.assert_array_equal(x, self.df.x[mask]) npt.assert_array_equal(y, self.df.y[mask]) def test_set(self): g = ag.FacetGrid(self.df, row="a", col="b") xlim = (-2, 5) ylim = (3, 6) xticks = [-2, 0, 3, 5] yticks = [3, 4.5, 6] g.set(xlim=xlim, ylim=ylim, xticks=xticks, yticks=yticks) for ax in g.axes.flat: npt.assert_array_equal(ax.get_xlim(), xlim) npt.assert_array_equal(ax.get_ylim(), ylim) npt.assert_array_equal(ax.get_xticks(), xticks) npt.assert_array_equal(ax.get_yticks(), yticks) def test_set_titles(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "a = a | b = m") nt.assert_equal(g.axes[0, 1].get_title(), "a = a | b = n") nt.assert_equal(g.axes[1, 0].get_title(), "a = b | b = m") # Test a provided title g.set_titles("{row_var} == {row_name} \/ {col_var} == {col_name}") nt.assert_equal(g.axes[0, 0].get_title(), "a == a \/ b == m") nt.assert_equal(g.axes[0, 1].get_title(), "a == a \/ b == n") nt.assert_equal(g.axes[1, 0].get_title(), "a == b \/ b == m") # Test a single row g = ag.FacetGrid(self.df, col="b") g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "b = m") nt.assert_equal(g.axes[0, 1].get_title(), "b = n") # test with dropna=False g = ag.FacetGrid(self.df, col="b", hue="b", dropna=False) g.map(plt.plot, 'x', 'y') def test_set_titles_margin_titles(self): g = ag.FacetGrid(self.df, row="a", col="b", margin_titles=True) g.map(plt.plot, "x", "y") # Test the default titles nt.assert_equal(g.axes[0, 0].get_title(), "b = m") nt.assert_equal(g.axes[0, 1].get_title(), "b = n") nt.assert_equal(g.axes[1, 0].get_title(), "") # Test the row "titles" nt.assert_equal(g.axes[0, 1].texts[0].get_text(), "a = a") nt.assert_equal(g.axes[1, 1].texts[0].get_text(), "a = b") # Test a provided title g.set_titles(col_template="{col_var} == {col_name}") nt.assert_equal(g.axes[0, 0].get_title(), "b == m") nt.assert_equal(g.axes[0, 1].get_title(), "b == n") nt.assert_equal(g.axes[1, 0].get_title(), "") def test_set_ticklabels(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") xlab = [l.get_text() + "h" for l in g.axes[1, 0].get_xticklabels()] ylab = [l.get_text() for l in g.axes[1, 0].get_yticklabels()] g.set_xticklabels(xlab) g.set_yticklabels(rotation=90) got_x = [l.get_text() for l in g.axes[1, 1].get_xticklabels()] got_y = [l.get_text() for l in g.axes[0, 0].get_yticklabels()] npt.assert_array_equal(got_x, xlab) npt.assert_array_equal(got_y, ylab) x, y = np.arange(10), np.arange(10) df = pd.DataFrame(np.c_[x, y], columns=["x", "y"]) g = ag.FacetGrid(df).map(pointplot, "x", "y", order=x) g.set_xticklabels(step=2) got_x = [int(l.get_text()) for l in g.axes[0, 0].get_xticklabels()] npt.assert_array_equal(x[::2], got_x) g = ag.FacetGrid(self.df, col="d", col_wrap=5) g.map(plt.plot, "x", "y") g.set_xticklabels(rotation=45) g.set_yticklabels(rotation=75) for ax in g._bottom_axes: for l in ax.get_xticklabels(): nt.assert_equal(l.get_rotation(), 45) for ax in g._left_axes: for l in ax.get_yticklabels(): nt.assert_equal(l.get_rotation(), 75) def test_set_axis_labels(self): g = ag.FacetGrid(self.df, row="a", col="b") g.map(plt.plot, "x", "y") xlab = 'xx' ylab = 'yy' g.set_axis_labels(xlab, ylab) got_x = [ax.get_xlabel() for ax in g.axes[-1, :]] got_y = [ax.get_ylabel() for ax in g.axes[:, 0]] npt.assert_array_equal(got_x, xlab) npt.assert_array_equal(got_y, ylab) def test_axis_lims(self): g = ag.FacetGrid(self.df, row="a", col="b", xlim=(0, 4), ylim=(-2, 3)) nt.assert_equal(g.axes[0, 0].get_xlim(), (0, 4)) nt.assert_equal(g.axes[0, 0].get_ylim(), (-2, 3)) def test_data_orders(self): g = ag.FacetGrid(self.df, row="a", col="b", hue="c") nt.assert_equal(g.row_names, list("abc")) nt.assert_equal(g.col_names, list("mn")) nt.assert_equal(g.hue_names, list("tuv")) nt.assert_equal(g.axes.shape, (3, 2)) g = ag.FacetGrid(self.df, row="a", col="b", hue="c", row_order=list("bca"), col_order=list("nm"), hue_order=list("vtu")) nt.assert_equal(g.row_names, list("bca")) nt.assert_equal(g.col_names, list("nm")) nt.assert_equal(g.hue_names, list("vtu")) nt.assert_equal(g.axes.shape, (3, 2)) g = ag.FacetGrid(self.df, row="a", col="b", hue="c", row_order=list("bcda"), col_order=list("nom"), hue_order=list("qvtu")) nt.assert_equal(g.row_names, list("bcda")) nt.assert_equal(g.col_names, list("nom")) nt.assert_equal(g.hue_names, list("qvtu")) nt.assert_equal(g.axes.shape, (4, 3)) def test_palette(self): rcmod.set() g = ag.FacetGrid(self.df, hue="c") assert g._colors == color_palette(n_colors=len(self.df.c.unique())) g = ag.FacetGrid(self.df, hue="d") assert g._colors == color_palette("husl", len(self.df.d.unique())) g = ag.FacetGrid(self.df, hue="c", palette="Set2") assert g._colors == color_palette("Set2", len(self.df.c.unique())) dict_pal = dict(t="red", u="green", v="blue") list_pal = color_palette(["red", "green", "blue"], 3) g = ag.FacetGrid(self.df, hue="c", palette=dict_pal) assert g._colors == list_pal list_pal = color_palette(["green", "blue", "red"], 3) g = ag.FacetGrid(self.df, hue="c", hue_order=list("uvt"), palette=dict_pal) assert g._colors == list_pal def test_hue_kws(self): kws = dict(marker=["o", "s", "D"]) g = ag.FacetGrid(self.df, hue="c", hue_kws=kws) g.map(plt.plot, "x", "y") for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) def test_dropna(self): df = self.df.copy() hasna = pd.Series(np.tile(np.arange(6), 10), dtype=np.float) hasna[hasna == 5] = np.nan df["hasna"] = hasna g = ag.FacetGrid(df, dropna=False, row="hasna") nt.assert_equal(g._not_na.sum(), 60) g = ag.FacetGrid(df, dropna=True, row="hasna") nt.assert_equal(g._not_na.sum(), 50) def test_unicode_column_label_with_rows(self): # use a smaller copy of the default testing data frame: df = self.df.copy() df = df[["a", "b", "x"]] # rename column 'a' (which will be used for the columns in the grid) # by using a Unicode string: unicode_column_label = u"\u01ff\u02ff\u03ff" df = df.rename(columns={"a": unicode_column_label}) # ensure that the data frame columns have the expected names: nt.assert_equal(list(df.columns), [unicode_column_label, "b", "x"]) # plot the grid -- if successful, no UnicodeEncodingError should # occur: g = ag.FacetGrid(df, col=unicode_column_label, row="b") g = g.map(plt.plot, "x") def test_unicode_column_label_no_rows(self): # use a smaller copy of the default testing data frame: df = self.df.copy() df = df[["a", "x"]] # rename column 'a' (which will be used for the columns in the grid) # by using a Unicode string: unicode_column_label = u"\u01ff\u02ff\u03ff" df = df.rename(columns={"a": unicode_column_label}) # ensure that the data frame columns have the expected names: nt.assert_equal(list(df.columns), [unicode_column_label, "x"]) # plot the grid -- if successful, no UnicodeEncodingError should # occur: g = ag.FacetGrid(df, col=unicode_column_label) g = g.map(plt.plot, "x") def test_unicode_row_label_with_columns(self): # use a smaller copy of the default testing data frame: df = self.df.copy() df = df[["a", "b", "x"]] # rename column 'b' (which will be used for the rows in the grid) # by using a Unicode string: unicode_row_label = u"\u01ff\u02ff\u03ff" df = df.rename(columns={"b": unicode_row_label}) # ensure that the data frame columns have the expected names: nt.assert_equal(list(df.columns), ["a", unicode_row_label, "x"]) # plot the grid -- if successful, no UnicodeEncodingError should # occur: g = ag.FacetGrid(df, col="a", row=unicode_row_label) g = g.map(plt.plot, "x") def test_unicode_row_label_no_columns(self): # use a smaller copy of the default testing data frame: df = self.df.copy() df = df[["b", "x"]] # rename column 'b' (which will be used for the rows in the grid) # by using a Unicode string: unicode_row_label = u"\u01ff\u02ff\u03ff" df = df.rename(columns={"b": unicode_row_label}) # ensure that the data frame columns have the expected names: nt.assert_equal(list(df.columns), [unicode_row_label, "x"]) # plot the grid -- if successful, no UnicodeEncodingError should # occur: g = ag.FacetGrid(df, row=unicode_row_label) g = g.map(plt.plot, "x") def test_unicode_content_with_row_and_column(self): df = self.df.copy() # replace content of column 'a' (which will form the columns in the # grid) by Unicode characters: unicode_column_val = np.repeat((u'\u01ff', u'\u02ff', u'\u03ff'), 20) df["a"] = unicode_column_val # make sure that the replacement worked as expected: nt.assert_equal( list(df["a"]), [u'\u01ff'] * 20 + [u'\u02ff'] * 20 + [u'\u03ff'] * 20) # plot the grid -- if successful, no UnicodeEncodingError should # occur: g = ag.FacetGrid(df, col="a", row="b") g = g.map(plt.plot, "x") def test_unicode_content_no_rows(self): df = self.df.copy() # replace content of column 'a' (which will form the columns in the # grid) by Unicode characters: unicode_column_val = np.repeat((u'\u01ff', u'\u02ff', u'\u03ff'), 20) df["a"] = unicode_column_val # make sure that the replacement worked as expected: nt.assert_equal( list(df["a"]), [u'\u01ff'] * 20 + [u'\u02ff'] * 20 + [u'\u03ff'] * 20) # plot the grid -- if successful, no UnicodeEncodingError should # occur: g = ag.FacetGrid(df, col="a") g = g.map(plt.plot, "x") def test_unicode_content_no_columns(self): df = self.df.copy() # replace content of column 'a' (which will form the rows in the # grid) by Unicode characters: unicode_column_val = np.repeat((u'\u01ff', u'\u02ff', u'\u03ff'), 20) df["b"] = unicode_column_val # make sure that the replacement worked as expected: nt.assert_equal( list(df["b"]), [u'\u01ff'] * 20 + [u'\u02ff'] * 20 + [u'\u03ff'] * 20) # plot the grid -- if successful, no UnicodeEncodingError should # occur: g = ag.FacetGrid(df, row="b") g = g.map(plt.plot, "x") @skipif(not pandas_has_categoricals) def test_categorical_column_missing_categories(self): df = self.df.copy() df['a'] = df['a'].astype('category') g = ag.FacetGrid(df[df['a'] == 'a'], col="a", col_wrap=1) nt.assert_equal(g.axes.shape, (len(df['a'].cat.categories),)) def test_categorical_warning(self): g = ag.FacetGrid(self.df, col="b") with warnings.catch_warnings(): warnings.resetwarnings() warnings.simplefilter("always") npt.assert_warns(UserWarning, g.map, pointplot, "b", "x") class TestPairGrid(object): rs = np.random.RandomState(sum(map(ord, "PairGrid"))) df = pd.DataFrame(dict(x=rs.normal(size=60), y=rs.randint(0, 4, size=(60)), z=rs.gamma(3, size=60), a=np.repeat(list("abc"), 20), b=np.repeat(list("abcdefghijkl"), 5))) def test_self_data(self): g = ag.PairGrid(self.df) nt.assert_is(g.data, self.df) def test_ignore_datelike_data(self): df = self.df.copy() df['date'] = pd.date_range('2010-01-01', periods=len(df), freq='d') result = ag.PairGrid(self.df).data expected = df.drop('date', axis=1) tm.assert_frame_equal(result, expected) def test_self_fig(self): g = ag.PairGrid(self.df) nt.assert_is_instance(g.fig, plt.Figure) def test_self_axes(self): g = ag.PairGrid(self.df) for ax in g.axes.flat: nt.assert_is_instance(ax, plt.Axes) def test_default_axes(self): g = ag.PairGrid(self.df) nt.assert_equal(g.axes.shape, (3, 3)) nt.assert_equal(g.x_vars, ["x", "y", "z"]) nt.assert_equal(g.y_vars, ["x", "y", "z"]) nt.assert_true(g.square_grid) def test_specific_square_axes(self): vars = ["z", "x"] g = ag.PairGrid(self.df, vars=vars) nt.assert_equal(g.axes.shape, (len(vars), len(vars))) nt.assert_equal(g.x_vars, vars) nt.assert_equal(g.y_vars, vars) nt.assert_true(g.square_grid) def test_specific_nonsquare_axes(self): x_vars = ["x", "y"] y_vars = ["z", "y", "x"] g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, x_vars) nt.assert_equal(g.y_vars, y_vars) nt.assert_true(not g.square_grid) x_vars = ["x", "y"] y_vars = "z" g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, list(x_vars)) nt.assert_equal(g.y_vars, list(y_vars)) nt.assert_true(not g.square_grid) def test_specific_square_axes_with_array(self): vars = np.array(["z", "x"]) g = ag.PairGrid(self.df, vars=vars) nt.assert_equal(g.axes.shape, (len(vars), len(vars))) nt.assert_equal(g.x_vars, list(vars)) nt.assert_equal(g.y_vars, list(vars)) nt.assert_true(g.square_grid) def test_specific_nonsquare_axes_with_array(self): x_vars = np.array(["x", "y"]) y_vars = np.array(["z", "y", "x"]) g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) nt.assert_equal(g.axes.shape, (len(y_vars), len(x_vars))) nt.assert_equal(g.x_vars, list(x_vars)) nt.assert_equal(g.y_vars, list(y_vars)) nt.assert_true(not g.square_grid) def test_size(self): g1 = ag.PairGrid(self.df, height=3) npt.assert_array_equal(g1.fig.get_size_inches(), (9, 9)) g2 = ag.PairGrid(self.df, height=4, aspect=.5) npt.assert_array_equal(g2.fig.get_size_inches(), (6, 12)) g3 = ag.PairGrid(self.df, y_vars=["z"], x_vars=["x", "y"], height=2, aspect=2) npt.assert_array_equal(g3.fig.get_size_inches(), (8, 2)) def test_map(self): vars = ["x", "y", "z"] g1 = ag.PairGrid(self.df) g1.map(plt.scatter) for i, axes_i in enumerate(g1.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) g2 = ag.PairGrid(self.df, "a") g2.map(plt.scatter) for i, axes_i in enumerate(g2.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] for k, k_level in enumerate(self.df.a.unique()): x_in_k = x_in[self.df.a == k_level] y_in_k = y_in[self.df.a == k_level] x_out, y_out = ax.collections[k].get_offsets().T npt.assert_array_equal(x_in_k, x_out) npt.assert_array_equal(y_in_k, y_out) def test_map_nonsquare(self): x_vars = ["x"] y_vars = ["y", "z"] g = ag.PairGrid(self.df, x_vars=x_vars, y_vars=y_vars) g.map(plt.scatter) x_in = self.df.x for i, i_var in enumerate(y_vars): ax = g.axes[i, 0] y_in = self.df[i_var] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) def test_map_lower(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_lower(plt.scatter) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.triu_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) def test_map_upper(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_upper(plt.scatter) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) @skipif(old_matplotlib) def test_map_diag(self): g1 = ag.PairGrid(self.df) g1.map_diag(plt.hist) for ax in g1.diag_axes: nt.assert_equal(len(ax.patches), 10) g2 = ag.PairGrid(self.df) g2.map_diag(plt.hist, bins=15) for ax in g2.diag_axes: nt.assert_equal(len(ax.patches), 15) g3 = ag.PairGrid(self.df, hue="a") g3.map_diag(plt.hist) for ax in g3.diag_axes: nt.assert_equal(len(ax.patches), 30) g4 = ag.PairGrid(self.df, hue="a") g4.map_diag(plt.hist, histtype='step') for ax in g4.diag_axes: for ptch in ax.patches: nt.assert_equal(ptch.fill, False) @skipif(old_matplotlib) def test_map_diag_color(self): color = "red" rgb_color = mpl.colors.colorConverter.to_rgba(color) g1 = ag.PairGrid(self.df) g1.map_diag(plt.hist, color=color) for ax in g1.diag_axes: for patch in ax.patches: nt.assert_equals(patch.get_facecolor(), rgb_color) g2 = ag.PairGrid(self.df) g2.map_diag(kdeplot, color='red') for ax in g2.diag_axes: for line in ax.lines: nt.assert_equals(line.get_color(), color) @skipif(old_matplotlib) def test_map_diag_palette(self): pal = color_palette(n_colors=len(self.df.a.unique())) g = ag.PairGrid(self.df, hue="a") g.map_diag(kdeplot) for ax in g.diag_axes: for line, color in zip(ax.lines, pal): nt.assert_equals(line.get_color(), color) @skipif(old_matplotlib) def test_map_diag_and_offdiag(self): vars = ["x", "y", "z"] g = ag.PairGrid(self.df) g.map_offdiag(plt.scatter) g.map_diag(plt.hist) for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) def test_palette(self): rcmod.set() g = ag.PairGrid(self.df, hue="a") assert g.palette == color_palette(n_colors=len(self.df.a.unique())) g = ag.PairGrid(self.df, hue="b") assert g.palette == color_palette("husl", len(self.df.b.unique())) g = ag.PairGrid(self.df, hue="a", palette="Set2") assert g.palette == color_palette("Set2", len(self.df.a.unique())) dict_pal = dict(a="red", b="green", c="blue") list_pal = color_palette(["red", "green", "blue"]) g = ag.PairGrid(self.df, hue="a", palette=dict_pal) assert g.palette == list_pal list_pal = color_palette(["blue", "red", "green"]) g = ag.PairGrid(self.df, hue="a", hue_order=list("cab"), palette=dict_pal) assert g.palette == list_pal def test_hue_kws(self): kws = dict(marker=["o", "s", "d", "+"]) g = ag.PairGrid(self.df, hue="a", hue_kws=kws) g.map(plt.plot) for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) g = ag.PairGrid(self.df, hue="a", hue_kws=kws, hue_order=list("dcab")) g.map(plt.plot) for line, marker in zip(g.axes[0, 0].lines, kws["marker"]): nt.assert_equal(line.get_marker(), marker) @skipif(old_matplotlib) def test_hue_order(self): order = list("dcab") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_diag(plt.plot) for line, level in zip(g.axes[0, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_lower(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_upper(plt.plot) for line, level in zip(g.axes[0, 1].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "y"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") @skipif(old_matplotlib) def test_hue_order_missing_level(self): order = list("dcaeb") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_diag(plt.plot) for line, level in zip(g.axes[0, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_lower(plt.plot) for line, level in zip(g.axes[1, 0].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "x"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "y"]) plt.close("all") g = ag.PairGrid(self.df, hue="a", hue_order=order) g.map_upper(plt.plot) for line, level in zip(g.axes[0, 1].lines, order): x, y = line.get_xydata().T npt.assert_array_equal(x, self.df.loc[self.df.a == level, "y"]) npt.assert_array_equal(y, self.df.loc[self.df.a == level, "x"]) plt.close("all") def test_nondefault_index(self): df = self.df.copy().set_index("b") vars = ["x", "y", "z"] g1 = ag.PairGrid(df) g1.map(plt.scatter) for i, axes_i in enumerate(g1.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) g2 = ag.PairGrid(df, "a") g2.map(plt.scatter) for i, axes_i in enumerate(g2.axes): for j, ax in enumerate(axes_i): x_in = self.df[vars[j]] y_in = self.df[vars[i]] for k, k_level in enumerate(self.df.a.unique()): x_in_k = x_in[self.df.a == k_level] y_in_k = y_in[self.df.a == k_level] x_out, y_out = ax.collections[k].get_offsets().T npt.assert_array_equal(x_in_k, x_out) npt.assert_array_equal(y_in_k, y_out) @skipif(old_matplotlib) def test_pairplot(self): vars = ["x", "y", "z"] g = ag.pairplot(self.df) for ax in g.diag_axes: assert len(ax.patches) > 1 for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) g = ag.pairplot(self.df, hue="a") n = len(self.df.a.unique()) for ax in g.diag_axes: assert len(ax.lines) == n assert len(ax.collections) == n @skipif(old_matplotlib) def test_pairplot_reg(self): vars = ["x", "y", "z"] g = ag.pairplot(self.df, diag_kind="hist", kind="reg") for ax in g.diag_axes: nt.assert_equal(len(ax.patches), 10) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) @skipif(old_matplotlib) def test_pairplot_kde(self): vars = ["x", "y", "z"] g = ag.pairplot(self.df, diag_kind="kde") for ax in g.diag_axes: nt.assert_equal(len(ax.lines), 1) for i, j in zip(*np.triu_indices_from(g.axes, 1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.tril_indices_from(g.axes, -1)): ax = g.axes[i, j] x_in = self.df[vars[j]] y_in = self.df[vars[i]] x_out, y_out = ax.collections[0].get_offsets().T npt.assert_array_equal(x_in, x_out) npt.assert_array_equal(y_in, y_out) for i, j in zip(*np.diag_indices_from(g.axes)): ax = g.axes[i, j] nt.assert_equal(len(ax.collections), 0) @skipif(old_matplotlib) def test_pairplot_markers(self): vars = ["x", "y", "z"] markers = ["o", "x", "s"] g = ag.pairplot(self.df, hue="a", vars=vars, markers=markers) assert g.hue_kws["marker"] == markers plt.close("all") with pytest.raises(ValueError): g = ag.pairplot(self.df, hue="a", vars=vars, markers=markers[:-2]) class TestJointGrid(object): rs = np.random.RandomState(sum(map(ord, "JointGrid"))) x = rs.randn(100) y = rs.randn(100) x_na = x.copy() x_na[10] = np.nan x_na[20] = np.nan data = pd.DataFrame(dict(x=x, y=y, x_na=x_na)) def test_margin_grid_from_lists(self): g = ag.JointGrid(self.x.tolist(), self.y.tolist()) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) def test_margin_grid_from_arrays(self): g = ag.JointGrid(self.x, self.y) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) def test_margin_grid_from_series(self): g = ag.JointGrid(self.data.x, self.data.y) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) def test_margin_grid_from_dataframe(self): g = ag.JointGrid("x", "y", self.data) npt.assert_array_equal(g.x, self.x) npt.assert_array_equal(g.y, self.y) def test_margin_grid_from_dataframe_bad_variable(self): with nt.assert_raises(ValueError): ag.JointGrid("x", "bad_column", self.data) def test_margin_grid_axis_labels(self): g = ag.JointGrid("x", "y", self.data) xlabel, ylabel = g.ax_joint.get_xlabel(), g.ax_joint.get_ylabel() nt.assert_equal(xlabel, "x") nt.assert_equal(ylabel, "y") g.set_axis_labels("x variable", "y variable") xlabel, ylabel = g.ax_joint.get_xlabel(), g.ax_joint.get_ylabel() nt.assert_equal(xlabel, "x variable") nt.assert_equal(ylabel, "y variable") def test_dropna(self): g = ag.JointGrid("x_na", "y", self.data, dropna=False) nt.assert_equal(len(g.x), len(self.x_na)) g = ag.JointGrid("x_na", "y", self.data, dropna=True) nt.assert_equal(len(g.x), pd.notnull(self.x_na).sum()) def test_axlims(self): lim = (-3, 3) g = ag.JointGrid("x", "y", self.data, xlim=lim, ylim=lim) nt.assert_equal(g.ax_joint.get_xlim(), lim) nt.assert_equal(g.ax_joint.get_ylim(), lim) nt.assert_equal(g.ax_marg_x.get_xlim(), lim) nt.assert_equal(g.ax_marg_y.get_ylim(), lim) def test_marginal_ticks(self): g = ag.JointGrid("x", "y", self.data) nt.assert_true(~len(g.ax_marg_x.get_xticks())) nt.assert_true(~len(g.ax_marg_y.get_yticks())) def test_bivariate_plot(self): g = ag.JointGrid("x", "y", self.data) g.plot_joint(plt.plot) x, y = g.ax_joint.lines[0].get_xydata().T npt.assert_array_equal(x, self.x) npt.assert_array_equal(y, self.y) def test_univariate_plot(self): g = ag.JointGrid("x", "x", self.data) g.plot_marginals(kdeplot) _, y1 = g.ax_marg_x.lines[0].get_xydata().T y2, _ = g.ax_marg_y.lines[0].get_xydata().T npt.assert_array_equal(y1, y2) def test_plot(self): g = ag.JointGrid("x", "x", self.data) g.plot(plt.plot, kdeplot) x, y = g.ax_joint.lines[0].get_xydata().T npt.assert_array_equal(x, self.x) npt.assert_array_equal(y, self.x) _, y1 = g.ax_marg_x.lines[0].get_xydata().T y2, _ = g.ax_marg_y.lines[0].get_xydata().T npt.assert_array_equal(y1, y2) def test_annotate(self): g = ag.JointGrid("x", "y", self.data) rp = stats.pearsonr(self.x, self.y) g.annotate(stats.pearsonr) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "pearsonr = %.2g; p = %.2g" % rp) g.annotate(stats.pearsonr, stat="correlation") annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "correlation = %.2g; p = %.2g" % rp) def rsquared(x, y): return stats.pearsonr(x, y)[0] ** 2 r2 = rsquared(self.x, self.y) g.annotate(rsquared) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, "rsquared = %.2g" % r2) template = "{stat} = {val:.3g} (p = {p:.3g})" g.annotate(stats.pearsonr, template=template) annotation = g.ax_joint.legend_.texts[0].get_text() nt.assert_equal(annotation, template.format(stat="pearsonr", val=rp[0], p=rp[1])) def test_space(self): g = ag.JointGrid("x", "y", self.data, space=0) joint_bounds = g.ax_joint.bbox.bounds marg_x_bounds = g.ax_marg_x.bbox.bounds marg_y_bounds = g.ax_marg_y.bbox.bounds nt.assert_equal(joint_bounds[2], marg_x_bounds[2]) nt.assert_equal(joint_bounds[3], marg_y_bounds[3]) class TestJointPlot(object): rs = np.random.RandomState(sum(map(ord, "jointplot"))) x = rs.randn(100) y = rs.randn(100) data = pd.DataFrame(dict(x=x, y=y)) def test_scatter(self): g = ag.jointplot("x", "y", self.data) nt.assert_equal(len(g.ax_joint.collections), 1) x, y = g.ax_joint.collections[0].get_offsets().T npt.assert_array_equal(self.x, x) npt.assert_array_equal(self.y, y) x_bins = _freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = _freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) def test_reg(self): g = ag.jointplot("x", "y", self.data, kind="reg") nt.assert_equal(len(g.ax_joint.collections), 2) x, y = g.ax_joint.collections[0].get_offsets().T npt.assert_array_equal(self.x, x) npt.assert_array_equal(self.y, y) x_bins = _freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = _freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) nt.assert_equal(len(g.ax_joint.lines), 1) nt.assert_equal(len(g.ax_marg_x.lines), 1) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_resid(self): g = ag.jointplot("x", "y", self.data, kind="resid") nt.assert_equal(len(g.ax_joint.collections), 1) nt.assert_equal(len(g.ax_joint.lines), 1) nt.assert_equal(len(g.ax_marg_x.lines), 0) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_hex(self): g = ag.jointplot("x", "y", self.data, kind="hex") nt.assert_equal(len(g.ax_joint.collections), 1) x_bins = _freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = _freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) def test_kde(self): g = ag.jointplot("x", "y", self.data, kind="kde") nt.assert_true(len(g.ax_joint.collections) > 0) nt.assert_equal(len(g.ax_marg_x.collections), 1) nt.assert_equal(len(g.ax_marg_y.collections), 1) nt.assert_equal(len(g.ax_marg_x.lines), 1) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_color(self): g = ag.jointplot("x", "y", self.data, color="purple") purple = mpl.colors.colorConverter.to_rgb("purple") scatter_color = g.ax_joint.collections[0].get_facecolor()[0, :3] nt.assert_equal(tuple(scatter_color), purple) hist_color = g.ax_marg_x.patches[0].get_facecolor()[:3] nt.assert_equal(hist_color, purple) def test_annotation(self): g = ag.jointplot("x", "y", self.data, stat_func=stats.pearsonr) nt.assert_equal(len(g.ax_joint.legend_.get_texts()), 1) g = ag.jointplot("x", "y", self.data, stat_func=None) nt.assert_is(g.ax_joint.legend_, None) def test_hex_customise(self): # test that default gridsize can be overridden g = ag.jointplot("x", "y", self.data, kind="hex", joint_kws=dict(gridsize=5)) nt.assert_equal(len(g.ax_joint.collections), 1) a = g.ax_joint.collections[0].get_array() nt.assert_equal(28, a.shape[0]) # 28 hexagons expected for gridsize 5 def test_bad_kind(self): with nt.assert_raises(ValueError): ag.jointplot("x", "y", self.data, kind="not_a_kind")
bsd-3-clause
mxlei01/healthcareai-py
healthcareai/tests/test_model_eval.py
4
2285
import unittest import numpy as np import pandas as pd import sklearn import healthcareai.common.model_eval as hcai_eval from healthcareai.common.healthcareai_error import HealthcareAIError import healthcareai.tests.helpers as test_helpers class TestROC(unittest.TestCase): def test_roc(self): df = pd.DataFrame({'a': np.repeat(np.arange(.1, 1.1, .1), 10)}) b = np.repeat(0, 100) b[[56, 62, 63, 68, 74, 75, 76, 81, 82, 84, 85, 87, 88] + list(range(90, 100))] = 1 df['b'] = b # ROC_AUC result = hcai_eval.compute_roc(df['b'], df['a']) self.assertAlmostEqual(round(result['roc_auc'], 4), 0.9433) self.assertAlmostEqual(round(result['best_true_positive_rate'], 4), 0.9565) self.assertAlmostEqual(round(result['best_false_positive_rate'], 4), 0.2338) class TestPR(unittest.TestCase): def test_pr(self): df = pd.DataFrame({'a': np.repeat(np.arange(.1, 1.1, .1), 10)}) b = np.repeat(0, 100) b[[56, 62, 63, 68, 74, 75, 76, 81, 82, 84, 85, 87, 88] + list(range(90, 100))] = 1 df['b'] = b # PR_AUC out = hcai_eval.compute_pr(df['b'], df['a']) test_helpers.assertBetween(self, 0.8, 0.87, out['pr_auc']) self.assertAlmostEqual(round(out['best_precision'], 4), 0.8000) self.assertAlmostEqual(round(out['best_recall'], 4), 0.6957) class TestPlotRandomForestFeatureImportance(unittest.TestCase): def test_raises_error_on_non_rf_estimator(self): linear_regressor = sklearn.linear_model.LinearRegression() self.assertRaises( HealthcareAIError, hcai_eval.plot_random_forest_feature_importance, linear_regressor, None, None, save=False) class TestValidation(unittest.TestCase): def test_same_length_predictions_and_labels(self): self.assertTrue(hcai_eval._validate_predictions_and_labels_are_equal_length([0, 1, 2], [1, 2, 3])) def test_different_length_predictions_and_labels_raises_error(self): self.assertRaises( HealthcareAIError, hcai_eval._validate_predictions_and_labels_are_equal_length, [0, 1, 2], [0, 1, 2, 3, 4]) if __name__ == '__main__': unittest.main()
mit
kylerbrown/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
142
4467
""" =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ print(__doc__) # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.cross_validation import cross_val_score from sklearn.grid_search import GridSearchCV ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA() fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
cogmission/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_macosx.py
69
15397
from __future__ import division import os import numpy from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase, NavigationToolbar2 from matplotlib.cbook import maxdict from matplotlib.figure import Figure from matplotlib.path import Path from matplotlib.mathtext import MathTextParser from matplotlib.colors import colorConverter from matplotlib.widgets import SubplotTool import matplotlib from matplotlib.backends import _macosx def show(): """Show all the figures and enter the Cocoa mainloop. This function will not return until all windows are closed or the interpreter exits.""" # Having a Python-level function "show" wrapping the built-in # function "show" in the _macosx extension module allows us to # to add attributes to "show". This is something ipython does. _macosx.show() class RendererMac(RendererBase): """ The renderer handles drawing/rendering operations. Most of the renderer's methods forwards the command to the renderer's graphics context. The renderer does not wrap a C object and is written in pure Python. """ texd = maxdict(50) # a cache of tex image rasters def __init__(self, dpi, width, height): RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height self.gc = GraphicsContextMac() self.mathtext_parser = MathTextParser('MacOSX') def set_width_height (self, width, height): self.width, self.height = width, height def draw_path(self, gc, path, transform, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc gc.draw_path(path, transform, rgbFace) def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): if rgbFace is not None: rgbFace = tuple(rgbFace) if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc gc.draw_markers(marker_path, marker_trans, path, trans, rgbFace) def draw_path_collection(self, *args): gc = self.gc args = args[:13] gc.draw_path_collection(*args) def draw_quad_mesh(self, *args): gc = self.gc gc.draw_quad_mesh(*args) def new_gc(self): self.gc.reset() return self.gc def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): im.flipud_out() nrows, ncols, data = im.as_rgba_str() self.gc.draw_image(x, y, nrows, ncols, data, bbox, clippath, clippath_trans) im.flipud_out() def draw_tex(self, gc, x, y, s, prop, angle): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() key = s, size, self.dpi, angle, texmanager.get_font_config() im = self.texd.get(key) # Not sure what this does; just copied from backend_agg.py if im is None: Z = texmanager.get_grey(s, size, self.dpi) Z = numpy.array(255.0 - Z * 255.0, numpy.uint8) gc.draw_mathtext(x, y, angle, Z) def _draw_mathtext(self, gc, x, y, s, prop, angle): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc size = prop.get_size_in_points() ox, oy, width, height, descent, image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) gc.draw_mathtext(x, y, angle, 255 - image.as_array()) def draw_text(self, gc, x, y, s, prop, angle, ismath=False): if gc!=self.gc: n = self.gc.level() - gc.level() for i in range(n): self.gc.restore() self.gc = gc if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: family = prop.get_family() size = prop.get_size_in_points() weight = prop.get_weight() style = prop.get_style() gc.draw_text(x, y, unicode(s), family, size, weight, style, angle) def get_text_width_height_descent(self, s, prop, ismath): if ismath=='TeX': # TODO: handle props size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) m,n = Z.shape # TODO: handle descent; This is based on backend_agg.py return n, m, 0 if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent family = prop.get_family() size = prop.get_size_in_points() weight = prop.get_weight() style = prop.get_style() return self.gc.get_text_width_height_descent(unicode(s), family, size, weight, style) def flipy(self): return False def points_to_pixels(self, points): return points/72.0 * self.dpi def option_image_nocomposite(self): return True class GraphicsContextMac(_macosx.GraphicsContext, GraphicsContextBase): """ The GraphicsContext wraps a Quartz graphics context. All methods are implemented at the C-level in macosx.GraphicsContext. These methods set drawing properties such as the line style, fill color, etc. The actual drawing is done by the Renderer, which draws into the GraphicsContext. """ def __init__(self): GraphicsContextBase.__init__(self) _macosx.GraphicsContext.__init__(self) def set_foreground(self, fg, isRGB=False): if not isRGB: fg = colorConverter.to_rgb(fg) _macosx.GraphicsContext.set_foreground(self, fg) def set_clip_rectangle(self, box): GraphicsContextBase.set_clip_rectangle(self, box) if not box: return _macosx.GraphicsContext.set_clip_rectangle(self, box.bounds) def set_clip_path(self, path): GraphicsContextBase.set_clip_path(self, path) if not path: return path = path.get_fully_transformed_path() _macosx.GraphicsContext.set_clip_path(self, path) ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## def draw_if_interactive(): """ For performance reasons, we don't want to redraw the figure after each draw command. Instead, we mark the figure as invalid, so that it will be redrawn as soon as the event loop resumes via PyOS_InputHook. This function should be called after each draw event, even if matplotlib is not running interactively. """ figManager = Gcf.get_active() if figManager is not None: figManager.canvas.invalidate() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) canvas = FigureCanvasMac(figure) manager = FigureManagerMac(canvas, num) return manager class FigureCanvasMac(_macosx.FigureCanvas, FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance Events such as button presses, mouse movements, and key presses are handled in the C code and the base class methods button_press_event, button_release_event, motion_notify_event, key_press_event, and key_release_event are called from there. """ def __init__(self, figure): FigureCanvasBase.__init__(self, figure) width, height = self.get_width_height() self.renderer = RendererMac(figure.dpi, width, height) _macosx.FigureCanvas.__init__(self, width, height) def resize(self, width, height): self.renderer.set_width_height(width, height) dpi = self.figure.dpi width /= dpi height /= dpi self.figure.set_size_inches(width, height) def print_figure(self, filename, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', **kwargs): if dpi is None: dpi = matplotlib.rcParams['savefig.dpi'] filename = unicode(filename) root, ext = os.path.splitext(filename) ext = ext[1:].lower() if not ext: ext = "png" filename = root + "." + ext if ext=="jpg": ext = "jpeg" # save the figure settings origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() # set the new parameters self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) if ext in ('jpeg', 'png', 'tiff', 'gif', 'bmp'): width, height = self.figure.get_size_inches() width, height = width*dpi, height*dpi self.write_bitmap(filename, width, height) elif ext == 'pdf': self.write_pdf(filename) elif ext in ('ps', 'eps'): from backend_ps import FigureCanvasPS # Postscript backend changes figure.dpi, but doesn't change it back origDPI = self.figure.dpi fc = self.switch_backends(FigureCanvasPS) fc.print_figure(filename, dpi, facecolor, edgecolor, orientation, **kwargs) self.figure.dpi = origDPI self.figure.set_canvas(self) elif ext=='svg': from backend_svg import FigureCanvasSVG fc = self.switch_backends(FigureCanvasSVG) fc.print_figure(filename, dpi, facecolor, edgecolor, orientation, **kwargs) self.figure.set_canvas(self) else: raise ValueError("Figure format not available (extension %s)" % ext) # restore original figure settings self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) class FigureManagerMac(_macosx.FigureManager, FigureManagerBase): """ Wrap everything up into a window for the pylab interface """ def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) title = "Figure %d" % num _macosx.FigureManager.__init__(self, canvas, title) if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbarMac(canvas) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2Mac(canvas) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) # This is ugly, but this is what tkagg and gtk are doing. # It is needed to get ginput() working. self.canvas.figure.show = lambda *args: self.show() def show(self): self.canvas.draw() def close(self): Gcf.destroy(self.num) class NavigationToolbarMac(_macosx.NavigationToolbar): def __init__(self, canvas): self.canvas = canvas basedir = os.path.join(matplotlib.rcParams['datapath'], "images") images = {} for imagename in ("stock_left", "stock_right", "stock_up", "stock_down", "stock_zoom-in", "stock_zoom-out", "stock_save_as"): filename = os.path.join(basedir, imagename+".ppm") images[imagename] = self._read_ppm_image(filename) _macosx.NavigationToolbar.__init__(self, images) self.message = None def _read_ppm_image(self, filename): data = "" imagefile = open(filename) for line in imagefile: if "#" in line: i = line.index("#") line = line[:i] + "\n" data += line imagefile.close() magic, width, height, maxcolor, imagedata = data.split(None, 4) width, height = int(width), int(height) assert magic=="P6" assert len(imagedata)==width*height*3 # 3 colors in RGB return (width, height, imagedata) def panx(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].xaxis.pan(direction) self.canvas.invalidate() def pany(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].yaxis.pan(direction) self.canvas.invalidate() def zoomx(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].xaxis.zoom(direction) self.canvas.invalidate() def zoomy(self, direction): axes = self.canvas.figure.axes selected = self.get_active() for i in selected: axes[i].yaxis.zoom(direction) self.canvas.invalidate() def save_figure(self): filename = _macosx.choose_save_file('Save the figure') if filename is None: # Cancel return self.canvas.print_figure(filename) class NavigationToolbar2Mac(_macosx.NavigationToolbar2, NavigationToolbar2): def __init__(self, canvas): NavigationToolbar2.__init__(self, canvas) def _init_toolbar(self): basedir = os.path.join(matplotlib.rcParams['datapath'], "images") _macosx.NavigationToolbar2.__init__(self, basedir) def draw_rubberband(self, event, x0, y0, x1, y1): self.canvas.set_rubberband(x0, y0, x1, y1) def release(self, event): self.canvas.remove_rubberband() def set_cursor(self, cursor): _macosx.set_cursor(cursor) def save_figure(self): filename = _macosx.choose_save_file('Save the figure') if filename is None: # Cancel return self.canvas.print_figure(filename) def prepare_configure_subplots(self): toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasMac(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) return canvas def set_message(self, message): _macosx.NavigationToolbar2.set_message(self, message.encode('utf-8')) ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureManager = FigureManagerMac
agpl-3.0
hrjn/scikit-learn
examples/cluster/plot_affinity_propagation.py
349
2304
""" ================================================= Demo of affinity propagation clustering algorithm ================================================= Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007 """ print(__doc__) from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0) ############################################################################## # Compute Affinity Propagation af = AffinityPropagation(preference=-50).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric='sqeuclidean')) ############################################################################## # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.close('all') plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.plot(X[class_members, 0], X[class_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) for x in X[class_members]: plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
befelix/SafeMDP
examples/mars/mars_utilities.py
1
8568
from safemdp.grid_world import * from osgeo import gdal from scipy import interpolate import numpy as np import os import matplotlib.pyplot as plt import GPy __all__ = ['mars_map', 'initialize_SafeMDP_object', 'performance_metrics'] def mars_map(plot_map=False, interpolation=False): """ Extract the map for the simulation from the HiRISE data. If the HiRISE data is not in the current folder it will be downloaded and converted to GeoTiff extension with gdal. Parameters ---------- plot_map: bool If true plots the map that will be used for exploration interpolation: bool If true the data of the map will be interpolated with splines to obtain a finer grid Returns ------- altitudes: np.array 1-d vector with altitudes for each node coord: np.array Coordinate of the map we use for exploration world_shape: tuple Size of the grid world (rows, columns) step_size: tuple Step size for the grid (row, column) num_of_points: int Interpolation parameter. Indicates the scaling factor for the original step size """ # Define the dimension of the map we want to investigate and its resolution world_shape = (120, 70) step_size = (1., 1.) # Download and convert to GEOtiff Mars data if not os.path.exists('./mars.tif'): if not os.path.exists("./mars.IMG"): import urllib print('Downloading MARS map, this make take a while...') # Download the IMG file urllib.urlretrieve( "http://www.uahirise.org/PDS/DTM/PSP/ORB_010200_010299" "/PSP_010228_1490_ESP_016320_1490" "/DTEEC_010228_1490_016320_1490_A01.IMG", "mars.IMG") # Convert to tif print('Converting map to geotif...') os.system("gdal_translate -of GTiff ./mars.IMG ./mars.tif") print('Done') # Read the data with gdal module gdal.UseExceptions() ds = gdal.Open("./mars.tif") band = ds.GetRasterBand(1) elevation = band.ReadAsArray() # Extract the area of interest startX = 2890 startY = 1955 altitudes = np.copy(elevation[startX:startX + world_shape[0], startY:startY + world_shape[1]]) # Center the data mean_val = (np.max(altitudes) + np.min(altitudes)) / 2. altitudes[:] = altitudes - mean_val # Define coordinates n, m = world_shape step1, step2 = step_size xx, yy = np.meshgrid(np.linspace(0, (n - 1) * step1, n), np.linspace(0, (m - 1) * step2, m), indexing="ij") coord = np.vstack((xx.flatten(), yy.flatten())).T # Interpolate data if interpolation: # Interpolating function spline_interpolator = interpolate.RectBivariateSpline( np.linspace(0, (n - 1) * step1, n), np.linspace(0, (m - 1) * step1, m), altitudes) # New size and resolution num_of_points = 1 world_shape = tuple([(x - 1) * num_of_points + 1 for x in world_shape]) step_size = tuple([x / num_of_points for x in step_size]) # New coordinates and altitudes n, m = world_shape step1, step2 = step_size xx, yy = np.meshgrid(np.linspace(0, (n - 1) * step1, n), np.linspace(0, (m - 1) * step2, m), indexing="ij") coord = np.vstack((xx.flatten(), yy.flatten())).T altitudes = spline_interpolator(np.linspace(0, (n - 1) * step1, n), np.linspace(0, (m - 1) * step2, m)) else: num_of_points = 1 # Plot area if plot_map: plt.imshow(altitudes.T, origin="lower", interpolation="nearest") plt.colorbar() plt.show() altitudes = altitudes.flatten() return altitudes, coord, world_shape, step_size, num_of_points def initialize_SafeMDP_object(altitudes, coord, world_shape, step_size, L=0.2, beta=2, length=14.5, sigma_n=0.075, start_x=60, start_y=61): """ Parameters ---------- altitudes: np.array 1-d vector with altitudes for each node coord: np.array Coordinate of the map we use for exploration world_shape: tuple Size of the grid world (rows, columns) step_size: tuple Step size for the grid (row, column) L: float Lipschitz constant to compute expanders beta: float Scaling factor for confidence intervals length: float Lengthscale for Matern kernel sigma_n: Standard deviation for gaussian noise start_x: int x coordinate of the starting point start_y: y coordinate of the starting point Returns ------- start: int Node number of initial state x: SafeMDP Instance of the SafeMDP class for the mars exploration problem true_S_hat: np.array True S_hat if safety feature is known with no error and h_hard is used true_S_hat_epsilon: np.array True S_hat if safety feature is known up to epsilon and h is used h_hard: float True safety thrshold. It can be different from the safety threshold used for classification in case the agent needs to use extra caution (in our experiments h=25 deg, h_har=30 deg) """ # Safety threshold h = -np.tan(np.pi / 9. + np.pi / 36.) * step_size[0] #Initial node start = start_x * world_shape[1] + start_y # Initial safe sets S_hat0 = compute_S_hat0(start, world_shape, 4, altitudes, step_size, h) S0 = np.copy(S_hat0) S0[:, 0] = True # Initialize GP X = coord[start, :].reshape(1, 2) Y = altitudes[start].reshape(1, 1) kernel = GPy.kern.Matern52(input_dim=2, lengthscale=length, variance=100.) lik = GPy.likelihoods.Gaussian(variance=sigma_n ** 2) gp = GPy.core.GP(X, Y, kernel, lik) # Define SafeMDP object x = GridWorld(gp, world_shape, step_size, beta, altitudes, h, S0, S_hat0, L, update_dist=25) # Add samples about actions from starting node for i in range(5): x.add_observation(start, 1) x.add_observation(start, 2) x.add_observation(start, 3) x.add_observation(start, 4) x.gp.set_XY(X=x.gp.X[1:, :], Y=x.gp.Y[1:, :]) # Necessary for results as in # paper # True safe set for false safe h_hard = -np.tan(np.pi / 6.) * step_size[0] true_S = compute_true_safe_set(x.world_shape, x.altitudes, h_hard) true_S_hat = compute_true_S_hat(x.graph, true_S, x.initial_nodes) # True safe set for completeness epsilon = sigma_n * beta true_S_epsilon = compute_true_safe_set(x.world_shape, x.altitudes, x.h + epsilon) true_S_hat_epsilon = compute_true_S_hat(x.graph, true_S_epsilon, x.initial_nodes) return start, x, true_S_hat, true_S_hat_epsilon, h_hard def performance_metrics(path, x, true_S_hat_epsilon, true_S_hat, h_hard): """ Parameters ---------- path: np.array Nodes of the shortest safe path x: SafeMDP Instance of the SafeMDP class for the mars exploration problem true_S_hat_epsilon: np.array True S_hat if safety feature is known up to epsilon and h is used true_S_hat: np.array True S_hat if safety feature is known with no error and h_hard is used h_hard: float True safety thrshold. It can be different from the safety threshold used for classification in case the agent needs to use extra caution (in our experiments h=25 deg, h_har=30 deg) Returns ------- unsafe_transitions: int Number of unsafe transitions along the path coverage: float Percentage of coverage of true_S_hat_epsilon false_safe: int Number of misclassifications (classifing something as safe when it acutally is unsafe according to h_hard ) """ # Count unsafe transitions along the path path_altitudes = x.altitudes[path] unsafe_transitions = np.sum(-np.diff(path_altitudes) < h_hard) # Coverage max_size = float(np.count_nonzero(true_S_hat_epsilon)) coverage = 100 * np.count_nonzero(np.logical_and(x.S_hat, true_S_hat_epsilon))/max_size # False safe false_safe = np.count_nonzero(np.logical_and(x.S_hat, ~true_S_hat)) return unsafe_transitions, coverage, false_safe
mit
nhejazi/scikit-learn
sklearn/metrics/tests/test_common.py
8
43668
from __future__ import division, print_function from functools import partial from itertools import product import numpy as np import scipy.sparse as sp from sklearn.datasets import make_multilabel_classification from sklearn.preprocessing import LabelBinarizer from sklearn.utils.multiclass import type_of_target from sklearn.utils.validation import check_random_state from sklearn.utils import shuffle from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import _named_check from sklearn.metrics import accuracy_score from sklearn.metrics import average_precision_score from sklearn.metrics import brier_score_loss from sklearn.metrics import cohen_kappa_score from sklearn.metrics import confusion_matrix from sklearn.metrics import coverage_error from sklearn.metrics import explained_variance_score from sklearn.metrics import f1_score from sklearn.metrics import fbeta_score from sklearn.metrics import hamming_loss from sklearn.metrics import hinge_loss from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import label_ranking_loss from sklearn.metrics import log_loss from sklearn.metrics import matthews_corrcoef from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import precision_score from sklearn.metrics import r2_score from sklearn.metrics import recall_score from sklearn.metrics import roc_auc_score from sklearn.metrics import zero_one_loss # TODO Curve are currently not covered by invariance test # from sklearn.metrics import precision_recall_curve # from sklearn.metrics import roc_curve from sklearn.metrics.base import _average_binary_score # Note toward developers about metric testing # ------------------------------------------- # It is often possible to write one general test for several metrics: # # - invariance properties, e.g. invariance to sample order # - common behavior for an argument, e.g. the "normalize" with value True # will return the mean of the metrics and with value False will return # the sum of the metrics. # # In order to improve the overall metric testing, it is a good idea to write # first a specific test for the given metric and then add a general test for # all metrics that have the same behavior. # # Two types of datastructures are used in order to implement this system: # dictionaries of metrics and lists of metrics wit common properties. # # Dictionaries of metrics # ------------------------ # The goal of having those dictionaries is to have an easy way to call a # particular metric and associate a name to each function: # # - REGRESSION_METRICS: all regression metrics. # - CLASSIFICATION_METRICS: all classification metrics # which compare a ground truth and the estimated targets as returned by a # classifier. # - THRESHOLDED_METRICS: all classification metrics which # compare a ground truth and a score, e.g. estimated probabilities or # decision function (format might vary) # # Those dictionaries will be used to test systematically some invariance # properties, e.g. invariance toward several input layout. # REGRESSION_METRICS = { "mean_absolute_error": mean_absolute_error, "mean_squared_error": mean_squared_error, "median_absolute_error": median_absolute_error, "explained_variance_score": explained_variance_score, "r2_score": partial(r2_score, multioutput='variance_weighted'), } CLASSIFICATION_METRICS = { "accuracy_score": accuracy_score, "unnormalized_accuracy_score": partial(accuracy_score, normalize=False), "confusion_matrix": confusion_matrix, "hamming_loss": hamming_loss, "jaccard_similarity_score": jaccard_similarity_score, "unnormalized_jaccard_similarity_score": partial(jaccard_similarity_score, normalize=False), "zero_one_loss": zero_one_loss, "unnormalized_zero_one_loss": partial(zero_one_loss, normalize=False), # These are needed to test averaging "precision_score": precision_score, "recall_score": recall_score, "f1_score": f1_score, "f2_score": partial(fbeta_score, beta=2), "f0.5_score": partial(fbeta_score, beta=0.5), "matthews_corrcoef_score": matthews_corrcoef, "weighted_f0.5_score": partial(fbeta_score, average="weighted", beta=0.5), "weighted_f1_score": partial(f1_score, average="weighted"), "weighted_f2_score": partial(fbeta_score, average="weighted", beta=2), "weighted_precision_score": partial(precision_score, average="weighted"), "weighted_recall_score": partial(recall_score, average="weighted"), "micro_f0.5_score": partial(fbeta_score, average="micro", beta=0.5), "micro_f1_score": partial(f1_score, average="micro"), "micro_f2_score": partial(fbeta_score, average="micro", beta=2), "micro_precision_score": partial(precision_score, average="micro"), "micro_recall_score": partial(recall_score, average="micro"), "macro_f0.5_score": partial(fbeta_score, average="macro", beta=0.5), "macro_f1_score": partial(f1_score, average="macro"), "macro_f2_score": partial(fbeta_score, average="macro", beta=2), "macro_precision_score": partial(precision_score, average="macro"), "macro_recall_score": partial(recall_score, average="macro"), "samples_f0.5_score": partial(fbeta_score, average="samples", beta=0.5), "samples_f1_score": partial(f1_score, average="samples"), "samples_f2_score": partial(fbeta_score, average="samples", beta=2), "samples_precision_score": partial(precision_score, average="samples"), "samples_recall_score": partial(recall_score, average="samples"), "cohen_kappa_score": cohen_kappa_score, } THRESHOLDED_METRICS = { "coverage_error": coverage_error, "label_ranking_loss": label_ranking_loss, "log_loss": log_loss, "unnormalized_log_loss": partial(log_loss, normalize=False), "hinge_loss": hinge_loss, "brier_score_loss": brier_score_loss, "roc_auc_score": roc_auc_score, "weighted_roc_auc": partial(roc_auc_score, average="weighted"), "samples_roc_auc": partial(roc_auc_score, average="samples"), "micro_roc_auc": partial(roc_auc_score, average="micro"), "macro_roc_auc": partial(roc_auc_score, average="macro"), "average_precision_score": average_precision_score, "weighted_average_precision_score": partial(average_precision_score, average="weighted"), "samples_average_precision_score": partial(average_precision_score, average="samples"), "micro_average_precision_score": partial(average_precision_score, average="micro"), "macro_average_precision_score": partial(average_precision_score, average="macro"), "label_ranking_average_precision_score": label_ranking_average_precision_score, } ALL_METRICS = dict() ALL_METRICS.update(THRESHOLDED_METRICS) ALL_METRICS.update(CLASSIFICATION_METRICS) ALL_METRICS.update(REGRESSION_METRICS) # Lists of metrics with common properties # --------------------------------------- # Lists of metrics with common properties are used to test systematically some # functionalities and invariance, e.g. SYMMETRIC_METRICS lists all metrics that # are symmetric with respect to their input argument y_true and y_pred. # # When you add a new metric or functionality, check if a general test # is already written. # Those metrics don't support binary inputs METRIC_UNDEFINED_BINARY = [ "samples_f0.5_score", "samples_f1_score", "samples_f2_score", "samples_precision_score", "samples_recall_score", "coverage_error", "roc_auc_score", "micro_roc_auc", "weighted_roc_auc", "macro_roc_auc", "samples_roc_auc", "average_precision_score", "weighted_average_precision_score", "micro_average_precision_score", "macro_average_precision_score", "samples_average_precision_score", "label_ranking_loss", "label_ranking_average_precision_score", ] # Those metrics don't support multiclass inputs METRIC_UNDEFINED_MULTICLASS = [ "brier_score_loss", # with default average='binary', multiclass is prohibited "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score", ] # Metric undefined with "binary" or "multiclass" input METRIC_UNDEFINED_BINARY_MULTICLASS = set(METRIC_UNDEFINED_BINARY).union( set(METRIC_UNDEFINED_MULTICLASS)) # Metrics with an "average" argument METRICS_WITH_AVERAGING = [ "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score" ] # Threshold-based metrics with an "average" argument THRESHOLDED_METRICS_WITH_AVERAGING = [ "roc_auc_score", "average_precision_score", ] # Metrics with a "pos_label" argument METRICS_WITH_POS_LABEL = [ "roc_curve", "brier_score_loss", "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score", # pos_label support deprecated; to be removed in 0.18: "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", "weighted_precision_score", "weighted_recall_score", "micro_f0.5_score", "micro_f1_score", "micro_f2_score", "micro_precision_score", "micro_recall_score", "macro_f0.5_score", "macro_f1_score", "macro_f2_score", "macro_precision_score", "macro_recall_score", ] # Metrics with a "labels" argument # TODO: Handle multi_class metrics that has a labels argument as well as a # decision function argument. e.g hinge_loss METRICS_WITH_LABELS = [ "confusion_matrix", "hamming_loss", "precision_score", "recall_score", "f1_score", "f2_score", "f0.5_score", "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", "weighted_precision_score", "weighted_recall_score", "micro_f0.5_score", "micro_f1_score", "micro_f2_score", "micro_precision_score", "micro_recall_score", "macro_f0.5_score", "macro_f1_score", "macro_f2_score", "macro_precision_score", "macro_recall_score", "cohen_kappa_score", ] # Metrics with a "normalize" option METRICS_WITH_NORMALIZE_OPTION = [ "accuracy_score", "jaccard_similarity_score", "zero_one_loss", ] # Threshold-based metrics with "multilabel-indicator" format support THRESHOLDED_MULTILABEL_METRICS = [ "log_loss", "unnormalized_log_loss", "roc_auc_score", "weighted_roc_auc", "samples_roc_auc", "micro_roc_auc", "macro_roc_auc", "average_precision_score", "weighted_average_precision_score", "samples_average_precision_score", "micro_average_precision_score", "macro_average_precision_score", "coverage_error", "label_ranking_loss", ] # Classification metrics with "multilabel-indicator" format MULTILABELS_METRICS = [ "accuracy_score", "unnormalized_accuracy_score", "hamming_loss", "jaccard_similarity_score", "unnormalized_jaccard_similarity_score", "zero_one_loss", "unnormalized_zero_one_loss", "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", "weighted_precision_score", "weighted_recall_score", "macro_f0.5_score", "macro_f1_score", "macro_f2_score", "macro_precision_score", "macro_recall_score", "micro_f0.5_score", "micro_f1_score", "micro_f2_score", "micro_precision_score", "micro_recall_score", "samples_f0.5_score", "samples_f1_score", "samples_f2_score", "samples_precision_score", "samples_recall_score", ] # Regression metrics with "multioutput-continuous" format support MULTIOUTPUT_METRICS = [ "mean_absolute_error", "mean_squared_error", "r2_score", "explained_variance_score" ] # Symmetric with respect to their input arguments y_true and y_pred # metric(y_true, y_pred) == metric(y_pred, y_true). SYMMETRIC_METRICS = [ "accuracy_score", "unnormalized_accuracy_score", "hamming_loss", "jaccard_similarity_score", "unnormalized_jaccard_similarity_score", "zero_one_loss", "unnormalized_zero_one_loss", "f1_score", "micro_f1_score", "macro_f1_score", "weighted_recall_score", # P = R = F = accuracy in multiclass case "micro_f0.5_score", "micro_f1_score", "micro_f2_score", "micro_precision_score", "micro_recall_score", "matthews_corrcoef_score", "mean_absolute_error", "mean_squared_error", "median_absolute_error", "cohen_kappa_score", ] # Asymmetric with respect to their input arguments y_true and y_pred # metric(y_true, y_pred) != metric(y_pred, y_true). NOT_SYMMETRIC_METRICS = [ "explained_variance_score", "r2_score", "confusion_matrix", "precision_score", "recall_score", "f2_score", "f0.5_score", "weighted_f0.5_score", "weighted_f1_score", "weighted_f2_score", "weighted_precision_score", "macro_f0.5_score", "macro_f2_score", "macro_precision_score", "macro_recall_score", "log_loss", "hinge_loss" ] # No Sample weight support METRICS_WITHOUT_SAMPLE_WEIGHT = [ "confusion_matrix", # Left this one here because the tests in this file do # not work for confusion_matrix, as its output is a # matrix instead of a number. Testing of # confusion_matrix with sample_weight is in # test_classification.py "median_absolute_error", ] @ignore_warnings def test_symmetry(): # Test the symmetry of score and loss functions random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(20, )) y_pred = random_state.randint(0, 2, size=(20, )) # We shouldn't forget any metrics assert_equal(set(SYMMETRIC_METRICS).union( NOT_SYMMETRIC_METRICS, THRESHOLDED_METRICS, METRIC_UNDEFINED_BINARY_MULTICLASS), set(ALL_METRICS)) assert_equal( set(SYMMETRIC_METRICS).intersection(set(NOT_SYMMETRIC_METRICS)), set([])) # Symmetric metric for name in SYMMETRIC_METRICS: metric = ALL_METRICS[name] assert_almost_equal(metric(y_true, y_pred), metric(y_pred, y_true), err_msg="%s is not symmetric" % name) # Not symmetric metrics for name in NOT_SYMMETRIC_METRICS: metric = ALL_METRICS[name] assert_true(np.any(metric(y_true, y_pred) != metric(y_pred, y_true)), msg="%s seems to be symmetric" % name) @ignore_warnings def test_sample_order_invariance(): random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(20, )) y_pred = random_state.randint(0, 2, size=(20, )) y_true_shuffle, y_pred_shuffle = shuffle(y_true, y_pred, random_state=0) for name, metric in ALL_METRICS.items(): if name in METRIC_UNDEFINED_BINARY_MULTICLASS: continue assert_almost_equal(metric(y_true, y_pred), metric(y_true_shuffle, y_pred_shuffle), err_msg="%s is not sample order invariant" % name) @ignore_warnings def test_sample_order_invariance_multilabel_and_multioutput(): random_state = check_random_state(0) # Generate some data y_true = random_state.randint(0, 2, size=(20, 25)) y_pred = random_state.randint(0, 2, size=(20, 25)) y_score = random_state.normal(size=y_true.shape) y_true_shuffle, y_pred_shuffle, y_score_shuffle = shuffle(y_true, y_pred, y_score, random_state=0) for name in MULTILABELS_METRICS: metric = ALL_METRICS[name] assert_almost_equal(metric(y_true, y_pred), metric(y_true_shuffle, y_pred_shuffle), err_msg="%s is not sample order invariant" % name) for name in THRESHOLDED_MULTILABEL_METRICS: metric = ALL_METRICS[name] assert_almost_equal(metric(y_true, y_score), metric(y_true_shuffle, y_score_shuffle), err_msg="%s is not sample order invariant" % name) for name in MULTIOUTPUT_METRICS: metric = ALL_METRICS[name] assert_almost_equal(metric(y_true, y_score), metric(y_true_shuffle, y_score_shuffle), err_msg="%s is not sample order invariant" % name) assert_almost_equal(metric(y_true, y_pred), metric(y_true_shuffle, y_pred_shuffle), err_msg="%s is not sample order invariant" % name) @ignore_warnings def test_format_invariance_with_1d_vectors(): random_state = check_random_state(0) y1 = random_state.randint(0, 2, size=(20, )) y2 = random_state.randint(0, 2, size=(20, )) y1_list = list(y1) y2_list = list(y2) y1_1d, y2_1d = np.array(y1), np.array(y2) assert_equal(y1_1d.ndim, 1) assert_equal(y2_1d.ndim, 1) y1_column = np.reshape(y1_1d, (-1, 1)) y2_column = np.reshape(y2_1d, (-1, 1)) y1_row = np.reshape(y1_1d, (1, -1)) y2_row = np.reshape(y2_1d, (1, -1)) for name, metric in ALL_METRICS.items(): if name in METRIC_UNDEFINED_BINARY_MULTICLASS: continue measure = metric(y1, y2) assert_almost_equal(metric(y1_list, y2_list), measure, err_msg="%s is not representation invariant " "with list" % name) assert_almost_equal(metric(y1_1d, y2_1d), measure, err_msg="%s is not representation invariant " "with np-array-1d" % name) assert_almost_equal(metric(y1_column, y2_column), measure, err_msg="%s is not representation invariant " "with np-array-column" % name) # Mix format support assert_almost_equal(metric(y1_1d, y2_list), measure, err_msg="%s is not representation invariant " "with mix np-array-1d and list" % name) assert_almost_equal(metric(y1_list, y2_1d), measure, err_msg="%s is not representation invariant " "with mix np-array-1d and list" % name) assert_almost_equal(metric(y1_1d, y2_column), measure, err_msg="%s is not representation invariant " "with mix np-array-1d and np-array-column" % name) assert_almost_equal(metric(y1_column, y2_1d), measure, err_msg="%s is not representation invariant " "with mix np-array-1d and np-array-column" % name) assert_almost_equal(metric(y1_list, y2_column), measure, err_msg="%s is not representation invariant " "with mix list and np-array-column" % name) assert_almost_equal(metric(y1_column, y2_list), measure, err_msg="%s is not representation invariant " "with mix list and np-array-column" % name) # These mix representations aren't allowed assert_raises(ValueError, metric, y1_1d, y2_row) assert_raises(ValueError, metric, y1_row, y2_1d) assert_raises(ValueError, metric, y1_list, y2_row) assert_raises(ValueError, metric, y1_row, y2_list) assert_raises(ValueError, metric, y1_column, y2_row) assert_raises(ValueError, metric, y1_row, y2_column) # NB: We do not test for y1_row, y2_row as these may be # interpreted as multilabel or multioutput data. if (name not in (MULTIOUTPUT_METRICS + THRESHOLDED_MULTILABEL_METRICS + MULTILABELS_METRICS)): assert_raises(ValueError, metric, y1_row, y2_row) @ignore_warnings def test_invariance_string_vs_numbers_labels(): # Ensure that classification metrics with string labels random_state = check_random_state(0) y1 = random_state.randint(0, 2, size=(20, )) y2 = random_state.randint(0, 2, size=(20, )) y1_str = np.array(["eggs", "spam"])[y1] y2_str = np.array(["eggs", "spam"])[y2] pos_label_str = "spam" labels_str = ["eggs", "spam"] for name, metric in CLASSIFICATION_METRICS.items(): if name in METRIC_UNDEFINED_BINARY_MULTICLASS: continue measure_with_number = metric(y1, y2) # Ugly, but handle case with a pos_label and label metric_str = metric if name in METRICS_WITH_POS_LABEL: metric_str = partial(metric_str, pos_label=pos_label_str) measure_with_str = metric_str(y1_str, y2_str) assert_array_equal(measure_with_number, measure_with_str, err_msg="{0} failed string vs number invariance " "test".format(name)) measure_with_strobj = metric_str(y1_str.astype('O'), y2_str.astype('O')) assert_array_equal(measure_with_number, measure_with_strobj, err_msg="{0} failed string object vs number " "invariance test".format(name)) if name in METRICS_WITH_LABELS: metric_str = partial(metric_str, labels=labels_str) measure_with_str = metric_str(y1_str, y2_str) assert_array_equal(measure_with_number, measure_with_str, err_msg="{0} failed string vs number " "invariance test".format(name)) measure_with_strobj = metric_str(y1_str.astype('O'), y2_str.astype('O')) assert_array_equal(measure_with_number, measure_with_strobj, err_msg="{0} failed string vs number " "invariance test".format(name)) for name, metric in THRESHOLDED_METRICS.items(): if name in ("log_loss", "hinge_loss", "unnormalized_log_loss", "brier_score_loss"): # Ugly, but handle case with a pos_label and label metric_str = metric if name in METRICS_WITH_POS_LABEL: metric_str = partial(metric_str, pos_label=pos_label_str) measure_with_number = metric(y1, y2) measure_with_str = metric_str(y1_str, y2) assert_array_equal(measure_with_number, measure_with_str, err_msg="{0} failed string vs number " "invariance test".format(name)) measure_with_strobj = metric(y1_str.astype('O'), y2) assert_array_equal(measure_with_number, measure_with_strobj, err_msg="{0} failed string object vs number " "invariance test".format(name)) else: # TODO those metrics doesn't support string label yet assert_raises(ValueError, metric, y1_str, y2) assert_raises(ValueError, metric, y1_str.astype('O'), y2) def test_inf_nan_input(): invalids =[([0, 1], [np.inf, np.inf]), ([0, 1], [np.nan, np.nan]), ([0, 1], [np.nan, np.inf])] METRICS = dict() METRICS.update(THRESHOLDED_METRICS) METRICS.update(REGRESSION_METRICS) for metric in METRICS.values(): for y_true, y_score in invalids: assert_raise_message(ValueError, "contains NaN, infinity", metric, y_true, y_score) # Classification metrics all raise a mixed input exception for metric in CLASSIFICATION_METRICS.values(): for y_true, y_score in invalids: assert_raise_message(ValueError, "Classification metrics can't handle a mix " "of binary and continuous targets", metric, y_true, y_score) @ignore_warnings def check_single_sample(name): # Non-regression test: scores should work with a single sample. # This is important for leave-one-out cross validation. # Score functions tested are those that formerly called np.squeeze, # which turns an array of size 1 into a 0-d array (!). metric = ALL_METRICS[name] # assert that no exception is thrown for i, j in product([0, 1], repeat=2): metric([i], [j]) @ignore_warnings def check_single_sample_multioutput(name): metric = ALL_METRICS[name] for i, j, k, l in product([0, 1], repeat=4): metric(np.array([[i, j]]), np.array([[k, l]])) def test_single_sample(): for name in ALL_METRICS: if (name in METRIC_UNDEFINED_BINARY_MULTICLASS or name in THRESHOLDED_METRICS): # Those metrics are not always defined with one sample # or in multiclass classification continue yield check_single_sample, name for name in MULTIOUTPUT_METRICS + MULTILABELS_METRICS: yield check_single_sample_multioutput, name def test_multioutput_number_of_output_differ(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0], [1, 0], [0, 0]]) for name in MULTIOUTPUT_METRICS: metric = ALL_METRICS[name] assert_raises(ValueError, metric, y_true, y_pred) def test_multioutput_regression_invariance_to_dimension_shuffling(): # test invariance to dimension shuffling random_state = check_random_state(0) y_true = random_state.uniform(0, 2, size=(20, 5)) y_pred = random_state.uniform(0, 2, size=(20, 5)) for name in MULTIOUTPUT_METRICS: metric = ALL_METRICS[name] error = metric(y_true, y_pred) for _ in range(3): perm = random_state.permutation(y_true.shape[1]) assert_almost_equal(metric(y_true[:, perm], y_pred[:, perm]), error, err_msg="%s is not dimension shuffling " "invariant" % name) @ignore_warnings def test_multilabel_representation_invariance(): # Generate some data n_classes = 4 n_samples = 50 _, y1 = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=0, n_samples=n_samples, allow_unlabeled=True) _, y2 = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=1, n_samples=n_samples, allow_unlabeled=True) # To make sure at least one empty label is present y1 = np.vstack([y1, [[0] * n_classes]]) y2 = np.vstack([y2, [[0] * n_classes]]) y1_sparse_indicator = sp.coo_matrix(y1) y2_sparse_indicator = sp.coo_matrix(y2) for name in MULTILABELS_METRICS: metric = ALL_METRICS[name] # XXX cruel hack to work with partial functions if isinstance(metric, partial): metric.