repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
kaiserroll14/301finalproject
main/pandas/tseries/plotting.py
9
9293
""" Period formatters and locators adapted from scikits.timeseries by Pierre GF Gerard-Marchant & Matt Knox """ #!!! TODO: Use the fact that axis can have units to simplify the process import numpy as np from matplotlib import pylab from pandas.tseries.period import Period from pandas.tseries.offsets import DateOffset import pandas.tseries.frequencies as frequencies from pandas.tseries.index import DatetimeIndex import pandas.core.common as com import pandas.compat as compat from pandas.tseries.converter import (TimeSeries_DateLocator, TimeSeries_DateFormatter) #---------------------------------------------------------------------- # Plotting functions and monkey patches def tsplot(series, plotf, ax=None, **kwargs): """ Plots a Series on the given Matplotlib axes or the current axes Parameters ---------- axes : Axes series : Series Notes _____ Supports same kwargs as Axes.plot """ # Used inferred freq is possible, need a test case for inferred if ax is None: import matplotlib.pyplot as plt ax = plt.gca() freq, series = _maybe_resample(series, ax, kwargs) # Set ax with freq info _decorate_axes(ax, freq, kwargs) ax._plot_data.append((series, plotf, kwargs)) lines = plotf(ax, series.index._mpl_repr(), series.values, **kwargs) # set date formatter, locators and rescale limits format_dateaxis(ax, ax.freq) return lines def _maybe_resample(series, ax, kwargs): # resample against axes freq if necessary freq, ax_freq = _get_freq(ax, series) if freq is None: # pragma: no cover raise ValueError('Cannot use dynamic axis without frequency info') # Convert DatetimeIndex to PeriodIndex if isinstance(series.index, DatetimeIndex): series = series.to_period(freq=freq) if ax_freq is not None and freq != ax_freq: if frequencies.is_superperiod(freq, ax_freq): # upsample input series = series.copy() series.index = series.index.asfreq(ax_freq, how='s') freq = ax_freq elif _is_sup(freq, ax_freq): # one is weekly how = kwargs.pop('how', 'last') series = series.resample('D', how=how).dropna() series = series.resample(ax_freq, how=how).dropna() freq = ax_freq elif frequencies.is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq): _upsample_others(ax, freq, kwargs) ax_freq = freq else: # pragma: no cover raise ValueError('Incompatible frequency conversion') return freq, series def _is_sub(f1, f2): return ((f1.startswith('W') and frequencies.is_subperiod('D', f2)) or (f2.startswith('W') and frequencies.is_subperiod(f1, 'D'))) def _is_sup(f1, f2): return ((f1.startswith('W') and frequencies.is_superperiod('D', f2)) or (f2.startswith('W') and frequencies.is_superperiod(f1, 'D'))) def _upsample_others(ax, freq, kwargs): legend = ax.get_legend() lines, labels = _replot_ax(ax, freq, kwargs) _replot_ax(ax, freq, kwargs) other_ax = None if hasattr(ax, 'left_ax'): other_ax = ax.left_ax if hasattr(ax, 'right_ax'): other_ax = ax.right_ax if other_ax is not None: rlines, rlabels = _replot_ax(other_ax, freq, kwargs) lines.extend(rlines) labels.extend(rlabels) if (legend is not None and kwargs.get('legend', True) and len(lines) > 0): title = legend.get_title().get_text() if title == 'None': title = None ax.legend(lines, labels, loc='best', title=title) def _replot_ax(ax, freq, kwargs): data = getattr(ax, '_plot_data', None) # clear current axes and data ax._plot_data = [] ax.clear() _decorate_axes(ax, freq, kwargs) lines = [] labels = [] if data is not None: for series, plotf, kwds in data: series = series.copy() idx = series.index.asfreq(freq, how='S') series.index = idx ax._plot_data.append((series, plotf, kwds)) # for tsplot if isinstance(plotf, compat.string_types): from pandas.tools.plotting import _plot_klass plotf = _plot_klass[plotf]._plot lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0]) labels.append(com.pprint_thing(series.name)) return lines, labels def _decorate_axes(ax, freq, kwargs): """Initialize axes for time-series plotting""" if not hasattr(ax, '_plot_data'): ax._plot_data = [] ax.freq = freq xaxis = ax.get_xaxis() xaxis.freq = freq if not hasattr(ax, 'legendlabels'): ax.legendlabels = [kwargs.get('label', None)] else: ax.legendlabels.append(kwargs.get('label', None)) ax.view_interval = None ax.date_axis_info = None def _get_freq(ax, series): # get frequency from data freq = getattr(series.index, 'freq', None) if freq is None: freq = getattr(series.index, 'inferred_freq', None) ax_freq = getattr(ax, 'freq', None) if ax_freq is None: if hasattr(ax, 'left_ax'): ax_freq = getattr(ax.left_ax, 'freq', None) elif hasattr(ax, 'right_ax'): ax_freq = getattr(ax.right_ax, 'freq', None) # use axes freq if no data freq if freq is None: freq = ax_freq # get the period frequency if isinstance(freq, DateOffset): freq = freq.rule_code else: freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) return freq, ax_freq def _use_dynamic_x(ax, data): freq = _get_index_freq(data) ax_freq = getattr(ax, 'freq', None) if freq is None: # convert irregular if axes has freq info freq = ax_freq else: # do not use tsplot if irregular was plotted first if (ax_freq is None) and (len(ax.get_lines()) > 0): return False if freq is None: return False if isinstance(freq, DateOffset): freq = freq.rule_code else: freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) if freq is None: return False # hack this for 0.10.1, creating more technical debt...sigh if isinstance(data.index, DatetimeIndex): base = frequencies.get_freq(freq) x = data.index if (base <= frequencies.FreqGroup.FR_DAY): return x[:1].is_normalized return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0] return True def _get_index_freq(data): freq = getattr(data.index, 'freq', None) if freq is None: freq = getattr(data.index, 'inferred_freq', None) if freq == 'B': weekdays = np.unique(data.index.dayofweek) if (5 in weekdays) or (6 in weekdays): freq = None return freq def _maybe_convert_index(ax, data): # tsplot converts automatically, but don't want to convert index # over and over for DataFrames if isinstance(data.index, DatetimeIndex): freq = getattr(data.index, 'freq', None) if freq is None: freq = getattr(data.index, 'inferred_freq', None) if isinstance(freq, DateOffset): freq = freq.rule_code if freq is None: freq = getattr(ax, 'freq', None) if freq is None: raise ValueError('Could not get frequency alias for plotting') freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) data = data.to_period(freq=freq) return data # Patch methods for subplot. Only format_dateaxis is currently used. # Do we need the rest for convenience? def format_dateaxis(subplot, freq): """ Pretty-formats the date axis (x-axis). Major and minor ticks are automatically set for the frequency of the current underlying series. As the dynamic mode is activated by default, changing the limits of the x axis will intelligently change the positions of the ticks. """ majlocator = TimeSeries_DateLocator(freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot) minlocator = TimeSeries_DateLocator(freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot) subplot.xaxis.set_major_locator(majlocator) subplot.xaxis.set_minor_locator(minlocator) majformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot) minformatter = TimeSeries_DateFormatter(freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot) subplot.xaxis.set_major_formatter(majformatter) subplot.xaxis.set_minor_formatter(minformatter) # x and y coord info subplot.format_coord = lambda t, y: ("t = {0} " "y = {1:8f}".format(Period(ordinal=int(t), freq=freq), y)) pylab.draw_if_interactive()
gpl-3.0
kwailamchan/programming-languages
python/dreamer/dreamer/main.py
3
4513
import matplotlib matplotlib.use('Agg') import sys sys.path.insert(0, '/usr/local/caffe/python/') import caffe from cStringIO import StringIO import numpy as np import scipy.ndimage as nd import PIL.Image from IPython.display import clear_output, Image, display from google.protobuf import text_format # If your GPU supports CUDA and Caffe was built with CUDA support, # uncomment the following to run Caffe operations on the GPU. # caffe.set_mode_gpu() # caffe.set_device(0) # select GPU device if multiple devices exist def showarray(a, fmt='jpeg'): a = np.uint8(np.clip(a, 0, 255)) f = StringIO() PIL.Image.fromarray(a).save(f, fmt) display(Image(data=f.getvalue())) #-------------------------------------------------------------# # DNN # http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel model_path = '/vagrant/dreamer/dreamer/models/bvlc_googlenet/' # substitute your path here net_fn = model_path + 'deploy.prototxt' param_fn = model_path + 'bvlc_googlenet.caffemodel' # Patching model to be able to compute gradients. # Note that you can also manually add "force_backward: true" line to "deploy.prototxt". model = caffe.io.caffe_pb2.NetParameter() text_format.Merge(open(net_fn).read(), model) model.force_backward = True open('tmp.prototxt', 'w').write(str(model)) net = caffe.Classifier('tmp.prototxt', param_fn, mean = np.float32([104.0, 116.0, 122.0]), # ImageNet mean, training set dependent channel_swap = (2,1,0)) # the reference model has channels in BGR order instead of RGB # a couple of utility functions for converting to and from Caffe's input image layout def preprocess(net, img): return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data'] def deprocess(net, img): return np.dstack((img + net.transformer.mean['data'])[::-1]) #----------------------------------------------------------------# # producing def objective_L2(dst): dst.diff[:] = dst.data def make_step(net, step_size=1.5, end='inception_4c/output', jitter=32, clip=True, objective=objective_L2): '''Basic gradient ascent step.''' src = net.blobs['data'] # input image is stored in Net's 'data' blob dst = net.blobs[end] ox, oy = np.random.randint(-jitter, jitter+1, 2) src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift net.forward(end=end) objective(dst) # specify the optimization objective net.backward(start=end) g = src.diff[0] # apply normalized ascent step to the input image src.data[:] += step_size/np.abs(g).mean() * g src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image if clip: bias = net.transformer.mean['data'] src.data[:] = np.clip(src.data, -bias, 255-bias) def deepdream(net, base_img, iter_n=10, octave_n=4, octave_scale=1.4, end='inception_4c/output', clip=True, **step_params): # prepare base images for all octaves octaves = [preprocess(net, base_img)] for i in xrange(octave_n-1): octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1)) src = net.blobs['data'] detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details for octave, octave_base in enumerate(octaves[::-1]): h, w = octave_base.shape[-2:] if octave > 0: # upscale details from the previous octave h1, w1 = detail.shape[-2:] detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1) src.reshape(1,3,h,w) # resize the network's input image size src.data[0] = octave_base+detail for i in xrange(iter_n): make_step(net, end=end, clip=clip, **step_params) # visualization vis = deprocess(net, src.data[0]) if not clip: # adjust image contrast if clipping is disabled vis = vis*(255.0/np.percentile(vis, 99.98)) showarray(vis) print octave, i, end, vis.shape clear_output(wait=True) # extract details produced on the current octave detail = src.data[0]-octave_base # returning the resulting image return deprocess(net, src.data[0]) img = np.float32(PIL.Image.open('/vagrant/dreamer/dreamer/images/sky1024px.jpg')) showarray(img) _=deepdream(net, img) _=deepdream(net, img, end='inception_3b/5x5_reduce') net.blobs.keys()
mit
kevntao/data-science-from-scratch
code/recommender_systems.py
60
6291
from __future__ import division import math, random from collections import defaultdict, Counter from linear_algebra import dot users_interests = [ ["Hadoop", "Big Data", "HBase", "Java", "Spark", "Storm", "Cassandra"], ["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"], ["Python", "scikit-learn", "scipy", "numpy", "statsmodels", "pandas"], ["R", "Python", "statistics", "regression", "probability"], ["machine learning", "regression", "decision trees", "libsvm"], ["Python", "R", "Java", "C++", "Haskell", "programming languages"], ["statistics", "probability", "mathematics", "theory"], ["machine learning", "scikit-learn", "Mahout", "neural networks"], ["neural networks", "deep learning", "Big Data", "artificial intelligence"], ["Hadoop", "Java", "MapReduce", "Big Data"], ["statistics", "R", "statsmodels"], ["C++", "deep learning", "artificial intelligence", "probability"], ["pandas", "R", "Python"], ["databases", "HBase", "Postgres", "MySQL", "MongoDB"], ["libsvm", "regression", "support vector machines"] ] popular_interests = Counter(interest for user_interests in users_interests for interest in user_interests).most_common() def most_popular_new_interests(user_interests, max_results=5): suggestions = [(interest, frequency) for interest, frequency in popular_interests if interest not in user_interests] return suggestions[:max_results] # # user-based filtering # def cosine_similarity(v, w): return dot(v, w) / math.sqrt(dot(v, v) * dot(w, w)) unique_interests = sorted(list({ interest for user_interests in users_interests for interest in user_interests })) def make_user_interest_vector(user_interests): """given a list of interests, produce a vector whose i-th element is 1 if unique_interests[i] is in the list, 0 otherwise""" return [1 if interest in user_interests else 0 for interest in unique_interests] user_interest_matrix = map(make_user_interest_vector, users_interests) user_similarities = [[cosine_similarity(interest_vector_i, interest_vector_j) for interest_vector_j in user_interest_matrix] for interest_vector_i in user_interest_matrix] def most_similar_users_to(user_id): pairs = [(other_user_id, similarity) # find other for other_user_id, similarity in # users with enumerate(user_similarities[user_id]) # nonzero if user_id != other_user_id and similarity > 0] # similarity return sorted(pairs, # sort them key=lambda (_, similarity): similarity, # most similar reverse=True) # first def user_based_suggestions(user_id, include_current_interests=False): # sum up the similarities suggestions = defaultdict(float) for other_user_id, similarity in most_similar_users_to(user_id): for interest in users_interests[other_user_id]: suggestions[interest] += similarity # convert them to a sorted list suggestions = sorted(suggestions.items(), key=lambda (_, weight): weight, reverse=True) # and (maybe) exclude already-interests if include_current_interests: return suggestions else: return [(suggestion, weight) for suggestion, weight in suggestions if suggestion not in users_interests[user_id]] # # Item-Based Collaborative Filtering # interest_user_matrix = [[user_interest_vector[j] for user_interest_vector in user_interest_matrix] for j, _ in enumerate(unique_interests)] interest_similarities = [[cosine_similarity(user_vector_i, user_vector_j) for user_vector_j in interest_user_matrix] for user_vector_i in interest_user_matrix] def most_similar_interests_to(interest_id): similarities = interest_similarities[interest_id] pairs = [(unique_interests[other_interest_id], similarity) for other_interest_id, similarity in enumerate(similarities) if interest_id != other_interest_id and similarity > 0] return sorted(pairs, key=lambda (_, similarity): similarity, reverse=True) def item_based_suggestions(user_id, include_current_interests=False): suggestions = defaultdict(float) user_interest_vector = user_interest_matrix[user_id] for interest_id, is_interested in enumerate(user_interest_vector): if is_interested == 1: similar_interests = most_similar_interests_to(interest_id) for interest, similarity in similar_interests: suggestions[interest] += similarity suggestions = sorted(suggestions.items(), key=lambda (_, similarity): similarity, reverse=True) if include_current_interests: return suggestions else: return [(suggestion, weight) for suggestion, weight in suggestions if suggestion not in users_interests[user_id]] if __name__ == "__main__": print "Popular Interests" print popular_interests print print "Most Popular New Interests" print "already like:", ["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"] print most_popular_new_interests(["NoSQL", "MongoDB", "Cassandra", "HBase", "Postgres"]) print print "already like:", ["R", "Python", "statistics", "regression", "probability"] print most_popular_new_interests(["R", "Python", "statistics", "regression", "probability"]) print print "User based similarity" print "most similar to 0" print most_similar_users_to(0) print "Suggestions for 0" print user_based_suggestions(0) print print "Item based similarity" print "most similar to 'Big Data'" print most_similar_interests_to(0) print print "suggestions for user 0" print item_based_suggestions(0)
unlicense
aemerick/galaxy_analysis
particle_analysis/particle_dispersion.py
1
3354
import numpy as np import yt import glob import matplotlib.pyplot as plt def vel_dispersion(v): return np.std(v) def compute_velocity_dispersion(data, types = None, fields = None, filter = None): """ Returns all possible velocity dispersons from all particles found in the data set. A particle filter can be passed using "filter" which is a list of booleans: e.x. > filter = data['particle_type'] == 11 > particle_dispersion.compute_velocity_dispersion(data, filter = filter) --- > filter = (data['particle_type'] == 11) * (data['particle_spherical_r'] < 100.0) > particle_dispersion.compute_velocity_dispersion(data, filter = filter) """ types_to_fields = {'x': 'particle_velocity_x', 'y': 'particle_velocity_y', 'z': 'particle_velocity_z', 'r': 'particle_velocity_spherical_radius', 'theta': 'particle_velocity_spherical_theta', 'phi': 'particle_velocity_spherical_phi'} if types is None and fields is None: fields = types_to_fields.values() keys = types_to_fields.keys() elif fields is None: fields = [ types_to_fields[x] for x in types ] keys = types else: keys = fields dispersion = {} for i,x in enumerate(fields): if filter is not None: v = data[x][filter] else: v = data[x] if np.size(v) == 0: dispersion[keys[i]] = 0.0 else: dispersion[keys[i]] = vel_dispersion( v.convert_to_units('km/s') ) return dispersion # # function to do LOS velocity dispersion calculatoins # - take a list of positions # - take a list of velocities # then # - choose random line of sight # - project velocities onto LOS # - compute velocity disperions # - repeat for X random LOS and average together if __name__ == '__main__': ds_list = np.sort( glob.glob('./DD????/DD????')) ds = yt.load(ds_list[-1]) data = ds.all_data() filter = data['particle_type'] == 11 dispersions = compute_velocity_dispersion(data, filter = filter) dr = 50.0 bins = np.arange(0.0, 750.0 + dr, dr) * yt.units.pc r = data['particle_position_spherical_radius'].convert_to_units('pc') beta = np.zeros(np.size(bins)-1) sigma = np.zeros(np.size(bins)-1) for i in np.arange(1, np.size(bins)): radial_filter = (r < bins[i]) * (r >= bins[i-1]) dispersions = compute_velocity_dispersion(data, filter = filter*radial_filter) beta[i-1] = 1.0 - dispersions['theta'].value**2 / dispersions['r'].value**2 sigma[i-1] = np.sqrt(dispersions['x']**2 + dispersions['y']**2 + dispersions['z']**2) centers = 0.5 * ( bins[1:] + bins[:-1]) fig, ax = plt.subplots(figsize=(8,8)) ax.plot(centers.value, beta, color = 'black', lw = 3) ax.set_xlabel('Radius (pc)') ax.set_ylabel(r'Anisotropy Parameter') ax.minorticks_on() plt.savefig('radial_anisotropy.png') plt.close() fig, ax = plt.subplots(figsize=(8,8)) ax.plot(centers.value, sigma, color = 'black', lw =3) ax.set_xlabel('Radius (pc)') ax.set_ylabel(r'3D velocity dispersion (km/s)') ax.minorticks_on() plt.savefig('velocity_dispersion.png')
mit
appapantula/scikit-learn
examples/model_selection/plot_learning_curve.py
250
4171
""" ======================== Plotting Learning Curves ======================== On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could be increased with more training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.learning_curve import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and traning learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set. cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" # SVC is more expensive so we do a lower number of CV iterations: cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4) plt.show()
bsd-3-clause
cpaulik/scipy
scipy/cluster/tests/test_hierarchy.py
26
35159
#! /usr/bin/env python # # Author: Damian Eads # Date: April 17, 2008 # # Copyright (C) 2008 Damian Eads # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (TestCase, run_module_suite, dec, assert_raises, assert_allclose, assert_equal, assert_) from scipy._lib.six import xrange, u import scipy.cluster.hierarchy from scipy.cluster.hierarchy import ( linkage, from_mlab_linkage, to_mlab_linkage, num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster, is_isomorphic, single, leaders, correspond, is_monotonic, maxdists, maxinconsts, maxRstat, is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram, set_link_color_palette) from scipy.spatial.distance import pdist import hierarchy_test_data # Matplotlib is not a scipy dependency but is optionally used in dendrogram, so # check if it's available try: import matplotlib # and set the backend to be Agg (no gui) matplotlib.use('Agg') # before importing pyplot import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False class TestLinkage(object): def test_linkage_empty_distance_matrix(self): # Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected. y = np.zeros((0,)) assert_raises(ValueError, linkage, y) def test_linkage_tdist(self): for method in ['single', 'complete', 'average', 'weighted', u('single')]: yield self.check_linkage_tdist, method def check_linkage_tdist(self, method): # Tests linkage(Y, method) on the tdist data set. Z = linkage(hierarchy_test_data.ytdist, method) expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method) assert_allclose(Z, expectedZ, atol=1e-10) def test_linkage_X(self): for method in ['centroid', 'median', 'ward']: yield self.check_linkage_q, method def check_linkage_q(self, method): # Tests linkage(Y, method) on the Q data set. Z = linkage(hierarchy_test_data.X, method) expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method) assert_allclose(Z, expectedZ, atol=1e-06) class TestInconsistent(object): def test_inconsistent_tdist(self): for depth in hierarchy_test_data.inconsistent_ytdist: yield self.check_inconsistent_tdist, depth def check_inconsistent_tdist(self, depth): Z = hierarchy_test_data.linkage_ytdist_single assert_allclose(inconsistent(Z, depth), hierarchy_test_data.inconsistent_ytdist[depth]) class TestCopheneticDistance(object): def test_linkage_cophenet_tdist_Z(self): # Tests cophenet(Z) on tdist data set. expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) Z = hierarchy_test_data.linkage_ytdist_single M = cophenet(Z) assert_allclose(M, expectedM, atol=1e-10) def test_linkage_cophenet_tdist_Z_Y(self): # Tests cophenet(Z, Y) on tdist data set. Z = hierarchy_test_data.linkage_ytdist_single (c, M) = cophenet(Z, hierarchy_test_data.ytdist) expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) expectedc = 0.639931296433393415057366837573 assert_allclose(c, expectedc, atol=1e-10) assert_allclose(M, expectedM, atol=1e-10) class TestMLabLinkageConversion(object): def test_mlab_linkage_conversion_empty(self): # Tests from/to_mlab_linkage on empty linkage array. X = np.asarray([]) assert_equal(from_mlab_linkage([]), X) assert_equal(to_mlab_linkage([]), X) def test_mlab_linkage_conversion_single_row(self): # Tests from/to_mlab_linkage on linkage array with single row. Z = np.asarray([[0., 1., 3., 2.]]) Zm = [[1, 2, 3]] assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) def test_mlab_linkage_conversion_multiple_rows(self): # Tests from/to_mlab_linkage on linkage array with multiple rows. Zm = np.asarray([[3, 6, 138], [4, 5, 219], [1, 8, 255], [2, 9, 268], [7, 10, 295]]) Z = np.array([[2., 5., 138., 2.], [3., 4., 219., 2.], [0., 7., 255., 3.], [1., 8., 268., 4.], [6., 9., 295., 6.]], dtype=np.double) assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) class TestFcluster(object): def test_fclusterdata(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fclusterdata, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fclusterdata, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fclusterdata, t, 'maxclust' def check_fclusterdata(self, t, criterion): # Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] X = hierarchy_test_data.Q_X T = fclusterdata(X, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fcluster, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster, t, 'maxclust' def check_fcluster(self, t, criterion): # Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster_monocrit(self): for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster_monocrit, t for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster_maxclust_monocrit, t def check_fcluster_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_distance[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) def check_fcluster_maxclust_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_maxclust[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) class TestLeaders(object): def test_leaders_single(self): # Tests leaders using a flat clustering generated by single linkage. X = hierarchy_test_data.Q_X Y = pdist(X) Z = linkage(Y) T = fcluster(Z, criterion='maxclust', t=3) Lright = (np.array([53, 55, 56]), np.array([2, 3, 1])) L = leaders(Z, T) assert_equal(L, Lright) class TestIsIsomorphic(object): def test_is_isomorphic_1(self): # Tests is_isomorphic on test case #1 (one flat cluster, different labellings) a = [1, 1, 1] b = [2, 2, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_2(self): # Tests is_isomorphic on test case #2 (two flat clusters, different labelings) a = [1, 7, 1] b = [2, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_3(self): # Tests is_isomorphic on test case #3 (no flat clusters) a = [] b = [] assert_(is_isomorphic(a, b)) def test_is_isomorphic_4A(self): # Tests is_isomorphic on test case #4A (3 flat clusters, different labelings, isomorphic) a = [1, 2, 3] b = [1, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_4B(self): # Tests is_isomorphic on test case #4B (3 flat clusters, different labelings, nonisomorphic) a = [1, 2, 3, 3] b = [1, 3, 2, 3] assert_(is_isomorphic(a, b) == False) assert_(is_isomorphic(b, a) == False) def test_is_isomorphic_4C(self): # Tests is_isomorphic on test case #4C (3 flat clusters, different labelings, isomorphic) a = [7, 2, 3] b = [6, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_5(self): # Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random # clusters, random permutation of the labeling). for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc def test_is_isomorphic_6(self): # Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random # clusters, random permutation of the labeling, slightly # nonisomorphic.) for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc, True, 5 def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0): for k in range(3): a = np.int_(np.random.rand(nobs) * nclusters) b = np.zeros(a.size, dtype=np.int_) P = np.random.permutation(nclusters) for i in xrange(0, a.shape[0]): b[i] = P[a[i]] if noniso: Q = np.random.permutation(nobs) b[Q[0:nerrors]] += 1 b[Q[0:nerrors]] %= nclusters assert_(is_isomorphic(a, b) == (not noniso)) assert_(is_isomorphic(b, a) == (not noniso)) class TestIsValidLinkage(object): def test_is_valid_linkage_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_linkage_various_size, nrow, ncol, valid def check_is_valid_linkage_various_size(self, nrow, ncol, valid): # Tests is_valid_linkage(Z) with linkage matrics of various sizes Z = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) Z = Z[:nrow, :ncol] assert_(is_valid_linkage(Z) == valid) if not valid: assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_int_type(self): # Tests is_valid_linkage(Z) with integer type. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.int) assert_(is_valid_linkage(Z) == False) assert_raises(TypeError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_empty(self): # Tests is_valid_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(is_valid_linkage(Z) == True) def test_is_valid_linkage_4_and_up_neg_index_left(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (left). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,0] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_index_right(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (right). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,1] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_dist(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative distances. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,2] = -0.5 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_counts(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,3] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) class TestIsValidInconsistent(object): def test_is_valid_im_int_type(self): # Tests is_valid_im(R) with integer type. R = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.int) assert_(is_valid_im(R) == False) assert_raises(TypeError, is_valid_im, R, throw=True) def test_is_valid_im_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_im_various_size, nrow, ncol, valid def check_is_valid_im_various_size(self, nrow, ncol, valid): # Tests is_valid_im(R) with linkage matrics of various sizes R = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) R = R[:nrow, :ncol] assert_(is_valid_im(R) == valid) if not valid: assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_empty(self): # Tests is_valid_im(R) with empty inconsistency matrix. R = np.zeros((0, 4), dtype=np.double) assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) assert_(is_valid_im(R) == True) def test_is_valid_im_4_and_up_neg_index_left(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height means. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,0] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_index_right(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height standard deviations. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,1] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_dist(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,2] = -0.5 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) class TestNumObsLinkage(TestCase): def test_num_obs_linkage_empty(self): # Tests num_obs_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, num_obs_linkage, Z) def test_num_obs_linkage_1x4(self): # Tests num_obs_linkage(Z) on linkage over 2 observations. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) assert_equal(num_obs_linkage(Z), 2) def test_num_obs_linkage_2x4(self): # Tests num_obs_linkage(Z) on linkage over 3 observations. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) assert_equal(num_obs_linkage(Z), 3) def test_num_obs_linkage_4_and_up(self): # Tests num_obs_linkage(Z) on linkage on observation sets between sizes # 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_equal(num_obs_linkage(Z), i) class TestLeavesList(object): def test_leaves_list_1x4(self): # Tests leaves_list(Z) on a 1x4 linkage. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1]) def test_leaves_list_2x4(self): # Tests leaves_list(Z) on a 2x4 linkage. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1, 2]) def test_leaves_list_Q(self): for method in ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward']: yield self.check_leaves_list_Q, method def check_leaves_list_Q(self, method): # Tests leaves_list(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) node = to_tree(Z) assert_equal(node.pre_order(), leaves_list(Z)) def test_Q_subtree_pre_order(self): # Tests that pre_order() works when called on sub-trees. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') node = to_tree(Z) assert_equal(node.pre_order(), (node.get_left().pre_order() + node.get_right().pre_order())) class TestCorrespond(TestCase): def test_correspond_empty(self): # Tests correspond(Z, y) with empty linkage and condensed distance matrix. y = np.zeros((0,)) Z = np.zeros((0,4)) assert_raises(ValueError, correspond, Z, y) def test_correspond_2_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. for i in xrange(2, 4): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) def test_correspond_4_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) + list(zip(list(range(3, 5)), list(range(2, 4))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_correspond_4_and_up_2(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) + list(zip(list(range(2, 7)), list(range(16, 21))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_num_obs_linkage_multi_matrix(self): # Tests num_obs_linkage with observation matrices of multiple sizes. for n in xrange(2, 10): X = np.random.rand(n, 4) Y = pdist(X) Z = linkage(Y) assert_equal(num_obs_linkage(Z), n) class TestIsMonotonic(TestCase): def test_is_monotonic_empty(self): # Tests is_monotonic(Z) on an empty linkage. Z = np.zeros((0, 4)) assert_raises(ValueError, is_monotonic, Z) def test_is_monotonic_1x4(self): # Tests is_monotonic(Z) on 1x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_T(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 3]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_F(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting False. Z = np.asarray([[0, 1, 0.4, 2], [2, 3, 0.3, 3]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_T(self): # Tests is_monotonic(Z) on 3x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_3x4_F1(self): # Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.2, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F2(self): # Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False. Z = np.asarray([[0, 1, 0.8, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F3(self): # Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.2, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_tdist_linkage1(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Expecting True. Z = linkage(hierarchy_test_data.ytdist, 'single') assert_equal(is_monotonic(Z), True) def test_is_monotonic_tdist_linkage2(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Perturbing. Expecting False. Z = linkage(hierarchy_test_data.ytdist, 'single') Z[2,2] = 0.0 assert_equal(is_monotonic(Z), False) def test_is_monotonic_Q_linkage(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # Q data set. Expecting True. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') assert_equal(is_monotonic(Z), True) class TestMaxDists(object): def test_maxdists_empty_linkage(self): # Tests maxdists(Z) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxdists, Z) def test_maxdists_one_cluster_linkage(self): # Tests maxdists(Z) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxdists_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxdists_Q_linkage, method def check_maxdists_Q_linkage(self, method): # Tests maxdists(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxInconsts(object): def test_maxinconsts_empty_linkage(self): # Tests maxinconsts(Z, R) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_difrow_linkage(self): # Tests maxinconsts(Z, R) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_one_cluster_linkage(self): # Tests maxinconsts(Z, R) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxinconsts_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxinconsts_Q_linkage, method def check_maxinconsts_Q_linkage(self, method): # Tests maxinconsts(Z, R) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxRStat(object): def test_maxRstat_invalid_index(self): for i in [3.3, -1, 4]: yield self.check_maxRstat_invalid_index, i def check_maxRstat_invalid_index(self, i): # Tests maxRstat(Z, R, i). Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) if isinstance(i, int): assert_raises(ValueError, maxRstat, Z, R, i) else: assert_raises(TypeError, maxRstat, Z, R, i) def test_maxRstat_empty_linkage(self): for i in range(4): yield self.check_maxRstat_empty_linkage, i def check_maxRstat_empty_linkage(self, i): # Tests maxRstat(Z, R, i) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_difrow_linkage(self): for i in range(4): yield self.check_maxRstat_difrow_linkage, i def check_maxRstat_difrow_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_one_cluster_linkage(self): for i in range(4): yield self.check_maxRstat_one_cluster_linkage, i def check_maxRstat_one_cluster_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxRstat_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: for i in range(4): yield self.check_maxRstat_Q_linkage, method, i def check_maxRstat_Q_linkage(self, method, i): # Tests maxRstat(Z, R, i) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) class TestDendrogram(object): def test_dendrogram_single_linkage_tdist(self): # Tests dendrogram calculation on single linkage of the tdist data set. Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, no_plot=True) leaves = R["leaves"] assert_equal(leaves, [2, 5, 1, 0, 3, 4]) def test_valid_orientation(self): Z = linkage(hierarchy_test_data.ytdist, 'single') assert_raises(ValueError, dendrogram, Z, orientation="foo") @dec.skipif(not have_matplotlib) def test_dendrogram_plot(self): for orientation in ['top', 'bottom', 'left', 'right']: yield self.check_dendrogram_plot, orientation def check_dendrogram_plot(self, orientation): # Tests dendrogram plotting. Z = linkage(hierarchy_test_data.ytdist, 'single') expected = {'color_list': ['g', 'b', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 219.0, 219.0, 0.0], [0.0, 255.0, 255.0, 219.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [45.0, 45.0, 55.0, 55.0], [35.0, 35.0, 50.0, 50.0], [25.0, 25.0, 42.5, 42.5], [10.0, 10.0, 33.75, 33.75]], 'ivl': ['2', '5', '1', '0', '3', '4'], 'leaves': [2, 5, 1, 0, 3, 4]} fig = plt.figure() ax = fig.add_subplot(111) # test that dendrogram accepts ax keyword R1 = dendrogram(Z, ax=ax, orientation=orientation) plt.close() assert_equal(R1, expected) # test plotting to gca (will import pylab) R2 = dendrogram(Z, orientation=orientation) plt.close() assert_equal(R2, expected) @dec.skipif(not have_matplotlib) def test_dendrogram_truncate_mode(self): Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, 2, 'lastp', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['b'], 'dcoord': [[0.0, 295.0, 295.0, 0.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0]], 'ivl': ['(2)', '(4)'], 'leaves': [6, 9]}) R = dendrogram(Z, 2, 'mtica', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['g', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 255.0, 255.0, 0.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [35.0, 35.0, 45.0, 45.0], [25.0, 25.0, 40.0, 40.0], [10.0, 10.0, 32.5, 32.5]], 'ivl': ['2', '5', '1', '0', '(2)'], 'leaves': [2, 5, 1, 0, 7]}) def test_dendrogram_colors(self): # Tests dendrogram plots with alternate colors Z = linkage(hierarchy_test_data.ytdist, 'single') set_link_color_palette(['c', 'm', 'y', 'k']) R = dendrogram(Z, no_plot=True, above_threshold_color='g', color_threshold=250) set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k']) color_list = R['color_list'] assert_equal(color_list, ['c', 'm', 'g', 'g', 'g']) def calculate_maximum_distances(Z): # Used for testing correctness of maxdists. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = Z[i, 2] B[i] = q.max() return B def calculate_maximum_inconsistencies(Z, R, k=3): # Used for testing correctness of maxinconsts. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = R[i, k] B[i] = q.max() return B def test_euclidean_linkage_value_error(): for method in scipy.cluster.hierarchy._cpy_euclid_methods: assert_raises(ValueError, linkage, [[1, 1], [1, 1]], method=method, metric='cityblock') def test_2x2_linkage(): Z1 = linkage([1], method='single', metric='euclidean') Z2 = linkage([[0, 1], [0, 0]], method='single', metric='euclidean') assert_allclose(Z1, Z2) if __name__ == "__main__": run_module_suite()
bsd-3-clause
ashhher3/scikit-learn
sklearn/linear_model/tests/test_coordinate_descent.py
6
21872
# Authors: Olivier Grisel <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause from sys import version_info import numpy as np from scipy import interpolate, sparse from copy import deepcopy from sklearn.datasets import load_boston from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model.coordinate_descent import Lasso, \ LassoCV, ElasticNet, ElasticNetCV, MultiTaskLasso, MultiTaskElasticNet, \ MultiTaskElasticNetCV, MultiTaskLassoCV, lasso_path, enet_path from sklearn.linear_model import LassoLarsCV, lars_path def check_warnings(): if version_info < (2, 6): raise SkipTest("Testing for warnings is not supported in versions \ older than Python 2.6") def test_lasso_zero(): """Check that the lasso can handle zero data without crashing""" X = [[0], [0], [0]] y = [0, 0, 0] clf = Lasso(alpha=0.1).fit(X, y) pred = clf.predict([[1], [2], [3]]) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_lasso_toy(): """ Test Lasso on a toy example for various values of alpha. When validating this against glmnet notice that glmnet divides it against nobs. """ X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line T = [[2], [3], [4]] # test sample clf = Lasso(alpha=1e-8) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.85]) assert_array_almost_equal(pred, [1.7, 2.55, 3.4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy(): """ Test ElasticNet for various parameters of alpha and l1_ratio. Actually, the parameters alpha = 0 should not be allowed. However, we test it as a border case. ElasticNet is tested with and without precomputed Gram matrix """ X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def build_dataset(n_samples=50, n_features=200, n_informative_features=10, n_targets=1): """ build an ill-posed linear regression problem with many noisy features and comparatively few samples """ random_state = np.random.RandomState(0) if n_targets > 1: w = random_state.randn(n_features, n_targets) else: w = random_state.randn(n_features) w[n_informative_features:] = 0.0 X = random_state.randn(n_samples, n_features) y = np.dot(X, w) X_test = random_state.randn(n_samples, n_features) y_test = np.dot(X_test, w) return X, y, X_test, y_test def test_lasso_cv(): X, y, X_test, y_test = build_dataset() max_iter = 150 clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter).fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True) clf.fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) # Check that the lars and the coordinate descent implementation # select a similar alpha lars = LassoLarsCV(normalize=False, max_iter=30).fit(X, y) # for this we check that they don't fall in the grid of # clf.alphas further than 1 assert_true(np.abs( np.searchsorted(clf.alphas_[::-1], lars.alpha_) - np.searchsorted(clf.alphas_[::-1], clf.alpha_)) <= 1) # check that they also give a similar MSE mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.cv_mse_path_.T) np.testing.assert_approx_equal(mse_lars(clf.alphas_[5]).mean(), clf.mse_path_[5].mean(), significant=2) # test set assert_greater(clf.score(X_test, y_test), 0.99) def test_lasso_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient clf_unconstrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) clf_unconstrained.fit(X, y) assert_true(min(clf_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients clf_constrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, positive=True, cv=2, n_jobs=1) clf_constrained.fit(X, y) assert_true(min(clf_constrained.coef_) >= 0) def test_lasso_path_return_models_vs_new_return_gives_same_coefficients(): # Test that lasso_path with lars_path style output gives the # same result # Some toy data X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T y = np.array([1, 2, 3.1]) alphas = [5., 1., .5] # Use lars_path and lasso_path(new output) with 1D linear interpolation # to compute the the same path alphas_lars, _, coef_path_lars = lars_path(X, y, method='lasso') coef_path_cont_lars = interpolate.interp1d(alphas_lars[::-1], coef_path_lars[:, ::-1]) alphas_lasso2, coef_path_lasso2, _ = lasso_path(X, y, alphas=alphas, return_models=False) coef_path_cont_lasso = interpolate.interp1d(alphas_lasso2[::-1], coef_path_lasso2[:, ::-1]) assert_array_almost_equal( coef_path_cont_lasso(alphas), coef_path_cont_lars(alphas), decimal=1) def test_enet_path(): # We use a large number of samples and of informative features so that # the l1_ratio selected is more toward ridge than lasso X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100, n_informative_features=100) max_iter = 150 # Here we have a small number of iterations, and thus the # ElasticNet might not converge. This is to speed up tests clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter, precompute=True) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) # Multi-output/target case X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) assert_equal(clf.coef_.shape, (3, 10)) # Mono-output should have same cross-validated alpha_ and l1_ratio_ # in both cases. X, y, _, _ = build_dataset(n_features=10) clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf2.fit(X, y[:, np.newaxis]) assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_) assert_almost_equal(clf1.alpha_, clf2.alpha_) def test_path_parameters(): X, y, _, _ = build_dataset() max_iter = 100 clf = ElasticNetCV(n_alphas=50, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, tol=1e-3) clf.fit(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(50, clf.n_alphas) assert_equal(50, len(clf.alphas_)) def test_warm_start(): X, y, _, _ = build_dataset() clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True) ignore_warnings(clf.fit)(X, y) ignore_warnings(clf.fit)(X, y) # do a second round with 5 iterations clf2 = ElasticNet(alpha=0.1, max_iter=10) ignore_warnings(clf2.fit)(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_) def test_lasso_alpha_warning(): X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line clf = Lasso(alpha=0) assert_warns(UserWarning, clf.fit, X, Y) def test_lasso_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope lasso = Lasso(alpha=0.1, max_iter=1000, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) lasso = Lasso(alpha=0.1, max_iter=1000, precompute=True, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) def test_enet_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True) enet.fit(X, y) assert_true(min(enet.coef_) >= 0) def test_enet_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient enetcv_unconstrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) enetcv_unconstrained.fit(X, y) assert_true(min(enetcv_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients enetcv_constrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, positive=True, n_jobs=1) enetcv_constrained.fit(X, y) assert_true(min(enetcv_constrained.coef_) >= 0) def test_multi_task_lasso_and_enet(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] #Y_test = np.c_[y_test, y_test] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) clf = MultiTaskElasticNet(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_enet_multitarget(): n_targets = 3 X, y, _, _ = build_dataset(n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True) estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_multioutput_enetcv_error(): X = np.random.randn(10, 2) y = np.random.randn(10, 2) clf = ElasticNetCV() assert_raises(ValueError, clf.fit, X, y) def test_multitask_enet_and_lasso_cv(): X, y, _, _ = build_dataset(n_features=100, n_targets=3) clf = MultiTaskElasticNetCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00556, 3) clf = MultiTaskLassoCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00278, 3) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=50, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3) clf.fit(X, y) assert_equal(0.5, clf.l1_ratio_) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((2, 50, 3), clf.mse_path_.shape) assert_equal((2, 50), clf.alphas_.shape) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskLassoCV(n_alphas=50, eps=1e-3, max_iter=100, tol=1e-3) clf.fit(X, y) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((50, 3), clf.mse_path_.shape) assert_equal(50, len(clf.alphas_)) def test_1d_multioutput_enet_and_multitask_enet_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf.fit(X, y[:, 0]) clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_1d_multioutput_lasso_and_multitask_lasso_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = LassoCV(n_alphas=5, eps=2e-3) clf.fit(X, y[:, 0]) clf1 = MultiTaskLassoCV(n_alphas=5, eps=2e-3) clf1.fit(X, y) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_sparse_input_dtype_enet_and_lassocv(): X, y, _, _ = build_dataset(n_features=10) clf = ElasticNetCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = ElasticNetCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) clf = LassoCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = LassoCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) def test_precompute_invalid_argument(): X, y, _, _ = build_dataset() for clf in [ElasticNetCV(precompute="invalid"), LassoCV(precompute="invalid")]: assert_raises(ValueError, clf.fit, X, y) def test_warm_start_convergence(): X, y, _, _ = build_dataset() model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y) n_iter_reference = model.n_iter_ # This dataset is not trivial enough for the model to converge in one pass. assert_greater(n_iter_reference, 2) # Check that n_iter_ is invariant to multiple calls to fit # when warm_start=False, all else being equal. model.fit(X, y) n_iter_cold_start = model.n_iter_ assert_equal(n_iter_cold_start, n_iter_reference) # Fit the same model again, using a warm start: the optimizer just performs # a single pass before checking that it has already converged model.set_params(warm_start=True) model.fit(X, y) n_iter_warm_start = model.n_iter_ assert_equal(n_iter_warm_start, 1) def test_warm_start_convergence_with_regularizer_decrement(): boston = load_boston() X, y = boston.data, boston.target # Train a model to converge on a lightly regularized problem final_alpha = 1e-5 low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y) # Fitting a new model on a more regularized version of the same problem. # Fitting with high regularization is easier it should converge faster # in general. high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y) assert_greater(low_reg_model.n_iter_, high_reg_model.n_iter_) # Fit the solution to the original, less regularized version of the # problem but from the solution of the highly regularized variant of # the problem as a better starting point. This should also converge # faster than the original model that starts from zero. warm_low_reg_model = deepcopy(high_reg_model) warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha) warm_low_reg_model.fit(X, y) assert_greater(low_reg_model.n_iter_, warm_low_reg_model.n_iter_) def test_random_descent(): """Test that both random and cyclic selection give the same results. Ensure that the test models fully converge and check a wide range of conditions. """ # This uses the coordinate descent algo using the gram trick. X, y, _, _ = build_dataset(n_samples=50, n_features=20) clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # This uses the descent algo without the gram trick clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X.T, y[:20]) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X.T, y[:20]) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Sparse Case clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(sparse.csr_matrix(X), y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(sparse.csr_matrix(X), y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Multioutput case. new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis])) clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, new_y) clf_random = MultiTaskElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, new_y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Raise error when selection is not in cyclic or random. clf_random = ElasticNet(selection='invalid') assert_raises(ValueError, clf_random.fit, X, y) def test_deprection_precompute_enet(): """ Test that setting precompute="auto" gives a Deprecation Warning. """ X, y, _, _ = build_dataset(n_samples=20, n_features=10) clf = ElasticNet(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) clf = Lasso(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) def test_enet_path_positive(): """ Test that the coefs returned by positive=True in enet_path are positive """ X, y, _, _ = build_dataset(n_samples=50, n_features=50) for path in [enet_path, lasso_path]: pos_path_coef = path(X, y, positive=True)[1] assert_true(np.all(pos_path_coef >= 0)) def test_sparse_dense_descent_paths(): """ Test that dense and sparse input give the same input for descent paths. """ X, y, _, _ = build_dataset(n_samples=50, n_features=20) csr = sparse.csr_matrix(X) for path in [enet_path, lasso_path]: _, coefs, _ = path(X, y, fit_intercept=False) _, sparse_coefs, _ = path(csr, y, fit_intercept=False) assert_array_almost_equal(coefs, sparse_coefs) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
dilawar/moose-full
moose-examples/snippets/hhcomp.py
2
7958
# hhcomp.py --- # # Filename: hhcomp.py # Description: # Author: Subhasis Ray # Maintainer: # Created: Tue May 7 12:11:22 2013 (+0530) # Version: # Last-Updated: Tue May 7 19:21:43 2013 (+0530) # By: subha # Update #: 309 # URL: # Keywords: # Compatibility: # # # Commentary: # # # # # Change log: # # # # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth # Floor, Boston, MA 02110-1301, USA. # # # Code: """A compartment with hodgkin-huxley ion channels""" import sys sys.path.append('../../python') import os os.environ['NUMPTHREADS'] = '1' import numpy as np import matplotlib.pyplot as plt import moose from moose import utils EREST_ACT = -70e-3 per_ms = 1e3 def create_na_chan(parent='/library', name='na', vmin=-110e-3, vmax=50e-3, vdivs=3000): """Create a Hodhkin-Huxley Na channel under `parent`. vmin, vmax, vdivs: voltage range and number of divisions for gate tables """ na = moose.HHChannel('%s/%s' % (parent, name)) na.Xpower = 3 na.Ypower = 1 v = np.linspace(vmin, vmax, vdivs+1) - EREST_ACT m_alpha = per_ms * (25 - v * 1e3) / (10 * (np.exp((25 - v * 1e3) / 10) - 1)) m_beta = per_ms * 4 * np.exp(- v * 1e3/ 18) m_gate = moose.element('%s/gateX' % (na.path)) m_gate.min = vmin m_gate.max = vmax m_gate.divs = vdivs m_gate.tableA = m_alpha m_gate.tableB = m_alpha + m_beta h_alpha = per_ms * 0.07 * np.exp(-v / 20e-3) h_beta = per_ms * 1/(np.exp((30e-3 - v) / 10e-3) + 1) h_gate = moose.element('%s/gateY' % (na.path)) h_gate.min = vmin h_gate.max = vmax h_gate.divs = vdivs h_gate.tableA = h_alpha h_gate.tableB = h_alpha + h_beta plt.subplot(2,1,1) plt.plot(v, m_alpha / (m_alpha + m_beta), label='m_inf') plt.plot(v, h_alpha / (h_alpha + h_beta), label='h_inf') plt.legend() plt.subplot(2,1,2) plt.plot(v, 1/(m_alpha + m_beta), label='tau_m') plt.plot(v, 1/(h_alpha + h_beta), label='tau_h') plt.legend() plt.show() plt.close() na.tick = -1 return na def create_k_chan(parent='/library', name='k', vmin=-120e-3, vmax=40e-3, vdivs=3000): """Create a Hodhkin-Huxley K channel under `parent`. vmin, vmax, vdivs: voltage range and number of divisions for gate tables """ k = moose.HHChannel('%s/%s' % (parent, name)) k.Xpower = 4 v = np.linspace(vmin, vmax, vdivs+1) - EREST_ACT n_alpha = per_ms * (10 - v * 1e3)/(100 * (np.exp((10 - v * 1e3)/10) - 1)) n_beta = per_ms * 0.125 * np.exp(- v * 1e3 / 80) n_gate = moose.element('%s/gateX' % (k.path)) n_gate.min = vmin n_gate.max = vmax n_gate.divs = vdivs n_gate.tableA = n_alpha n_gate.tableB = n_alpha + n_beta plt.subplot(211) plt.plot(v, n_alpha/(n_alpha + n_beta)) plt.subplot(212) plt.plot(v, 1/(n_alpha + n_beta)) plt.show() plt.close() k.tick = -1 return k def test_channel_gates(): """Creates prototype channels under `/library` and plots the time constants (tau) and activation (minf, hinf, ninf) parameters for the channel gates. Does not execute any simulation. """ lib = moose.Neutral('/library') na_proto = create_na_chan() k_proto = create_k_chan() m = moose.element('%s/gateX' % (na_proto.path)) h = moose.element('%s/gateY' % (na_proto.path)) n = moose.element('%s/gateX' % (k_proto.path)) v = np.linspace(m.min,m.max, m.divs+1) plt.subplot(211) plt.plot(v, 1/m.tableB, label='tau_m') plt.plot(v, 1/h.tableB, label='tau_h') plt.plot(v, 1/n.tableB, label='tau_n') plt.legend() plt.subplot(212) plt.plot(v, m.tableA/m.tableB, label='m_inf') plt.plot(v, h.tableA/h.tableB, label='h_inf') plt.plot(v, n.tableA/n.tableB, label='n_inf') plt.legend() plt.show() def create_passive_comp(parent='/library', name='comp', diameter=30e-6, length=0.0): """Creates a single compartment with squid axon Em, Cm and Rm. Does not set Ra""" comp = moose.Compartment('%s/%s' % (parent, name)) comp.Em = EREST_ACT + 10.613e-3 comp.initVm = EREST_ACT if length <= 0: sarea = np.pi * diameter * diameter else: sarea = np.pi * diameter * length # specific conductance gm = 0.3 mS/cm^2 comp.Rm = 1 / (0.3e-3 * sarea * 1e4) # Specific capacitance cm = 1 uF/cm^2 comp.Cm = 1e-6 * sarea * 1e4 return comp, sarea def create_hhcomp(parent='/library', name='hhcomp', diameter=-30e-6, length=0.0): """Create a compartment with Hodgkin-Huxley type ion channels (Na and K). Returns a 3-tuple: (compartment, nachannel, kchannel) """ comp, sarea = create_passive_comp(parent, name, diameter, length) if moose.exists('/library/na'): moose.copy('/library/na', comp.path, 'na') else: create_na_chan(parent=comp.path) na = moose.element('%s/na' % (comp.path)) # Na-conductance 120 mS/cm^2 na.Gbar = 120e-3 * sarea * 1e4 na.Ek = 115e-3 + EREST_ACT moose.connect(comp, 'channel', na, 'channel') if moose.exists('/library/k'): moose.copy('/library/k', comp.path, 'k') else: create_k_chan(parent=comp.path) k = moose.element('%s/k' % (comp.path)) # K-conductance 36 mS/cm^2 k.Gbar = 36e-3 * sarea * 1e4 k.Ek = -12e-3 + EREST_ACT moose.connect(comp, 'channel', k, 'channel') return comp, na, k def test_hhcomp(): """Create and simulate a single spherical compartment with Hodgkin-Huxley Na and K channel. Plots Vm, injected current, channel conductances. """ model = moose.Neutral('/model') data = moose.Neutral('/data') comp, na, k = create_hhcomp(parent=model.path) print comp.Rm, comp.Cm, na.Ek, na.Gbar, k.Ek, k.Gbar pg = moose.PulseGen('%s/pg' % (model.path)) pg.firstDelay = 20e-3 pg.firstWidth = 40e-3 pg.firstLevel = 1e-9 pg.secondDelay = 1e9 moose.connect(pg, 'output', comp, 'injectMsg') inj = moose.Table('%s/pulse' % (data.path)) moose.connect(inj, 'requestOut', pg, 'getOutputValue') vm = moose.Table('%s/Vm' % (data.path)) moose.connect(vm, 'requestOut', comp, 'getVm') gK = moose.Table('%s/gK' % (data.path)) moose.connect(gK, 'requestOut', k, 'getGk') gNa = moose.Table('%s/gNa' % (data.path)) moose.connect(gNa, 'requestOut', na, 'getGk') simdt = 1e-6 plotdt = 1e-4 simtime = 100e-3 if (1): moose.showmsg( '/clock' ) for i in range(8): moose.setClock( i, simdt ) moose.setClock( 8, plotdt ) moose.reinit() else: utils.resetSim([model.path, data.path], simdt, plotdt, simmethod='ee') moose.showmsg( '/clock' ) moose.start(simtime) t = np.linspace(0, simtime, len(vm.vector)) plt.subplot(211) plt.plot(t, vm.vector * 1e3, label='Vm (mV)') plt.plot(t, inj.vector * 1e9, label='injected (nA)') plt.legend() plt.title('Vm') plt.subplot(212) plt.title('Conductance (uS)') plt.plot(t, gK.vector * 1e6, label='K') plt.plot(t, gNa.vector * 1e6, label='Na') plt.legend() plt.show() plt.close() # moose.showfield(comp) # moose.showfield(na) # moose.showfield(k) if __name__ == '__main__': test_channel_gates() test_hhcomp() # # hhcomp.py ends here
gpl-2.0