__module__ = 'tmp' metric.__name__ = name measure = metric(y1, y2) # Check representation invariance assert_almost_equal(metric(y1_sparse_indicator, y2_sparse_indicator), measure, err_msg="%s failed representation invariance " "between dense and sparse indicator " "formats." % name) def test_raise_value_error_multilabel_sequences(): # make sure the multilabel-sequence format raises ValueError multilabel_sequences = [ [[0, 1]], [[1], [2], [0, 1]], [(), (2), (0, 1)], [[]], [()], np.array([[], [1, 2]], dtype='object')] for name in MULTILABELS_METRICS: metric = ALL_METRICS[name] for seq in multilabel_sequences: assert_raises(ValueError, metric, seq, seq) def test_normalize_option_binary_classification(n_samples=20): # Test in the binary case random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(n_samples, )) y_pred = random_state.randint(0, 2, size=(n_samples, )) for name in METRICS_WITH_NORMALIZE_OPTION: metrics = ALL_METRICS[name] measure = metrics(y_true, y_pred, normalize=True) assert_greater(measure, 0, msg="We failed to test correctly the normalize option") assert_almost_equal(metrics(y_true, y_pred, normalize=False) / n_samples, measure) def test_normalize_option_multiclass_classification(): # Test in the multiclass case random_state = check_random_state(0) y_true = random_state.randint(0, 4, size=(20, )) y_pred = random_state.randint(0, 4, size=(20, )) n_samples = y_true.shape[0] for name in METRICS_WITH_NORMALIZE_OPTION: metrics = ALL_METRICS[name] measure = metrics(y_true, y_pred, normalize=True) assert_greater(measure, 0, msg="We failed to test correctly the normalize option") assert_almost_equal(metrics(y_true, y_pred, normalize=False) / n_samples, measure) def test_normalize_option_multilabel_classification(): # Test in the multilabel case n_classes = 4 n_samples = 100 # for both random_state 0 and 1, y_true and y_pred has at least one # unlabelled entry _, y_true = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=0, allow_unlabeled=True, n_samples=n_samples) _, y_pred = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=1, allow_unlabeled=True, n_samples=n_samples) # To make sure at least one empty label is present y_true += [0]*n_classes y_pred += [0]*n_classes for name in METRICS_WITH_NORMALIZE_OPTION: metrics = ALL_METRICS[name] measure = metrics(y_true, y_pred, normalize=True) assert_greater(measure, 0, msg="We failed to test correctly the normalize option") assert_almost_equal(metrics(y_true, y_pred, normalize=False) / n_samples, measure, err_msg="Failed with %s" % name) @ignore_warnings def _check_averaging(metric, y_true, y_pred, y_true_binarize, y_pred_binarize, is_multilabel): n_samples, n_classes = y_true_binarize.shape # No averaging label_measure = metric(y_true, y_pred, average=None) assert_array_almost_equal(label_measure, [metric(y_true_binarize[:, i], y_pred_binarize[:, i]) for i in range(n_classes)]) # Micro measure micro_measure = metric(y_true, y_pred, average="micro") assert_almost_equal(micro_measure, metric(y_true_binarize.ravel(), y_pred_binarize.ravel())) # Macro measure macro_measure = metric(y_true, y_pred, average="macro") assert_almost_equal(macro_measure, np.mean(label_measure)) # Weighted measure weights = np.sum(y_true_binarize, axis=0, dtype=int) if np.sum(weights) != 0: weighted_measure = metric(y_true, y_pred, average="weighted") assert_almost_equal(weighted_measure, np.average(label_measure, weights=weights)) else: weighted_measure = metric(y_true, y_pred, average="weighted") assert_almost_equal(weighted_measure, 0) # Sample measure if is_multilabel: sample_measure = metric(y_true, y_pred, average="samples") assert_almost_equal(sample_measure, np.mean([metric(y_true_binarize[i], y_pred_binarize[i]) for i in range(n_samples)])) assert_raises(ValueError, metric, y_true, y_pred, average="unknown") assert_raises(ValueError, metric, y_true, y_pred, average="garbage") def check_averaging(name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score): is_multilabel = type_of_target(y_true).startswith("multilabel") metric = ALL_METRICS[name] if name in METRICS_WITH_AVERAGING: _check_averaging(metric, y_true, y_pred, y_true_binarize, y_pred_binarize, is_multilabel) elif name in THRESHOLDED_METRICS_WITH_AVERAGING: _check_averaging(metric, y_true, y_score, y_true_binarize, y_score, is_multilabel) else: raise ValueError("Metric is not recorded as having an average option") def test_averaging_multiclass(n_samples=50, n_classes=3): random_state = check_random_state(0) y_true = random_state.randint(0, n_classes, size=(n_samples, )) y_pred = random_state.randint(0, n_classes, size=(n_samples, )) y_score = random_state.uniform(size=(n_samples, n_classes)) lb = LabelBinarizer().fit(y_true) y_true_binarize = lb.transform(y_true) y_pred_binarize = lb.transform(y_pred) for name in METRICS_WITH_AVERAGING: yield (_named_check(check_averaging, name), name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) def test_averaging_multilabel(n_classes=5, n_samples=40): _, y = make_multilabel_classification(n_features=1, n_classes=n_classes, random_state=5, n_samples=n_samples, allow_unlabeled=False) y_true = y[:20] y_pred = y[20:] y_score = check_random_state(0).normal(size=(20, n_classes)) y_true_binarize = y_true y_pred_binarize = y_pred for name in METRICS_WITH_AVERAGING + THRESHOLDED_METRICS_WITH_AVERAGING: yield (_named_check(check_averaging, name), name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) def test_averaging_multilabel_all_zeroes(): y_true = np.zeros((20, 3)) y_pred = np.zeros((20, 3)) y_score = np.zeros((20, 3)) y_true_binarize = y_true y_pred_binarize = y_pred for name in METRICS_WITH_AVERAGING: yield (_named_check(check_averaging, name), name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) # Test _average_binary_score for weight.sum() == 0 binary_metric = (lambda y_true, y_score, average="macro": _average_binary_score( precision_score, y_true, y_score, average)) _check_averaging(binary_metric, y_true, y_pred, y_true_binarize, y_pred_binarize, is_multilabel=True) def test_averaging_multilabel_all_ones(): y_true = np.ones((20, 3)) y_pred = np.ones((20, 3)) y_score = np.ones((20, 3)) y_true_binarize = y_true y_pred_binarize = y_pred for name in METRICS_WITH_AVERAGING: yield (_named_check(check_averaging, name), name, y_true, y_true_binarize, y_pred, y_pred_binarize, y_score) @ignore_warnings def check_sample_weight_invariance(name, metric, y1, y2): rng = np.random.RandomState(0) sample_weight = rng.randint(1, 10, size=len(y1)) # check that unit weights gives the same score as no weight unweighted_score = metric(y1, y2, sample_weight=None) assert_almost_equal( unweighted_score, metric(y1, y2, sample_weight=np.ones(shape=len(y1))), err_msg="For %s sample_weight=None is not equivalent to " "sample_weight=ones" % name) # check that the weighted and unweighted scores are unequal weighted_score = metric(y1, y2, sample_weight=sample_weight) assert_not_equal( unweighted_score, weighted_score, msg="Unweighted and weighted scores are unexpectedly " "equal (%f) for %s" % (weighted_score, name)) # check that sample_weight can be a list weighted_score_list = metric(y1, y2, sample_weight=sample_weight.tolist()) assert_almost_equal( weighted_score, weighted_score_list, err_msg=("Weighted scores for array and list " "sample_weight input are not equal (%f != %f) for %s") % ( weighted_score, weighted_score_list, name)) # check that integer weights is the same as repeated samples repeat_weighted_score = metric( np.repeat(y1, sample_weight, axis=0), np.repeat(y2, sample_weight, axis=0), sample_weight=None) assert_almost_equal( weighted_score, repeat_weighted_score, err_msg="Weighting %s is not equal to repeating samples" % name) # check that ignoring a fraction of the samples is equivalent to setting # the corresponding weights to zero sample_weight_subset = sample_weight[1::2] sample_weight_zeroed = np.copy(sample_weight) sample_weight_zeroed[::2] = 0 y1_subset = y1[1::2] y2_subset = y2[1::2] weighted_score_subset = metric(y1_subset, y2_subset, sample_weight=sample_weight_subset) weighted_score_zeroed = metric(y1, y2, sample_weight=sample_weight_zeroed) assert_almost_equal( weighted_score_subset, weighted_score_zeroed, err_msg=("Zeroing weights does not give the same result as " "removing the corresponding samples (%f != %f) for %s" % (weighted_score_zeroed, weighted_score_subset, name))) if not name.startswith('unnormalized'): # check that the score is invariant under scaling of the weights by a # common factor for scaling in [2, 0.3]: assert_almost_equal( weighted_score, metric(y1, y2, sample_weight=sample_weight * scaling), err_msg="%s sample_weight is not invariant " "under scaling" % name) # Check that if sample_weight.shape[0] != y_true.shape[0], it raised an # error assert_raises(Exception, metric, y1, y2, sample_weight=np.hstack([sample_weight, sample_weight])) def test_sample_weight_invariance(n_samples=50): random_state = check_random_state(0) # regression y_true = random_state.random_sample(size=(n_samples,)) y_pred = random_state.random_sample(size=(n_samples,)) for name in ALL_METRICS: if name not in REGRESSION_METRICS: continue if name in METRICS_WITHOUT_SAMPLE_WEIGHT: continue metric = ALL_METRICS[name] yield _named_check(check_sample_weight_invariance, name), name,\ metric, y_true, y_pred # binary random_state = check_random_state(0) y_true = random_state.randint(0, 2, size=(n_samples, )) y_pred = random_state.randint(0, 2, size=(n_samples, )) y_score = random_state.random_sample(size=(n_samples,)) for name in ALL_METRICS: if name in REGRESSION_METRICS: continue if (name in METRICS_WITHOUT_SAMPLE_WEIGHT or name in METRIC_UNDEFINED_BINARY): continue metric = ALL_METRICS[name] if name in THRESHOLDED_METRICS: yield _named_check(check_sample_weight_invariance, name), name,\ metric, y_true, y_score else: yield _named_check(check_sample_weight_invariance, name), name,\ metric, y_true, y_pred # multiclass random_state = check_random_state(0) y_true = random_state.randint(0, 5, size=(n_samples, )) y_pred = random_state.randint(0, 5, size=(n_samples, )) y_score = random_state.random_sample(size=(n_samples, 5)) for name in ALL_METRICS: if name in REGRESSION_METRICS: continue if (name in METRICS_WITHOUT_SAMPLE_WEIGHT or name in METRIC_UNDEFINED_BINARY_MULTICLASS): continue metric = ALL_METRICS[name] if name in THRESHOLDED_METRICS: yield _named_check(check_sample_weight_invariance, name), name,\ metric, y_true, y_score else: yield _named_check(check_sample_weight_invariance, name), name,\ metric, y_true, y_pred # multilabel indicator _, ya = make_multilabel_classification(n_features=1, n_classes=20, random_state=0, n_samples=100, allow_unlabeled=False) _, yb = make_multilabel_classification(n_features=1, n_classes=20, random_state=1, n_samples=100, allow_unlabeled=False) y_true = np.vstack([ya, yb]) y_pred = np.vstack([ya, ya]) y_score = random_state.randint(1, 4, size=y_true.shape) for name in (MULTILABELS_METRICS + THRESHOLDED_MULTILABEL_METRICS + MULTIOUTPUT_METRICS): if name in METRICS_WITHOUT_SAMPLE_WEIGHT: continue metric = ALL_METRICS[name] if name in THRESHOLDED_METRICS: yield (_named_check(check_sample_weight_invariance, name), name, metric, y_true, y_score) else: yield (_named_check(check_sample_weight_invariance, name), name, metric, y_true, y_pred) @ignore_warnings def test_no_averaging_labels(): # test labels argument when not using averaging # in multi-class and multi-label cases y_true_multilabel = np.array([[1, 1, 0, 0], [1, 1, 0, 0]]) y_pred_multilabel = np.array([[0, 0, 1, 1], [0, 1, 1, 0]]) y_true_multiclass = np.array([0, 1, 2]) y_pred_multiclass = np.array([0, 2, 3]) labels = np.array([3, 0, 1, 2]) _, inverse_labels = np.unique(labels, return_inverse=True) for name in METRICS_WITH_AVERAGING: for y_true, y_pred in [[y_true_multiclass, y_pred_multiclass], [y_true_multilabel, y_pred_multilabel]]: if name not in MULTILABELS_METRICS and y_pred.ndim > 1: continue metric = ALL_METRICS[name] score_labels = metric(y_true, y_pred, labels=labels, average=None) score = metric(y_true, y_pred, average=None) assert_array_equal(score_labels, score[inverse_labels])
bsd-3-clause
WangWenjun559/Weiss
summary/sumy/sklearn/preprocessing/tests/test_imputation.py
213
11911
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: np.mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: np.median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = grid_search.GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
apache-2.0
aestrivex/mne-python
examples/time_frequency/plot_compute_source_psd_epochs.py
19
2833
""" ===================================================================== Compute Power Spectral Density of inverse solution from single epochs ===================================================================== Compute PSD of dSPM inverse solution on single trial epochs restricted to a brain label. The PSD is computed using a multi-taper method with Discrete Prolate Spheroidal Sequence (DPSS) windows. """ # Author: Martin Luessi <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.io import Raw from mne.minimum_norm import read_inverse_operator, compute_source_psd_epochs print(__doc__) data_path = sample.data_path() fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_raw = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_event = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' label_name = 'Aud-lh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name event_id, tmin, tmax = 1, -0.2, 0.5 snr = 1.0 # use smaller SNR for raw data lambda2 = 1.0 / snr ** 2 method = "dSPM" # use dSPM method (could also be MNE or sLORETA) # Load data inverse_operator = read_inverse_operator(fname_inv) label = mne.read_label(fname_label) raw = Raw(fname_raw) events = mne.read_events(fname_event) # Set up pick list include = [] raw.info['bads'] += ['EEG 053'] # bads + 1 more # pick MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True, include=include, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=dict(mag=4e-12, grad=4000e-13, eog=150e-6)) # define frequencies of interest fmin, fmax = 0., 70. bandwidth = 4. # bandwidth of the windows in Hz # compute source space psd in label # Note: By using "return_generator=True" stcs will be a generator object # instead of a list. This allows us so to iterate without having to # keep everything in memory. stcs = compute_source_psd_epochs(epochs, inverse_operator, lambda2=lambda2, method=method, fmin=fmin, fmax=fmax, bandwidth=bandwidth, label=label, return_generator=True) # compute average PSD over the first 10 epochs n_epochs = 10 for i, stc in enumerate(stcs): if i >= n_epochs: break if i == 0: psd_avg = np.mean(stc.data, axis=0) else: psd_avg += np.mean(stc.data, axis=0) psd_avg /= n_epochs freqs = stc.times # the frequencies are stored here plt.figure() plt.plot(freqs, psd_avg) plt.xlabel('Freq (Hz)') plt.ylabel('Power Spectral Density') plt.show()
bsd-3-clause
frank-tancf/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
157
2409
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
jseabold/statsmodels
statsmodels/genmod/generalized_estimating_equations.py
4
115703
""" Procedures for fitting marginal regression models to dependent data using Generalized Estimating Equations. References ---------- KY Liang and S Zeger. "Longitudinal data analysis using generalized linear models". Biometrika (1986) 73 (1): 13-22. S Zeger and KY Liang. "Longitudinal Data Analysis for Discrete and Continuous Outcomes". Biometrics Vol. 42, No. 1 (Mar., 1986), pp. 121-130 A Rotnitzky and NP Jewell (1990). "Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data", Biometrika, 77, 485-497. Xu Guo and Wei Pan (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf LA Mancl LA, TA DeRouen (2001). A covariance estimator for GEE with improved small-sample properties. Biometrics. 2001 Mar;57(1):126-34. """ from statsmodels.compat.python import lzip from statsmodels.compat.pandas import Appender import numpy as np from scipy import stats import pandas as pd import patsy from collections import defaultdict from statsmodels.tools.decorators import cache_readonly import statsmodels.base.model as base # used for wrapper: import statsmodels.regression.linear_model as lm import statsmodels.base.wrapper as wrap from statsmodels.genmod import families from statsmodels.genmod.generalized_linear_model import GLM, GLMResults from statsmodels.genmod import cov_struct as cov_structs import statsmodels.genmod.families.varfuncs as varfuncs from statsmodels.genmod.families.links import Link from statsmodels.tools.sm_exceptions import (ConvergenceWarning, DomainWarning, IterationLimitWarning, ValueWarning) import warnings from statsmodels.graphics._regressionplots_doc import ( _plot_added_variable_doc, _plot_partial_residuals_doc, _plot_ceres_residuals_doc) from statsmodels.discrete.discrete_margins import ( _get_margeff_exog, _check_margeff_args, _effects_at, margeff_cov_with_se, _check_at_is_all, _transform_names, _check_discrete_args, _get_dummy_index, _get_count_index) class ParameterConstraint(object): """ A class for managing linear equality constraints for a parameter vector. """ def __init__(self, lhs, rhs, exog): """ Parameters ---------- lhs : ndarray A q x p matrix which is the left hand side of the constraint lhs * param = rhs. The number of constraints is q >= 1 and p is the dimension of the parameter vector. rhs : ndarray A 1-dimensional vector of length q which is the right hand side of the constraint equation. exog : ndarray The n x p exognenous data for the full model. """ # In case a row or column vector is passed (patsy linear # constraints passes a column vector). rhs = np.atleast_1d(rhs.squeeze()) if rhs.ndim > 1: raise ValueError("The right hand side of the constraint " "must be a vector.") if len(rhs) != lhs.shape[0]: raise ValueError("The number of rows of the left hand " "side constraint matrix L must equal " "the length of the right hand side " "constraint vector R.") self.lhs = lhs self.rhs = rhs # The columns of lhs0 are an orthogonal basis for the # orthogonal complement to row(lhs), the columns of lhs1 are # an orthogonal basis for row(lhs). The columns of lhsf = # [lhs0, lhs1] are mutually orthogonal. lhs_u, lhs_s, lhs_vt = np.linalg.svd(lhs.T, full_matrices=1) self.lhs0 = lhs_u[:, len(lhs_s):] self.lhs1 = lhs_u[:, 0:len(lhs_s)] self.lhsf = np.hstack((self.lhs0, self.lhs1)) # param0 is one solution to the underdetermined system # L * param = R. self.param0 = np.dot(self.lhs1, np.dot(lhs_vt, self.rhs) / lhs_s) self._offset_increment = np.dot(exog, self.param0) self.orig_exog = exog self.exog_fulltrans = np.dot(exog, self.lhsf) def offset_increment(self): """ Returns a vector that should be added to the offset vector to accommodate the constraint. Parameters ---------- exog : array_like The exogeneous data for the model. """ return self._offset_increment def reduced_exog(self): """ Returns a linearly transformed exog matrix whose columns span the constrained model space. Parameters ---------- exog : array_like The exogeneous data for the model. """ return self.exog_fulltrans[:, 0:self.lhs0.shape[1]] def restore_exog(self): """ Returns the full exog matrix before it was reduced to satisfy the constraint. """ return self.orig_exog def unpack_param(self, params): """ Converts the parameter vector `params` from reduced to full coordinates. """ return self.param0 + np.dot(self.lhs0, params) def unpack_cov(self, bcov): """ Converts the covariance matrix `bcov` from reduced to full coordinates. """ return np.dot(self.lhs0, np.dot(bcov, self.lhs0.T)) _gee_init_doc = """ Marginal regression model fit using Generalized Estimating Equations. GEE can be used to fit Generalized Linear Models (GLMs) when the data have a grouped structure, and the observations are possibly correlated within groups but not between groups. Parameters ---------- endog : array_like 1d array of endogenous values (i.e. responses, outcomes, dependent variables, or 'Y' values). exog : array_like 2d array of exogeneous values (i.e. covariates, predictors, independent variables, regressors, or 'X' values). A `nobs x k` array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See `statsmodels.tools.add_constant`. groups : array_like A 1d array of length `nobs` containing the group labels. time : array_like A 2d array of time (or other index) values, used by some dependence structures to define similarity relationships among observations within a cluster. family : family class instance %(family_doc)s cov_struct : CovStruct class instance The default is Independence. To specify an exchangeable structure use cov_struct = Exchangeable(). See statsmodels.genmod.cov_struct.CovStruct for more information. offset : array_like An offset to be included in the fit. If provided, must be an array whose length is the number of rows in exog. dep_data : array_like Additional data passed to the dependence structure. constraint : (ndarray, ndarray) If provided, the constraint is a tuple (L, R) such that the model parameters are estimated under the constraint L * param = R, where L is a q x p matrix and R is a q-dimensional vector. If constraint is provided, a score test is performed to compare the constrained model to the unconstrained model. update_dep : bool If true, the dependence parameters are optimized, otherwise they are held fixed at their starting values. weights : array_like An array of case weights to use in the analysis. %(extra_params)s See Also -------- statsmodels.genmod.families.family :ref:`families` :ref:`links` Notes ----- Only the following combinations make sense for family and link :: + ident log logit probit cloglog pow opow nbinom loglog logc Gaussian | x x x inv Gaussian | x x x binomial | x x x x x x x x x Poisson | x x x neg binomial | x x x x gamma | x x x Not all of these link functions are currently available. Endog and exog are references so that if the data they refer to are already arrays and these arrays are changed, endog and exog will change. The "robust" covariance type is the standard "sandwich estimator" (e.g. Liang and Zeger (1986)). It is the default here and in most other packages. The "naive" estimator gives smaller standard errors, but is only correct if the working correlation structure is correctly specified. The "bias reduced" estimator of Mancl and DeRouen (Biometrics, 2001) reduces the downward bias of the robust estimator. The robust covariance provided here follows Liang and Zeger (1986) and agrees with R's gee implementation. To obtain the robust standard errors reported in Stata, multiply by sqrt(N / (N - g)), where N is the total sample size, and g is the average group size. %(notes)s Examples -------- %(example)s """ _gee_nointercept = """ The nominal and ordinal GEE models should not have an intercept (either implicit or explicit). Use "0 + " in a formula to suppress the intercept. """ _gee_family_doc = """\ The default is Gaussian. To specify the binomial distribution use `family=sm.families.Binomial()`. Each family can take a link instance as an argument. See statsmodels.genmod.families.family for more information.""" _gee_ordinal_family_doc = """\ The only family supported is `Binomial`. The default `Logit` link may be replaced with `probit` if desired.""" _gee_nominal_family_doc = """\ The default value `None` uses a multinomial logit family specifically designed for use with GEE. Setting this argument to a non-default value is not currently supported.""" _gee_fit_doc = """ Fits a marginal regression model using generalized estimating equations (GEE). Parameters ---------- maxiter : int The maximum number of iterations ctol : float The convergence criterion for stopping the Gauss-Seidel iterations start_params : array_like A vector of starting values for the regression coefficients. If None, a default is chosen. params_niter : int The number of Gauss-Seidel updates of the mean structure parameters that take place prior to each update of the dependence structure. first_dep_update : int No dependence structure updates occur before this iteration number. cov_type : str One of "robust", "naive", or "bias_reduced". ddof_scale : scalar or None The scale parameter is estimated as the sum of squared Pearson residuals divided by `N - ddof_scale`, where N is the total sample size. If `ddof_scale` is None, the number of covariates (including an intercept if present) is used. scaling_factor : scalar The estimated covariance of the parameter estimates is scaled by this value. Default is 1, Stata uses N / (N - g), where N is the total sample size and g is the average group size. scale : str or float, optional `scale` can be None, 'X2', or a float If a float, its value is used as the scale parameter. The default value is None, which uses `X2` (Pearson's chi-square) for Gamma, Gaussian, and Inverse Gaussian. The default is 1 for the Binomial and Poisson families. Returns ------- An instance of the GEEResults class or subclass Notes ----- If convergence difficulties occur, increase the values of `first_dep_update` and/or `params_niter`. Setting `first_dep_update` to a greater value (e.g. ~10-20) causes the algorithm to move close to the GLM solution before attempting to identify the dependence structure. For the Gaussian family, there is no benefit to setting `params_niter` to a value greater than 1, since the mean structure parameters converge in one step. """ _gee_results_doc = """ Attributes ---------- cov_params_default : ndarray default covariance of the parameter estimates. Is chosen among one of the following three based on `cov_type` cov_robust : ndarray covariance of the parameter estimates that is robust cov_naive : ndarray covariance of the parameter estimates that is not robust to correlation or variance misspecification cov_robust_bc : ndarray covariance of the parameter estimates that is robust and bias reduced converged : bool indicator for convergence of the optimization. True if the norm of the score is smaller than a threshold cov_type : str string indicating whether a "robust", "naive" or "bias_reduced" covariance is used as default fit_history : dict Contains information about the iterations. fittedvalues : ndarray Linear predicted values for the fitted model. dot(exog, params) model : class instance Pointer to GEE model instance that called `fit`. normalized_cov_params : ndarray See GEE docstring params : ndarray The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data. scale : float The estimate of the scale / dispersion for the model fit. See GEE.fit for more information. score_norm : float norm of the score at the end of the iterative estimation. bse : ndarray The standard errors of the fitted GEE parameters. """ _gee_example = """ Logistic regression with autoregressive working dependence: >>> import statsmodels.api as sm >>> family = sm.families.Binomial() >>> va = sm.cov_struct.Autoregressive() >>> model = sm.GEE(endog, exog, group, family=family, cov_struct=va) >>> result = model.fit() >>> print(result.summary()) Use formulas to fit a Poisson GLM with independent working dependence: >>> import statsmodels.api as sm >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = sm.GEE.from_formula("y ~ age + trt + base", "subject", data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.summary()) Equivalent, using the formula API: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = smf.gee("y ~ age + trt + base", "subject", data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.summary()) """ _gee_ordinal_example = """ Fit an ordinal regression model using GEE, with "global odds ratio" dependence: >>> import statsmodels.api as sm >>> gor = sm.cov_struct.GlobalOddsRatio("ordinal") >>> model = sm.OrdinalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using formulas: >>> import statsmodels.formula.api as smf >>> model = smf.ordinal_gee("y ~ 0 + x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) """ _gee_nominal_example = """ Fit a nominal regression model using GEE: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> gor = sm.cov_struct.GlobalOddsRatio("nominal") >>> model = sm.NominalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using formulas: >>> import statsmodels.api as sm >>> model = sm.NominalGEE.from_formula("y ~ 0 + x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using the formula API: >>> import statsmodels.formula.api as smf >>> model = smf.nominal_gee("y ~ 0 + x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) """ def _check_args(endog, exog, groups, time, offset, exposure): if endog.size != exog.shape[0]: raise ValueError("Leading dimension of 'exog' should match " "length of 'endog'") if groups.size != endog.size: raise ValueError("'groups' and 'endog' should have the same size") if time is not None and (time.size != endog.size): raise ValueError("'time' and 'endog' should have the same size") if offset is not None and (offset.size != endog.size): raise ValueError("'offset and 'endog' should have the same size") if exposure is not None and (exposure.size != endog.size): raise ValueError("'exposure' and 'endog' should have the same size") class GEE(GLM): __doc__ = ( " Marginal Regression Model using Generalized Estimating " "Equations.\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_family_doc, 'example': _gee_example, 'notes': ""}) cached_means = None def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, exposure=None, dep_data=None, constraint=None, update_dep=True, weights=None, **kwargs): if family is not None: if not isinstance(family.link, tuple(family.safe_links)): import warnings msg = ("The {0} link function does not respect the " "domain of the {1} family.") warnings.warn(msg.format(family.link.__class__.__name__, family.__class__.__name__), DomainWarning) groups = np.asarray(groups) # in case groups is pandas if "missing_idx" in kwargs and kwargs["missing_idx"] is not None: # If here, we are entering from super.from_formula; missing # has already been dropped from endog and exog, but not from # the other variables. ii = ~kwargs["missing_idx"] groups = groups[ii] if time is not None: time = time[ii] if offset is not None: offset = offset[ii] if exposure is not None: exposure = exposure[ii] del kwargs["missing_idx"] _check_args(endog, exog, groups, time, offset, exposure) self.missing = missing self.dep_data = dep_data self.constraint = constraint self.update_dep = update_dep self._fit_history = defaultdict(list) # Pass groups, time, offset, and dep_data so they are # processed for missing data along with endog and exog. # Calling super creates self.exog, self.endog, etc. as # ndarrays and the original exog, endog, etc. are # self.data.endog, etc. super(GEE, self).__init__(endog, exog, groups=groups, time=time, offset=offset, exposure=exposure, weights=weights, dep_data=dep_data, missing=missing, family=family, **kwargs) self._init_keys.extend(["update_dep", "constraint", "family", "cov_struct"]) # Handle the family argument if family is None: family = families.Gaussian() else: if not issubclass(family.__class__, families.Family): raise ValueError("GEE: `family` must be a genmod " "family instance") self.family = family # Handle the cov_struct argument if cov_struct is None: cov_struct = cov_structs.Independence() else: if not issubclass(cov_struct.__class__, cov_structs.CovStruct): raise ValueError("GEE: `cov_struct` must be a genmod " "cov_struct instance") self.cov_struct = cov_struct # Handle the constraint self.constraint = None if constraint is not None: if len(constraint) != 2: raise ValueError("GEE: `constraint` must be a 2-tuple.") if constraint[0].shape[1] != self.exog.shape[1]: raise ValueError( "GEE: the left hand side of the constraint must have " "the same number of columns as the exog matrix.") self.constraint = ParameterConstraint(constraint[0], constraint[1], self.exog) if self._offset_exposure is not None: self._offset_exposure += self.constraint.offset_increment() else: self._offset_exposure = ( self.constraint.offset_increment().copy()) self.exog = self.constraint.reduced_exog() # Create list of row indices for each group group_labels, ix = np.unique(self.groups, return_inverse=True) se = pd.Series(index=np.arange(len(ix)), dtype="int") gb = se.groupby(ix).groups dk = [(lb, np.asarray(gb[k])) for k, lb in enumerate(group_labels)] self.group_indices = dict(dk) self.group_labels = group_labels # Convert the data to the internal representation, which is a # list of arrays, corresponding to the groups. self.endog_li = self.cluster_list(self.endog) self.exog_li = self.cluster_list(self.exog) if self.weights is not None: self.weights_li = self.cluster_list(self.weights) self.num_group = len(self.endog_li) # Time defaults to a 1d grid with equal spacing if self.time is not None: if self.time.ndim == 1: self.time = self.time[:, None] self.time_li = self.cluster_list(self.time) else: self.time_li = \ [np.arange(len(y), dtype=np.float64)[:, None] for y in self.endog_li] self.time = np.concatenate(self.time_li) if (self._offset_exposure is None or (np.isscalar(self._offset_exposure) and self._offset_exposure == 0.)): self.offset_li = None else: self.offset_li = self.cluster_list(self._offset_exposure) if constraint is not None: self.constraint.exog_fulltrans_li = \ self.cluster_list(self.constraint.exog_fulltrans) self.family = family self.cov_struct.initialize(self) # Total sample size group_ns = [len(y) for y in self.endog_li] self.nobs = sum(group_ns) # The following are column based, not on rank see #1928 self.df_model = self.exog.shape[1] - 1 # assumes constant self.df_resid = self.nobs - self.exog.shape[1] # Skip the covariance updates if all groups have a single # observation (reduces to fitting a GLM). maxgroup = max([len(x) for x in self.endog_li]) if maxgroup == 1: self.update_dep = False # Override to allow groups and time to be passed as variable # names. @classmethod def from_formula(cls, formula, groups, data, subset=None, time=None, offset=None, exposure=None, *args, **kwargs): """ Create a GEE model instance from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model groups : array_like or string Array of grouping labels. If a string, this is the name of a variable in `data` that contains the grouping labels. data : array_like The data for the model. subset : array_like An array-like object of booleans, integers, or index values that indicate the subset of the data to used when fitting the model. time : array_like or string The time values, used for dependence structures involving distances between observations. If a string, this is the name of a variable in `data` that contains the time values. offset : array_like or string The offset values, added to the linear predictor. If a string, this is the name of a variable in `data` that contains the offset values. exposure : array_like or string The exposure values, only used if the link function is the logarithm function, in which case the log of `exposure` is added to the offset (if any). If a string, this is the name of a variable in `data` that contains the offset values. %(missing_param_doc)s args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with two exceptions. `dep_data` is processed as described below. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Optional arguments ------------------ dep_data : str or array_like Data used for estimating the dependence structure. See specific dependence structure classes (e.g. Nested) for details. If `dep_data` is a string, it is interpreted as a formula that is applied to `data`. If it is an array, it must be an array of strings corresponding to column names in `data`. Otherwise it must be an array-like with the same number of rows as data. Returns ------- model : GEE model instance Notes ----- `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. """ % {'missing_param_doc': base._missing_param_doc} groups_name = "Groups" if isinstance(groups, str): groups_name = groups groups = data[groups] if isinstance(time, str): time = data[time] if isinstance(offset, str): offset = data[offset] if isinstance(exposure, str): exposure = data[exposure] dep_data = kwargs.get("dep_data") dep_data_names = None if dep_data is not None: if isinstance(dep_data, str): dep_data = patsy.dmatrix(dep_data, data, return_type='dataframe') dep_data_names = dep_data.columns.tolist() else: dep_data_names = list(dep_data) dep_data = data[dep_data] kwargs["dep_data"] = np.asarray(dep_data) family = None if "family" in kwargs: family = kwargs["family"] del kwargs["family"] model = super(GEE, cls).from_formula(formula, data=data, subset=subset, groups=groups, time=time, offset=offset, exposure=exposure, family=family, *args, **kwargs) if dep_data_names is not None: model._dep_data_names = dep_data_names model._groups_name = groups_name return model def cluster_list(self, array): """ Returns `array` split into subarrays corresponding to the cluster structure. """ if array.ndim == 1: return [np.array(array[self.group_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.group_indices[k], :]) for k in self.group_labels] def compare_score_test(self, submodel): """ Perform a score test for the given submodel against this model. Parameters ---------- submodel : GEEResults instance A fitted GEE model that is a submodel of this model. Returns ------- A dictionary with keys "statistic", "p-value", and "df", containing the score test statistic, its chi^2 p-value, and the degrees of freedom used to compute the p-value. Notes ----- The score test can be performed without calling 'fit' on the larger model. The provided submodel must be obtained from a fitted GEE. This method performs the same score test as can be obtained by fitting the GEE with a linear constraint and calling `score_test` on the results. References ---------- Xu Guo and Wei Pan (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf """ # Since the model has not been fit, its scaletype has not been # set. So give it the scaletype of the submodel. self.scaletype = submodel.model.scaletype # Check consistency between model and submodel (not a comprehensive # check) submod = submodel.model if self.exog.shape[0] != submod.exog.shape[0]: msg = "Model and submodel have different numbers of cases." raise ValueError(msg) if self.exog.shape[1] == submod.exog.shape[1]: msg = "Model and submodel have the same number of variables" warnings.warn(msg) if not isinstance(self.family, type(submod.family)): msg = "Model and submodel have different GLM families." warnings.warn(msg) if not isinstance(self.cov_struct, type(submod.cov_struct)): warnings.warn("Model and submodel have different GEE covariance " "structures.") if not np.equal(self.weights, submod.weights).all(): msg = "Model and submodel should have the same weights." warnings.warn(msg) # Get the positions of the submodel variables in the # parent model qm, qc = _score_test_submodel(self, submodel.model) if qm is None: msg = "The provided model is not a submodel." raise ValueError(msg) # Embed the submodel params into a params vector for the # parent model params_ex = np.dot(qm, submodel.params) # Attempt to preserve the state of the parent model cov_struct_save = self.cov_struct import copy cached_means_save = copy.deepcopy(self.cached_means) # Get the score vector of the submodel params in # the parent model self.cov_struct = submodel.cov_struct self.update_cached_means(params_ex) _, score = self._update_mean_params() if score is None: msg = "Singular matrix encountered in GEE score test" warnings.warn(msg, ConvergenceWarning) return None if not hasattr(self, "ddof_scale"): self.ddof_scale = self.exog.shape[1] if not hasattr(self, "scaling_factor"): self.scaling_factor = 1 _, ncov1, cmat = self._covmat() score2 = np.dot(qc.T, score) try: amat = np.linalg.inv(ncov1) except np.linalg.LinAlgError: amat = np.linalg.pinv(ncov1) bmat_11 = np.dot(qm.T, np.dot(cmat, qm)) bmat_22 = np.dot(qc.T, np.dot(cmat, qc)) bmat_12 = np.dot(qm.T, np.dot(cmat, qc)) amat_11 = np.dot(qm.T, np.dot(amat, qm)) amat_12 = np.dot(qm.T, np.dot(amat, qc)) try: ab = np.linalg.solve(amat_11, bmat_12) except np.linalg.LinAlgError: ab = np.dot(np.linalg.pinv(amat_11), bmat_12) score_cov = bmat_22 - np.dot(amat_12.T, ab) try: aa = np.linalg.solve(amat_11, amat_12) except np.linalg.LinAlgError: aa = np.dot(np.linalg.pinv(amat_11), amat_12) score_cov -= np.dot(bmat_12.T, aa) try: ab = np.linalg.solve(amat_11, bmat_11) except np.linalg.LinAlgError: ab = np.dot(np.linalg.pinv(amat_11), bmat_11) try: aa = np.linalg.solve(amat_11, amat_12) except np.linalg.LinAlgError: aa = np.dot(np.linalg.pinv(amat_11), amat_12) score_cov += np.dot(amat_12.T, np.dot(ab, aa)) # Attempt to restore state self.cov_struct = cov_struct_save self.cached_means = cached_means_save from scipy.stats.distributions import chi2 try: sc2 = np.linalg.solve(score_cov, score2) except np.linalg.LinAlgError: sc2 = np.dot(np.linalg.pinv(score_cov), score2) score_statistic = np.dot(score2, sc2) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) return {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} def estimate_scale(self): """ Estimate the dispersion/scale. """ if self.scaletype is None: if isinstance(self.family, (families.Binomial, families.Poisson, families.NegativeBinomial, _Multinomial)): return 1. elif isinstance(self.scaletype, float): return np.array(self.scaletype) endog = self.endog_li cached_means = self.cached_means nobs = self.nobs varfunc = self.family.variance scale = 0. fsum = 0. for i in range(self.num_group): if len(endog[i]) == 0: continue expval, _ = cached_means[i] sdev = np.sqrt(varfunc(expval)) resid = (endog[i] - expval) / sdev if self.weights is not None: f = self.weights_li[i] scale += np.sum(f * (resid ** 2)) fsum += f.sum() else: scale += np.sum(resid ** 2) fsum += len(resid) scale /= (fsum * (nobs - self.ddof_scale) / float(nobs)) return scale def mean_deriv(self, exog, lin_pred): """ Derivative of the expected endog with respect to the parameters. Parameters ---------- exog : array_like The exogeneous data at which the derivative is computed. lin_pred : array_like The values of the linear predictor. Returns ------- The value of the derivative of the expected endog with respect to the parameter vector. Notes ----- If there is an offset or exposure, it should be added to `lin_pred` prior to calling this function. """ idl = self.family.link.inverse_deriv(lin_pred) dmat = exog * idl[:, None] return dmat def mean_deriv_exog(self, exog, params, offset_exposure=None): """ Derivative of the expected endog with respect to exog. Parameters ---------- exog : array_like Values of the independent variables at which the derivative is calculated. params : array_like Parameter values at which the derivative is calculated. offset_exposure : array_like, optional Combined offset and exposure. Returns ------- The derivative of the expected endog with respect to exog. """ lin_pred = np.dot(exog, params) if offset_exposure is not None: lin_pred += offset_exposure idl = self.family.link.inverse_deriv(lin_pred) dmat = np.outer(idl, params) return dmat def _update_mean_params(self): """ Returns ------- update : array_like The update vector such that params + update is the next iterate when solving the score equations. score : array_like The current value of the score equations, not incorporating the scale parameter. If desired, multiply this vector by the scale parameter to incorporate the scale. """ endog = self.endog_li exog = self.exog_li weights = getattr(self, "weights_li", None) cached_means = self.cached_means varfunc = self.family.variance bmat, score = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) if weights is not None: w = weights[i] wresid = resid * w wdmat = dmat * w[:, None] else: wresid = resid wdmat = dmat rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (wdmat, wresid)) if rslt is None: return None, None vinv_d, vinv_resid = tuple(rslt) bmat += np.dot(dmat.T, vinv_d) score += np.dot(dmat.T, vinv_resid) try: update = np.linalg.solve(bmat, score) except np.linalg.LinAlgError: update = np.dot(np.linalg.pinv(bmat), score) self._fit_history["cov_adjust"].append( self.cov_struct.cov_adjust) return update, score def update_cached_means(self, mean_params): """ cached_means should always contain the most recent calculation of the group-wise mean vectors. This function should be called every time the regression parameters are changed, to keep the cached means up to date. """ endog = self.endog_li exog = self.exog_li offset = self.offset_li linkinv = self.family.link.inverse self.cached_means = [] for i in range(self.num_group): if len(endog[i]) == 0: continue lpr = np.dot(exog[i], mean_params) if offset is not None: lpr += offset[i] expval = linkinv(lpr) self.cached_means.append((expval, lpr)) def _covmat(self): """ Returns the sampling covariance matrix of the regression parameters and related quantities. Returns ------- cov_robust : array_like The robust, or sandwich estimate of the covariance, which is meaningful even if the working covariance structure is incorrectly specified. cov_naive : array_like The model-based estimate of the covariance, which is meaningful if the covariance structure is correctly specified. cmat : array_like The center matrix of the sandwich expression, used in obtaining score test results. """ endog = self.endog_li exog = self.exog_li weights = getattr(self, "weights_li", None) varfunc = self.family.variance cached_means = self.cached_means # Calculate the naive (model-based) and robust (sandwich) # covariances. bmat, cmat = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) if weights is not None: w = weights[i] wresid = resid * w wdmat = dmat * w[:, None] else: wresid = resid wdmat = dmat rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (wdmat, wresid)) if rslt is None: return None, None, None, None vinv_d, vinv_resid = tuple(rslt) bmat += np.dot(dmat.T, vinv_d) dvinv_resid = np.dot(dmat.T, vinv_resid) cmat += np.outer(dvinv_resid, dvinv_resid) scale = self.estimate_scale() try: bmati = np.linalg.inv(bmat) except np.linalg.LinAlgError: bmati = np.linalg.pinv(bmat) cov_naive = bmati * scale cov_robust = np.dot(bmati, np.dot(cmat, bmati)) cov_naive *= self.scaling_factor cov_robust *= self.scaling_factor return cov_robust, cov_naive, cmat # Calculate the bias-corrected sandwich estimate of Mancl and # DeRouen. def _bc_covmat(self, cov_naive): cov_naive = cov_naive / self.scaling_factor endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_means = self.cached_means scale = self.estimate_scale() bcm = 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (dmat,)) if rslt is None: return None vinv_d = rslt[0] vinv_d /= scale hmat = np.dot(vinv_d, cov_naive) hmat = np.dot(hmat, dmat.T).T f = self.weights_li[i] if self.weights is not None else 1. aresid = np.linalg.solve(np.eye(len(resid)) - hmat, resid) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (aresid,)) if rslt is None: return None srt = rslt[0] srt = f * np.dot(dmat.T, srt) / scale bcm += np.outer(srt, srt) cov_robust_bc = np.dot(cov_naive, np.dot(bcm, cov_naive)) cov_robust_bc *= self.scaling_factor return cov_robust_bc def _starting_params(self): if np.isscalar(self._offset_exposure): offset = None else: offset = self._offset_exposure model = GLM(self.endog, self.exog, family=self.family, offset=offset, freq_weights=self.weights) result = model.fit() return result.params @Appender(_gee_fit_doc) def fit(self, maxiter=60, ctol=1e-6, start_params=None, params_niter=1, first_dep_update=0, cov_type='robust', ddof_scale=None, scaling_factor=1., scale=None): self.scaletype = scale # Subtract this number from the total sample size when # normalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale self.scaling_factor = scaling_factor self._fit_history = defaultdict(list) if self.weights is not None and cov_type == 'naive': raise ValueError("when using weights, cov_type may not be naive") if start_params is None: mean_params = self._starting_params() else: start_params = np.asarray(start_params) mean_params = start_params.copy() self.update_cached_means(mean_params) del_params = -1. num_assoc_updates = 0 for itr in range(maxiter): update, score = self._update_mean_params() if update is None: warnings.warn("Singular matrix encountered in GEE update", ConvergenceWarning) break mean_params += update self.update_cached_means(mean_params) # L2 norm of the change in mean structure parameters at # this iteration. del_params = np.sqrt(np.sum(score ** 2)) self._fit_history['params'].append(mean_params.copy()) self._fit_history['score'].append(score) self._fit_history['dep_params'].append( self.cov_struct.dep_params) # Do not exit until the association parameters have been # updated at least once. if (del_params < ctol and (num_assoc_updates > 0 or self.update_dep is False)): break # Update the dependence structure if (self.update_dep and (itr % params_niter) == 0 and (itr >= first_dep_update)): self._update_assoc(mean_params) num_assoc_updates += 1 if del_params >= ctol: warnings.warn("Iteration limit reached prior to convergence", IterationLimitWarning) if mean_params is None: warnings.warn("Unable to estimate GEE parameters.", ConvergenceWarning) return None bcov, ncov, _ = self._covmat() if bcov is None: warnings.warn("Estimated covariance structure for GEE " "estimates is singular", ConvergenceWarning) return None bc_cov = None if cov_type == "bias_reduced": bc_cov = self._bc_covmat(ncov) if self.constraint is not None: x = mean_params.copy() mean_params, bcov = self._handle_constraint(mean_params, bcov) if mean_params is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None y, ncov = self._handle_constraint(x, ncov) if y is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None if bc_cov is not None: y, bc_cov = self._handle_constraint(x, bc_cov) if x is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None scale = self.estimate_scale() # kwargs to add to results instance, need to be available in __init__ res_kwds = dict(cov_type=cov_type, cov_robust=bcov, cov_naive=ncov, cov_robust_bc=bc_cov) # The superclass constructor will multiply the covariance # matrix argument bcov by scale, which we do not want, so we # divide bcov by the scale parameter here results = GEEResults(self, mean_params, bcov / scale, scale, cov_type=cov_type, use_t=False, attr_kwds=res_kwds) # attributes not needed during results__init__ results.fit_history = self._fit_history self.fit_history = defaultdict(list) results.score_norm = del_params results.converged = (del_params < ctol) results.cov_struct = self.cov_struct results.params_niter = params_niter results.first_dep_update = first_dep_update results.ctol = ctol results.maxiter = maxiter # These will be copied over to subclasses when upgrading. results._props = ["cov_type", "use_t", "cov_params_default", "cov_robust", "cov_naive", "cov_robust_bc", "fit_history", "score_norm", "converged", "cov_struct", "params_niter", "first_dep_update", "ctol", "maxiter"] return GEEResultsWrapper(results) def _update_regularized(self, params, pen_wt, scad_param, eps): sn, hm = 0, 0 for i in range(self.num_group): expval, _ = self.cached_means[i] resid = self.endog_li[i] - expval sdev = np.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid, ex)) sn0 = rslt[0] sn += np.dot(ex.T, sn0) hm0 = rslt[1] hm += np.dot(ex.T, hm0) # Wang et al. divide sn here by num_group, but that # seems to be incorrect ap = np.abs(params) clipped = np.clip(scad_param * pen_wt - ap, 0, np.inf) en = pen_wt * clipped * (ap > pen_wt) en /= (scad_param - 1) * pen_wt en += pen_wt * (ap <= pen_wt) en /= eps + ap hm.flat[::hm.shape[0] + 1] += self.num_group * en sn -= self.num_group * en * params try: update = np.linalg.solve(hm, sn) except np.linalg.LinAlgError: update = np.dot(np.linalg.pinv(hm), sn) msg = "Encountered singularity in regularized GEE update" warnings.warn(msg) hm *= self.estimate_scale() return update, hm def _regularized_covmat(self, mean_params): self.update_cached_means(mean_params) ma = 0 for i in range(self.num_group): expval, _ = self.cached_means[i] resid = self.endog_li[i] - expval sdev = np.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid,)) ma0 = np.dot(ex.T, rslt[0]) ma += np.outer(ma0, ma0) return ma def fit_regularized(self, pen_wt, scad_param=3.7, maxiter=100, ddof_scale=None, update_assoc=5, ctol=1e-5, ztol=1e-3, eps=1e-6, scale=None): """ Regularized estimation for GEE. Parameters ---------- pen_wt : float The penalty weight (a non-negative scalar). scad_param : float Non-negative scalar determining the shape of the Scad penalty. maxiter : int The maximum number of iterations. ddof_scale : int Value to subtract from `nobs` when calculating the denominator degrees of freedom for t-statistics, defaults to the number of columns in `exog`. update_assoc : int The dependence parameters are updated every `update_assoc` iterations of the mean structure parameter updates. ctol : float Convergence criterion, default is one order of magnitude smaller than proposed in section 3.1 of Wang et al. ztol : float Coefficients smaller than this value are treated as being zero, default is based on section 5 of Wang et al. eps : non-negative scalar Numerical constant, see section 3.2 of Wang et al. scale : float or string If a float, this value is used as the scale parameter. If "X2", the scale parameter is always estimated using Pearson's chi-square method (e.g. as in a quasi-Poisson analysis). If None, the default approach for the family is used to estimate the scale parameter. Returns ------- GEEResults instance. Note that not all methods of the results class make sense when the model has been fit with regularization. Notes ----- This implementation assumes that the link is canonical. References ---------- Wang L, Zhou J, Qu A. (2012). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. https://www.ncbi.nlm.nih.gov/pubmed/21955051 http://users.stat.umn.edu/~wangx346/research/GEE_selection.pdf """ self.scaletype = scale mean_params = np.zeros(self.exog.shape[1]) self.update_cached_means(mean_params) converged = False fit_history = defaultdict(list) # Subtract this number from the total sample size when # normalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale # Keep this private for now. In some cases the early steps are # very small so it seems necessary to ensure a certain minimum # number of iterations before testing for convergence. miniter = 20 for itr in range(maxiter): update, hm = self._update_regularized( mean_params, pen_wt, scad_param, eps) if update is None: msg = "Singular matrix encountered in regularized GEE update", warnings.warn(msg, ConvergenceWarning) break if itr > miniter and np.sqrt(np.sum(update**2)) < ctol: converged = True break mean_params += update fit_history['params'].append(mean_params.copy()) self.update_cached_means(mean_params) if itr != 0 and (itr % update_assoc == 0): self._update_assoc(mean_params) if not converged: msg = "GEE.fit_regularized did not converge" warnings.warn(msg) mean_params[np.abs(mean_params) < ztol] = 0 self._update_assoc(mean_params) ma = self._regularized_covmat(mean_params) cov = np.linalg.solve(hm, ma) cov = np.linalg.solve(hm, cov.T) # kwargs to add to results instance, need to be available in __init__ res_kwds = dict(cov_type="robust", cov_robust=cov) scale = self.estimate_scale() rslt = GEEResults(self, mean_params, cov, scale, regularized=True, attr_kwds=res_kwds) rslt.fit_history = fit_history return GEEResultsWrapper(rslt) def _handle_constraint(self, mean_params, bcov): """ Expand the parameter estimate `mean_params` and covariance matrix `bcov` to the coordinate system of the unconstrained model. Parameters ---------- mean_params : array_like A parameter vector estimate for the reduced model. bcov : array_like The covariance matrix of mean_params. Returns ------- mean_params : array_like The input parameter vector mean_params, expanded to the coordinate system of the full model bcov : array_like The input covariance matrix bcov, expanded to the coordinate system of the full model """ # The number of variables in the full model red_p = len(mean_params) full_p = self.constraint.lhs.shape[1] mean_params0 = np.r_[mean_params, np.zeros(full_p - red_p)] # Get the score vector under the full model. save_exog_li = self.exog_li self.exog_li = self.constraint.exog_fulltrans_li import copy save_cached_means = copy.deepcopy(self.cached_means) self.update_cached_means(mean_params0) _, score = self._update_mean_params() if score is None: warnings.warn("Singular matrix encountered in GEE score test", ConvergenceWarning) return None, None _, ncov1, cmat = self._covmat() scale = self.estimate_scale() cmat = cmat / scale ** 2 score2 = score[red_p:] / scale amat = np.linalg.inv(ncov1) bmat_11 = cmat[0:red_p, 0:red_p] bmat_22 = cmat[red_p:, red_p:] bmat_12 = cmat[0:red_p, red_p:] amat_11 = amat[0:red_p, 0:red_p] amat_12 = amat[0:red_p, red_p:] score_cov = bmat_22 - np.dot(amat_12.T, np.linalg.solve(amat_11, bmat_12)) score_cov -= np.dot(bmat_12.T, np.linalg.solve(amat_11, amat_12)) score_cov += np.dot(amat_12.T, np.dot(np.linalg.solve(amat_11, bmat_11), np.linalg.solve(amat_11, amat_12))) from scipy.stats.distributions import chi2 score_statistic = np.dot(score2, np.linalg.solve(score_cov, score2)) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) self.score_test_results = {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} mean_params = self.constraint.unpack_param(mean_params) bcov = self.constraint.unpack_cov(bcov) self.exog_li = save_exog_li self.cached_means = save_cached_means self.exog = self.constraint.restore_exog() return mean_params, bcov def _update_assoc(self, params): """ Update the association parameters """ self.cov_struct.update(params) def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects, returns dF(XB) / dX where F(.) is the fitted mean. transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # This form should be appropriate for group 1 probit, logit, # logistic, cloglog, heckprob, xtprobit. offset_exposure = None if exog is None: exog = self.exog offset_exposure = self._offset_exposure margeff = self.mean_deriv_exog(exog, params, offset_exposure) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:, None] if count_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_count_effects) margeff = _get_count_effects(margeff, exog, count_idx, transform, self, params) if dummy_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_dummy_effects) margeff = _get_dummy_effects(margeff, exog, dummy_idx, transform, self, params) return margeff def qic(self, params, scale, cov_params): """ Returns quasi-information criteria and quasi-likelihood values. Parameters ---------- params : array_like The GEE estimates of the regression parameters. scale : scalar Estimated scale parameter cov_params : array_like An estimate of the covariance matrix for the model parameters. Conventionally this is the robust covariance matrix. Returns ------- ql : scalar The quasi-likelihood value qic : scalar A QIC that can be used to compare the mean and covariance structures of the model. qicu : scalar A simplified QIC that can be used to compare mean structures but not covariance structures Notes ----- The quasi-likelihood used here is obtained by numerically evaluating Wedderburn's integral representation of the quasi-likelihood function. This approach is valid for all families and links. Many other packages use analytical expressions for quasi-likelihoods that are valid in special cases where the link function is canonical. These analytical expressions may omit additive constants that only depend on the data. Therefore, the numerical values of our QL and QIC values will differ from the values reported by other packages. However only the differences between two QIC values calculated for different models using the same data are meaningful. Our QIC should produce the same QIC differences as other software. When using the QIC for models with unknown scale parameter, use a common estimate of the scale parameter for all models being compared. References ---------- .. [*] W. Pan (2001). Akaike's information criterion in generalized estimating equations. Biometrics (57) 1. """ varfunc = self.family.variance means = [] omega = 0.0 # omega^-1 is the model-based covariance assuming independence for i in range(self.num_group): expval, lpr = self.cached_means[i] means.append(expval) dmat = self.mean_deriv(self.exog_li[i], lpr) omega += np.dot(dmat.T, dmat) / scale means = np.concatenate(means) # The quasi-likelihood, use change of variables so the integration is # from -1 to 1. endog_li = np.concatenate(self.endog_li) du = means - endog_li nstep = 10000 qv = np.empty(nstep) xv = np.linspace(-0.99999, 1, nstep) for i, g in enumerate(xv): u = endog_li + (g + 1) * du / 2.0 vu = varfunc(u) qv[i] = -np.sum(du**2 * (g + 1) / vu) qv /= (4 * scale) from scipy.integrate import trapz ql = trapz(qv, dx=xv[1] - xv[0]) qicu = -2 * ql + 2 * self.exog.shape[1] qic = -2 * ql + 2 * np.trace(np.dot(omega, cov_params)) return ql, qic, qicu class GEEResults(GLMResults): __doc__ = ( "This class summarizes the fit of a marginal regression model " "using GEE.\n" + _gee_results_doc) def __init__(self, model, params, cov_params, scale, cov_type='robust', use_t=False, regularized=False, **kwds): super(GEEResults, self).__init__( model, params, normalized_cov_params=cov_params, scale=scale) # not added by super self.df_resid = model.df_resid self.df_model = model.df_model self.family = model.family attr_kwds = kwds.pop('attr_kwds', {}) self.__dict__.update(attr_kwds) # we do not do this if the cov_type has already been set # subclasses can set it through attr_kwds if not (hasattr(self, 'cov_type') and hasattr(self, 'cov_params_default')): self.cov_type = cov_type # keep alias covariance_type = self.cov_type.lower() allowed_covariances = ["robust", "naive", "bias_reduced"] if covariance_type not in allowed_covariances: msg = ("GEE: `cov_type` must be one of " + ", ".join(allowed_covariances)) raise ValueError(msg) if cov_type == "robust": cov = self.cov_robust elif cov_type == "naive": cov = self.cov_naive elif cov_type == "bias_reduced": cov = self.cov_robust_bc self.cov_params_default = cov else: if self.cov_type != cov_type: raise ValueError('cov_type in argument is different from ' 'already attached cov_type') @cache_readonly def resid(self): """ The response residuals. """ return self.resid_response def standard_errors(self, cov_type="robust"): """ This is a convenience function that returns the standard errors for any covariance type. The value of `bse` is the standard errors for whichever covariance type is specified as an argument to `fit` (defaults to "robust"). Parameters ---------- cov_type : str One of "robust", "naive", or "bias_reduced". Determines the covariance used to compute standard errors. Defaults to "robust". """ # Check covariance_type covariance_type = cov_type.lower() allowed_covariances = ["robust", "naive", "bias_reduced"] if covariance_type not in allowed_covariances: msg = ("GEE: `covariance_type` must be one of " + ", ".join(allowed_covariances)) raise ValueError(msg) if covariance_type == "robust": return np.sqrt(np.diag(self.cov_robust)) elif covariance_type == "naive": return np.sqrt(np.diag(self.cov_naive)) elif covariance_type == "bias_reduced": if self.cov_robust_bc is None: raise ValueError( "GEE: `bias_reduced` covariance not available") return np.sqrt(np.diag(self.cov_robust_bc)) # Need to override to allow for different covariance types. @cache_readonly def bse(self): return self.standard_errors(self.cov_type) def score_test(self): """ Return the results of a score test for a linear constraint. Returns ------- Adictionary containing the p-value, the test statistic, and the degrees of freedom for the score test. Notes ----- See also GEE.compare_score_test for an alternative way to perform a score test. GEEResults.score_test is more general, in that it supports testing arbitrary linear equality constraints. However GEE.compare_score_test might be easier to use when comparing two explicit models. References ---------- Xu Guo and Wei Pan (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf """ if not hasattr(self.model, "score_test_results"): msg = "score_test on results instance only available when " msg += " model was fit with constraints" raise ValueError(msg) return self.model.score_test_results @cache_readonly def resid_split(self): """ Returns the residuals, the endogeneous data minus the fitted values from the model. The residuals are returned as a list of arrays containing the residuals for each cluster. """ sresid = [] for v in self.model.group_labels: ii = self.model.group_indices[v] sresid.append(self.resid[ii]) return sresid @cache_readonly def resid_centered(self): """ Returns the residuals centered within each group. """ cresid = self.resid.copy() for v in self.model.group_labels: ii = self.model.group_indices[v] cresid[ii] -= cresid[ii].mean() return cresid @cache_readonly def resid_centered_split(self): """ Returns the residuals centered within each group. The residuals are returned as a list of arrays containing the centered residuals for each cluster. """ sresid = [] for v in self.model.group_labels: ii = self.model.group_indices[v] sresid.append(self.centered_resid[ii]) return sresid def qic(self, scale=None): """ Returns the QIC and QICu information criteria. For families with a scale parameter (e.g. Gaussian), provide as the scale argument the estimated scale from the largest model under consideration. If the scale parameter is not provided, the estimated scale parameter is used. Doing this does not allow comparisons of QIC values between models. """ # It is easy to forget to set the scale parameter. Sometimes # this is intentional, so we warn. if scale is None: warnings.warn("QIC values obtained using scale=None are not " "appropriate for comparing models") if scale is None: scale = self.scale _, qic, qicu = self.model.qic(self.params, scale, self.cov_params()) return qic, qicu # FIXME: alias to be removed, temporary backwards compatibility split_resid = resid_split centered_resid = resid_centered split_centered_resid = resid_centered_split @Appender(_plot_added_variable_doc % {'extra_params_doc': ''}) def plot_added_variable(self, focus_exog, resid_type=None, use_glm_weights=True, fit_kwargs=None, ax=None): from statsmodels.graphics.regressionplots import plot_added_variable fig = plot_added_variable(self, focus_exog, resid_type=resid_type, use_glm_weights=use_glm_weights, fit_kwargs=fit_kwargs, ax=ax) return fig @Appender(_plot_partial_residuals_doc % {'extra_params_doc': ''}) def plot_partial_residuals(self, focus_exog, ax=None): from statsmodels.graphics.regressionplots import plot_partial_residuals return plot_partial_residuals(self, focus_exog, ax=ax) @Appender(_plot_ceres_residuals_doc % {'extra_params_doc': ''}) def plot_ceres_residuals(self, focus_exog, frac=0.66, cond_means=None, ax=None): from statsmodels.graphics.regressionplots import plot_ceres_residuals return plot_ceres_residuals(self, focus_exog, frac, cond_means=cond_means, ax=ax) def conf_int(self, alpha=.05, cols=None, cov_type=None): """ Returns confidence intervals for the fitted parameters. Parameters ---------- alpha : float, optional The `alpha` level for the confidence interval. i.e., The default `alpha` = .05 returns a 95% confidence interval. cols : array_like, optional `cols` specifies which confidence intervals to return cov_type : str The covariance type used for computing standard errors; must be one of 'robust', 'naive', and 'bias reduced'. See `GEE` for details. Notes ----- The confidence interval is based on the Gaussian distribution. """ # super does not allow to specify cov_type and method is not # implemented, # FIXME: remove this method here if cov_type is None: bse = self.bse else: bse = self.standard_errors(cov_type=cov_type) params = self.params dist = stats.norm q = dist.ppf(1 - alpha / 2) if cols is None: lower = self.params - q * bse upper = self.params + q * bse else: cols = np.asarray(cols) lower = params[cols] - q * bse[cols] upper = params[cols] + q * bse[cols] return np.asarray(lzip(lower, upper)) def summary(self, yname=None, xname=None, title=None, alpha=.05): """ Summarize the GEE regression results Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Names for the exogenous variables, default is `var_#` for ## in the number of regressors. Must match the number of parameters in the model title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals cov_type : str The covariance type used to compute the standard errors; one of 'robust' (the usual robust sandwich-type covariance estimate), 'naive' (ignores dependence), and 'bias reduced' (the Mancl/DeRouen estimate). Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Generalized']), ('', ['Estimating Equations']), ('Family:', [self.model.family.__class__.__name__]), ('Dependence structure:', [self.model.cov_struct.__class__.__name__]), ('Date:', None), ('Covariance type: ', [self.cov_type, ]) ] NY = [len(y) for y in self.model.endog_li] top_right = [('No. Observations:', [sum(NY)]), ('No. clusters:', [len(self.model.endog_li)]), ('Min. cluster size:', [min(NY)]), ('Max. cluster size:', [max(NY)]), ('Mean cluster size:', ["%.1f" % np.mean(NY)]), ('Num. iterations:', ['%d' % len(self.fit_history['params'])]), ('Scale:', ["%.3f" % self.scale]), ('Time:', None), ] # The skew of the residuals skew1 = stats.skew(self.resid) kurt1 = stats.kurtosis(self.resid) skew2 = stats.skew(self.centered_resid) kurt2 = stats.kurtosis(self.centered_resid) diagn_left = [('Skew:', ["%12.4f" % skew1]), ('Centered skew:', ["%12.4f" % skew2])] diagn_right = [('Kurtosis:', ["%12.4f" % kurt1]), ('Centered kurtosis:', ["%12.4f" % kurt2]) ] if title is None: title = self.model.__class__.__name__ + ' ' +\ "Regression Results" # Override the exog variable names if xname is provided as an # argument. if xname is None: xname = self.model.exog_names if yname is None: yname = self.model.endog_names # Create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=False) smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, yname=yname, xname=xname, title="") return smry def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is 'all' only margeff will be available. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semi-elasticity -- dy/d(lnx) - 'eydx' - estimate semi-elasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. atexog : array_like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- effects : ndarray the marginal effect corresponding to the input options Notes ----- When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. """ if self.model.constraint is not None: warnings.warn("marginal effects ignore constraints", ValueWarning) return GEEMargins(self, (at, method, atexog, dummy, count)) def plot_isotropic_dependence(self, ax=None, xpoints=10, min_n=50): """ Create a plot of the pairwise products of within-group residuals against the corresponding time differences. This plot can be used to assess the possible form of an isotropic covariance structure. Parameters ---------- ax : AxesSubplot An axes on which to draw the graph. If None, new figure and axes objects are created xpoints : scalar or array_like If scalar, the number of points equally spaced points on the time difference axis used to define bins for calculating local means. If an array, the specific points that define the bins. min_n : int The minimum sample size in a bin for the mean residual product to be included on the plot. """ from statsmodels.graphics import utils as gutils resid = self.model.cluster_list(self.resid) time = self.model.cluster_list(self.model.time) # All within-group pairwise time distances (xdt) and the # corresponding products of scaled residuals (xre). xre, xdt = [], [] for re, ti in zip(resid, time): ix = np.tril_indices(re.shape[0], 0) re = re[ix[0]] * re[ix[1]] / self.scale ** 2 xre.append(re) dists = np.sqrt(((ti[ix[0], :] - ti[ix[1], :]) ** 2).sum(1)) xdt.append(dists) xre = np.concatenate(xre) xdt = np.concatenate(xdt) if ax is None: fig, ax = gutils.create_mpl_ax(ax) else: fig = ax.get_figure() # Convert to a correlation ii = np.flatnonzero(xdt == 0) v0 = np.mean(xre[ii]) xre /= v0 # Use the simple average to smooth, since fancier smoothers # that trim and downweight outliers give biased results (we # need the actual mean of a skewed distribution). if np.isscalar(xpoints): xpoints = np.linspace(0, max(xdt), xpoints) dg = np.digitize(xdt, xpoints) dgu = np.unique(dg) hist = np.asarray([np.sum(dg == k) for k in dgu]) ii = np.flatnonzero(hist >= min_n) dgu = dgu[ii] dgy = np.asarray([np.mean(xre[dg == k]) for k in dgu]) dgx = np.asarray([np.mean(xdt[dg == k]) for k in dgu]) ax.plot(dgx, dgy, '-', color='orange', lw=5) ax.set_xlabel("Time difference") ax.set_ylabel("Product of scaled residuals") return fig def sensitivity_params(self, dep_params_first, dep_params_last, num_steps): """ Refits the GEE model using a sequence of values for the dependence parameters. Parameters ---------- dep_params_first : array_like The first dep_params in the sequence dep_params_last : array_like The last dep_params in the sequence num_steps : int The number of dep_params in the sequence Returns ------- results : array_like The GEEResults objects resulting from the fits. """ model = self.model import copy cov_struct = copy.deepcopy(self.model.cov_struct) # We are fixing the dependence structure in each run. update_dep = model.update_dep model.update_dep = False dep_params = [] results = [] for x in np.linspace(0, 1, num_steps): dp = x * dep_params_last + (1 - x) * dep_params_first dep_params.append(dp) model.cov_struct = copy.deepcopy(cov_struct) model.cov_struct.dep_params = dp rslt = model.fit(start_params=self.params, ctol=self.ctol, params_niter=self.params_niter, first_dep_update=self.first_dep_update, cov_type=self.cov_type) results.append(rslt) model.update_dep = update_dep return results # FIXME: alias to be removed, temporary backwards compatibility params_sensitivity = sensitivity_params class GEEResultsWrapper(lm.RegressionResultsWrapper): _attrs = { 'centered_resid': 'rows', } _wrap_attrs = wrap.union_dicts(lm.RegressionResultsWrapper._wrap_attrs, _attrs) wrap.populate_wrapper(GEEResultsWrapper, GEEResults) # noqa:E305 class OrdinalGEE(GEE): __doc__ = ( " Ordinal Response Marginal Regression Model using GEE\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_ordinal_family_doc, 'example': _gee_ordinal_example, 'notes': _gee_nointercept}) def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, dep_data=None, constraint=None, **kwargs): if family is None: family = families.Binomial() else: if not isinstance(family, families.Binomial): raise ValueError("ordinal GEE must use a Binomial family") if cov_struct is None: cov_struct = cov_structs.OrdinalIndependence() endog, exog, groups, time, offset = self.setup_ordinal( endog, exog, groups, time, offset) super(OrdinalGEE, self).__init__(endog, exog, groups, time, family, cov_struct, missing, offset, dep_data, constraint) def setup_ordinal(self, endog, exog, groups, time, offset): """ Restructure ordinal data as binary indicators so that they can be analyzed using Generalized Estimating Equations. """ self.endog_orig = endog.copy() self.exog_orig = exog.copy() self.groups_orig = groups.copy() if offset is not None: self.offset_orig = offset.copy() else: self.offset_orig = None offset = np.zeros(len(endog)) if time is not None: self.time_orig = time.copy() else: self.time_orig = None time = np.zeros((len(endog), 1)) exog = np.asarray(exog) endog = np.asarray(endog) groups = np.asarray(groups) time = np.asarray(time) offset = np.asarray(offset) # The unique outcomes, except the greatest one. self.endog_values = np.unique(endog) endog_cuts = self.endog_values[0:-1] ncut = len(endog_cuts) nrows = ncut * len(endog) exog_out = np.zeros((nrows, exog.shape[1]), dtype=np.float64) endog_out = np.zeros(nrows, dtype=np.float64) intercepts = np.zeros((nrows, ncut), dtype=np.float64) groups_out = np.zeros(nrows, dtype=groups.dtype) time_out = np.zeros((nrows, time.shape[1]), dtype=np.float64) offset_out = np.zeros(nrows, dtype=np.float64) jrow = 0 zipper = zip(exog, endog, groups, time, offset) for (exog_row, endog_value, group_value, time_value, offset_value) in zipper: # Loop over thresholds for the indicators for thresh_ix, thresh in enumerate(endog_cuts): exog_out[jrow, :] = exog_row endog_out[jrow] = (int(endog_value > thresh)) intercepts[jrow, thresh_ix] = 1 groups_out[jrow] = group_value time_out[jrow] = time_value offset_out[jrow] = offset_value jrow += 1 exog_out = np.concatenate((intercepts, exog_out), axis=1) # exog column names, including intercepts xnames = ["I(y>%.1f)" % v for v in endog_cuts] if type(self.exog_orig) == pd.DataFrame: xnames.extend(self.exog_orig.columns) else: xnames.extend(["x%d" % k for k in range(1, exog.shape[1] + 1)]) exog_out = pd.DataFrame(exog_out, columns=xnames) # Preserve the endog name if there is one if type(self.endog_orig) == pd.Series: endog_out = pd.Series(endog_out, name=self.endog_orig.name) return endog_out, exog_out, groups_out, time_out, offset_out def _starting_params(self): exposure = getattr(self, "exposure", None) model = GEE(self.endog, self.exog, self.groups, time=self.time, family=families.Binomial(), offset=self.offset, exposure=exposure) result = model.fit() return result.params @Appender(_gee_fit_doc) def fit(self, maxiter=60, ctol=1e-6, start_params=None, params_niter=1, first_dep_update=0, cov_type='robust'): rslt = super(OrdinalGEE, self).fit(maxiter, ctol, start_params, params_niter, first_dep_update, cov_type=cov_type) rslt = rslt._results # use unwrapped instance res_kwds = dict(((k, getattr(rslt, k)) for k in rslt._props)) # Convert the GEEResults to an OrdinalGEEResults ord_rslt = OrdinalGEEResults(self, rslt.params, rslt.cov_params() / rslt.scale, rslt.scale, cov_type=cov_type, attr_kwds=res_kwds) # for k in rslt._props: # setattr(ord_rslt, k, getattr(rslt, k)) # TODO: document or delete return OrdinalGEEResultsWrapper(ord_rslt) class OrdinalGEEResults(GEEResults): __doc__ = ( "This class summarizes the fit of a marginal regression model" "for an ordinal response using GEE.\n" + _gee_results_doc) def plot_distribution(self, ax=None, exog_values=None): """ Plot the fitted probabilities of endog in an ordinal model, for specified values of the predictors. Parameters ---------- ax : AxesSubplot An axes on which to draw the graph. If None, new figure and axes objects are created exog_values : array_like A list of dictionaries, with each dictionary mapping variable names to values at which the variable is held fixed. The values P(endog=y | exog) are plotted for all possible values of y, at the given exog value. Variables not included in a dictionary are held fixed at the mean value. Example: -------- We have a model with covariates 'age' and 'sex', and wish to plot the probabilities P(endog=y | exog) for males (sex=0) and for females (sex=1), as separate paths on the plot. Since 'age' is not included below in the map, it is held fixed at its mean value. >>> ev = [{"sex": 1}, {"sex": 0}] >>> rslt.distribution_plot(exog_values=ev) """ from statsmodels.graphics import utils as gutils if ax is None: fig, ax = gutils.create_mpl_ax(ax) else: fig = ax.get_figure() # If no covariate patterns are specified, create one with all # variables set to their mean values. if exog_values is None: exog_values = [{}, ] exog_means = self.model.exog.mean(0) ix_icept = [i for i, x in enumerate(self.model.exog_names) if x.startswith("I(")] for ev in exog_values: for k in ev.keys(): if k not in self.model.exog_names: raise ValueError("%s is not a variable in the model" % k) # Get the fitted probability for each level, at the given # covariate values. pr = [] for j in ix_icept: xp = np.zeros_like(self.params) xp[j] = 1. for i, vn in enumerate(self.model.exog_names): if i in ix_icept: continue # User-specified value if vn in ev: xp[i] = ev[vn] # Mean value else: xp[i] = exog_means[i] p = 1 / (1 + np.exp(-np.dot(xp, self.params))) pr.append(p) pr.insert(0, 1) pr.append(0) pr = np.asarray(pr) prd = -np.diff(pr) ax.plot(self.model.endog_values, prd, 'o-') ax.set_xlabel("Response value") ax.set_ylabel("Probability") ax.set_ylim(0, 1) return fig def _score_test_submodel(par, sub): """ Return transformation matrices for design matrices. Parameters ---------- par : instance The parent model sub : instance The sub-model Returns ------- qm : array_like Matrix mapping the design matrix of the parent to the design matrix for the sub-model. qc : array_like Matrix mapping the design matrix of the parent to the orthogonal complement of the columnspace of the submodel in the columnspace of the parent. Notes ----- Returns None, None if the provided submodel is not actually a submodel. """ x1 = par.exog x2 = sub.exog u, s, vt = np.linalg.svd(x1, 0) v = vt.T # Get the orthogonal complement of col(x2) in col(x1). a, _ = np.linalg.qr(x2) a = u - np.dot(a, np.dot(a.T, u)) x2c, sb, _ = np.linalg.svd(a, 0) x2c = x2c[:, sb > 1e-12] # x1 * qm = x2 ii = np.flatnonzero(np.abs(s) > 1e-12) qm = np.dot(v[:, ii], np.dot(u[:, ii].T, x2) / s[ii, None]) e = np.max(np.abs(x2 - np.dot(x1, qm))) if e > 1e-8: return None, None # x1 * qc = x2c qc = np.dot(v[:, ii], np.dot(u[:, ii].T, x2c) / s[ii, None]) return qm, qc class OrdinalGEEResultsWrapper(GEEResultsWrapper): pass wrap.populate_wrapper(OrdinalGEEResultsWrapper, OrdinalGEEResults) # noqa:E305 class NominalGEE(GEE): __doc__ = ( " Nominal Response Marginal Regression Model using GEE.\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_nominal_family_doc, 'example': _gee_nominal_example, 'notes': _gee_nointercept}) def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, dep_data=None, constraint=None, **kwargs): endog, exog, groups, time, offset = self.setup_nominal( endog, exog, groups, time, offset) if family is None: family = _Multinomial(self.ncut + 1) if cov_struct is None: cov_struct = cov_structs.NominalIndependence() super(NominalGEE, self).__init__( endog, exog, groups, time, family, cov_struct, missing, offset, dep_data, constraint) def _starting_params(self): exposure = getattr(self, "exposure", None) model = GEE(self.endog, self.exog, self.groups, time=self.time, family=families.Binomial(), offset=self.offset, exposure=exposure) result = model.fit() return result.params def setup_nominal(self, endog, exog, groups, time, offset): """ Restructure nominal data as binary indicators so that they can be analyzed using Generalized Estimating Equations. """ self.endog_orig = endog.copy() self.exog_orig = exog.copy() self.groups_orig = groups.copy() if offset is not None: self.offset_orig = offset.copy() else: self.offset_orig = None offset = np.zeros(len(endog)) if time is not None: self.time_orig = time.copy() else: self.time_orig = None time = np.zeros((len(endog), 1)) exog = np.asarray(exog) endog = np.asarray(endog) groups = np.asarray(groups) time = np.asarray(time) offset = np.asarray(offset) # The unique outcomes, except the greatest one. self.endog_values = np.unique(endog) endog_cuts = self.endog_values[0:-1] ncut = len(endog_cuts) self.ncut = ncut nrows = len(endog_cuts) * exog.shape[0] ncols = len(endog_cuts) * exog.shape[1] exog_out = np.zeros((nrows, ncols), dtype=np.float64) endog_out = np.zeros(nrows, dtype=np.float64) groups_out = np.zeros(nrows, dtype=np.float64) time_out = np.zeros((nrows, time.shape[1]), dtype=np.float64) offset_out = np.zeros(nrows, dtype=np.float64) jrow = 0 zipper = zip(exog, endog, groups, time, offset) for (exog_row, endog_value, group_value, time_value, offset_value) in zipper: # Loop over thresholds for the indicators for thresh_ix, thresh in enumerate(endog_cuts): u = np.zeros(len(endog_cuts), dtype=np.float64) u[thresh_ix] = 1 exog_out[jrow, :] = np.kron(u, exog_row) endog_out[jrow] = (int(endog_value == thresh)) groups_out[jrow] = group_value time_out[jrow] = time_value offset_out[jrow] = offset_value jrow += 1 # exog names if isinstance(self.exog_orig, pd.DataFrame): xnames_in = self.exog_orig.columns else: xnames_in = ["x%d" % k for k in range(1, exog.shape[1] + 1)] xnames = [] for tr in endog_cuts: xnames.extend(["%s[%.1f]" % (v, tr) for v in xnames_in]) exog_out = pd.DataFrame(exog_out, columns=xnames) exog_out = pd.DataFrame(exog_out, columns=xnames) # Preserve endog name if there is one if isinstance(self.endog_orig, pd.Series): endog_out = pd.Series(endog_out, name=self.endog_orig.name) return endog_out, exog_out, groups_out, time_out, offset_out def mean_deriv(self, exog, lin_pred): """ Derivative of the expected endog with respect to the parameters. Parameters ---------- exog : array_like The exogeneous data at which the derivative is computed, number of rows must be a multiple of `ncut`. lin_pred : array_like The values of the linear predictor, length must be multiple of `ncut`. Returns ------- The derivative of the expected endog with respect to the parameters. """ expval = np.exp(lin_pred) # Reshape so that each row contains all the indicators # corresponding to one multinomial observation. expval_m = np.reshape(expval, (len(expval) // self.ncut, self.ncut)) # The normalizing constant for the multinomial probabilities. denom = 1 + expval_m.sum(1) denom = np.kron(denom, np.ones(self.ncut, dtype=np.float64)) # The multinomial probabilities mprob = expval / denom # First term of the derivative: denom * expval' / denom^2 = # expval' / denom. dmat = mprob[:, None] * exog # Second term of the derivative: -expval * denom' / denom^2 ddenom = expval[:, None] * exog dmat -= mprob[:, None] * ddenom / denom[:, None] return dmat def mean_deriv_exog(self, exog, params, offset_exposure=None): """ Derivative of the expected endog with respect to exog for the multinomial model, used in analyzing marginal effects. Parameters ---------- exog : array_like The exogeneous data at which the derivative is computed, number of rows must be a multiple of `ncut`. lpr : array_like The linear predictor values, length must be multiple of `ncut`. Returns ------- The value of the derivative of the expected endog with respect to exog. Notes ----- offset_exposure must be set at None for the multinomial family. """ if offset_exposure is not None: warnings.warn("Offset/exposure ignored for the multinomial family", ValueWarning) lpr = np.dot(exog, params) expval = np.exp(lpr) expval_m = np.reshape(expval, (len(expval) // self.ncut, self.ncut)) denom = 1 + expval_m.sum(1) denom = np.kron(denom, np.ones(self.ncut, dtype=np.float64)) bmat0 = np.outer(np.ones(exog.shape[0]), params) # Masking matrix qmat = [] for j in range(self.ncut): ee = np.zeros(self.ncut, dtype=np.float64) ee[j] = 1 qmat.append(np.kron(ee, np.ones(len(params) // self.ncut))) qmat = np.array(qmat) qmat = np.kron(np.ones((exog.shape[0] // self.ncut, 1)), qmat) bmat = bmat0 * qmat dmat = expval[:, None] * bmat / denom[:, None] expval_mb = np.kron(expval_m, np.ones((self.ncut, 1))) expval_mb = np.kron(expval_mb, np.ones((1, self.ncut))) dmat -= expval[:, None] * (bmat * expval_mb) / denom[:, None] ** 2 return dmat @Appender(_gee_fit_doc) def fit(self, maxiter=60, ctol=1e-6, start_params=None, params_niter=1, first_dep_update=0, cov_type='robust'): rslt = super(NominalGEE, self).fit(maxiter, ctol, start_params, params_niter, first_dep_update, cov_type=cov_type) if rslt is None: warnings.warn("GEE updates did not converge", ConvergenceWarning) return None rslt = rslt._results # use unwrapped instance res_kwds = dict(((k, getattr(rslt, k)) for k in rslt._props)) # Convert the GEEResults to a NominalGEEResults nom_rslt = NominalGEEResults(self, rslt.params, rslt.cov_params() / rslt.scale, rslt.scale, cov_type=cov_type, attr_kwds=res_kwds) # TODO: document or delete # for k in rslt._props: # setattr(nom_rslt, k, getattr(rslt, k)) return NominalGEEResultsWrapper(nom_rslt) class NominalGEEResults(GEEResults): __doc__ = ( "This class summarizes the fit of a marginal regression model" "for a nominal response using GEE.\n" + _gee_results_doc) def plot_distribution(self, ax=None, exog_values=None): """ Plot the fitted probabilities of endog in an nominal model, for specified values of the predictors. Parameters ---------- ax : AxesSubplot An axes on which to draw the graph. If None, new figure and axes objects are created exog_values : array_like A list of dictionaries, with each dictionary mapping variable names to values at which the variable is held fixed. The values P(endog=y | exog) are plotted for all possible values of y, at the given exog value. Variables not included in a dictionary are held fixed at the mean value. Example: -------- We have a model with covariates 'age' and 'sex', and wish to plot the probabilities P(endog=y | exog) for males (sex=0) and for females (sex=1), as separate paths on the plot. Since 'age' is not included below in the map, it is held fixed at its mean value. >>> ex = [{"sex": 1}, {"sex": 0}] >>> rslt.distribution_plot(exog_values=ex) """ from statsmodels.graphics import utils as gutils if ax is None: fig, ax = gutils.create_mpl_ax(ax) else: fig = ax.get_figure() # If no covariate patterns are specified, create one with all # variables set to their mean values. if exog_values is None: exog_values = [{}, ] link = self.model.family.link.inverse ncut = self.model.family.ncut k = int(self.model.exog.shape[1] / ncut) exog_means = self.model.exog.mean(0)[0:k] exog_names = self.model.exog_names[0:k] exog_names = [x.split("[")[0] for x in exog_names] params = np.reshape(self.params, (ncut, len(self.params) // ncut)) for ev in exog_values: exog = exog_means.copy() for k in ev.keys(): if k not in exog_names: raise ValueError("%s is not a variable in the model" % k) ii = exog_names.index(k) exog[ii] = ev[k] lpr = np.dot(params, exog) pr = link(lpr) pr = np.r_[pr, 1 - pr.sum()] ax.plot(self.model.endog_values, pr, 'o-') ax.set_xlabel("Response value") ax.set_ylabel("Probability") ax.set_xticks(self.model.endog_values) ax.set_xticklabels(self.model.endog_values) ax.set_ylim(0, 1) return fig class NominalGEEResultsWrapper(GEEResultsWrapper): pass wrap.populate_wrapper(NominalGEEResultsWrapper, NominalGEEResults) # noqa:E305 class _MultinomialLogit(Link): """ The multinomial logit transform, only for use with GEE. Notes ----- The data are assumed coded as binary indicators, where each observed multinomial value y is coded as I(y == S[0]), ..., I(y == S[-1]), where S is the set of possible response labels, excluding the largest one. Thererefore functions in this class should only be called using vector argument whose length is a multiple of |S| = ncut, which is an argument to be provided when initializing the class. call and derivative use a private method _clean to trim p by 1e-10 so that p is in (0, 1) """ def __init__(self, ncut): self.ncut = ncut def inverse(self, lpr): """ Inverse of the multinomial logit transform, which gives the expected values of the data as a function of the linear predictors. Parameters ---------- lpr : array_like (length must be divisible by `ncut`) The linear predictors Returns ------- prob : ndarray Probabilities, or expected values """ expval = np.exp(lpr) denom = 1 + np.reshape(expval, (len(expval) // self.ncut, self.ncut)).sum(1) denom = np.kron(denom, np.ones(self.ncut, dtype=np.float64)) prob = expval / denom return prob class _Multinomial(families.Family): """ Pseudo-link function for fitting nominal multinomial models with GEE. Not for use outside the GEE class. """ links = [_MultinomialLogit, ] variance = varfuncs.binary safe_links = [_MultinomialLogit, ] def __init__(self, nlevels): """ Parameters ---------- nlevels : int The number of distinct categories for the multinomial distribution. """ self.initialize(nlevels) def initialize(self, nlevels): self.ncut = nlevels - 1 self.link = _MultinomialLogit(self.ncut) class GEEMargins(object): """ Estimated marginal effects for a regression model fit with GEE. Parameters ---------- results : GEEResults instance The results instance of a fitted discrete choice model args : tuple Args are passed to `get_margeff`. This is the same as results.get_margeff. See there for more information. kwargs : dict Keyword args are passed to `get_margeff`. This is the same as results.get_margeff. See there for more information. """ def __init__(self, results, args, kwargs={}): self._cache = {} self.results = results self.get_margeff(*args, **kwargs) def _reset(self): self._cache = {} @cache_readonly def tvalues(self): _check_at_is_all(self.margeff_options) return self.margeff / self.margeff_se def summary_frame(self, alpha=.05): """ Returns a DataFrame summarizing the marginal effects. Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- frame : DataFrames A DataFrame summarizing the marginal effects. """ _check_at_is_all(self.margeff_options) from pandas import DataFrame names = [_transform_names[self.margeff_options['method']], 'Std. Err.', 'z', 'Pr(>|z|)', 'Conf. Int. Low', 'Cont. Int. Hi.'] ind = self.results.model.exog.var(0) != 0 # True if not a constant exog_names = self.results.model.exog_names var_names = [name for i, name in enumerate(exog_names) if ind[i]] table = np.column_stack((self.margeff, self.margeff_se, self.tvalues, self.pvalues, self.conf_int(alpha))) return DataFrame(table, columns=names, index=var_names) @cache_readonly def pvalues(self): _check_at_is_all(self.margeff_options) return stats.norm.sf(np.abs(self.tvalues)) * 2 def conf_int(self, alpha=.05): """ Returns the confidence intervals of the marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- conf_int : ndarray An array with lower, upper confidence intervals for the marginal effects. """ _check_at_is_all(self.margeff_options) me_se = self.margeff_se q = stats.norm.ppf(1 - alpha / 2) lower = self.margeff - q * me_se upper = self.margeff + q * me_se return np.asarray(lzip(lower, upper)) def summary(self, alpha=.05): """ Returns a summary table for marginal effects Parameters ---------- alpha : float Number between 0 and 1. The confidence intervals have the probability 1-alpha. Returns ------- Summary : SummaryTable A SummaryTable instance """ _check_at_is_all(self.margeff_options) results = self.results model = results.model title = model.__class__.__name__ + " Marginal Effects" method = self.margeff_options['method'] top_left = [('Dep. Variable:', [model.endog_names]), ('Method:', [method]), ('At:', [self.margeff_options['at']]), ] from statsmodels.iolib.summary import (Summary, summary_params, table_extend) exog_names = model.exog_names[:] # copy smry = Summary() const_idx = model.data.const_idx if const_idx is not None: exog_names.pop(const_idx) J = int(getattr(model, "J", 1)) if J > 1: yname, yname_list = results._get_endog_name(model.endog_names, None, all=True) else: yname = model.endog_names yname_list = [yname] smry.add_table_2cols(self, gleft=top_left, gright=[], yname=yname, xname=exog_names, title=title) # NOTE: add_table_params is not general enough yet for margeff # could use a refactor with getattr instead of hard-coded params # tvalues etc. table = [] conf_int = self.conf_int(alpha) margeff = self.margeff margeff_se = self.margeff_se tvalues = self.tvalues pvalues = self.pvalues if J > 1: for eq in range(J): restup = (results, margeff[:, eq], margeff_se[:, eq], tvalues[:, eq], pvalues[:, eq], conf_int[:, :, eq]) tble = summary_params(restup, yname=yname_list[eq], xname=exog_names, alpha=alpha, use_t=False, skip_header=True) tble.title = yname_list[eq] # overwrite coef with method name header = ['', _transform_names[method], 'std err', 'z', 'P>|z|', '[%3.1f%% Conf. Int.]' % (100 - alpha * 100)] tble.insert_header_row(0, header) # from IPython.core.debugger import Pdb; Pdb().set_trace() table.append(tble) table = table_extend(table, keep_headers=True) else: restup = (results, margeff, margeff_se, tvalues, pvalues, conf_int) table = summary_params(restup, yname=yname, xname=exog_names, alpha=alpha, use_t=False, skip_header=True) header = ['', _transform_names[method], 'std err', 'z', 'P>|z|', '[%3.1f%% Conf. Int.]' % (100 - alpha * 100)] table.insert_header_row(0, header) smry.tables.append(table) return smry def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): self._reset() # always reset the cache when this is called # TODO: if at is not all or overall, we can also put atexog values # in summary table head method = method.lower() at = at.lower() _check_margeff_args(at, method) self.margeff_options = dict(method=method, at=at) results = self.results model = results.model params = results.params exog = model.exog.copy() # copy because values are changed effects_idx = exog.var(0) != 0 const_idx = model.data.const_idx if dummy: _check_discrete_args(at, method) dummy_idx, dummy = _get_dummy_index(exog, const_idx) else: dummy_idx = None if count: _check_discrete_args(at, method) count_idx, count = _get_count_index(exog, const_idx) else: count_idx = None # get the exogenous variables exog = _get_margeff_exog(exog, at, atexog, effects_idx) # get base marginal effects, handled by sub-classes effects = model._derivative_exog(params, exog, method, dummy_idx, count_idx) effects = _effects_at(effects, at) if at == 'all': self.margeff = effects[:, effects_idx] else: # Set standard error of the marginal effects by Delta method. margeff_cov, margeff_se = margeff_cov_with_se( model, params, exog, results.cov_params(), at, model._derivative_exog, dummy_idx, count_idx, method, 1) # do not care about at constant self.margeff_cov = margeff_cov[effects_idx][:, effects_idx] self.margeff_se = margeff_se[effects_idx] self.margeff = effects[effects_idx]
bsd-3-clause
hanase/synthpop
synthpop/synthesizer.py
1
5123
import logging import sys from collections import namedtuple import numpy as np import pandas as pd from scipy.stats import chisquare from . import categorizer as cat from . import draw from .ipf.ipf import calculate_constraints from .ipu.ipu import household_weights logger = logging.getLogger("synthpop") FitQuality = namedtuple( 'FitQuality', ('people_chisq', 'people_p')) BlockGroupID = namedtuple( 'BlockGroupID', ('state', 'county', 'tract', 'block_group')) def enable_logging(): handler = logging.StreamHandler(stream=sys.stdout) logger.addHandler(handler) logger.setLevel(logging.DEBUG) def synthesize(h_marg, p_marg, h_jd, p_jd, h_pums, p_pums, marginal_zero_sub=.01, jd_zero_sub=.001, hh_index_start=0): # this is the zero marginal problem h_marg = h_marg.replace(0, marginal_zero_sub) p_marg = p_marg.replace(0, marginal_zero_sub) # zero cell problem h_jd.frequency = h_jd.frequency.replace(0, jd_zero_sub) p_jd.frequency = p_jd.frequency.replace(0, jd_zero_sub) # ipf for households logger.info("Running ipf for households") h_constraint, _ = calculate_constraints(h_marg, h_jd.frequency) h_constraint.index = h_jd.cat_id logger.debug("Household constraint") logger.debug(h_constraint) # ipf for persons logger.info("Running ipf for persons") p_constraint, _ = calculate_constraints(p_marg, p_jd.frequency) p_constraint.index = p_jd.cat_id logger.debug("Person constraint") logger.debug(p_constraint) # make frequency tables that the ipu expects household_freq, person_freq = cat.frequency_tables(p_pums, h_pums, p_jd.cat_id, h_jd.cat_id) # do the ipu to match person marginals logger.info("Running ipu") import time t1 = time.time() best_weights, fit_quality, iterations = household_weights(household_freq, person_freq, h_constraint, p_constraint) logger.info("Time to run ipu: %.3fs" % (time.time()-t1)) logger.debug("IPU weights:") logger.debug(best_weights.describe()) logger.debug("Fit quality:") logger.debug(fit_quality) logger.debug("Number of iterations:") logger.debug(iterations) num_households = int(h_marg.groupby(level=0).sum().mean()) print "Drawing %d households" % num_households best_chisq = np.inf return draw.draw_households( num_households, h_pums, p_pums, household_freq, h_constraint, p_constraint, best_weights, hh_index_start=hh_index_start) def synthesize_all(recipe, num_geogs=None, indexes=None, marginal_zero_sub=.01, jd_zero_sub=.001): """ Returns ------- households, people : pandas.DataFrame fit_quality : dict of FitQuality Keys are geographic IDs, values are namedtuples with attributes ``.household_chisq``, ``household_p``, ``people_chisq``, and ``people_p``. """ print "Synthesizing at geog level: '{}' (number of geographies is {})".\ format(recipe.get_geography_name(), recipe.get_num_geographies()) if indexes is None: indexes = recipe.get_available_geography_ids() hh_list = [] people_list = [] cnt = 0 fit_quality = {} hh_index_start = 0 # TODO will parallelization work here? for geog_id in indexes: print "Synthesizing geog id:\n", geog_id h_marg = recipe.get_household_marginal_for_geography(geog_id) logger.debug("Household marginal") logger.debug(h_marg) p_marg = recipe.get_person_marginal_for_geography(geog_id) logger.debug("Person marginal") logger.debug(p_marg) h_pums, h_jd = recipe.\ get_household_joint_dist_for_geography(geog_id) logger.debug("Household joint distribution") logger.debug(h_jd) p_pums, p_jd = recipe.get_person_joint_dist_for_geography(geog_id) logger.debug("Person joint distribution") logger.debug(p_jd) households, people, people_chisq, people_p = \ synthesize( h_marg, p_marg, h_jd, p_jd, h_pums, p_pums, marginal_zero_sub=marginal_zero_sub, jd_zero_sub=jd_zero_sub, hh_index_start=hh_index_start) hh_list.append(households) people_list.append(people) key = BlockGroupID( geog_id['state'], geog_id['county'], geog_id['tract'], geog_id['block group']) fit_quality[key] = FitQuality(people_chisq, people_p) cnt += 1 if len(households) > 0: hh_index_start = households.index.values[-1] + 1 if num_geogs is not None and cnt >= num_geogs: break # TODO might want to write this to disk as we go? return ( pd.concat(hh_list), pd.concat(people_list, ignore_index=True), fit_quality)
bsd-3-clause
0x0all/scikit-learn
sklearn/decomposition/base.py
12
5524
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self: object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
JosmanPS/scikit-learn
sklearn/decomposition/tests/test_truncated_svd.py
240
6055
"""Test truncated SVD transformer.""" import numpy as np import scipy.sparse as sp from sklearn.decomposition import TruncatedSVD from sklearn.utils import check_random_state from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_raises, assert_greater, assert_array_less) # Make an X that looks somewhat like a small tf-idf matrix. # XXX newer versions of SciPy have scipy.sparse.rand for this. shape = 60, 55 n_samples, n_features = shape rng = check_random_state(42) X = rng.randint(-100, 20, np.product(shape)).reshape(shape) X = sp.csr_matrix(np.maximum(X, 0), dtype=np.float64) X.data[:] = 1 + np.log(X.data) Xdense = X.A def test_algorithms(): svd_a = TruncatedSVD(30, algorithm="arpack") svd_r = TruncatedSVD(30, algorithm="randomized", random_state=42) Xa = svd_a.fit_transform(X)[:, :6] Xr = svd_r.fit_transform(X)[:, :6] assert_array_almost_equal(Xa, Xr) comp_a = np.abs(svd_a.components_) comp_r = np.abs(svd_r.components_) # All elements are equal, but some elements are more equal than others. assert_array_almost_equal(comp_a[:9], comp_r[:9]) assert_array_almost_equal(comp_a[9:], comp_r[9:], decimal=3) def test_attributes(): for n_components in (10, 25, 41): tsvd = TruncatedSVD(n_components).fit(X) assert_equal(tsvd.n_components, n_components) assert_equal(tsvd.components_.shape, (n_components, n_features)) def test_too_many_components(): for algorithm in ["arpack", "randomized"]: for n_components in (n_features, n_features+1): tsvd = TruncatedSVD(n_components=n_components, algorithm=algorithm) assert_raises(ValueError, tsvd.fit, X) def test_sparse_formats(): for fmt in ("array", "csr", "csc", "coo", "lil"): Xfmt = Xdense if fmt == "dense" else getattr(X, "to" + fmt)() tsvd = TruncatedSVD(n_components=11) Xtrans = tsvd.fit_transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) Xtrans = tsvd.transform(Xfmt) assert_equal(Xtrans.shape, (n_samples, 11)) def test_inverse_transform(): for algo in ("arpack", "randomized"): # We need a lot of components for the reconstruction to be "almost # equal" in all positions. XXX Test means or sums instead? tsvd = TruncatedSVD(n_components=52, random_state=42) Xt = tsvd.fit_transform(X) Xinv = tsvd.inverse_transform(Xt) assert_array_almost_equal(Xinv, Xdense, decimal=1) def test_integers(): Xint = X.astype(np.int64) tsvd = TruncatedSVD(n_components=6) Xtrans = tsvd.fit_transform(Xint) assert_equal(Xtrans.shape, (n_samples, tsvd.n_components)) def test_explained_variance(): # Test sparse data svd_a_10_sp = TruncatedSVD(10, algorithm="arpack") svd_r_10_sp = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_sp = TruncatedSVD(20, algorithm="arpack") svd_r_20_sp = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_sp = svd_a_10_sp.fit_transform(X) X_trans_r_10_sp = svd_r_10_sp.fit_transform(X) X_trans_a_20_sp = svd_a_20_sp.fit_transform(X) X_trans_r_20_sp = svd_r_20_sp.fit_transform(X) # Test dense data svd_a_10_de = TruncatedSVD(10, algorithm="arpack") svd_r_10_de = TruncatedSVD(10, algorithm="randomized", random_state=42) svd_a_20_de = TruncatedSVD(20, algorithm="arpack") svd_r_20_de = TruncatedSVD(20, algorithm="randomized", random_state=42) X_trans_a_10_de = svd_a_10_de.fit_transform(X.toarray()) X_trans_r_10_de = svd_r_10_de.fit_transform(X.toarray()) X_trans_a_20_de = svd_a_20_de.fit_transform(X.toarray()) X_trans_r_20_de = svd_r_20_de.fit_transform(X.toarray()) # helper arrays for tests below svds = (svd_a_10_sp, svd_r_10_sp, svd_a_20_sp, svd_r_20_sp, svd_a_10_de, svd_r_10_de, svd_a_20_de, svd_r_20_de) svds_trans = ( (svd_a_10_sp, X_trans_a_10_sp), (svd_r_10_sp, X_trans_r_10_sp), (svd_a_20_sp, X_trans_a_20_sp), (svd_r_20_sp, X_trans_r_20_sp), (svd_a_10_de, X_trans_a_10_de), (svd_r_10_de, X_trans_r_10_de), (svd_a_20_de, X_trans_a_20_de), (svd_r_20_de, X_trans_r_20_de), ) svds_10_v_20 = ( (svd_a_10_sp, svd_a_20_sp), (svd_r_10_sp, svd_r_20_sp), (svd_a_10_de, svd_a_20_de), (svd_r_10_de, svd_r_20_de), ) svds_sparse_v_dense = ( (svd_a_10_sp, svd_a_10_de), (svd_a_20_sp, svd_a_20_de), (svd_r_10_sp, svd_r_10_de), (svd_r_20_sp, svd_r_20_de), ) # Assert the 1st component is equal for svd_10, svd_20 in svds_10_v_20: assert_array_almost_equal( svd_10.explained_variance_ratio_, svd_20.explained_variance_ratio_[:10], decimal=5, ) # Assert that 20 components has higher explained variance than 10 for svd_10, svd_20 in svds_10_v_20: assert_greater( svd_20.explained_variance_ratio_.sum(), svd_10.explained_variance_ratio_.sum(), ) # Assert that all the values are greater than 0 for svd in svds: assert_array_less(0.0, svd.explained_variance_ratio_) # Assert that total explained variance is less than 1 for svd in svds: assert_array_less(svd.explained_variance_ratio_.sum(), 1.0) # Compare sparse vs. dense for svd_sparse, svd_dense in svds_sparse_v_dense: assert_array_almost_equal(svd_sparse.explained_variance_ratio_, svd_dense.explained_variance_ratio_) # Test that explained_variance is correct for svd, transformed in svds_trans: total_variance = np.var(X.toarray(), axis=0).sum() variances = np.var(transformed, axis=0) true_explained_variance_ratio = variances / total_variance assert_array_almost_equal( svd.explained_variance_ratio_, true_explained_variance_ratio, )
bsd-3-clause
altermarkive/Resurrecting-JimFleming-Numerai
src/ml-jimfleming--numerai/notebooks/visualization.py
1
3551
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import print_function from __future__ import division import random random.seed(67) import numpy as np np.random.seed(67) import matplotlib matplotlib.use('Agg') import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sompy import SOMFactory from sklearn.cluster import DBSCAN from sompy.visualization.mapview import View2D from sompy.visualization.umatrix import UMatrixView from sompy.visualization.histogram import Hist2d import os import sys sns.set_style('white') sns.set_context('notebook', font_scale=2) df_train = pd.read_csv(os.getenv('PREPARED_TRAINING')) df_valid = pd.read_csv(os.getenv('PREPARED_VALIDATING')) df_test = pd.read_csv(os.getenv('PREPARED_TESTING')) feature_cols = list(df_train.columns[:-1]) target_col = df_train.columns[-1] X_train = df_train[feature_cols].values y_train = df_train[target_col].values X_valid = df_valid[feature_cols].values y_valid = df_valid[target_col].values # X_test = df_test[feature_cols].values sm = SOMFactory.build(X_train, mapsize=[30, 30]) sm.train() bmu = sm.find_bmu(X_valid) print(bmu[1].shape) print(sm.component_names) xy = sm.bmu_ind_to_xy(bmu[0]) print(xy) projection = sm.project_data(X_valid) print(projection) #sm.predict_by(X_train[:,:-1], y_train[:,-1:]) v = UMatrixView(8, 8, 'SOM', cmap='viridis') v.show(sm) plt.savefig(os.path.join(os.getenv('STORING'), 'figure8.png')) v = View2D(8, 8, 'SOM', cmap='viridis') v.prepare() v.show(sm, col_sz=5, cmap='viridis') plt.rcParams['axes.labelsize'] = 10 plt.savefig(os.path.join(os.getenv('STORING'), 'figure9.png')) tsne_data = np.load(os.path.join(os.getenv('STORING'), 'tsne_2d_30p.npz')) tsne_train = tsne_data['train'] tsne_valid = tsne_data['valid'] tsne_test = tsne_data['test'] tsne_all = np.concatenate([tsne_train, tsne_valid, tsne_test], axis=0) dbscan = DBSCAN(eps=0.1, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None) dbscan_all = dbscan.fit_predict(tsne_all) fig = plt.figure(figsize=(24, 24)) ax = fig.add_subplot(111) ax.scatter(tsne_all[:,0], tsne_all[:,1], c=dbscan_all, cmap='Set3', s=8, alpha=0.8, marker='.', lw=0) fig.savefig(os.path.join(os.getenv('STORING'), 'figure10.png')) if bool(int(os.getenv('TSNE_2D_ONLY', '0'))): sys.exit() tsne_data = np.load(os.path.join(os.getenv('STORING'), 'tsne_3d_30p.npz')) tsne_train = tsne_data['train'] tsne_valid = tsne_data['valid'] tsne_test = tsne_data['test'] tsne_all = np.concatenate([tsne_train, tsne_valid, tsne_test], axis=0) dbscan = DBSCAN(eps=0.1, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None) dbscan_all = dbscan.fit_predict(tsne_all) from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(16, 16)) ax = fig.add_subplot(111, projection='3d') ax.scatter(tsne_all[:,0], tsne_all[:,1], tsne_all[:,2], c=dbscan_all, cmap='Set1', s=10, alpha=1.0, marker='.', lw=0, depthshade=True) fig.savefig(os.path.join(os.getenv('STORING'), 'figure11.png')) import plotly import plotly.graph_objs as go plotly.offline.init_notebook_mode() idx = np.random.choice(len(tsne_all), 10000) trace = go.Scatter3d( x=tsne_all[idx,0], y=tsne_all[idx,1], z=tsne_all[idx,2], mode='markers', marker=dict( size=4, color=dbscan_all[idx], colorscale='viridis', opacity=0.8 ) ) plotly.offline.plot(go.Figure(data=[trace], layout=go.Layout(title='tsne-3d-scatter')), filename=os.path.join(os.getenv('STORING'), 'tsne-3d-scatter.html'))
mit
iancze/PSOAP
scripts/psoap_retrieve_ST3_draw.py
1
2832
#!/usr/bin/env python import argparse parser = argparse.ArgumentParser(description="Reconstruct the composite spectra for A and B component.") parser.add_argument("--draws", type=int, default=0, help="In addition to plotting the mean GP, plot several draws of the GP to show the scatter in predicitions.") args = parser.parse_args() import numpy as np import matplotlib.pyplot as plt from astropy.io import ascii from psoap import constants as C from psoap import utils import yaml try: f = open("config.yaml") config = yaml.load(f) f.close() except FileNotFoundError as e: print("You need to copy a config.yaml file to this directory, and then edit the values to your particular case.") raise # Load the list of chunks chunks = ascii.read(config["chunk_file"]) def process_chunk(row): print("processing", row) order, wl0, wl1 = row plots_dir = "plots_" + C.chunk_fmt.format(order, wl0, wl1) mu = np.load(plots_dir + "/mu.npy") Sigma = np.load(plots_dir + "/Sigma.npy") n_pix_predict = int(len(mu)/3) wls_A_predict, f = np.load(plots_dir + "/f.npy") wls_B_predict, g = np.load(plots_dir + "/g.npy") wls_C_predict, h = np.load(plots_dir + "/h.npy") mu_f = mu[0:n_pix_predict] mu_g = mu[n_pix_predict: 2 * n_pix_predict] mu_h = mu[2 * n_pix_predict:] # Make some multivariate draws n_draws = args.draws mu_draw = np.random.multivariate_normal(mu, Sigma, size=n_draws) # Reshape the spectra right here mu_draw_f = np.empty((n_draws, n_pix_predict)) mu_draw_g = np.empty((n_draws, n_pix_predict)) mu_draw_h = np.empty((n_draws, n_pix_predict)) for j in range(n_draws): mu_draw_j = mu_draw[j] mu_draw_f[j] = mu_draw_j[0:n_pix_predict] mu_draw_g[j] = mu_draw_j[n_pix_predict: 2 * n_pix_predict] mu_draw_h[j] = mu_draw_j[2 * n_pix_predict:] np.save(plots_dir + "/f_draws.npy", mu_draw_f) np.save(plots_dir + "/g_draws.npy", mu_draw_g) np.save(plots_dir + "/h_draws.npy", mu_draw_h) # Plot the draws fig, ax = plt.subplots(nrows=3, sharex=True) for j in range(n_draws): ax[0].plot(wls_A_predict, mu_draw_f[j], color="0.2", lw=0.5) ax[1].plot(wls_B_predict, mu_draw_g[j], color="0.2", lw=0.5) ax[2].plot(wls_C_predict, mu_draw_h[j], color="0.2", lw=0.5) ax[0].plot(wls_A_predict, mu_f, "b") ax[0].set_ylabel(r"$f$") ax[1].plot(wls_B_predict, mu_g, "g") ax[1].set_ylabel(r"$g$") ax[2].plot(wls_C_predict, mu_h, "r") ax[2].set_ylabel(r"$h$") ax[-1].set_xlabel(r"$\lambda\,[\AA]$") fig.savefig(plots_dir + "/reconstructed.png", dpi=300) plt.close("all") # A laptop (e.g., mine) doesn't have enough memory to do this in parallel, so only serial for now for chunk in chunks: process_chunk(chunk)
mit
xguse/ggplot
ggplot/tests/test_geom_rect.py
12
1316
from __future__ import (absolute_import, division, print_function, unicode_literals) from nose.tools import assert_raises from . import get_assert_same_ggplot, cleanup assert_same_ggplot = get_assert_same_ggplot(__file__) from ggplot import * from ggplot.exampledata import diamonds import pandas as pd @cleanup def test_geom_rect(): df = pd.DataFrame({ 'xmin': [1,3,5], 'xmax': [2, 3.5, 7], 'ymin': [1, 4, 6], 'ymax': [5, 5, 9], 'fill': ['blue', 'red', 'green'], 'quality': ['good', 'bad', 'ugly'], 'alpha': [0.1, 0.5, 0.9], 'texture': ['hard', 'soft', 'medium']}) p = ggplot(df, aes(xmin='xmin', xmax='xmax', ymin='ymin', ymax='ymax', colour='quality', fill='fill', alpha='alpha', linetype='texture')) p += geom_rect(size=5) assert_same_ggplot(p, 'geom_rect') p = ggplot(df, aes(x='xmin', y='ymin')) p += geom_point(size=100, colour='red', alpha=0.5) p += geom_rect(aes(fill='fill', xmin='xmin', xmax='xmax', ymin=0, ymax='ymax'), alpha=0.1) assert_same_ggplot(p, 'geom_rect_with_point') def test_geom_rect_missing_req_aes(): with assert_raises(Exception): print(ggplot(diamonds, aes(x=x, y=y)) + geom_point() + geom_rect())
bsd-2-clause
theroncarmichael/GC-CaT-Metallicitiy
interp.py
1
9342
#! /usr/bin/env python ''' Created on Mar 17, 2011 @author: Chris Usher ''' import numpy as np #import matplotlib.pyplot as plt import scipy.interpolate as interpolate def redisperse(inputwavelengths, inputfluxes, firstWavelength=None, lastWavelength=None, dispersion=None, nPixels=None, outside=None, function='spline'): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] epsilon = 1e-10 if dispersion == None and nPixels != None: if firstWavelength == None: firstWavelength = inputwavelengths[0] if lastWavelength == None: lastWavelength = inputwavelengths[-1] outputwavelengths = np.linspace(firstWavelength, lastWavelength, nPixels) elif dispersion != None and nPixels == None: if firstWavelength == None: firstWavelength = inputwavelengths[0] if lastWavelength == None: lastWavelength = inputwavelengths[-1] outputwavelengths = np.arange(firstWavelength, lastWavelength + epsilon, dispersion) elif dispersion != None and nPixels != None: if firstWavelength != None: outputwavelengths = firstWavelength + dispersion * np.ones(nPixels) elif lastWavelength != None: outputwavelengths = lastWavelength - dispersion * np.ones(nPixels) outputwavelengths = outputwavelengths[::-1] else: outputwavelengths = inputwavelengths[0] + dispersion * np.ones(nPixels) else: dispersion = (inputwavelengths[-1] - inputwavelengths[0]) / (inputwavelengths.size - 1) if lastWavelength == None: lastWavelength = inputwavelengths[-1] if firstWavelength != None: outputwavelengths = np.arange(firstWavelength, lastWavelength + epsilon, dispersion) else: outputwavelengths = np.arange(inputwavelengths[0], lastWavelength + epsilon, dispersion) outputdispersion = outputwavelengths[1] - outputwavelengths[0] outputedges = np.linspace(outputwavelengths[0] - outputdispersion / 2, outputwavelengths[-1] + outputdispersion / 2, outputwavelengths.size + 1) outputfluxes = interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function) return (outputwavelengths, outputfluxes) def rebin(inputwavelengths, inputfluxes, outputwavelengths, outside=None, function='spline', ratio=False): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] outputedges = np.empty(outputwavelengths.size + 1) outputedges[1:-1] = (outputwavelengths[1:] + outputwavelengths[:-1]) / 2 outputedges[0] = 3 * outputwavelengths[0] / 2 - outputwavelengths[1] / 2 outputedges[-1] = 3 * outputwavelengths[-1] / 2 - outputwavelengths[-2] / 2 return interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) def interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside=None, function='spline', ratio=False): if not ratio: fluxdensities = inputfluxes / inputdispersions.mean() else: fluxdensities = inputfluxes outputfluxes = np.ones(outputwavelengths.size) if outside != None: outputfluxes = outputfluxes * outside else: middle = (outputwavelengths[0] + outputwavelengths[-1]) / 2 firstnew = None lastnew = None if function == 'nearest': pixels = np.arange(0, inputfluxes.size) for newpixel in range(outputfluxes.size): if inputedges[0] <= outputwavelengths[newpixel] <= inputedges[-1]: outputlowerlimit = outputedges[newpixel] outputupperlimit = outputedges[newpixel + 1] outputfluxes[newpixel] = 0 below = inputedges[1:] < outputlowerlimit above = inputedges[:-1] > outputupperlimit ok = ~(below | above) for oldpixel in pixels[ok]: inputlowerlimit = inputedges[oldpixel] inputupperlimit = inputedges[oldpixel + 1] if inputlowerlimit >= outputlowerlimit and inputupperlimit <= outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * inputdispersions[oldpixel] elif inputlowerlimit < outputlowerlimit and inputupperlimit > outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (outputupperlimit - outputlowerlimit) elif inputlowerlimit < outputlowerlimit and outputlowerlimit <= inputupperlimit <= outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (inputupperlimit - outputlowerlimit) elif outputupperlimit >= inputlowerlimit >= outputlowerlimit and inputupperlimit > outputupperlimit: outputfluxes[newpixel] += fluxdensities[oldpixel] * (outputupperlimit - inputlowerlimit) if firstnew == None: firstnew = outputfluxes[newpixel] if ratio: outputfluxes[newpixel] = outputfluxes[newpixel] / (outputupperlimit - outputlowerlimit) elif outputwavelengths[newpixel] > inputwavelengths[-1] and lastnew == None: lastnew = outputfluxes[newpixel - 1] else: fluxspline = interpolate.UnivariateSpline(inputwavelengths, fluxdensities, s=0, k=3) for newpixel in range(outputfluxes.size): if inputedges[0] <= outputwavelengths[newpixel] <= inputedges[-1]: outputlowerlimit = outputedges[newpixel] outputupperlimit = outputedges[newpixel + 1] outputfluxes[newpixel] = fluxspline.integral(outputedges[newpixel], outputedges[newpixel + 1]) if firstnew == None: firstnew = outputfluxes[newpixel] if ratio: outputfluxes[newpixel] = outputfluxes[newpixel] / (outputupperlimit - outputlowerlimit) elif outputwavelengths[newpixel] > inputwavelengths[-1] and lastnew == None: lastnew = outputfluxes[newpixel - 1] if outside == None: for newpixel in range(outputfluxes.size): if outputwavelengths[newpixel] < inputwavelengths[0]: outputfluxes[newpixel] = firstnew elif outputwavelengths[newpixel] > inputwavelengths[-1]: outputfluxes[newpixel] = lastnew return outputfluxes def lineartolog(inputwavelengths, inputfluxes, outside=0, function='spline', ratio=False, logDispersion=0): inputedges = np.empty(inputwavelengths.size + 1) inputedges[1:-1] = (inputwavelengths[1:] + inputwavelengths[:-1]) / 2 inputedges[0] = 3 * inputwavelengths[0] / 2 - inputwavelengths[1] / 2 inputedges[-1] = 3 * inputwavelengths[-1] / 2 - inputwavelengths[-2] / 2 inputdispersions = inputedges[1:] - inputedges[:-1] if logDispersion: outputedges = np.arange(np.log10(inputedges[0]), np.log10(inputedges[-1]), logDispersion) outputwavelengths = (outputedges[:-1] + outputedges[1:]) / 2 outputedges = 10**outputedges outputwavelengths = 10**outputwavelengths else: outputedges = np.logspace(np.log10(inputedges[0]), np.log10(inputedges[-1]), inputedges.size) outputwavelengths = (outputedges[:-1] * outputedges[1:])**.5 return outputwavelengths, interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) def logtolinear(inputwavelengths, inputfluxes, outside=0, function='spline', ratio=False): logWavelengths = np.log10(inputwavelengths) inputedges = np.empty(logWavelengths.size + 1) inputedges[1:-1] = (logWavelengths[1:] + logWavelengths[:-1]) / 2 inputedges[0] = 3 * logWavelengths[0] / 2 - logWavelengths[1] / 2 inputedges[-1] = 3 * logWavelengths[-1] / 2 - logWavelengths[-2] / 2 inputedges = 10**inputedges inputdispersions = inputedges[1:] - inputedges[:-1] outputedges = np.linspace(inputedges[0], inputedges[-1], inputedges.size) outputwavelengths = (outputedges[:-1] + outputedges[1:]) / 2 return outputwavelengths, interp(inputwavelengths, inputfluxes, inputedges, inputdispersions, outputwavelengths, outputedges, outside, function, ratio) #plt.show()
bsd-3-clause
kmike/scikit-learn
examples/manifold/plot_swissroll.py
4
1416
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD, (C) INRIA 2011 print(__doc__) import pylab as pl # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = pl.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=pl.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=pl.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=pl.cm.Spectral) pl.axis('tight') pl.xticks([]), pl.yticks([]) pl.title('Projected data') pl.show()
bsd-3-clause
sumspr/scikit-learn
sklearn/feature_extraction/dict_vectorizer.py
234
12267
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from array import array from collections import Mapping from operator import itemgetter import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..utils import check_array, tosequence from ..utils.fixes import frombuffer_empty def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(BaseEstimator, TransformerMixin): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Read more in the :ref:`User Guide <dict_feature_extraction>`. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator: string, optional Separator string used when constructing new features for one-hot coding. sparse: boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort: boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report") dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = array("i", [0]) # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 if f in vocab: indices.append(vocab[f]) values.append(dtype(v)) else: if fitting: feature_names.append(f) vocab[f] = len(vocab) indices.append(vocab[f]) values.append(dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = frombuffer_empty(indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix((values, indices, indptr), shape=shape, dtype=dtype) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Sample matrix. dict_type : callable, optional Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects, length = n_samples Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=['csr', 'csc']) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in xrange(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X, y=None): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings, length = n_samples Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ if self.sparse: return self._transform(X, fitting=False) else: dtype = self.dtype vocab = self.vocabulary_ X = _tosequence(X) Xa = np.zeros((len(X), len(vocab)), dtype=dtype) for i, x in enumerate(X): for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 try: Xa[i, vocab[f]] = dtype(v) except KeyError: pass return Xa def get_feature_names(self): """Returns a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. """ return self.feature_names_ def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : boolean, optional Whether support is a list of indices. Returns ------- self Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names() ['bar', 'baz', 'foo'] >>> v.restrict(support.get_support()) # doctest: +ELLIPSIS DictVectorizer(dtype=..., separator='=', sort=True, sparse=True) >>> v.get_feature_names() ['bar', 'foo'] """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab), key=itemgetter(1))] return self
bsd-3-clause
ContinuumIO/dask
dask/bytes/tests/test_s3.py
1
14943
import io import os from contextlib import contextmanager from functools import partial from distutils.version import LooseVersion import pytest import numpy as np s3fs = pytest.importorskip("s3fs") boto3 = pytest.importorskip("boto3") moto = pytest.importorskip("moto") httpretty = pytest.importorskip("httpretty") from tlz import concat, valmap from dask import compute from dask.bytes.core import read_bytes, open_files from s3fs import S3FileSystem as DaskS3FileSystem from dask.bytes.utils import compress from fsspec.compression import compr compute = partial(compute, scheduler="sync") test_bucket_name = "test" files = { "test/accounts.1.json": ( b'{"amount": 100, "name": "Alice"}\n' b'{"amount": 200, "name": "Bob"}\n' b'{"amount": 300, "name": "Charlie"}\n' b'{"amount": 400, "name": "Dennis"}\n' ), "test/accounts.2.json": ( b'{"amount": 500, "name": "Alice"}\n' b'{"amount": 600, "name": "Bob"}\n' b'{"amount": 700, "name": "Charlie"}\n' b'{"amount": 800, "name": "Dennis"}\n' ), } @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) @pytest.fixture() def s3(): with ensure_safe_environment_variables(): # temporary workaround as moto fails for botocore >= 1.11 otherwise, # see https://github.com/spulec/moto/issues/1924 & 1952 os.environ.setdefault("AWS_ACCESS_KEY_ID", "foobar_key") os.environ.setdefault("AWS_SECRET_ACCESS_KEY", "foobar_secret") # writable local S3 system import moto with moto.mock_s3(): client = boto3.client("s3") client.create_bucket(Bucket=test_bucket_name, ACL="public-read-write") for f, data in files.items(): client.put_object(Bucket=test_bucket_name, Key=f, Body=data) fs = s3fs.S3FileSystem(anon=True) fs.invalidate_cache yield fs httpretty.HTTPretty.disable() httpretty.HTTPretty.reset() @contextmanager def s3_context(bucket, files): with ensure_safe_environment_variables(): # temporary workaround as moto fails for botocore >= 1.11 otherwise, # see https://github.com/spulec/moto/issues/1924 & 1952 os.environ.setdefault("AWS_ACCESS_KEY_ID", "foobar_key") os.environ.setdefault("AWS_SECRET_ACCESS_KEY", "foobar_secret") with moto.mock_s3(): client = boto3.client("s3") client.create_bucket(Bucket=bucket, ACL="public-read-write") for f, data in files.items(): client.put_object(Bucket=bucket, Key=f, Body=data) fs = DaskS3FileSystem(anon=True) fs.invalidate_cache() yield fs for f, data in files.items(): try: client.delete_object(Bucket=bucket, Key=f, Body=data) except Exception: pass finally: httpretty.HTTPretty.disable() httpretty.HTTPretty.reset() @pytest.fixture() @pytest.mark.slow def s3_with_yellow_tripdata(s3): """ Fixture with sample yellowtrip CSVs loaded into S3. Provides the following CSVs: * s3://test/nyc-taxi/2015/yellow_tripdata_2015-01.csv * s3://test/nyc-taxi/2014/yellow_tripdata_2015-mm.csv for mm from 01 - 12. """ pd = pytest.importorskip("pandas") data = { "VendorID": {0: 2, 1: 1, 2: 1, 3: 1, 4: 1}, "tpep_pickup_datetime": { 0: "2015-01-15 19:05:39", 1: "2015-01-10 20:33:38", 2: "2015-01-10 20:33:38", 3: "2015-01-10 20:33:39", 4: "2015-01-10 20:33:39", }, "tpep_dropoff_datetime": { 0: "2015-01-15 19:23:42", 1: "2015-01-10 20:53:28", 2: "2015-01-10 20:43:41", 3: "2015-01-10 20:35:31", 4: "2015-01-10 20:52:58", }, "passenger_count": {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}, "trip_distance": {0: 1.59, 1: 3.3, 2: 1.8, 3: 0.5, 4: 3.0}, "pickup_longitude": { 0: -73.993896484375, 1: -74.00164794921875, 2: -73.96334075927734, 3: -74.00908660888672, 4: -73.97117614746094, }, "pickup_latitude": { 0: 40.7501106262207, 1: 40.7242431640625, 2: 40.80278778076172, 3: 40.71381759643555, 4: 40.762428283691406, }, "RateCodeID": {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}, "store_and_fwd_flag": {0: "N", 1: "N", 2: "N", 3: "N", 4: "N"}, "dropoff_longitude": { 0: -73.97478485107422, 1: -73.99441528320312, 2: -73.95182037353516, 3: -74.00432586669923, 4: -74.00418090820312, }, "dropoff_latitude": { 0: 40.75061798095703, 1: 40.75910949707031, 2: 40.82441329956055, 3: 40.71998596191406, 4: 40.742652893066406, }, "payment_type": {0: 1, 1: 1, 2: 2, 3: 2, 4: 2}, "fare_amount": {0: 12.0, 1: 14.5, 2: 9.5, 3: 3.5, 4: 15.0}, "extra": {0: 1.0, 1: 0.5, 2: 0.5, 3: 0.5, 4: 0.5}, "mta_tax": {0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5, 4: 0.5}, "tip_amount": {0: 3.25, 1: 2.0, 2: 0.0, 3: 0.0, 4: 0.0}, "tolls_amount": {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}, "improvement_surcharge": {0: 0.3, 1: 0.3, 2: 0.3, 3: 0.3, 4: 0.3}, "total_amount": {0: 17.05, 1: 17.8, 2: 10.8, 3: 4.8, 4: 16.3}, } sample = pd.DataFrame(data) df = sample.take(np.arange(5).repeat(10000)) file = io.BytesIO() sfile = io.TextIOWrapper(file) df.to_csv(sfile, index=False) key = "nyc-taxi/2015/yellow_tripdata_2015-01.csv" client = boto3.client("s3") client.put_object(Bucket=test_bucket_name, Key=key, Body=file) key = "nyc-taxi/2014/yellow_tripdata_2014-{:0>2d}.csv" for i in range(1, 13): file.seek(0) client.put_object(Bucket=test_bucket_name, Key=key.format(i), Body=file) yield def test_get_s3(): s3 = DaskS3FileSystem(key="key", secret="secret") assert s3.key == "key" assert s3.secret == "secret" s3 = DaskS3FileSystem(username="key", password="secret") assert s3.key == "key" assert s3.secret == "secret" with pytest.raises(KeyError): DaskS3FileSystem(key="key", username="key") with pytest.raises(KeyError): DaskS3FileSystem(secret="key", password="key") def test_open_files_write(s3): paths = ["s3://" + test_bucket_name + "/more/" + f for f in files] fils = open_files(paths, mode="wb") for fil, data in zip(fils, files.values()): with fil as f: f.write(data) sample, values = read_bytes("s3://" + test_bucket_name + "/more/test/accounts.*") results = compute(*concat(values)) assert set(list(files.values())) == set(results) def test_read_bytes(s3): sample, values = read_bytes("s3://" + test_bucket_name + "/test/accounts.*") assert isinstance(sample, bytes) assert sample[:5] == files[sorted(files)[0]][:5] assert sample.endswith(b"\n") assert isinstance(values, (list, tuple)) assert isinstance(values[0], (list, tuple)) assert hasattr(values[0][0], "dask") assert sum(map(len, values)) >= len(files) results = compute(*concat(values)) assert set(results) == set(files.values()) def test_read_bytes_sample_delimiter(s3): sample, values = read_bytes( "s3://" + test_bucket_name + "/test/accounts.*", sample=80, delimiter=b"\n" ) assert sample.endswith(b"\n") sample, values = read_bytes( "s3://" + test_bucket_name + "/test/accounts.1.json", sample=80, delimiter=b"\n" ) assert sample.endswith(b"\n") sample, values = read_bytes( "s3://" + test_bucket_name + "/test/accounts.1.json", sample=2, delimiter=b"\n" ) assert sample.endswith(b"\n") def test_read_bytes_non_existing_glob(s3): with pytest.raises(IOError): read_bytes("s3://" + test_bucket_name + "/non-existing/*") def test_read_bytes_blocksize_none(s3): _, values = read_bytes( "s3://" + test_bucket_name + "/test/accounts.*", blocksize=None ) assert sum(map(len, values)) == len(files) def test_read_bytes_blocksize_on_large_data(s3_with_yellow_tripdata): _, L = read_bytes( "s3://{}/nyc-taxi/2015/yellow_tripdata_2015-01.csv".format(test_bucket_name), blocksize=None, anon=True, ) assert len(L) == 1 _, L = read_bytes( "s3://{}/nyc-taxi/2014/*.csv".format(test_bucket_name), blocksize=None, anon=True, ) assert len(L) == 12 @pytest.mark.parametrize("blocksize", [5, 15, 45, 1500]) def test_read_bytes_block(s3, blocksize): _, vals = read_bytes( "s3://" + test_bucket_name + "/test/account*", blocksize=blocksize ) assert list(map(len, vals)) == [(len(v) // blocksize + 1) for v in files.values()] results = compute(*concat(vals)) assert sum(len(r) for r in results) == sum(len(v) for v in files.values()) ourlines = b"".join(results).split(b"\n") testlines = b"".join(files.values()).split(b"\n") assert set(ourlines) == set(testlines) @pytest.mark.parametrize("blocksize", [5, 15, 45, 1500]) def test_read_bytes_delimited(s3, blocksize): _, values = read_bytes( "s3://" + test_bucket_name + "/test/accounts*", blocksize=blocksize, delimiter=b"\n", ) _, values2 = read_bytes( "s3://" + test_bucket_name + "/test/accounts*", blocksize=blocksize, delimiter=b"foo", ) assert [a.key for a in concat(values)] != [b.key for b in concat(values2)] results = compute(*concat(values)) res = [r for r in results if r] assert all(r.endswith(b"\n") for r in res) ourlines = b"".join(res).split(b"\n") testlines = b"".join(files[k] for k in sorted(files)).split(b"\n") assert ourlines == testlines # delimiter not at the end d = b"}" _, values = read_bytes( "s3://" + test_bucket_name + "/test/accounts*", blocksize=blocksize, delimiter=d ) results = compute(*concat(values)) res = [r for r in results if r] # All should end in } except EOF assert sum(r.endswith(b"}") for r in res) == len(res) - 2 ours = b"".join(res) test = b"".join(files[v] for v in sorted(files)) assert ours == test @pytest.mark.parametrize( "fmt,blocksize", [(fmt, None) for fmt in compr] + [(fmt, 10) for fmt in compr] ) def test_compression(s3, fmt, blocksize): if fmt not in compress: pytest.skip("compression function not provided") s3._cache.clear() with s3_context("compress", valmap(compress[fmt], files)): if fmt and blocksize: with pytest.raises(ValueError): read_bytes( "s3://compress/test/accounts.*", compression=fmt, blocksize=blocksize, ) return sample, values = read_bytes( "s3://compress/test/accounts.*", compression=fmt, blocksize=blocksize ) assert sample.startswith(files[sorted(files)[0]][:10]) assert sample.endswith(b"\n") results = compute(*concat(values)) assert b"".join(results) == b"".join([files[k] for k in sorted(files)]) @pytest.mark.parametrize("mode", ["rt", "rb"]) def test_open_files(s3, mode): myfiles = open_files("s3://" + test_bucket_name + "/test/accounts.*", mode=mode) assert len(myfiles) == len(files) for lazy_file, path in zip(myfiles, sorted(files)): with lazy_file as f: data = f.read() sol = files[path] assert data == sol if mode == "rb" else sol.decode() double = lambda x: x * 2 def test_modification_time_read_bytes(): with s3_context("compress", files): _, a = read_bytes("s3://compress/test/accounts.*", anon=True) _, b = read_bytes("s3://compress/test/accounts.*", anon=True) assert [aa._key for aa in concat(a)] == [bb._key for bb in concat(b)] with s3_context("compress", valmap(double, files)): _, c = read_bytes("s3://compress/test/accounts.*", anon=True) assert [aa._key for aa in concat(a)] != [cc._key for cc in concat(c)] @pytest.mark.parametrize("engine", ["pyarrow", "fastparquet"]) def test_parquet(s3, engine): dd = pytest.importorskip("dask.dataframe") from dask.dataframe._compat import tm lib = pytest.importorskip(engine) if engine == "pyarrow" and LooseVersion(lib.__version__) < "0.13.1": pytest.skip("pyarrow < 0.13.1 not supported for parquet") import pandas as pd import numpy as np url = "s3://%s/test.parquet" % test_bucket_name data = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice([u"hello", u"you", u"people"], size=1000).astype( "O" ), }, index=pd.Index(np.arange(1000), name="foo"), ) df = dd.from_pandas(data, chunksize=500) df.to_parquet(url, engine=engine) files = [f.split("/")[-1] for f in s3.ls(url)] assert "_common_metadata" in files assert "part.0.parquet" in files df2 = dd.read_parquet(url, index="foo", engine=engine) assert len(df2.divisions) > 1 tm.assert_frame_equal(data, df2.compute()) def test_parquet_wstoragepars(s3): dd = pytest.importorskip("dask.dataframe") pytest.importorskip("fastparquet") import pandas as pd import numpy as np url = "s3://%s/test.parquet" % test_bucket_name data = pd.DataFrame({"i32": np.array([0, 5, 2, 5])}) df = dd.from_pandas(data, chunksize=500) df.to_parquet(url, write_index=False) dd.read_parquet(url, storage_options={"default_fill_cache": False}) assert s3.current().default_fill_cache is False dd.read_parquet(url, storage_options={"default_fill_cache": True}) assert s3.current().default_fill_cache is True dd.read_parquet(url, storage_options={"default_block_size": 2 ** 20}) assert s3.current().default_block_size == 2 ** 20 with s3.current().open(url + "/_metadata") as f: assert f.blocksize == 2 ** 20 def test_get_pyarrow_fs_s3(s3): pa = pytest.importorskip("pyarrow") fs = DaskS3FileSystem(anon=True) assert isinstance(fs, pa.filesystem.FileSystem)
bsd-3-clause
ULHPC/tutorials
python/advanced/scikit-learn/scripts/supervized/main.py
2
3092
import argparse import logging import os import sys import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from matplotlib.colors import Normalize from joblib import Parallel, parallel_backend from joblib import register_parallel_backend from joblib import delayed from joblib import cpu_count from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.svm import SVC from ipyparallel import Client from ipyparallel.joblib import IPythonParallelBackend import numpy as np import pandas as pd import datetime from sklearn.model_selection import GridSearchCV FILE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(FILE_DIR) #prepare the logger parser = argparse.ArgumentParser() parser.add_argument("-p", "--profile", default="ipy_profile", help="Name of IPython profile to use") args = parser.parse_args() profile = args.profile logging.basicConfig(filename=os.path.join(FILE_DIR,profile+'.log'), filemode='w', level=logging.DEBUG) logging.info("number of CPUs found: {0}".format(cpu_count())) logging.info("args.profile: {0}".format(profile)) #prepare the engines c = Client(profile=profile) #The following command will make sure that each engine is running in # the right working directory to access the custom function(s). c[:].map(os.chdir, [FILE_DIR]*len(c)) logging.info("c.ids :{0}".format(str(c.ids))) bview = c.load_balanced_view() register_parallel_backend('ipyparallel', lambda : IPythonParallelBackend(view=bview)) #Get data digits = load_digits() #prepare it for the custom function #it would be better to use cross-validation #outside the scope of this tutorial X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3) #some parameters to test in parallel param_space = { 'C': np.logspace(-6, 6, 20), 'gamma': np.logspace(-6,1,20) } svc_rbf = SVC(kernel='rbf', shrinking=False) search = GridSearchCV(svc_rbf, param_space, return_train_score=True, n_jobs=len(c)) with parallel_backend('ipyparallel'): search.fit(X_train, y_train) results = search.cv_results_ results = pd.DataFrame(results) results.to_csv(os.path.join(FILE_DIR,'scores_rbf_digits.csv')) scores = search.cv_results_['mean_test_score'].reshape(len(param_space['C']),len(param_space['gamma'])) plt.figure() #plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(param_space['gamma'])), map(lambda x : "%.2E"%(x),param_space['gamma']), fontsize=8, rotation=45) plt.yticks(np.arange(len(param_space['C'])), map(lambda x : "%.2E"%(x),param_space['C']), fontsize=8, rotation=45) plt.title('Validation accuracy') plt.savefig(os.path.join(FILE_DIR,"validation.png"))
gpl-3.0
tmoer/multimodal_varinf
rlutils/helpers.py
1
9855
# -*- coding: utf-8 -*- """ Grid-world environment @author: thomas """ import sys import os.path sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) sys.path.append(os.path.abspath(os.path.dirname(__file__))) import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from rlenv.grid import grid_env as grid_env from rlutils.policies import egreedy from scipy.linalg import norm ### other stuff def make_rl_data(Env,batch_size): world = np.zeros([7,7],dtype='int32') world[1:6,1] = 1 world[1:3,4] = 1 world[4:6,4] = 1 s_data = np.zeros([batch_size,Env.observation_shape],dtype='int32') s1_data = np.zeros([batch_size,Env.observation_shape],dtype='int32') a_data = np.zeros([batch_size,1],dtype='int32') r_data = np.zeros([batch_size,1],dtype='int32') term_data = np.zeros([batch_size,1],dtype='int32') count = 0 while count < batch_size: i,j,k,l,m,n = np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1) a = np.random.randint(0,4,1)[0] do = not bool(world[i,j]) and (not bool(world[k,l])) and (not bool(world[m,n])) if do: s = np.array([i,j,k,l,m,n]).flatten() Env.set_state(s) s1 , r , dead = Env.step([a]) s_data[count,] = s s1_data[count,] = s1 a_data[count] = a r_data[count] = r term_data[count] = dead count += 1 return s_data, a_data, s1_data, r_data, term_data def make_test_data(sess,model,Env,batch_size,epsilon=0.05): ''' on policy test data ''' s_data = np.zeros([batch_size,Env.observation_shape],dtype='int32') s1_data = np.zeros([batch_size,Env.observation_shape],dtype='int32') a_data = np.zeros([batch_size,1],dtype='int32') r_data = np.zeros([batch_size,1],dtype='int32') term_data = np.zeros([batch_size,1],dtype='int32') count = 0 s = Env.reset() while count < batch_size: Qsa = sess.run(model.Qsa, feed_dict = {model.x :s[None,:], model.k : 1, }) a = np.array([egreedy(Qsa[0],epsilon)]) s1 = sess.run(model.y_sample,{ model.x : s[None,:], model.y : np.zeros(np.shape(s))[None,:], model.a : a[:,None], model.lamb : 1, model.temp : 0.0001, model.is_training : False, model.k: 1}) s_data[count,] = s a_data[count] = a s1_data[count,] = s1 Env.set_state(s1) term_data[count,] = dead = Env._check_dead() if dead: s = Env.reset() else: s = s1 count += 1 return s_data, a_data, s1_data, r_data, term_data def plot_predictions(model,sess,n_row,n_col,run_id,hps,on_policy=False,s=np.array([0,0,1,3,5,3])): world = np.zeros([7,7],dtype='int32') world[1:6,1] = 1 world[1:3,4] = 1 world[4:6,4] = 1 fig = plt.figure()#figsize=(7,7),dpi=600,aspect='auto') for row in range(n_row): for col in range(n_col): ax1 = fig.add_subplot(n_row,n_col,((n_col*col) + row + 1),aspect='equal') # plot the environment ax1.axis('off') plt.xlim([-1,8]) plt.ylim([-1,8]) plot_predictions for i in range(7): for j in range(7): if world[i,j]==1: col = "black" else: col = "white" ax1.add_patch( patches.Rectangle( (i,j),1,1, #fill=False, edgecolor='black', linewidth = 2, facecolor = col,), ) # sample some state do = False if not on_policy: while not do: i,j,k,l,m,n = np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1),np.random.randint(0,7,1) a = np.random.randint(0,4,1) do = not bool(world[i,j]) and (not bool(world[k,l])) and (not bool(world[m,n])) s = np.array([i,j,k,l,m,n]).flatten() else: i,j,k,l,m,n = s Qsa = sess.run(model.Qsa, feed_dict = {model.x :s[None,:], model.k : 1, }) a = np.array([egreedy(Qsa[0],0.01)]) # add the start ax1.add_artist(plt.Circle((m+0.5,n+0.5),0.3,color='blue')) ax1.add_artist(plt.Circle((k+0.5,l+0.5),0.3,color='red')) ax1.add_artist(plt.Circle((i+0.5,j+0.5),0.3,color='green')) if a == 0: action = 'up' elif a == 1: action = 'down' elif a == 2: action = 'right' elif a == 3: action = 'left' ax1.set_title(action) trans = predict(model,sess,s,a) for agent in range(3): for i in range(7): for j in range(7): if trans[i,j,agent]>0: if agent == 0: col = 'green' elif agent == 1: col = 'red' elif agent == 2: col = 'blue' ax1.add_patch( patches.Rectangle( (i,j),1,1, fill=True, alpha = trans[i,j,agent], edgecolor='black', linewidth = 2, facecolor = col,), ) if on_policy: s1 = sess.run(model.y_sample,{ model.x : s[None,:], model.y : np.zeros(np.shape(s[None,:])), model.a : a[:,None], model.lamb : 1, model.temp : 0.0001, model.is_training : False, model.k: 1}) s = s1[0] return s def predict(model,sess,some_s,some_a,n_test_samp=200): freq = np.zeros([7,7,3]) for m in range(n_test_samp): y_sample = sess.run(model.y_sample,{ model.x : some_s[None,:], model.y : np.zeros(np.shape(some_s))[None,:], model.a : some_a[:,None], model.lamb : 1, model.temp : 0.0001, model.is_training : False, model.k: 1}) y_sample = y_sample.flatten() freq[y_sample[0],y_sample[1],0] += 1 freq[y_sample[2],y_sample[3],1] += 1 freq[y_sample[4],y_sample[5],2] += 1 trans = freq/n_test_samp return trans def kl_preds_v2(model,sess,s_test,a_test,n_rep_per_item=200): ## Compare sample distribution to ground truth Env = grid_env(False) n_test_items,state_size = s_test.shape distances = np.empty([n_test_items,3]) for i in range(n_test_items): state = s_test[i,:].astype('int32') action = np.round(a_test[i,:]).astype('int32') # ground truth state_truth = np.empty([n_rep_per_item,s_test.shape[1]]) for o in range(n_rep_per_item): Env.set_state(state.flatten()) s1,r,dead = Env.step(action.flatten()) state_truth[o,:] = s1 truth_count,bins = np.histogramdd(state_truth,bins=[np.arange(8)-0.5]*state_size) truth_prob = truth_count/n_rep_per_item # predictions of model y_sample = sess.run(model.y_sample,{ model.x : state[None,:].repeat(n_rep_per_item,axis=0), model.y : np.zeros(np.shape(state[None,:])).repeat(n_rep_per_item,axis=0), model.a : action[None,:].repeat(n_rep_per_item,axis=0), model.Qtarget : np.zeros(np.shape(action[None,:])).repeat(n_rep_per_item,axis=0), model.lr : 0, model.lamb : 1, model.temp : 0.00001, model.is_training : False, model.k: 1}) sample_count,bins = np.histogramdd(y_sample,bins=[np.arange(8)-0.5]*state_size) sample_prob = sample_count/n_rep_per_item distances[i,0]= np.sum(truth_prob*(np.log(truth_prob+1e-5)-np.log(sample_prob+1e-5))) # KL(p|p_tilde) distances[i,1]= np.sum(sample_prob*(np.log(sample_prob+1e-5)-np.log(truth_prob+1e-5))) # Inverse KL(p_tilde|p) distances[i,2]= norm(np.sqrt(truth_prob) - np.sqrt(sample_prob))/np.sqrt(2) return np.mean(distances,axis=0)
mit
cloudera/ibis
ibis/expr/datatypes.py
1
51710
import builtins import collections import datetime import functools import itertools import numbers import re import typing from typing import Any as GenericAny from typing import ( Callable, Iterator, List, Mapping, NamedTuple, Optional, Sequence, ) from typing import Set as GenericSet from typing import Tuple, TypeVar, Union import pandas as pd import toolz from multipledispatch import Dispatcher import ibis.common.exceptions as com import ibis.expr.types as ir from ibis import util IS_SHAPELY_AVAILABLE = False try: import shapely.geometry IS_SHAPELY_AVAILABLE = True except ImportError: ... class DataType: __slots__ = ('nullable',) def __init__(self, nullable: bool = True) -> None: self.nullable = nullable def __call__(self, nullable: bool = True) -> 'DataType': if nullable is not True and nullable is not False: raise TypeError( "__call__ only accepts the 'nullable' argument. " "Please construct a new instance of the type to change the " "values of the attributes." ) return self._factory(nullable=nullable) def _factory(self, nullable: bool = True) -> 'DataType': slots = { slot: getattr(self, slot) for slot in self.__slots__ if slot != 'nullable' } return type(self)(nullable=nullable, **slots) def __eq__(self, other) -> bool: return self.equals(other) def __ne__(self, other) -> bool: return not (self == other) def __hash__(self) -> int: custom_parts = tuple( getattr(self, slot) for slot in toolz.unique(self.__slots__ + ('nullable',)) ) return hash((type(self),) + custom_parts) def __repr__(self) -> str: return '{}({})'.format( self.name, ', '.join( '{}={!r}'.format(slot, getattr(self, slot)) for slot in toolz.unique(self.__slots__ + ('nullable',)) ), ) def __str__(self) -> str: return '{}{}'.format( self.name.lower(), '[non-nullable]' if not self.nullable else '' ) @property def name(self) -> str: return type(self).__name__ def equals( self, other: 'DataType', cache: Optional[Mapping[GenericAny, bool]] = None, ) -> bool: if isinstance(other, str): raise TypeError( 'Comparing datatypes to strings is not allowed. Convert ' '{!r} to the equivalent DataType instance.'.format(other) ) return ( isinstance(other, type(self)) and self.nullable == other.nullable and self.__slots__ == other.__slots__ and all( getattr(self, slot) == getattr(other, slot) for slot in self.__slots__ ) ) def castable(self, target, **kwargs): return castable(self, target, **kwargs) def cast(self, target, **kwargs): return cast(self, target, **kwargs) def scalar_type(self): return functools.partial(self.scalar, dtype=self) def column_type(self): return functools.partial(self.column, dtype=self) def _literal_value_hash_key(self, value) -> int: """Return a hash for `value`.""" return self, value class Any(DataType): __slots__ = () class Primitive(DataType): __slots__ = () def __repr__(self) -> str: name = self.name.lower() if not self.nullable: return '{}[non-nullable]'.format(name) return name class Null(DataType): scalar = ir.NullScalar column = ir.NullColumn __slots__ = () class Variadic(DataType): __slots__ = () class Boolean(Primitive): scalar = ir.BooleanScalar column = ir.BooleanColumn __slots__ = () Bounds = NamedTuple('Bounds', [('lower', int), ('upper', int)]) class Integer(Primitive): scalar = ir.IntegerScalar column = ir.IntegerColumn __slots__ = () @property def _nbytes(self) -> int: raise TypeError( "Cannot determine the size in bytes of an abstract integer type." ) class String(Variadic): """A type representing a string. Notes ----- Because of differences in the way different backends handle strings, we cannot assume that strings are UTF-8 encoded. """ scalar = ir.StringScalar column = ir.StringColumn __slots__ = () class Binary(Variadic): """A type representing a blob of bytes. Notes ----- Some databases treat strings and blobs of equally, and some do not. For example, Impala doesn't make a distinction between string and binary types but PostgreSQL has a TEXT type and a BYTEA type which are distinct types that behave differently. """ scalar = ir.BinaryScalar column = ir.BinaryColumn __slots__ = () class Date(Primitive): scalar = ir.DateScalar column = ir.DateColumn __slots__ = () class Time(Primitive): scalar = ir.TimeScalar column = ir.TimeColumn __slots__ = () class Timestamp(DataType): scalar = ir.TimestampScalar column = ir.TimestampColumn __slots__ = ('timezone',) def __init__( self, timezone: Optional[str] = None, nullable: bool = True ) -> None: super().__init__(nullable=nullable) self.timezone = timezone def __str__(self) -> str: timezone = self.timezone typename = self.name.lower() if timezone is None: return typename return '{}({!r})'.format(typename, timezone) class SignedInteger(Integer): @property def largest(self): return int64 @property def bounds(self): exp = self._nbytes * 8 - 1 upper = (1 << exp) - 1 return Bounds(lower=~upper, upper=upper) class UnsignedInteger(Integer): @property def largest(self): return uint64 @property def bounds(self): exp = self._nbytes * 8 - 1 upper = 1 << exp return Bounds(lower=0, upper=upper) class Floating(Primitive): scalar = ir.FloatingScalar column = ir.FloatingColumn __slots__ = () @property def largest(self): return float64 @property def _nbytes(self) -> int: raise TypeError( "Cannot determine the size in bytes of an abstract floating " "point type." ) class Int8(SignedInteger): __slots__ = () _nbytes = 1 class Int16(SignedInteger): __slots__ = () _nbytes = 2 class Int32(SignedInteger): __slots__ = () _nbytes = 4 class Int64(SignedInteger): __slots__ = () _nbytes = 8 class UInt8(UnsignedInteger): __slots__ = () _nbytes = 1 class UInt16(UnsignedInteger): __slots__ = () _nbytes = 2 class UInt32(UnsignedInteger): __slots__ = () _nbytes = 4 class UInt64(UnsignedInteger): __slots__ = () _nbytes = 8 class Float16(Floating): __slots__ = () _nbytes = 2 class Float32(Floating): __slots__ = () _nbytes = 4 class Float64(Floating): __slots__ = () _nbytes = 8 Halffloat = Float16 Float = Float32 Double = Float64 class Decimal(DataType): scalar = ir.DecimalScalar column = ir.DecimalColumn __slots__ = 'precision', 'scale' def __init__( self, precision: int, scale: int, nullable: bool = True ) -> None: if not isinstance(precision, numbers.Integral): raise TypeError('Decimal type precision must be an integer') if not isinstance(scale, numbers.Integral): raise TypeError('Decimal type scale must be an integer') if precision < 0: raise ValueError('Decimal type precision cannot be negative') if not precision: raise ValueError('Decimal type precision cannot be zero') if scale < 0: raise ValueError('Decimal type scale cannot be negative') if precision < scale: raise ValueError( 'Decimal type precision must be greater than or equal to ' 'scale. Got precision={:d} and scale={:d}'.format( precision, scale ) ) super().__init__(nullable=nullable) self.precision = precision # type: int self.scale = scale # type: int def __str__(self) -> str: return '{}({:d}, {:d})'.format( self.name.lower(), self.precision, self.scale ) @property def largest(self) -> 'Decimal': return Decimal(38, self.scale) class Interval(DataType): scalar = ir.IntervalScalar column = ir.IntervalColumn __slots__ = 'value_type', 'unit' # based on numpy's units _units = { 'Y': 'year', 'Q': 'quarter', 'M': 'month', 'W': 'week', 'D': 'day', 'h': 'hour', 'm': 'minute', 's': 'second', 'ms': 'millisecond', 'us': 'microsecond', 'ns': 'nanosecond', } _timedelta_to_interval_units = { 'days': 'D', 'hours': 'h', 'minutes': 'm', 'seconds': 's', 'milliseconds': 'ms', 'microseconds': 'us', 'nanoseconds': 'ns', } def _convert_timedelta_unit_to_interval_unit(self, unit: str): if unit not in self._timedelta_to_interval_units: raise ValueError return self._timedelta_to_interval_units[unit] def __init__( self, unit: str = 's', value_type: Integer = None, nullable: bool = True, ) -> None: super().__init__(nullable=nullable) if unit not in self._units: try: unit = self._convert_timedelta_unit_to_interval_unit(unit) except ValueError: raise ValueError('Unsupported interval unit `{}`'.format(unit)) if value_type is None: value_type = int32 else: value_type = dtype(value_type) if not isinstance(value_type, Integer): raise TypeError("Interval's inner type must be an Integer subtype") self.unit = unit self.value_type = value_type @property def bounds(self): return self.value_type.bounds @property def resolution(self): """Unit's name""" return self._units[self.unit] def __str__(self): unit = self.unit typename = self.name.lower() value_type_name = self.value_type.name.lower() return '{}<{}>(unit={!r})'.format(typename, value_type_name, unit) class Category(DataType): scalar = ir.CategoryScalar column = ir.CategoryColumn __slots__ = ('cardinality',) def __init__(self, cardinality=None, nullable=True): super().__init__(nullable=nullable) self.cardinality = cardinality def __repr__(self): if self.cardinality is not None: cardinality = self.cardinality else: cardinality = 'unknown' return '{}(cardinality={!r})'.format(self.name, cardinality) def to_integer_type(self): # TODO: this should be removed I guess if self.cardinality is None: return int64 else: return infer(self.cardinality) class Struct(DataType): scalar = ir.StructScalar column = ir.StructColumn __slots__ = 'names', 'types' def __init__( self, names: List[str], types: List[DataType], nullable: bool = True ) -> None: """Construct a ``Struct`` type from a `names` and `types`. Parameters ---------- names : Sequence[str] Sequence of strings indicating the name of each field in the struct. types : Sequence[Union[str, DataType]] Sequence of strings or :class:`~ibis.expr.datatypes.DataType` instances, one for each field nullable : bool, optional Whether the struct can be null """ if not (names and types): raise ValueError('names and types must not be empty') if len(names) != len(types): raise ValueError('names and types must have the same length') super().__init__(nullable=nullable) self.names = names self.types = types @classmethod def from_tuples( cls, pairs: Sequence[Tuple[str, Union[str, DataType]]], nullable: bool = True, ) -> 'Struct': names, types = zip(*pairs) return cls(list(names), list(map(dtype, types)), nullable=nullable) @classmethod def from_dict( cls, pairs: Mapping[str, Union[str, DataType]], nullable: bool = True, ) -> 'Struct': names, types = pairs.keys(), pairs.values() return cls(list(names), list(map(dtype, types)), nullable=nullable) @property def pairs(self) -> Mapping: return collections.OrderedDict(zip(self.names, self.types)) def __getitem__(self, key: str) -> DataType: return self.pairs[key] def __hash__(self) -> int: return hash( (type(self), tuple(self.names), tuple(self.types), self.nullable) ) def __repr__(self) -> str: return '{}({}, nullable={})'.format( self.name, list(self.pairs.items()), self.nullable ) def __str__(self) -> str: return '{}<{}>'.format( self.name.lower(), ', '.join(itertools.starmap('{}: {}'.format, self.pairs.items())), ) def _literal_value_hash_key(self, value): return self, _tuplize(value.items()) def _tuplize(values): """Recursively convert `values` to a tuple of tuples.""" def tuplize_iter(values): yield from ( tuple(tuplize_iter(value)) if util.is_iterable(value) else value for value in values ) return tuple(tuplize_iter(values)) class Array(Variadic): scalar = ir.ArrayScalar column = ir.ArrayColumn __slots__ = ('value_type',) def __init__( self, value_type: Union[str, DataType], nullable: bool = True ) -> None: super().__init__(nullable=nullable) self.value_type = dtype(value_type) def __str__(self) -> str: return '{}<{}>'.format(self.name.lower(), self.value_type) def _literal_value_hash_key(self, value): return self, _tuplize(value) class Set(Variadic): scalar = ir.SetScalar column = ir.SetColumn __slots__ = ('value_type',) def __init__( self, value_type: Union[str, DataType], nullable: bool = True ) -> None: super().__init__(nullable=nullable) self.value_type = dtype(value_type) def __str__(self) -> str: return '{}<{}>'.format(self.name.lower(), self.value_type) class Enum(DataType): scalar = ir.EnumScalar column = ir.EnumColumn __slots__ = 'rep_type', 'value_type' def __init__( self, rep_type: DataType, value_type: DataType, nullable: bool = True ) -> None: super().__init__(nullable=nullable) self.rep_type = dtype(rep_type) self.value_type = dtype(value_type) class Map(Variadic): scalar = ir.MapScalar column = ir.MapColumn __slots__ = 'key_type', 'value_type' def __init__( self, key_type: DataType, value_type: DataType, nullable: bool = True ) -> None: super().__init__(nullable=nullable) self.key_type = dtype(key_type) self.value_type = dtype(value_type) def __str__(self) -> str: return '{}<{}, {}>'.format( self.name.lower(), self.key_type, self.value_type ) def _literal_value_hash_key(self, value): return self, _tuplize(value.items()) class JSON(String): """JSON (JavaScript Object Notation) text format.""" scalar = ir.JSONScalar column = ir.JSONColumn class JSONB(Binary): """JSON (JavaScript Object Notation) data stored as a binary representation, which eliminates whitespace, duplicate keys, and key ordering. """ scalar = ir.JSONBScalar column = ir.JSONBColumn class GeoSpatial(DataType): __slots__ = 'geotype', 'srid' column = ir.GeoSpatialColumn scalar = ir.GeoSpatialScalar def __init__( self, geotype: str = None, srid: int = None, nullable: bool = True ): """Geospatial data type base class Parameters ---------- geotype : str Specification of geospatial type which could be `geography` or `geometry`. srid : int Spatial Reference System Identifier nullable : bool, optional Whether the struct can be null """ super().__init__(nullable=nullable) if geotype not in (None, 'geometry', 'geography'): raise ValueError( 'The `geotype` parameter should be `geometry` or `geography`' ) self.geotype = geotype self.srid = srid def __str__(self) -> str: geo_op = self.name.lower() if self.geotype is not None: geo_op += ':' + self.geotype if self.srid is not None: geo_op += ';' + str(self.srid) return geo_op def _literal_value_hash_key(self, value): if IS_SHAPELY_AVAILABLE: geo_shapes = ( shapely.geometry.Point, shapely.geometry.LineString, shapely.geometry.Polygon, shapely.geometry.MultiLineString, shapely.geometry.MultiPoint, shapely.geometry.MultiPolygon, ) if isinstance(value, geo_shapes): return self, value.wkt return self, value class Geometry(GeoSpatial): """Geometry is used to cast from geography types.""" column = ir.GeoSpatialColumn scalar = ir.GeoSpatialScalar __slots__ = () def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.geotype = 'geometry' def __str__(self) -> str: return self.name.lower() class Geography(GeoSpatial): """Geography is used to cast from geometry types.""" column = ir.GeoSpatialColumn scalar = ir.GeoSpatialScalar __slots__ = () def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.geotype = 'geography' def __str__(self) -> str: return self.name.lower() class Point(GeoSpatial): """A point described by two coordinates.""" scalar = ir.PointScalar column = ir.PointColumn __slots__ = () class LineString(GeoSpatial): """A sequence of 2 or more points.""" scalar = ir.LineStringScalar column = ir.LineStringColumn __slots__ = () class Polygon(GeoSpatial): """A set of one or more rings (closed line strings), with the first representing the shape (external ring) and the rest representing holes in that shape (internal rings). """ scalar = ir.PolygonScalar column = ir.PolygonColumn __slots__ = () class MultiLineString(GeoSpatial): """A set of one or more line strings.""" scalar = ir.MultiLineStringScalar column = ir.MultiLineStringColumn __slots__ = () class MultiPoint(GeoSpatial): """A set of one or more points.""" scalar = ir.MultiPointScalar column = ir.MultiPointColumn __slots__ = () class MultiPolygon(GeoSpatial): """A set of one or more polygons.""" scalar = ir.MultiPolygonScalar column = ir.MultiPolygonColumn __slots__ = () class UUID(String): """A universally unique identifier (UUID) is a 128-bit number used to identify information in computer systems. """ scalar = ir.UUIDScalar column = ir.UUIDColumn __slots__ = () class MACADDR(String): """Media Access Control (MAC) Address of a network interface.""" scalar = ir.MACADDRScalar column = ir.MACADDRColumn __slots__ = () class INET(String): """IP address type.""" scalar = ir.INETScalar column = ir.INETColumn __slots__ = () # --------------------------------------------------------------------- any = Any() null = Null() boolean = Boolean() int_ = Integer() int8 = Int8() int16 = Int16() int32 = Int32() int64 = Int64() uint_ = UnsignedInteger() uint8 = UInt8() uint16 = UInt16() uint32 = UInt32() uint64 = UInt64() float = Float() halffloat = Halffloat() float16 = Halffloat() float32 = Float32() float64 = Float64() double = Double() string = String() binary = Binary() date = Date() time = Time() timestamp = Timestamp() interval = Interval() category = Category() # geo spatial data type geometry = GeoSpatial() geography = GeoSpatial() point = Point() linestring = LineString() polygon = Polygon() multilinestring = MultiLineString() multipoint = MultiPoint() multipolygon = MultiPolygon() # json json = JSON() jsonb = JSONB() # special string based data type uuid = UUID() macaddr = MACADDR() inet = INET() _primitive_types = [ ('any', any), ('null', null), ('boolean', boolean), ('bool', boolean), ('int8', int8), ('int16', int16), ('int32', int32), ('int64', int64), ('uint8', uint8), ('uint16', uint16), ('uint32', uint32), ('uint64', uint64), ('float16', float16), ('float32', float32), ('float64', float64), ('float', float), ('halffloat', float16), ('double', double), ('string', string), ('binary', binary), ('date', date), ('time', time), ('timestamp', timestamp), ('interval', interval), ('category', category), ] # type: List[Tuple[str, DataType]] class Tokens: """Class to hold tokens for lexing.""" __slots__ = () ANY = 0 NULL = 1 PRIMITIVE = 2 DECIMAL = 3 VARCHAR = 4 CHAR = 5 ARRAY = 6 MAP = 7 STRUCT = 8 INTEGER = 9 FIELD = 10 COMMA = 11 COLON = 12 LPAREN = 13 RPAREN = 14 LBRACKET = 15 RBRACKET = 16 STRARG = 17 TIMESTAMP = 18 TIME = 19 INTERVAL = 20 SET = 21 GEOGRAPHY = 22 GEOMETRY = 23 POINT = 24 LINESTRING = 25 POLYGON = 26 MULTILINESTRING = 27 MULTIPOINT = 28 MULTIPOLYGON = 29 SEMICOLON = 30 JSON = 31 JSONB = 32 UUID = 33 MACADDR = 34 INET = 35 @staticmethod def name(value): return _token_names[value] _token_names = { getattr(Tokens, n): n for n in dir(Tokens) if n.isalpha() and n.isupper() } Token = collections.namedtuple('Token', ('type', 'value')) # Adapted from tokenize.String _STRING_REGEX = """('[^\n'\\\\]*(?:\\\\.[^\n'\\\\]*)*'|"[^\n"\\\\"]*(?:\\\\.[^\n"\\\\]*)*")""" # noqa: E501 Action = Optional[Callable[[str], Token]] _TYPE_RULES = collections.OrderedDict( [ # any, null, bool|boolean ('(?P<ANY>any)', lambda token: Token(Tokens.ANY, any)), ('(?P<NULL>null)', lambda token: Token(Tokens.NULL, null)), ( '(?P<BOOLEAN>bool(?:ean)?)', typing.cast( Action, lambda token: Token(Tokens.PRIMITIVE, boolean) ), ), ] + [ # primitive types ( '(?P<{}>{})'.format(token.upper(), token), typing.cast( Action, lambda token, value=value: Token(Tokens.PRIMITIVE, value), ), ) for token, value in _primitive_types if token not in {'any', 'null', 'timestamp', 'time', 'interval', 'boolean'} ] + [ # timestamp ( r'(?P<TIMESTAMP>timestamp)', lambda token: Token(Tokens.TIMESTAMP, token), ) ] + [ # interval - should remove? ( r'(?P<INTERVAL>interval)', lambda token: Token(Tokens.INTERVAL, token), ) ] + [ # time (r'(?P<TIME>time)', lambda token: Token(Tokens.TIME, token)) ] + [ # decimal + complex types ( '(?P<{}>{})'.format(token.upper(), token), typing.cast( Action, lambda token, toktype=toktype: Token(toktype, token) ), ) for token, toktype in zip( ( 'decimal', 'varchar', 'char', 'array', 'set', 'map', 'struct', 'interval', ), ( Tokens.DECIMAL, Tokens.VARCHAR, Tokens.CHAR, Tokens.ARRAY, Tokens.SET, Tokens.MAP, Tokens.STRUCT, Tokens.INTERVAL, ), ) ] + [ # geo spatial data type ( '(?P<{}>{})'.format(token.upper(), token), lambda token, toktype=toktype: Token(toktype, token), ) for token, toktype in zip( ( 'geometry', 'geography', 'point', 'linestring', 'polygon', 'multilinestring', 'multipoint', 'multipolygon', ), ( Tokens.GEOMETRY, Tokens.GEOGRAPHY, Tokens.POINT, Tokens.LINESTRING, Tokens.POLYGON, Tokens.MULTILINESTRING, Tokens.MULTIPOINT, Tokens.MULTIPOLYGON, ), ) ] + [ # json data type ( '(?P<{}>{})'.format(token.upper(), token), lambda token, toktype=toktype: Token(toktype, token), ) for token, toktype in zip( # note: `jsonb` should be first to avoid conflict with `json` ('jsonb', 'json'), (Tokens.JSONB, Tokens.JSON), ) ] + [ # special string based data types ('(?P<UUID>uuid)', lambda token: Token(Tokens.UUID, token)), ('(?P<MACADDR>macaddr)', lambda token: Token(Tokens.MACADDR, token)), ('(?P<INET>inet)', lambda token: Token(Tokens.INET, token)), ] + [ # integers, for decimal spec (r'(?P<INTEGER>\d+)', lambda token: Token(Tokens.INTEGER, int(token))), # struct fields ( r'(?P<FIELD>[a-zA-Z_][a-zA-Z_0-9]*)', lambda token: Token(Tokens.FIELD, token), ), # timezones ('(?P<COMMA>,)', lambda token: Token(Tokens.COMMA, token)), ('(?P<COLON>:)', lambda token: Token(Tokens.COLON, token)), ('(?P<SEMICOLON>;)', lambda token: Token(Tokens.SEMICOLON, token)), (r'(?P<LPAREN>\()', lambda token: Token(Tokens.LPAREN, token)), (r'(?P<RPAREN>\))', lambda token: Token(Tokens.RPAREN, token)), ('(?P<LBRACKET><)', lambda token: Token(Tokens.LBRACKET, token)), ('(?P<RBRACKET>>)', lambda token: Token(Tokens.RBRACKET, token)), (r'(?P<WHITESPACE>\s+)', None), ( '(?P<STRARG>{})'.format(_STRING_REGEX), lambda token: Token(Tokens.STRARG, token), ), ] ) _TYPE_KEYS = tuple(_TYPE_RULES.keys()) _TYPE_PATTERN = re.compile('|'.join(_TYPE_KEYS), flags=re.IGNORECASE) def _generate_tokens(pat: GenericAny, text: str) -> Iterator[Token]: """Generate a sequence of tokens from `text` that match `pat` Parameters ---------- pat : compiled regex The pattern to use for tokenization text : str The text to tokenize """ rules = _TYPE_RULES keys = _TYPE_KEYS groupindex = pat.groupindex scanner = pat.scanner(text) for m in iter(scanner.match, None): lastgroup = m.lastgroup func = rules[keys[groupindex[lastgroup] - 1]] if func is not None: yield func(m.group(lastgroup)) class TypeParser: """A type parser for complex types. Parameters ---------- text : str The text to parse Notes ----- Adapted from David Beazley's and Brian Jones's Python Cookbook """ __slots__ = 'text', 'tokens', 'tok', 'nexttok' def __init__(self, text: str) -> None: self.text = text # type: str self.tokens = _generate_tokens(_TYPE_PATTERN, text) self.tok = None # type: Optional[Token] self.nexttok = None # type: Optional[Token] def _advance(self) -> None: self.tok, self.nexttok = self.nexttok, next(self.tokens, None) def _accept(self, toktype: int) -> bool: if self.nexttok is not None and self.nexttok.type == toktype: self._advance() assert ( self.tok is not None ), 'self.tok should not be None when _accept succeeds' return True return False def _expect(self, toktype: int) -> None: if not self._accept(toktype): raise SyntaxError( 'Expected {} after {!r} in {!r}'.format( Tokens.name(toktype), getattr(self.tok, 'value', self.tok), self.text, ) ) def parse(self) -> DataType: self._advance() # any and null types cannot be nested if self._accept(Tokens.ANY) or self._accept(Tokens.NULL): assert ( self.tok is not None ), 'self.tok was None when parsing ANY or NULL type' return self.tok.value t = self.type() if self.nexttok is None: return t else: # additional junk was passed at the end, throw an error additional_tokens = [] while self.nexttok is not None: additional_tokens.append(self.nexttok.value) self._advance() raise SyntaxError( 'Found additional tokens {}'.format(additional_tokens) ) def type(self) -> DataType: """ type : primitive | decimal | array | set | map | struct primitive : "any" | "null" | "bool" | "boolean" | "int8" | "int16" | "int32" | "int64" | "uint8" | "uint16" | "uint32" | "uint64" | "halffloat" | "float" | "double" | "float16" | "float32" | "float64" | "string" | "time" timestamp : "timestamp" | "timestamp" "(" timezone ")" interval : "interval" | "interval" "(" unit ")" | "interval" "<" type ">" "(" unit ")" decimal : "decimal" | "decimal" "(" integer "," integer ")" integer : [0-9]+ array : "array" "<" type ">" set : "set" "<" type ">" map : "map" "<" type "," type ">" struct : "struct" "<" field ":" type ("," field ":" type)* ">" field : [a-zA-Z_][a-zA-Z_0-9]* geography: "geography" geometry: "geometry" point : "point" | "point" ";" srid | "point" ":" geotype | "point" ";" srid ":" geotype linestring : "linestring" | "linestring" ";" srid | "linestring" ":" geotype | "linestring" ";" srid ":" geotype polygon : "polygon" | "polygon" ";" srid | "polygon" ":" geotype | "polygon" ";" srid ":" geotype multilinestring : "multilinestring" | "multilinestring" ";" srid | "multilinestring" ":" geotype | "multilinestring" ";" srid ":" geotype multipoint : "multipoint" | "multipoint" ";" srid | "multipoint" ":" geotype | "multipoint" ";" srid ":" geotype multipolygon : "multipolygon" | "multipolygon" ";" srid | "multipolygon" ":" geotype | "multipolygon" ";" srid ":" geotype json : "json" jsonb : "jsonb" uuid : "uuid" macaddr : "macaddr" inet : "inet" """ if self._accept(Tokens.PRIMITIVE): assert self.tok is not None return self.tok.value elif self._accept(Tokens.TIMESTAMP): if self._accept(Tokens.LPAREN): self._expect(Tokens.STRARG) assert self.tok is not None timezone = self.tok.value[1:-1] # remove surrounding quotes self._expect(Tokens.RPAREN) return Timestamp(timezone=timezone) return timestamp elif self._accept(Tokens.TIME): return Time() elif self._accept(Tokens.INTERVAL): if self._accept(Tokens.LBRACKET): self._expect(Tokens.PRIMITIVE) assert self.tok is not None value_type = self.tok.value self._expect(Tokens.RBRACKET) else: value_type = int32 if self._accept(Tokens.LPAREN): self._expect(Tokens.STRARG) assert self.tok is not None unit = self.tok.value[1:-1] # remove surrounding quotes self._expect(Tokens.RPAREN) else: unit = 's' return Interval(unit, value_type) elif self._accept(Tokens.DECIMAL): if self._accept(Tokens.LPAREN): self._expect(Tokens.INTEGER) assert self.tok is not None precision = self.tok.value self._expect(Tokens.COMMA) self._expect(Tokens.INTEGER) scale = self.tok.value self._expect(Tokens.RPAREN) else: precision = 9 scale = 0 return Decimal(precision, scale) elif self._accept(Tokens.VARCHAR) or self._accept(Tokens.CHAR): # VARCHAR, VARCHAR(n), CHAR, and CHAR(n) all parse as STRING if self._accept(Tokens.LPAREN): self._expect(Tokens.INTEGER) self._expect(Tokens.RPAREN) return string return string elif self._accept(Tokens.ARRAY): self._expect(Tokens.LBRACKET) value_type = self.type() self._expect(Tokens.RBRACKET) return Array(value_type) elif self._accept(Tokens.SET): self._expect(Tokens.LBRACKET) value_type = self.type() self._expect(Tokens.RBRACKET) return Set(value_type) elif self._accept(Tokens.MAP): self._expect(Tokens.LBRACKET) self._expect(Tokens.PRIMITIVE) assert self.tok is not None key_type = self.tok.value self._expect(Tokens.COMMA) value_type = self.type() self._expect(Tokens.RBRACKET) return Map(key_type, value_type) elif self._accept(Tokens.STRUCT): self._expect(Tokens.LBRACKET) self._expect(Tokens.FIELD) assert self.tok is not None names = [self.tok.value] self._expect(Tokens.COLON) types = [self.type()] while self._accept(Tokens.COMMA): self._expect(Tokens.FIELD) names.append(self.tok.value) self._expect(Tokens.COLON) types.append(self.type()) self._expect(Tokens.RBRACKET) return Struct(names, types) # json data types elif self._accept(Tokens.JSON): return JSON() elif self._accept(Tokens.JSONB): return JSONB() # geo spatial data type elif self._accept(Tokens.GEOMETRY): return Geometry() elif self._accept(Tokens.GEOGRAPHY): return Geography() elif self._accept(Tokens.POINT): geotype = None srid = None if self._accept(Tokens.SEMICOLON): self._expect(Tokens.INTEGER) assert self.tok is not None srid = self.tok.value if self._accept(Tokens.COLON): if self._accept(Tokens.GEOGRAPHY): geotype = 'geography' elif self._accept(Tokens.GEOMETRY): geotype = 'geometry' return Point(geotype=geotype, srid=srid) elif self._accept(Tokens.LINESTRING): geotype = None srid = None if self._accept(Tokens.SEMICOLON): self._expect(Tokens.INTEGER) assert self.tok is not None srid = self.tok.value if self._accept(Tokens.COLON): if self._accept(Tokens.GEOGRAPHY): geotype = 'geography' elif self._accept(Tokens.GEOMETRY): geotype = 'geometry' return LineString(geotype=geotype, srid=srid) elif self._accept(Tokens.POLYGON): geotype = None srid = None if self._accept(Tokens.SEMICOLON): self._expect(Tokens.INTEGER) assert self.tok is not None srid = self.tok.value if self._accept(Tokens.COLON): if self._accept(Tokens.GEOGRAPHY): geotype = 'geography' elif self._accept(Tokens.GEOMETRY): geotype = 'geometry' return Polygon(geotype=geotype, srid=srid) elif self._accept(Tokens.MULTILINESTRING): geotype = None srid = None if self._accept(Tokens.SEMICOLON): self._expect(Tokens.INTEGER) assert self.tok is not None srid = self.tok.value if self._accept(Tokens.COLON): if self._accept(Tokens.GEOGRAPHY): geotype = 'geography' elif self._accept(Tokens.GEOMETRY): geotype = 'geometry' return MultiLineString(geotype=geotype, srid=srid) elif self._accept(Tokens.MULTIPOINT): geotype = None srid = None if self._accept(Tokens.SEMICOLON): self._expect(Tokens.INTEGER) assert self.tok is not None srid = self.tok.value if self._accept(Tokens.COLON): if self._accept(Tokens.GEOGRAPHY): geotype = 'geography' elif self._accept(Tokens.GEOMETRY): geotype = 'geometry' return MultiPoint(geotype=geotype, srid=srid) elif self._accept(Tokens.MULTIPOLYGON): geotype = None srid = None if self._accept(Tokens.SEMICOLON): self._expect(Tokens.INTEGER) assert self.tok is not None srid = self.tok.value if self._accept(Tokens.COLON): if self._accept(Tokens.GEOGRAPHY): geotype = 'geography' elif self._accept(Tokens.GEOMETRY): geotype = 'geometry' return MultiPolygon(geotype=geotype, srid=srid) # special string based data types elif self._accept(Tokens.UUID): return UUID() elif self._accept(Tokens.MACADDR): return MACADDR() elif self._accept(Tokens.INET): return INET() else: raise SyntaxError('Type cannot be parsed: {}'.format(self.text)) dtype = Dispatcher('dtype') validate_type = dtype def _get_timedelta_units(timedelta: datetime.timedelta) -> List[str]: # pandas Timedelta has more granularity if hasattr(timedelta, 'components'): unit_fields = timedelta.components._fields base_object = timedelta.components # datetime.timedelta only stores days, seconds, and microseconds internally else: unit_fields = ['days', 'seconds', 'microseconds'] base_object = timedelta time_units = [] [ time_units.append(field) for field in unit_fields if getattr(base_object, field) > 0 ] return time_units @dtype.register(object) def default(value, **kwargs) -> DataType: raise com.IbisTypeError('Value {!r} is not a valid datatype'.format(value)) @dtype.register(DataType) def from_ibis_dtype(value: DataType) -> DataType: return value @dtype.register(str) def from_string(value: str) -> DataType: try: return TypeParser(value).parse() except SyntaxError: raise com.IbisTypeError( '{!r} cannot be parsed as a datatype'.format(value) ) @dtype.register(list) def from_list(values: List[GenericAny]) -> Array: if not values: return Array(null) return Array(highest_precedence(map(dtype, values))) @dtype.register(collections.abc.Set) def from_set(values: GenericSet) -> Set: if not values: return Set(null) return Set(highest_precedence(map(dtype, values))) infer = Dispatcher('infer') def higher_precedence(left: DataType, right: DataType) -> DataType: if castable(left, right, upcast=True): return right elif castable(right, left, upcast=True): return left raise com.IbisTypeError( 'Cannot compute precedence for {} and {} types'.format(left, right) ) def highest_precedence(dtypes: Iterator[DataType]) -> DataType: """Compute the highest precedence of `dtypes`.""" return functools.reduce(higher_precedence, dtypes) @infer.register(object) def infer_dtype_default(value: GenericAny) -> DataType: """Default implementation of :func:`~ibis.expr.datatypes.infer`.""" raise com.InputTypeError(value) @infer.register(collections.OrderedDict) def infer_struct(value: Mapping[str, GenericAny]) -> Struct: """Infer the :class:`~ibis.expr.datatypes.Struct` type of `value`.""" if not value: raise TypeError('Empty struct type not supported') return Struct(list(value.keys()), list(map(infer, value.values()))) @infer.register(collections.abc.Mapping) def infer_map(value: Mapping[GenericAny, GenericAny]) -> Map: """Infer the :class:`~ibis.expr.datatypes.Map` type of `value`.""" if not value: return Map(null, null) return Map( highest_precedence(map(infer, value.keys())), highest_precedence(map(infer, value.values())), ) @infer.register(list) def infer_list(values: List[GenericAny]) -> Array: """Infer the :class:`~ibis.expr.datatypes.Array` type of `values`.""" if not values: return Array(null) return Array(highest_precedence(map(infer, values))) @infer.register((set, frozenset)) def infer_set(values: GenericSet) -> Set: """Infer the :class:`~ibis.expr.datatypes.Set` type of `values`.""" if not values: return Set(null) return Set(highest_precedence(map(infer, values))) @infer.register(datetime.time) def infer_time(value: datetime.time) -> Time: return time @infer.register(datetime.date) def infer_date(value: datetime.date) -> Date: return date @infer.register(datetime.datetime) def infer_timestamp(value: datetime.datetime) -> Timestamp: if value.tzinfo: return Timestamp(timezone=str(value.tzinfo)) else: return timestamp @infer.register(datetime.timedelta) def infer_interval(value: datetime.timedelta) -> Interval: time_units = _get_timedelta_units(value) # we can attempt a conversion in the simplest case, i.e. there is exactly # one unit (e.g. pd.Timedelta('2 days') vs. pd.Timedelta('2 days 3 hours') if len(time_units) == 1: unit = time_units[0] return Interval(unit) else: return interval @infer.register(str) def infer_string(value: str) -> String: return string @infer.register(builtins.float) def infer_floating(value: builtins.float) -> Double: return double @infer.register(int) def infer_integer(value: int, allow_overflow: bool = False) -> Integer: for dtype in (int8, int16, int32, int64): if dtype.bounds.lower <= value <= dtype.bounds.upper: return dtype if not allow_overflow: raise OverflowError(value) return int64 @infer.register(bool) def infer_boolean(value: bool) -> Boolean: return boolean @infer.register((type(None), Null)) def infer_null(value: Optional[Null]) -> Null: return null if IS_SHAPELY_AVAILABLE: @infer.register(shapely.geometry.Point) def infer_shapely_point(value: shapely.geometry.Point) -> Point: return point @infer.register(shapely.geometry.LineString) def infer_shapely_linestring( value: shapely.geometry.LineString, ) -> LineString: return linestring @infer.register(shapely.geometry.Polygon) def infer_shapely_polygon(value: shapely.geometry.Polygon) -> Polygon: return polygon @infer.register(shapely.geometry.MultiLineString) def infer_shapely_multilinestring( value: shapely.geometry.MultiLineString, ) -> MultiLineString: return multilinestring @infer.register(shapely.geometry.MultiPoint) def infer_shapely_multipoint( value: shapely.geometry.MultiPoint, ) -> MultiPoint: return multipoint @infer.register(shapely.geometry.MultiPolygon) def infer_shapely_multipolygon( value: shapely.geometry.MultiPolygon, ) -> MultiPolygon: return multipolygon castable = Dispatcher('castable') @castable.register(DataType, DataType) def can_cast_subtype(source: DataType, target: DataType, **kwargs) -> bool: return isinstance(target, type(source)) @castable.register(Any, DataType) @castable.register(DataType, Any) @castable.register(Any, Any) @castable.register(Null, Any) @castable.register(Integer, Category) @castable.register(Integer, (Floating, Decimal)) @castable.register(Floating, Decimal) @castable.register((Date, Timestamp), (Date, Timestamp)) def can_cast_any(source: DataType, target: DataType, **kwargs) -> bool: return True @castable.register(Null, DataType) def can_cast_null(source: DataType, target: DataType, **kwargs) -> bool: return target.nullable Integral = TypeVar('Integral', SignedInteger, UnsignedInteger) @castable.register(SignedInteger, UnsignedInteger) @castable.register(UnsignedInteger, SignedInteger) def can_cast_to_differently_signed_integer_type( source: Integral, target: Integral, value: Optional[int] = None, **kwargs ) -> bool: if value is None: return False bounds = target.bounds return bounds.lower <= value <= bounds.upper @castable.register(SignedInteger, SignedInteger) @castable.register(UnsignedInteger, UnsignedInteger) def can_cast_integers(source: Integral, target: Integral, **kwargs) -> bool: return target._nbytes >= source._nbytes @castable.register(Floating, Floating) def can_cast_floats( source: Floating, target: Floating, upcast: bool = False, **kwargs ) -> bool: if upcast: return target._nbytes >= source._nbytes # double -> float must be allowed because # float literals are inferred as doubles return True @castable.register(Decimal, Decimal) def can_cast_decimals(source: Decimal, target: Decimal, **kwargs) -> bool: return ( target.precision >= source.precision and target.scale >= source.scale ) @castable.register(Interval, Interval) def can_cast_intervals(source: Interval, target: Interval, **kwargs) -> bool: return source.unit == target.unit and castable( source.value_type, target.value_type ) @castable.register(Integer, Boolean) def can_cast_integer_to_boolean( source: Integer, target: Boolean, value: Optional[int] = None, **kwargs ) -> bool: return value is not None and (value == 0 or value == 1) @castable.register(Integer, Interval) def can_cast_integer_to_interval( source: Interval, target: Interval, **kwargs ) -> bool: return castable(source, target.value_type) @castable.register(String, (Date, Time, Timestamp)) def can_cast_string_to_temporal( source: String, target: Union[Date, Time, Timestamp], value: Optional[str] = None, **kwargs, ) -> bool: if value is None: return False try: pd.Timestamp(value) except ValueError: return False else: return True Collection = TypeVar('Collection', Array, Set) @castable.register(Array, Array) @castable.register(Set, Set) def can_cast_variadic( source: Collection, target: Collection, **kwargs ) -> bool: return castable(source.value_type, target.value_type) @castable.register(JSON, JSON) def can_cast_json(source, target, **kwargs): return True @castable.register(JSONB, JSONB) def can_cast_jsonb(source, target, **kwargs): return True # geo spatial data type # cast between same type, used to cast from/to geometry and geography GEO_TYPES = ( Point, LineString, Polygon, MultiLineString, MultiPoint, MultiPolygon, ) @castable.register(Array, GEO_TYPES) @castable.register(GEO_TYPES, Geometry) @castable.register(GEO_TYPES, Geography) def can_cast_geospatial(source, target, **kwargs): return True @castable.register(UUID, UUID) @castable.register(MACADDR, MACADDR) @castable.register(INET, INET) def can_cast_special_string(source, target, **kwargs): return True # @castable.register(Map, Map) # def can_cast_maps(source, target): # return (source.equals(target) or # source.equals(Map(null, null)) or # source.equals(Map(any, any))) # TODO cast category def cast( source: Union[DataType, str], target: Union[DataType, str], **kwargs ) -> DataType: """Attempts to implicitly cast from source dtype to target dtype""" source, result_target = dtype(source), dtype(target) if not castable(source, result_target, **kwargs): raise com.IbisTypeError( 'Datatype {} cannot be implicitly ' 'casted to {}'.format(source, result_target) ) return result_target same_kind = Dispatcher( 'same_kind', doc="""\ Compute whether two :class:`~ibis.expr.datatypes.DataType` instances are the same kind. Parameters ---------- a : DataType b : DataType Returns ------- bool Whether two :class:`~ibis.expr.datatypes.DataType` instances are the same kind. """, ) @same_kind.register(DataType, DataType) def same_kind_default(a: DataType, b: DataType) -> bool: """Return whether `a` is exactly equiavlent to `b`""" return a.equals(b) Numeric = TypeVar('Numeric', Integer, Floating) @same_kind.register(Integer, Integer) @same_kind.register(Floating, Floating) def same_kind_numeric(a: Numeric, b: Numeric) -> bool: """Return ``True``.""" return True @same_kind.register(DataType, Null) def same_kind_right_null(a: DataType, _: Null) -> bool: """Return whether `a` is nullable.""" return a.nullable @same_kind.register(Null, DataType) def same_kind_left_null(_: Null, b: DataType) -> bool: """Return whether `b` is nullable.""" return b.nullable @same_kind.register(Null, Null) def same_kind_both_null(a: Null, b: Null) -> bool: """Return ``True``.""" return True
apache-2.0
bhargav/scikit-learn
sklearn/manifold/locally_linear.py
37
25852
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <[email protected]> # Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.arpack import eigsh from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg: float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True) n_samples, n_neighbors = X.shape[0], Z.shape[1] B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3, n_jobs=1): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1, n_jobs=n_jobs).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None, n_jobs=1): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1, n_jobs=n_jobs) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg, n_jobs=n_jobs) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float64) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float64) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) # build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] # find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) # choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] # find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] # calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) # find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = np.cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues # Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float64) for i in range(N): s_i = s_range[i] # select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) # compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h # Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) # Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] # We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) # Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) # We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None, n_jobs=1): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm self.n_jobs = n_jobs def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm, n_jobs=self.n_jobs) random_state = check_random_state(self.random_state) X = check_array(X) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg, n_jobs=self.n_jobs) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
mwiebe/numpy
numpy/lib/recfunctions.py
148
35012
""" Collection of utilities to manipulate structured arrays. Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended for convenience. """ from __future__ import division, absolute_import, print_function import sys import itertools import numpy as np import numpy.ma as ma from numpy import ndarray, recarray from numpy.ma import MaskedArray from numpy.ma.mrecords import MaskedRecords from numpy.lib._iotools import _is_string_like from numpy.compat import basestring if sys.version_info[0] < 3: from future_builtins import zip _check_fill_value = np.ma.core._check_fill_value __all__ = [ 'append_fields', 'drop_fields', 'find_duplicates', 'get_fieldstructure', 'join_by', 'merge_arrays', 'rec_append_fields', 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', 'rename_fields', 'stack_arrays', ] def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures. Parameters ---------- input : ndarray Input array. output : ndarray Output array. Notes ----- * `output` should be at least the same size as `input` Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> rfn.recursive_fill_fields(a, b) array([(1, 10.0), (2, 20.0), (0, 0.0)], dtype=[('A', '<i4'), ('B', '<f8')]) """ newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output def get_names(adtype): """ Returns the field names of the input datatype as a tuple. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names(np.empty((1,), dtype=int)) is None True >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names(adtype) ('a', ('b', ('ba', 'bb'))) """ listnames = [] names = adtype.names for name in names: current = adtype[name] if current.names: listnames.append((name, tuple(get_names(current)))) else: listnames.append(name) return tuple(listnames) or None def get_names_flat(adtype): """ Returns the field names of the input datatype as a tuple. Nested structure are flattend beforehand. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None True >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names_flat(adtype) ('a', 'b', 'ba', 'bb') """ listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names: listnames.extend(get_names_flat(current)) return tuple(listnames) or None def flatten_descr(ndtype): """ Flatten a structured data-type description. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.flatten_descr(ndtype) (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32'))) """ names = ndtype.names if names is None: return ndtype.descr else: descr = [] for field in names: (typ, _) = ndtype.fields[field] if typ.names: descr.extend(flatten_descr(typ)) else: descr.append((field, typ)) return tuple(descr) def zip_descr(seqarrays, flatten=False): """ Combine the dtype description of a series of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays flatten : {boolean}, optional Whether to collapse nested descriptions. """ newdtype = [] if flatten: for a in seqarrays: newdtype.extend(flatten_descr(a.dtype)) else: for a in seqarrays: current = a.dtype names = current.names or () if len(names) > 1: newdtype.append(('', current.descr)) else: newdtype.extend(current.descr) return np.dtype(newdtype).descr def get_fieldstructure(adtype, lastname=None, parents=None,): """ Returns a dictionary with fields indexing lists of their parent fields. This function is used to simplify access to fields nested in other fields. Parameters ---------- adtype : np.dtype Input datatype lastname : optional Last processed field name (used internally during recursion). parents : dictionary Dictionary of parent fields (used interbally during recursion). Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('A', int), ... ('B', [('BA', int), ... ('BB', [('BBA', int), ('BBB', int)])])]) >>> rfn.get_fieldstructure(ndtype) ... # XXX: possible regression, order of BBA and BBB is swapped {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} """ if parents is None: parents = {} names = adtype.names for name in names: current = adtype[name] if current.names: if lastname: parents[name] = [lastname, ] else: parents[name] = [] parents.update(get_fieldstructure(current, name, parents)) else: lastparent = [_ for _ in (parents.get(lastname, []) or [])] if lastparent: lastparent.append(lastname) elif lastname: lastparent = [lastname, ] parents[name] = lastparent or [] return parents or None def _izip_fields_flat(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays, collapsing any nested structure. """ for element in iterable: if isinstance(element, np.void): for f in _izip_fields_flat(tuple(element)): yield f else: yield element def _izip_fields(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays. """ for element in iterable: if (hasattr(element, '__iter__') and not isinstance(element, basestring)): for f in _izip_fields(element): yield f elif isinstance(element, np.void) and len(tuple(element)) == 1: for f in _izip_fields(element): yield f else: yield element def izip_records(seqarrays, fill_value=None, flatten=True): """ Returns an iterator of concatenated items from a sequence of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays. fill_value : {None, integer} Value used to pad shorter iterables. flatten : {True, False}, Whether to """ # OK, that's a complete ripoff from Python2.6 itertools.izip_longest def sentinel(counter=([fill_value] * (len(seqarrays) - 1)).pop): "Yields the fill_value or raises IndexError" yield counter() # fillers = itertools.repeat(fill_value) iters = [itertools.chain(it, sentinel(), fillers) for it in seqarrays] # Should we flatten the items, or just use a nested approach if flatten: zipfunc = _izip_fields_flat else: zipfunc = _izip_fields # try: for tup in zip(*iters): yield tuple(zipfunc(tup)) except IndexError: pass def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output def _fix_defaults(output, defaults=None): """ Update the fill_value and masked data of `output` from the default given in a dictionary defaults. """ names = output.dtype.names (data, mask, fill_value) = (output.data, output.mask, output.fill_value) for (k, v) in (defaults or {}).items(): if k in names: fill_value[k] = v data[k][mask[k]] = v return output def merge_arrays(seqarrays, fill_value=-1, flatten=False, usemask=False, asrecarray=False): """ Merge arrays field by field. Parameters ---------- seqarrays : sequence of ndarrays Sequence of arrays fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. flatten : {False, True}, optional Whether to collapse nested fields. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) masked_array(data = [(1, 10.0) (2, 20.0) (--, 30.0)], mask = [(False, False) (False, False) (True, False)], fill_value = (999999, 1e+20), dtype = [('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])), ... usemask=False) array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]).view([('a', int)]), ... np.array([10., 20., 30.])), ... usemask=False, asrecarray=True) rec.array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('a', '<i4'), ('f1', '<f8')]) Notes ----- * Without a mask, the missing value will be filled with something, * depending on what its corresponding type: -1 for integers -1.0 for floating point numbers '-' for characters '-1' for strings True for boolean values * XXX: I just obtained these values empirically """ # Only one item in the input sequence ? if (len(seqarrays) == 1): seqarrays = np.asanyarray(seqarrays[0]) # Do we have a single ndarray as input ? if isinstance(seqarrays, (ndarray, np.void)): seqdtype = seqarrays.dtype if (not flatten) or \ (zip_descr((seqarrays,), flatten=True) == seqdtype.descr): # Minimal processing needed: just make sure everythng's a-ok seqarrays = seqarrays.ravel() # Make sure we have named fields if not seqdtype.names: seqdtype = [('', seqdtype)] # Find what type of array we must return if usemask: if asrecarray: seqtype = MaskedRecords else: seqtype = MaskedArray elif asrecarray: seqtype = recarray else: seqtype = ndarray return seqarrays.view(dtype=seqdtype, type=seqtype) else: seqarrays = (seqarrays,) else: # Make sure we have arrays in the input sequence seqarrays = [np.asanyarray(_m) for _m in seqarrays] # Find the sizes of the inputs and their maximum sizes = tuple(a.size for a in seqarrays) maxlength = max(sizes) # Get the dtype of the output (flattening if needed) newdtype = zip_descr(seqarrays, flatten=flatten) # Initialize the sequences for data and mask seqdata = [] seqmask = [] # If we expect some kind of MaskedArray, make a special loop. if usemask: for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) # Get the data and mask data = a.ravel().__array__() mask = ma.getmaskarray(a).ravel() # Get the filling value (if needed) if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] fmsk = True else: fval = np.array(fval, dtype=a.dtype, ndmin=1) fmsk = np.ones((1,), dtype=mask.dtype) else: fval = None fmsk = True # Store an iterator padding the input to the expected length seqdata.append(itertools.chain(data, [fval] * nbmissing)) seqmask.append(itertools.chain(mask, [fmsk] * nbmissing)) # Create an iterator for the data data = tuple(izip_records(seqdata, flatten=flatten)) output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength), mask=list(izip_records(seqmask, flatten=flatten))) if asrecarray: output = output.view(MaskedRecords) else: # Same as before, without the mask we don't need... for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) data = a.ravel().__array__() if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] else: fval = np.array(fval, dtype=a.dtype, ndmin=1) else: fval = None seqdata.append(itertools.chain(data, [fval] * nbmissing)) output = np.fromiter(tuple(izip_records(seqdata, flatten=flatten)), dtype=newdtype, count=maxlength) if asrecarray: output = output.view(recarray) # And we're done... return output def drop_fields(base, drop_names, usemask=True, asrecarray=False): """ Return a new array with fields in `drop_names` dropped. Nested fields are supported. Parameters ---------- base : array Input array drop_names : string or sequence String or sequence of strings corresponding to the names of the fields to drop. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence, optional Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype. The default is False. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], ... dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) >>> rfn.drop_fields(a, 'a') array([((2.0, 3),), ((5.0, 6),)], dtype=[('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.drop_fields(a, 'ba') array([(1, (3,)), (4, (6,))], dtype=[('a', '<i4'), ('b', [('bb', '<i4')])]) >>> rfn.drop_fields(a, ['ba', 'bb']) array([(1,), (4,)], dtype=[('a', '<i4')]) """ if _is_string_like(drop_names): drop_names = [drop_names, ] else: drop_names = set(drop_names) def _drop_descr(ndtype, drop_names): names = ndtype.names newdtype = [] for name in names: current = ndtype[name] if name in drop_names: continue if current.names: descr = _drop_descr(current, drop_names) if descr: newdtype.append((name, descr)) else: newdtype.append((name, current)) return newdtype newdtype = _drop_descr(base.dtype, drop_names) if not newdtype: return None output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_drop_fields(base, drop_names): """ Returns a new numpy.recarray with fields in `drop_names` dropped. """ return drop_fields(base, drop_names, usemask=False, asrecarray=True) def rename_fields(base, namemapper): """ Rename the fields from a flexible-datatype ndarray or recarray. Nested fields are supported. Parameters ---------- base : ndarray Input array whose fields must be modified. namemapper : dictionary Dictionary mapping old field names to their new version. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) array([(1, (2.0, [3.0, 30.0])), (4, (5.0, [6.0, 60.0]))], dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<f8', 2)])]) """ def _recursive_rename_fields(ndtype, namemapper): newdtype = [] for name in ndtype.names: newname = namemapper.get(name, name) current = ndtype[name] if current.names: newdtype.append( (newname, _recursive_rename_fields(current, namemapper)) ) else: newdtype.append((newname, current)) return newdtype newdtype = _recursive_rename_fields(base.dtype, namemapper) return base.view(newdtype) def append_fields(base, names, data, dtypes=None, fill_value=-1, usemask=True, asrecarray=False): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. """ # Check the names if isinstance(names, (tuple, list)): if len(names) != len(data): msg = "The number of arrays does not match the number of names" raise ValueError(msg) elif isinstance(names, basestring): names = [names, ] data = [data, ] # if dtypes is None: data = [np.array(a, copy=False, subok=True) for a in data] data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)] else: if not isinstance(dtypes, (tuple, list)): dtypes = [dtypes, ] if len(data) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(data) else: msg = "The dtypes argument must be None, a dtype, or a list." raise ValueError(msg) data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)]) for (a, n, d) in zip(data, names, dtypes)] # base = merge_arrays(base, usemask=usemask, fill_value=fill_value) if len(data) > 1: data = merge_arrays(data, flatten=True, usemask=usemask, fill_value=fill_value) else: data = data.pop() # output = ma.masked_all(max(len(base), len(data)), dtype=base.dtype.descr + data.dtype.descr) output = recursive_fill_fields(base, output) output = recursive_fill_fields(data, output) # return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_append_fields(base, names, data, dtypes=None): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. See Also -------- append_fields Returns ------- appended_array : np.recarray """ return append_fields(base, names, data=data, dtypes=dtypes, asrecarray=True, usemask=False) def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False, autoconvert=False): """ Superposes arrays fields by fields Parameters ---------- arrays : array or sequence Sequence of input arrays. defaults : dictionary, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. autoconvert : {False, True}, optional Whether automatically cast the type of the field to the maximum. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> x = np.array([1, 2,]) >>> rfn.stack_arrays(x) is x True >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], ... dtype=[('A', '|S3'), ('B', float), ('C', float)]) >>> test = rfn.stack_arrays((z,zz)) >>> test masked_array(data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ('b', 20.0, 200.0) ('c', 30.0, 300.0)], mask = [(False, False, True) (False, False, True) (False, False, False) (False, False, False) (False, False, False)], fill_value = ('N/A', 1e+20, 1e+20), dtype = [('A', '|S3'), ('B', '<f8'), ('C', '<f8')]) """ if isinstance(arrays, ndarray): return arrays elif len(arrays) == 1: return arrays[0] seqarrays = [np.asanyarray(a).ravel() for a in arrays] nrecords = [len(a) for a in seqarrays] ndtype = [a.dtype for a in seqarrays] fldnames = [d.names for d in ndtype] # dtype_l = ndtype[0] newdescr = dtype_l.descr names = [_[0] for _ in newdescr] for dtype_n in ndtype[1:]: for descr in dtype_n.descr: name = descr[0] or '' if name not in names: newdescr.append(descr) names.append(name) else: nameidx = names.index(name) current_descr = newdescr[nameidx] if autoconvert: if np.dtype(descr[1]) > np.dtype(current_descr[-1]): current_descr = list(current_descr) current_descr[-1] = descr[1] newdescr[nameidx] = tuple(current_descr) elif descr[1] != current_descr[-1]: raise TypeError("Incompatible type '%s' <> '%s'" % (dict(newdescr)[name], descr[1])) # Only one field: use concatenate if len(newdescr) == 1: output = ma.concatenate(seqarrays) else: # output = ma.masked_all((np.sum(nrecords),), newdescr) offset = np.cumsum(np.r_[0, nrecords]) seen = [] for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): names = a.dtype.names if names is None: output['f%i' % len(seen)][i:j] = a else: for name in n: output[name][i:j] = a[name] if name not in seen: seen.append(name) # return _fix_output(_fix_defaults(output, defaults), usemask=usemask, asrecarray=asrecarray) def find_duplicates(a, key=None, ignoremask=True, return_index=False): """ Find the duplicates in a structured array along a given key Parameters ---------- a : array-like Input array key : {string, None}, optional Name of the fields along which to check the duplicates. If None, the search is performed by records ignoremask : {True, False}, optional Whether masked data should be discarded or considered as duplicates. return_index : {False, True}, optional Whether to return the indices of the duplicated values. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = [('a', int)] >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3], ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) >>> rfn.find_duplicates(a, ignoremask=True, return_index=True) ... # XXX: judging by the output, the ignoremask flag has no effect """ a = np.asanyarray(a).ravel() # Get a dictionary of fields fields = get_fieldstructure(a.dtype) # Get the sorting data (by selecting the corresponding field) base = a if key: for f in fields[key]: base = base[f] base = base[key] # Get the sorting indices and the sorted data sortidx = base.argsort() sortedbase = base[sortidx] sorteddata = sortedbase.filled() # Compare the sorting data flag = (sorteddata[:-1] == sorteddata[1:]) # If masked data must be ignored, set the flag to false where needed if ignoremask: sortedmask = sortedbase.recordmask flag[sortedmask[1:]] = False flag = np.concatenate(([False], flag)) # We need to take the point on the left as well (else we're missing it) flag[:-1] = flag[:-1] + flag[1:] duplicates = a[sortidx][flag] if return_index: return (duplicates, sortidx[flag]) else: return duplicates def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None, usemask=True, asrecarray=False): """ Join arrays `r1` and `r2` on key `key`. The key should be either a string or a sequence of string corresponding to the fields used to join the array. An exception is raised if the `key` field cannot be found in the two input arrays. Neither `r1` nor `r2` should have any duplicates along `key`: the presence of duplicates will make the output quite unreliable. Note that duplicates are not looked for by the algorithm. Parameters ---------- key : {string, sequence} A string or a sequence of strings corresponding to the fields used for comparison. r1, r2 : arrays Structured arrays. jointype : {'inner', 'outer', 'leftouter'}, optional If 'inner', returns the elements common to both r1 and r2. If 'outer', returns the common elements as well as the elements of r1 not in r2 and the elements of not in r2. If 'leftouter', returns the common elements and the elements of r1 not in r2. r1postfix : string, optional String appended to the names of the fields of r1 that are present in r2 but absent of the key. r2postfix : string, optional String appended to the names of the fields of r2 that are present in r1 but absent of the key. defaults : {dictionary}, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. Notes ----- * The output is sorted along the key. * A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the result. This array is then sorted, and the common entries selected. The output is constructed by filling the fields with the selected entries. Matching is not preserved if there are some duplicates... """ # Check jointype if jointype not in ('inner', 'outer', 'leftouter'): raise ValueError( "The 'jointype' argument should be in 'inner', " "'outer' or 'leftouter' (got '%s' instead)" % jointype ) # If we have a single key, put it in a tuple if isinstance(key, basestring): key = (key,) # Check the keys for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s' % name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s' % name) # Make sure we work with ravelled arrays r1 = r1.ravel() r2 = r2.ravel() # Fixme: nb2 below is never used. Commenting out for pyflakes. # (nb1, nb2) = (len(r1), len(r2)) nb1 = len(r1) (r1names, r2names) = (r1.dtype.names, r2.dtype.names) # Check the names for collision if (set.intersection(set(r1names), set(r2names)).difference(key) and not (r1postfix or r2postfix)): msg = "r1 and r2 contain common names, r1postfix and r2postfix " msg += "can't be empty" raise ValueError(msg) # Make temporary arrays of just the keys r1k = drop_fields(r1, [n for n in r1names if n not in key]) r2k = drop_fields(r2, [n for n in r2names if n not in key]) # Concatenate the two arrays for comparison aux = ma.concatenate((r1k, r2k)) idx_sort = aux.argsort(order=key) aux = aux[idx_sort] # # Get the common keys flag_in = ma.concatenate(([False], aux[1:] == aux[:-1])) flag_in[:-1] = flag_in[1:] + flag_in[:-1] idx_in = idx_sort[flag_in] idx_1 = idx_in[(idx_in < nb1)] idx_2 = idx_in[(idx_in >= nb1)] - nb1 (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) if jointype == 'inner': (r1spc, r2spc) = (0, 0) elif jointype == 'outer': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) elif jointype == 'leftouter': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) # Select the entries from each input (s1, s2) = (r1[idx_1], r2[idx_2]) # # Build the new description of the output array ....... # Start with the key fields ndtype = [list(_) for _ in r1k.dtype.descr] # Add the other fields ndtype.extend(list(_) for _ in r1.dtype.descr if _[0] not in key) # Find the new list of names (it may be different from r1names) names = list(_[0] for _ in ndtype) for desc in r2.dtype.descr: desc = list(desc) name = desc[0] # Have we seen the current name already ? if name in names: nameidx = ndtype.index(desc) current = ndtype[nameidx] # The current field is part of the key: take the largest dtype if name in key: current[-1] = max(desc[1], current[-1]) # The current field is not part of the key: add the suffixes else: current[0] += r1postfix desc[0] += r2postfix ndtype.insert(nameidx + 1, desc) #... we haven't: just add the description to the current list else: names.extend(desc[0]) ndtype.append(desc) # Revert the elements to tuples ndtype = [tuple(_) for _ in ndtype] # Find the largest nb of common fields : # r1cmn and r2cmn should be equal, but... cmn = max(r1cmn, r2cmn) # Construct an empty array output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) names = output.dtype.names for f in r1names: selected = s1[f] if f not in names or (f in r2names and not r2postfix and f not in key): f += r1postfix current = output[f] current[:r1cmn] = selected[:r1cmn] if jointype in ('outer', 'leftouter'): current[cmn:cmn + r1spc] = selected[r1cmn:] for f in r2names: selected = s2[f] if f not in names or (f in r1names and not r1postfix and f not in key): f += r2postfix current = output[f] current[:r2cmn] = selected[:r2cmn] if (jointype == 'outer') and r2spc: current[-r2spc:] = selected[r2cmn:] # Sort and finalize the output output.sort(order=key) kwargs = dict(usemask=usemask, asrecarray=asrecarray) return _fix_output(_fix_defaults(output, defaults), **kwargs) def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None): """ Join arrays `r1` and `r2` on keys. Alternative to join_by, that always returns a np.recarray. See Also -------- join_by : equivalent function """ kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix, defaults=defaults, usemask=False, asrecarray=True) return join_by(key, r1, r2, **kwargs)
bsd-3-clause
LiaoPan/scikit-learn
examples/plot_digits_pipe.py
250
1809
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target ############################################################################### # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') ############################################################################### # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) #Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
pythonvietnam/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
matk86/pymatgen
pymatgen/io/abinit/flows.py
2
105937
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ A Flow is a container for Works, and works consist of tasks. Flows are the final objects that can be dumped directly to a pickle file on disk Flows are executed using abirun (abipy). """ from __future__ import unicode_literals, division, print_function import os import sys import time import collections import warnings import shutil import copy import tempfile import numpy as np from pprint import pprint from six.moves import map, StringIO from tabulate import tabulate from pydispatch import dispatcher from collections import OrderedDict from monty.collections import as_set, dict2namedtuple from monty.string import list_strings, is_string, make_banner from monty.operator import operator_from_str from monty.io import FileLock from monty.pprint import draw_tree from monty.termcolor import cprint, colored, cprint_map, get_terminal_size from monty.inspect import find_top_pyfile from monty.dev import deprecated from monty.json import MSONable from pymatgen.util.serialization import pmg_pickle_load, pmg_pickle_dump, pmg_serialize from pymatgen.core.units import Memory from pymatgen.util.io_utils import AtomicFile from pymatgen.util.plotting import add_fig_kwargs, get_ax_fig_plt from . import wrappers from .nodes import Status, Node, NodeError, NodeResults, Dependency, GarbageCollector, check_spectator from .tasks import ScfTask, DdkTask, DdeTask, TaskManager, FixQueueCriticalError from .utils import File, Directory, Editor from .abiinspect import yaml_read_irred_perts from .works import NodeContainer, Work, BandStructureWork, PhononWork, BecWork, G0W0Work, QptdmWork, DteWork from .events import EventsParser # autodoc_event_handlers import logging logger = logging.getLogger(__name__) __author__ = "Matteo Giantomassi" __copyright__ = "Copyright 2013, The Materials Project" __version__ = "0.1" __maintainer__ = "Matteo Giantomassi" __all__ = [ "Flow", "G0W0WithQptdmFlow", "bandstructure_flow", "g0w0_flow", "phonon_flow", ] class FlowResults(NodeResults): JSON_SCHEMA = NodeResults.JSON_SCHEMA.copy() #JSON_SCHEMA["properties"] = { # "queries": {"type": "string", "required": True}, #} @classmethod def from_node(cls, flow): """Initialize an instance from a Work instance.""" new = super(FlowResults, cls).from_node(flow) # Will put all files found in outdir in GridFs d = {os.path.basename(f): f for f in flow.outdir.list_filepaths()} # Add the pickle file. d["pickle"] = flow.pickle_file if flow.pickle_protocol != 0 else (flow.pickle_file, "t") new.add_gridfs_files(**d) return new class FlowError(NodeError): """Base Exception for :class:`Node` methods""" class Flow(Node, NodeContainer, MSONable): """ This object is a container of work. Its main task is managing the possible inter-dependencies among the work and the creation of dynamic workflows that are generated by callbacks registered by the user. .. attributes:: creation_date: String with the creation_date pickle_protocol: Protocol for Pickle database (default: -1 i.e. latest protocol) Important methods for constructing flows: .. methods:: register_work: register (add) a work to the flow resister_task: register a work that contains only this task returns the work allocate: propagate the workdir and manager of the flow to all the registered tasks build: build_and_pickle_dump: """ VERSION = "0.1" PICKLE_FNAME = "__AbinitFlow__.pickle" Error = FlowError Results = FlowResults @classmethod def from_inputs(cls, workdir, inputs, manager=None, pickle_protocol=-1, task_class=ScfTask, work_class=Work): """ Construct a simple flow from a list of inputs. The flow contains a single Work with tasks whose class is given by task_class. .. warning:: Don't use this interface if you have dependencies among the tasks. Args: workdir: String specifying the directory where the works will be produced. inputs: List of inputs. manager: :class:`TaskManager` object responsible for the submission of the jobs. If manager is None, the object is initialized from the yaml file located either in the working directory or in the user configuration dir. pickle_protocol: Pickle protocol version used for saving the status of the object. -1 denotes the latest version supported by the python interpreter. task_class: The class of the :class:`Task`. work_class: The class of the :class:`Work`. """ if not isinstance(inputs, (list, tuple)): inputs = [inputs] flow = cls(workdir, manager=manager, pickle_protocol=pickle_protocol) work = work_class() for inp in inputs: work.register(inp, task_class=task_class) flow.register_work(work) return flow.allocate() @classmethod def as_flow(cls, obj): """Convert obj into a Flow. Accepts filepath, dict, or Flow object.""" if isinstance(obj, cls): return obj if is_string(obj): return cls.pickle_load(obj) elif isinstance(obj, collections.Mapping): return cls.from_dict(obj) else: raise TypeError("Don't know how to convert type %s into a Flow" % type(obj)) def __init__(self, workdir, manager=None, pickle_protocol=-1, remove=False): """ Args: workdir: String specifying the directory where the works will be produced. if workdir is None, the initialization of the working directory is performed by flow.allocate(workdir). manager: :class:`TaskManager` object responsible for the submission of the jobs. If manager is None, the object is initialized from the yaml file located either in the working directory or in the user configuration dir. pickle_protocol: Pickle protocol version used for saving the status of the object. -1 denotes the latest version supported by the python interpreter. remove: attempt to remove working directory `workdir` if directory already exists. """ super(Flow, self).__init__() if workdir is not None: if remove and os.path.exists(workdir): shutil.rmtree(workdir) self.set_workdir(workdir) self.creation_date = time.asctime() if manager is None: manager = TaskManager.from_user_config() self.manager = manager.deepcopy() # List of works. self._works = [] self._waited = 0 # List of callbacks that must be executed when the dependencies reach S_OK self._callbacks = [] # Install default list of handlers at the flow level. # Users can override the default list by calling flow.install_event_handlers in the script. # Example: # # # flow level (common case) # flow.install_event_handlers(handlers=my_handlers) # # # task level (advanced mode) # flow[0][0].install_event_handlers(handlers=my_handlers) # self.install_event_handlers() self.pickle_protocol = int(pickle_protocol) # ID used to access mongodb self._mongo_id = None # Save the location of the script used to generate the flow. # This trick won't work if we are running with nosetests, py.test etc pyfile = find_top_pyfile() if "python" in pyfile or "ipython" in pyfile: pyfile = "<" + pyfile + ">" self.set_pyfile(pyfile) # TODO # Signal slots: a dictionary with the list # of callbacks indexed by node_id and SIGNAL_TYPE. # When the node changes its status, it broadcast a signal. # The flow is listening to all the nodes of the calculation # [node_id][SIGNAL] = list_of_signal_handlers #self._sig_slots = slots = {} #for work in self: # slots[work] = {s: [] for s in work.S_ALL} #for task in self.iflat_tasks(): # slots[task] = {s: [] for s in work.S_ALL} @pmg_serialize def as_dict(self, **kwargs): """ JSON serialization, note that we only need to save a string with the working directory since the object will be reconstructed from the pickle file located in workdir """ return {"workdir": self.workdir} # This is needed for fireworks. to_dict = as_dict @classmethod def from_dict(cls, d, **kwargs): """Reconstruct the flow from the pickle file.""" return cls.pickle_load(d["workdir"], **kwargs) @classmethod def temporary_flow(cls, manager=None): """Return a Flow in a temporary directory. Useful for unit tests.""" return cls(workdir=tempfile.mkdtemp(), manager=manager) def set_workdir(self, workdir, chroot=False): """ Set the working directory. Cannot be set more than once unless chroot is True """ if not chroot and hasattr(self, "workdir") and self.workdir != workdir: raise ValueError("self.workdir != workdir: %s, %s" % (self.workdir, workdir)) # Directories with (input|output|temporary) data. self.workdir = os.path.abspath(workdir) self.indir = Directory(os.path.join(self.workdir, "indata")) self.outdir = Directory(os.path.join(self.workdir, "outdata")) self.tmpdir = Directory(os.path.join(self.workdir, "tmpdata")) def reload(self): """ Reload the flow from the pickle file. Used when we are monitoring the flow executed by the scheduler. In this case, indeed, the flow might have been changed by the scheduler and we have to reload the new flow in memory. """ new = self.__class__.pickle_load(self.workdir) self = new @classmethod def pickle_load(cls, filepath, spectator_mode=True, remove_lock=False): """ Loads the object from a pickle file and performs initial setup. Args: filepath: Filename or directory name. It filepath is a directory, we scan the directory tree starting from filepath and we read the first pickle database. Raise RuntimeError if multiple databases are found. spectator_mode: If True, the nodes of the flow are not connected by signals. This option is usually used when we want to read a flow in read-only mode and we want to avoid callbacks that can change the flow. remove_lock: True to remove the file lock if any (use it carefully). """ if os.path.isdir(filepath): # Walk through each directory inside path and find the pickle database. for dirpath, dirnames, filenames in os.walk(filepath): fnames = [f for f in filenames if f == cls.PICKLE_FNAME] if fnames: if len(fnames) == 1: filepath = os.path.join(dirpath, fnames[0]) break # Exit os.walk else: err_msg = "Found multiple databases:\n %s" % str(fnames) raise RuntimeError(err_msg) else: err_msg = "Cannot find %s inside directory %s" % (cls.PICKLE_FNAME, filepath) raise ValueError(err_msg) if remove_lock and os.path.exists(filepath + ".lock"): try: os.remove(filepath + ".lock") except: pass with FileLock(filepath): with open(filepath, "rb") as fh: flow = pmg_pickle_load(fh) # Check if versions match. if flow.VERSION != cls.VERSION: msg = ("File flow version %s != latest version %s\n." "Regenerate the flow to solve the problem " % (flow.VERSION, cls.VERSION)) warnings.warn(msg) flow.set_spectator_mode(spectator_mode) # Recompute the status of each task since tasks that # have been submitted previously might be completed. flow.check_status() return flow @classmethod def pickle_loads(cls, s): """Reconstruct the flow from a string.""" strio = StringIO() strio.write(s) strio.seek(0) flow = pmg_pickle_load(strio) return flow def __len__(self): return len(self.works) def __iter__(self): return self.works.__iter__() def __getitem__(self, slice): return self.works[slice] def set_pyfile(self, pyfile): """ Set the path of the python script used to generate the flow. .. Example: flow.set_pyfile(__file__) """ # TODO: Could use a frame hack to get the caller outside abinit # so that pyfile is automatically set when we __init__ it! self._pyfile = os.path.abspath(pyfile) @property def pyfile(self): """ Absolute path of the python script used to generate the flow. Set by `set_pyfile` """ try: return self._pyfile except AttributeError: return None @property def pid_file(self): """The path of the pid file created by PyFlowScheduler.""" return os.path.join(self.workdir, "_PyFlowScheduler.pid") def check_pid_file(self): """ This function checks if we are already running the :class:`Flow` with a :class:`PyFlowScheduler`. Raises: Flow.Error if the pif file of the scheduler exists. """ if not os.path.exists(self.pid_file): return 0 self.show_status() raise self.Error("""\n\ pid_file %s already exists. There are two possibilities: 1) There's an another instance of PyFlowScheduler running 2) The previous scheduler didn't exit in a clean way To solve case 1: Kill the previous scheduler (use 'kill pid' where pid is the number reported in the file) Then you can restart the new scheduler. To solve case 2: Remove the pid_file and restart the scheduler. Exiting""" % self.pid_file) @property def pickle_file(self): """The path of the pickle file.""" return os.path.join(self.workdir, self.PICKLE_FNAME) @property def mongo_id(self): return self._mongo_id @mongo_id.setter def mongo_id(self, value): if self.mongo_id is not None: raise RuntimeError("Cannot change mongo_id %s" % self.mongo_id) self._mongo_id = value def mongodb_upload(self, **kwargs): from abiflows.core.scheduler import FlowUploader FlowUploader().upload(self, **kwargs) def validate_json_schema(self): """Validate the JSON schema. Return list of errors.""" errors = [] for work in self: for task in work: if not task.get_results().validate_json_schema(): errors.append(task) if not work.get_results().validate_json_schema(): errors.append(work) if not self.get_results().validate_json_schema(): errors.append(self) return errors def get_mongo_info(self): """ Return a JSON dictionary with information on the flow. Mainly used for constructing the info section in `FlowEntry`. The default implementation is empty. Subclasses must implement it """ return {} def mongo_assimilate(self): """ This function is called by client code when the flow is completed Return a JSON dictionary with the most important results produced by the flow. The default implementation is empty. Subclasses must implement it """ return {} @property def works(self): """List of :class:`Work` objects contained in self..""" return self._works @property def all_ok(self): """True if all the tasks in works have reached `S_OK`.""" return all(work.all_ok for work in self) @property def num_tasks(self): """Total number of tasks""" return len(list(self.iflat_tasks())) @property def errored_tasks(self): """List of errored tasks.""" etasks = [] for status in [self.S_ERROR, self.S_QCRITICAL, self.S_ABICRITICAL]: etasks.extend(list(self.iflat_tasks(status=status))) return set(etasks) @property def num_errored_tasks(self): """The number of tasks whose status is `S_ERROR`.""" return len(self.errored_tasks) @property def unconverged_tasks(self): """List of unconverged tasks.""" return list(self.iflat_tasks(status=self.S_UNCONVERGED)) @property def num_unconverged_tasks(self): """The number of tasks whose status is `S_UNCONVERGED`.""" return len(self.unconverged_tasks) @property def status_counter(self): """ Returns a :class:`Counter` object that counts the number of tasks with given status (use the string representation of the status as key). """ # Count the number of tasks with given status in each work. counter = self[0].status_counter for work in self[1:]: counter += work.status_counter return counter @property def ncores_reserved(self): """ Returns the number of cores reserved in this moment. A core is reserved if the task is not running but we have submitted the task to the queue manager. """ return sum(work.ncores_reserved for work in self) @property def ncores_allocated(self): """ Returns the number of cores allocated in this moment. A core is allocated if it's running a task or if we have submitted a task to the queue manager but the job is still pending. """ return sum(work.ncores_allocated for work in self) @property def ncores_used(self): """ Returns the number of cores used in this moment. A core is used if there's a job that is running on it. """ return sum(work.ncores_used for work in self) @property def has_chrooted(self): """ Returns a string that evaluates to True if we have changed the workdir for visualization purposes e.g. we are using sshfs. to mount the remote directory where the `Flow` is located. The string gives the previous workdir of the flow. """ try: return self._chrooted_from except AttributeError: return "" def chroot(self, new_workdir): """ Change the workir of the :class:`Flow`. Mainly used for allowing the user to open the GUI on the local host and access the flow from remote via sshfs. .. note:: Calling this method will make the flow go in read-only mode. """ self._chrooted_from = self.workdir self.set_workdir(new_workdir, chroot=True) for i, work in enumerate(self): new_wdir = os.path.join(self.workdir, "w" + str(i)) work.chroot(new_wdir) def groupby_status(self): """ Returns a ordered dictionary mapping the task status to the list of named tuples (task, work_index, task_index). """ Entry = collections.namedtuple("Entry", "task wi ti") d = collections.defaultdict(list) for task, wi, ti in self.iflat_tasks_wti(): d[task.status].append(Entry(task, wi, ti)) # Sort keys according to their status. return OrderedDict([(k, d[k]) for k in sorted(list(d.keys()))]) def groupby_task_class(self): """ Returns a dictionary mapping the task class to the list of tasks in the flow """ # Find all Task classes class2tasks = OrderedDict() for task in self.iflat_tasks(): cls = task.__class__ if cls not in class2tasks: class2tasks[cls] = [] class2tasks[cls].append(task) return class2tasks def iflat_nodes(self, status=None, op="==", nids=None): """ Generators that produces a flat sequence of nodes. if status is not None, only the tasks with the specified status are selected. nids is an optional list of node identifiers used to filter the nodes. """ nids = as_set(nids) if status is None: if not (nids and self.node_id not in nids): yield self for work in self: if nids and work.node_id not in nids: continue yield work for task in work: if nids and task.node_id not in nids: continue yield task else: # Get the operator from the string. op = operator_from_str(op) # Accept Task.S_FLAG or string. status = Status.as_status(status) if not (nids and self.node_id not in nids): if op(self.status, status): yield self for wi, work in enumerate(self): if nids and work.node_id not in nids: continue if op(work.status, status): yield work for ti, task in enumerate(work): if nids and task.node_id not in nids: continue if op(task.status, status): yield task def node_from_nid(self, nid): """Return the node in the `Flow` with the given `nid` identifier""" for node in self.iflat_nodes(): if node.node_id == nid: return node raise ValueError("Cannot find node with node id: %s" % nid) def iflat_tasks_wti(self, status=None, op="==", nids=None): """ Generator to iterate over all the tasks of the `Flow`. Yields: (task, work_index, task_index) If status is not None, only the tasks whose status satisfies the condition (task.status op status) are selected status can be either one of the flags defined in the :class:`Task` class (e.g Task.S_OK) or a string e.g "S_OK" nids is an optional list of node identifiers used to filter the tasks. """ return self._iflat_tasks_wti(status=status, op=op, nids=nids, with_wti=True) def iflat_tasks(self, status=None, op="==", nids=None): """ Generator to iterate over all the tasks of the :class:`Flow`. If status is not None, only the tasks whose status satisfies the condition (task.status op status) are selected status can be either one of the flags defined in the :class:`Task` class (e.g Task.S_OK) or a string e.g "S_OK" nids is an optional list of node identifiers used to filter the tasks. """ return self._iflat_tasks_wti(status=status, op=op, nids=nids, with_wti=False) def _iflat_tasks_wti(self, status=None, op="==", nids=None, with_wti=True): """ Generators that produces a flat sequence of task. if status is not None, only the tasks with the specified status are selected. nids is an optional list of node identifiers used to filter the tasks. Returns: (task, work_index, task_index) if with_wti is True else task """ nids = as_set(nids) if status is None: for wi, work in enumerate(self): for ti, task in enumerate(work): if nids and task.node_id not in nids: continue if with_wti: yield task, wi, ti else: yield task else: # Get the operator from the string. op = operator_from_str(op) # Accept Task.S_FLAG or string. status = Status.as_status(status) for wi, work in enumerate(self): for ti, task in enumerate(work): if nids and task.node_id not in nids: continue if op(task.status, status): if with_wti: yield task, wi, ti else: yield task def abivalidate_inputs(self): """ Run ABINIT in dry mode to validate all the inputs of the flow. Return: (isok, tuples) isok is True if all inputs are ok. tuples is List of `namedtuple` objects, one for each task in the flow. Each namedtuple has the following attributes: retcode: Return code. 0 if OK. log_file: log file of the Abinit run, use log_file.read() to access its content. stderr_file: stderr file of the Abinit run. use stderr_file.read() to access its content. Raises: `RuntimeError` if executable is not in $PATH. """ if not self.allocated: self.build() #self.build_and_pickle_dump() isok, tuples = True, [] for task in self.iflat_tasks(): t = task.input.abivalidate() if t.retcode != 0: isok = False tuples.append(t) return isok, tuples def check_dependencies(self): """Test the dependencies of the nodes for possible deadlocks.""" deadlocks = [] for task in self.iflat_tasks(): for dep in task.deps: if dep.node.depends_on(task): deadlocks.append((task, dep.node)) if deadlocks: lines = ["Detect wrong list of dependecies that will lead to a deadlock:"] lines.extend(["%s <--> %s" % nodes for nodes in deadlocks]) raise RuntimeError("\n".join(lines)) def find_deadlocks(self): """ This function detects deadlocks Return: named tuple with the tasks grouped in: deadlocks, runnables, running """ # Find jobs that can be submitted and and the jobs that are already in the queue. runnables = [] for work in self: runnables.extend(work.fetch_alltasks_to_run()) runnables.extend(list(self.iflat_tasks(status=self.S_SUB))) # Running jobs. running = list(self.iflat_tasks(status=self.S_RUN)) # Find deadlocks. err_tasks = self.errored_tasks deadlocked = [] if err_tasks: for task in self.iflat_tasks(): if any(task.depends_on(err_task) for err_task in err_tasks): deadlocked.append(task) return dict2namedtuple(deadlocked=deadlocked, runnables=runnables, running=running) def check_status(self, **kwargs): """ Check the status of the works in self. Args: show: True to show the status of the flow. kwargs: keyword arguments passed to show_status """ for work in self: work.check_status() if kwargs.pop("show", False): self.show_status(**kwargs) @property def status(self): """The status of the :class:`Flow` i.e. the minimum of the status of its tasks and its works""" return min(work.get_all_status(only_min=True) for work in self) #def restart_unconverged_tasks(self, max_nlauch, excs): # nlaunch = 0 # for task in self.unconverged_tasks: # try: # logger.info("Flow will try restart task %s" % task) # fired = task.restart() # if fired: # nlaunch += 1 # max_nlaunch -= 1 # if max_nlaunch == 0: # logger.info("Restart: too many jobs in the queue, returning") # self.pickle_dump() # return nlaunch, max_nlaunch # except task.RestartError: # excs.append(straceback()) # return nlaunch, max_nlaunch def fix_abicritical(self): """ This function tries to fix critical events originating from ABINIT. Returns the number of tasks that have been fixed. """ count = 0 for task in self.iflat_tasks(status=self.S_ABICRITICAL): count += task.fix_abicritical() return count def fix_queue_critical(self): """ This function tries to fix critical events originating from the queue submission system. Returns the number of tasks that have been fixed. """ count = 0 for task in self.iflat_tasks(status=self.S_QCRITICAL): logger.info("Will try to fix task %s" % str(task)) try: print(task.fix_queue_critical()) count += 1 except FixQueueCriticalError: logger.info("Not able to fix task %s" % task) return count def show_info(self, **kwargs): """ Print info on the flow i.e. total number of tasks, works, tasks grouped by class. Example: Task Class Number ------------ -------- ScfTask 1 NscfTask 1 ScrTask 2 SigmaTask 6 """ stream = kwargs.pop("stream", sys.stdout) lines = [str(self)] app = lines.append app("Number of works: %d, total number of tasks: %s" % (len(self), self.num_tasks) ) app("Number of tasks with a given class:") # Build Table data = [[cls.