altairpearl/scikit-learn
sklearn/tests/test_calibration.py
15
11959
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import (assert_array_almost_equal, assert_equal, assert_greater, assert_almost_equal, assert_greater_equal, assert_array_equal, assert_raises, ignore_warnings) from sklearn.datasets import make_classification, make_blobs from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.svm import LinearSVC from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.metrics import brier_score_loss, log_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import _sigmoid_calibration, _SigmoidCalibration from sklearn.calibration import calibration_curve @ignore_warnings def test_calibration(): """Test calibration objects with isotonic and sigmoid""" n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB().fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] pc_clf = CalibratedClassifierCV(clf, cv=y.size + 1) assert_raises(ValueError, pc_clf.fit, X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [(X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv=2) # Note that this fit overwrites the fit on the entire training # set pc_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_pc_clf = pc_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) # Check invariance against relabeling [0, 1] -> [1, 2] pc_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] pc_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_pc_clf_relabeled = pc_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_pc_clf, prob_pos_pc_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] pc_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_pc_clf_relabeled = \ pc_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_pc_clf, 1 - prob_pos_pc_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss((y_test + 1) % 2, prob_pos_pc_clf_relabeled)) # check that calibration can also deal with regressors that have # a decision_function clf_base_regressor = CalibratedClassifierCV(Ridge()) clf_base_regressor.fit(X_train, y_train) clf_base_regressor.predict(X_test) # Check failure cases: # only "isotonic" and "sigmoid" should be accepted as methods clf_invalid_method = CalibratedClassifierCV(clf, method="foo") assert_raises(ValueError, clf_invalid_method.fit, X_train, y_train) # base-estimators should provide either decision_function or # predict_proba (most regressors, for instance, should fail) clf_base_regressor = \ CalibratedClassifierCV(RandomForestRegressor(), method="sigmoid") assert_raises(RuntimeError, clf_base_regressor.fit, X_train, y_train) def test_sample_weight(): n_samples = 100 X, y = make_classification(n_samples=2 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] for method in ['sigmoid', 'isotonic']: base_estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV(base_estimator, method=method) calibrated_clf.fit(X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # a different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert_greater(diff, 0.1) def test_calibration_multiclass(): """Test calibration for multiclass """ # test multi-class setting with classifier that implements # only decision function clf = LinearSVC() X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42, centers=3, cluster_std=3.0) # Use categorical labels to check that CalibratedClassifierCV supports # them correctly target_names = np.array(['a', 'b', 'c']) y = target_names[y_idx] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=2) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that log-loss of calibrated classifier is smaller than # log-loss of naively turned OvR decision function to probabilities # via softmax def softmax(y_pred): e = np.exp(-y_pred) return e / e.sum(axis=1).reshape(-1, 1) uncalibrated_log_loss = \ log_loss(y_test, softmax(clf.decision_function(X_test))) calibrated_log_loss = log_loss(y_test, probas) assert_greater_equal(uncalibrated_log_loss, calibrated_log_loss) # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier X, y = make_blobs(n_samples=100, n_features=2, random_state=42, cluster_std=3.0) X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf = RandomForestClassifier(n_estimators=10, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) loss = log_loss(y_test, clf_probs) for method in ['isotonic', 'sigmoid']: cal_clf = CalibratedClassifierCV(clf, method=method, cv=3) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) cal_loss = log_loss(y_test, cal_clf_probs) assert_greater(loss, cal_loss) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = \ X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = \ X[n_samples:2 * n_samples], y[n_samples:2 * n_samples], \ sample_weight[n_samples:2 * n_samples] X_test, y_test = X[2 * n_samples:], y[2 * n_samples:] # Naive-Bayes clf = MultinomialNB() clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [(X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test))]: for method in ['isotonic', 'sigmoid']: pc_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: pc_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = pc_clf.predict_proba(this_X_test) y_pred = pc_clf.predict(this_X_test) prob_pos_pc_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert_greater(brier_score_loss(y_test, prob_pos_clf), brier_score_loss(y_test, prob_pos_pc_clf)) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1. / (1. + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays assert_raises(ValueError, _SigmoidCalibration().fit, np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0., 0.1, 0.2, 0.8, 0.9, 1.]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) prob_true_unnormalized, prob_pred_unnormalized = \ calibration_curve(y_true, y_pred * 2, n_bins=2, normalize=True) assert_equal(len(prob_true), len(prob_pred)) assert_equal(len(prob_true), 2) assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) # probabilities outside [0, 1] should not be accepted when normalize # is set to False assert_raises(ValueError, calibration_curve, [1.1], [-0.1], normalize=False) def test_calibration_nan_imputer(): """Test that calibration can accept nan""" X, y = make_classification(n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42) X[0, 0] = np.nan clf = Pipeline( [('imputer', Imputer()), ('rf', RandomForestClassifier(n_estimators=1))]) clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_c.fit(X, y) clf_c.predict(X)
bsd-3-clause
duthils/osmose-frontend
errors_graph.py
1
5939
#! /usr/bin/env python #-*- coding: utf-8 -*- ########################################################################### ## ## ## Copyrights Etienne Chové <[email protected]> 2009 ## ## ## ## This program is free software: you can redistribute it and/or modify ## ## it under the terms of the GNU General Public License as published by ## ## the Free Software Foundation, either version 3 of the License, or ## ## (at your option) any later version. ## ## ## ## This program is distributed in the hope that it will be useful, ## ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## ## GNU General Public License for more details. ## ## ## ## You should have received a copy of the GNU General Public License ## ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## ## ## ########################################################################### import time, sys, datetime, StringIO, os, tempfile from datetime import timedelta os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp() import matplotlib # Force matplotlib to not use any Xwindows backend. matplotlib.use('Agg') import matplotlib.pyplot import matplotlib.dates from tools import query def get_data(db, options): sqlbase = """ SELECT date, SUM(count) FROM ( SELECT date_trunc('day', marker.timestamp) AS date, AVG(marker.count) AS count FROM %s WHERE %s GROUP BY marker.source, marker.class, date ) AS t GROUP BY date ORDER BY date """ params = query._params() join, where = query._build_param(None, None, None, params.source, params.item, params.level, None, params.classs, params.country, params.useDevItem, None, params.tags, None, stats=True, start_date=params.start_date, end_date=params.end_date) sql = sqlbase % (join, where) if len(sys.argv)>1: print sql result = [] db.execute(sql) for r in db.fetchall(): result.append((r[0],r[1])) return result def get_text(db, options): if len(options.sources)==1 and len(options.classes)==1: db.execute("SELECT title->'en' FROM dynpoi_class WHERE source=%s AND class=%s;", (options.sources[0], options.classes[0])) elif len(options.items)==1 and len(options.classes)==1: db.execute("SELECT title->'en' FROM dynpoi_class WHERE class=%s AND item=%s LIMIT 1;", (options.classes[0], options.items[0])) elif len(options.items)==1: db.execute("SELECT menu->'en' FROM dynpoi_item WHERE item=%s LIMIT 1;", (options.items[0],)) else: return "" res = db.fetchone() if res and res[0]: return res[0] else: return "" def get_src(db, options): if len(options.sources) == 1: db.execute("SELECT country, analyser FROM source WHERE id=%s;", (options.sources[0], )) r = db.fetchone() return r[0] + " - " + r[1] elif options.country: return str(options.country) else: return "All" def convIntsToStr(values): """ Convertie une liste d'entier en chaine """ return ", ".join([str(elt) for elt in values]) def make_plt(db, options, format): data = get_data(db, options) text = get_text(db, options) src = get_src(db, options) return plot(data, text+' '+src, format) class AutoDateLocatorDay(matplotlib.dates.AutoDateLocator): def get_locator(self, dmin, dmax): if dmax-dmin <= timedelta(days=5): return matplotlib.dates.AutoDateLocator.get_locator(self, dmax-timedelta(days=5), dmax) else: return matplotlib.dates.AutoDateLocator.get_locator(self, dmin, dmax) def plot(data, title, format): dates = [q[0] for q in data] opens = [q[1] for q in data] fig = matplotlib.pyplot.figure() ax = fig.add_subplot(111) ax.plot_date(dates, opens, '-', color='r') ax.set_title(title) # format the ticks ax.relim() if len(opens) > 1: ytop = float(max(opens)) * 1.05 + 1 else: ytop = None ax.set_ylim(bottom=0, top=ytop) ax.autoscale_view() # format the coords message box ax.fmt_ydata = lambda x: '$%1.2f'%x ax.grid(True) locator = AutoDateLocatorDay() locator.set_axis(ax.xaxis) locator.refresh() formatter = matplotlib.dates.AutoDateFormatter(locator) formatter.scaled[30.] = '%Y-%m' formatter.scaled[1.0] = '%Y-%m-%d' ax.xaxis.set_major_formatter(formatter) fig.autofmt_xdate() buf = StringIO.StringIO() fig.savefig(buf, format = format) matplotlib.pyplot.close(fig) return buf.getvalue() if __name__ == "__main__": from optparse import OptionParser, SUPPRESS_HELP start = time.clock() parser = OptionParser() parser.add_option("--source", dest="sources", type="int", action="append", default=[]) parser.add_option("--class", dest="classes", type="int", action="append", default=[]) parser.add_option("--item", dest="items", type="int", action="append", default=[]) parser.add_option("--level", dest="levels", type="int", action="append", default=[]) parser.add_option("--country", dest="country", type="string", default=None) (options, args) = parser.parse_args() data = make_plt(None, options, "png") f = open("graph.png", "w") f.write(data) f.close() end = time.clock() print "graph.png generated in %ims"%((end-start)*1000) sys.exit(0)
gpl-3.0
Jsonzhang/kaggle
titanic/titanic.py
1
6545
# coding=utf-8 import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns from sklearn.model_selection import StratifiedShuffleSplit from sklearn.linear_model import LogisticRegression, Perceptron, SGDClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, RandomForestRegressor from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn import preprocessing from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score, log_loss def processFeatures(data): source = data source.Cabin = source.Cabin.str.extract('([A-Z])\d+', expand=False) source.Cabin.fillna('NULL', inplace=True) source.Fare.fillna(source['Fare'].dropna().median(), inplace=True) dummiesEmbarked = pd.get_dummies(source['Embarked'], prefix='Embarked') dummiesCabin = pd.get_dummies(source['Cabin'], prefix='Cabin') dummiesPclass = pd.get_dummies(source['Pclass'], prefix='Pclass') source['Title'] = source.Name.str.extract(' ([A-Za-z]+)\.', expand=False) source['Title'] = source['Title'].replace(['Lady', 'Countess','Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') source['Title'] = source['Title'].replace('Mlle', 'Miss') source['Title'] = source['Title'].replace('Ms', 'Miss') source['Title'] = source['Title'].replace('Mme', 'Mrs') title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} source['Title'] = source['Title'].map(title_mapping) dummiesTitle = pd.get_dummies(source['Title'], prefix='Title') source.loc[source['Fare'] <= 7.91, 'Fare'] = 0 source.loc[(source['Fare'] > 7.91), 'Fare'] = 1 source.loc[(source['Fare'] > 14.454) & (source['Fare'] <= 31), 'Fare'] = 2 source.loc[source['Fare'] > 31, 'Fare']= 3 dummiesFare = pd.get_dummies(source['Fare'], prefix='Fare') source = pd.concat([source, dummiesEmbarked, dummiesPclass, dummiesCabin, dummiesTitle, dummiesFare], axis=1) source['Sex'] = source['Sex'].map(lambda x: 1 if x == 'male' else 0) source['isChild'] = source['Age'].map(lambda x: 1 if x <= 16 else 0) source['isOld'] = source['Age'].map(lambda x: 1 if x > 60 else 0) source['isAlone'] = 0 source['FamilySize'] = source['SibSp'] + source['Parch'] + 1 source['SibSp'] = source['SibSp'].map(sib_rate, na_action=None) source['SibSp'].fillna(0.5, inplace=True) source.loc[source['FamilySize'] == 1, 'isAlone'] = 1 source = set_missing_ages(source, ['Age', 'Fare', 'Parch', 'SibSp', 'Pclass'], 'Age') source = source.filter(regex='SibSp|isOld|isChild|isAlone|Title_.*|Age|Fare_.*|Embarked_.*|Cabin_.*|Sex|Pclass_.*') return preprocessing.MinMaxScaler().fit_transform(source) def set_missing_ages(df, features, target): # 根据所坐舱位等数字讯息推断年龄 target_df = df[features] known = target_df[target_df[target].notnull()].as_matrix() unknown = target_df[target_df[target].isnull()].as_matrix() y = known[:, 0] X = known[:, 1:] if len(unknown): rfr = RandomForestRegressor( random_state=0, n_estimators=2000, n_jobs=-1) rfr.fit(X, y) predicted = rfr.predict(unknown[:, 1::]) df.loc[(df[target].isnull()), target] = predicted return df def sibsp_map_generate(source): km = source['SibSp'].unique() sib_rate = pd.Series(0.0, index=km) for sib in km: survived_total = source.Survived[source['SibSp'] == sib].value_counts() if 1 in survived_total: sib_rate[sib] = float(survived_total[1]) / float(sum(survived_total)) else: sib_rate[sib] = 0 return sib_rate train_df = pd.read_csv('./data/train.csv', index_col=False) # valid_df = pd.read_csv('./data/train.csv', index_col=False)[540:700] # test_df = pd.read_csv('./data/train.csv', index_col=False).tail(191) # valid_df = pd.concat([train_df.tail(100), test_df.head(100)], axis=0) target_df = pd.read_csv('./data/test.csv', index_col=False) sib_rate = sibsp_map_generate(train_df) X = processFeatures(train_df) y = train_df['Survived'] # testX = processFeatures(test_df) # testY = test_df['Survived'] # validX = processFeatures(valid_df) # validY = valid_df['Survived'] targetX = processFeatures(target_df) # create param grid object forrest_params = dict( max_depth = [n for n in range(9, 14)], min_samples_split = [n for n in range(4, 11)], min_samples_leaf = [n for n in range(2, 5)], n_estimators = [n for n in range(10, 60, 10)] ) classifiers = [ KNeighborsClassifier(3), svm.SVC(probability=True), svm.LinearSVC(), DecisionTreeClassifier(), GridSearchCV(estimator=RandomForestClassifier(), param_grid=forrest_params, cv=5), AdaBoostClassifier(), SGDClassifier(), GradientBoostingClassifier(), GaussianNB(), Perceptron(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis(), LogisticRegression(), DecisionTreeClassifier() ] maxValue = 0 targetClf = None acc_dict = {} log_cols = ["Classifier", "Accuracy"] log = pd.DataFrame(columns=log_cols) sss = StratifiedShuffleSplit(n_splits=10, test_size=0.1, random_state=0) for train_index, test_index in sss.split(X, y): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] for clf in classifiers: name = clf.__class__.__name__ clf.fit(X_train, y_train) train_predictions = clf.predict(X_test) acc = accuracy_score(y_test, train_predictions) print(acc) if acc > maxValue: targetClf = clf maxValue = acc if name in acc_dict: acc_dict[name] += acc else: acc_dict[name] = acc for clf in acc_dict: acc_dict[clf] = acc_dict[clf] / 10.0 log_entry = pd.DataFrame([[clf, acc_dict[clf]]], columns=log_cols) log = log.append(log_entry) plt.xlabel('Accuracy') plt.title('Classifier Accuracy') sns.set_color_codes("muted") sns.barplot(x='Accuracy', y='Classifier', data=log, color="b") result = targetClf.predict(targetX) submission = pd.DataFrame({ "PassengerId": target_df["PassengerId"], "Survived": result }) submission.to_csv('./submission.csv', index=False) """ kaggal: 0.78468 kaggal: 3587 """
mit
btabibian/scikit-learn
examples/applications/plot_tomography_l1_reconstruction.py
8
5475
""" ====================================================================== Compressive sensing: tomography reconstruction with L1 prior (Lasso) ====================================================================== This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in **computed tomography** (CT). Without any prior information on the sample, the number of projections required to reconstruct the image is of the order of the linear size ``l`` of the image (in pixels). For simplicity we consider here a sparse image, where only pixels on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material. Note however that most images are sparse in a different basis, such as the Haar wavelets. Only ``l/7`` projections are acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of **compressive sensing**. The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization problem is called the :ref:`lasso`. We use the class :class:`sklearn.linear_model.Lasso`, that uses the coordinate descent algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection operator used here. The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1), even if noise was added to the projections. In comparison, an L2 penalization (:class:`sklearn.linear_model.Ridge`) produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image, contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have contributed to fewer projections than the central disk. """ print(__doc__) # Author: Emmanuelle Gouillart <[email protected]> # License: BSD 3 clause import numpy as np from scipy import sparse from scipy import ndimage from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge import matplotlib.pyplot as plt def _weights(x, dx=1, orig=0): x = np.ravel(x) floor_x = np.floor((x - orig) / dx) alpha = (x - orig - floor_x * dx) / dx return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha)) def _generate_center_coordinates(l_x): X, Y = np.mgrid[:l_x, :l_x].astype(np.float64) center = l_x / 2. X += 0.5 - center Y += 0.5 - center return X, Y def build_projection_operator(l_x, n_dir): """ Compute the tomography design matrix. Parameters ---------- l_x : int linear size of image array n_dir : int number of angles at which projections are acquired. Returns ------- p : sparse matrix of shape (n_dir l_x, l_x**2) """ X, Y = _generate_center_coordinates(l_x) angles = np.linspace(0, np.pi, n_dir, endpoint=False) data_inds, weights, camera_inds = [], [], [] data_unravel_indices = np.arange(l_x ** 2) data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices)) for i, angle in enumerate(angles): Xrot = np.cos(angle) * X - np.sin(angle) * Y inds, w = _weights(Xrot, dx=1, orig=X.min()) mask = np.logical_and(inds >= 0, inds < l_x) weights += list(w[mask]) camera_inds += list(inds[mask] + i * l_x) data_inds += list(data_unravel_indices[mask]) proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds))) return proj_operator def generate_synthetic_data(): """ Synthetic binary data """ rs = np.random.RandomState(0) n_pts = 36 x, y = np.ogrid[0:l, 0:l] mask_outer = (x - l / 2) ** 2 + (y - l / 2) ** 2 < (l / 2) ** 2 mask = np.zeros((l, l)) points = l * rs.rand(2, n_pts) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndimage.gaussian_filter(mask, sigma=l / n_pts) res = np.logical_and(mask > mask.mean(), mask_outer) return np.logical_xor(res, ndimage.binary_erosion(res)) # Generate synthetic images, and projections l = 128 proj_operator = build_projection_operator(l, l / 7.) data = generate_synthetic_data() proj = proj_operator * data.ravel()[:, np.newaxis] proj += 0.15 * np.random.randn(*proj.shape) # Reconstruction with L2 (Ridge) penalization rgr_ridge = Ridge(alpha=0.2) rgr_ridge.fit(proj_operator, proj.ravel()) rec_l2 = rgr_ridge.coef_.reshape(l, l) # Reconstruction with L1 (Lasso) penalization # the best value of alpha was determined using cross validation # with LassoCV rgr_lasso = Lasso(alpha=0.001) rgr_lasso.fit(proj_operator, proj.ravel()) rec_l1 = rgr_lasso.coef_.reshape(l, l) plt.figure(figsize=(8, 3.3)) plt.subplot(131) plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.title('original image') plt.subplot(132) plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest') plt.title('L2 penalization') plt.axis('off') plt.subplot(133) plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest') plt.title('L1 penalization') plt.axis('off') plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
bsd-3-clause
ajul/zerosum
python/examples/oneup.py
1
2829
import _initpath import numpy import zerosum.nash import matplotlib import matplotlib.pyplot as plt matplotlib.rc('text', usetex = True) def minimizer_advantage(a, b): b_power_a = numpy.power(b, a) # max_handicap denom = b - b_power_a + a * b_power_a * numpy.log(b) p = (b - b_power_a) / denom v = b_power_a * (b - 1.0) / denom return p, v def maximizer_advantage(a, b): b_power_a = numpy.power(b, a) # max_handicap denom = b - b_power_a + a * b * numpy.log(b) p = (b - b_power_a) / denom v = b * (b - 1.0) / denom return p, v n = 1024 b = 9.0 # maximum payoff; by what factor is the top of the step higher than the bottom dpi = 120 a = numpy.linspace(0.0, 1.0, n) min_p, min_v = minimizer_advantage(a, b) max_p, max_v = maximizer_advantage(a, b) fig_p, ax_p = plt.subplots(1, 1, figsize = (9, 9), dpi=dpi) ax_p.plot(a, min_p, color='blue') ax_p.plot(a, max_p, color='red') ax_p.legend(['Minimizer advantage', 'Maximizer advantage']) ax_p.set_xlabel('Maximum strategy ($a$)') ax_p.set_ylabel('Probability of playing extremal strategy') ax_p.set_aspect('equal') ax_p.set_xlim(left = 0.0, right = 1.0) ax_p.set_ylim(bottom = 0.0, top = 1.0) fig_p.savefig("out/oneup_probability.png", dpi = dpi, bbox_inches = "tight") fig_v, ax_v = plt.subplots(1, 1, figsize = (9, 9), dpi=dpi) ax_v.plot(a, min_v, color='blue') ax_v.plot(a, max_v, color='red') ax_v.legend(['Minimizer advantage', 'Maximizer advantage']) ax_v.set_xlabel('Maximum strategy ($a$)') ax_v.set_ylabel('Expected payoff') #ax_v.set_aspect(1.0 / (b + 1.0)) ax_v.set_xlim(left = 0.0, right = 1.0) ax_v.set_ylim(bottom = 0.0, top = b) fig_v.savefig("out/oneup_payoff.png", dpi = dpi, bbox_inches = "tight") # verification code """ n = 1024 row_frac = 0.5 col_frac = 1.0 max_payoff = 2.0 x = numpy.linspace(0.0, 1.0, n) costs = numpy.power(max_payoff, x) payoff_matrix = costs[None, :] / costs[:, None] payoff_matrix[numpy.tril_indices(n)] *= max_payoff n_row = int(n * row_frac) n_col = int(n * col_frac) row_result, col_result = zerosum.nash.nash(payoff_matrix[:n_row, :n_col]) if row_frac < col_frac: #c = max_payoff - numpy.power(max_payoff, row_frac) #denom = (c + row_frac * numpy.power(max_payoff, row_frac) * numpy.log(max_payoff)) #p = c / denom #v = numpy.power(max_payoff, row_frac) * (max_payoff - 1.0) / denom p, v = minimizer_advantage(row_frac, max_payoff) else: #c = max_payoff - numpy.power(max_payoff, col_frac) #denom = (c + col_frac * max_payoff * numpy.log(max_payoff)) #p = c / denom #v = max_payoff * (max_payoff - 1.0) / denom p, v = maximizer_advantage(col_frac, max_payoff) print(p, max(row_result.strategy), max(col_result.strategy)) print(v, row_result.value) plt.plot(x[:n_row], row_result.strategy, x[:n_col], col_result.strategy) plt.show() """
bsd-3-clause
mindw/numpy
numpy/lib/twodim_base.py
83
26903
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function from numpy.core.numeric import ( asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, ) from numpy.core import iinfo __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to A[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A)==A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``A[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A)==A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def rot90(m, k=1): """ Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must >= 2-d.") k = k % 4 if k == 0: return m elif k == 1: return fliplr(m).swapaxes(0, 1) elif k == 2: return fliplr(flipud(m)) else: # k == 3 return fliplr(m.swapaxes(0, 1)) def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) # Originally borrowed from John Hunter and matplotlib def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_area``. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2D-histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 1.5, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(3, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) Or we fill the histogram H with a determined bin content: >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) >>> print H[::-1] # This shows the bin content in the order as plotted [[ 13. 14. 15. 16.] [ 9. 10. 11. 12.] [ 5. 6. 7. 8.] [ 1. 2. 3. 4.]] Imshow can only do an equidistant representation of bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131) >>> ax.set_title('imshow: equidistant') >>> im = plt.imshow(H, interpolation='nearest', origin='low', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) pcolormesh can display exact bin edges: >>> ax = fig.add_subplot(132) >>> ax.set_title('pcolormesh: exact bin edges') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) >>> ax.set_aspect('equal') NonUniformImage displays exact bin edges with interpolation: >>> ax = fig.add_subplot(133) >>> ax.set_title('NonUniformImage: interpolated') >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> ax.set_xlim(xedges[0], xedges[-1]) >>> ax.set_ylim(yedges[0], yedges[-1]) >>> ax.set_aspect('equal') >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return where(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return where(tri(n, m, k=k, dtype=bool)) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return where(~tri(n, m, k=k-1, dtype=bool)) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
vigilv/scikit-learn
sklearn/decomposition/truncated_svd.py
199
7744
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). """ # Author: Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # Michael Becker <[email protected]> # License: 3-clause BSD. import numpy as np import scipy.sparse as sp try: from scipy.sparse.linalg import svds except ImportError: from ..utils.arpack import svds from ..base import BaseEstimator, TransformerMixin from ..utils import check_array, as_float_array, check_random_state from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip from ..utils.sparsefuncs import mean_variance_axis __all__ = ["TruncatedSVD"] class TruncatedSVD(BaseEstimator, TransformerMixin): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix. This means it can work with scipy.sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA). This estimator supports two algorithm: a fast randomized SVD solver, and a "naive" algorithm that uses ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient. Read more in the :ref:`User Guide <LSA>`. Parameters ---------- n_components : int, default = 2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. algorithm : string, default = "randomized" SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the randomized algorithm due to Halko (2009). n_iter : int, optional Number of iterations for randomized SVD solver. Not used by ARPACK. random_state : int or RandomState, optional (Seed for) pseudo-random number generator. If not given, the numpy.random singleton is used. tol : float, optional Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- components_ : array, shape (n_components, n_features) explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. explained_variance_ : array, [n_components] The variance of the training samples transformed by a projection to each component. Examples -------- >>> from sklearn.decomposition import TruncatedSVD >>> from sklearn.random_projection import sparse_random_matrix >>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42) >>> svd = TruncatedSVD(n_components=5, random_state=42) >>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5, random_state=42, tol=0.0) >>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.07825... 0.05528... 0.05445... 0.04997... 0.04134...] >>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS 0.27930... See also -------- PCA RandomizedPCA References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 Notes ----- SVD suffers from a problem called "sign indeterminancy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. """ def __init__(self, n_components=2, algorithm="randomized", n_iter=5, random_state=None, tol=0.): self.algorithm = algorithm self.n_components = n_components self.n_iter = n_iter self.random_state = random_state self.tol = tol def fit(self, X, y=None): """Fit LSI model on training data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- self : object Returns the transformer object. """ self.fit_transform(X) return self def fit_transform(self, X, y=None): """Fit LSI model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = as_float_array(X, copy=False) random_state = check_random_state(self.random_state) # If sparse and not csr or csc, convert to csr if sp.issparse(X) and X.getformat() not in ["csr", "csc"]: X = X.tocsr() if self.algorithm == "arpack": U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. Sigma = Sigma[::-1] U, VT = svd_flip(U[:, ::-1], VT[::-1]) elif self.algorithm == "randomized": k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError("n_components must be < n_features;" " got %d >= %d" % (k, n_features)) U, Sigma, VT = randomized_svd(X, self.n_components, n_iter=self.n_iter, random_state=random_state) else: raise ValueError("unknown algorithm %r" % self.algorithm) self.components_ = VT # Calculate explained variance & explained variance ratio X_transformed = np.dot(U, np.diag(Sigma)) self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) if sp.issparse(X): _, full_var = mean_variance_axis(X, axis=0) full_var = full_var.sum() else: full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var return X_transformed def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = check_array(X, accept_sparse='csr') return safe_sparse_dot(X, self.components_.T) def inverse_transform(self, X): """Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data. Returns ------- X_original : array, shape (n_samples, n_features) Note that this is always a dense array. """ X = check_array(X) return np.dot(X, self.components_)