__name__, len(tasks)] for cls, tasks in self.groupby_task_class().items()] app(str(tabulate(data, headers=["Task Class", "Number"]))) stream.write("\n".join(lines)) def show_summary(self, **kwargs): """ Print a short summary with the status of the flow and a counter task_status --> number_of_tasks Args: stream: File-like object, Default: sys.stdout Example: Status Count --------- ------- Completed 10 <Flow, node_id=27163, workdir=flow_gwconv_ecuteps>, num_tasks=10, all_ok=True """ stream = kwargs.pop("stream", sys.stdout) stream.write("\n") table = list(self.status_counter.items()) s = tabulate(table, headers=["Status", "Count"]) stream.write(s + "\n") stream.write("\n") stream.write("%s, num_tasks=%s, all_ok=%s\n" % (str(self), self.num_tasks, self.all_ok)) stream.write("\n") def show_status(self, **kwargs): """ Report the status of the works and the status of the different tasks on the specified stream. Args: stream: File-like object, Default: sys.stdout nids: List of node identifiers. By defaults all nodes are shown wslice: Slice object used to select works. verbose: Verbosity level (default 0). > 0 to show only the works that are not finalized. """ stream = kwargs.pop("stream", sys.stdout) nids = as_set(kwargs.pop("nids", None)) wslice = kwargs.pop("wslice", None) verbose = kwargs.pop("verbose", 0) wlist = None if wslice is not None: # Convert range to list of work indices. wlist = list(range(wslice.start, wslice.step, wslice.stop)) #has_colours = stream_has_colours(stream) has_colours = True red = "red" if has_colours else None for i, work in enumerate(self): if nids and work.node_id not in nids: continue print("", file=stream) cprint_map("Work #%d: %s, Finalized=%s" % (i, work, work.finalized), cmap={"True": "green"}, file=stream) if wlist is not None and i in wlist: continue if verbose == 0 and work.finalized: print(" Finalized works are not shown. Use verbose > 0 to force output.", file=stream) continue headers = ["Task", "Status", "Queue", "MPI|Omp|Gb", "Warn|Com", "Class", "Sub|Rest|Corr", "Time", "Node_ID"] table = [] tot_num_errors = 0 for task in work: if nids and task.node_id not in nids: continue task_name = os.path.basename(task.name) # FIXME: This should not be done here. # get_event_report should be called only in check_status # Parse the events in the main output. report = task.get_event_report() # Get time info (run-time or time in queue or None) stime = None timedelta = task.datetimes.get_runtime() if timedelta is not None: stime = str(timedelta) + "R" else: timedelta = task.datetimes.get_time_inqueue() if timedelta is not None: stime = str(timedelta) + "Q" events = "|".join(2*["NA"]) if report is not None: events = '{:>4}|{:>3}'.format(*map(str, ( report.num_warnings, report.num_comments))) para_info = '{:>4}|{:>3}|{:>3}'.format(*map(str, ( task.mpi_procs, task.omp_threads, "%.1f" % task.mem_per_proc.to("Gb")))) task_info = list(map(str, [task.__class__.__name__, (task.num_launches, task.num_restarts, task.num_corrections), stime, task.node_id])) qinfo = "None" if task.queue_id is not None: qinfo = str(task.queue_id) + "@" + str(task.qname) if task.status.is_critical: tot_num_errors += 1 task_name = colored(task_name, red) if has_colours: table.append([task_name, task.status.colored, qinfo, para_info, events] + task_info) else: table.append([task_name, str(task.status), qinfo, events, para_info] + task_info) # Print table and write colorized line with the total number of errors. print(tabulate(table, headers=headers, tablefmt="grid"), file=stream) if tot_num_errors: cprint("Total number of errors: %d" % tot_num_errors, "red", file=stream) print("", file=stream) if self.all_ok: cprint("\nall_ok reached\n", "green", file=stream) def show_events(self, status=None, nids=None): """ Print the Abinit events (ERRORS, WARNIING, COMMENTS) to stdout Args: status: if not None, only the tasks with this status are select nids: optional list of node identifiers used to filter the tasks. """ nrows, ncols = get_terminal_size() for task in self.iflat_tasks(status=status, nids=nids): report = task.get_event_report() if report: print(make_banner(str(task), width=ncols, mark="=")) print(report) #report = report.filter_types() def show_corrections(self, status=None, nids=None): """ Show the corrections applied to the flow at run-time. Args: status: if not None, only the tasks with this status are select. nids: optional list of node identifiers used to filter the tasks. Return: The number of corrections found. """ nrows, ncols = get_terminal_size() count = 0 for task in self.iflat_tasks(status=status, nids=nids): if task.num_corrections == 0: continue count += 1 print(make_banner(str(task), width=ncols, mark="=")) for corr in task.corrections: pprint(corr) if not count: print("No correction found.") return count def show_history(self, status=None, nids=None, full_history=False, metadata=False): """ Print the history of the flow to stdout. Args: status: if not None, only the tasks with this status are select full_history: Print full info set, including nodes with an empty history. nids: optional list of node identifiers used to filter the tasks. metadata: print history metadata (experimental) """ nrows, ncols = get_terminal_size() works_done = [] # Loop on the tasks and show the history of the work is not in works_done for task in self.iflat_tasks(status=status, nids=nids): work = task.work if work not in works_done: works_done.append(work) if work.history or full_history: cprint(make_banner(str(work), width=ncols, mark="="), **work.status.color_opts) print(work.history.to_string(metadata=metadata)) if task.history or full_history: cprint(make_banner(str(task), width=ncols, mark="="), **task.status.color_opts) print(task.history.to_string(metadata=metadata)) # Print the history of the flow. if self.history or full_history: cprint(make_banner(str(self), width=ncols, mark="="), **self.status.color_opts) print(self.history.to_string(metadata=metadata)) def show_inputs(self, varnames=None, nids=None, wslice=None, stream=sys.stdout): """ Print the input of the tasks to the given stream. Args: varnames: List of Abinit variables. If not None, only the variable in varnames are selected and printed. nids: List of node identifiers. By defaults all nodes are shown wslice: Slice object used to select works. stream: File-like object, Default: sys.stdout """ if varnames is not None: # Build dictionary varname --> [(task1, value), (task2, value), ...] varnames = [s.strip() for s in list_strings(varnames)] dlist = collections.defaultdict(list) for task in self.select_tasks(nids=nids, wslice=wslice): dstruct = task.input.structure.as_dict(fmt="abivars") for vname in varnames: value = task.input.get(vname, None) if value is None: # maybe in structure? value = dstruct.get(vname, None) if value is not None: dlist[vname].append((task, value)) for vname in varnames: tv_list = dlist[vname] if not tv_list: stream.write("[%s]: Found 0 tasks with this variable\n" % vname) else: stream.write("[%s]: Found %s tasks with this variable\n" % (vname, len(tv_list))) for i, (task, value) in enumerate(tv_list): stream.write(" %s --> %s\n" % (str(value), task)) stream.write("\n") else: lines = [] for task in self.select_tasks(nids=nids, wslice=wslice): s = task.make_input(with_header=True) # Add info on dependencies. if task.deps: s += "\n\nDependencies:\n" + "\n".join(str(dep) for dep in task.deps) else: s += "\n\nDependencies: None" lines.append(2*"\n" + 80 * "=" + "\n" + s + 2*"\n") stream.writelines(lines) def listext(self, ext, stream=sys.stdout): """ Print to the given `stream` a table with the list of the output files with the given `ext` produced by the flow. """ nodes_files = [] for node in self.iflat_nodes(): filepath = node.outdir.has_abiext(ext) if filepath: nodes_files.append((node, File(filepath))) if nodes_files: print("Found %s files with extension %s produced by the flow" % (len(nodes_files), ext), file=stream) table = [[f.relpath, "%.2f" % (f.get_stat().st_size / 1024**2), node.node_id, node.__class__.__name__] for node, f in nodes_files] print(tabulate(table, headers=["File", "Size [Mb]", "Node_ID", "Node Class"]), file=stream) else: print("No output file with extension %s has been produced by the flow" % ext, file=stream) def select_tasks(self, nids=None, wslice=None): """ Return a list with a subset of tasks. Args: nids: List of node identifiers. wslice: Slice object used to select works. .. note:: nids and wslice are mutually exclusive. If no argument is provided, the full list of tasks is returned. """ if nids is not None: assert wslice is None tasks = self.tasks_from_nids(nids) elif wslice is not None: tasks = [] for work in self[wslice]: tasks.extend([t for t in work]) else: # All tasks selected if no option is provided. tasks = list(self.iflat_tasks()) return tasks def inspect(self, nids=None, wslice=None, **kwargs): """ Inspect the tasks (SCF iterations, Structural relaxation ...) and produces matplotlib plots. Args: nids: List of node identifiers. wslice: Slice object used to select works. kwargs: keyword arguments passed to `task.inspect` method. .. note:: nids and wslice are mutually exclusive. If nids and wslice are both None, all tasks in self are inspected. Returns: List of `matplotlib` figures. """ figs = [] for task in self.select_tasks(nids=nids, wslice=wslice): if hasattr(task, "inspect"): fig = task.inspect(**kwargs) if fig is None: cprint("Cannot inspect Task %s" % task, color="blue") else: figs.append(fig) else: cprint("Task %s does not provide an inspect method" % task, color="blue") return figs def get_results(self, **kwargs): results = self.Results.from_node(self) results.update(self.get_dict_for_mongodb_queries()) return results def get_dict_for_mongodb_queries(self): """ This function returns a dictionary with the attributes that will be put in the mongodb document to facilitate the query. Subclasses may want to replace or extend the default behaviour. """ d = {} return d # TODO all_structures = [task.input.structure for task in self.iflat_tasks()] all_pseudos = [task.input.pseudos for task in self.iflat_tasks()] def look_before_you_leap(self): """ This method should be called before running the calculation to make sure that the most important requirements are satisfied. Return: List of strings with inconsistencies/errors. """ errors = [] try: self.check_dependencies() except self.Error as exc: errors.append(str(exc)) if self.has_db: try: self.manager.db_connector.get_collection() except Exception as exc: errors.append(""" ERROR while trying to connect to the MongoDB database: Exception: %s Connector: %s """ % (exc, self.manager.db_connector)) return "\n".join(errors) @property def has_db(self): """True if flow uses `MongoDB` to store the results.""" return self.manager.has_db def db_insert(self): """ Insert results in the `MongDB` database. """ assert self.has_db # Connect to MongoDb and get the collection. coll = self.manager.db_connector.get_collection() print("Mongodb collection %s with count %d", coll, coll.count()) start = time.time() for work in self: for task in work: results = task.get_results() pprint(results) results.update_collection(coll) results = work.get_results() pprint(results) results.update_collection(coll) print("MongoDb update done in %s [s]" % time.time() - start) results = self.get_results() pprint(results) results.update_collection(coll) # Update the pickle file to save the mongo ids. self.pickle_dump() for d in coll.find(): pprint(d) def tasks_from_nids(self, nids): """ Return the list of tasks associated to the given list of node identifiers (nids). .. note:: Invalid ids are ignored """ if not isinstance(nids, collections.Iterable): nids = [nids] tasks = [] for nid in nids: for task in self.iflat_tasks(): if task.node_id == nid: tasks.append(task) break return tasks def wti_from_nids(self, nids): """Return the list of (w, t) indices from the list of node identifiers nids.""" return [task.pos for task in self.tasks_from_nids(nids)] def open_files(self, what="o", status=None, op="==", nids=None, editor=None): """ Open the files of the flow inside an editor (command line interface). Args: what: string with the list of characters selecting the file type Possible choices: i ==> input_file, o ==> output_file, f ==> files_file, j ==> job_file, l ==> log_file, e ==> stderr_file, q ==> qout_file, all ==> all files. status: if not None, only the tasks with this status are select op: status operator. Requires status. A task is selected if task.status op status evaluates to true. nids: optional list of node identifiers used to filter the tasks. editor: Select the editor. None to use the default editor ($EDITOR shell env var) """ # Build list of files to analyze. files = [] for task in self.iflat_tasks(status=status, op=op, nids=nids): lst = task.select_files(what) if lst: files.extend(lst) return Editor(editor=editor).edit_files(files) def parse_timing(self, nids=None): """ Parse the timer data in the main output file(s) of Abinit. Requires timopt /= 0 in the input file (usually timopt = -1) Args: nids: optional list of node identifiers used to filter the tasks. Return: :class:`AbinitTimerParser` instance, None if error. """ # Get the list of output files according to nids. paths = [task.output_file.path for task in self.iflat_tasks(nids=nids)] # Parse data. from .abitimer import AbinitTimerParser parser = AbinitTimerParser() read_ok = parser.parse(paths) if read_ok: return parser return None def show_abierrors(self, nids=None, stream=sys.stdout): """ Write to the given stream the list of ABINIT errors for all tasks whose status is S_ABICRITICAL. Args: nids: optional list of node identifiers used to filter the tasks. stream: File-like object. Default: sys.stdout """ lines = [] app = lines.append for task in self.iflat_tasks(status=self.S_ABICRITICAL, nids=nids): header = "=== " + task.qout_file.path + "===" app(header) report = task.get_event_report() if report is not None: app("num_errors: %s, num_warnings: %s, num_comments: %s" % ( report.num_errors, report.num_warnings, report.num_comments)) app("*** ERRORS ***") app("\n".join(str(e) for e in report.errors)) app("*** BUGS ***") app("\n".join(str(b) for b in report.bugs)) else: app("get_envent_report returned None!") app("=" * len(header) + 2*"\n") return stream.writelines(lines) def show_qouts(self, nids=None, stream=sys.stdout): """ Write to the given stream the content of the queue output file for all tasks whose status is S_QCRITICAL. Args: nids: optional list of node identifiers used to filter the tasks. stream: File-like object. Default: sys.stdout """ lines = [] for task in self.iflat_tasks(status=self.S_QCRITICAL, nids=nids): header = "=== " + task.qout_file.path + "===" lines.append(header) if task.qout_file.exists: with open(task.qout_file.path, "rt") as fh: lines += fh.readlines() else: lines.append("File does not exist!") lines.append("=" * len(header) + 2*"\n") return stream.writelines(lines) def debug(self, status=None, nids=None): """ This method is usually used when the flow didn't completed succesfully It analyzes the files produced the tasks to facilitate debugging. Info are printed to stdout. Args: status: If not None, only the tasks with this status are selected nids: optional list of node identifiers used to filter the tasks. """ nrows, ncols = get_terminal_size() # Test for scheduler exceptions first. sched_excfile = os.path.join(self.workdir, "_exceptions") if os.path.exists(sched_excfile): with open(sched_excfile, "r") as fh: cprint("Found exceptions raised by the scheduler", "red") cprint(fh.read(), color="red") return if status is not None: tasks = list(self.iflat_tasks(status=status, nids=nids)) else: errors = list(self.iflat_tasks(status=self.S_ERROR, nids=nids)) qcriticals = list(self.iflat_tasks(status=self.S_QCRITICAL, nids=nids)) abicriticals = list(self.iflat_tasks(status=self.S_ABICRITICAL, nids=nids)) tasks = errors + qcriticals + abicriticals # For each task selected: # 1) Check the error files of the task. If not empty, print the content to stdout and we are done. # 2) If error files are empty, look at the master log file for possible errors # 3) If also this check failes, scan all the process log files. # TODO: This check is not needed if we introduce a new __abinit_error__ file # that is created by the first MPI process that invokes MPI abort! # ntasks = 0 for task in tasks: print(make_banner(str(task), width=ncols, mark="=")) ntasks += 1 # Start with error files. for efname in ["qerr_file", "stderr_file",]: err_file = getattr(task, efname) if err_file.exists: s = err_file.read() if not s: continue print(make_banner(str(err_file), width=ncols, mark="=")) cprint(s, color="red") #count += 1 # Check main log file. try: report = task.get_event_report() if report and report.num_errors: print(make_banner(os.path.basename(report.filename), width=ncols, mark="=")) s = "\n".join(str(e) for e in report.errors) else: s = None except Exception as exc: s = str(exc) count = 0 # count > 0 means we found some useful info that could explain the failures. if s is not None: cprint(s, color="red") count += 1 if not count: # Inspect all log files produced by the other nodes. log_files = task.tmpdir.list_filepaths(wildcard="*LOG_*") if not log_files: cprint("No *LOG_* file in tmpdir. This usually happens if you are running with many CPUs", color="magenta") for log_file in log_files: try: report = EventsParser().parse(log_file) if report.errors: print(report) count += 1 break except Exception as exc: cprint(str(exc), color="red") count += 1 break if not count: cprint("Houston, we could not find any error message that can explain the problem", color="magenta") print("Number of tasks analyzed: %d" % ntasks) def cancel(self, nids=None): """ Cancel all the tasks that are in the queue. nids is an optional list of node identifiers used to filter the tasks. Returns: Number of jobs cancelled, negative value if error """ if self.has_chrooted: # TODO: Use paramiko to kill the job? warnings.warn("Cannot cancel the flow via sshfs!") return -1 # If we are running with the scheduler, we must send a SIGKILL signal. if os.path.exists(self.pid_file): cprint("Found scheduler attached to this flow.", "yellow") cprint("Sending SIGKILL to the scheduler before cancelling the tasks!", "yellow") with open(self.pid_file, "r") as fh: pid = int(fh.readline()) retcode = os.system("kill -9 %d" % pid) self.history.info("Sent SIGKILL to the scheduler, retcode: %s" % retcode) try: os.remove(self.pid_file) except IOError: pass num_cancelled = 0 for task in self.iflat_tasks(nids=nids): num_cancelled += task.cancel() return num_cancelled def get_njobs_in_queue(self, username=None): """ returns the number of jobs in the queue, None when the number of jobs cannot be determined. Args: username: (str) the username of the jobs to count (default is to autodetect) """ return self.manager.qadapter.get_njobs_in_queue(username=username) def rmtree(self, ignore_errors=False, onerror=None): """Remove workdir (same API as shutil.rmtree).""" if not os.path.exists(self.workdir): return shutil.rmtree(self.workdir, ignore_errors=ignore_errors, onerror=onerror) def rm_and_build(self): """Remove the workdir and rebuild the flow.""" self.rmtree() self.build() def build(self, *args, **kwargs): """Make directories and files of the `Flow`.""" # Allocate here if not done yet! if not self.allocated: self.allocate() self.indir.makedirs() self.outdir.makedirs() self.tmpdir.makedirs() # Check the nodeid file in workdir nodeid_path = os.path.join(self.workdir, ".nodeid") if os.path.exists(nodeid_path): with open(nodeid_path, "rt") as fh: node_id = int(fh.read()) if self.node_id != node_id: msg = ("\nFound node_id %s in file:\n\n %s\n\nwhile the node_id of the present flow is %d.\n" "This means that you are trying to build a new flow in a directory already used by another flow.\n" "Possible solutions:\n" " 1) Change the workdir of the new flow.\n" " 2) remove the old directory either with `rm -rf` or by calling the method flow.rmtree()\n" % (node_id, nodeid_path, self.node_id)) raise RuntimeError(msg) else: with open(nodeid_path, "wt") as fh: fh.write(str(self.node_id)) for work in self: work.build(*args, **kwargs) def build_and_pickle_dump(self, abivalidate=False): """ Build dirs and file of the `Flow` and save the object in pickle format. Returns 0 if success Args: abivalidate: If True, all the input files are validate by calling the abinit parser. If the validation fails, ValueError is raise. """ self.build() if not abivalidate: return self.pickle_dump() # Validation with Abinit. isok, errors = self.abivalidate_inputs() if isok: return self.pickle_dump() errlines = [] for i, e in enumerate(errors): errlines.append("[%d] %s" % (i, e)) raise ValueError("\n".join(errlines)) @check_spectator def pickle_dump(self): """ Save the status of the object in pickle format. Returns 0 if success """ if self.has_chrooted: warnings.warn("Cannot pickle_dump since we have chrooted from %s" % self.has_chrooted) return -1 #if self.in_spectator_mode: # warnings.warn("Cannot pickle_dump since flow is in_spectator_mode") # return -2 protocol = self.pickle_protocol # Atomic transaction with FileLock. with FileLock(self.pickle_file): with AtomicFile(self.pickle_file, mode="wb") as fh: pmg_pickle_dump(self, fh, protocol=protocol) return 0 def pickle_dumps(self, protocol=None): """ Return a string with the pickle representation. `protocol` selects the pickle protocol. self.pickle_protocol is used if `protocol` is None """ strio = StringIO() pmg_pickle_dump(self, strio, protocol=self.pickle_protocol if protocol is None else protocol) return strio.getvalue() def register_task(self, input, deps=None, manager=None, task_class=None): """ Utility function that generates a `Work` made of a single task Args: input: :class:`AbinitInput` deps: List of :class:`Dependency` objects specifying the dependency of this node. An empy list of deps implies that this node has no dependencies. manager: The :class:`TaskManager` responsible for the submission of the task. If manager is None, we use the :class:`TaskManager` specified during the creation of the work. task_class: Task subclass to instantiate. Default: :class:`AbinitTask` Returns: The generated :class:`Work` for the task, work[0] is the actual task. """ work = Work(manager=manager) task = work.register(input, deps=deps, task_class=task_class) self.register_work(work) return work def register_work(self, work, deps=None, manager=None, workdir=None): """ Register a new :class:`Work` and add it to the internal list, taking into account possible dependencies. Args: work: :class:`Work` object. deps: List of :class:`Dependency` objects specifying the dependency of this node. An empy list of deps implies that this node has no dependencies. manager: The :class:`TaskManager` responsible for the submission of the task. If manager is None, we use the `TaskManager` specified during the creation of the work. workdir: The name of the directory used for the :class:`Work`. Returns: The registered :class:`Work`. """ if getattr(self, "workdir", None) is not None: # The flow has a directory, build the named of the directory of the work. work_workdir = None if workdir is None: work_workdir = os.path.join(self.workdir, "w" + str(len(self))) else: work_workdir = os.path.join(self.workdir, os.path.basename(workdir)) work.set_workdir(work_workdir) if manager is not None: work.set_manager(manager) self.works.append(work) if deps: deps = [Dependency(node, exts) for node, exts in deps.items()] work.add_deps(deps) return work def register_work_from_cbk(self, cbk_name, cbk_data, deps, work_class, manager=None): """ Registers a callback function that will generate the :class:`Task` of the :class:`Work`. Args: cbk_name: Name of the callback function (must be a bound method of self) cbk_data: Additional data passed to the callback function. deps: List of :class:`Dependency` objects specifying the dependency of the work. work_class: :class:`Work` class to instantiate. manager: The :class:`TaskManager` responsible for the submission of the task. If manager is None, we use the `TaskManager` specified during the creation of the :class:`Flow`. Returns: The :class:`Work` that will be finalized by the callback. """ # TODO: pass a Work factory instead of a class # Directory of the Work. work_workdir = os.path.join(self.workdir, "w" + str(len(self))) # Create an empty work and register the callback work = work_class(workdir=work_workdir, manager=manager) self._works.append(work) deps = [Dependency(node, exts) for node, exts in deps.items()] if not deps: raise ValueError("A callback must have deps!") work.add_deps(deps) # Wrap the callable in a Callback object and save # useful info such as the index of the work and the callback data. cbk = FlowCallback(cbk_name, self, deps=deps, cbk_data=cbk_data) self._callbacks.append(cbk) return work @property def allocated(self): """Numer of allocations. Set by `allocate`.""" try: return self._allocated except AttributeError: return 0 def allocate(self, workdir=None): """ Allocate the `Flow` i.e. assign the `workdir` and (optionally) the :class:`TaskManager` to the different tasks in the Flow. Args: workdir: Working directory of the flow. Must be specified here if we haven't initialized the workdir in the __init__. """ if workdir is not None: # We set the workdir of the flow here self.set_workdir(workdir) for i, work in enumerate(self): work.set_workdir(os.path.join(self.workdir, "w" + str(i))) if not hasattr(self, "workdir"): raise RuntimeError("You must call flow.allocate(workdir) if the workdir is not passed to __init__") for work in self: # Each work has a reference to its flow. work.allocate(manager=self.manager) work.set_flow(self) # Each task has a reference to its work. for task in work: task.set_work(work) self.check_dependencies() if not hasattr(self, "_allocated"): self._allocated = 0 self._allocated += 1 return self def use_smartio(self): """ This function should be called when the entire `Flow` has been built. It tries to reduce the pressure on the hard disk by using Abinit smart-io capabilities for those files that are not needed by other nodes. Smart-io means that big files (e.g. WFK) are written only if the calculation is unconverged so that we can restart from it. No output is produced if convergence is achieved. """ if not self.allocated: self.allocate() #raise RuntimeError("You must call flow.allocate before invoking flow.use_smartio") return for task in self.iflat_tasks(): children = task.get_children() if not children: # Change the input so that output files are produced # only if the calculation is not converged. task.history.info("Will disable IO for task") task.set_vars(prtwf=-1, prtden=0) # TODO: prt1wf=-1, else: must_produce_abiexts = [] for child in children: # Get the list of dependencies. Find that task for d in child.deps: must_produce_abiexts.extend(d.exts) must_produce_abiexts = set(must_produce_abiexts) #print("must_produce_abiexts", must_produce_abiexts) # Variables supporting smart-io. smart_prtvars = { "prtwf": "WFK", } # Set the variable to -1 to disable the output for varname, abiext in smart_prtvars.items(): if abiext not in must_produce_abiexts: print("%s: setting %s to -1" % (task, varname)) task.set_vars({varname: -1}) #def new_from_input_decorators(self, new_workdir, decorators) # """ # Return a new :class:`Flow` in which all the Abinit inputs have been # decorated by decorators. # """ # # The trick part here is how to assign a new id to the new nodes while maintaing the # # correct dependencies! The safest approach would be to pass through __init__ # # instead of using copy.deepcopy() # return flow def show_dependencies(self, stream=sys.stdout): """Writes to the given stream the ASCII representation of the dependency tree.""" def child_iter(node): return [d.node for d in node.deps] def text_str(node): return colored(str(node), color=node.status.color_opts["color"]) for task in self.iflat_tasks(): print(draw_tree(task, child_iter, text_str), file=stream) def on_dep_ok(self, signal, sender): # TODO # Replace this callback with dynamic dispatch # on_all_S_OK for work # on_S_OK for task logger.info("on_dep_ok with sender %s, signal %s" % (str(sender), signal)) for i, cbk in enumerate(self._callbacks): if not cbk.handle_sender(sender): logger.info("%s does not handle sender %s" % (cbk, sender)) continue if not cbk.can_execute(): logger.info("Cannot execute %s" % cbk) continue # Execute the callback and disable it self.history.info("flow in on_dep_ok: about to execute callback %s" % str(cbk)) cbk() cbk.disable() # Update the database. self.pickle_dump() @check_spectator def finalize(self): """ This method is called when the flow is completed. Return 0 if success """ if self.finalized: self.history.warning("Calling finalize on an already finalized flow.") return 1 self.history.info("Calling flow.finalize.") self.finalized = True if self.has_db: self.history.info("Saving results in database.") try: self.flow.db_insert() self.finalized = True except Exception: logger.critical("MongoDb insertion failed.") return 2 # Here we remove the big output files if we have the garbage collector # and the policy is set to "flow." if self.gc is not None and self.gc.policy == "flow": self.history.info("gc.policy set to flow. Will clean task output files.") for task in self.iflat_tasks(): task.clean_output_files() return 0 def set_garbage_collector(self, exts=None, policy="task"): """ Enable the garbage collector that will remove the big output files that are not needed. Args: exts: string or list with the Abinit file extensions to be removed. A default is provided if exts is None policy: Either `flow` or `task`. If policy is set to 'task', we remove the output files as soon as the task reaches S_OK. If 'flow', the files are removed only when the flow is finalized. This option should be used when we are dealing with a dynamic flow with callbacks generating other tasks since a :class:`Task` might not be aware of its children when it reached S_OK. """ assert policy in ("task", "flow") exts = list_strings(exts) if exts is not None else ("WFK", "SUS", "SCR", "BSR", "BSC") gc = GarbageCollector(exts=set(exts), policy=policy) self.set_gc(gc) for work in self: #work.set_gc(gc) # TODO Add support for Works and flow policy for task in work: task.set_gc(gc) def connect_signals(self): """ Connect the signals within the `Flow`. The `Flow` is responsible for catching the important signals raised from its works. """ # Connect the signals inside each Work. for work in self: work.connect_signals() # Observe the nodes that must reach S_OK in order to call the callbacks. for cbk in self._callbacks: #cbk.enable() for dep in cbk.deps: logger.info("connecting %s \nwith sender %s, signal %s" % (str(cbk), dep.node, dep.node.S_OK)) dispatcher.connect(self.on_dep_ok, signal=dep.node.S_OK, sender=dep.node, weak=False) # Associate to each signal the callback _on_signal # (bound method of the node that will be called by `Flow` # Each node will set its attribute _done_signal to True to tell # the flow that this callback should be disabled. # Register the callbacks for the Work. #for work in self: # slot = self._sig_slots[work] # for signal in S_ALL: # done_signal = getattr(work, "_done_ " + signal, False) # if not done_sig: # cbk_name = "_on_" + str(signal) # cbk = getattr(work, cbk_name, None) # if cbk is None: continue # slot[work][signal].append(cbk) # print("connecting %s\nwith sender %s, signal %s" % (str(cbk), dep.node, dep.node.S_OK)) # dispatcher.connect(self.on_dep_ok, signal=signal, sender=dep.node, weak=False) # Register the callbacks for the Tasks. #self.show_receivers() def disconnect_signals(self): """Disable the signals within the `Flow`.""" # Disconnect the signals inside each Work. for work in self: work.disconnect_signals() # Disable callbacks. for cbk in self._callbacks: cbk.disable() def show_receivers(self, sender=None, signal=None): sender = sender if sender is not None else dispatcher.Any signal = signal if signal is not None else dispatcher.Any print("*** live receivers ***") for rec in dispatcher.liveReceivers(dispatcher.getReceivers(sender, signal)): print("receiver -->", rec) print("*** end live receivers ***") def set_spectator_mode(self, mode=True): """ When the flow is in spectator_mode, we have to disable signals, pickle dump and possible callbacks A spectator can still operate on the flow but the new status of the flow won't be saved in the pickle file. Usually the flow is in spectator mode when we are already running it via the scheduler or other means and we should not interfere with its evolution. This is the reason why signals and callbacks must be disabled. Unfortunately preventing client-code from calling methods with side-effects when the flow is in spectator mode is not easy (e.g. flow.cancel will cancel the tasks submitted to the queue and the flow used by the scheduler won't see this change! """ # Set the flags of all the nodes in the flow. mode = bool(mode) self.in_spectator_mode = mode for node in self.iflat_nodes(): node.in_spectator_mode = mode # connect/disconnect signals depending on mode. if not mode: self.connect_signals() else: self.disconnect_signals() #def get_results(self, **kwargs) def rapidfire(self, check_status=True, **kwargs): """ Use :class:`PyLauncher` to submits tasks in rapidfire mode. kwargs contains the options passed to the launcher. Return: number of tasks submitted. """ self.check_pid_file() self.set_spectator_mode(False) if check_status: self.check_status() from .launcher import PyLauncher return PyLauncher(self, **kwargs).rapidfire() def single_shot(self, check_status=True, **kwargs): """ Use :class:`PyLauncher` to submits one task. kwargs contains the options passed to the launcher. Return: number of tasks submitted. """ self.check_pid_file() self.set_spectator_mode(False) if check_status: self.check_status() from .launcher import PyLauncher return PyLauncher(self, **kwargs).single_shot() def make_scheduler(self, **kwargs): """ Build a return a :class:`PyFlowScheduler` to run the flow. Args: kwargs: if empty we use the user configuration file. if `filepath` in kwargs we init the scheduler from filepath. else pass **kwargs to :class:`PyFlowScheduler` __init__ method. """ from .launcher import PyFlowScheduler if not kwargs: # User config if kwargs is empty sched = PyFlowScheduler.from_user_config() else: # Use from_file if filepath if present, else call __init__ filepath = kwargs.pop("filepath", None) if filepath is not None: assert not kwargs sched = PyFlowScheduler.from_file(filepath) else: sched = PyFlowScheduler(**kwargs) sched.add_flow(self) return sched def batch(self, timelimit=None): """ Run the flow in batch mode, return exit status of the job script. Requires a manager.yml file and a batch_adapter adapter. Args: timelimit: Time limit (int with seconds or string with time given with the slurm convention: "days-hours:minutes:seconds"). If timelimit is None, the default value specified in the `batch_adapter` entry of `manager.yml` is used. """ from .launcher import BatchLauncher # Create a batch dir from the flow.workdir. prev_dir = os.path.join(*self.workdir.split(os.path.sep)[:-1]) prev_dir = os.path.join(os.path.sep, prev_dir) workdir = os.path.join(prev_dir, os.path.basename(self.workdir) + "_batch") return BatchLauncher(workdir=workdir, flows=self).submit(timelimit=timelimit) def make_light_tarfile(self, name=None): """Lightweight tarball file. Mainly used for debugging. Return the name of the tarball file.""" name = os.path.basename(self.workdir) + "-light.tar.gz" if name is None else name return self.make_tarfile(name=name, exclude_dirs=["outdata", "indata", "tmpdata"]) def make_tarfile(self, name=None, max_filesize=None, exclude_exts=None, exclude_dirs=None, verbose=0, **kwargs): """ Create a tarball file. Args: name: Name of the tarball file. Set to os.path.basename(`flow.workdir`) + "tar.gz"` if name is None. max_filesize (int or string with unit): a file is included in the tar file if its size <= max_filesize Can be specified in bytes e.g. `max_files=1024` or with a string with unit e.g. `max_filesize="1 Mb"`. No check is done if max_filesize is None. exclude_exts: List of file extensions to be excluded from the tar file. exclude_dirs: List of directory basenames to be excluded. verbose (int): Verbosity level. kwargs: keyword arguments passed to the :class:`TarFile` constructor. Returns: The name of the tarfile. """ def any2bytes(s): """Convert string or number to memory in bytes.""" if is_string(s): return int(Memory.from_string(s).to("b")) else: return int(s) if max_filesize is not None: max_filesize = any2bytes(max_filesize) if exclude_exts: # Add/remove ".nc" so that we can simply pass "GSR" instead of "GSR.nc" # Moreover this trick allows one to treat WFK.nc and WFK file on the same footing. exts = [] for e in list_strings(exclude_exts): exts.append(e) if e.endswith(".nc"): exts.append(e.replace(".nc", "")) else: exts.append(e + ".nc") exclude_exts = exts def filter(tarinfo): """ Function that takes a TarInfo object argument and returns the changed TarInfo object. If it instead returns None the TarInfo object will be excluded from the archive. """ # Skip links. if tarinfo.issym() or tarinfo.islnk(): if verbose: print("Excluding link: %s" % tarinfo.name) return None # Check size in bytes if max_filesize is not None and tarinfo.size > max_filesize: if verbose: print("Excluding %s due to max_filesize" % tarinfo.name) return None # Filter filenames. if exclude_exts and any(tarinfo.name.endswith(ext) for ext in exclude_exts): if verbose: print("Excluding %s due to extension" % tarinfo.name) return None # Exlude directories (use dir basenames). if exclude_dirs and any(dir_name in exclude_dirs for dir_name in tarinfo.name.split(os.path.sep)): if verbose: print("Excluding %s due to exclude_dirs" % tarinfo.name) return None return tarinfo back = os.getcwd() os.chdir(os.path.join(self.workdir, "..")) import tarfile name = os.path.basename(self.workdir) + ".tar.gz" if name is None else name with tarfile.open(name=name, mode='w:gz', **kwargs) as tar: tar.add(os.path.basename(self.workdir), arcname=None, recursive=True, exclude=None, filter=filter) # Add the script used to generate the flow. if self.pyfile is not None and os.path.exists(self.pyfile): tar.add(self.pyfile) os.chdir(back) return name #def abirobot(self, ext, check_status=True, nids=None): # """ # Builds and return the :class:`Robot` subclass from the file extension `ext`. # `nids` is an optional list of node identifiers used to filter the tasks in the flow. # """ # from abipy.abilab import abirobot # if check_status: self.check_status() # return abirobot(flow=self, ext=ext, nids=nids): @add_fig_kwargs def plot_networkx(self, mode="network", with_edge_labels=False, ax=None, node_size="num_cores", node_label="name_class", layout_type="spring", **kwargs): """ Use networkx to draw the flow with the connections among the nodes and the status of the tasks. Args: mode: `networkx` to show connections, `status` to group tasks by status. with_edge_labels: True to draw edge labels. ax: matplotlib :class:`Axes` or None if a new figure should be created. node_size: By default, the size of the node is proportional to the number of cores used. node_label: By default, the task class is used to label node. layout_type: Get positions for all nodes using `layout_type`. e.g. pos = nx.spring_layout(g) .. warning:: Requires networkx package. """ if not self.allocated: self.allocate() import networkx as nx # Build the graph g, edge_labels = nx.Graph(), {} tasks = list(self.iflat_tasks()) for task in tasks: g.add_node(task, name=task.name) for child in task.get_children(): g.add_edge(task, child) # TODO: Add getters! What about locked nodes! i = [dep.node for dep in child.deps].index(task) edge_labels[(task, child)] = " ".join(child.deps[i].exts) # Get positions for all nodes using layout_type. # e.g. pos = nx.spring_layout(g) pos = getattr(nx, layout_type + "_layout")(g) # Select function used to compute the size of the node make_node_size = dict(num_cores=lambda task: 300 * task.manager.num_cores)[node_size] # Select function used to build the label make_node_label = dict(name_class=lambda task: task.pos_str + "\n" + task.__class__.__name__,)[node_label] labels = {task: make_node_label(task) for task in g.nodes()} ax, fig, plt = get_ax_fig_plt(ax=ax) # Select plot type. if mode == "network": nx.draw_networkx(g, pos, labels=labels, node_color=[task.color_rgb for task in g.nodes()], node_size=[make_node_size(task) for task in g.nodes()], width=1, style="dotted", with_labels=True, ax=ax) # Draw edge labels if with_edge_labels: nx.draw_networkx_edge_labels(g, pos, edge_labels=edge_labels, ax=ax) elif mode == "status": # Group tasks by status. for status in self.ALL_STATUS: tasks = list(self.iflat_tasks(status=status)) # Draw nodes (color is given by status) node_color = status.color_opts["color"] if node_color is None: node_color = "black" #print("num nodes %s with node_color %s" % (len(tasks), node_color)) nx.draw_networkx_nodes(g, pos, nodelist=tasks, node_color=node_color, node_size=[make_node_size(task) for task in tasks], alpha=0.5, ax=ax #label=str(status), ) # Draw edges. nx.draw_networkx_edges(g, pos, width=2.0, alpha=0.5, arrows=True, ax=ax) # edge_color='r') # Draw labels nx.draw_networkx_labels(g, pos, labels, font_size=12, ax=ax) # Draw edge labels if with_edge_labels: nx.draw_networkx_edge_labels(g, pos, edge_labels=edge_labels, ax=ax) #label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', font_weight='normal', # alpha=1.0, bbox=None, ax=None, rotate=True, **kwds) else: raise ValueError("Unknown value for mode: %s" % str(mode)) ax.axis("off") return fig class G0W0WithQptdmFlow(Flow): def __init__(self, workdir, scf_input, nscf_input, scr_input, sigma_inputs, manager=None): """ Build a :class:`Flow` for one-shot G0W0 calculations. The computation of the q-points for the screening is parallelized with qptdm i.e. we run independent calculations for each q-point and then we merge the final results. Args: workdir: Working directory. scf_input: Input for the GS SCF run. nscf_input: Input for the NSCF run (band structure run). scr_input: Input for the SCR run. sigma_inputs: Input(s) for the SIGMA run(s). manager: :class:`TaskManager` object used to submit the jobs Initialized from manager.yml if manager is None. """ super(G0W0WithQptdmFlow, self).__init__(workdir, manager=manager) # Register the first work (GS + NSCF calculation) bands_work = self.register_work(BandStructureWork(scf_input, nscf_input)) # Register the callback that will be executed the work for the SCR with qptdm. scr_work = self.register_work_from_cbk(cbk_name="cbk_qptdm_workflow", cbk_data={"input": scr_input}, deps={bands_work.nscf_task: "WFK"}, work_class=QptdmWork) # The last work contains a list of SIGMA tasks # that will use the data produced in the previous two works. if not isinstance(sigma_inputs, (list, tuple)): sigma_inputs = [sigma_inputs] sigma_work = Work() for sigma_input in sigma_inputs: sigma_work.register_sigma_task(sigma_input, deps={bands_work.nscf_task: "WFK", scr_work: "SCR"}) self.register_work(sigma_work) self.allocate() def cbk_qptdm_workflow(self, cbk): """ This callback is executed by the flow when bands_work.nscf_task reaches S_OK. It computes the list of q-points for the W(q,G,G'), creates nqpt tasks in the second work (QptdmWork), and connect the signals. """ scr_input = cbk.data["input"] # Use the WFK file produced by the second # Task in the first Work (NSCF step). nscf_task = self[0][1] wfk_file = nscf_task.outdir.has_abiext("WFK") work = self[1] work.set_manager(self.manager) work.create_tasks(wfk_file, scr_input) work.add_deps(cbk.deps) work.set_flow(self) # Each task has a reference to its work. for task in work: task.set_work(work) # Add the garbage collector. if self.gc is not None: task.set_gc(self.gc) work.connect_signals() work.build() return work class FlowCallbackError(Exception): """Exceptions raised by FlowCallback.""" class FlowCallback(object): """ This object implements the callbacks executed by the :class:`flow` when particular conditions are fulfilled. See on_dep_ok method of :class:`Flow`. .. note:: I decided to implement callbacks via this object instead of a standard approach based on bound methods because: 1) pickle (v<=3) does not support the pickling/unplickling of bound methods 2) There's some extra logic and extra data needed for the proper functioning of a callback at the flow level and this object provides an easy-to-use interface. """ Error = FlowCallbackError def __init__(self, func_name, flow, deps, cbk_data): """ Args: func_name: String with the name of the callback to execute. func_name must be a bound method of flow with signature: func_name(self, cbk) where self is the Flow instance and cbk is the callback flow: Reference to the :class:`Flow` deps: List of dependencies associated to the callback The callback is executed when all dependencies reach S_OK. cbk_data: Dictionary with additional data that will be passed to the callback via self. """ self.func_name = func_name self.flow = flow self.deps = deps self.data = cbk_data or {} self._disabled = False def __str__(self): return "%s: %s bound to %s" % (self.__class__.__name__, self.func_name, self.flow) def __call__(self): """Execute the callback.""" if self.can_execute(): # Get the bound method of the flow from func_name. # We use this trick because pickle (format <=3) does not support bound methods. try: func = getattr(self.flow, self.func_name) except AttributeError as exc: raise self.Error(str(exc)) return func(self) else: raise self.Error("You tried to __call_ a callback that cannot be executed!") def can_execute(self): """True if we can execute the callback.""" return not self._disabled and all(dep.status == dep.node.S_OK for dep in self.deps) def disable(self): """ True if the callback has been disabled. This usually happens when the callback has been executed. """ self._disabled = True def enable(self): """Enable the callback""" self._disabled = False def handle_sender(self, sender): """ True if the callback is associated to the sender i.e. if the node who sent the signal appears in the dependencies of the callback. """ return sender in [d.node for d in self.deps] # Factory functions. def bandstructure_flow(workdir, scf_input, nscf_input, dos_inputs=None, manager=None, flow_class=Flow, allocate=True): """ Build a :class:`Flow` for band structure calculations. Args: workdir: Working directory. scf_input: Input for the GS SCF run. nscf_input: Input for the NSCF run (band structure run). dos_inputs: Input(s) for the NSCF run (dos run). manager: :class:`TaskManager` object used to submit the jobs Initialized from manager.yml if manager is None. flow_class: Flow subclass allocate: True if the flow should be allocated before returning. Returns: :class:`Flow` object """ flow = flow_class(workdir, manager=manager) work = BandStructureWork(scf_input, nscf_input, dos_inputs=dos_inputs) flow.register_work(work) # Handy aliases flow.scf_task, flow.nscf_task, flow.dos_tasks = work.scf_task, work.nscf_task, work.dos_tasks if allocate: flow.allocate() return flow def g0w0_flow(workdir, scf_input, nscf_input, scr_input, sigma_inputs, manager=None, flow_class=Flow, allocate=True): """ Build a :class:`Flow` for one-shot $G_0W_0$ calculations. Args: workdir: Working directory. scf_input: Input for the GS SCF run. nscf_input: Input for the NSCF run (band structure run). scr_input: Input for the SCR run. sigma_inputs: List of inputs for the SIGMA run. flow_class: Flow class manager: :class:`TaskManager` object used to submit the jobs. Initialized from manager.yml if manager is None. allocate: True if the flow should be allocated before returning. Returns: :class:`Flow` object """ flow = flow_class(workdir, manager=manager) work = G0W0Work(scf_input, nscf_input, scr_input, sigma_inputs) flow.register_work(work) if allocate: flow.allocate() return flow class PhononFlow(Flow): """ 1) One workflow for the GS run. 2) nqpt works for phonon calculations. Each work contains nirred tasks where nirred is the number of irreducible phonon perturbations for that particular q-point. """ @classmethod def from_scf_input(cls, workdir, scf_input, ph_ngqpt, with_becs=True, manager=None, allocate=True): """ Create a `PhononFlow` for phonon calculations from an `AbinitInput` defining a ground-state run. Args: workdir: Working directory of the flow. scf_input: :class:`AbinitInput` object with the parameters for the GS-SCF run. ph_ngqpt: q-mesh for phonons. Must be a sub-mesh of the k-mesh used for electrons. e.g if ngkpt = (8, 8, 8). ph_ngqpt = (4, 4, 4) is a valid choice whereas ph_ngqpt = (3, 3, 3) is not! with_becs: True if Born effective charges are wanted. manager: :class:`TaskManager` object. Read from `manager.yml` if None. allocate: True if the flow should be allocated before returning. Return: :class:`PhononFlow` object. """ flow = cls(workdir, manager=manager) # Register the SCF task flow.register_scf_task(scf_input) scf_task = flow[0][0] # Make sure k-mesh and q-mesh are compatible. scf_ngkpt, ph_ngqpt = np.array(scf_input["ngkpt"]), np.array(ph_ngqpt) if any(scf_ngkpt % ph_ngqpt != 0): raise ValueError("ph_ngqpt %s should be a sub-mesh of scf_ngkpt %s" % (ph_ngqpt, scf_ngkpt)) # Get the q-points in the IBZ from Abinit qpoints = scf_input.abiget_ibz(ngkpt=ph_ngqpt, shiftk=(0,0,0), kptopt=1).points # Create a PhononWork for each q-point. Add DDK and E-field if q == Gamma and with_becs. for qpt in qpoints: if np.allclose(qpt, 0) and with_becs: ph_work = BecWork.from_scf_task(scf_task) else: ph_work = PhononWork.from_scf_task(scf_task, qpoints=qpt) flow.register_work(ph_work) if allocate: flow.allocate() return flow def open_final_ddb(self): """ Open the DDB file located in the output directory of the flow. Return: :class:`DdbFile` object, None if file could not be found or file is not readable. """ ddb_path = self.outdir.has_abiext("DDB") if not ddb_path: if self.status == self.S_OK: logger.critical("%s reached S_OK but didn't produce a GSR file in %s" % (self, self.outdir)) return None from abipy.dfpt.ddb import DdbFile try: return DdbFile(ddb_path) except Exception as exc: logger.critical("Exception while reading DDB file at %s:\n%s" % (ddb_path, str(exc))) return None def finalize(self): """This method is called when the flow is completed.""" # Merge all the out_DDB files found in work.outdir. ddb_files = list(filter(None, [work.outdir.has_abiext("DDB") for work in self])) # Final DDB file will be produced in the outdir of the work. out_ddb = self.outdir.path_in("out_DDB") desc = "DDB file merged by %s on %s" % (self.__class__.__name__, time.asctime()) mrgddb = wrappers.Mrgddb(manager=self.manager, verbose=0) mrgddb.merge(self.outdir.path, ddb_files, out_ddb=out_ddb, description=desc) print("Final DDB file available at %s" % out_ddb) # Call the method of the super class. retcode = super(PhononFlow, self).finalize() #print("retcode", retcode) #if retcode != 0: return retcode return retcode class NonLinearCoeffFlow(Flow): """ 1) One workflow for the GS run. 2) nqpt works for electric field calculations. Each work contains nirred tasks where nirred is the number of irreducible perturbations for that particular q-point. """ @classmethod def from_scf_input(cls, workdir, scf_input, manager=None, allocate=True): """ Create a `NonlinearFlow` for second order susceptibility calculations from an `AbinitInput` defining a ground-state run. Args: workdir: Working directory of the flow. scf_input: :class:`AbinitInput` object with the parameters for the GS-SCF run. manager: :class:`TaskManager` object. Read from `manager.yml` if None. allocate: True if the flow should be allocated before returning. Return: :class:`NonlinearFlow` object. """ flow = cls(workdir, manager=manager) flow.register_scf_task(scf_input) scf_task = flow[0][0] nl_work = DteWork.from_scf_task(scf_task) flow.register_work(nl_work) if allocate: flow.allocate() return flow def open_final_ddb(self): """ Open the DDB file located in the output directory of the flow. Return: :class:`DdbFile` object, None if file could not be found or file is not readable. """ ddb_path = self.outdir.has_abiext("DDB") if not ddb_path: if self.status == self.S_OK: logger.critical("%s reached S_OK but didn't produce a GSR file in %s" % (self, self.outdir)) return None from abipy.dfpt.ddb import DdbFile try: return DdbFile(ddb_path) except Exception as exc: logger.critical("Exception while reading DDB file at %s:\n%s" % (ddb_path, str(exc))) return None def finalize(self): """This method is called when the flow is completed.""" # Merge all the out_DDB files found in work.outdir. ddb_files = list(filter(None, [work.outdir.has_abiext("DDB") for work in self])) # Final DDB file will be produced in the outdir of the work. out_ddb = self.outdir.path_in("out_DDB") desc = "DDB file merged by %s on %s" % (self.__class__.__name__, time.asctime()) mrgddb = wrappers.Mrgddb(manager=self.manager, verbose=0) mrgddb.merge(self.outdir.path, ddb_files, out_ddb=out_ddb, description=desc) print("Final DDB file available at %s" % out_ddb) # Call the method of the super class. retcode = super(NonLinearCoeffFlow, self).finalize() print("retcode", retcode) #if retcode != 0: return retcode return retcode # Alias for compatibility reasons. For the time being, DO NOT REMOVE nonlinear_coeff_flow = NonLinearCoeffFlow def phonon_flow(workdir, scf_input, ph_inputs, with_nscf=False, with_ddk=False, with_dde=False, manager=None, flow_class=PhononFlow, allocate=True): """ Build a :class:`PhononFlow` for phonon calculations. Args: workdir: Working directory. scf_input: Input for the GS SCF run. ph_inputs: List of Inputs for the phonon runs. with_nscf: add an nscf task in front of al phonon tasks to make sure the q point is covered with_ddk: add the ddk step with_dde: add the dde step it the dde is set ddk is switched on automatically manager: :class:`TaskManager` used to submit the jobs Initialized from manager.yml if manager is None. flow_class: Flow class Returns: :class:`Flow` object """ logger.critical("phonon_flow is deprecated and could give wrong results") if with_dde: with_ddk = True natom = len(scf_input.structure) # Create the container that will manage the different works. flow = flow_class(workdir, manager=manager) # Register the first work (GS calculation) # register_task creates a work for the task, registers it to the flow and returns the work # the 0the element of the work is the task scf_task = flow.register_task(scf_input, task_class=ScfTask)[0] # Build a temporary work with a shell manager just to run # ABINIT to get the list of irreducible pertubations for this q-point. shell_manager = flow.manager.to_shell_manager(mpi_procs=1) if with_ddk: logger.info('add ddk') # TODO # MG Warning: be careful here because one should use tolde or tolwfr (tolvrs shall not be used!) ddk_input = ph_inputs[0].deepcopy() ddk_input.set_vars(qpt=[0, 0, 0], rfddk=1, rfelfd=2, rfdir=[1, 1, 1]) ddk_task = flow.register_task(ddk_input, deps={scf_task: 'WFK'}, task_class=DdkTask)[0] if with_dde: logger.info('add dde') dde_input = ph_inputs[0].deepcopy() dde_input.set_vars(qpt=[0, 0, 0], rfddk=1, rfelfd=2) dde_input_idir = dde_input.deepcopy() dde_input_idir.set_vars(rfdir=[1, 1, 1]) dde_task = flow.register_task(dde_input, deps={scf_task: 'WFK', ddk_task: 'DDK'}, task_class=DdeTask)[0] if not isinstance(ph_inputs, (list, tuple)): ph_inputs = [ph_inputs] for i, ph_input in enumerate(ph_inputs): fake_input = ph_input.deepcopy() # Run abinit on the front-end to get the list of irreducible pertubations. tmp_dir = os.path.join(workdir, "__ph_run" + str(i) + "__") w = PhononWork(workdir=tmp_dir, manager=shell_manager) fake_task = w.register(fake_input) # Use the magic value paral_rf = -1 to get the list of irreducible perturbations for this q-point. abivars = dict( paral_rf=-1, rfatpol=[1, natom], # Set of atoms to displace. rfdir=[1, 1, 1], # Along this set of reduced coordinate axis. ) fake_task.set_vars(abivars) w.allocate() w.start(wait=True) # Parse the file to get the perturbations. try: irred_perts = yaml_read_irred_perts(fake_task.log_file.path) except: print("Error in %s" % fake_task.log_file.path) raise logger.info(irred_perts) w.rmtree() # Now we can build the final list of works: # One work per q-point, each work computes all # the irreducible perturbations for a singe q-point. work_qpt = PhononWork() if with_nscf: # MG: Warning this code assume 0 is Gamma! nscf_input = copy.deepcopy(scf_input) nscf_input.set_vars(kptopt=3, iscf=-3, qpt=irred_perts[0]['qpt'], nqpt=1) nscf_task = work_qpt.register_nscf_task(nscf_input, deps={scf_task: "DEN"}) deps = {nscf_task: "WFQ", scf_task: "WFK"} else: deps = {scf_task: "WFK"} if with_ddk: deps[ddk_task] = 'DDK' logger.info(irred_perts[0]['qpt']) for irred_pert in irred_perts: #print(irred_pert) new_input = ph_input.deepcopy() #rfatpol 1 1 # Only the first atom is displaced #rfdir 1 0 0 # Along the first reduced coordinate axis qpt = irred_pert["qpt"] idir = irred_pert["idir"] ipert = irred_pert["ipert"] # TODO this will work for phonons, but not for the other types of perturbations. rfdir = 3 * [0] rfdir[idir -1] = 1 rfatpol = [ipert, ipert] new_input.set_vars( #rfpert=1, qpt=qpt, rfdir=rfdir, rfatpol=rfatpol, ) if with_ddk: new_input.set_vars(rfelfd=3) work_qpt.register_phonon_task(new_input, deps=deps) flow.register_work(work_qpt) if allocate: flow.allocate() return flow def phonon_conv_flow(workdir, scf_input, qpoints, params, manager=None, allocate=True): """ Create a :class:`Flow` to perform convergence studies for phonon calculations. Args: workdir: Working directory of the flow. scf_input: :class:`AbinitInput` object defining a GS-SCF calculation. qpoints: List of list of lists with the reduced coordinates of the q-point(s). params: To perform a converge study wrt ecut: params=["ecut", [2, 4, 6]] manager: :class:`TaskManager` object responsible for the submission of the jobs. If manager is None, the object is initialized from the yaml file located either in the working directory or in the user configuration dir. allocate: True if the flow should be allocated before returning. Return: :class:`Flow` object. """ qpoints = np.reshape(qpoints, (-1, 3)) flow = Flow(workdir=workdir, manager=manager) for qpt in qpoints: for gs_inp in scf_input.product(*params): # Register the SCF task work = flow.register_scf_task(gs_inp) # Add the PhononWork connected to this scf_task. flow.register_work(PhononWork.from_scf_task(work[0], qpoints=qpt)) if allocate: flow.allocate() return flow
mit
Titan-C/scikit-learn
examples/ensemble/plot_random_forest_regression_multioutput.py
46
2640
""" ============================================================ Comparing random forests and the multi-output meta estimator ============================================================ An example to compare multi-output regression with random forest and the :ref:`multioutput.MultiOutputRegressor <multiclass>` meta-estimator. This example illustrates the use of the :ref:`multioutput.MultiOutputRegressor <multiclass>` meta-estimator to perform multi-output regression. A random forest regressor is used, which supports multi-output regression natively, so the results can be compared. The random forest regressor will only ever predict values within the range of observations or closer to zero for each of the targets. As a result the predictions are biased towards the centre of the circle. Using a single underlying feature the model learns both the x and y coordinate as output. """ print(__doc__) # Author: Tim Head <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(600, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y += (0.5 - rng.rand(*y.shape)) X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=400, random_state=4) max_depth = 30 regr_multirf = MultiOutputRegressor(RandomForestRegressor(max_depth=max_depth, random_state=0)) regr_multirf.fit(X_train, y_train) regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2) regr_rf.fit(X_train, y_train) # Predict on new data y_multirf = regr_multirf.predict(X_test) y_rf = regr_rf.predict(X_test) # Plot the results plt.figure() s = 50 a = 0.4 plt.scatter(y_test[:, 0], y_test[:, 1], c="navy", s=s, marker="s", alpha=a, label="Data") plt.scatter(y_multirf[:, 0], y_multirf[:, 1], c="cornflowerblue", s=s, alpha=a, label="Multi RF score=%.2f" % regr_multirf.score(X_test, y_test)) plt.scatter(y_rf[:, 0], y_rf[:, 1], c="c", s=s, marker="^", alpha=a, label="RF score=%.2f" % regr_rf.score(X_test, y_test)) plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("target 1") plt.ylabel("target 2") plt.title("Comparing random forests and the multi-output meta estimator") plt.legend() plt.show()
bsd-3-clause
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/tsa/base/tests/test_datetools.py
3
6363
from datetime import datetime import numpy.testing as npt from statsmodels.tsa.base.datetools import (_date_from_idx, _idx_from_dates, date_parser, date_range_str, dates_from_str, dates_from_range, _infer_freq, _freq_to_pandas) def test_date_from_idx(): d1 = datetime(2008, 12, 31) idx = 15 npt.assert_equal(_date_from_idx(d1, idx, 'Q'), datetime(2012, 9, 30)) npt.assert_equal(_date_from_idx(d1, idx, 'A'), datetime(2023, 12, 31)) npt.assert_equal(_date_from_idx(d1, idx, 'B'), datetime(2009, 1, 21)) npt.assert_equal(_date_from_idx(d1, idx, 'D'), datetime(2009, 1, 15)) npt.assert_equal(_date_from_idx(d1, idx, 'W'), datetime(2009, 4, 12)) npt.assert_equal(_date_from_idx(d1, idx, 'M'), datetime(2010, 3, 31)) def test_idx_from_date(): d1 = datetime(2008, 12, 31) idx = 15 npt.assert_equal(_idx_from_dates(d1, datetime(2012, 9, 30), 'Q'), idx) npt.assert_equal(_idx_from_dates(d1, datetime(2023, 12, 31), 'A'), idx) npt.assert_equal(_idx_from_dates(d1, datetime(2009, 1, 21), 'B'), idx) npt.assert_equal(_idx_from_dates(d1, datetime(2009, 1, 15), 'D'), idx) # move d1 and d2 forward to end of week npt.assert_equal(_idx_from_dates(datetime(2009, 1, 4), datetime(2009, 4, 17), 'W'), idx-1) npt.assert_equal(_idx_from_dates(d1, datetime(2010, 3, 31), 'M'), idx) def test_regex_matching_month(): t1 = "1999m4" t2 = "1999:m4" t3 = "1999:mIV" t4 = "1999mIV" result = datetime(1999, 4, 30) npt.assert_equal(date_parser(t1), result) npt.assert_equal(date_parser(t2), result) npt.assert_equal(date_parser(t3), result) npt.assert_equal(date_parser(t4), result) def test_regex_matching_quarter(): t1 = "1999q4" t2 = "1999:q4" t3 = "1999:qIV" t4 = "1999qIV" result = datetime(1999, 12, 31) npt.assert_equal(date_parser(t1), result) npt.assert_equal(date_parser(t2), result) npt.assert_equal(date_parser(t3), result) npt.assert_equal(date_parser(t4), result) def test_dates_from_range(): results = [datetime(1959, 3, 31, 0, 0), datetime(1959, 6, 30, 0, 0), datetime(1959, 9, 30, 0, 0), datetime(1959, 12, 31, 0, 0), datetime(1960, 3, 31, 0, 0), datetime(1960, 6, 30, 0, 0), datetime(1960, 9, 30, 0, 0), datetime(1960, 12, 31, 0, 0), datetime(1961, 3, 31, 0, 0), datetime(1961, 6, 30, 0, 0), datetime(1961, 9, 30, 0, 0), datetime(1961, 12, 31, 0, 0), datetime(1962, 3, 31, 0, 0), datetime(1962, 6, 30, 0, 0)] dt_range = dates_from_range('1959q1', '1962q2') npt.assert_(results == dt_range) # test with starting period not the first with length results = results[2:] dt_range = dates_from_range('1959q3', length=len(results)) npt.assert_(results == dt_range) # check month results = [datetime(1959, 3, 31, 0, 0), datetime(1959, 4, 30, 0, 0), datetime(1959, 5, 31, 0, 0), datetime(1959, 6, 30, 0, 0), datetime(1959, 7, 31, 0, 0), datetime(1959, 8, 31, 0, 0), datetime(1959, 9, 30, 0, 0), datetime(1959, 10, 31, 0, 0), datetime(1959, 11, 30, 0, 0), datetime(1959, 12, 31, 0, 0), datetime(1960, 1, 31, 0, 0), datetime(1960, 2, 28, 0, 0), datetime(1960, 3, 31, 0, 0), datetime(1960, 4, 30, 0, 0), datetime(1960, 5, 31, 0, 0), datetime(1960, 6, 30, 0, 0), datetime(1960, 7, 31, 0, 0), datetime(1960, 8, 31, 0, 0), datetime(1960, 9, 30, 0, 0), datetime(1960, 10, 31, 0, 0), datetime(1960, 12, 31, 0, 0), datetime(1961, 1, 31, 0, 0), datetime(1961, 2, 28, 0, 0), datetime(1961, 3, 31, 0, 0), datetime(1961, 4, 30, 0, 0), datetime(1961, 5, 31, 0, 0), datetime(1961, 6, 30, 0, 0), datetime(1961, 7, 31, 0, 0), datetime(1961, 8, 31, 0, 0), datetime(1961, 9, 30, 0, 0), datetime(1961, 10, 31, 0, 0)] dt_range = dates_from_range("1959m3", length=len(results)) try: from pandas import DatetimeIndex _pandas_08x = True except ImportError, err: _pandas_08x = False d1 = datetime(2008, 12, 31) d2 = datetime(2012, 9, 30) def test_infer_freq(): d1 = datetime(2008, 12, 31) d2 = datetime(2012, 9, 30) if _pandas_08x: b = DatetimeIndex(start=d1, end=d2, freq=_freq_to_pandas['B']).values d = DatetimeIndex(start=d1, end=d2, freq=_freq_to_pandas['D']).values w = DatetimeIndex(start=d1, end=d2, freq=_freq_to_pandas['W']).values m = DatetimeIndex(start=d1, end=d2, freq=_freq_to_pandas['M']).values a = DatetimeIndex(start=d1, end=d2, freq=_freq_to_pandas['A']).values q = DatetimeIndex(start=d1, end=d2, freq=_freq_to_pandas['Q']).values assert _infer_freq(w) == 'W-SUN' assert _infer_freq(a) == 'A-DEC' assert _infer_freq(q) == 'Q-DEC' assert _infer_freq(w[:3]) == 'W-SUN' assert _infer_freq(a[:3]) == 'A-DEC' assert _infer_freq(q[:3]) == 'Q-DEC' else: from pandas import DateRange b = DateRange(d1, d2, offset=_freq_to_pandas['B']).values d = DateRange(d1, d2, offset=_freq_to_pandas['D']).values w = DateRange(d1, d2, offset=_freq_to_pandas['W']).values m = DateRange(d1, d2, offset=_freq_to_pandas['M']).values a = DateRange(d1, d2, offset=_freq_to_pandas['A']).values q = DateRange(d1, d2, offset=_freq_to_pandas['Q']).values assert _infer_freq(w) == 'W' assert _infer_freq(a) == 'A' assert _infer_freq(q) == 'Q' assert _infer_freq(w[:3]) == 'W' assert _infer_freq(a[:3]) == 'A' assert _infer_freq(q[:3]) == 'Q' assert _infer_freq(b[2:5]) == 'B' assert _infer_freq(b[:3]) == 'D' assert _infer_freq(b) == 'B' assert _infer_freq(d) == 'D' assert _infer_freq(m) == 'M' assert _infer_freq(d[:3]) == 'D' assert _infer_freq(m[:3]) == 'M'
apache-2.0
AdaptiveApplications/carnegie
tarc_bus_locator_client/numpy-1.8.1/numpy/lib/function_base.py
9
113795
from __future__ import division, absolute_import, print_function __docformat__ = "restructuredtext en" __all__ = [ 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc'] import warnings import types import sys import numpy.core.numeric as _nx from numpy.core import linspace from numpy.core.numeric import ones, zeros, arange, concatenate, array, \ asarray, asanyarray, empty, empty_like, ndarray, around from numpy.core.numeric import ScalarType, dot, where, newaxis, intp, \ integer, isscalar from numpy.core.umath import pi, multiply, add, arctan2, \ frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp, log10 from numpy.core.fromnumeric import ravel, nonzero, choose, sort, partition, mean from numpy.core.numerictypes import typecodes, number from numpy.core import atleast_1d, atleast_2d from numpy.lib.twodim_base import diag from ._compiled_base import _insert, add_docstring from ._compiled_base import digitize, bincount, interp as compiled_interp from .utils import deprecate from ._compiled_base import add_newdoc_ufunc import numpy as np import collections from numpy.compat import long # Force range to be a generator, for np.delete's usage. if sys.version_info[0] < 3: range = xrange def iterable(y): """ Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : {0, 1} Return 1 if the object has an iterator method or is a sequence, and 0 otherwise. Examples -------- >>> np.iterable([1, 2, 3]) 1 >>> np.iterable(2) 0 """ try: iter(y) except: return 0 return 1 def histogram(a, bins=10, range=None, normed=False, weights=None, density=None): """ Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. normed : bool, optional This keyword is deprecated in Numpy 1.6 due to confusing/buggy behavior. It will be removed in Numpy 2.0. Use the density keyword instead. If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that this latter behavior is known to be buggy with unequal bin widths; use `density` instead. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `normed` is True, the weights are normalized, so that the integral of the density over the range remains 1 density : bool, optional If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. Overrides the `normed` keyword if given. Returns ------- hist : array The values of the histogram. See `normed` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted, digitize Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, density=True) >>> hist array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist*np.diff(bin_edges)) 1.0 """ a = asarray(a) if weights is not None: weights = asarray(weights) if np.any(weights.shape != a.shape): raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() if (range is not None): mn, mx = range if (mn > mx): raise AttributeError( 'max must be larger than min in range parameter.') if not iterable(bins): if np.isscalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") if range is None: if a.size == 0: # handle empty arrays. Can't determine range, so use 0-1. range = (0, 1) else: range = (a.min(), a.max()) mn, mx = [mi+0.0 for mi in range] if mn == mx: mn -= 0.5 mx += 0.5 bins = linspace(mn, mx, bins+1, endpoint=True) else: bins = asarray(bins) if (np.diff(bins) < 0).any(): raise AttributeError( 'bins must increase monotonically.') # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = int else: ntype = weights.dtype n = np.zeros(bins.shape, ntype) block = 65536 if weights is None: for i in arange(0, len(a), block): sa = sort(a[i:i+block]) n += np.r_[sa.searchsorted(bins[:-1], 'left'), \ sa.searchsorted(bins[-1], 'right')] else: zero = array(0, dtype=ntype) for i in arange(0, len(a), block): tmp_a = a[i:i+block] tmp_w = weights[i:i+block] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate(([zero,], sw.cumsum())) bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), \ sa.searchsorted(bins[-1], 'right')] n += cw[bin_index] n = np.diff(n) if density is not None: if density: db = array(np.diff(bins), float) return n/db/n.sum(), bins else: return n, bins else: # deprecated, buggy behavior. Remove for Numpy 2.0 if normed: db = array(np.diff(bins), float) return n/(n*db).sum(), bins else: return n, bins def histogramdd(sample, bins=10, range=None, normed=False, weights=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : array_like The data to be histogrammed. It must be an (N,D) array or data that can be converted to such. The rows of the resulting array are the coordinates of points in a D dimensional polytope. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitly in `bins`. Defaults to the minimum and maximum values along each dimension. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_volume``. weights : array_like (N,), optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1-D histogram histogram2d: 2-D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = atleast_2d(sample).T N, D = sample.shape nbin = empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = asarray(weights) try: M = len(bins) if M != D: raise AttributeError( 'The dimension of bins must be equal'\ ' to the dimension of the sample x.') except TypeError: # bins is an integer bins = D*[bins] # Select range for each dimension # Used only if number of bins is given. if range is None: # Handle empty input. Range can't be determined in that case, use 0-1. if N == 0: smin = zeros(D) smax = ones(D) else: smin = atleast_1d(array(sample.min(0), float)) smax = atleast_1d(array(sample.max(0), float)) else: smin = zeros(D) smax = zeros(D) for i in arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in arange(D): if isscalar(bins[i]): if bins[i] < 1: raise ValueError("Element at index %s in `bins` should be " "a positive integer." % i) nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1) else: edges[i] = asarray(bins[i], float) nbin[i] = len(edges[i])+1 # +1 for outlier bins dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): raise ValueError(""" Found bin edge of size <= 0. Did you specify `bins` with non-monotonic sequence?""") nbin = asarray(nbin) # Handle empty input. if N == 0: return np.zeros(nbin-2), edges # Compute the bin number each sample falls into. Ncount = {} for i in arange(D): Ncount[i] = digitize(sample[:, i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. for i in arange(D): # Rounding precision mindiff = dedges[i].min() if not np.isinf(mindiff): decimal = int(-log10(mindiff)) + 6 # Find which points are on the rightmost edge. not_smaller_than_edge = (sample[:, i] >= edges[i][-1]) on_edge = (around(sample[:, i], decimal) == around(edges[i][-1], decimal)) # Shift these points one bin to the left. Ncount[i][where(on_edge & not_smaller_than_edge)[0]] -= 1 # Flattened histogram matrix (1D) # Reshape is used so that overlarge arrays # will raise an error. hist = zeros(nbin, float).reshape(-1) # Compute the sample indices in the flattened histogram matrix. ni = nbin.argsort() xy = zeros(N, int) for i in arange(0, D-1): xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() xy += Ncount[ni[-1]] # Compute the number of repetitions in xy and assign it to the # flattened histmat. if len(xy) == 0: return zeros(nbin-2, int), edges flatcount = bincount(xy, weights) a = arange(len(flatcount)) hist[a] = flatcount # Shape into a proper matrix hist = hist.reshape(sort(nbin)) for i in arange(nbin.size): j = ni.argsort()[i] hist = hist.swapaxes(i, j) ni[i], ni[j] = ni[j], ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D*[slice(1, -1)] hist = hist[core] # Normalize if normed is True if normed: s = hist.sum() for i in arange(D): shape = ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. Parameters ---------- a : array_like Array containing data to be averaged. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which to average `a`. If `None`, averaging is done over the flattened array. weights : array_like, optional An array of weights associated with the values in `a`. Each value in `a` contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If `weights=None`, then all data in `a` are assumed to have a weight equal to one. returned : bool, optional Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) is returned, otherwise only the average is returned. If `weights=None`, `sum_of_weights` is equivalent to the number of elements over which the average is taken. Returns ------- average, [sum_of_weights] : {array_type, double} Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` if `a` is of integer type, otherwise it is of the same type as `a`. `sum_of_weights` is of the same type as `average`. Raises ------ ZeroDivisionError When all weights along axis are zero. See `numpy.ma.average` for a version robust to this type of error. TypeError When the length of 1D `weights` is not the same as the shape of `a` along axis. See Also -------- mean ma.average : average for masked arrays -- useful if your data contains "missing" values Examples -------- >>> data = range(1,5) >>> data [1, 2, 3, 4] >>> np.average(data) 2.5 >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 >>> data = np.arange(6).reshape((3,2)) >>> data array([[0, 1], [2, 3], [4, 5]]) >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. """ if not isinstance(a, np.matrix) : a = np.asarray(a) if weights is None : avg = a.mean(axis) scl = avg.dtype.type(a.size/avg.size) else : a = a + 0.0 wgt = np.array(weights, dtype=a.dtype, copy=0) # Sanity checks if a.shape != wgt.shape : if axis is None : raise TypeError( "Axis must be specified when shapes of a "\ "and weights differ.") if wgt.ndim != 1 : raise TypeError( "1D weights expected when shapes of a and "\ "weights differ.") if wgt.shape[0] != a.shape[axis] : raise ValueError( "Length of weights not compatible with "\ "specified axis.") # setup wgt to broadcast along axis wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) scl = wgt.sum(axis=axis) if (scl == 0.0).any(): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt).sum(axis)/scl if returned: scl = np.multiply(avg, 0) + scl return avg, scl else: return avg def asarray_chkfinite(a, dtype=None, order=None): """ Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a, dtype=float) array([1., 2.]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print 'ValueError' ... ValueError """ a = asarray(a, dtype=dtype, order=order) if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): raise ValueError( "array must not contain infs or NaNs") return a def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray The input domain. condlist : list of bool arrays Each boolean array corresponds to a function in `funclist`. Wherever `condlist[i]` is True, `funclist[i](x)` is used as the output value. Each boolean array in `condlist` selects a piece of `x`, and should therefore be of the same shape as `x`. The length of `condlist` must correspond to that of `funclist`. If one extra function is given, i.e. if ``len(funclist) - len(condlist) == 1``, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over `x` wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (``lambda x: scalar``) is assumed. args : tuple, optional Any further arguments given to `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then each function is called as ``f(x, 1, 'a')``. kw : dict, optional Keyword arguments used in calling `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., lambda=1)``, then each function is called as ``f(x, lambda=1)``. Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in `funclist` on the appropriate portions of `x`, as defined by the boolean arrays in `condlist`. Portions not covered by any condition have undefined values. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of `x` that satisfy the corresponding condition from `condlist`. The result is:: |-- |funclist[0](x[condlist[0]]) out = |funclist[1](x[condlist[1]]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. >>> x = np.linspace(-2.5, 2.5, 6) >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for ``x >= 0``. >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) """ x = asanyarray(x) n2 = len(funclist) if isscalar(condlist) or \ not (isinstance(condlist[0], list) or isinstance(condlist[0], ndarray)): condlist = [condlist] condlist = [asarray(c, dtype=bool) for c in condlist] n = len(condlist) if n == n2-1: # compute the "otherwise" condition. totlist = condlist[0] for k in range(1, n): totlist |= condlist[k] condlist.append(~totlist) n += 1 if (n != n2): raise ValueError( "function list and condition list must be the same") zerod = False # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with # numpy.bool_ scalars if x.ndim == 0: x = x[None] zerod = True newcondlist = [] for k in range(n): if condlist[k].ndim == 0: condition = condlist[k][None] else: condition = condlist[k] newcondlist.append(condition) condlist = newcondlist y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not isinstance(item, collections.Callable): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in `choicelist` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `condlist` is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as `condlist`. default : scalar, optional The element inserted in `output` when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in `choicelist` where the m-th element of the corresponding array in `condlist` is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- >>> x = np.arange(10) >>> condlist = [x<3, x>5] >>> choicelist = [x, x**2] >>> np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) """ n = len(condlist) n2 = len(choicelist) if n2 != n: raise ValueError( "list of cases must be same length as list of conditions") choicelist = [default] + choicelist S = 0 pfac = 1 for k in range(1, n+1): S += k * pfac * asarray(condlist[k-1]) if k < n: pfac *= (1-asarray(condlist[k-1])) # handle special case of a 1-element condition but # a multi-element choice if type(S) in ScalarType or max(asarray(S).shape)==1: pfac = asarray(1) for k in range(n2+1): pfac = pfac + asarray(choicelist[k]) if type(S) in ScalarType: S = S*ones(asarray(pfac).shape, type(S)) else: S = S*ones(asarray(pfac).shape, S.dtype) return choose(S, tuple(choicelist)) def copy(a, order='K'): """ Return an array copy of the given object. Parameters ---------- a : array_like Input data. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible. (Note that this function and :meth:ndarray.copy are very similar, but have different default values for their order= arguments.) Returns ------- arr : ndarray Array interpretation of `a`. Notes ----- This is equivalent to >>> np.array(a, copy=True) #doctest: +SKIP Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when we modify x, y changes, but not z: >>> x[0] = 10 >>> x[0] == y[0] True >>> x[0] == z[0] False """ return array(a, order=order, copy=True) # Basic operations def gradient(f, *varargs): """ Return the gradient of an N-dimensional array. The gradient is computed using central differences in the interior and first differences at the boundaries. The returned gradient hence has the same shape as the input array. Parameters ---------- f : array_like An N-dimensional array containing samples of a scalar function. `*varargs` : scalars 0, 1, or N scalars specifying the sample distances in each direction, that is: `dx`, `dy`, `dz`, ... The default distance is 1. Returns ------- gradient : ndarray N arrays of the same shape as `f` giving the derivative of `f` with respect to each dimension. Examples -------- >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(x, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] """ f = np.asanyarray(f) N = len(f.shape) # number of dimensions n = len(varargs) if n == 0: dx = [1.0]*N elif n == 1: dx = [varargs[0]]*N elif n == N: dx = list(varargs) else: raise SyntaxError( "invalid number of arguments") # use central differences on interior and first differences on endpoints outvals = [] # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)]*N slice2 = [slice(None)]*N slice3 = [slice(None)]*N otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D', 'm', 'M']: otype = 'd' # Difference of datetime64 elements results in timedelta64 if otype == 'M' : # Need to use the full dtype name because it contains unit information otype = f.dtype.name.replace('datetime', 'timedelta') elif otype == 'm' : # Needs to keep the specific units, can't be a general unit otype = f.dtype for axis in range(N): # select out appropriate parts for this dimension out = np.empty_like(f, dtype=otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (f[2:] - f[:-2])/2.0 out[slice1] = (f[slice2] - f[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 # 1D equivalent -- out[0] = (f[1] - f[0]) out[slice1] = (f[slice2] - f[slice3]) slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 # 1D equivalent -- out[-1] = (f[-1] - f[-2]) out[slice1] = (f[slice2] - f[slice3]) # divide by step size outvals.append(out / dx[axis]) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) if N == 1: return outvals[0] else: return outvals def diff(a, n=1, axis=-1): """ Calculate the n-th order discrete difference along given axis. The first order difference is given by ``out[n] = a[n+1] - a[n]`` along the given axis, higher order differences are calculated by using `diff` recursively. Parameters ---------- a : array_like Input array n : int, optional The number of times values are differenced. axis : int, optional The axis along which the difference is taken, default is the last axis. Returns ------- diff : ndarray The `n` order differences. The shape of the output is the same as `a` except along `axis` where the dimension is smaller by `n`. See Also -------- gradient, ediff1d, cumsum Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) """ if n == 0: return a if n < 0: raise ValueError( "order must be non-negative but got " + repr(n)) a = asanyarray(a) nd = len(a.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) slice1 = tuple(slice1) slice2 = tuple(slice2) if n > 1: return diff(a[slice1]-a[slice2], n-1, axis=axis) else: return a[slice1]-a[slice2] def interp(x, xp, fp, left=None, right=None): """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : array_like The x-coordinates of the interpolated values. xp : 1-D sequence of floats The x-coordinates of the data points, must be increasing. fp : 1-D sequence of floats The y-coordinates of the data points, same length as `xp`. left : float, optional Value to return for `x < xp[0]`, default is `fp[0]`. right : float, optional Value to return for `x > xp[-1]`, defaults is `fp[-1]`. Returns ------- y : {float, ndarray} The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasing is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() """ if isinstance(x, (float, int, number)): return compiled_interp([x], xp, fp, left, right).item() elif isinstance(x, np.ndarray) and x.ndim == 0: return compiled_interp([x], xp, fp, left, right).item() else: return compiled_interp(x, xp, fp, left, right) def angle(z, deg=0): """ Return the angle of the complex argument. Parameters ---------- z : array_like A complex number or sequence of complex numbers. deg : bool, optional Return angle in degrees if True, radians if False (default). Returns ------- angle : {ndarray, scalar} The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. See Also -------- arctan2 absolute Examples -------- >>> np.angle([1.0, 1.0j, 1+1j]) # in radians array([ 0. , 1.57079633, 0.78539816]) >>> np.angle(1+1j, deg=True) # in degrees 45.0 """ if deg: fact = 180/pi else: fact = 1.0 z = asarray(z) if (issubclass(z.dtype.type, _nx.complexfloating)): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z return arctan2(zimag, zreal) * fact def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. Unwrap radian phase `p` by changing absolute jumps greater than `discont` to their 2*pi complement along the given axis. Parameters ---------- p : array_like Input array. discont : float, optional Maximum discontinuity between values, default is ``pi``. axis : int, optional Axis along which unwrap will operate, default is the last axis. Returns ------- out : ndarray Output array. See Also -------- rad2deg, deg2rad Notes ----- If the discontinuity in `p` is smaller than ``pi``, but larger than `discont`, no unwrapping is done because taking the 2*pi complement would only make the discontinuity larger. Examples -------- >>> phase = np.linspace(0, np.pi, num=5) >>> phase[3:] += np.pi >>> phase array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) >>> np.unwrap(phase) array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) """ p = asarray(p) nd = len(p.shape) dd = diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) ddmod = mod(dd+pi, 2*pi)-pi _nx.copyto(ddmod, pi, where=(ddmod==-pi) & (dd > 0)) ph_correct = ddmod - dd; _nx.copyto(ph_correct, 0, where=abs(dd)<discont) up = array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- >>> np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) """ b = array(a, copy=True) b.sort() if not issubclass(b.dtype.type, _nx.complexfloating): if b.dtype.char in 'bhBH': return b.astype('F') elif b.dtype.char == 'g': return b.astype('G') else: return b.astype('D') else: return b def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. Parameters ---------- filt : 1-D array or sequence Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- trimmed : 1-D array or sequence The result of trimming the input. The input data type is preserved. Examples -------- >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 0, 2, 1]) >>> np.trim_zeros(a, 'b') array([0, 0, 0, 1, 2, 3, 0, 2, 1]) The input data type is preserved, list/tuple in means list/tuple out. >>> np.trim_zeros([0, 1, 2, 0]) [1, 2] """ first = 0 trim = trim.upper() if 'F' in trim: for i in filt: if i != 0.: break else: first = first + 1 last = len(filt) if 'B' in trim: for i in filt[::-1]: if i != 0.: break else: last = last - 1 return filt[first:last] import sys if sys.hexversion < 0x2040000: from sets import Set as set @deprecate def unique(x): """ This function is deprecated. Use numpy.lib.arraysetops.unique() instead. """ try: tmp = x.flatten() if tmp.size == 0: return tmp tmp.sort() idx = concatenate(([True], tmp[1:]!=tmp[:-1])) return tmp[idx] except AttributeError: items = sorted(set(x)) return asarray(items) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True. See Also -------- take, put, copyto, compress Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- copyto, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ return _insert(arr, mask, vals) def disp(mesg, device=None, linefeed=True): """ Display a message on a device. Parameters ---------- mesg : str Message to display. device : object Device to write message. If None, defaults to ``sys.stdout`` which is very similar to ``print``. `device` needs to have ``write()`` and ``flush()`` methods. linefeed : bool, optional Option whether to print a line feed or not. Defaults to True. Raises ------ AttributeError If `device` does not have a ``write()`` or ``flush()`` method. Examples -------- Besides ``sys.stdout``, a file-like object can also be used as it has both required methods: >>> from StringIO import StringIO >>> buf = StringIO() >>> np.disp('"Display" in a file', device=buf) >>> buf.getvalue() '"Display" in a file\\n' """ if device is None: import sys device = sys.stdout if linefeed: device.write('%s\n' % mesg) else: device.write('%s' % mesg) device.flush() return class vectorize(object): """ vectorize(pyfunc, otypes='', doc=None, excluded=None, cache=False) Generalized function class. Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a numpy array as output. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of `vectorized` is determined by calling the function with the first element of the input. This can be avoided by specifying the `otypes` argument. Parameters ---------- pyfunc : callable A python function or method. otypes : str or list of dtypes, optional The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output. doc : str, optional The docstring for the function. If `None`, the docstring will be the ``pyfunc.__doc__``. excluded : set, optional Set of strings or integers representing the positional or keyword arguments for which the function will not be vectorized. These will be passed directly to `pyfunc` unmodified. .. versionadded:: 1.7.0 cache : bool, optional If `True`, then cache the first function call that determines the number of outputs if `otypes` is not provided. .. versionadded:: 1.7.0 Returns ------- vectorized : callable Vectorized function. Examples -------- >>> def myfunc(a, b): ... "Return a-b if a>b, otherwise return a+b" ... if a > b: ... return a - b ... else: ... return a + b >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) The docstring is taken from the input function to `vectorize` unless it is specified >>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`' The output type is determined by evaluating the first element of the input, unless it is specified >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> The `excluded` argument can be used to prevent vectorizing over certain arguments. This can be useful for array-like arguments of a fixed length such as the coefficients for a polynomial as in `polyval`: >>> def mypolyval(p, x): ... _p = list(p) ... res = _p.pop(0) ... while _p: ... res = res*x + _p.pop(0) ... return res >>> vpolyval = np.vectorize(mypolyval, excluded=['p']) >>> vpolyval(p=[1, 2, 3], x=[0, 1]) array([3, 6]) Positional arguments may also be excluded by specifying their position: >>> vpolyval.excluded.add(0) >>> vpolyval([1, 2, 3], x=[0, 1]) array([3, 6]) Notes ----- The `vectorize` function is provided primarily for convenience, not for performance. The implementation is essentially a for loop. If `otypes` is not specified, then a call to the function with the first argument will be used to determine the number of outputs. The results of this call will be cached if `cache` is `True` to prevent calling the function twice. However, to implement the cache, the original function must be wrapped which will slow down subsequent calls, so only do this if your function is expensive. The new keyword argument interface and `excluded` argument support further degrades performance. """ def __init__(self, pyfunc, otypes='', doc=None, excluded=None, cache=False): self.pyfunc = pyfunc self.cache = cache if doc is None: self.__doc__ = pyfunc.__doc__ else: self.__doc__ = doc if isinstance(otypes, str): self.otypes = otypes for char in self.otypes: if char not in typecodes['All']: raise ValueError("Invalid otype specified: %s" % (char,)) elif iterable(otypes): self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) else: raise ValueError("Invalid otype specification") # Excluded variable support if excluded is None: excluded = set() self.excluded = set(excluded) if self.otypes and not self.excluded: self._ufunc = None # Caching to improve default performance def __call__(self, *args, **kwargs): """ Return arrays with the results of `pyfunc` broadcast (vectorized) over `args` and `kwargs` not in `excluded`. """ excluded = self.excluded if not kwargs and not excluded: func = self.pyfunc vargs = args else: # The wrapper accepts only positional arguments: we use `names` and # `inds` to mutate `the_args` and `kwargs` to pass to the original # function. nargs = len(args) names = [_n for _n in kwargs if _n not in excluded] inds = [_i for _i in range(nargs) if _i not in excluded] the_args = list(args) def func(*vargs): for _n, _i in enumerate(inds): the_args[_i] = vargs[_n] kwargs.update(zip(names, vargs[len(inds):])) return self.pyfunc(*the_args, **kwargs) vargs = [args[_i] for _i in inds] vargs.extend([kwargs[_n] for _n in names]) return self._vectorize_call(func=func, args=vargs) def _get_ufunc_and_otypes(self, func, args): """Return (ufunc, otypes).""" # frompyfunc will fail if args is empty assert args if self.otypes: otypes = self.otypes nout = len(otypes) # Note logic here: We only *use* self._ufunc if func is self.pyfunc # even though we set self._ufunc regardless. if func is self.pyfunc and self._ufunc is not None: ufunc = self._ufunc else: ufunc = self._ufunc = frompyfunc(func, len(args), nout) else: # Get number of outputs and output types by calling the function on # the first entries of args. We also cache the result to prevent # the subsequent call when the ufunc is evaluated. # Assumes that ufunc first evaluates the 0th elements in the input # arrays (the input values are not checked to ensure this) inputs = [asarray(_a).flat[0] for _a in args] outputs = func(*inputs) # Performance note: profiling indicates that -- for simple functions # at least -- this wrapping can almost double the execution time. # Hence we make it optional. if self.cache: _cache = [outputs] def _func(*vargs): if _cache: return _cache.pop() else: return func(*vargs) else: _func = func if isinstance(outputs, tuple): nout = len(outputs) else: nout = 1 outputs = (outputs,) otypes = ''.join([asarray(outputs[_k]).dtype.char for _k in range(nout)]) # Performance note: profiling indicates that creating the ufunc is # not a significant cost compared with wrapping so it seems not # worth trying to cache this. ufunc = frompyfunc(_func, len(args), nout) return ufunc, otypes def _vectorize_call(self, func, args): """Vectorized call to `func` over positional `args`.""" if not args: _res = func() else: ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) # Convert args to object arrays first inputs = [array(_a, copy=False, subok=True, dtype=object) for _a in args] outputs = ufunc(*inputs) if ufunc.nout == 1: _res = array(outputs, copy=False, subok=True, dtype=otypes[0]) else: _res = tuple([array(_x, copy=False, subok=True, dtype=_t) for _x, _t in zip(outputs, otypes)]) return _res def cov(m, y=None, rowvar=1, bias=0, ddof=None): """ Estimate a covariance matrix, given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same form as that of `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations given (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : int, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The covariance matrix of the variables. See Also -------- corrcoef : Normalized covariance matrix Examples -------- Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]]) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> np.cov(x) array([[ 1., -1.], [-1., 1.]]) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.vstack((x,y)) >>> print np.cov(X) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x, y) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x) 11.71 """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError("ddof must be integer") X = array(m, ndmin=2, dtype=float) if X.size == 0: # handle empty arrays return np.array(m) if X.shape[0] == 1: rowvar = 1 if rowvar: axis = 0 tup = (slice(None), newaxis) else: axis = 1 tup = (newaxis, slice(None)) if y is not None: y = array(y, copy=False, ndmin=2, dtype=float) X = concatenate((X, y), axis) X -= X.mean(axis=1-axis)[tup] if rowvar: N = X.shape[1] else: N = X.shape[0] if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 fact = float(N - ddof) if not rowvar: return (dot(X.T, X.conj()) / fact).squeeze() else: return (dot(X, X.T.conj()) / fact).squeeze() def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): """ Return correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `P`, and the covariance matrix, `C`, is .. math:: P_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `P` are between -1 and 1, inclusive. Parameters ---------- x : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : {None, int}, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The correlation coefficient matrix of the variables. See Also -------- cov : Covariance matrix """ c = cov(x, y, rowvar, bias, ddof) if c.size == 0: # handle empty arrays return c try: d = diag(c) except ValueError: # scalar covariance return 1 return c/sqrt(multiply.outer(d, d)) def blackman(M): """ Return the Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, hamming, hanning, kaiser Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.blackman(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): """ Return the Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : array The triangular window, with the maximum value normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. See Also -------- blackman, hamming, hanning, kaiser Notes ----- The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- >>> np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ]) Plot the window and its frequency response (requires SciPy and matplotlib): >>> from numpy.fft import fft, fftshift >>> window = np.bartlett(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0-2.0*n/(M-1)) def hanning(M): """ Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). See Also -------- bartlett, blackman, hamming, kaiser Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hanning was named for Julius van Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ]) Plot the window and its frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hanning(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of the Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.5-0.5*cos(2.0*pi*n/(M-1)) def hamming(M): """ Return the Hamming window. The Hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hanning, kaiser Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.hamming(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0, M) return 0.54-0.46*cos(2.0*pi*n/(M-1)) ## Code from cephes for i0 _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1] def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in range(1, len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def _i0_1(x): return exp(x) * _chbevl(x/2.0-2, _i0A) def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) def i0(x): """ Modified Bessel function of the first kind, order 0. Usually denoted :math:`I_0`. This function does broadcast, but will *not* "up-cast" int dtype arguments unless accompanied by at least one float or complex dtype argument (see Raises below). Parameters ---------- x : array_like, dtype float or complex Argument of the Bessel function. Returns ------- out : ndarray, shape = x.shape, dtype = x.dtype The modified Bessel function evaluated at each of the elements of `x`. Raises ------ TypeError: array cannot be safely cast to required type If argument consists exclusively of int dtypes. See Also -------- scipy.special.iv, scipy.special.ive Notes ----- We use the algorithm published by Clenshaw [1]_ and referenced by Abramowitz and Stegun [2]_, for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). References ---------- .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in *National Physical Laboratory Mathematical Tables*, vol. 5, London: Her Majesty's Stationery Office, 1962. .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html Examples -------- >>> np.i0([0.]) array(1.0) >>> np.i0([0., 1. + 2j]) array([ 1.00000000+0.j , 0.18785373+0.64616944j]) """ x = atleast_1d(x).copy() y = empty_like(x) ind = (x<0) x[ind] = -x[ind] ind = (x<=8.0) y[ind] = _i0_1(x[ind]) ind2 = ~ind y[ind2] = _i0_2(x[ind2]) return y.squeeze() ## End of cephes code for i0 def kaiser(M, beta): """ Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- >>> np.kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> window = np.kaiser(51, 14) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ from numpy.dual import i0 if M == 1: return np.array([1.]) n = arange(0, M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) def sinc(x): """ Return the sinc function. The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate ``sinc(x)``. Returns ------- out : ndarray ``sinc(x)``, which has the same shape as the input. Notes ----- ``sinc(0)`` is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html .. [2] Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show() It works in 2-D as well: >>> x = np.linspace(-4, 4, 401) >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> """ x = np.asanyarray(x) y = pi* where(x == 0, 1.0e-20, x) return sin(y)/y def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a, subok=True, copy=True) b.sort(0) return b def median(a, axis=None, out=None, overwrite_input=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. Returns ------- median : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is odd. When N is even, it is the average of the two middle values of ``V_sorted``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ a = np.asanyarray(a) if axis is not None and axis >= a.ndim: raise IndexError("axis %d out of bounds (%d)" % (axis, a.ndim)) if overwrite_input: if axis is None: part = a.ravel() sz = part.size if sz % 2 == 0: szh = sz // 2 part.partition((szh - 1, szh)) else: part.partition((sz - 1) // 2) else: sz = a.shape[axis] if sz % 2 == 0: szh = sz // 2 a.partition((szh - 1, szh), axis=axis) else: a.partition((sz - 1) // 2, axis=axis) part = a else: if axis is None: sz = a.size else: sz = a.shape[axis] if sz % 2 == 0: part = partition(a, ((sz // 2) - 1, sz // 2), axis=axis) else: part = partition(a, (sz - 1) // 2, axis=axis) if part.shape == (): # make 0-D arrays work return part.item() if axis is None: axis = 0 indexer = [slice(None)] * part.ndim index = part.shape[axis] // 2 if part.shape[axis] % 2 == 1: # index with slice to allow mean (below) to work indexer[axis] = slice(index, index+1) else: indexer[axis] = slice(index-1, index+1) # Use mean in odd and even case to coerce data type # and check, use out array. return mean(part[indexer], axis=axis, out=out) def percentile(a, q, axis=None, out=None, overwrite_input=False): """ Compute the qth percentile of the data along the specified axis. Returns the qth percentile of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) Percentile to compute which must be between 0 and 100 inclusive. axis : int, optional Axis along which the percentiles are computed. The default (None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional If True, then allow use of memory of input array `a` for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an array, an error will be raised. Returns ------- percentile : scalar or ndarray If a single percentile `q` is given and axis=None a scalar is returned. If multiple percentiles `q` are given an array holding the result is returned. The results are listed in the first axis. (If `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median Notes ----- Given a vector V of length N, the q-th percentile of V is the q-th ranked value in a sorted copy of V. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the percentile if the normalized ranking does not match q exactly. This function is the same as the median if ``q=50``, the same as the minimum if ``q=0``and the same as the maximum if ``q=100``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 50) 3.5 >>> np.percentile(a, 50, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.percentile(a, 50, axis=1) array([ 7., 2.]) >>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.percentile(b, 50, axis=None, overwrite_input=True) 3.5 """ a = np.asarray(a) if q == 0: return a.min(axis=axis, out=out) elif q == 100: return a.max(axis=axis, out=out) if overwrite_input: if axis is None: sorted = a.ravel() sorted.sort() else: a.sort(axis=axis) sorted = a else: sorted = sort(a, axis=axis) if axis is None: axis = 0 return _compute_qth_percentile(sorted, q, axis, out) # handle sequence of q's without calling sort multiple times def _compute_qth_percentile(sorted, q, axis, out): if not isscalar(q): p = [_compute_qth_percentile(sorted, qi, axis, None) for qi in q] if out is not None: out.flat = p return p q = q / 100.0 if (q < 0) or (q > 1): raise ValueError("percentile must be either in the range [0,100]") indexer = [slice(None)] * sorted.ndim Nx = sorted.shape[axis] index = q*(Nx-1) i = int(index) if i == index: indexer[axis] = slice(i, i+1) weights = array(1) sumval = 1.0 else: indexer[axis] = slice(i, i+2) j = i + 1 weights = array([(j - index), (index - i)], float) wshape = [1]*sorted.ndim wshape[axis] = 2 weights.shape = wshape sumval = weights.sum() # Use add.reduce in both cases to coerce data type as well as # check and use out array. return add.reduce(sorted[indexer]*weights, axis=axis, out=out)/sumval def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional If `x` is None, then spacing between all `y` elements is `dx`. dx : scalar, optional If `x` is None, spacing given by `dx` is assumed. Default is 1. axis : int, optional Specify the axis. Returns ------- trapz : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) """ y = asanyarray(y) if x is None: d = dx else: x = asanyarray(x) if x.ndim == 1: d = diff(x) # reshape to correct shape shape = [1]*y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = diff(x, axis=axis) nd = len(y.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) try: ret = (d * (y[slice1] +y [slice2]) / 2.0).sum(axis) except ValueError: # Operations didn't work, cast to ndarray d = np.asarray(d) y = np.asarray(y) ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) return ret #always succeed def add_newdoc(place, obj, doc): """Adds documentation to obj which is in module place. If doc is a string add it to obj as a docstring If doc is a tuple, then the first element is interpreted as an attribute of obj and the second as the docstring (method, docstring) If doc is a list, then each element of the list should be a sequence of length two --> [(method1, docstring1), (method2, docstring2), ...] This routine never raises an error. This routine cannot modify read-only docstrings, as appear in new-style classes or built-in functions. Because this routine never raises an error the caller must check manually that the docstrings were changed. """ try: new = {} exec('from %s import %s' % (place, obj), new) if isinstance(doc, str): add_docstring(new[obj], doc.strip()) elif isinstance(doc, tuple): add_docstring(getattr(new[obj], doc[0]), doc[1].strip()) elif isinstance(doc, list): for val in doc: add_docstring(getattr(new[obj], val[0]), val[1].strip()) except: pass # Based on scitools meshgrid def meshgrid(*xi, **kwargs): """ Return coordinate matrices from two or more coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] In the 1-D and 0-D case, the indexing and sparse keywords have no effect. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> nx, ny = (3, 2) >>> x = np.linspace(0, 1, nx) >>> y = np.linspace(0, 1, ny) >>> xv, yv = meshgrid(x, y) >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) """ if len(xi) < 2: msg = 'meshgrid() takes 2 or more arguments (%d given)' % int(len(xi) > 0) raise ValueError(msg) args = np.atleast_1d(*xi) ndim = len(args) copy_ = kwargs.get('copy', True) sparse = kwargs.get('sparse', False) indexing = kwargs.get('indexing', 'xy') if not indexing in ['xy', 'ij']: raise ValueError("Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [x.reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(args)] shape = [x.size for x in output] if indexing == 'xy': # switch first and second axis output[0].shape = (1, -1) + (1,)*(ndim - 2) output[1].shape = (-1, 1) + (1,)*(ndim - 2) shape[0], shape[1] = shape[1], shape[0] if sparse: if copy_: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy_: mult_fact = np.ones(shape, dtype=int) return [x * mult_fact for x in output] else: return np.broadcast_arrays(*output) def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by `arr[obj]`. Parameters ---------- arr : array_like Input array. obj : slice, int or array of ints Indicate which sub-arrays to remove. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. append : Append elements at the end of an array. Notes ----- Often it is preferable to use a boolean mask. For example: >>> mask = np.ones(len(arr), dtype=bool) >>> mask[[0,2,4]] = False >>> result = arr[mask,...] Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further use of `mask`. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> np.delete(arr, 1, 0) array([[ 1, 2, 3, 4], [ 9, 10, 11, 12]]) >>> np.delete(arr, np.s_[::2], 1) array([[ 2, 4], [ 6, 8], [10, 12]]) >>> np.delete(arr, [1,3,5], None) array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim; axis = ndim-1; if ndim == 0: warnings.warn("in the future the special handling of scalars " "will be removed from delete and raise an error", DeprecationWarning) if wrap: return wrap(arr) else: return arr.copy() slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): start, stop, step = obj.indices(N) xr = range(start, stop, step) numtodel = len(xr) if numtodel <= 0: if wrap: return wrap(arr.copy()) else: return arr.copy() # Invert if step is negative: if step < 0: step = -step start = xr[-1] stop = xr[0] + 1 newshape[axis] -= numtodel new = empty(newshape, arr.dtype, arr.flags.fnc) # copy initial chunk if start == 0: pass else: slobj[axis] = slice(None, start) new[slobj] = arr[slobj] # copy end chunck if stop == N: pass else: slobj[axis] = slice(stop-numtodel, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(stop, None) new[slobj] = arr[slobj2] # copy middle pieces if step == 1: pass else: # use array indexing. keep = ones(stop-start, dtype=bool) keep[:stop-start:step] = False slobj[axis] = slice(start, stop-numtodel) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(start, stop) arr = arr[slobj2] slobj2[axis] = keep new[slobj] = arr[slobj2] if wrap: return wrap(new) else: return new _obj = obj obj = np.asarray(obj) # After removing the special handling of booleans and out of # bounds values, the conversion to the array can be removed. if obj.dtype == bool: warnings.warn("in the future insert will treat boolean arrays " "and array-likes as boolean index instead " "of casting it to integer", FutureWarning) obj = obj.astype(intp) if isinstance(_obj, (int, long, integer)): # optimization for a single value obj = obj.item() if (obj < -N or obj >=N): raise IndexError("index %i is out of bounds for axis " "%i with size %i" % (obj, axis, N)) if (obj < 0): obj += N newshape[axis]-=1; new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = slice(obj, None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj+1, None) new[slobj] = arr[slobj2] else: if obj.size == 0 and not isinstance(_obj, np.ndarray): obj = obj.astype(intp) if not np.can_cast(obj, intp, 'same_kind'): # obj.size = 1 special case always failed and would just # give superfluous warnings. warnings.warn("using a non-integer array as obj in delete " "will result in an error in the future", DeprecationWarning) obj = obj.astype(intp) keep = ones(N, dtype=bool) # Test if there are out of bound indices, this is deprecated inside_bounds = (obj < N) & (obj >= -N) if not inside_bounds.all(): warnings.warn("in the future out of bounds indices will raise an " "error instead of being ignored by `numpy.delete`.", DeprecationWarning) obj = obj[inside_bounds] positive_indices = obj >= 0 if not positive_indices.all(): warnings.warn("in the future negative indices will not be ignored " "by `numpy.delete`.", FutureWarning) obj = obj[positive_indices] keep[obj,] = False slobj[axis] = keep new = arr[slobj] if wrap: return wrap(new) else: return new def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which `values` is inserted. .. versionadded:: 1.8.0 Support for multiple insertions when `obj` is a single scalar or a sequence with one element (similar to calling insert multiple times). values : array_like Values to insert into `arr`. If the type of `values` is different from that of `arr`, `values` is converted to the type of `arr`. `values` should be shaped so that ``arr[...,obj,...] = values`` is legal. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. See Also -------- append : Append elements at the end of an array. concatenate : Join a sequence of arrays together. delete : Delete elements from an array. Notes ----- Note that for higher dimensional inserts `obj=0` behaves very different from `obj=[0]` just like `arr[:,0,:] = values` is different from `arr[:,[0],:] = values`. Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) Difference between sequence and scalars: >>> np.insert(a, [1], [[1],[2],[3]], axis=1) array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), ... np.insert(a, [1], [[1],[2],[3]], axis=1)) True >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim-1 else: if ndim > 0 and (axis < -ndim or axis >= ndim): raise IndexError("axis %i is out of bounds for an array " "of dimension %i" % (axis, ndim)) if (axis < 0): axis += ndim if (ndim == 0): warnings.warn("in the future the special handling of scalars " "will be removed from insert and raise an error", DeprecationWarning) arr = arr.copy() arr[...] = values if wrap: return wrap(arr) else: return arr slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, slice): # turn it into a range object indices = arange(*obj.indices(N),**{'dtype':intp}) else: # need to copy obj, because indices will be changed in-place indices = np.array(obj) if indices.dtype == bool: # See also delete warnings.warn("in the future insert will treat boolean arrays " "and array-likes as a boolean index instead " "of casting it to integer", FutureWarning) indices = indices.astype(intp) # Code after warning period: #if obj.ndim != 1: # raise ValueError('boolean array argument obj to insert ' # 'must be one dimensional') #indices = np.flatnonzero(obj) elif indices.ndim > 1: raise ValueError("index array argument obj to insert must " "be one dimensional or scalar") if indices.size == 1: index = indices.item() if index < -N or index > N: raise IndexError("index %i is out of bounds for axis " "%i with size %i" % (obj, axis, N)) if (index < 0): index += N values = array(values, copy=False, ndmin=arr.ndim) if indices.ndim == 0: # broadcasting is very different here, since a[:,0,:] = ... behaves # very different from a[:,[0],:] = ...! This changes values so that # it works likes the second case. (here a[:,0:1,:]) values = np.rollaxis(values, 0, axis + 1) numnew = values.shape[axis] newshape[axis] += numnew new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, index) new[slobj] = arr[slobj] slobj[axis] = slice(index, index+numnew) new[slobj] = values slobj[axis] = slice(index+numnew, None) slobj2 = [slice(None)] * ndim slobj2[axis] = slice(index, None) new[slobj] = arr[slobj2] if wrap: return wrap(new) return new elif indices.size == 0 and not isinstance(obj, np.ndarray): # Can safely cast the empty list to intp indices = indices.astype(intp) if not np.can_cast(indices, intp, 'same_kind'): warnings.warn("using a non-integer array as obj in insert " "will result in an error in the future", DeprecationWarning) indices = indices.astype(intp) indices[indices < 0] += N numnew = len(indices) order = indices.argsort(kind='mergesort') # stable sort indices[order] += np.arange(numnew) newshape[axis] += numnew old_mask = ones(newshape[axis], dtype=bool) old_mask[indices] = False new = empty(newshape, arr.dtype, arr.flags.fnc) slobj2 = [slice(None)]*ndim slobj[axis] = indices slobj2[axis] = old_mask new[slobj] = values new[slobj2] = arr if wrap: return wrap(new) return new def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. delete : Delete elements from an array. Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) When `axis` is specified, `values` must have the correct shape. >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) Traceback (most recent call last): ... ValueError: arrays must have same number of dimensions """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
mit
hsuantien/scikit-learn
examples/covariance/plot_outlier_detection.py
235
3891
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates two different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()
bsd-3-clause
ric2b/Vivaldi-browser
chromium/tools/perf/cli_tools/soundwave/tables/alerts_test.py
10
3647
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import datetime import unittest from cli_tools.soundwave import tables from core.external_modules import pandas @unittest.skipIf(pandas is None, 'pandas not available') class TestAlerts(unittest.TestCase): def testDataFrameFromJson(self): data = { 'anomalies': [ { 'key': 'abc123', 'timestamp': '2009-02-13T23:31:30.000', 'testsuite': 'loading.mobile', 'test': 'timeToFirstInteractive/Google', 'master': 'ChromiumPerf', 'bot': 'android-nexus5', 'start_revision': 12345, 'end_revision': 12543, 'median_before_anomaly': 2037.18, 'median_after_anomaly': 2135.540, 'units': 'ms', 'improvement': False, 'bug_id': 55555, 'bisect_status': 'started', }, { 'key': 'xyz567', 'timestamp': '2009-02-13T23:31:30.000', 'testsuite': 'loading.mobile', 'test': 'timeToFirstInteractive/Wikipedia', 'master': 'ChromiumPerf', 'bot': 'android-nexus5', 'start_revision': 12345, 'end_revision': 12543, 'median_before_anomaly': 2037.18, 'median_after_anomaly': 2135.540, 'units': 'ms', 'improvement': False, 'bug_id': None, 'bisect_status': 'started', } ] } alerts = tables.alerts.DataFrameFromJson(data) self.assertEqual(len(alerts), 2) alert = alerts.loc['abc123'] self.assertEqual(alert['timestamp'], datetime.datetime( year=2009, month=2, day=13, hour=23, minute=31, second=30)) self.assertEqual(alert['bot'], 'ChromiumPerf/android-nexus5') self.assertEqual(alert['test_suite'], 'loading.mobile') self.assertEqual(alert['test_case'], 'Google') self.assertEqual(alert['measurement'], 'timeToFirstInteractive') self.assertEqual(alert['bug_id'], 55555) self.assertEqual(alert['status'], 'triaged') # We expect bug_id's to be integers. self.assertTrue(pandas.api.types.is_integer_dtype(alerts['bug_id'].dtype)) # Missing bug_id's become 0. self.assertEqual(alerts.loc['xyz567']['bug_id'], 0) def testDataFrameFromJson_withSummaryMetric(self): data = { 'anomalies': [ { 'key': 'abc123', 'timestamp': '2009-02-13T23:31:30.000', 'testsuite': 'loading.mobile', 'test': 'timeToFirstInteractive', 'master': 'ChromiumPerf', 'bot': 'android-nexus5', 'start_revision': 12345, 'end_revision': 12543, 'median_before_anomaly': 2037.18, 'median_after_anomaly': 2135.540, 'units': 'ms', 'improvement': False, 'bug_id': 55555, 'bisect_status': 'started', } ] } alerts = tables.alerts.DataFrameFromJson(data) self.assertEqual(len(alerts), 1) alert = alerts.loc['abc123'] self.assertEqual(alert['measurement'], 'timeToFirstInteractive') self.assertIsNone(alert['test_case']) def testDataFrameFromJson_noAlerts(self): data = {'anomalies': []} alerts = tables.alerts.DataFrameFromJson(data) self.assertEqual(len(alerts), 0)
bsd-3-clause
ldirer/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
jor-/scipy
doc/source/tutorial/examples/optimize_global_1.py
15
1752
import numpy as np import matplotlib.pyplot as plt from scipy import optimize def eggholder(x): return (-(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1] + 47)))) -x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47))))) bounds = [(-512, 512), (-512, 512)] x = np.arange(-512, 513) y = np.arange(-512, 513) xgrid, ygrid = np.meshgrid(x, y) xy = np.stack([xgrid, ygrid]) results = dict() results['shgo'] = optimize.shgo(eggholder, bounds) results['DA'] = optimize.dual_annealing(eggholder, bounds) results['DE'] = optimize.differential_evolution(eggholder, bounds) results['BH'] = optimize.basinhopping(eggholder, bounds) results['shgo_sobol'] = optimize.shgo(eggholder, bounds, n=200, iters=5, sampling_method='sobol') fig = plt.figure(figsize=(4.5, 4.5)) ax = fig.add_subplot(111) im = ax.imshow(eggholder(xy), interpolation='bilinear', origin='lower', cmap='gray') ax.set_xlabel('x') ax.set_ylabel('y') def plot_point(res, marker='o', color=None): ax.plot(512+res.x[0], 512+res.x[1], marker=marker, color=color, ms=10) plot_point(results['BH'], color='y') # basinhopping - yellow plot_point(results['DE'], color='c') # differential_evolution - cyan plot_point(results['DA'], color='w') # dual_annealing. - white # SHGO produces multiple minima, plot them all (with a smaller marker size) plot_point(results['shgo'], color='r', marker='+') plot_point(results['shgo_sobol'], color='r', marker='x') for i in range(results['shgo_sobol'].xl.shape[0]): ax.plot(512 + results['shgo_sobol'].xl[i, 0], 512 + results['shgo_sobol'].xl[i, 1], 'ro', ms=2) ax.set_xlim([-4, 514*2]) ax.set_ylim([-4, 514*2]) fig.tight_layout() plt.show()
bsd-3-clause
bytefish/facerec
py/apps/scripts/preprocessing_experiments.py
1
5626