bsd-3-clause
wjfwzzc/Kaggle_Script
sf_crime/data/load_data.py
1
3114
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division import datetime import zipfile import pandas import sklearn.preprocessing def parse_time(timestamp): dt = datetime.datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S") return dt.hour, dt.day, dt.month, dt.year def process(df): # address_features = df["Address"].apply(lambda x: log_odds[x]).rename(columns=lambda x: "LogOdds_" + str(x)) # df = df.join(address_features) # df["IsIntersection"] = df["Address"].apply(lambda x: 1 if "/" in x else 0) # df["LogOddsPA"] = df["Address"].apply(lambda x: log_odds_pa[x]) sklearn.preprocessing.scale(df[["X", "Y"]], copy=False) df["Time"], df["Day"], df["Month"], df["Year"] = zip(*df["Dates"].apply(parse_time)) dummy_dow = pandas.get_dummies(df["DayOfWeek"], prefix="DayOfWeek") dummy_pd = pandas.get_dummies(df["PdDistrict"], prefix="PdDistrict") df = df.join([dummy_dow, dummy_pd]) df.drop(["Dates", "DayOfWeek", "PdDistrict", "Address"], axis=1, inplace=True) return df z = zipfile.ZipFile("./data/train.csv.zip") train_df = pandas.read_csv(z.open("train.csv")) z = zipfile.ZipFile("./data/test.csv.zip") test_df = pandas.read_csv(z.open("test.csv")) # addresses = set(sorted(train_df["Address"].unique())) # categories = sorted(train_df["Category"].unique()) # addr_cnt = train_df.groupby(["Address"]).size() # cat_cnt = train_df.groupby(["Category"]).size() # ac_cnt = train_df.groupby(["Address", "Category"]).size() # log_odds = {} # log_odds_pa = {} # default_log_odds = numpy.log(cat_cnt / len(train_df)) - numpy.log(1 - cat_cnt / len(train_df)) # for addr in addresses: # pa = addr_cnt[addr] / len(train_df) # log_odds_pa[addr] = numpy.log(pa) - numpy.log(1 - pa) # log_odds[addr] = copy.deepcopy(default_log_odds) # for cat in ac_cnt[addr].keys(): # if 2 < ac_cnt[addr][cat] < addr_cnt[addr]: # pa = ac_cnt[addr][cat] / addr_cnt[addr] # log_odds[addr][categories.index(cat)] = numpy.log(pa) - numpy.log(1 - pa) # log_odds[addr] = pandas.Series(log_odds[addr]) # # new_addresses = set(sorted(test_df["Address"].unique())) # new_addr_cnt = test_df.groupby("Address").size() # in_both = new_addresses & addresses # only_new = new_addresses - in_both # for addr in only_new: # pa = new_addr_cnt[addr] / (len(train_df) + len(test_df)) # log_odds_pa[addr] = numpy.log(pa) - numpy.log(1 - pa) # log_odds[addr] = copy.deepcopy(default_log_odds) # for addr in in_both: # pa = (addr_cnt[addr] + new_addr_cnt[addr]) / (len(train_df) + len(test_df)) # log_odds_pa[addr] = numpy.log(pa) - numpy.log(1 - pa) data_df = train_df.append(test_df).reset_index(drop=True) data_df.drop(["Id", "Category", "Descript", "Resolution"], axis=1, inplace=True) data_df = process(data_df) le = sklearn.preprocessing.LabelEncoder() train_df["Category"] = le.fit_transform(train_df["Category"]) target = train_df["Category"].astype('category') ids = test_df["Id"].values train = data_df[:train_df.shape[0]].values test = data_df[train_df.shape[0]:].values
mit
CCBatIIT/AlGDock
Pipeline/analyze_profile.py
2
1798
import os, inspect script_dir = os.path.dirname(os.path.abspath(\ inspect.getfile(inspect.currentframe()))) execfile(os.path.join(script_dir,'_load_profile.py')) if not os.path.isdir('figures'): os.makedirs('figures') # Plot histogram of all sequence identities seq_identities = [p[2] for p in profile.values()] import matplotlib.pylab as plt plt.clf() plt.hist(seq_identities) plt.xlabel('Sequence Identity') plt.ylabel('Number of Structures') plt.savefig('figures/hist_seq_id.png') # Plot histogram of selected sequences, with # sequence identities greater than min_seq_identity and # equivalent positions greater than min_equivalent_positions selected_seq_identities = \ [p[2] for p in profile.values() \ if (p[2]>=min_seq_identity) and (p[1]>=min_equivalent_positions)] if len(selected_seq_identities)>0: plt.clf() plt.hist(selected_seq_identities) plt.xlabel('Sequence Identity') plt.ylabel('Number of Structures') plt.savefig('figures/hist_seq_id_selected.png') print '%d selected chains'%len(selected_seq_identities) print 'with minimum sequence identity of %d'%min_seq_identity print 'and at least %d equivalent positions'%min_equivalent_positions # Sort sequences by # 1. Sequence Identity # 2. Equivalent Positions import numpy as np seq_identities = np.array([p[2] for p in profile.values()], dtype=float) equivalent_positions = np.array([p[1] for p in profile.values()], dtype=float) scores = seq_identities + equivalent_positions/max(equivalent_positions) inds = np.argsort(scores) inds = inds[np.logical_and(\ seq_identities[inds]>=min_seq_identity, \ equivalent_positions[inds]>=min_equivalent_positions)] prof_list = profile.items() print '\n'.join(['{0[0][0]} {0[0][1]} {0[1][2]} {0[1][1]} {0[1][3]}'.format(prof_list[ind]) for ind in inds[::-1]])
mit
mmottahedi/neuralnilm_prototype
scripts/e201.py
2
6739
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from neuralnilm.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for BLSTM e110 * Back to Uniform(5) for BLSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single BLSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd BLSTM layer e142 diff AND power e144 diff and power and max power is 5900 e145 Uniform(25) for first layer e146 gradient clip and use peepholes e147 * try again with new code e148 * learning rate 0.1 e150 * Same as e149 but without peepholes and using BLSTM not BBLSTM e151 * Max pooling 171 lower learning rate 172 even lower learning rate 173 slightly higher learning rate! 175 same as 174 but with skip prob = 0, and LSTM not BLSTM, and only 4000 epochs 176 new cost function 177 another new cost func (this one avoids NaNs) skip prob 0.7 10x higher learning rate 178 refactored cost func (functionally equiv to 177) 0.1x learning rate e180 * mse e181 * back to scaled cost * different architecture: - convd1 at input (2x) - then 3 LSTM layers, each with a 2x conv in between - no diff input e189 * divide dominant appliance power * mse """ # def scaled_cost(x, t): # raw_cost = (x - t) ** 2 # energy_per_seq = t.sum(axis=1) # energy_per_batch = energy_per_seq.sum(axis=1) # energy_per_batch = energy_per_batch.reshape((-1, 1)) # normaliser = energy_per_seq / energy_per_batch # cost = raw_cost.mean(axis=1) * (1 - normaliser) # return cost.mean() from theano.ifelse import ifelse import theano.tensor as T THRESHOLD = 0 def scaled_cost(x, t): sq_error = (x - t) ** 2 def mask_and_mean_sq_error(mask): masked_sq_error = sq_error[mask.nonzero()] mean = masked_sq_error.mean() mean = ifelse(T.isnan(mean), 0.0, mean) return mean above_thresh_mean = mask_and_mean_sq_error(t > THRESHOLD) below_thresh_mean = mask_and_mean_sq_error(t <= THRESHOLD) return (above_thresh_mean + below_thresh_mean) / 2.0 def exp_a(name): # global source # source = RealApplianceSource( # filename='/data/dk3810/ukdale.h5', # appliances=[ # ['fridge freezer', 'fridge', 'freezer'], # 'hair straighteners', # 'television' # # 'dish washer', # # ['washer dryer', 'washing machine'] # ], # max_appliance_powers=[2500] * 5, # on_power_thresholds=[5] * 5, # max_input_power=2500, # min_on_durations=[60, 60, 60, 1800, 1800], # min_off_durations=[12, 12, 12, 1800, 600], # window=("2013-06-01", "2014-07-01"), # seq_length=1520, # output_one_appliance=False, # boolean_targets=False, # train_buildings=[1], # validation_buildings=[1], # skip_probability=0.7, # n_seq_per_batch=25, # input_padding=4, # include_diff=False, # clip_appliance_power=False # ) net = Net( experiment_name=name, source=source, save_plot_interval=1000, loss_function=scaled_cost, updates=partial(nesterov_momentum, learning_rate=0.1, clip_range=(-1, 1)), layers_config=[ { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 10, 'filter_length': 5, 'stride': 1, 'nonlinearity': sigmoid, 'W': Uniform(5) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None # 'W': Uniform() } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: raise print("EXCEPTION:", exception) import ipdb; ipdb.set_trace() if __name__ == "__main__": main()
mit
jereze/scikit-learn
sklearn/cluster/bicluster.py
211
19443
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import dia_matrix from scipy.sparse import issparse from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils.arpack import eigsh, svds from ..utils.extmath import (make_nonnegative, norm, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. _, v = eigsh(safe_sparse_dot(array.T, array), ncv=self.n_svd_vecs) vt = v.T if np.any(np.isnan(u)): _, u = eigsh(safe_sparse_dot(array, array.T), ncv=self.n_svd_vecs) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `sklearn.utils.arpack.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used by the K-Means initialization. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
drpngx/tensorflow
tensorflow/contrib/metrics/python/ops/metric_ops.py
6
176288
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains metric-computing operations on streamed tensors. Module documentation, including "@@" callouts, should be put in third_party/tensorflow/contrib/metrics/__init__.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as collections_lib from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import confusion_matrix from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import metrics from tensorflow.python.ops import metrics_impl from tensorflow.python.ops import nn from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.ops.distributions.normal import Normal from tensorflow.python.util.deprecation import deprecated # Epsilon constant used to represent extremely small quantity. _EPSILON = 1e-7 def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name) @deprecated(None, 'Please switch to tf.metrics.true_positives. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_true_positives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of true_positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.true_positives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.true_negatives. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_true_negatives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of true_negatives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.true_negatives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.false_positives. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_false_positives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of false positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.false_positives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.false_negatives. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_false_negatives(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the total number of false negatives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.false_negatives( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.mean') def streaming_mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the (weighted) mean of the given values. The `streaming_mean` function creates two local variables, `total` and `count` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean( values=values, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.mean_tensor') def streaming_mean_tensor(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the element-wise (weighted) mean of the given tensors. In contrast to the `streaming_mean` function which returns a scalar with the mean, this function returns an average tensor with the same shape as the input tensors. The `streaming_mean_tensor` function creates two local variables, `total_tensor` and `count_tensor` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: `Tensor` whose rank is either 0, or the same rank as `values`, and must be broadcastable to `values` (i.e., all dimensions must be either `1`, or the same as the corresponding `values` dimension). metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A float `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_tensor( values=values, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.accuracy. Note that the order ' 'of the labels and predictions arguments has been switched.') def streaming_accuracy(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates how often `predictions` matches `labels`. The `streaming_accuracy` function creates two local variables, `total` and `count` that are used to compute the frequency with which `predictions` matches `labels`. This frequency is ultimately returned as `accuracy`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `accuracy`. Internally, an `is_correct` operation computes a `Tensor` with elements 1.0 where the corresponding elements of `predictions` and `labels` match and 0.0 otherwise. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `is_correct`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of any shape. labels: The ground truth values, a `Tensor` whose shape matches `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `accuracy` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: accuracy: A `Tensor` representing the accuracy, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `accuracy`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.accuracy( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.precision. Note that the order ' 'of the labels and predictions arguments has been switched.') def streaming_precision(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the precision of the predictions with respect to the labels. The `streaming_precision` function creates two local variables, `true_positives` and `false_positives`, that are used to compute the precision. This value is ultimately returned as `precision`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_positives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `precision` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately and whose value matches `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.precision( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.recall. Note that the order ' 'of the labels and predictions arguments has been switched.') def streaming_recall(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall of the predictions with respect to the labels. The `streaming_recall` function creates two local variables, `true_positives` and `false_negatives`, that are used to compute the recall. This value is ultimately returned as `recall`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `recall`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately and whose value matches `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.recall( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_false_positive_rate(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the false positive rate of predictions with respect to labels. The `false_positive_rate` function creates two local variables, `false_positives` and `true_negatives`, that are used to compute the false positive rate. This value is ultimately returned as `false_positive_rate`, an idempotent operation that simply divides `false_positives` by the sum of `false_positives` and `true_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_positive_rate`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_positive_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_positive_rate: Scalar float `Tensor` with the value of `false_positives` divided by the sum of `false_positives` and `true_negatives`. update_op: `Operation` that increments `false_positives` and `true_negatives` variables appropriately and whose value matches `false_positive_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_positive_rate', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) false_p, false_positives_update_op = metrics.false_positives( labels=labels, predictions=predictions, weights=weights, metrics_collections=None, updates_collections=None, name=None) true_n, true_negatives_update_op = metrics.true_negatives( labels=labels, predictions=predictions, weights=weights, metrics_collections=None, updates_collections=None, name=None) def compute_fpr(fp, tn, name): return array_ops.where( math_ops.greater(fp + tn, 0), math_ops.div(fp, fp + tn), 0, name) fpr = compute_fpr(false_p, true_n, 'value') update_op = compute_fpr(false_positives_update_op, true_negatives_update_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fpr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fpr, update_op def streaming_false_negative_rate(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the false negative rate of predictions with respect to labels. The `false_negative_rate` function creates two local variables, `false_negatives` and `true_positives`, that are used to compute the false positive rate. This value is ultimately returned as `false_negative_rate`, an idempotent operation that simply divides `false_negatives` by the sum of `false_negatives` and `true_positives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_negative_rate`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_negative_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_negative_rate: Scalar float `Tensor` with the value of `false_negatives` divided by the sum of `false_negatives` and `true_positives`. update_op: `Operation` that increments `false_negatives` and `true_positives` variables appropriately and whose value matches `false_negative_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_negative_rate', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=math_ops.cast(predictions, dtype=dtypes.bool), labels=math_ops.cast(labels, dtype=dtypes.bool), weights=weights) false_n, false_negatives_update_op = metrics.false_negatives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) true_p, true_positives_update_op = metrics.true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_fnr(fn, tp, name): return array_ops.where( math_ops.greater(fn + tp, 0), math_ops.div(fn, fn + tp), 0, name) fnr = compute_fnr(false_n, true_p, 'value') update_op = compute_fnr(false_negatives_update_op, true_positives_update_op, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fnr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fnr, update_op def _streaming_confusion_matrix_at_thresholds(predictions, labels, thresholds, weights=None, includes=None): """Computes true_positives, false_negatives, true_negatives, false_positives. This function creates up to four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives`. `true_positive[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`. `false_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `True`. `true_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `False`. `false_positives[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`. For estimation of these metrics over a stream of data, for each metric the function respectively creates an `update_op` operation that updates the variable and returns its value. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `Tensor` whose shape matches `predictions`. `labels` will be cast to `bool`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). includes: Tuple of keys to return, from 'tp', 'fn', 'tn', fp'. If `None`, default to all four. Returns: values: Dict of variables of shape `[len(thresholds)]`. Keys are from `includes`. update_ops: Dict of operations that increments the `values`. Keys are from `includes`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if `includes` contains invalid keys. """ all_includes = ('tp', 'fn', 'tn', 'fp') if includes is None: includes = all_includes else: for include in includes: if include not in all_includes: raise ValueError('Invalid key: %s.' % include) predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) num_thresholds = len(thresholds) # Reshape predictions and labels. predictions_2d = array_ops.reshape(predictions, [-1, 1]) labels_2d = array_ops.reshape( math_ops.cast(labels, dtype=dtypes.bool), [1, -1]) # Use static shape if known. num_predictions = predictions_2d.get_shape().as_list()[0] # Otherwise use dynamic shape. if num_predictions is None: num_predictions = array_ops.shape(predictions_2d)[0] thresh_tiled = array_ops.tile( array_ops.expand_dims(array_ops.constant(thresholds), [1]), array_ops.stack([1, num_predictions])) # Tile the predictions after thresholding them across different thresholds. pred_is_pos = math_ops.greater( array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]), thresh_tiled) if ('fn' in includes) or ('tn' in includes): pred_is_neg = math_ops.logical_not(pred_is_pos) # Tile labels by number of thresholds label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1]) if ('fp' in includes) or ('tn' in includes): label_is_neg = math_ops.logical_not(label_is_pos) if weights is not None: broadcast_weights = weights_broadcast_ops.broadcast_weights( math_ops.to_float(weights), predictions) weights_tiled = array_ops.tile( array_ops.reshape(broadcast_weights, [1, -1]), [num_thresholds, 1]) thresh_tiled.get_shape().assert_is_compatible_with( weights_tiled.get_shape()) else: weights_tiled = None values = {} update_ops = {} if 'tp' in includes: true_positives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='true_positives') is_true_positive = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_pos)) if weights_tiled is not None: is_true_positive *= weights_tiled update_ops['tp'] = state_ops.assign_add(true_positives, math_ops.reduce_sum( is_true_positive, 1)) values['tp'] = true_positives if 'fn' in includes: false_negatives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='false_negatives') is_false_negative = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_neg)) if weights_tiled is not None: is_false_negative *= weights_tiled update_ops['fn'] = state_ops.assign_add(false_negatives, math_ops.reduce_sum( is_false_negative, 1)) values['fn'] = false_negatives if 'tn' in includes: true_negatives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='true_negatives') is_true_negative = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_neg)) if weights_tiled is not None: is_true_negative *= weights_tiled update_ops['tn'] = state_ops.assign_add(true_negatives, math_ops.reduce_sum( is_true_negative, 1)) values['tn'] = true_negatives if 'fp' in includes: false_positives = metrics_impl.metric_variable( [num_thresholds], dtypes.float32, name='false_positives') is_false_positive = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_pos)) if weights_tiled is not None: is_false_positive *= weights_tiled update_ops['fp'] = state_ops.assign_add(false_positives, math_ops.reduce_sum( is_false_positive, 1)) values['fp'] = false_positives return values, update_ops def streaming_true_positives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('tp',)) return values['tp'], update_ops['tp'] def streaming_false_negatives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('fn',)) return values['fn'], update_ops['fn'] def streaming_false_positives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('fp',)) return values['fp'], update_ops['fp'] def streaming_true_negatives_at_thresholds(predictions, labels, thresholds, weights=None): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights=weights, includes=('tn',)) return values['tn'], update_ops['tn'] def streaming_curve_points(labels=None, predictions=None, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None): """Computes curve (ROC or PR) values for a prespecified number of points. The `streaming_curve_points` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the curve values. To discretize the curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. For best results, `predictions` should be distributed approximately uniformly in the range [0, 1] and not peaked around 0 or 1. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use when discretizing the roc curve. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. curve: Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. Returns: points: A `Tensor` with shape [num_thresholds, 2] that contains points of the curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. TODO(chizeng): Consider rewriting this method to make use of logic within the precision_recall_at_equal_thresholds method (to improve run time). """ with variable_scope.variable_scope(name, 'curve_points', (labels, predictions, weights)): if curve != 'ROC' and curve != 'PR': raise ValueError('curve must be either ROC or PR, %s unknown' % (curve)) kepsilon = _EPSILON # to account for floating point imprecisions thresholds = [ (i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds - 2) ] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _streaming_confusion_matrix_at_thresholds( labels=labels, predictions=predictions, thresholds=thresholds, weights=weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 def compute_points(tp, fn, tn, fp): """Computes the roc-auc or pr-auc based on confusion counts.""" rec = math_ops.div(tp + epsilon, tp + fn + epsilon) if curve == 'ROC': fp_rate = math_ops.div(fp, fp + tn + epsilon) return fp_rate, rec else: # curve == 'PR'. prec = math_ops.div(tp + epsilon, tp + fp + epsilon) return rec, prec xs, ys = compute_points(values['tp'], values['fn'], values['tn'], values['fp']) points = array_ops.stack([xs, ys], axis=1) update_op = control_flow_ops.group(*update_ops.values()) if metrics_collections: ops.add_to_collections(metrics_collections, points) if updates_collections: ops.add_to_collections(updates_collections, update_op) return points, update_op @deprecated(None, 'Please switch to tf.metrics.auc. Note that the order of ' 'the labels and predictions arguments has been switched.') def streaming_auc(predictions, labels, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None): """Computes the approximate AUC via a Riemann sum. The `streaming_auc` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the AUC. To discretize the AUC curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area under the PR-curve is the computed using the height of the precision values by the recall. This value is ultimately returned as `auc`, an idempotent operation that computes the area under a discretized curve of precision versus recall values (computed using the aforementioned variables). The `num_thresholds` variable controls the degree of discretization with larger numbers of thresholds more closely approximating the true AUC. The quality of the approximation may vary dramatically depending on `num_thresholds`. For best results, `predictions` should be distributed approximately uniformly in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC approximation may be poor if this is not the case. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `auc`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use when discretizing the roc curve. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. curve: Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. Returns: auc: A scalar `Tensor` representing the current area-under-curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `auc`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.auc( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, num_thresholds=num_thresholds, curve=curve, updates_collections=updates_collections, name=name) def _compute_dynamic_auc(labels, predictions, curve='ROC', weights=None): """Computes the apporixmate AUC by a Riemann sum with data-derived thresholds. Computes the area under the ROC or PR curve using each prediction as a threshold. This could be slow for large batches, but has the advantage of not having its results degrade depending on the distribution of predictions. Args: labels: A `Tensor` of ground truth labels with the same shape as `predictions` with values of 0 or 1 and type `int64`. predictions: A 1-D `Tensor` of predictions whose values are `float64`. curve: The name of the curve to be computed, 'ROC' for the Receiving Operating Characteristic or 'PR' for the Precision-Recall curve. weights: A 1-D `Tensor` of weights whose values are `float64`. Returns: A scalar `Tensor` containing the area-under-curve value for the input. """ # Compute the total weight and the total positive weight. size = array_ops.size(predictions) if weights is None: weights = array_ops.ones_like(labels, dtype=dtypes.float64) labels, predictions, weights = metrics_impl._remove_squeezable_dimensions( labels, predictions, weights) total_weight = math_ops.reduce_sum(weights) total_positive = math_ops.reduce_sum( array_ops.where( math_ops.greater(labels, 0), weights, array_ops.zeros_like(labels, dtype=dtypes.float64))) def continue_computing_dynamic_auc(): """Continues dynamic auc computation, entered if labels are not all equal. Returns: A scalar `Tensor` containing the area-under-curve value. """ # Sort the predictions descending, keeping the same order for the # corresponding labels and weights. ordered_predictions, indices = nn.top_k(predictions, k=size) ordered_labels = array_ops.gather(labels, indices) ordered_weights = array_ops.gather(weights, indices) # Get the counts of the unique ordered predictions. _, _, counts = array_ops.unique_with_counts(ordered_predictions) # Compute the indices of the split points between different predictions. splits = math_ops.cast( array_ops.pad(math_ops.cumsum(counts), paddings=[[1, 0]]), dtypes.int32) # Count the positives to the left of the split indices. true_positives = array_ops.gather( array_ops.pad( math_ops.cumsum( array_ops.where( math_ops.greater(ordered_labels, 0), ordered_weights, array_ops.zeros_like(ordered_labels, dtype=dtypes.float64))), paddings=[[1, 0]]), splits) if curve == 'ROC': # Compute the weight of the negatives to the left of every split point and # the total weight of the negatives number of negatives for computing the # FPR. false_positives = array_ops.gather( array_ops.pad( math_ops.cumsum( array_ops.where( math_ops.less(ordered_labels, 1), ordered_weights, array_ops.zeros_like( ordered_labels, dtype=dtypes.float64))), paddings=[[1, 0]]), splits) total_negative = total_weight - total_positive x_axis_values = math_ops.truediv(false_positives, total_negative) y_axis_values = math_ops.truediv(true_positives, total_positive) elif curve == 'PR': x_axis_values = math_ops.truediv(true_positives, total_positive) # For conformance, set precision to 1 when the number of positive # classifications is 0. positives = array_ops.gather( array_ops.pad(math_ops.cumsum(ordered_weights), paddings=[[1, 0]]), splits) y_axis_values = array_ops.where( math_ops.greater(splits, 0), math_ops.truediv(true_positives, positives), array_ops.ones_like(true_positives, dtype=dtypes.float64)) # Calculate trapezoid areas. heights = math_ops.add(y_axis_values[1:], y_axis_values[:-1]) / 2.0 widths = math_ops.abs( math_ops.subtract(x_axis_values[1:], x_axis_values[:-1])) return math_ops.reduce_sum(math_ops.multiply(heights, widths)) # If all the labels are the same, AUC isn't well-defined (but raising an # exception seems excessive) so we return 0, otherwise we finish computing. return control_flow_ops.cond( math_ops.logical_or( math_ops.equal(total_positive, 0), math_ops.equal( total_positive, total_weight)), true_fn=lambda: array_ops.constant(0, dtypes.float64), false_fn=continue_computing_dynamic_auc) def streaming_dynamic_auc(labels, predictions, curve='ROC', metrics_collections=(), updates_collections=(), name=None, weights=None): """Computes the apporixmate AUC by a Riemann sum with data-derived thresholds. USAGE NOTE: this approach requires storing all of the predictions and labels for a single evaluation in memory, so it may not be usable when the evaluation batch size and/or the number of evaluation steps is very large. Computes the area under the ROC or PR curve using each prediction as a threshold. This has the advantage of being resilient to the distribution of predictions by aggregating across batches, accumulating labels and predictions and performing the final calculation using all of the concatenated values. Args: labels: A `Tensor` of ground truth labels with the same shape as `labels` and with values of 0 or 1 whose values are castable to `int64`. predictions: A `Tensor` of predictions whose values are castable to `float64`. Will be flattened into a 1-D `Tensor`. curve: The name of the curve for which to compute AUC, 'ROC' for the Receiving Operating Characteristic or 'PR' for the Precision-Recall curve. metrics_collections: An optional iterable of collections that `auc` should be added to. updates_collections: An optional iterable of collections that `update_op` should be added to. name: An optional name for the variable_scope that contains the metric variables. weights: A 'Tensor' of non-negative weights whose values are castable to `float64`. Will be flattened into a 1-D `Tensor`. Returns: auc: A scalar `Tensor` containing the current area-under-curve value. update_op: An operation that concatenates the input labels and predictions to the accumulated values. Raises: ValueError: If `labels` and `predictions` have mismatched shapes or if `curve` isn't a recognized curve type. """ if curve not in ['PR', 'ROC']: raise ValueError('curve must be either ROC or PR, %s unknown' % curve) with variable_scope.variable_scope(name, default_name='dynamic_auc'): labels.get_shape().assert_is_compatible_with(predictions.get_shape()) predictions = array_ops.reshape( math_ops.cast(predictions, dtypes.float64), [-1]) labels = array_ops.reshape(math_ops.cast(labels, dtypes.int64), [-1]) with ops.control_dependencies([ check_ops.assert_greater_equal( labels, array_ops.zeros_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is <0'), check_ops.assert_less_equal( labels, array_ops.ones_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is >1'), ]): preds_accum, update_preds = streaming_concat( predictions, name='concat_preds') labels_accum, update_labels = streaming_concat( labels, name='concat_labels') if weights is not None: weights = array_ops.reshape( math_ops.cast(weights, dtypes.float64), [-1]) weights_accum, update_weights = streaming_concat( weights, name='concat_weights') update_op = control_flow_ops.group(update_labels, update_preds, update_weights) else: weights_accum = None update_op = control_flow_ops.group(update_labels, update_preds) auc = _compute_dynamic_auc( labels_accum, preds_accum, curve=curve, weights=weights_accum) if updates_collections: ops.add_to_collections(updates_collections, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, auc) return auc, update_op def _compute_placement_auc(labels, predictions, weights, alpha, logit_transformation, is_valid): """Computes the AUC and asymptotic normally distributed confidence interval. The calculations are achieved using the fact that AUC = P(Y_1>Y_0) and the concept of placement values for each labeled group, as presented by Delong and Delong (1988). The actual algorithm used is a more computationally efficient approach presented by Sun and Xu (2014). This could be slow for large batches, but has the advantage of not having its results degrade depending on the distribution of predictions. Args: labels: A `Tensor` of ground truth labels with the same shape as `predictions` with values of 0 or 1 and type `int64`. predictions: A 1-D `Tensor` of predictions whose values are `float64`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`. alpha: Confidence interval level desired. logit_transformation: A boolean value indicating whether the estimate should be logit transformed prior to calculating the confidence interval. Doing so enforces the restriction that the AUC should never be outside the interval [0,1]. is_valid: A bool tensor describing whether the input is valid. Returns: A 1-D `Tensor` containing the area-under-curve, lower, and upper confidence interval values. """ # Disable the invalid-name checker so that we can capitalize the name. # pylint: disable=invalid-name AucData = collections_lib.namedtuple('AucData', ['auc', 'lower', 'upper']) # pylint: enable=invalid-name # If all the labels are the same or if number of observations are too few, # AUC isn't well-defined size = array_ops.size(predictions, out_type=dtypes.int32) # Count the total number of positive and negative labels in the input. total_0 = math_ops.reduce_sum( math_ops.cast(1 - labels, weights.dtype) * weights) total_1 = math_ops.reduce_sum( math_ops.cast(labels, weights.dtype) * weights) # Sort the predictions ascending, as well as # (i) the corresponding labels and # (ii) the corresponding weights. ordered_predictions, indices = nn.top_k(predictions, k=size, sorted=True) ordered_predictions = array_ops.reverse( ordered_predictions, axis=array_ops.zeros(1, dtypes.int32)) indices = array_ops.reverse(indices, axis=array_ops.zeros(1, dtypes.int32)) ordered_labels = array_ops.gather(labels, indices) ordered_weights = array_ops.gather(weights, indices) # We now compute values required for computing placement values. # We generate a list of indices (segmented_indices) of increasing order. An # index is assigned for each unique prediction float value. Prediction # values that are the same share the same index. _, segmented_indices = array_ops.unique(ordered_predictions) # We create 2 tensors of weights. weights_for_true is non-zero for true # labels. weights_for_false is non-zero for false labels. float_labels_for_true = math_ops.cast(ordered_labels, dtypes.float32) float_labels_for_false = 1.0 - float_labels_for_true weights_for_true = ordered_weights * float_labels_for_true weights_for_false = ordered_weights * float_labels_for_false # For each set of weights with the same segmented indices, we add up the # weight values. Note that for each label, we deliberately rely on weights # for the opposite label. weight_totals_for_true = math_ops.segment_sum(weights_for_false, segmented_indices) weight_totals_for_false = math_ops.segment_sum(weights_for_true, segmented_indices) # These cumulative sums of weights importantly exclude the current weight # sums. cum_weight_totals_for_true = math_ops.cumsum(weight_totals_for_true, exclusive=True) cum_weight_totals_for_false = math_ops.cumsum(weight_totals_for_false, exclusive=True) # Compute placement values using the formula. Values with the same segmented # indices and labels share the same placement values. placements_for_true = ( (cum_weight_totals_for_true + weight_totals_for_true / 2.0) / (math_ops.reduce_sum(weight_totals_for_true) + _EPSILON)) placements_for_false = ( (cum_weight_totals_for_false + weight_totals_for_false / 2.0) / (math_ops.reduce_sum(weight_totals_for_false) + _EPSILON)) # We expand the tensors of placement values (for each label) so that their # shapes match that of predictions. placements_for_true = array_ops.gather(placements_for_true, segmented_indices) placements_for_false = array_ops.gather(placements_for_false, segmented_indices) # Select placement values based on the label for each index. placement_values = ( placements_for_true * float_labels_for_true + placements_for_false * float_labels_for_false) # Split placement values by labeled groups. placement_values_0 = placement_values * math_ops.cast( 1 - ordered_labels, weights.dtype) weights_0 = ordered_weights * math_ops.cast( 1 - ordered_labels, weights.dtype) placement_values_1 = placement_values * math_ops.cast( ordered_labels, weights.dtype) weights_1 = ordered_weights * math_ops.cast( ordered_labels, weights.dtype) # Calculate AUC using placement values auc_0 = (math_ops.reduce_sum(weights_0 * (1. - placement_values_0)) / (total_0 + _EPSILON)) auc_1 = (math_ops.reduce_sum(weights_1 * (placement_values_1)) / (total_1 + _EPSILON)) auc = array_ops.where(math_ops.less(total_0, total_1), auc_1, auc_0) # Calculate variance and standard error using the placement values. var_0 = ( math_ops.reduce_sum( weights_0 * math_ops.square(1. - placement_values_0 - auc_0)) / (total_0 - 1. + _EPSILON)) var_1 = ( math_ops.reduce_sum( weights_1 * math_ops.square(placement_values_1 - auc_1)) / (total_1 - 1. + _EPSILON)) auc_std_err = math_ops.sqrt( (var_0 / (total_0 + _EPSILON)) + (var_1 / (total_1 + _EPSILON))) # Calculate asymptotic normal confidence intervals std_norm_dist = Normal(loc=0., scale=1.) z_value = std_norm_dist.quantile((1.0 - alpha) / 2.0) if logit_transformation: estimate = math_ops.log(auc / (1. - auc + _EPSILON)) std_err = auc_std_err / (auc * (1. - auc + _EPSILON)) transformed_auc_lower = estimate + (z_value * std_err) transformed_auc_upper = estimate - (z_value * std_err) def inverse_logit_transformation(x): exp_negative = math_ops.exp(math_ops.negative(x)) return 1. / (1. + exp_negative + _EPSILON) auc_lower = inverse_logit_transformation(transformed_auc_lower) auc_upper = inverse_logit_transformation(transformed_auc_upper) else: estimate = auc std_err = auc_std_err auc_lower = estimate + (z_value * std_err) auc_upper = estimate - (z_value * std_err) ## If estimate is 1 or 0, no variance is present so CI = 1 ## n.b. This can be misleading, since number obs can just be too low. lower = array_ops.where( math_ops.logical_or( math_ops.equal(auc, array_ops.ones_like(auc)), math_ops.equal(auc, array_ops.zeros_like(auc))), auc, auc_lower) upper = array_ops.where( math_ops.logical_or( math_ops.equal(auc, array_ops.ones_like(auc)), math_ops.equal(auc, array_ops.zeros_like(auc))), auc, auc_upper) # If all the labels are the same, AUC isn't well-defined (but raising an # exception seems excessive) so we return 0, otherwise we finish computing. trivial_value = array_ops.constant(0.0) return AucData(*control_flow_ops.cond( is_valid, lambda: [auc, lower, upper], lambda: [trivial_value]*3)) def auc_with_confidence_intervals(labels, predictions, weights=None, alpha=0.95, logit_transformation=True, metrics_collections=(), updates_collections=(), name=None): """Computes the AUC and asymptotic normally distributed confidence interval. USAGE NOTE: this approach requires storing all of the predictions and labels for a single evaluation in memory, so it may not be usable when the evaluation batch size and/or the number of evaluation steps is very large. Computes the area under the ROC curve and its confidence interval using placement values. This has the advantage of being resilient to the distribution of predictions by aggregating across batches, accumulating labels and predictions and performing the final calculation using all of the concatenated values. Args: labels: A `Tensor` of ground truth labels with the same shape as `labels` and with values of 0 or 1 whose values are castable to `int64`. predictions: A `Tensor` of predictions whose values are castable to `float64`. Will be flattened into a 1-D `Tensor`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`. alpha: Confidence interval level desired. logit_transformation: A boolean value indicating whether the estimate should be logit transformed prior to calculating the confidence interval. Doing so enforces the restriction that the AUC should never be outside the interval [0,1]. metrics_collections: An optional iterable of collections that `auc` should be added to. updates_collections: An optional iterable of collections that `update_op` should be added to. name: An optional name for the variable_scope that contains the metric variables. Returns: auc: A 1-D `Tensor` containing the current area-under-curve, lower, and upper confidence interval values. update_op: An operation that concatenates the input labels and predictions to the accumulated values. Raises: ValueError: If `labels`, `predictions`, and `weights` have mismatched shapes or if `alpha` isn't in the range (0,1). """ if not (alpha > 0 and alpha < 1): raise ValueError('alpha must be between 0 and 1; currently %.02f' % alpha) if weights is None: weights = array_ops.ones_like(predictions) with variable_scope.variable_scope( name, default_name='auc_with_confidence_intervals', values=[labels, predictions, weights]): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=predictions, labels=labels, weights=weights) total_weight = math_ops.reduce_sum(weights) weights = array_ops.reshape(weights, [-1]) predictions = array_ops.reshape( math_ops.cast(predictions, dtypes.float64), [-1]) labels = array_ops.reshape(math_ops.cast(labels, dtypes.int64), [-1]) with ops.control_dependencies([ check_ops.assert_greater_equal( labels, array_ops.zeros_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is <0'), check_ops.assert_less_equal( labels, array_ops.ones_like(labels, dtypes.int64), message='labels must be 0 or 1, at least one is >1'), ]): preds_accum, update_preds = streaming_concat( predictions, name='concat_preds') labels_accum, update_labels = streaming_concat(labels, name='concat_labels') weights_accum, update_weights = streaming_concat( weights, name='concat_weights') update_op_for_valid_case = control_flow_ops.group( update_labels, update_preds, update_weights) # Only perform updates if this case is valid. all_labels_positive_or_0 = math_ops.logical_and( math_ops.equal(math_ops.reduce_min(labels), 0), math_ops.equal(math_ops.reduce_max(labels), 1)) sums_of_weights_at_least_1 = math_ops.greater_equal(total_weight, 1.0) is_valid = math_ops.logical_and(all_labels_positive_or_0, sums_of_weights_at_least_1) update_op = control_flow_ops.cond( sums_of_weights_at_least_1, lambda: update_op_for_valid_case, control_flow_ops.no_op) auc = _compute_placement_auc( labels_accum, preds_accum, weights_accum, alpha=alpha, logit_transformation=logit_transformation, is_valid=is_valid) if updates_collections: ops.add_to_collections(updates_collections, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, auc) return auc, update_op def precision_recall_at_equal_thresholds(labels, predictions, weights=None, num_thresholds=None, use_locking=None, name=None): """A helper method for creating metrics related to precision-recall curves. These values are true positives, false negatives, true negatives, false positives, precision, and recall. This function returns a data structure that contains ops within it. Unlike _streaming_confusion_matrix_at_thresholds (which exhibits O(T * N) space and run time), this op exhibits O(T + N) space and run time, where T is the number of thresholds and N is the size of the predictions tensor. Hence, it may be advantageous to use this function when `predictions` is big. For instance, prefer this method for per-pixel classification tasks, for which the predictions tensor may be very large. Each number in `predictions`, a float in `[0, 1]`, is compared with its corresponding label in `labels`, and counts as a single tp/fp/tn/fn value at each threshold. This is then multiplied with `weights` which can be used to reweight certain values, or more commonly used for masking values. Args: labels: A bool `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. weights: Optional; If provided, a `Tensor` that has the same dtype as, and broadcastable to, `predictions`. This tensor is multiplied by counts. num_thresholds: Optional; Number of thresholds, evenly distributed in `[0, 1]`. Should be `>= 2`. Defaults to 201. Note that the number of bins is 1 less than `num_thresholds`. Using an even `num_thresholds` value instead of an odd one may yield unfriendly edges for bins. use_locking: Optional; If True, the op will be protected by a lock. Otherwise, the behavior is undefined, but may exhibit less contention. Defaults to True. name: Optional; variable_scope name. If not provided, the string 'precision_recall_at_equal_threshold' is used. Returns: result: A named tuple (See PrecisionRecallData within the implementation of this function) with properties that are variables of shape `[num_thresholds]`. The names of the properties are tp, fp, tn, fn, precision, recall, thresholds. Types are same as that of predictions. update_op: An op that accumulates values. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if `includes` contains invalid keys. """ # Disable the invalid-name checker so that we can capitalize the name. # pylint: disable=invalid-name PrecisionRecallData = collections_lib.namedtuple( 'PrecisionRecallData', ['tp', 'fp', 'tn', 'fn', 'precision', 'recall', 'thresholds']) # pylint: enable=invalid-name if num_thresholds is None: num_thresholds = 201 if weights is None: weights = 1.0 if use_locking is None: use_locking = True check_ops.assert_type(labels, dtypes.bool) with variable_scope.variable_scope(name, 'precision_recall_at_equal_thresholds', (labels, predictions, weights)): # Make sure that predictions are within [0.0, 1.0]. with ops.control_dependencies([ check_ops.assert_greater_equal( predictions, math_ops.cast(0.0, dtype=predictions.dtype), message='predictions must be in [0, 1]'), check_ops.assert_less_equal( predictions, math_ops.cast(1.0, dtype=predictions.dtype), message='predictions must be in [0, 1]') ]): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=predictions, labels=labels, weights=weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) # It's important we aggregate using float64 since we're accumulating a lot # of 1.0's for the true/false labels, and accumulating to float32 will # be quite inaccurate even with just a modest amount of values (~20M). # We use float64 instead of integer primarily since GPU scatter kernel # only support floats. agg_dtype = dtypes.float64 f_labels = math_ops.cast(labels, agg_dtype) weights = math_ops.cast(weights, agg_dtype) true_labels = f_labels * weights false_labels = (1.0 - f_labels) * weights # Flatten predictions and labels. predictions = array_ops.reshape(predictions, [-1]) true_labels = array_ops.reshape(true_labels, [-1]) false_labels = array_ops.reshape(false_labels, [-1]) # To compute TP/FP/TN/FN, we are measuring a binary classifier # C(t) = (predictions >= t) # at each threshold 't'. So we have # TP(t) = sum( C(t) * true_labels ) # FP(t) = sum( C(t) * false_labels ) # # But, computing C(t) requires computation for each t. To make it fast, # observe that C(t) is a cumulative integral, and so if we have # thresholds = [t_0, ..., t_{n-1}]; t_0 < ... < t_{n-1} # where n = num_thresholds, and if we can compute the bucket function # B(i) = Sum( (predictions == t), t_i <= t < t{i+1} ) # then we get # C(t_i) = sum( B(j), j >= i ) # which is the reversed cumulative sum in tf.cumsum(). # # We can compute B(i) efficiently by taking advantage of the fact that # our thresholds are evenly distributed, in that # width = 1.0 / (num_thresholds - 1) # thresholds = [0.0, 1*width, 2*width, 3*width, ..., 1.0] # Given a prediction value p, we can map it to its bucket by # bucket_index(p) = floor( p * (num_thresholds - 1) ) # so we can use tf.scatter_add() to update the buckets in one pass. # # This implementation exhibits a run time and space complexity of O(T + N), # where T is the number of thresholds and N is the size of predictions. # Metrics that rely on _streaming_confusion_matrix_at_thresholds instead # exhibit a complexity of O(T * N). # Compute the bucket indices for each prediction value. bucket_indices = math_ops.cast( math_ops.floor(predictions * (num_thresholds - 1)), dtypes.int32) with ops.name_scope('variables'): tp_buckets_v = metrics_impl.metric_variable( [num_thresholds], agg_dtype, name='tp_buckets') fp_buckets_v = metrics_impl.metric_variable( [num_thresholds], agg_dtype, name='fp_buckets') with ops.name_scope('update_op'): update_tp = state_ops.scatter_add( tp_buckets_v, bucket_indices, true_labels, use_locking=use_locking) update_fp = state_ops.scatter_add( fp_buckets_v, bucket_indices, false_labels, use_locking=use_locking) # Set up the cumulative sums to compute the actual metrics. tp = math_ops.cumsum(tp_buckets_v, reverse=True, name='tp') fp = math_ops.cumsum(fp_buckets_v, reverse=True, name='fp') # fn = sum(true_labels) - tp # = sum(tp_buckets) - tp # = tp[0] - tp # Similarly, # tn = fp[0] - fp tn = fp[0] - fp fn = tp[0] - tp # We use a minimum to prevent division by 0. epsilon = ops.convert_to_tensor(1e-7, dtype=agg_dtype) precision = tp / math_ops.maximum(epsilon, tp + fp) recall = tp / math_ops.maximum(epsilon, tp + fn) # Convert all tensors back to predictions' dtype (as per function contract). out_dtype = predictions.dtype _convert = lambda tensor: math_ops.cast(tensor, out_dtype) result = PrecisionRecallData( tp=_convert(tp), fp=_convert(fp), tn=_convert(tn), fn=_convert(fn), precision=_convert(precision), recall=_convert(recall), thresholds=_convert(math_ops.lin_space(0.0, 1.0, num_thresholds))) update_op = control_flow_ops.group(update_tp, update_fp) return result, update_op def streaming_specificity_at_sensitivity(predictions, labels, sensitivity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `streaming_specificity_at_sensitivity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the specificity at the given sensitivity value. The threshold for the given sensitivity value is computed and used to evaluate the corresponding specificity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `specificity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. sensitivity: A scalar value in range `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given sensitivity. metrics_collections: An optional list of collections that `specificity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: specificity: A scalar `Tensor` representing the specificity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `specificity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `sensitivity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.specificity_at_sensitivity( sensitivity=sensitivity, num_thresholds=num_thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_sensitivity_at_specificity(predictions, labels, specificity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the sensitivity at a given specificity. The `streaming_sensitivity_at_specificity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the sensitivity at the given specificity value. The threshold for the given specificity value is computed and used to evaluate the corresponding sensitivity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `sensitivity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. specificity: A scalar value in range `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given specificity. metrics_collections: An optional list of collections that `sensitivity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: sensitivity: A scalar `Tensor` representing the sensitivity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `sensitivity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `specificity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.sensitivity_at_specificity( specificity=specificity, num_thresholds=num_thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.precision_at_thresholds. Note that ' 'the order of the labels and predictions arguments are switched.') def streaming_precision_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision values for different `thresholds` on `predictions`. The `streaming_precision_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `precision[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of values in `predictions` above `thresholds[i]` (`true_positives[i] / (true_positives[i] + false_positives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `precision` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.precision_at_thresholds( thresholds=thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.recall_at_thresholds. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_recall_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various recall values for different `thresholds` on `predictions`. The `streaming_recall_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `recall[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of `True` values in `labels` (`true_positives[i] / (true_positives[i] + false_negatives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.recall_at_thresholds( thresholds=thresholds, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_false_positive_rate_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various fpr values for different `thresholds` on `predictions`. The `streaming_false_positive_rate_at_thresholds` function creates two local variables, `false_positives`, `true_negatives`, for various values of thresholds. `false_positive_rate[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`, divided by the total weight of `False` values in `labels` (`false_positives[i] / (false_positives[i] + true_negatives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_positive_rate`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_positive_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_positive_rate: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `false_positives` and `true_negatives` variables that are used in the computation of `false_positive_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_positive_rate_at_thresholds', (predictions, labels, weights)): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights, includes=('fp', 'tn')) # Avoid division by zero. epsilon = _EPSILON def compute_fpr(fp, tn, name): return math_ops.div(fp, epsilon + fp + tn, name='fpr_' + name) fpr = compute_fpr(values['fp'], values['tn'], 'value') update_op = compute_fpr(update_ops['fp'], update_ops['tn'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fpr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fpr, update_op def streaming_false_negative_rate_at_thresholds(predictions, labels, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various fnr values for different `thresholds` on `predictions`. The `streaming_false_negative_rate_at_thresholds` function creates two local variables, `false_negatives`, `true_positives`, for various values of thresholds. `false_negative_rate[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`, divided by the total weight of `True` values in `labels` (`false_negatives[i] / (false_negatives[i] + true_positives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `false_positive_rate`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. labels: A `bool` `Tensor` whose shape matches `predictions`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `false_negative_rate` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: false_negative_rate: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `false_negatives` and `true_positives` variables that are used in the computation of `false_negative_rate`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'false_negative_rate_at_thresholds', (predictions, labels, weights)): values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights, includes=('fn', 'tp')) # Avoid division by zero. epsilon = _EPSILON def compute_fnr(fn, tp, name): return math_ops.div(fn, epsilon + fn + tp, name='fnr_' + name) fnr = compute_fnr(values['fn'], values['tp'], 'value') update_op = compute_fnr(update_ops['fn'], update_ops['tp'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, fnr) if updates_collections: ops.add_to_collections(updates_collections, update_op) return fnr, update_op def _at_k_name(name, k=None, class_id=None): if k is not None: name = '%s_at_%d' % (name, k) else: name = '%s_at_k' % (name) if class_id is not None: name = '%s_class%d' % (name, class_id) return name @deprecated('2016-11-08', 'Please use `streaming_sparse_recall_at_k`, ' 'and reshape labels from [batch_size] to [batch_size, 1].') def streaming_recall_at_k(predictions, labels, k, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall@k of the predictions with respect to dense labels. The `streaming_recall_at_k` function creates two local variables, `total` and `count`, that are used to compute the recall@k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Internally, an `in_top_k` operation computes a `Tensor` with shape [batch_size] whose elements indicate whether or not the corresponding label is in the top `k` `predictions`. Then `update_op` increments `total` with the reduced sum of `weights` where `in_top_k` is `True`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A float `Tensor` of dimension [batch_size, num_classes]. labels: A `Tensor` of dimension [batch_size] whose type is in `int32`, `int64`. k: The number of top elements to look at for computing recall. weights: `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `recall_at_k` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: recall_at_k: A `Tensor` representing the recall@k, the fraction of labels which fall into the top `k` predictions. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `recall_at_k`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ in_top_k = math_ops.to_float(nn.in_top_k(predictions, labels, k)) return streaming_mean(in_top_k, weights, metrics_collections, updates_collections, name or _at_k_name('recall', k)) # TODO(ptucker): Validate range of values in labels? def streaming_sparse_recall_at_k(predictions, labels, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of the predictions with respect to sparse labels. If `class_id` is not specified, we'll calculate recall as the ratio of true positives (i.e., correct predictions, items in the top `k` highest `predictions` that are found in the corresponding row in `labels`) to actual positives (the full `labels` row). If `class_id` is specified, we calculate recall by considering only the rows in the batch for which `class_id` is in `labels`, and computing the fraction of them for which `class_id` is in the corresponding row in `labels`. `streaming_sparse_recall_at_k` creates two local variables, `true_positive_at_<k>` and `false_negative_at_<k>`, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_negative_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false negatives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_negative_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.recall_at_k( k=k, class_id=class_id, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) # TODO(ptucker): Validate range of values in labels? def streaming_sparse_precision_at_k(predictions, labels, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of the predictions with respect to sparse labels. If `class_id` is not specified, we calculate precision as the ratio of true positives (i.e., correct predictions, items in the top `k` highest `predictions` that are found in the corresponding row in `labels`) to positives (all top `k` `predictions`). If `class_id` is specified, we calculate precision by considering only the rows in the batch for which `class_id` is in the top `k` highest `predictions`, and computing the fraction of them for which `class_id` is in the corresponding row in `labels`. We expect precision to decrease as `k` increases. `streaming_sparse_precision_at_k` creates two local variables, `true_positive_at_<k>` and `false_positive_at_<k>`, that are used to compute the precision@k frequency. This frequency is ultimately returned as `precision_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_positive_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes], where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.precision_at_k( k=k, class_id=class_id, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) # TODO(ptucker): Validate range of values in labels? def streaming_sparse_precision_at_top_k(top_k_predictions, labels, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of top-k predictions with respect to sparse labels. If `class_id` is not specified, we calculate precision as the ratio of true positives (i.e., correct predictions, items in `top_k_predictions` that are found in the corresponding row in `labels`) to positives (all `top_k_predictions`). If `class_id` is specified, we calculate precision by considering only the rows in the batch for which `class_id` is in the top `k` highest `predictions`, and computing the fraction of them for which `class_id` is in the corresponding row in `labels`. We expect precision to decrease as `k` increases. `streaming_sparse_precision_at_top_k` creates two local variables, `true_positive_at_k` and `false_positive_at_k`, that are used to compute the precision@k frequency. This frequency is ultimately returned as `precision_at_k`: an idempotent operation that simply divides `true_positive_at_k` by total (`true_positive_at_k` + `false_positive_at_k`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_k`. Internally, set operations applied to `top_k_predictions` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_k` and `false_positive_at_k` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: top_k_predictions: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and top_k_predictions has shape [batch size, k]. The final dimension contains the indices of top-k labels. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `top_k_predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. ValueError: If `top_k_predictions` has rank < 2. """ default_name = _at_k_name('precision', class_id=class_id) with ops.name_scope(name, default_name, (top_k_predictions, labels, weights)) as name_scope: return metrics_impl.precision_at_top_k( labels=labels, predictions_idx=top_k_predictions, class_id=class_id, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name_scope) def sparse_recall_at_top_k(labels, top_k_predictions, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of top-k predictions with respect to sparse labels. If `class_id` is specified, we calculate recall by considering only the entries in the batch for which `class_id` is in the label, and computing the fraction of them for which `class_id` is in the top-k `predictions`. If `class_id` is not specified, we'll calculate recall as how often on average a class among the labels of a batch entry is in the top-k `predictions`. `sparse_recall_at_top_k` creates two local variables, `true_positive_at_<k>` and `false_negative_at_<k>`, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_negative_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Set operations applied to `top_k` and `labels` calculate the true positives and false negatives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_negative_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `top_k_predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. top_k_predictions: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and top_k_predictions has shape [batch size, k]. The final dimension contains the indices of top-k labels. [D1, ... DN] must match `labels`. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ default_name = _at_k_name('recall', class_id=class_id) with ops.name_scope(name, default_name, (top_k_predictions, labels, weights)) as name_scope: return metrics_impl.recall_at_top_k( labels=labels, predictions_idx=top_k_predictions, class_id=class_id, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name_scope) def _compute_recall_at_precision(tp, fp, fn, precision, name): """Helper function to compute recall at a given `precision`. Args: tp: The number of true positives. fp: The number of false positives. fn: The number of false negatives. precision: The precision for which the recall will be calculated. name: An optional variable_scope name. Returns: The recall at a given `precision`. """ precisions = math_ops.div(tp, tp + fp + _EPSILON) tf_index = math_ops.argmin( math_ops.abs(precisions - precision), 0, output_type=dtypes.int32) # Now, we have the implicit threshold, so compute the recall: return math_ops.div(tp[tf_index], tp[tf_index] + fn[tf_index] + _EPSILON, name) def recall_at_precision(labels, predictions, precision, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes `recall` at `precision`. The `recall_at_precision` function creates four local variables, `tp` (true positives), `fp` (false positives) and `fn` (false negatives) that are used to compute the `recall` at the given `precision` value. The threshold for the given `precision` value is computed and used to evaluate the corresponding `recall`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall`. `update_op` increments the `tp`, `fp` and `fn` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. precision: A scalar value in range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given `precision`. metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: A scalar `Tensor` representing the recall at the given `precision` value. update_op: An operation that increments the `tp`, `fp` and `fn` variables appropriately and whose value matches `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `precision` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if not 0 <= precision <= 1: raise ValueError('`precision` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'recall_at_precision', (predictions, labels, weights)): thresholds = [ i * 1.0 / (num_thresholds - 1) for i in range(1, num_thresholds - 1) ] thresholds = [0.0 - _EPSILON] + thresholds + [1.0 + _EPSILON] values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights) recall = _compute_recall_at_precision(values['tp'], values['fp'], values['fn'], precision, 'value') update_op = _compute_recall_at_precision(update_ops['tp'], update_ops['fp'], update_ops['fn'], precision, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, recall) if updates_collections: ops.add_to_collections(updates_collections, update_op) return recall, update_op def precision_at_recall(labels, predictions, target_recall, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the precision at a given recall. This function creates variables to track the true positives, false positives, true negatives, and false negatives at a set of thresholds. Among those thresholds where recall is at least `target_recall`, precision is computed at the threshold where recall is closest to `target_recall`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the precision at `target_recall`. `update_op` increments the counts of true positives, false positives, true negatives, and false negatives with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about precision and recall, see http://en.wikipedia.org/wiki/Precision_and_recall Args: labels: The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. target_recall: A scalar value in range `[0, 1]`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). num_thresholds: The number of thresholds to use for matching the given recall. metrics_collections: An optional list of collections to which `precision` should be added. updates_collections: An optional list of collections to which `update_op` should be added. name: An optional variable_scope name. Returns: precision: A scalar `Tensor` representing the precision at the given `target_recall` value. update_op: An operation that increments the variables for tracking the true positives, false positives, true negatives, and false negatives and whose value matches `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `target_recall` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. RuntimeError: If eager execution is enabled. """ if context.executing_eagerly(): raise RuntimeError('tf.metrics.precision_at_recall is not ' 'supported when eager execution is enabled.') if target_recall < 0 or target_recall > 1: raise ValueError('`target_recall` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'precision_at_recall', (predictions, labels, weights)): kepsilon = 1e-7 # Used to avoid division by zero. thresholds = [ (i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds - 2) ] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _streaming_confusion_matrix_at_thresholds( predictions, labels, thresholds, weights) def compute_precision_at_recall(tp, fp, fn, name): """Computes the precision at a given recall. Args: tp: True positives. fp: False positives. fn: False negatives. name: A name for the operation. Returns: The precision at the desired recall. """ recalls = math_ops.div(tp, tp + fn + kepsilon) # Because recall is monotone decreasing as a function of the threshold, # the smallest recall exceeding target_recall occurs at the largest # threshold where recall >= target_recall. admissible_recalls = math_ops.cast( math_ops.greater_equal(recalls, target_recall), dtypes.int64) tf_index = math_ops.reduce_sum(admissible_recalls) - 1 # Now we have the threshold at which to compute precision: return math_ops.div(tp[tf_index] + kepsilon, tp[tf_index] + fp[tf_index] + kepsilon, name) precision_value = compute_precision_at_recall( values['tp'], values['fp'], values['fn'], 'value') update_op = compute_precision_at_recall( update_ops['tp'], update_ops['fp'], update_ops['fn'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, precision_value) if updates_collections: ops.add_to_collections(updates_collections, update_op) return precision_value, update_op def streaming_sparse_average_precision_at_k(predictions, labels, k, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. See `sparse_average_precision_at_k` for details on formula. `weights` are applied to the result of `sparse_average_precision_at_k` `streaming_sparse_average_precision_at_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and `predictions` has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. k: Integer, k for @k metric. This will calculate an average precision for range `[1,k]`, as documented above. weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. """ return metrics.average_precision_at_k( k=k, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_sparse_average_precision_at_top_k(top_k_predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. `streaming_sparse_average_precision_at_top_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: top_k_predictions: Integer `Tensor` with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. The final dimension must be set and contains the top `k` predicted class indices. [D1, ... DN] must match `labels`. Values should be in range [0, num_classes). labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `top_k_predictions`. Values should be in range [0, num_classes). weights: `Tensor` whose rank is either 0, or n-1, where n is the rank of `labels`. If the latter, it must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. Raises: ValueError: if the last dimension of top_k_predictions is not set. """ return metrics_impl._streaming_sparse_average_precision_at_top_k( # pylint: disable=protected-access predictions_idx=top_k_predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.mean_absolute_error. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_mean_absolute_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean absolute error between the labels and predictions. The `streaming_mean_absolute_error` function creates two local variables, `total` and `count` that are used to compute the mean absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_absolute_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_absolute_error`. Internally, an `absolute_errors` operation computes the absolute value of the differences between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `absolute_errors`, and it increments `count` with the reduced sum of `weights` If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_absolute_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_absolute_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_absolute_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_absolute_error( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_mean_relative_error(predictions, labels, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean relative error by normalizing with the given values. The `streaming_mean_relative_error` function creates two local variables, `total` and `count` that are used to compute the mean relative absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_relative_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_reative_error`. Internally, a `relative_errors` operation divides the absolute value of the differences between `predictions` and `labels` by the `normalizer`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `relative_errors`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. normalizer: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_relative_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_relative_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_relative_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_relative_error( normalizer=normalizer, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated(None, 'Please switch to tf.metrics.mean_squared_error. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean squared error between the labels and predictions. The `streaming_mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the mean squared error. This average is weighted by `weights`, and it is ultimately returned as `mean_squared_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_squared_error( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) @deprecated( None, 'Please switch to tf.metrics.root_mean_squared_error. Note that the ' 'order of the labels and predictions arguments has been switched.') def streaming_root_mean_squared_error(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the root mean squared error between the labels and predictions. The `streaming_root_mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the root mean squared error. This average is weighted by `weights`, and it is ultimately returned as `root_mean_squared_error`: an idempotent operation that takes the square root of the division of `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `root_mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of arbitrary shape. labels: A `Tensor` of the same shape as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that `root_mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: root_mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `root_mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.root_mean_squared_error( predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_covariance(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the unbiased sample covariance between `predictions` and `labels`. The `streaming_covariance` function creates four local variables, `comoment`, `mean_prediction`, `mean_label`, and `count`, which are used to compute the sample covariance between predictions and labels across multiple batches of data. The covariance is ultimately returned as an idempotent operation that simply divides `comoment` by `count` - 1. We use `count` - 1 in order to get an unbiased estimate. The algorithm used for this online computation is described in https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance. Specifically, the formula used to combine two sample comoments is `C_AB = C_A + C_B + (E[x_A] - E[x_B]) * (E[y_A] - E[y_B]) * n_A * n_B / n_AB` The comoment for a single batch of data is simply `sum((x - E[x]) * (y - E[y]))`, optionally weighted. If `weights` is not None, then it is used to compute weighted comoments, means, and count. NOTE: these weights are treated as "frequency weights", as opposed to "reliability weights". See discussion of the difference on https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance To facilitate the computation of covariance across multiple batches of data, the function creates an `update_op` operation, which updates underlying variables and returns the updated covariance. Args: predictions: A `Tensor` of arbitrary size. labels: A `Tensor` of the same size as `predictions`. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: covariance: A `Tensor` representing the current unbiased sample covariance, `comoment` / (`count` - 1). update_op: An operation that updates the local variables appropriately. Raises: ValueError: If labels and predictions are of different sizes or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'covariance', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) count_ = metrics_impl.metric_variable([], dtypes.float32, name='count') mean_prediction = metrics_impl.metric_variable( [], dtypes.float32, name='mean_prediction') mean_label = metrics_impl.metric_variable( [], dtypes.float32, name='mean_label') comoment = metrics_impl.metric_variable( # C_A in update equation [], dtypes.float32, name='comoment') if weights is None: batch_count = math_ops.to_float(array_ops.size(labels)) # n_B in eqn weighted_predictions = predictions weighted_labels = labels else: weights = weights_broadcast_ops.broadcast_weights(weights, labels) batch_count = math_ops.reduce_sum(weights) # n_B in eqn weighted_predictions = math_ops.multiply(predictions, weights) weighted_labels = math_ops.multiply(labels, weights) update_count = state_ops.assign_add(count_, batch_count) # n_AB in eqn prev_count = update_count - batch_count # n_A in update equation # We update the means by Delta=Error*BatchCount/(BatchCount+PrevCount) # batch_mean_prediction is E[x_B] in the update equation batch_mean_prediction = _safe_div( math_ops.reduce_sum(weighted_predictions), batch_count, 'batch_mean_prediction') delta_mean_prediction = _safe_div( (batch_mean_prediction - mean_prediction) * batch_count, update_count, 'delta_mean_prediction') update_mean_prediction = state_ops.assign_add(mean_prediction, delta_mean_prediction) # prev_mean_prediction is E[x_A] in the update equation prev_mean_prediction = update_mean_prediction - delta_mean_prediction # batch_mean_label is E[y_B] in the update equation batch_mean_label = _safe_div( math_ops.reduce_sum(weighted_labels), batch_count, 'batch_mean_label') delta_mean_label = _safe_div((batch_mean_label - mean_label) * batch_count, update_count, 'delta_mean_label') update_mean_label = state_ops.assign_add(mean_label, delta_mean_label) # prev_mean_label is E[y_A] in the update equation prev_mean_label = update_mean_label - delta_mean_label unweighted_batch_coresiduals = ((predictions - batch_mean_prediction) * (labels - batch_mean_label)) # batch_comoment is C_B in the update equation if weights is None: batch_comoment = math_ops.reduce_sum(unweighted_batch_coresiduals) else: batch_comoment = math_ops.reduce_sum( unweighted_batch_coresiduals * weights) # View delta_comoment as = C_AB - C_A in the update equation above. # Since C_A is stored in a var, by how much do we need to increment that var # to make the var = C_AB? delta_comoment = ( batch_comoment + (prev_mean_prediction - batch_mean_prediction) * (prev_mean_label - batch_mean_label) * (prev_count * batch_count / update_count)) update_comoment = state_ops.assign_add(comoment, delta_comoment) covariance = array_ops.where( math_ops.less_equal(count_, 1.), float('nan'), math_ops.truediv(comoment, count_ - 1), name='covariance') with ops.control_dependencies([update_comoment]): update_op = array_ops.where( math_ops.less_equal(count_, 1.), float('nan'), math_ops.truediv(comoment, count_ - 1), name='update_op') if metrics_collections: ops.add_to_collections(metrics_collections, covariance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return covariance, update_op def streaming_pearson_correlation(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes Pearson correlation coefficient between `predictions`, `labels`. The `streaming_pearson_correlation` function delegates to `streaming_covariance` the tracking of three [co]variances: - `streaming_covariance(predictions, labels)`, i.e. covariance - `streaming_covariance(predictions, predictions)`, i.e. variance - `streaming_covariance(labels, labels)`, i.e. variance The product-moment correlation ultimately returned is an idempotent operation `cov(predictions, labels) / sqrt(var(predictions) * var(labels))`. To facilitate correlation computation across multiple batches, the function groups the `update_op`s of the underlying streaming_covariance and returns an `update_op`. If `weights` is not None, then it is used to compute a weighted correlation. NOTE: these weights are treated as "frequency weights", as opposed to "reliability weights". See discussion of the difference on https://wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance Args: predictions: A `Tensor` of arbitrary size. labels: A `Tensor` of the same size as predictions. weights: Optional `Tensor` indicating the frequency with which an example is sampled. Rank must be 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: pearson_r: A `Tensor` representing the current Pearson product-moment correlation coefficient, the value of `cov(predictions, labels) / sqrt(var(predictions) * var(labels))`. update_op: An operation that updates the underlying variables appropriately. Raises: ValueError: If `labels` and `predictions` are of different sizes, or if `weights` is the wrong size, or if either `metrics_collections` or `updates_collections` are not a `list` or `tuple`. """ with variable_scope.variable_scope(name, 'pearson_r', (predictions, labels, weights)): predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) # Broadcast weights here to avoid duplicate broadcasting in each call to # `streaming_covariance`. if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, labels) cov, update_cov = streaming_covariance( predictions, labels, weights=weights, name='covariance') var_predictions, update_var_predictions = streaming_covariance( predictions, predictions, weights=weights, name='variance_predictions') var_labels, update_var_labels = streaming_covariance( labels, labels, weights=weights, name='variance_labels') pearson_r = math_ops.truediv( cov, math_ops.multiply( math_ops.sqrt(var_predictions), math_ops.sqrt(var_labels)), name='pearson_r') update_op = math_ops.truediv( update_cov, math_ops.multiply( math_ops.sqrt(update_var_predictions), math_ops.sqrt(update_var_labels)), name='update_op') if metrics_collections: ops.add_to_collections(metrics_collections, pearson_r) if updates_collections: ops.add_to_collections(updates_collections, update_op) return pearson_r, update_op # TODO(nsilberman): add a 'normalized' flag so that the user can request # normalization if the inputs are not normalized. def streaming_mean_cosine_distance(predictions, labels, dim, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the cosine distance between the labels and predictions. The `streaming_mean_cosine_distance` function creates two local variables, `total` and `count` that are used to compute the average cosine distance between `predictions` and `labels`. This average is weighted by `weights`, and it is ultimately returned as `mean_distance`, which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_distance`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of the same shape as `labels`. labels: A `Tensor` of arbitrary shape. dim: The dimension along which the cosine distance is computed. weights: An optional `Tensor` whose shape is broadcastable to `predictions`, and whose dimension `dim` is 1. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: mean_distance: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions, labels, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) radial_diffs = math_ops.multiply(predictions, labels) radial_diffs = math_ops.reduce_sum( radial_diffs, reduction_indices=[ dim, ], keepdims=True) mean_distance, update_op = streaming_mean(radial_diffs, weights, None, None, name or 'mean_cosine_distance') mean_distance = math_ops.subtract(1.0, mean_distance) update_op = math_ops.subtract(1.0, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, mean_distance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_distance, update_op def streaming_percentage_less(values, threshold, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the percentage of values less than the given threshold. The `streaming_percentage_less` function creates two local variables, `total` and `count` that are used to compute the percentage of `values` that fall below `threshold`. This rate is weighted by `weights`, and it is ultimately returned as `percentage` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `percentage`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A numeric `Tensor` of arbitrary size. threshold: A scalar threshold. weights: An optional `Tensor` whose shape is broadcastable to `values`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: percentage: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.percentage_below( values=values, threshold=threshold, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def streaming_mean_iou(predictions, labels, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculate per-step mean Intersection-Over-Union (mIOU). Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `weights`, and mIOU is then calculated from it. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_iou`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: predictions: A `Tensor` of prediction results for semantic labels, whose shape is [batch size] and type `int32` or `int64`. The tensor will be flattened, if its rank > 1. labels: A `Tensor` of ground truth labels with shape [batch size] and of type `int32` or `int64`. The tensor will be flattened, if its rank > 1. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `mean_iou` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: mean_iou: A `Tensor` representing the mean intersection-over-union. update_op: An operation that increments the confusion matrix. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ return metrics.mean_iou( num_classes=num_classes, predictions=predictions, labels=labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) def _next_array_size(required_size, growth_factor=1.5): """Calculate the next size for reallocating a dynamic array. Args: required_size: number or tf.Tensor specifying required array capacity. growth_factor: optional number or tf.Tensor specifying the growth factor between subsequent allocations. Returns: tf.Tensor with dtype=int32 giving the next array size. """ exponent = math_ops.ceil( math_ops.log(math_ops.cast(required_size, dtypes.float32)) / math_ops.log( math_ops.cast(growth_factor, dtypes.float32))) return math_ops.cast(math_ops.ceil(growth_factor**exponent), dtypes.int32) def streaming_concat(values, axis=0, max_size=None, metrics_collections=None, updates_collections=None, name=None): """Concatenate values along an axis across batches. The function `streaming_concat` creates two local variables, `array` and `size`, that are used to store concatenated values. Internally, `array` is used as storage for a dynamic array (if `maxsize` is `None`), which ensures that updates can be run in amortized constant time. For estimation of the metric over a stream of data, the function creates an `update_op` operation that appends the values of a tensor and returns the length of the concatenated axis. This op allows for evaluating metrics that cannot be updated incrementally using the same framework as other streaming metrics. Args: values: `Tensor` to concatenate. Rank and the shape along all axes other than the axis to concatenate along must be statically known. axis: optional integer axis to concatenate along. max_size: optional integer maximum size of `value` along the given axis. Once the maximum size is reached, further updates are no-ops. By default, there is no maximum size: the array is resized as necessary. metrics_collections: An optional list of collections that `value` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: value: A `Tensor` representing the concatenated values. update_op: An operation that concatenates the next values. Raises: ValueError: if `values` does not have a statically known rank, `axis` is not in the valid range or the size of `values` is not statically known along any axis other than `axis`. """ with variable_scope.variable_scope(name, 'streaming_concat', (values,)): # pylint: disable=invalid-slice-index values_shape = values.get_shape() if values_shape.dims is None: raise ValueError('`values` must have known statically known rank') ndim = len(values_shape) if axis < 0: axis += ndim if not 0 <= axis < ndim: raise ValueError('axis = %r not in [0, %r)' % (axis, ndim)) fixed_shape = [dim.value for n, dim in enumerate(values_shape) if n != axis] if any(value is None for value in fixed_shape): raise ValueError('all dimensions of `values` other than the dimension to ' 'concatenate along must have statically known size') # We move `axis` to the front of the internal array so assign ops can be # applied to contiguous slices init_size = 0 if max_size is None else max_size init_shape = [init_size] + fixed_shape array = metrics_impl.metric_variable( init_shape, values.dtype, validate_shape=False, name='array') size = metrics_impl.metric_variable([], dtypes.int32, name='size') perm = [0 if n == axis else n + 1 if n < axis else n for n in range(ndim)] valid_array = array[:size] valid_array.set_shape([None] + fixed_shape) value = array_ops.transpose(valid_array, perm, name='concat') values_size = array_ops.shape(values)[axis] if max_size is None: batch_size = values_size else: batch_size = math_ops.minimum(values_size, max_size - size) perm = [axis] + [n for n in range(ndim) if n != axis] batch_values = array_ops.transpose(values, perm)[:batch_size] def reallocate(): next_size = _next_array_size(new_size) next_shape = array_ops.stack([next_size] + fixed_shape) new_value = array_ops.zeros(next_shape, dtype=values.dtype) old_value = array.value() assign_op = state_ops.assign(array, new_value, validate_shape=False) with ops.control_dependencies([assign_op]): copy_op = array[:size].assign(old_value[:size]) # return value needs to be the same dtype as no_op() for cond with ops.control_dependencies([copy_op]): return control_flow_ops.no_op() new_size = size + batch_size array_size = array_ops.shape_internal(array, optimize=False)[0] maybe_reallocate_op = control_flow_ops.cond( new_size > array_size, reallocate, control_flow_ops.no_op) with ops.control_dependencies([maybe_reallocate_op]): append_values_op = array[size:new_size].assign(batch_values) with ops.control_dependencies([append_values_op]): update_op = size.assign(new_size) if metrics_collections: ops.add_to_collections(metrics_collections, value) if updates_collections: ops.add_to_collections(updates_collections, update_op) return value, update_op # pylint: enable=invalid-slice-index def aggregate_metrics(*value_update_tuples): """Aggregates the metric value tensors and update ops into two lists. Args: *value_update_tuples: a variable number of tuples, each of which contain the pair of (value_tensor, update_op) from a streaming metric. Returns: A list of value `Tensor` objects and a list of update ops. Raises: ValueError: if `value_update_tuples` is empty. """ if not value_update_tuples: raise ValueError('Expected at least one value_tensor/update_op pair') value_ops, update_ops = zip(*value_update_tuples) return list(value_ops), list(update_ops) def aggregate_metric_map(names_to_tuples): """Aggregates the metric names to tuple dictionary. This function is useful for pairing metric names with their associated value and update ops when the list of metrics is long. For example: ```python metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map({ 'Mean Absolute Error': new_slim.metrics.streaming_mean_absolute_error( predictions, labels, weights), 'Mean Relative Error': new_slim.metrics.streaming_mean_relative_error( predictions, labels, labels, weights), 'RMSE Linear': new_slim.metrics.streaming_root_mean_squared_error( predictions, labels, weights), 'RMSE Log': new_slim.metrics.streaming_root_mean_squared_error( predictions, labels, weights), }) ``` Args: names_to_tuples: a map of metric names to tuples, each of which contain the pair of (value_tensor, update_op) from a streaming metric. Returns: A dictionary from metric names to value ops and a dictionary from metric names to update ops. """ metric_names = names_to_tuples.keys() value_ops, update_ops = zip(*names_to_tuples.values()) return dict(zip(metric_names, value_ops)), dict(zip(metric_names, update_ops)) def count(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the number of examples, or sum of `weights`. When evaluating some metric (e.g. mean) on one or more subsets of the data, this auxiliary metric is useful for keeping track of how many examples there are in each subset. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. Only it's shape is used. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: count: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the metric from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'count', (values, weights)): count_ = metrics_impl.metric_variable([], dtypes.float32, name='count') if weights is None: num_values = math_ops.to_float(array_ops.size(values)) else: _, _, weights = metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=values, labels=None, weights=weights) weights = weights_broadcast_ops.broadcast_weights( math_ops.to_float(weights), values) num_values = math_ops.reduce_sum(weights) with ops.control_dependencies([values]): update_op = state_ops.assign_add(count_, num_values) if metrics_collections: ops.add_to_collections(metrics_collections, count_) if updates_collections: ops.add_to_collections(updates_collections, update_op) return count_, update_op def cohen_kappa(labels, predictions_idx, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates Cohen's kappa. [Cohen's kappa](https://en.wikipedia.org/wiki/Cohen's_kappa) is a statistic that measures inter-annotator agreement. The `cohen_kappa` function calculates the confusion matrix, and creates three local variables to compute the Cohen's kappa: `po`, `pe_row`, and `pe_col`, which refer to the diagonal part, rows and columns totals of the confusion matrix, respectively. This value is ultimately returned as `kappa`, an idempotent operation that is calculated by pe = (pe_row * pe_col) / N k = (sum(po) - sum(pe)) / (N - sum(pe)) For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `kappa`. `update_op` weights each prediction by the corresponding value in `weights`. Class labels are expected to start at 0. E.g., if `num_classes` was three, then the possible labels would be [0, 1, 2]. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. NOTE: Equivalent to `sklearn.metrics.cohen_kappa_score`, but the method doesn't support weighted matrix yet. Args: labels: 1-D `Tensor` of real labels for the classification task. Must be one of the following types: int16, int32, int64. predictions_idx: 1-D `Tensor` of predicted class indices for a given classification. Must have the same type as `labels`. num_classes: The possible number of labels. weights: Optional `Tensor` whose shape matches `predictions`. metrics_collections: An optional list of collections that `kappa` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: kappa: Scalar float `Tensor` representing the current Cohen's kappa. update_op: `Operation` that increments `po`, `pe_row` and `pe_col` variables appropriately and whose value matches `kappa`. Raises: ValueError: If `num_classes` is less than 2, or `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. RuntimeError: If eager execution is enabled. """ if context.executing_eagerly(): raise RuntimeError('tf.contrib.metrics.cohen_kappa is not supported ' 'when eager execution is enabled.') if num_classes < 2: raise ValueError('`num_classes` must be >= 2.' 'Found: {}'.format(num_classes)) with variable_scope.variable_scope(name, 'cohen_kappa', (labels, predictions_idx, weights)): # Convert 2-dim (num, 1) to 1-dim (num,) labels.get_shape().with_rank_at_most(2) if labels.get_shape().ndims == 2: labels = array_ops.squeeze(labels, axis=[-1]) predictions_idx, labels, weights = ( metrics_impl._remove_squeezable_dimensions( # pylint: disable=protected-access predictions=predictions_idx, labels=labels, weights=weights)) predictions_idx.get_shape().assert_is_compatible_with(labels.get_shape()) stat_dtype = ( dtypes.int64 if weights is None or weights.dtype.is_integer else dtypes.float32) po = metrics_impl.metric_variable((num_classes,), stat_dtype, name='po') pe_row = metrics_impl.metric_variable( (num_classes,), stat_dtype, name='pe_row') pe_col = metrics_impl.metric_variable( (num_classes,), stat_dtype, name='pe_col') # Table of the counts of agreement: counts_in_table = confusion_matrix.confusion_matrix( labels, predictions_idx, num_classes=num_classes, weights=weights, dtype=stat_dtype, name='counts_in_table') po_t = array_ops.diag_part(counts_in_table) pe_row_t = math_ops.reduce_sum(counts_in_table, axis=0) pe_col_t = math_ops.reduce_sum(counts_in_table, axis=1) update_po = state_ops.assign_add(po, po_t) update_pe_row = state_ops.assign_add(pe_row, pe_row_t) update_pe_col = state_ops.assign_add(pe_col, pe_col_t) def _calculate_k(po, pe_row, pe_col, name): po_sum = math_ops.reduce_sum(po) total = math_ops.reduce_sum(pe_row) pe_sum = math_ops.reduce_sum( metrics_impl._safe_div( # pylint: disable=protected-access pe_row * pe_col, total, None)) po_sum, pe_sum, total = (math_ops.to_double(po_sum), math_ops.to_double(pe_sum), math_ops.to_double(total)) # kappa = (po - pe) / (N - pe) k = metrics_impl._safe_scalar_div( # pylint: disable=protected-access po_sum - pe_sum, total - pe_sum, name=name) return k kappa = _calculate_k(po, pe_row, pe_col, name='value') update_op = _calculate_k( update_po, update_pe_row, update_pe_col, name='update_op') if metrics_collections: ops.add_to_collections(metrics_collections, kappa) if updates_collections: ops.add_to_collections(updates_collections, update_op) return kappa, update_op __all__ = [ 'auc_with_confidence_intervals', 'aggregate_metric_map', 'aggregate_metrics', 'cohen_kappa', 'count', 'precision_recall_at_equal_thresholds', 'recall_at_precision', 'sparse_recall_at_top_k', 'streaming_accuracy', 'streaming_auc', 'streaming_curve_points', 'streaming_dynamic_auc', 'streaming_false_negative_rate', 'streaming_false_negative_rate_at_thresholds', 'streaming_false_negatives', 'streaming_false_negatives_at_thresholds', 'streaming_false_positive_rate', 'streaming_false_positive_rate_at_thresholds', 'streaming_false_positives', 'streaming_false_positives_at_thresholds', 'streaming_mean', 'streaming_mean_absolute_error', 'streaming_mean_cosine_distance', 'streaming_mean_iou', 'streaming_mean_relative_error', 'streaming_mean_squared_error', 'streaming_mean_tensor', 'streaming_percentage_less', 'streaming_precision', 'streaming_precision_at_thresholds', 'streaming_recall', 'streaming_recall_at_k', 'streaming_recall_at_thresholds', 'streaming_root_mean_squared_error', 'streaming_sensitivity_at_specificity', 'streaming_sparse_average_precision_at_k', 'streaming_sparse_average_precision_at_top_k', 'streaming_sparse_precision_at_k', 'streaming_sparse_precision_at_top_k', 'streaming_sparse_recall_at_k', 'streaming_specificity_at_sensitivity', 'streaming_true_negatives', 'streaming_true_negatives_at_thresholds', 'streaming_true_positives', 'streaming_true_positives_at_thresholds', ]
apache-2.0
blab/nextstrain-augur
augur/tree.py
1
16604
""" Build a tree using a variety of methods. """ import os import shutil import sys import time import uuid import Bio from Bio import Phylo import numpy as np from treetime.vcf_utils import read_vcf from pathlib import Path from .utils import run_shell_command, nthreads_value def find_executable(names, default = None): """ Return the path to the first executable found in PATH from the given list of names. Raises a (hopefully helpful) error if no executable is found. Provide a value for the "default" parameter to instead return a value. """ exe = next(filter(shutil.which, names), default) if exe is None: print("Unable to find any of %s in PATH=%s" % (names, os.environ["PATH"])) print("Hint: You can install the missing program using conda or homebrew or apt-get.") raise Exception return exe def build_raxml(aln_file, out_file, clean_up=True, nthreads=1): ''' build tree using RAxML with parameters '-f d -m GTRCAT -c 25 -p 235813 -n tre" ''' raxml = find_executable([ # Users who symlink/install as "raxml" can pick a specific version, # otherwise we have our own search order based on expected parallelism. # The variants we look for are not exhaustive, but based on what's # provided by conda and Ubuntu's raxml packages. This may want to be # adjusted in the future depending on use. "raxml", "raxmlHPC-PTHREADS-AVX2", "raxmlHPC-PTHREADS-AVX", "raxmlHPC-PTHREADS-SSE3", "raxmlHPC-PTHREADS", "raxmlHPC-AVX2", "raxmlHPC-AVX", "raxmlHPC-SSE3", "raxmlHPC", ]) # RAxML outputs files appended with this random string: # RAxML_bestTree.4ed91a, RAxML_info.4ed91a, RAxML_parsimonyTree.4ed91a, RAxML_result.4ed91a random_string = uuid.uuid4().hex[0:6] call = [raxml,"-T",str(nthreads)," -f d -m GTRCAT -c 25 -p 235813 -n %s -s"%(random_string), aln_file, "> RAxML_log.%s"%(random_string)] cmd = " ".join(call) print("Building a tree via:\n\t" + cmd + "\n\tStamatakis, A: RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies." "\n\tIn Bioinformatics, 2014\n") try: run_shell_command(cmd, raise_errors = True) shutil.copy("RAxML_bestTree.%s"%(random_string), out_file) T = Phylo.read(out_file, 'newick') if clean_up: os.remove("RAxML_bestTree.%s"%(random_string)) os.remove("RAxML_info.%s"%(random_string)) os.remove("RAxML_log.%s"%(random_string)) os.remove("RAxML_parsimonyTree.%s"%(random_string)) os.remove("RAxML_result.%s"%(random_string)) except: print("TREE BUILDING FAILED, please inspect the raxml.log file\n") T=None return T def build_fasttree(aln_file, out_file, clean_up=True, nthreads=1): ''' build tree using fasttree with parameters "-nt" ''' log_file = out_file + ".log" fasttree = find_executable([ # Search order is based on expected parallelism and accuracy # (double-precision versions). "FastTreeDblMP", "FastTreeDbl", "FastTreeMP", "fasttreeMP", # Ubuntu lowercases "FastTree", "fasttree" ]) # By default FastTree with OpenMP support uses all available cores. # However, it respects the standard OpenMP environment variable controlling # this as described at <http://www.microbesonline.org/fasttree/#OpenMP>. # # We always set it, regardless of it the found FastTree executable contains # "MP" in the name, because the generic "FastTree" or "fasttree" variants # might be OpenMP-enabled too. extra_env = { "OMP_NUM_THREADS": str(nthreads), } call = [fasttree, "-nosupport", "-nt", aln_file, "1>", out_file, "2>", log_file] cmd = " ".join(call) print("Building a tree via:\n\t" + cmd + "\n\tPrice et al: FastTree 2 - Approximately Maximum-Likelihood Trees for Large Alignments." + "\n\tPLoS ONE 5(3): e9490. https://doi.org/10.1371/journal.pone.0009490\n") try: run_shell_command(cmd, raise_errors = True, extra_env = extra_env) T = Phylo.read(out_file, 'newick') if clean_up: os.remove(log_file) except: print("TREE BUILDING FAILED") T=None return T def build_iqtree(aln_file, out_file, substitution_model="GTR", clean_up=True, nthreads=1): ''' build tree using IQ-Tree with parameters "-fast" arguments: aln_file file name of input aligment out_file file name to write tree to ''' with open(aln_file) as ifile: tmp_seqs = ifile.readlines() # IQ-tree messes with taxon names. Hence remove offending characters, reinstaniate later tmp_aln_file = aln_file.replace(".fasta", "-delim.fasta") log_file = tmp_aln_file.replace(".fasta", ".iqtree.log") with open(tmp_aln_file, 'w') as ofile: for line in tmp_seqs: ofile.write(line.replace('/', '_X_X_').replace('|','_Y_Y_')) # For compat with older versions of iqtree, we avoid the newish -fast # option alias and instead spell out its component parts: # # -ninit 2 # -n 2 # -me 0.05 # # This may need to be updated in the future if we want to stay in lock-step # with -fast, although there's probably no particular reason we have to. # Refer to the handling of -fast in utils/tools.cpp: # https://github.com/Cibiv/IQ-TREE/blob/44753aba/utils/tools.cpp#L2926-L2936 fast_opts = [ "-ninit", "2", "-n", "2", "-me", "0.05" ] if substitution_model.lower() != "none": call = ["iqtree", *fast_opts, "-nt", str(nthreads), "-s", tmp_aln_file, "-m", substitution_model, ">", log_file] else: call = ["iqtree", *fast_opts, "-nt", str(nthreads), "-s", tmp_aln_file, ">", log_file] cmd = " ".join(call) print("Building a tree via:\n\t" + cmd + "\n\tNguyen et al: IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies." "\n\tMol. Biol. Evol., 32:268-274. https://doi.org/10.1093/molbev/msu300\n") if substitution_model.lower() == "none": print("Conducting a model test... see iqtree.log for the result. You can specify this with --substitution-model in future runs.") try: run_shell_command(cmd, raise_errors = True) T = Phylo.read(tmp_aln_file+".treefile", 'newick') shutil.copyfile(tmp_aln_file+".treefile", out_file) for n in T.get_terminals(): n.name = n.name.replace('_X_X_','/').replace('_Y_Y_','|') #this allows the user to check intermediate output, as tree.nwk will be if clean_up: #allow user to see chosen model if modeltest was run if substitution_model.lower() == 'none': shutil.copyfile(log_file, out_file.replace(out_file.split('/')[-1],"iqtree.log")) for f in [log_file, tmp_aln_file]: if os.path.isfile(f): os.remove(f) for ext in [".bionj",".ckp.gz",".iqtree",".log",".mldist",".model.gz",".treefile",".uniqueseq.phy",".model"]: if os.path.isfile(tmp_aln_file + ext): os.remove(tmp_aln_file + ext) except: print("TREE BUILDING FAILED") T=None return T def load_excluded_sites(excluded_sites_file): """Returns an array of zero-based sites to exclude from a FASTA prior to tree building. Parameters ---------- excluded_sites_file : str a path to a BED file (with a .bed extension), a tab-delimited DRM file, or a plain text file with one position per line Returns ------- ndarray : a unique array of positions loaded from the given file """ strip_pos = [] is_bed_format = False if excluded_sites_file is not None: # Check for BED file extension. if excluded_sites_file.lower().endswith('.bed'): import pandas as pd is_bed_format = True bed = pd.read_csv(excluded_sites_file, sep='\t') for index, row in bed.iterrows(): strip_pos.extend(list(range(row[1], row[2]+1))) else: # Next, check for DRM-file format or site-per-line format. with open(excluded_sites_file, 'r') as ifile: line1 = ifile.readline() # If the file is tab-delimited, assume it is in DRM-file format. if '\t' in line1: strip_pos = [int(line.strip().split('\t')[1]) for line in ifile] else: # Finally, fall back to site-per-line format. strip_pos = [int(line.strip()) for line in ifile] if line1.strip(): # Add the first line back to the list strip_pos.append(int(line1.strip())) strip_pos = np.unique(strip_pos) # If the given sites are not in BED format, they are one-based positions and # need to be internally adjusted to zero-based positions. if not is_bed_format: strip_pos = strip_pos - 1 return strip_pos def write_out_informative_fasta(compress_seq, alignment, stripFile=None): from Bio import SeqIO from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq sequences = compress_seq['sequences'] ref = compress_seq['reference'] positions = compress_seq['positions'] #If want to exclude sites from initial treebuild, read in here strip_pos = load_excluded_sites(stripFile) #Get sequence names seqNames = list(sequences.keys()) #Check non-ref sites to see if informative printPositionMap = False #If true, prints file mapping Fasta position to real position sites = [] pos = [] for key in positions: if key not in strip_pos: pattern = [] for k in sequences.keys(): #looping try/except is faster than list comprehension try: pattern.append(sequences[k][key]) except KeyError: pattern.append(ref[key]) origPattern = list(pattern) if '-' in pattern or 'N' in pattern: #remove gaps/Ns to see if otherwise informative pattern = [value for value in origPattern if value != '-' and value != 'N'] un = np.unique(pattern, return_counts=True) #If not all - or N, not all same base, and >1 differing base, append if len(un[0])!=0 and len(un[0])!=1 and not (len(un[0])==2 and min(un[1])==1): sites.append(origPattern) pos.append("\t".join([str(len(pos)+1),str(key)])) #Rotate and convert to SeqRecord sites = np.asarray(sites) align = np.rot90(sites) seqNamesCorr = list(reversed(seqNames)) toFasta = [ SeqRecord(id=seqNamesCorr[i], seq=Seq("".join(align[i])), description='') for i in range(len(sequences.keys()))] fasta_file = '/'.join(alignment.split('/')[:-1]) + '/informative_sites.fasta' #now output this as fasta to read into raxml or iqtree SeqIO.write(toFasta, fasta_file, 'fasta') #If want a position map, print: if printPositionMap: with open(fasta_file+".positions.txt", 'w') as the_file: the_file.write("\n".join(pos)) return fasta_file def mask_sites_in_multiple_sequence_alignment(alignment_file, excluded_sites_file): """Creates a new multiple sequence alignment FASTA file from which the given excluded sites have been removed and returns the filename of the new alignment. Parameters ---------- alignment_file : str path to the original multiple sequence alignment file excluded_sites_file : str path to a text file containing each nucleotide position to exclude with one position per line Returns ------- str path to the new FASTA file from which sites have been excluded """ # Load zero-based excluded sites. excluded_sites = load_excluded_sites(excluded_sites_file).tolist() # Return the original alignment file, if no excluded sites were found. if len(excluded_sites) == 0: return alignment_file # Load alignment as FASTA generator to prevent loading the whole alignment # into memory. alignment = Bio.SeqIO.parse(alignment_file, "fasta") # Write the masked alignment to disk one record at a time. alignment_file_path = Path(alignment_file) masked_alignment_file = str(alignment_file_path.parent / ("masked_%s" % alignment_file_path.name)) with open(masked_alignment_file, "w") as oh: for record in alignment: # Convert to a mutable sequence to enable masking with Ns. sequence = record.seq.tomutable() # Replace all excluded sites with Ns. for site in excluded_sites: sequence[site] = "N" record.seq = sequence Bio.SeqIO.write(record, oh, "fasta") # Return the new alignment FASTA filename. return masked_alignment_file def register_arguments(parser): parser.add_argument('--alignment', '-a', required=True, help="alignment in fasta or VCF format") parser.add_argument('--method', default='iqtree', choices=["fasttree", "raxml", "iqtree"], help="tree builder to use") parser.add_argument('--output', '-o', type=str, help='file name to write tree to') parser.add_argument('--substitution-model', default="GTR", choices=["HKY", "GTR", "HKY+G", "GTR+G"], help='substitution model to use. Specify \'none\' to run ModelTest. Currently, only available for IQTREE.') parser.add_argument('--nthreads', type=nthreads_value, default=1, help="number of threads to use; specifying the value 'auto' will cause the number of available CPU cores on your system, if determinable, to be used") parser.add_argument('--vcf-reference', type=str, help='fasta file of the sequence the VCF was mapped to') parser.add_argument('--exclude-sites', type=str, help='file name of one-based sites to exclude for raw tree building (BED format in .bed files, DRM format in tab-delimited files, or one position per line)') def run(args): # check alignment type, set flags, read in if VCF is_vcf = False ref = None if any([args.alignment.lower().endswith(x) for x in ['.vcf', '.vcf.gz']]): # Prepare a multiple sequence alignment from the given variants VCF and # reference FASTA. if not args.vcf_reference: print("ERROR: a reference Fasta is required with VCF-format alignments") return 1 compress_seq = read_vcf(args.alignment, args.vcf_reference) sequences = compress_seq['sequences'] ref = compress_seq['reference'] is_vcf = True aln = sequences elif args.exclude_sites: # Mask excluded sites from the given multiple sequence alignment. aln = mask_sites_in_multiple_sequence_alignment(args.alignment, args.exclude_sites) else: # Use the multiple sequence alignment as is. aln = args.alignment start = time.time() if args.output: tree_fname = args.output else: tree_fname = '.'.join(args.alignment.split('.')[:-1]) + '.nwk' # construct reduced alignment if needed if is_vcf: variable_fasta = write_out_informative_fasta(compress_seq, args.alignment, stripFile=args.exclude_sites) fasta = variable_fasta else: fasta = aln if args.substitution_model and not args.method=='iqtree': print("Cannot specify model unless using IQTree. Model specification ignored.") if args.method=='raxml': T = build_raxml(fasta, tree_fname, nthreads=args.nthreads) elif args.method=='iqtree': T = build_iqtree(fasta, tree_fname, args.substitution_model, nthreads=args.nthreads) elif args.method=='fasttree': T = build_fasttree(fasta, tree_fname, nthreads=args.nthreads) else: print("ERROR: unknown tree builder provided to --method: %s" % args.method, file = sys.stderr) return 1 end = time.time() print("Building original tree took {} seconds".format(str(end-start))) if T: import json tree_success = Phylo.write(T, tree_fname, 'newick', format_branch_length='%1.8f') else: return 1
agpl-3.0
edmunoz/aed
twitter/TopicModeling.py
2
4201
import math from sklearn.feature_extraction.text import CountVectorizer from lda import LDA import math import matplotlib.pyplot as plt class TopicModelingMetrics(object): """docstring for TopicModelingMetrics""" def __init__(self): super(TopicModelingMetrics, self).__init__() def calculate(self,topic_words,topic_k,word_v): pass class TopicSimpleScore(TopicModelingMetrics): """ Probablidad de que word_v pertenezca al topico topic_k """ def __init__(self): super(TopicSimpleScore, self).__init__() def calculate(self,topic_words,topic_k,word_v): return topic_words[topic_k][word_v] class TopicTermScore(TopicModelingMetrics): """ Score propuesto por Blei y Lafferty en Topic Models. In Text Mining: Theory and Applications Resalta palabras con una alta probablidad de ocurrencia en un topico y baja probabilidad en el resto de topicos """ def __init__(self): super(TopicTermScore, self).__init__() def get_tf_topic(self,topic_words,topic_k,word_v): return topic_words[topic_k][word_v] def get_idf_topic(self,topic_words,topic_k,word_v): num_topics = topic_words.shape[0] bkn = topic_words[topic_k][word_v] value = 1.0 for topic_dist in topic_words: value = value*topic_dist[word_v] return math.log(1.0*bkn/math.pow(value,1.0/num_topics)) def calculate(self,topic_words,topic_k,word_v): tf_topic = self.get_idf_topic(topic_words,topic_k,word_v) idf_topic = self.get_idf_topic(topic_words,topic_k,word_v) return tf_topic*idf_topic class TopicModelingLDA(object): #wrapper de la libreriar LDA #permite caracterizar los topicos en base a varios scores encontrados en la literatura def __init__(self,corpus,metrics_criteria='simple'): super(TopicModelingLDA, self).__init__() self.corpus = corpus self.select_metric_criteria(metrics_criteria) self.model = None self.topic_words = None self.top_words = None self.all_words = [] def fit(self,num_topic=5,n_iter=1500): count_vect = CountVectorizer() x_train_counts = count_vect.fit_transform(self.corpus) self.model = LDA(n_topics=num_topic, n_iter=n_iter, random_state=1) self.model.fit(x_train_counts) self.topic_words = self.model.topic_word_ self.vocabulary = count_vect.get_feature_names() def select_metric_criteria(self,metrics_criteria): if metrics_criteria == 'term_score': self.metrics = TopicTermScore() else: self.metrics = TopicSimpleScore() def get_highest_scores(self,k_top=10): #topic_words es una matriz (numero de topicos,palabras) #la fila k indica la distribucion de palabras del topico k num_topics = len(self.topic_words) print ("Numero de topicos",num_topics) top_words = [] self.top_words = {} for topic_k in range(num_topics): scores = [] for v,word in enumerate(self.vocabulary): score = self.metrics.calculate(self.topic_words,topic_k,v) scores.append((word,score)) scores.sort(key=lambda tup: tup[1]) scores = scores[-k_top:] print ("Topico %d"%(topic_k)) for word,score in scores: print ("%s,%.4f"%(word,score)) print ("") self.top_words[topic_k] = [{'word':word,'score':score} for word,score in scores] self.all_words += [ word for word,score in scores] return self.top_words def get_all_words(self): return self.all_words class TopicModelingEvaluator(object): """docstring for TopicModelingEvaluator""" def __init__(self,corpus,num_topics = [5,10,20]): #calcula perplexity para cada valor del arregloe num topics #llame a show_perplexity para observar la distribucion de perplexity sobre el numero de topicos super(TopicModelingEvaluator, self).__init__() self.num_topics = num_topics self.corpus = corpus def show_perplexity(self): perplexity = [self.calculate_perplexity(num_topic) for num_topic in self.num_topics] plt.plot(self.num_topics,perplexity) plt.xlabel("Num topics") plt.ylabel("Perplexity") plt.show() def calculate_perplexity(self,num_topic): lda_wrapper = TopicModelingLDA(self.corpus) lda_wrapper.fit(num_topic,10) log_likelihood = lda_wrapper.model.loglikelihood() n_features = lda_wrapper.topic_words.shape[1] x = 1.0*log_likelihood/n_features result = math.exp(-1.0*x) return result
apache-2.0
samuelstjean/dipy
dipy/tests/test_scripts.py
1
7485
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Test scripts If we appear to be running from the development directory, use the scripts in the top-level folder ``scripts``. Otherwise try and get the scripts from the path """ from __future__ import division, print_function, absolute_import import sys import os import shutil from os.path import (dirname, join as pjoin, isfile, isdir, abspath, realpath, pathsep) from subprocess import Popen, PIPE from nose.tools import assert_true, assert_false, assert_equal import numpy.testing as nt import nibabel as nib from nibabel.tmpdirs import InTemporaryDirectory from dipy.utils.six import string_types from dipy.data import get_data # Quickbundles command-line requires matplotlib: try: import matplotlib no_mpl = False except ImportError: no_mpl = True DEBUG_PRINT = os.environ.get('NIPY_DEBUG_PRINT', False) DATA_PATH = abspath(pjoin(dirname(__file__), 'data')) def local_script_dir(script_sdir): # Check for presence of scripts in development directory. ``realpath`` # checks for the situation where the development directory has been linked # into the path. below_us_2 = realpath(pjoin(dirname(__file__), '..', '..')) devel_script_dir = pjoin(below_us_2, script_sdir) if isfile(pjoin(below_us_2, 'setup.py')) and isdir(devel_script_dir): return devel_script_dir return None LOCAL_SCRIPT_DIR = local_script_dir('bin') def local_module_dir(module_name): mod = __import__(module_name) containing_path = dirname(dirname(realpath(mod.__file__))) if containing_path == realpath(os.getcwd()): return containing_path return None LOCAL_MODULE_DIR = local_module_dir('dipy') def run_command(cmd, check_code=True): """ Run command sequence `cmd` returning exit code, stdout, stderr Parameters ---------- cmd : str or sequence string with command name or sequence of strings defining command check_code : {True, False}, optional If True, raise error for non-zero return code Returns ------- returncode : int return code from execution of `cmd` stdout : bytes (python 3) or str (python 2) stdout from `cmd` stderr : bytes (python 3) or str (python 2) stderr from `cmd` """ if isinstance(cmd, string_types): cmd = [cmd] else: cmd = list(cmd) if os.name == 'nt': # Need .bat file extension for windows cmd[0] += '.bat' if not LOCAL_SCRIPT_DIR is None: # Windows can't run script files without extensions natively so we need # to run local scripts (no extensions) via the Python interpreter. On # Unix, we might have the wrong incantation for the Python interpreter # in the hash bang first line in the source file. So, either way, run # the script through the Python interpreter cmd = [sys.executable, pjoin(LOCAL_SCRIPT_DIR, cmd[0])] + cmd[1:] if DEBUG_PRINT: print("Running command '%s'" % cmd) env = os.environ if not LOCAL_MODULE_DIR is None: # module likely comes from the current working directory. We might need # that directory on the path if we're running the scripts from a # temporary directory env = env.copy() pypath = env.get('PYTHONPATH', None) if pypath is None: env['PYTHONPATH'] = LOCAL_MODULE_DIR else: env['PYTHONPATH'] = LOCAL_MODULE_DIR + pathsep + pypath proc = Popen(cmd, stdout=PIPE, stderr=PIPE, env=env) stdout, stderr = proc.communicate() if proc.poll() == None: proc.terminate() if check_code and proc.returncode != 0: raise RuntimeError( """Command "{0}" failed with stdout ------ {1} stderr ------ {2} """.format(cmd, stdout, stderr)) return proc.returncode, stdout, stderr def test_dipy_peak_extraction(): # test dipy_peak_extraction script cmd = 'dipy_peak_extraction' code, stdout, stderr = run_command(cmd, check_code=False) assert_equal(code, 2) def test_dipy_fit_tensor(): # test dipy_fit_tensor script cmd = 'dipy_fit_tensor' code, stdout, stderr = run_command(cmd, check_code=False) assert_equal(code, 2) def test_dipy_sh_estimate(): # test dipy_sh_estimate script cmd = 'dipy_sh_estimate' code, stdout, stderr = run_command(cmd, check_code=False) assert_equal(code, 2) def assert_image_shape_affine(filename, shape, affine): assert_true(os.path.isfile(filename)) image = nib.load(filename) assert_equal(image.shape, shape) nt.assert_array_almost_equal(image.get_affine(), affine) def test_dipy_fit_tensor_again(): with InTemporaryDirectory() as tmp: dwi, bval, bvec = get_data("small_25") # Copy data to tmp directory shutil.copyfile(dwi, "small_25.nii.gz") shutil.copyfile(bval, "small_25.bval") shutil.copyfile(bvec, "small_25.bvec") # Call script cmd = ["dipy_fit_tensor", "--mask=none", "small_25.nii.gz"] out = run_command(cmd) assert_equal(out[0], 0) # Get expected values img = nib.load("small_25.nii.gz") affine = img.get_affine() shape = img.shape[:-1] # Check expected outputs assert_image_shape_affine("small_25_fa.nii.gz", shape, affine) assert_image_shape_affine("small_25_t2di.nii.gz", shape, affine) assert_image_shape_affine("small_25_dirFA.nii.gz", shape, affine) assert_image_shape_affine("small_25_ad.nii.gz", shape, affine) assert_image_shape_affine("small_25_md.nii.gz", shape, affine) assert_image_shape_affine("small_25_rd.nii.gz", shape, affine) with InTemporaryDirectory() as tmp: dwi, bval, bvec = get_data("small_25") # Copy data to tmp directory shutil.copyfile(dwi, "small_25.nii.gz") shutil.copyfile(bval, "small_25.bval") shutil.copyfile(bvec, "small_25.bvec") # Call script cmd = ["dipy_fit_tensor", "--save-tensor", "--mask=none", "small_25.nii.gz"] out = run_command(cmd) assert_equal(out[0], 0) # Get expected values img = nib.load("small_25.nii.gz") affine = img.get_affine() shape = img.shape[:-1] # Check expected outputs assert_image_shape_affine("small_25_fa.nii.gz", shape, affine) assert_image_shape_affine("small_25_t2di.nii.gz", shape, affine) assert_image_shape_affine("small_25_dirFA.nii.gz", shape, affine) assert_image_shape_affine("small_25_ad.nii.gz", shape, affine) assert_image_shape_affine("small_25_md.nii.gz", shape, affine) assert_image_shape_affine("small_25_rd.nii.gz", shape, affine) # small_25_tensor saves the tensor as a symmetric matrix following # the nifti standard. ten_shape = shape + (1, 6) assert_image_shape_affine("small_25_tensor.nii.gz", ten_shape, affine) @nt.dec.skipif(no_mpl) def test_qb_commandline(): with InTemporaryDirectory() as tmp: tracks_file = get_data('fornix') cmd = ["dipy_quickbundles", tracks_file, '--pkl_file', 'mypickle.pkl', '--out_file', 'tracks300.trk'] out = run_command(cmd) assert_equal(out[0], 0)
bsd-3-clause
cdegroc/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
1
5506
# Author: Vlad Niculae # License: BSD import sys import numpy as np from numpy.testing import assert_array_almost_equal, assert_equal from nose import SkipTest from nose.tools import assert_true from .. import SparsePCA, MiniBatchSparsePCA from ...utils import check_random_state def generate_toy_data(n_atoms, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_atoms) V = rng.randn(n_atoms, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_atoms): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: spca = SparsePCA(n_components=3, n_jobs=2, random_state=0, alpha=alpha).fit(Y) U2 = spca.transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
vjuranek/rg-offline-plotting
src/python/rgplot/LineChart.py
1
2596
import matplotlib.pyplot as plt import numpy as np import constants as const from matplotlib.ticker import Formatter from RgChart import RgChart from RgVars import MRT, AT class LineChart(RgChart): def __init__(self, *measurements): self._fig, self._ax = plt.subplots() self._lines = self._create_base_line(measurements) def with_defaults(self): self.with_title().with_ylabel().with_grids() return self def with_xticks_names(self, xt_names = None): if xt_names is not None: formatter = XAxFormatter(xt_names) self._ax.xaxis.set_major_formatter(formatter) #self.__fig.autofmt_xdate() return self def with_line(self, color = 'b', *measurements): self._lines.append(self._create_line(measurements, color)[0]) return self def with_legend(self, *labels): for i in range(0,len(labels)): self._lines[i].set_label(labels[i]) self._legend = plt.legend(loc='upper center', fancybox=True, shadow=True, ncol=5) return self def _create_line(self, measurements, color = 'b'): nm = len(measurements) ind = np.arange(nm) val, xax = [], [] for i in range(0, len(measurements)): val.append(measurements[i]._mrt) xax.append(measurements[i]._title) #decide if plot MRT or AT if (issubclass(measurements[i]._rg_var, AT)): return None #TODO elif (issubclass(measurements[i]._rg_var, MRT)): return plt.plot(ind, val, '%co-'%color) else: raise ValueError("Unknown variable") def _create_base_line(self, measurements): self._title = measurements[0]._title if measurements[0]._title is not None else "" self._ylabel = measurements[0]._rg_var.ylabel if measurements[0]._rg_var is None else "" return self._create_line(measurements) def _create_plot(self): baseline = self._lines[0] nm = len(baseline.get_data()[0]) # number of measurements on base line self._ax.set_xlim(-const.X_AX_OFFSET, nm - const.X_AX_OFFSET) plt.setp([self._lines]) class XAxFormatter(Formatter): def __init__(self, xvals): self._xvals = xvals def __call__(self, x, pos=0): 'Return the label for time x at position pos' #ind = int(round(x)) #if ind >= len(self._xvals) or ind < 0: return '' if(x.is_integer()): ind = int(x) return self._xvals[ind] else: return ''
mit
ClimbsRocks/auto_ml
tests/core_tests/quick_test.py
1
4151
# """ # nosetests -sv --nologcapture tests/quick_test.py # nosetests --verbosity=2 --detailed-errors --nologcapture --processes=4 --process-restartworker --process-timeout=1000 tests/quick_test.py # """ import datetime import os import random import sys sys.path = [os.path.abspath(os.path.dirname(__file__))] + sys.path sys.path = [os.path.abspath(os.path.dirname(os.path.dirname(__file__)))] + sys.path os.environ['is_test_suite'] = 'True' # os.environ['KERAS_BACKEND'] = 'theano' from auto_ml import Predictor from auto_ml.utils_models import load_ml_model from nose.tools import assert_equal, assert_not_equal, with_setup from sklearn.metrics import accuracy_score import dill import numpy as np import pandas as pd from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split def get_boston_regression_dataset(): boston = load_boston() df_boston = pd.DataFrame(boston.data) df_boston.columns = boston.feature_names df_boston['MEDV'] = boston['target'] df_boston_train, df_boston_test = train_test_split(df_boston, test_size=0.33, random_state=42) return df_boston_train, df_boston_test def regression_test(): # a random seed of 42 has ExtraTreesRegressor getting the best CV score, and that model doesn't generalize as well as GradientBoostingRegressor. np.random.seed(0) model_name = 'LGBMRegressor' df_boston_train, df_boston_test = get_boston_regression_dataset() many_dfs = [] for i in range(100): many_dfs.append(df_boston_train) df_boston_train = pd.concat(many_dfs) column_descriptions = { 'MEDV': 'output' , 'CHAS': 'categorical' } ml_predictor = Predictor(type_of_estimator='regressor', column_descriptions=column_descriptions) ml_predictor.train(df_boston_train, model_names=[model_name], perform_feature_scaling=False) test_score = ml_predictor.score(df_boston_test, df_boston_test.MEDV) print('test_score') print(test_score) lower_bound = -3.2 if model_name == 'DeepLearningRegressor': lower_bound = -7.8 if model_name == 'LGBMRegressor': lower_bound = -4.95 if model_name == 'XGBRegressor': lower_bound = -3.4 assert lower_bound < test_score < -2.8 def get_titanic_binary_classification_dataset(basic=True): try: df_titanic = pd.read_csv(os.path.join('tests', 'titanic.csv')) except Exception as e: print('Error') print(e) dataset_url = 'http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.csv' df_titanic = pd.read_csv(dataset_url) # Do not write the index that pandas automatically creates df_titanic.to_csv(os.path.join('tests', 'titanic.csv'), index=False) df_titanic = df_titanic.drop(['boat', 'body'], axis=1) if basic == True: df_titanic = df_titanic.drop(['name', 'ticket', 'cabin', 'home.dest'], axis=1) df_titanic_train, df_titanic_test = train_test_split(df_titanic, test_size=0.33, random_state=42) return df_titanic_train, df_titanic_test def classification_test(): np.random.seed(0) # model_name = 'GradientBoostingClassifier' model_name = 'LGBMClassifier' df_titanic_train, df_titanic_test = get_titanic_binary_classification_dataset() df_titanic_train['DELETE_THIS_FIELD'] = 1 column_descriptions = { 'survived': 'output' , 'embarked': 'categorical' , 'pclass': 'categorical' , 'sex': 'categorical' , 'this_does_not_exist': 'ignore' , 'DELETE_THIS_FIELD': 'ignore' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, model_names=model_name) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) lower_bound = -0.16 if model_name == 'DeepLearningClassifier': lower_bound = -0.245 if model_name == 'LGBMClassifier': lower_bound = -0.225 assert lower_bound < test_score < -0.135 if __name__ == '__main__': classification_test()
mit
bundgus/python-playground
matplotlib-playground/examples/user_interfaces/embedding_in_gtk2.py
1
1459
#!/usr/bin/env python """ show how to add a matplotlib FigureCanvasGTK or FigureCanvasGTKAgg widget and a toolbar to a gtk.Window """ import gtk from matplotlib.figure import Figure from numpy import arange, sin, pi # uncomment to select /GTK/GTKAgg/GTKCairo #from matplotlib.backends.backend_gtk import FigureCanvasGTK as FigureCanvas from matplotlib.backends.backend_gtkagg import FigureCanvasGTKAgg as FigureCanvas #from matplotlib.backends.backend_gtkcairo import FigureCanvasGTKCairo as FigureCanvas # or NavigationToolbar for classic #from matplotlib.backends.backend_gtk import NavigationToolbar2GTK as NavigationToolbar from matplotlib.backends.backend_gtkagg import NavigationToolbar2GTKAgg as NavigationToolbar # implement the default mpl key bindings from matplotlib.backend_bases import key_press_handler win = gtk.Window() win.connect("destroy", lambda x: gtk.main_quit()) win.set_default_size(400, 300) win.set_title("Embedding in GTK") vbox = gtk.VBox() win.add(vbox) fig = Figure(figsize=(5, 4), dpi=100) ax = fig.add_subplot(111) t = arange(0.0, 3.0, 0.01) s = sin(2*pi*t) ax.plot(t, s) canvas = FigureCanvas(fig) # a gtk.DrawingArea vbox.pack_start(canvas) toolbar = NavigationToolbar(canvas, win) vbox.pack_start(toolbar, False, False) def on_key_event(event): print('you pressed %s' % event.key) key_press_handler(event, canvas, toolbar) canvas.mpl_connect('key_press_event', on_key_event) win.show_all() gtk.main()
mit
biocore-ntnu/pyranges
pyranges/methods/attr.py
1
1808
import pyranges as pr import numpy as np import pandas as pd def _setattr(self, column_name, column, pos=False): if not len(self): return isiterable = isinstance(column, (list, pd.Series, np.ndarray)) isdict = isinstance(column, dict) if isiterable: if not len(self) == len(column): raise Exception("DataFrame and column must be same length.") already_exists = column_name in self.columns if isinstance(column, pd.Series): column = column.values if already_exists: pos = list(self.values()[0].columns).index(column_name) elif not pos: pos = self.values()[0].shape[1] start_length, end_length = 0, 0 dfs = {} for k, df in self.items(): end_length += len(df) if already_exists: df = df.drop(column_name, axis=1) if isiterable: df.insert(pos, column_name, column[start_length:end_length]) elif isdict: if isinstance(column[k], pd.Series): _column = column[k].values else: _column = column[k] df.insert(pos, column_name, _column) else: df.insert(pos, column_name, column) start_length = end_length dfs[k] = df if column_name not in ["Chromosome", "Strand"]: self.__dict__["dfs"] = dfs else: int64 = True if self.dtypes["Start"] == np.int64 else False # will merge the dfs, then split on keys again to ensure they are correct self.__dict__["dfs"] = pr.PyRanges(pr.PyRanges(dfs).df, int64=int64).dfs def _getattr(self, name): if name in self.columns: return pd.concat([df[name] for df in self.values()]) else: raise AttributeError("PyRanges object has no attribute", name)
mit
Batch21/pywr
tests/test_parameters.py
1
38337
""" Test for individual Parameter classes """ from __future__ import division from pywr.core import Model, Timestep, Scenario, ScenarioIndex, Storage, Link, Input, Output from pywr.parameters import (Parameter, ArrayIndexedParameter, ConstantScenarioParameter, ArrayIndexedScenarioMonthlyFactorsParameter, MonthlyProfileParameter, DailyProfileParameter, DataFrameParameter, AggregatedParameter, ConstantParameter, IndexParameter, AggregatedIndexParameter, RecorderThresholdParameter, ScenarioMonthlyProfileParameter, Polynomial1DParameter, Polynomial2DStorageParameter, ArrayIndexedScenarioParameter, InterpolatedParameter, WeeklyProfileParameter, FunctionParameter, AnnualHarmonicSeriesParameter, load_parameter) from pywr.recorders import AssertionRecorder, assert_rec from pywr.model import OrphanedParameterWarning from pywr.recorders import Recorder from fixtures import simple_linear_model, simple_storage_model from helpers import load_model import os import datetime import numpy as np import pandas as pd import pytest import itertools from numpy.testing import assert_allclose TEST_DIR = os.path.dirname(__file__) @pytest.fixture def model(solver): return Model(solver=solver) def test_parameter_array_indexed(simple_linear_model): """ Test ArrayIndexedParameter """ model = simple_linear_model A = np.arange(len(model.timestepper), dtype=np.float64) p = ArrayIndexedParameter(model, A) model.setup() # scenario indices (not used for this test) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) for v, ts in zip(A, model.timestepper): np.testing.assert_allclose(p.value(ts, si), v) # Now check that IndexError is raised if an out of bounds Timestep is given. ts = Timestep(datetime.datetime(2016, 1, 1), 366, 1.0) with pytest.raises(IndexError): p.value(ts, si) def test_parameter_array_indexed_json_load(simple_linear_model, tmpdir): """Test ArrayIndexedParameter can be loaded from json dict""" model = simple_linear_model # Daily time-step index = pd.date_range('2015-01-01', periods=365, freq='D', name='date') df = pd.DataFrame(np.arange(365), index=index, columns=['data']) df_path = tmpdir.join('df.csv') df.to_csv(str(df_path)) data = { 'type': 'arrayindexed', 'url': str(df_path), 'index_col': 'date', 'parse_dates': True, 'column': 'data', } p = load_parameter(model, data) model.setup() si = ScenarioIndex(0, np.array([0], dtype=np.int32)) for v, ts in enumerate(model.timestepper): np.testing.assert_allclose(p.value(ts, si), v) def test_parameter_constant_scenario(simple_linear_model): """ Test ConstantScenarioParameter """ model = simple_linear_model # Add two scenarios scA = Scenario(model, 'Scenario A', size=2) scB = Scenario(model, 'Scenario B', size=5) p = ConstantScenarioParameter(model, scB, np.arange(scB.size, dtype=np.float64)) model.setup() ts = model.timestepper.current # Now ensure the appropriate value is returned for the Scenario B indices. for i, (a, b) in enumerate(itertools.product(range(scA.size), range(scB.size))): si = ScenarioIndex(i, np.array([a, b], dtype=np.int32)) np.testing.assert_allclose(p.value(ts, si), float(b)) def test_parameter_array_indexed_scenario_monthly_factors(simple_linear_model): """ Test ArrayIndexedParameterScenarioMonthlyFactors """ model = simple_linear_model # Baseline timeseries data values = np.arange(len(model.timestepper), dtype=np.float64) # Add two scenarios scA = Scenario(model, 'Scenario A', size=2) scB = Scenario(model, 'Scenario B', size=5) # Random factors for each Scenario B value per month factors = np.random.rand(scB.size, 12) p = ArrayIndexedScenarioMonthlyFactorsParameter(model, scB, values, factors) model.setup() # Iterate in time for v, ts in zip(values, model.timestepper): imth = ts.datetime.month - 1 # Now ensure the appropriate value is returned for the Scenario B indices. for i, (a, b) in enumerate(itertools.product(range(scA.size), range(scB.size))): f = factors[b, imth] si = ScenarioIndex(i, np.array([a, b], dtype=np.int32)) np.testing.assert_allclose(p.value(ts, si), v*f) def test_parameter_array_indexed_scenario_monthly_factors_json(model): model.path = os.path.join(TEST_DIR, "models") scA = Scenario(model, 'Scenario A', size=2) scB = Scenario(model, 'Scenario B', size=3) p1 = ArrayIndexedScenarioMonthlyFactorsParameter.load(model, { "scenario": "Scenario A", "values": list(range(32)), "factors": [list(range(1, 13)),list(range(13, 25))], }) p2 = ArrayIndexedScenarioMonthlyFactorsParameter.load(model, { "scenario": "Scenario B", "values": { "url": "timeseries1.csv", "index_col": "Timestamp", "column": "Data", }, "factors": { "url": "monthly_profiles.csv", "index_col": "scenario", }, }) node1 = Input(model, "node1", max_flow=p1) node2 = Input(model, "node2", max_flow=p2) nodeN = Output(model, "nodeN", max_flow=None, cost=-1) node1.connect(nodeN) node2.connect(nodeN) model.timestepper.start = "2015-01-01" model.timestepper.end = "2015-01-31" model.run() def test_parameter_monthly_profile(simple_linear_model): """ Test MonthlyProfileParameter """ model = simple_linear_model values = np.arange(12, dtype=np.float64) p = MonthlyProfileParameter(model, values) model.setup() # Iterate in time for ts in model.timestepper: imth = ts.datetime.month - 1 si = ScenarioIndex(0, np.array([0], dtype=np.int32)) np.testing.assert_allclose(p.value(ts, si), values[imth]) class TestScenarioMonthlyProfileParameter: def test_init(self, simple_linear_model): model = simple_linear_model scenario = Scenario(model, 'A', 10) values = np.random.rand(10, 12) p = ScenarioMonthlyProfileParameter(model, scenario, values) model.setup() # Iterate in time for ts in model.timestepper: imth = ts.datetime.month - 1 for i in range(scenario.size): si = ScenarioIndex(i, np.array([i], dtype=np.int32)) np.testing.assert_allclose(p.value(ts, si), values[i, imth]) def test_json(self, solver): model = load_model('scenario_monthly_profile.json', solver=solver) # check first day initalised assert (model.timestepper.start == datetime.datetime(2015, 1, 1)) # check results supply1 = model.nodes['supply1'] # Multiplication factors factors = np.array([ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22], ]) for expected in (23.92, 22.14, 22.57, 24.97, 27.59): model.step() imth = model.timestepper.current.month - 1 assert_allclose(supply1.flow, expected*factors[:, imth], atol=1e-7) def test_parameter_daily_profile(simple_linear_model): """ Test DailyProfileParameter """ model = simple_linear_model values = np.arange(366, dtype=np.float64) p = DailyProfileParameter(model, values) model.setup() # Iterate in time for ts in model.timestepper: month = ts.datetime.month day = ts.datetime.day iday = int((datetime.datetime(2016, month, day) - datetime.datetime(2016, 1, 1)).days) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) np.testing.assert_allclose(p.value(ts, si), values[iday]) def test_daily_profile_leap_day(model): """Test behaviour of daily profile parameter for leap years """ inpt = Input(model, "input") otpt = Output(model, "otpt", max_flow=None, cost=-999) inpt.connect(otpt) inpt.max_flow = DailyProfileParameter(model, np.arange(0, 366, dtype=np.float64)) # non-leap year model.timestepper.start = pd.to_datetime("2015-01-01") model.timestepper.end = pd.to_datetime("2015-12-31") model.run() assert_allclose(inpt.flow, 365) # NOT 364 # leap year model.timestepper.start = pd.to_datetime("2016-01-01") model.timestepper.end = pd.to_datetime("2016-12-31") model.run() assert_allclose(inpt.flow, 365) def test_weekly_profile(simple_linear_model): model = simple_linear_model model.timestepper.start = "2004-01-01" model.timestepper.end = "2005-05-01" model.timestepper.delta = 7 values = np.arange(0, 52) ** 2 + 27.5 p = WeeklyProfileParameter.load(model, {"values": values}) @assert_rec(model, p) def expected_func(timestep, scenario_index): week = int(min((timestep.dayofyear - 1) // 7, 51)) value = week ** 2 + 27.5 return value model.run() class TestAnnualHarmonicSeriesParameter: """ Tests for `AnnualHarmonicSeriesParameter` """ def test_single_harmonic(self, model): p1 = AnnualHarmonicSeriesParameter(model, 0.5, [0.25], [np.pi/4]) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) for ts in model.timestepper: doy = (ts.datetime.dayofyear - 1)/365 np.testing.assert_allclose(p1.value(ts, si), 0.5 + 0.25*np.cos(doy*2*np.pi + np.pi/4)) def test_double_harmonic(self, model): p1 = AnnualHarmonicSeriesParameter(model, 0.5, [0.25, 0.3], [np.pi/4, np.pi/3]) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) for ts in model.timestepper: doy = (ts.datetime.dayofyear - 1) /365 expected = 0.5 + 0.25*np.cos(doy*2*np.pi + np.pi / 4) + 0.3*np.cos(doy*4*np.pi + np.pi/3) np.testing.assert_allclose(p1.value(ts, si), expected) def test_load(self, model): data = { "type": "annualharmonicseries", "mean": 0.5, "amplitudes": [0.25], "phases": [np.pi/4] } p1 = load_parameter(model, data) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) for ts in model.timestepper: doy = (ts.datetime.dayofyear - 1) / 365 np.testing.assert_allclose(p1.value(ts, si), 0.5 + 0.25 * np.cos(doy * 2 * np.pi + np.pi / 4)) class TestAggregatedParameter: """Tests for AggregatedParameter""" funcs = {"min