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) Philipp Wagner. All rights reserved. # Licensed under the BSD license. See LICENSE file in the project root for full license information. import sys, os sys.path.append("../..") from builtins import range # facerec from facerec.feature import Fisherfaces, PCA, SpatialHistogram, Identity from facerec.distance import EuclideanDistance from facerec.classifier import NearestNeighbor from facerec.model import PredictableModel from facerec.validation import KFoldCrossValidation from facerec.visual import subplot from facerec.util import minmax_normalize # required libraries import numpy as np # try to import the PIL Image module try: from PIL import Image except ImportError: import Image import logging import matplotlib.cm as cm class FileNameFilter: def __init__(self, name): self._name = name def __call__(self, filename): return True def __repr__(self): return "FileNameFilter (name=%s)" % (self._name) class YaleBaseFilter(FileNameFilter): def __init__(self, min_azimuth, max_azimuth, min_elevation, max_elevation): FileNameFilter.__init__(self, "Filter YaleFDB Subset1") self._min_azimuth = min_azimuth self._max_azimuth = max_azimuth self._min_elevation = min_elevation self._max_elevation = max_elevation def __call__(self, filename): # We only want the PGM files: filetype = filename[-4:] if filetype != ".pgm": return False # There are "Ambient" PGM files, ignore them: if "Ambient" in filename: return False azimuth = int(filename[12:16]) elevation = int(filename[17:20]) # Now filter based on angles: if azimuth < self._min_azimuth or azimuth > self._max_azimuth: return False if elevation < self._min_elevation or elevation > self._max_elevation: return False return True def read_images(path, fileNameFilter=FileNameFilter("None"), sz=None): """Reads the images in a given folder, resizes images on the fly if size is given. Args: path: Path to a folder with subfolders representing the subjects (persons). sz: A tuple with the size Resizes Returns: A list [X,y] X: The images, which is a Python list of numpy arrays. y: The corresponding labels (the unique number of the subject, person) in a Python list. """ c = 0 X,y = [], [] for dirname, dirnames, filenames in os.walk(path): for subdirname in dirnames: subject_path = os.path.join(dirname, subdirname) for filename in os.listdir(subject_path): if fileNameFilter(filename): print(filename) try: im = Image.open(os.path.join(subject_path, filename)) im = im.convert("L") # resize to given size (if given) if (sz is not None): im = im.resize(sz, Image.ANTIALIAS) X.append(np.asarray(im, dtype=np.uint8)) y.append(c) except IOError as e: print("I/O error: {0}".format(e)) raise e except: print("Unexpected error: {0}".format(sys.exc_info()[0])) raise c = c+1 return [X,y] if __name__ == "__main__": # This is where we write the images, if an output_dir is given # in command line: out_dir = None # You'll need at least a path to your image data, please see # the tutorial coming with this source code on how to prepare # your image data: if len(sys.argv) < 2: print("USAGE: facerec_demo.py </path/to/images>") sys.exit() yale_filter = YaleBaseFilter(-25, 25, -25, 25) # Now read in the image data. This must be a valid path! [X,y] = read_images(sys.argv[1], yale_filter) # Then set up a handler for logging: handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # Add handler to facerec modules, so we see what's going on inside: logger = logging.getLogger("facerec") logger.addHandler(handler) logger.setLevel(logging.DEBUG) # Define the Fisherfaces as Feature Extraction method: feature = PCA() # Define a 1-NN classifier with Euclidean Distance: classifier = NearestNeighbor(dist_metric=EuclideanDistance(), k=1) # Define the model as the combination model = PredictableModel(feature=feature, classifier=classifier) # Compute the Fisherfaces on the given data (in X) and labels (in y): model.compute(X, y) # Then turn the first (at most) 16 eigenvectors into grayscale # images (note: eigenvectors are stored by column!) E = [] for i in range(min(model.feature.eigenvectors.shape[1], 16)): e = model.feature.eigenvectors[:,i].reshape(X[0].shape) E.append(minmax_normalize(e,0,255, dtype=np.uint8)) # Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf" subplot(title="Fisherfaces", images=E, rows=4, cols=4, sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png") # Perform a 10-fold cross validation cv = KFoldCrossValidation(model, k=10) cv.validate(X, y) # And print the result: cv.print_results()
bsd-3-clause
pkruskal/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
legacysurvey/legacypipe
py/legacyanalysis/compare-to-ps1.py
2
30435
from __future__ import print_function import matplotlib matplotlib.use('Agg') import pylab as plt import numpy as np import os import sys from astrometry.util.fits import fits_table from astrometry.libkd.spherematch import match_radec from astrometry.util.plotutils import PlotSequence from legacyanalysis.ps1cat import ps1cat, ps1_to_decam from legacypipe.survey import * ''' pixsc = 0.262 apr = [1.0, 2.0, 3.5] / pixsc #-> aperture photometry radius in pixels decstat -- aper, img, ..., apr -> allmags mags = reform(allmags[2,ii]) Skyrad_pix -- default 7 to 10 pixel radius in pixels skyrad_pix = skyrad/pixsc ; sky radii in pixels image.py -- SE called with PIXEL_SCALE 0 -> determined by SE from header # corresponding to diameters of [1.5,3,5,7,9,11,13,15] arcsec # assuming 0.262 arcsec pixel scale PHOT_APERTURES 5.7251911,11.450382,19.083969,26.717558,34.351147,41.984734,49.618320,57.251911 -> photutils aperture photometry on PsfEx image -> 1.0 at radius ~ 13; total ~ 1.05 One of the largest differences: z band Photometric diff 0.0249176025391 PSF size 1.07837 expnum 292604 -> Notice that the difference is largest for *small* PSFs. Could this be brighter-fatter? -> Check out the region Aaron pointed to with 0.025 errors -> Is it possible that this is coming from saturation in the zeropoints computation (decstat)?! -> Sky estimation? -> Is PsfEx using any flags (SATUR) to cut candidates? -> Look at forced phot residuals? Take model & data slices of a whole pile of stars in expnum 292604 N4 ''' def star_profiles(ps): # Run an example CCD, 292604-N4, with fairly large difference vs PS1. # python -c "from astrometry.util.fits import *; T = merge_tables([fits_table('/project/projectdirs/desiproc/dr3/tractor/244/tractor-244%s.fits' % b) for b in ['2p065','4p065', '7p065']]); T.writeto('tst-cat.fits')" # python legacypipe/forced_photom_decam.py --save-data tst-data.fits --save-model tst-model.fits 292604 N4 tst-cat.fits tst-phot.fits # -> tst-{model,data,phot}.fits datafn = 'tst-data.fits' modfn = 'tst-model.fits' photfn = 'tst-phot.fits' catfn = 'tst-cat.fits' img = fitsio.read(datafn) mod = fitsio.read(modfn) phot = fits_table(photfn) cat = fits_table(catfn) print(len(phot), 'forced-photometry results') margin = 25 phot.cut((phot.x > 0+margin) * (phot.x < 2046-margin) * (phot.y > 0+margin) * (phot.y < 4096-margin)) print(len(phot), 'in bounds') cmap = dict([((b,o),i) for i,(b,o) in enumerate(zip(cat.brickname, cat.objid))]) I = np.array([cmap.get((b,o), -1) for b,o in zip(phot.brickname, phot.objid)]) print(np.sum(I >= 0), 'forced-phot matched cat') phot.type = cat.type[I] wcs = Sip(datafn) phot.ra,phot.dec = wcs.pixelxy2radec(phot.x+1, phot.y+1) phot.cut(np.argsort(phot.flux)) phot.sn = phot.flux * np.sqrt(phot.flux_ivar) phot.cut(phot.sn > 5) print(len(phot), 'with S/N > 5') ps1 = ps1cat(ccdwcs=wcs) stars = ps1.get_stars() print(len(stars), 'PS1 sources') # Now cut to just *stars* with good colors stars.gicolor = stars.median[:,0] - stars.median[:,2] keep = (stars.gicolor > 0.4) * (stars.gicolor < 2.7) stars.cut(keep) print(len(stars), 'PS1 stars with good colors') stars.cut(np.minimum(stars.stdev[:,1], stars.stdev[:,2]) < 0.05) print(len(stars), 'PS1 stars with min stdev(r,i) < 0.05') I,J,d = match_radec(phot.ra, phot.dec, stars.ra, stars.dec, 1./3600.) print(len(I), 'matches') plt.clf() ha=dict(histtype='step', bins=20, range=(0,100), normed=True) plt.hist(phot.flux, color='b', **ha) plt.hist(phot.flux[I], color='r', **ha) ps.savefig() plt.clf() plt.hist(phot.flux * np.sqrt(phot.flux_ivar), bins=100, range=(-10, 50)) plt.xlabel('Flux S/N') ps.savefig() K = np.argsort(phot.flux[I]) I = I[K] J = J[K] ix = np.round(phot.x).astype(int) iy = np.round(phot.y).astype(int) sz = 10 P = np.flatnonzero(phot.type == 'PSF ') print(len(P), 'PSFs') imed = len(P)/2 i1 = int(len(P) * 0.75) i2 = int(len(P) * 0.25) N = 401 allmods = [] allimgs = [] for II,tt in [#(I[:len(I)/2], 'faint matches to PS1'), #(I[len(I)/2:], 'bright matches to PS1'), #(P[i2: i2+N], '25th pct PSFs'), #(P[imed: imed+N], 'median PSFs'), #(P[i1: i1+N], '75th pct PSFs'), #(P[-25:], 'brightest PSFs'), (P[i2:imed], '2nd quartile of PSFs'), (P[imed:i1], '3rd quartile of PSFs'), #(P[:len(P)/2], 'faint half of PSFs'), #(P[len(P)/2:], 'bright half of PSFs'), ]: imgs = [] mods = [] shimgs = [] shmods = [] imgsum = modsum = 0 #plt.clf() for i in II: from astrometry.util.util import lanczos_shift_image dy = phot.y[i] - iy[i] dx = phot.x[i] - ix[i] sub = img[iy[i]-sz : iy[i]+sz+1, ix[i]-sz : ix[i]+sz+1] shimg = lanczos_shift_image(sub, -dx, -dy) sub = mod[iy[i]-sz : iy[i]+sz+1, ix[i]-sz : ix[i]+sz+1] shmod = lanczos_shift_image(sub, -dx, -dy) iyslice = img[iy[i], ix[i]-sz : ix[i]+sz+1] myslice = mod[iy[i], ix[i]-sz : ix[i]+sz+1] ixslice = img[iy[i]-sz : iy[i]+sz+1, ix[i]] mxslice = mod[iy[i]-sz : iy[i]+sz+1, ix[i]] mx = iyslice.max() # plt.plot(iyslice/mx, 'b-', alpha=0.1) # plt.plot(myslice/mx, 'r-', alpha=0.1) # plt.plot(ixslice/mx, 'b-', alpha=0.1) # plt.plot(mxslice/mx, 'r-', alpha=0.1) siyslice = shimg[sz, :] sixslice = shimg[:, sz] smyslice = shmod[sz, :] smxslice = shmod[:, sz] shimgs.append(siyslice/mx) shimgs.append(sixslice/mx) shmods.append(smyslice/mx) shmods.append(smxslice/mx) imgs.append(iyslice/mx) imgs.append(ixslice/mx) mods.append(myslice/mx) mods.append(mxslice/mx) imgsum = imgsum + ixslice + iyslice modsum = modsum + mxslice + myslice # plt.ylim(-0.1, 1.1) # plt.title(tt) # ps.savefig() mimg = np.median(np.array(imgs), axis=0) mmod = np.median(np.array(mods), axis=0) mshim = np.median(np.array(shimgs), axis=0) mshmo = np.median(np.array(shmods), axis=0) allmods.append(mshmo) allimgs.append(mshim) plt.clf() # plt.plot(mimg, 'b-') # plt.plot(mmod, 'r-') plt.plot(mshim, 'g-') plt.plot(mshmo, 'm-') plt.ylim(-0.1, 1.1) plt.title(tt + ': median; sums %.3f/%.3f' % (np.sum(mimg), np.sum(mmod))) ps.savefig() # plt.clf() # mx = imgsum.max() # plt.plot(imgsum/mx, 'b-') # plt.plot(modsum/mx, 'r-') # plt.ylim(-0.1, 1.1) # plt.title(tt + ': sum') # ps.savefig() plt.clf() plt.plot((mimg + 0.01) / (mmod + 0.01), 'k-') plt.plot((imgsum/mx + 0.01) / (modsum/mx + 0.01), 'g-') plt.plot((mshim + 0.01) / (mshmo + 0.01), 'm-') plt.ylabel('(img + 0.01) / (mod + 0.01)') plt.title(tt) ps.savefig() iq2,iq3 = allimgs mq2,mq3 = allmods plt.clf() plt.plot(iq2, 'r-') plt.plot(mq2, 'm-') plt.plot(iq3, 'b-') plt.plot(mq3, 'g-') plt.title('Q2 vs Q3') ps.savefig() def main(): # ps = PlotSequence('pro') # star_profiles(ps) # sys.exit(0) #survey_dir = '/project/projectdirs/desiproc/dr3' #survey = LegacySurveyData(survey_dir=survey_dir) survey = LegacySurveyData() ralo,rahi = 240,245 declo,dechi = 5, 12 ps = PlotSequence('comp') bands = 'grz' ccdfn = 'ccds-forced.fits' if not os.path.exists(ccdfn): ccds = survey.get_annotated_ccds() ccds.cut((ccds.ra > ralo) * (ccds.ra < rahi) * (ccds.dec > declo) * (ccds.dec < dechi)) print(len(ccds), 'CCDs') ccds.path = np.array([os.path.join(#'dr3', 'forced', ('%08i' % e)[:5], '%08i' % e, 'decam-%08i-%s-forced.fits' % (e, n.strip())) for e,n in zip(ccds.expnum, ccds.ccdname)]) I, = np.nonzero([os.path.exists(fn) for fn in ccds.path]) print(len(I), 'CCDs with forced photometry') ccds.cut(I) #ccds = ccds[:500] #e,I = np.unique(ccds.expnum, return_index=True) #print(len(I), 'unique exposures') #ccds.cut(I) FF = read_forcedphot_ccds(ccds, survey) FF.writeto('forced-all-matches.fits') # - z band -- no trend w/ PS1 mag (brighter-fatter) ccds.writeto(ccdfn) ccdfn2 = 'ccds-forced-2.fits' if not os.path.exists(ccdfn2): ccds = fits_table(ccdfn) # Split into brighter/fainter halves FF = fits_table('forced-all-matches.fits') print(len(FF), 'forced measurements') FF.cut(FF.masked == False) print(len(FF), 'forced measurements not masked') ccds.brightest_mdiff = np.zeros(len(ccds)) ccds.brightest_mscatter = np.zeros(len(ccds)) ccds.bright_mdiff = np.zeros(len(ccds)) ccds.bright_mscatter = np.zeros(len(ccds)) ccds.faint_mdiff = np.zeros(len(ccds)) ccds.faint_mscatter = np.zeros(len(ccds)) for iccd in range(len(ccds)): I = np.flatnonzero(FF.iforced == iccd) if len(I) == 0: continue if len(I) < 10: continue F = FF[I] b = np.percentile(F.psmag, 10) m = np.median(F.psmag) print(len(F), 'matches for CCD', iccd, 'median mag', m, '10th pct', b) J = np.flatnonzero(F.psmag < b) diff = F.mag[J] - F.psmag[J] ccds.brightest_mdiff[iccd] = np.median(diff) ccds.brightest_mscatter[iccd] = (np.percentile(diff, 84) - np.percentile(diff, 16))/2. J = np.flatnonzero(F.psmag < m) diff = F.mag[J] - F.psmag[J] ccds.bright_mdiff[iccd] = np.median(diff) ccds.bright_mscatter[iccd] = (np.percentile(diff, 84) - np.percentile(diff, 16))/2. J = np.flatnonzero(F.psmag > m) diff = F.mag[J] - F.psmag[J] ccds.faint_mdiff[iccd] = np.median(diff) ccds.faint_mscatter[iccd] = (np.percentile(diff, 84) - np.percentile(diff, 16))/2. ccds.writeto(ccdfn2) ccds = fits_table(ccdfn2) plt.clf() plt.hist(ccds.nforced, bins=100) plt.title('nforced') ps.savefig() plt.clf() plt.hist(ccds.nmatched, bins=100) plt.title('nmatched') ps.savefig() #ccds.cut(ccds.nmatched >= 150) ccds.cut(ccds.nmatched >= 50) print('Cut to', len(ccds), 'with >50 matched') ccds.cut(ccds.photometric) print('Cut to', len(ccds), 'photometric') neff = 1. / ccds.psfnorm_mean**2 # Narcsec is in arcsec**2 narcsec = neff * ccds.pixscale_mean**2 # to arcsec narcsec = np.sqrt(narcsec) # Correction factor to get back to equivalent of Gaussian sigma narcsec /= (2. * np.sqrt(np.pi)) # Conversion factor to FWHM (2.35) narcsec *= 2. * np.sqrt(2. * np.log(2.)) ccds.psfsize = narcsec for band in bands: I = np.flatnonzero((ccds.filter == band) * (ccds.photometric) * (ccds.blacklist_ok)) mlo,mhi = -0.01, 0.05 plt.clf() plt.plot(ccds.ccdzpt[I], ccds.exptime[I], 'k.', alpha=0.1) J = np.flatnonzero((ccds.filter == band) * (ccds.photometric == False)) plt.plot(ccds.ccdzpt[J], ccds.exptime[J], 'r.', alpha=0.1) plt.xlabel('Zeropoint (mag)') plt.ylabel('exptime') plt.title('DR3: EDR region, Forced phot: %s band' % band) ps.savefig() plt.clf() plt.plot(ccds.ccdzpt[I], np.clip(ccds.mdiff[I], mlo,mhi), 'k.', alpha=0.1) plt.xlabel('Zeropoint (mag)') plt.ylabel('DECaLS PSF - PS1 (mag)') plt.axhline(0, color='k', alpha=0.2) #plt.axis([0, mxsee, mlo,mhi]) plt.title('DR3: EDR region, Forced phot: %s band' % band) ps.savefig() plt.clf() plt.plot(ccds.ccdzpt[I], ccds.psfsize[I], 'k.', alpha=0.1) plt.xlabel('Zeropoint (mag)') plt.ylabel('PSF size (arcsec)') plt.title('DR3: EDR region, Forced phot: %s band' % band) ps.savefig() # plt.clf() # plt.plot(ccds.avsky[I], # np.clip(ccds.mdiff[I], mlo,mhi), 'k.', alpha=0.1) # plt.xlabel('avsky') # plt.ylabel('DECaLS PSF - PS1 (mag)') # plt.axhline(0, color='k', alpha=0.2) # plt.title('DR3: EDR region, Forced phot: %s band' % band) # ps.savefig() # # plt.clf() # plt.plot(ccds.meansky[I], # np.clip(ccds.mdiff[I], mlo,mhi), 'k.', alpha=0.1) # plt.xlabel('meansky') # plt.ylabel('DECaLS PSF - PS1 (mag)') # plt.axhline(0, color='k', alpha=0.2) # plt.title('DR3: EDR region, Forced phot: %s band' % band) # ps.savefig() # plt.clf() # plt.plot(ccds.avsky[I], # np.clip(ccds.mdiff[I], mlo,mhi), 'k.', alpha=0.1) # plt.xlabel('avsky') # plt.ylabel('DECaLS PSF - PS1 (mag)') # plt.axhline(0, color='k', alpha=0.2) # plt.title('DR3: EDR region, Forced phot: %s band' % band) # ps.savefig() # # plt.clf() # plt.plot(ccds.meansky[I], # np.clip(ccds.mdiff[I], mlo,mhi), 'k.', alpha=0.1) # plt.xlabel('meansky') # plt.ylabel('DECaLS PSF - PS1 (mag)') # plt.axhline(0, color='k', alpha=0.2) # plt.title('DR3: EDR region, Forced phot: %s band' % band) # ps.savefig() plt.clf() lo,hi = (-0.02, 0.05) ha = dict(bins=50, histtype='step', range=(lo,hi)) n,b,p1 = plt.hist(ccds.brightest_mdiff[I], color='r', **ha) n,b,p2 = plt.hist(ccds.bright_mdiff[I], color='g', **ha) n,b,p3 = plt.hist(ccds.faint_mdiff[I], color='b', **ha) plt.legend((p1[0],p2[0],p3[0]), ('Brightest 10%', 'Brightest 50%', 'Faintest 50%')) plt.xlabel('DECaLS PSF - PS1 (mag)') plt.ylabel('Number of CCDs') plt.title('DR3: EDR region, Forced phot: %s band' % band) plt.xlim(lo,hi) ps.savefig() for band in bands: I = np.flatnonzero(ccds.filter == band) mxsee = 4. mlo,mhi = -0.01, 0.05 plt.clf() plt.plot(np.clip(ccds.psfsize[I], 0, mxsee), np.clip(ccds.mdiff[I], mlo,mhi), 'k.', alpha=0.1) # for p in [1,2,3]: # J = np.flatnonzero(ccds.tilepass[I] == p) # if len(J): # plt.plot(np.clip(ccds.psfsize[I[J]], 0, mxsee), # np.clip(ccds.mdiff[I[J]], mlo,mhi), '.', color='rgb'[p-1], alpha=0.2) #plt.plot(ccds.seeing[I], ccds.mdiff[I], 'b.') plt.xlabel('PSF size (arcsec)') plt.ylabel('DECaLS PSF - PS1 (mag)') plt.axhline(0, color='k', alpha=0.2) plt.axis([0, mxsee, mlo,mhi]) plt.title('DR3: EDR region, Forced phot: %s band' % band) ps.savefig() # Group by exposure for band in bands: I = np.flatnonzero((ccds.filter == band) * (ccds.photometric) * (ccds.blacklist_ok)) E,J = np.unique(ccds.expnum[I], return_index=True) print(len(E), 'unique exposures in', band) exps = ccds[I[J]] print(len(exps), 'unique exposures in', band) assert(len(np.unique(exps.expnum)) == len(exps)) exps.ddiff = np.zeros(len(exps)) exps.dsize = np.zeros(len(exps)) exps.nccds = np.zeros(len(exps), int) exps.brightest_ddiff = np.zeros(len(exps)) exps.bright_ddiff = np.zeros(len(exps)) exps.faint_ddiff = np.zeros(len(exps)) for iexp,exp in enumerate(exps): J = np.flatnonzero(ccds.expnum[I] == exp.expnum) J = I[J] print(len(J), 'CCDs in exposure', exp.expnum) exps.brightest_mdiff[iexp] = np.median(ccds.brightest_mdiff[J]) exps.bright_mdiff[iexp] = np.median(ccds.bright_mdiff[J]) exps.faint_mdiff[iexp] = np.median(ccds.faint_mdiff[J]) exps.brightest_ddiff[iexp] = ( np.percentile(ccds.brightest_mdiff[J], 84) - np.percentile(ccds.brightest_mdiff[J], 16))/2. exps.bright_ddiff[iexp] = ( np.percentile(ccds.bright_mdiff[J], 84) - np.percentile(ccds.bright_mdiff[J], 16))/2. exps.faint_ddiff[iexp] = ( np.percentile(ccds.faint_mdiff[J], 84) - np.percentile(ccds.faint_mdiff[J], 16))/2. exps.mdiff[iexp] = np.median(ccds.mdiff[J]) exps.ddiff[iexp] = (np.percentile(ccds.mdiff[J], 84) - np.percentile(ccds.mdiff[J], 16))/2. exps.psfsize[iexp] = np.median(ccds.psfsize[J]) exps.dsize[iexp] = (np.percentile(ccds.psfsize[J], 84) - np.percentile(ccds.psfsize[J], 16))/2. exps.nccds[iexp] = len(J) mxsee = 4. mlo,mhi = -0.01, 0.05 exps.cut(exps.nccds >= 10) plt.clf() plt.errorbar(np.clip(exps.psfsize, 0, mxsee), np.clip(exps.mdiff, mlo,mhi), yerr=exps.ddiff, #xerr=exps.dsize, fmt='.', color='k') # plt.errorbar(np.clip(exps.psfsize, 0, mxsee), # np.clip(exps.brightest_mdiff, mlo,mhi), # yerr=exps.brightest_ddiff, fmt='r.') # plt.errorbar(np.clip(exps.psfsize, 0, mxsee), # np.clip(exps.bright_mdiff, mlo,mhi), # yerr=exps.bright_ddiff, fmt='g.') # plt.errorbar(np.clip(exps.psfsize, 0, mxsee), # np.clip(exps.faint_mdiff, mlo,mhi), # yerr=exps.faint_ddiff, fmt='b.') # plt.plot(np.clip(exps.psfsize, 0, mxsee), # np.clip(exps.brightest_mdiff, mlo,mhi), 'r.') # plt.plot(np.clip(exps.psfsize, 0, mxsee), # np.clip(exps.bright_mdiff, mlo,mhi), 'g.') # plt.plot(np.clip(exps.psfsize, 0, mxsee), # np.clip(exps.faint_mdiff, mlo,mhi), 'b.') #plt.plot(ccds.seeing[I], ccds.mdiff[I], 'b.') plt.xlabel('PSF size (arcsec)') plt.ylabel('DECaLS PSF - PS1 (mag)') plt.axhline(0, color='k', alpha=0.2) plt.axis([0, mxsee, mlo,mhi]) plt.title('DR3: EDR region, Forced phot: %s band' % band) ps.savefig() plt.clf() p1 = plt.plot(np.clip(exps.psfsize, 0, mxsee), np.clip(exps.brightest_mdiff, mlo,mhi), 'r.', alpha=0.5) p2 = plt.plot(np.clip(exps.psfsize, 0, mxsee), np.clip(exps.bright_mdiff, mlo,mhi), 'g.', alpha=0.5) p3 = plt.plot(np.clip(exps.psfsize, 0, mxsee), np.clip(exps.faint_mdiff, mlo,mhi), 'b.', alpha=0.5) plt.legend((p1[0],p2[0],p3[0]), ('Brightest 10%', 'Brightest 50%', 'Faintest 50%')) plt.xlabel('PSF size (arcsec)') plt.ylabel('DECaLS PSF - PS1 (mag)') plt.axhline(0, color='k', alpha=0.2) plt.axis([0, mxsee, mlo,mhi]) plt.title('DR3: EDR region, Forced phot: %s band' % band) ps.savefig() J = np.argsort(-exps.mdiff) for j in J: print(' Photometric diff', exps.mdiff[j], 'PSF size', exps.psfsize[j], 'expnum', exps.expnum[j]) sys.exit(0) def read_forcedphot_ccds(ccds, survey): ccds.mdiff = np.zeros(len(ccds)) ccds.mscatter = np.zeros(len(ccds)) Nap = 8 ccds.apdiff = np.zeros((len(ccds), Nap)) ccds.apscatter = np.zeros((len(ccds), Nap)) ccds.nforced = np.zeros(len(ccds), np.int16) ccds.nunmasked = np.zeros(len(ccds), np.int16) ccds.nmatched = np.zeros(len(ccds), np.int16) ccds.nps1 = np.zeros(len(ccds), np.int16) brickcache = {} FF = [] for iccd,ccd in enumerate(ccds): print('CCD', iccd, 'of', len(ccds)) F = fits_table(ccd.path) print(len(F), 'sources in', ccd.path) ccds.nforced[iccd] = len(F) # arr, have to match with brick sources to get RA,Dec. F.ra = np.zeros(len(F)) F.dec = np.zeros(len(F)) F.masked = np.zeros(len(F), bool) maglo,maghi = 14.,21. maxdmag = 1. F.mag = -2.5 * (np.log10(F.flux) - 9) F.cut((F.flux > 0) * (F.mag > maglo-maxdmag) * (F.mag < maghi+maxdmag)) print(len(F), 'sources between', (maglo-maxdmag), 'and', (maghi+maxdmag), 'mag') im = survey.get_image_object(ccd) print('Reading DQ image for', im) dq = im.read_dq() H,W = dq.shape ix = np.clip(np.round(F.x), 0, W-1).astype(int) iy = np.clip(np.round(F.y), 0, H-1).astype(int) F.mask = dq[iy,ix] print(np.sum(F.mask != 0), 'sources are masked') for brickname in np.unique(F.brickname): if not brickname in brickcache: brickcache[brickname] = fits_table(survey.find_file('tractor', brick=brickname)) T = brickcache[brickname] idtoindex = np.zeros(T.objid.max()+1, int) - 1 idtoindex[T.objid] = np.arange(len(T)) I = np.flatnonzero(F.brickname == brickname) J = idtoindex[F.objid[I]] assert(np.all(J >= 0)) F.ra [I] = T.ra [J] F.dec[I] = T.dec[J] F.masked[I] = (T.decam_anymask[J,:].max(axis=1) > 0) #F.cut(F.masked == False) #print(len(F), 'not masked') print(np.sum(F.masked), 'masked in ANYMASK') ccds.nunmasked[iccd] = len(F) wcs = Tan(*[float(x) for x in [ccd.crval1, ccd.crval2, ccd.crpix1, ccd.crpix2, ccd.cd1_1, ccd.cd1_2, ccd.cd2_1, ccd.cd2_2, ccd.width, ccd.height]]) ps1 = ps1cat(ccdwcs=wcs) stars = ps1.get_stars() print(len(stars), 'PS1 sources') ccds.nps1[iccd] = len(stars) # Now cut to just *stars* with good colors stars.gicolor = stars.median[:,0] - stars.median[:,2] keep = (stars.gicolor > 0.4) * (stars.gicolor < 2.7) stars.cut(keep) print(len(stars), 'PS1 stars with good colors') stars.cut(np.minimum(stars.stdev[:,1], stars.stdev[:,2]) < 0.05) print(len(stars), 'PS1 stars with min stdev(r,i) < 0.05') I,J,d = match_radec(F.ra, F.dec, stars.ra, stars.dec, 1./3600.) print(len(I), 'matches') band = ccd.filter colorterm = ps1_to_decam(stars.median[J], band) F.cut(I) F.psmag = stars.median[J, ps1.ps1band[band]] + colorterm K = np.flatnonzero((F.psmag > maglo) * (F.psmag < maghi)) print(len(K), 'with mag', maglo, 'to', maghi) F.cut(K) K = np.flatnonzero(np.abs(F.mag - F.psmag) < maxdmag) print(len(K), 'with good mag matches (<', maxdmag, 'mag difference)') ccds.nmatched[iccd] = len(K) if len(K) == 0: continue F.cut(K) ccds.mdiff[iccd] = np.median(F.mag - F.psmag) ccds.mscatter[iccd] = (np.percentile(F.mag - F.psmag, 84) - np.percentile(F.mag - F.psmag, 16))/2. for i in range(Nap): apmag = -2.5 * (np.log10(F.apflux[:, i]) - 9) ccds.apdiff[iccd,i] = np.median(apmag - F.psmag) ccds.apscatter[iccd,i] = (np.percentile(apmag - F.psmag, 84) - np.percentile(apmag - F.psmag, 16))/2. #F.about() for c in ['apflux_ivar', 'brickid', 'flux_ivar', 'mjd', 'objid', 'fracflux', 'rchi2', 'x','y']: F.delete_column(c) F.expnum = np.zeros(len(F), np.int32) + ccd.expnum F.ccdname = np.array([ccd.ccdname] * len(F)) F.iforced = np.zeros(len(F), np.int32) + iccd FF.append(F) FF = merge_tables(FF) return FF bricks = survey.get_bricks_readonly() bricks = bricks[(bricks.ra > ralo) * (bricks.ra < rahi) * (bricks.dec > declo) * (bricks.dec < dechi)] print(len(bricks), 'bricks') I, = np.nonzero([os.path.exists(survey.find_file('tractor', brick=b.brickname)) for b in bricks]) print(len(I), 'bricks with catalogs') bricks.cut(I) for band in bands: bricks.set('diff_%s' % band, np.zeros(len(bricks), np.float32)) bricks.set('psfsize_%s' % band, np.zeros(len(bricks), np.float32)) diffs = dict([(b,[]) for b in bands]) for ibrick,b in enumerate(bricks): fn = survey.find_file('tractor', brick=b.brickname) T = fits_table(fn) print(len(T), 'sources in', b.brickname) brickwcs = wcs_for_brick(b) ps1 = ps1cat(ccdwcs=brickwcs) stars = ps1.get_stars() print(len(stars), 'PS1 sources') # Now cut to just *stars* with good colors stars.gicolor = stars.median[:,0] - stars.median[:,2] keep = (stars.gicolor > 0.4) * (stars.gicolor < 2.7) stars.cut(keep) print(len(stars), 'PS1 stars with good colors') I,J,d = match_radec(T.ra, T.dec, stars.ra, stars.dec, 1./3600.) print(len(I), 'matches') for band in bands: bricks.get('psfsize_%s' % band)[ibrick] = np.median( T.decam_psfsize[:, survey.index_of_band(band)]) colorterm = ps1_to_decam(stars.median[J], band) psmag = stars.median[J, ps1.ps1band[band]] psmag += colorterm decflux = T.decam_flux[I, survey.index_of_band(band)] decmag = -2.5 * (np.log10(decflux) - 9) #K = np.flatnonzero((psmag > 14) * (psmag < 24)) #print(len(K), 'with mag 14 to 24') K = np.flatnonzero((psmag > 14) * (psmag < 21)) print(len(K), 'with mag 14 to 21') decmag = decmag[K] psmag = psmag [K] K = np.flatnonzero(np.abs(decmag - psmag) < 1) print(len(K), 'with good mag matches (< 1 mag difference)') decmag = decmag[K] psmag = psmag [K] if False and ibrick == 0: plt.clf() #plt.plot(psmag, decmag, 'b.') plt.plot(psmag, decmag - psmag, 'b.') plt.xlabel('PS1 mag') plt.xlabel('DECam - PS1 mag') plt.title('PS1 matches for %s band, brick %s' % (band, b.brickname)) ps.savefig() mdiff = np.median(decmag - psmag) diffs[band].append(mdiff) print('Median difference:', mdiff) bricks.get('diff_%s' % band)[ibrick] = mdiff for band in bands: d = diffs[band] plt.clf() plt.hist(d, bins=20, range=(-0.02, 0.02), histtype='step') plt.xlabel('Median mag difference per brick') plt.title('DR3 EDR PS1 vs DECaLS: %s band' % band) ps.savefig() print('Median differences in', band, 'band:', np.median(d)) if False: plt.clf() plt.hist(diffs['g'], bins=20, range=(-0.02, 0.02), histtype='step', color='g') plt.hist(diffs['r'], bins=20, range=(-0.02, 0.02), histtype='step', color='r') plt.hist(diffs['z'], bins=20, range=(-0.02, 0.02), histtype='step', color='m') plt.xlabel('Median mag difference per brick') plt.title('DR3 EDR PS1 vs DECaLS') ps.savefig() rr,dd = np.meshgrid(np.linspace(ralo,rahi, 400), np.linspace(declo,dechi, 400)) I,J,d = match_radec(rr.ravel(), dd.ravel(), bricks.ra, bricks.dec, 0.18, nearest=True) print(len(I), 'matches') for band in bands: plt.clf() dmag = np.zeros_like(rr) - 1. dmag.ravel()[I] = bricks.get('diff_%s' % band)[J] plt.imshow(dmag, interpolation='nearest', origin='lower', vmin=-0.01, vmax=0.01, cmap='hot', extent=(ralo,rahi,declo,dechi)) plt.colorbar() plt.title('DR3 EDR PS1 vs DECaLS: %s band' % band) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.axis([ralo,rahi,declo,dechi]) ps.savefig() plt.clf() # reuse 'dmag' map... dmag = np.zeros_like(rr) dmag.ravel()[I] = bricks.get('psfsize_%s' % band)[J] plt.imshow(dmag, interpolation='nearest', origin='lower', cmap='hot', extent=(ralo,rahi,declo,dechi)) plt.colorbar() plt.title('DR3 EDR: DECaLS PSF size: %s band' % band) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.axis([ralo,rahi,declo,dechi]) ps.savefig() if False: for band in bands: plt.clf() plt.scatter(bricks.ra, bricks.dec, c=bricks.get('diff_%s' % band), vmin=-0.01, vmax=0.01, edgecolors='face', s=200) plt.colorbar() plt.title('DR3 EDR PS1 vs DECaLS: %s band' % band) plt.xlabel('RA (deg)') plt.ylabel('Dec (deg)') plt.axis('scaled') plt.axis([ralo,rahi,declo,dechi]) ps.savefig() plt.clf() plt.plot(bricks.psfsize_g, bricks.diff_g, 'g.') plt.plot(bricks.psfsize_r, bricks.diff_r, 'r.') plt.plot(bricks.psfsize_z, bricks.diff_z, 'm.') plt.xlabel('PSF size (arcsec)') plt.ylabel('DECaLS PSF - PS1 (mag)') plt.title('DR3 EDR') ps.savefig() if __name__ == '__main__': main()
bsd-3-clause
dallascard/guac
core/evaluation/summarize_results.py
1
2115
import os from optparse import OptionParser import glob import numpy as np import pandas as pd from core.util import defines from core.util import file_handling as fh def main(): usage = "%prog exp_dir_test_fold_dir" parser = OptionParser(usage=usage) parser.add_option('-t', dest='test_fold', default=0, help='Test fold; default=%default') (options, args) = parser.parse_args() test_fold = options.test_fold exp_dir = args[0] results = pd.DataFrame(columns=('masked', 'test', 'valid', 'dir')) run_dirs = glob.glob(os.path.join(exp_dir, 'bayes*reuse*')) for i, dir in enumerate(run_dirs): run_num = int(fh.get_basename_wo_ext(dir).split('_')[-1]) if run_num <= 40 and '1_' not in fh.get_basename_wo_ext(dir): results_dir = os.path.join(dir, 'results') test_file = fh.make_filename(results_dir, 'test_macro_f1', 'csv') valid_file = fh.make_filename(results_dir, 'valid_cv_macro_f1', 'csv') masked_valid_file = fh.make_filename(results_dir, 'masked_valid_cv_macro_f1', 'csv') try: test = pd.read_csv(test_file, header=False, index_col=0) valid = pd.read_csv(valid_file, header=False, index_col=0) masked_valid = pd.read_csv(masked_valid_file, header=False, index_col=0) #results.loc[run_num, 'iteration'] = run_num results.loc[i, 'masked'] = masked_valid['overall'].mean() results.loc[i, 'test'] = test['overall'].mean() results.loc[i, 'valid'] = valid['overall'].mean() results.loc[i, 'dir'] = fh.get_basename_wo_ext(dir) except: continue results.to_csv(fh.make_filename(exp_dir, 'summary', 'csv'), columns=results.columns) sorted = results.sort('valid') print sorted print "best by masked" sorted = results.sort('masked') print sorted.values[-1, :] print "best by valid" sorted = results.sort('valid') print sorted.values[-1, :] if __name__ == '__main__': main()
apache-2.0
numenta/htmresearch
projects/union_path_integration/plot_comparison_to_ideal.py
3
4358
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2018, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """Plot convergence chart that compares different algorithms.""" import argparse from collections import defaultdict import json import os import matplotlib.pyplot as plt import numpy as np CWD = os.path.dirname(os.path.realpath(__file__)) CHART_DIR = os.path.join(CWD, "charts") def getCumulativeAccuracy(convergenceFrequencies): tot = float(sum(convergenceFrequencies.values())) results = [] cum = 0.0 for step in xrange(1, 41): cum += convergenceFrequencies.get(str(step), 0) results.append(cum / tot) return results def createChart(inFilename, outFilename, locationModuleWidths, legendPosition): numSteps = 12 resultsByParams = defaultdict(list) with open(inFilename, "r") as f: experiments = json.load(f) for exp in experiments: locationModuleWidth = exp[0]["locationModuleWidth"] resultsByParams[locationModuleWidth].append( getCumulativeAccuracy(exp[1]["convergence"])) with open("results/ideal.json", "r") as f: idealResults = [getCumulativeAccuracy(trial) for trial in json.load(f)] with open("results/bof.json", "r") as f: bofResults = [getCumulativeAccuracy(trial) for trial in json.load(f)] plt.figure(figsize=(3.25, 2.5), tight_layout = {"pad": 0}) data = ( [(idealResults, "Ideal Observer", "x--", 10, 1)] + [(resultsByParams[locationModuleWidth], "{}x{} Cells Per Module".format(locationModuleWidth, locationModuleWidth), fmt, None, 0) for locationModuleWidth, fmt in zip(locationModuleWidths, ["s-", "o-", "^-"])] + [(bofResults, "Bag of Features", "d--", None, -1)]) percentiles = [5, 50, 95] for resultsByTrial, label, fmt, markersize, zorder in data: x = [] y = [] errBelow = [] errAbove = [] resultsByStep = zip(*resultsByTrial) for step, results in zip(xrange(numSteps), resultsByStep): x.append(step + 1) p1, p2, p3 = np.percentile(results, percentiles) y.append(p2) errBelow.append(p2 - p1) errAbove.append(p3 - p2) plt.errorbar(x, y, yerr=[errBelow, errAbove], fmt=fmt, label=label, capsize=2, markersize=markersize, zorder=zorder) # Formatting plt.xlabel("Number of Sensations") plt.ylabel("Cumulative Accuracy") plt.xticks([(i+1) for i in xrange(numSteps)]) # Remove the errorbars from the legend. handles, labels = plt.gca().get_legend_handles_labels() handles = [h[0] for h in handles] plt.legend(handles, labels, loc="center right", bbox_to_anchor=legendPosition) outFilePath = os.path.join(CHART_DIR, outFilename) print "Saving", outFilePath plt.savefig(outFilePath) plt.clf() if __name__ == "__main__": plt.rc("font",**{"family": "sans-serif", "sans-serif": ["Arial"], "size": 8}) parser = argparse.ArgumentParser() parser.add_argument("--inFile", type=str, required=True) parser.add_argument("--outFile", type=str, required=True) parser.add_argument("--locationModuleWidth", type=int, nargs='+', default=[17, 20, 40]) parser.add_argument("--legendPosition", type=float, nargs=2, default=None) args = parser.parse_args() createChart(args.inFile, args.outFile, args.locationModuleWidth, args.legendPosition)
agpl-3.0
benjaminwilson/word2vec-norm-experiments
build_images_coocc_noise.py
1
3502
""" Given the vectors and word counts resulting from the experiments, build graphics for the cooccurrence noise variation experiment section of the article. """ import numpy as np import pandas as pd import matplotlib; matplotlib.use('Agg') # must be set before importing pyplot import matplotlib.pyplot as plt import random import sys from parameters import * from functions import * random.seed(1) # fix seed so that we can refer to the randomly chosen words in the article body vectors_syn0_filename = sys.argv[1] vectors_syn1neg_filename = sys.argv[2] word_counts_filename = sys.argv[3] coocc_noise_exp_words_filename = sys.argv[4] matplotlib.rcParams.update({'font.size': 14}) matplotlib.rcParams.update({'figure.autholayout': True}) coocc_noise_experiment_words = read_words(coocc_noise_exp_words_filename) def calculate_norms(vecs): return np.sqrt((vecs ** 2).sum(axis=1)) vectors_syn0 = load_word2vec_binary(vectors_syn0_filename) norms_syn0 = calculate_norms(vectors_syn0) vectors_syn1neg = load_word2vec_binary(vectors_syn1neg_filename) norms_syn1neg = calculate_norms(vectors_syn1neg) vocab = list(vectors_syn0.index) counts_modified_corpus = read_word_counts(word_counts_filename) stats = pd.DataFrame({'occurrences': counts_modified_corpus, 'L2_norm_syn0': norms_syn0, 'L2_norm_syn1neg': norms_syn1neg}).dropna() # WORD VECTOR LENGTH AS A FUNCTION OF NOISE PROPORTION # reorder by the left-most value of the corresponding syn0 plot # i.e. by word vector length of the noiseless token words = sorted(coocc_noise_experiment_words, key=lambda word: stats.L2_norm_syn0.loc[build_experiment_token(word, 1)], reverse=True) markers = [['o', 's', 'D'][i % 3] for i in range(len(words))] fig = plt.figure(figsize=(16, 6)) colorcycle = plt.cm.gist_rainbow(np.linspace(0, 1, 5)) xlabel = 'Proportion of occurrences from noise distribution' ax_syn0 = plt.subplot(131) ax_syn0.set_xlabel(xlabel) ax_syn0.set_ylabel('vector length') ax_syn0.set_color_cycle(colorcycle) ax_syn0.set_title('syn0', y=1.04) ax_syn1neg = plt.subplot(132, sharex=ax_syn0) ax_syn1neg.set_xlabel(xlabel) ax_syn1neg.set_color_cycle(colorcycle) ax_syn1neg.set_title('syn1neg', y=1.04) def plot_for_word(ax, word, series, **kwargs): outcomes = range(1, coocc_noise_experiment_max_value + 1) x = [noise_proportion(i, coocc_noise_experiment_max_value) for i in outcomes] y = series.loc[[build_experiment_token(word, i) for i in outcomes]] marker = ['o', 's', 'D'][ord(word[0]) % 3] return ax.plot(x, y, marker=marker, **kwargs)[0] lines = [] for word in words: lines.append(plot_for_word(ax_syn0, word, stats.L2_norm_syn0)) for word in words: plot_for_word(ax_syn1neg, word, stats.L2_norm_syn1neg) ax_syn0.set_ylim(0, 30) ax_syn1neg.set_ylim(0, 15) ax_syn0.set_xlim(0, 1) _ = fig.legend(lines, words, bbox_to_anchor=(0.76, 0.56), loc='center', fontsize=14, frameon=False) plt.tight_layout() plt.savefig('outputs/cooccurrence-noise-graph.eps') # COSINE SIMILARITY HEATMAP idxs = [] ticks = [] for word in random.sample(coocc_noise_experiment_words, 4): tokens = [build_experiment_token(word, i) for i in range(1, coocc_noise_experiment_max_value + 1)] idxs += tokens ticks += tokens[:2] + ['. '] * len(tokens[2:-1]) + tokens[-1:] example_vecs = vectors_syn0.loc[idxs] cosine_similarity_heatmap(example_vecs, ticks, figsize=(12, 10)) plt.savefig('outputs/cooccurrence-noise-heatmap.eps')
apache-2.0
ZenDevelopmentSystems/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
254
2005
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
danuker/trading-with-python
lib/interactiveBrokers/histData.py
76
6472
''' Created on May 8, 2013 Copyright: Jev Kuznetsov License: BSD Module for downloading historic data from IB ''' import ib import pandas as pd from ib.ext.Contract import Contract from ib.opt import ibConnection, message import logger as logger from pandas import DataFrame, Index import os import datetime as dt import time from time import sleep from extra import timeFormat, dateFormat class Downloader(object): def __init__(self,debug=False): self._log = logger.getLogger('DLD') self._log.debug('Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pd.__version__,ib.version)) self.tws = ibConnection() self._dataHandler = _HistDataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler,message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self,msg): print '[debug]', msg def requestData(self,contract,endDateTime,durationStr='1 D',barSizeSetting='30 secs',whatToShow='TRADES',useRTH=1,formatDate=1): if isinstance(endDateTime,dt.datetime): # convert to string endDateTime = endDateTime.strftime(timeFormat) self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol,endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(10) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId,contract,endDateTime,durationStr,barSizeSetting,whatToShow,useRTH,formatDate) self._reqId+=1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time()-startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data # def getIntradayData(self,contract, dateTuple ): # ''' get full day data on 1-s interval # date: a tuple of (yyyy,mm,dd) # ''' # # openTime = dt.datetime(*dateTuple)+dt.timedelta(hours=16) # closeTime = dt.datetime(*dateTuple)+dt.timedelta(hours=22) # # timeRange = pd.date_range(openTime,closeTime,freq='30min') # # datasets = [] # # for t in timeRange: # datasets.append(self.requestData(contract,t.strftime(timeFormat))) # # return pd.concat(datasets) def disconnect(self): self.tws.disconnect() class _HistDataHandler(object): ''' handles incoming messages ''' def __init__(self,tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler,message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open':[],'high':[],'low':[],'close':[],'volume':[],'count':[],'WAP':[]} def msgHandler(self,msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return if len(msg.date) > 8: self._timestamp.append(dt.datetime.strptime(msg.date,timeFormat)) else: self._timestamp.append(dt.datetime.strptime(msg.date,dateFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): ''' return downloaded data as a DataFrame ''' df = DataFrame(data=self._data,index=Index(self._timestamp)) return df class TimeKeeper(object): ''' class for keeping track of previous requests, to satify the IB requirements (max 60 requests / 10 min) each time a requiest is made, a timestamp is added to a txt file in the user dir. ''' def __init__(self): self._log = logger.getLogger('TK') dataDir = os.path.expanduser('~')+'/twpData' if not os.path.exists(dataDir): os.mkdir(dataDir) self._timeFormat = "%Y%m%d %H:%M:%S" self.dataFile = os.path.normpath(os.path.join(dataDir,'requests.txt')) # Create file if it's missing if not os.path.exists(self.dataFile): open(self.dataFile,'w').close() self._log.debug('Data file: {0}'.format(self.dataFile)) def addRequest(self): ''' adds a timestamp of current request''' with open(self.dataFile,'a') as f: f.write(dt.datetime.now().strftime(self._timeFormat)+'\n') def nrRequests(self,timeSpan=600): ''' return number of requests in past timespan (s) ''' delta = dt.timedelta(seconds=timeSpan) now = dt.datetime.now() requests = 0 with open(self.dataFile,'r') as f: lines = f.readlines() for line in lines: if now-dt.datetime.strptime(line.strip(),self._timeFormat) < delta: requests+=1 if requests==0: # erase all contents if no requests are relevant open(self.dataFile,'w').close() self._log.debug('past requests: {0}'.format(requests)) return requests if __name__ == '__main__': from extra import createContract dl = Downloader(debug=True) # historic data downloader class contract = createContract('SPY') # create contract using defaults (STK,SMART,USD) data = dl.requestData(contract,"20141208 16:00:00 EST") # request 30-second data bars up till now data.to_csv('SPY.csv') # write data to csv print 'Done'
bsd-3-clause
khkaminska/scikit-learn
examples/model_selection/grid_search_digits.py
227
2665
""" ============================================================ Parameter estimation using grid search with cross-validation ============================================================ This examples shows how a classifier is optimized by cross-validation, which is done using the :class:`sklearn.grid_search.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring='%s_weighted' % score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_params_) print() print("Grid scores on development set:") print() for params, mean_score, scores in clf.grid_scores_: print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() * 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
lmjohns3/py-plot
lmj/plot.py
1
12537
'''Convenience methods and data for plotting.''' import contextlib import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as anim import matplotlib.patches as patch import numpy as np import seaborn as sns from mpl_toolkits.mplot3d import Axes3D # import many names directly from matplotlib.pyplot. from matplotlib.pyplot import * # colors from https://github.com/mbostock/d3/wiki/Ordinal-Scales COLOR11 = ( '#111111', '#d62728', '#1f77b4', '#2ca02c', '#9467bd', '#ff7f0e', '#e377c2', '#8c564b', '#bcbd22', '#7f7f7f', '#17becf', ) # set some default styles for 2d plots. sns.set( context='notebook', style='white', palette='colorblind', rc={ 'font.sans-serif': [ 'Source Sans Pro', 'Helvetica', 'Arial', 'Lucida Grande', 'Bitstream Vera Sans', ], }, ) def plot(*args, **kwargs): '''Helper function for making quick line plots. This helper generates a new axes object and calls `matplotlib.pyplot.plot`. Positional and keyword arguments are passed directly to `matplotlib.pyplot.plot`. Returns ------- matplotlib.pyplot.Axes : An axes object containing the plot. ''' ax = create_axes(spines=True) ax.plot(*args, **kwargs) return ax def scatter(*args, **kwargs): '''Helper function for making quick scatter plots. This helper generates a new axes object and calls `matplotlib.pyplot.scatter`. Positional and keyword arguments are passed directly to `matplotlib.pyplot.scatter`. Returns ------- matplotlib.pyplot.Axes : An axes object containing the plot. ''' ax = create_axes(spines=None) ax.scatter(*args, **kwargs) return ax @contextlib.contextmanager def axes(*args, **kwargs): '''Produce a 2D plotting axes, for use in a with statement. Parameters ---------- show_afterwards : bool, optional If present and False, do not show the plot after the yield. All other arguments are passed to :func:`create_axes`. ''' show_afterwards = True if 'show_afterwards' in kwargs: show_afterwards = kwargs.pop('show_afterwards') ax = create_axes(*args, **kwargs) yield ax if show_afterwards: show() @contextlib.contextmanager def axes3d(*args, **kwargs): '''Produce a 3D plotting axes, for use in a with statement. Parameters ---------- show_afterwards : bool, optional If present and False, do not show the plot after the yield. All other arguments are passed to :func:`create_axes`. ''' show_afterwards = True if 'show_afterwards' in kwargs: show_afterwards = kwargs.pop('show_afterwards') ax = create_axes(*args, projection='3d', spines=None, **kwargs) ax.w_xaxis.set_pane_color((1, 1, 1, 1)) ax.w_yaxis.set_pane_color((1, 1, 1, 1)) ax.w_zaxis.set_pane_color((1, 1, 1, 1)) yield ax if show_afterwards: show() def create_axes(subplot=111, shape=None, log='', max_xticks=6, max_yticks=6, spines=None, **kwargs): '''Create an axes object to hold a plot. Parameters ---------- subplot : int or tuple of ints This will be passed to `matplotlib.pyplot.subplot()`. shape : tuple of ints If this is provided, it will be passed as the argument to `matplotlib.pyplot.axis()`. log : str A string, containing 'x' and/or 'y', indicating the axes that should have log scales. max_xticks : int, optional The maximum number of ticks to position on the x-axis, if any. max_yticks : int, optional The maximum number of ticks to position on the y-axis, if any. spines : any, optional If given, this argument will be passed to `set_spines`. Remaining keyword arguments will be passed to `axes()` (if `shape` is not None) or `subplot()` (otherwise). Returns ------- matplotlib.Axes : A matplotlib.Axes instance. ''' if shape is not None: ax = plt.axes(shape, **kwargs) else: if not isinstance(subplot, (tuple, list)): subplot = (subplot, ) ax = plt.subplot(*subplot, **kwargs) if 'x' in log: ax.set_xscale('log') if 'y' in log: ax.set_yscale('log') if max_xticks > 0: plt.locator_params(axis='x', nbins=max_xticks - 1) if max_yticks > 0: plt.locator_params(axis='y', nbins=max_yticks - 1) if spines is not None: set_spines(ax, spines) return ax def set_spines(ax, spines=True, offset=6): '''Set the spines on the given Axes object. Arguments --------- ax : matplotlib.Axes Set the spines on this Axes object. spines : any This parameter provides formatting instructions for the axes in the plot. It can take many different types of values: - dictionary: The strings 'left', 'right', 'top', 'bottom' should be mapped to numeric values---the numeric value specifies the distance outward from the plot (in points) to show the corresponding spine. Alternatively, the values in the dictionary can be anything that can be passed to `matplotlib.Spine#set_position`. - numeric: All spines will be shown, offset outward by this many points. - string/list/tuple/set: Spines with names included in the string/list/tuple/set will be shown at an offset of 6pt. Spines not named will not be shown. - falsey: No spines will be shown. Otherwise, the default spine configuration is used---the bottom and left spines are shown, offset outward by 6pt, and the top and right spines are hidden. offset : numeric Default offset for spine names mentioned in the `spines` argument. ''' if spines is True: spines = 'bottom left' if spines is False: spines = '' if isinstance(spines, (int, float)): offset = spines spines = 'top right bottom left' if isinstance(spines, str): spines = spines.split() if isinstance(spines, (list, tuple, set)): spines = {k: offset for k in spines} for name, spine in ax.spines.items(): pos = spines.get(name) if pos is None: spine.set_visible(False) elif isinstance(pos, int): spine.set_position(('outward', pos)) else: spine.set_position(pos) if 'bottom' in spines: ax.xaxis.tick_bottom() else: ax.xaxis.set_ticks([]) if 'left' in spines: ax.yaxis.tick_left() else: ax.yaxis.set_ticks([]) def rotate_3d(display, output=None, elev=(15, 25), azim=(10, 30), jitter=0, rotations=2, duration_sec=10, animation_fps=30, movie_fps=30, movie_args=(), fig=None, **kwargs): '''Make a rotating 3D plot animation. This helper calls out to a function to render a 3D graph, and then animates a rotation around that content by changing the azimuth and elevation of the camera. The actual content of the graph will, in this case, be static -- the animation's only purpose is to make the 3D contents of the graph more clear by rotating the entire graph around. Parameters ---------- display : callable Call this function with no arguments to show the 3D contents of the graph. output : str, optional Save the output in this file, if given. Should be a .mp4 movie filename. elev : (float, float), optional Range for the elevation values in the animation. Defaults to (15, 25). azim : (float, float), optional Range for the azimuth values in the animation. Defaults to (10, 40). jitter : float, optional Add random noise with this standard deviation to the azimuth/elevation at each time step. Defaults to 0 (no jitter). rotations : float, optional Render this many rotations around the azimuth/elevation ellipse. Defaults to 2. May be fractional as well. duration_sec : float, optional Number of seconds for the overall animation. Defaults to 10. animation_fps : float, optional Number of frames per second that we should change the perspective and render a new frame. Defaults to 30. movie_fps : float, optional Frames per second in the rendered movie output. Defaults to 30. movie_args : tuple, optional Extra arguments to pass to ffmpeg while creating the movie. fig : dict, optional Keyword arguments to pass to create the figure for the animation. Returns ------- anim : matplotlib animation An animation containing the rendered frames. ''' num_frames = duration_sec * animation_fps fig = plt.figure(**(fig or {})) ax = create_axes(111, projection='3d', spines=None, **kwargs) def animate(i): c_elev = (elev[1] + elev[0]) / 2 c_azim = (azim[1] + azim[0]) / 2 r_elev = (elev[1] - elev[0]) / 2 r_azim = (azim[1] - azim[0]) / 2 t = 2 * np.pi * i * rotations / num_frames e = c_elev + r_elev * (np.sin(t) + jitter * np.random.randn()) a = c_azim + r_azim * (np.cos(t) + jitter * np.random.randn()) ax.view_init(elev=e, azim=a) anim = matplotlib.animation.FuncAnimation( fig, animate, init_func=display(ax), frames=num_frames, interval=1000 / animation_fps, blit=False) if output: anim.save(output, fps=movie_fps, extra_args=movie_args) return anim N = 127 t1 = np.linspace(0, 2 * np.pi, N) t2 = np.linspace(0, np.pi, N) XGRID = np.outer(np.cos(t1), np.sin(t2)).flatten() YGRID = np.outer(np.sin(t1), np.sin(t2)).flatten() ZGRID = np.outer(np.ones_like(t1), np.cos(t2)).flatten() def eigs(ax, means, vals, vecs, ix=0, iy=1, contours=(1, ), **kwargs): '''Draw an ellipse at each contour of a set of eigenvectors. Parameters ---------- ax : Axis3D Axis to plot on. This must be a 2D axis. means : ndarray (dims, ) Means for each dimension of the data. vals : ndarray (feaures, ) Eigenvalues of a dataset. vecs : ndarray (dims, features) Eigenvectors of a dataset. Each column is one eigenvector. ix : int, optional X-axis index. Defaults to 0. iy : int, optional Y-axis index. Defaults to 1. contours : sequence of float, optional List of contour lines to draw. Defaults to (1, ), i.e., just draw one contour at the scale of the eigenvalues. Returns ------- surfaces : A list of the artists that were plotted. ''' artists = [] for c in contours: artists.append(patch.Ellipse( xy=[means[ix], means[iy]], width=c * vals[ix], height=c * vals[iy], angle=np.degrees(np.arctan2(vecs[iy, ix], vecs[ix, ix])), **kwargs)) [ax.add_artist(art) for art in artists] return artists def eigs3d(ax, means, vals, vecs, ix=0, iy=1, iz=2, contours=(1, ), **kwargs): '''Draw a 3D ellipse at each contour of a set of eigenvectors. Parameters ---------- ax : Axis3D Axis to plot on. This must be a 3D axis. means : ndarray (dims, ) Means for each dimension of the data. vals : ndarray (features, ) Eigenvalues of a dataset. vecs : ndarray (dims, features) Eigenvectors of a dataset. Each column is one eigenvector. ix : int, optional X-axis index. Defaults to 0. iy : int, optional Y-axis index. Defaults to 1. iz : int, optional Z-axis index. Defaults to 2. contours : sequence of float, optional List of contour lines to draw. Defaults to (1, ), i.e., just draw one contour at the scale of the eigenvalues. Returns ------- surfaces : A list of the surfaces that were plotted. ''' r = np.dot(vecs[[ix, iy, iz], [ix, iy, iz]], np.vstack([vals[ix] * XGRID, vals[iy] * YGRID, vals[iz] * ZGRID])) surfaces = [] for c in contours: surfaces.append(ax.plot_surface( means[ix] + c * r[ix].reshape((N, N)), means[iy] + c * r[iy].reshape((N, N)), means[iz] + c * r[iz].reshape((N, N)), **kwargs)) return surfaces
mit
acmaheri/sms-tools
software/models_interface/stft_function.py
18
2785
# function to call the main analysis/synthesis functions in software/models/stft.py import numpy as np import matplotlib.pyplot as plt import os, sys from scipy.signal import get_window sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) import utilFunctions as UF import stft as STFT def main(inputFile = '../../sounds/piano.wav', window = 'hamming', M = 1024, N = 1024, H = 512): """ analysis/synthesis using the STFT inputFile: input sound file (monophonic with sampling rate of 44100) window: analysis window type (choice of rectangular, hanning, hamming, blackman, blackmanharris) M: analysis window size N: fft size (power of two, bigger or equal than M) H: hop size (at least 1/2 of analysis window size to have good overlap-add) """ # read input sound (monophonic with sampling rate of 44100) fs, x = UF.wavread(inputFile) # compute analysis window w = get_window(window, M) # compute the magnitude and phase spectrogram mX, pX = STFT.stftAnal(x, fs, w, N, H) # perform the inverse stft y = STFT.stftSynth(mX, pX, M, H) # output sound file (monophonic with sampling rate of 44100) outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_stft.wav' # write the sound resulting from the inverse stft UF.wavwrite(y, fs, outputFile) # create figure to plot plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 5000.0 # plot the input sound plt.subplot(4,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('input sound: x') # plot magnitude spectrogram plt.subplot(4,1,2) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N*maxplotfreq/fs+1])) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.title('magnitude spectrogram') plt.autoscale(tight=True) # plot the phase spectrogram plt.subplot(4,1,3) numFrames = int(pX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(np.diff(pX[:,:N*maxplotfreq/fs+1],axis=1))) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.title('phase spectrogram (derivative)') plt.autoscale(tight=True) # plot the output sound plt.subplot(4,1,4) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show() if __name__ == "__main__": main()
agpl-3.0
Garrett-R/scikit-learn
sklearn/decomposition/tests/test_factor_analysis.py
20
3128
# Author: Christian Osendorfer <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD3 import numpy as np from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.decomposition import FactorAnalysis def test_factor_analysis(): """Test FactorAnalysis ability to recover the data covariance structure """ rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise assert_raises(ValueError, FactorAnalysis, svd_method='foo') fa_fail = FactorAnalysis() fa_fail.svd_method = 'foo' assert_raises(ValueError, fa_fail.fit, X) fas = [] for method in ['randomized', 'lapack']: fa = FactorAnalysis(n_components=n_components, svd_method=method) fa.fit(X) fas.append(fa) X_t = fa.transform(X) assert_equal(X_t.shape, (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum()) assert_almost_equal(fa.score_samples(X).mean(), fa.score(X)) diff = np.all(np.diff(fa.loglike_)) assert_greater(diff, 0., 'Log likelihood dif not increase') # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_less(diff, 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2]) f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal fa1, fa2 = fas for attr in ['loglike_', 'components_', 'noise_variance_']: assert_almost_equal(f(fa1, attr), f(fa2, attr)) fa1.max_iter = 1 fa1.verbose = True assert_warns(ConvergenceWarning, fa1.fit, X) assert_warns(DeprecationWarning, FactorAnalysis, verbose=1) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: fa.n_components = n_components fa.fit(X) cov = fa.get_covariance() precision = fa.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
bsd-3-clause
Jozhogg/iris
lib/iris/symbols.py
1
7746
# (C) British Crown Copyright 2010 - 2014, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """ Contains symbol definitions for use with :func:`iris.plot.symbols`. """ from __future__ import (absolute_import, division, print_function) import itertools import math from matplotlib.patches import PathPatch from matplotlib.path import Path import numpy as np __all__ = ('CLOUD_COVER',) # The thickness to use for lines, circles, etc. _THICKNESS = 0.1 def _make_merged_patch(paths): # Convert a list of Path instances into a single, black PathPatch. # Prepare empty vertex/code arrays for the merged path. # The vertex array is initially flat for convenient initialisation, # but is then reshaped to (N, 2). total_len = sum(len(path) for path in paths) all_vertices = np.empty(total_len * 2) all_codes = np.empty(total_len, dtype=Path.code_type) # Copy vertex/code details from the source paths all_segments = itertools.chain(*(path.iter_segments() for path in paths)) i_vertices = 0 i_codes = 0 for vertices, code in all_segments: n_vertices = len(vertices) all_vertices[i_vertices:i_vertices + n_vertices] = vertices i_vertices += n_vertices n_codes = n_vertices // 2 if code == Path.STOP: code = Path.MOVETO all_codes[i_codes:i_codes + n_codes] = code i_codes += n_codes all_vertices.shape = (total_len, 2) return PathPatch(Path(all_vertices, all_codes), facecolor='black', edgecolor='none') def _ring_path(): # Returns a Path for a hollow ring. # The outer radius is 1, the inner radius is 1 - _THICKNESS. circle = Path.unit_circle() inner_radius = 1.0 - _THICKNESS vertices = np.concatenate([circle.vertices[:-1], circle.vertices[-2::-1] * inner_radius]) codes = np.concatenate([circle.codes[:-1], circle.codes[:-1]]) return Path(vertices, codes) def _vertical_bar_path(): # Returns a Path for a vertical rectangle, with width _THICKNESS, that will # nicely overlap the result of _ring_path(). width = _THICKNESS / 2.0 inner_radius = 1.0 - _THICKNESS vertices = np.array([ [-width, -inner_radius], [width, -inner_radius], [width, inner_radius], [-width, inner_radius], [-width, inner_radius] ]) codes = np.array([Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) return Path(vertices, codes) def _slot_path(): # Returns a Path for a filled unit circle with a vertical rectangle # removed. circle = Path.unit_circle() vertical_bar = _vertical_bar_path() vertices = np.concatenate([circle.vertices[:-1], vertical_bar.vertices[-2::-1]]) codes = np.concatenate([circle.codes[:-1], vertical_bar.codes[:-1]]) return Path(vertices, codes) def _left_bar_path(): # Returns a Path for the left-hand side of a horizontal rectangle, with # height _THICKNESS, that will nicely overlap the result of _ring_path(). inner_radius = 1.0 - _THICKNESS height = _THICKNESS / 2.0 vertices = np.array([ [-inner_radius, -height], [0, -height], [0, height], [-inner_radius, height], [-inner_radius, height] ]) codes = np.array([Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) return Path(vertices, codes) def _slash_path(): # Returns a Path for diagonal, bottom-left to top-right rectangle, with # width _THICKNESS, that will nicely overlap the result of _ring_path(). half_width = _THICKNESS / 2.0 central_radius = 1.0 - half_width cos45 = math.cos(math.radians(45)) end_point_offset = cos45 * central_radius half_width_offset = cos45 * half_width vertices = np.array([ [-end_point_offset - half_width_offset, -end_point_offset + half_width_offset], [-end_point_offset + half_width_offset, -end_point_offset - half_width_offset], [end_point_offset + half_width_offset, end_point_offset - half_width_offset], [end_point_offset - half_width_offset, end_point_offset + half_width_offset], [-end_point_offset - half_width_offset, -end_point_offset + half_width_offset] ]) codes = np.array([Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) return Path(vertices, codes) def _backslash_path(): # Returns a Path for diagonal, top-left to bottom-right rectangle, with # width _THICKNESS, that will nicely overlap the result of _ring_path(). half_width = _THICKNESS / 2.0 central_radius = 1.0 - half_width cos45 = math.cos(math.radians(45)) end_point_offset = cos45 * central_radius half_width_offset = cos45 * half_width vertices = np.array([ [-end_point_offset - half_width_offset, end_point_offset - half_width_offset], [end_point_offset - half_width_offset, -end_point_offset - half_width_offset], [end_point_offset + half_width_offset, -end_point_offset + half_width_offset], [-end_point_offset + half_width_offset, end_point_offset + half_width_offset], [-end_point_offset - half_width_offset, end_point_offset - half_width_offset] ]) codes = np.array([Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) return Path(vertices, codes) def _wedge_fix(wedge_path): ''' Fixes the problem with Path.wedge where it doesn't initialise the first, and last two vertices. This fix should not have any side-effects once Path.wedge has been fixed, but will then be redundant and should be removed. This is fixed in MPL v1.3, raising a RuntimeError. A check is performed to allow for backward compatibility with MPL v1.2.x. ''' if wedge_path.vertices.flags.writeable: wedge_path.vertices[0] = 0 wedge_path.vertices[-2:] = 0 return wedge_path CLOUD_COVER = { 0: [_ring_path()], 1: [_ring_path(), _vertical_bar_path()], 2: [_ring_path(), _wedge_fix(Path.wedge(0, 90))], 3: [_ring_path(), _wedge_fix(Path.wedge(0, 90)), _vertical_bar_path()], 4: [_ring_path(), Path.unit_circle_righthalf()], 5: [_ring_path(), Path.unit_circle_righthalf(), _left_bar_path()], 6: [_ring_path(), _wedge_fix(Path.wedge(-180, 90))], 7: [_slot_path()], 8: [Path.unit_circle()], 9: [_ring_path(), _slash_path(), _backslash_path()], } """ A dictionary mapping WMO cloud cover codes to their corresponding symbol. See http://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en_colour.pdf Part II, Appendix II.4, Graphical Representation of Data, Analyses and Forecasts """ def _convert_paths_to_patches(): # Convert the symbols defined as lists-of-paths into patches. for code, symbol in CLOUD_COVER.iteritems(): CLOUD_COVER[code] = _make_merged_patch(symbol) _convert_paths_to_patches()
lgpl-3.0
arahuja/scikit-learn
sklearn/externals/joblib/__init__.py
35
4382
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://packages.python.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ __version__ = '0.8.4' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause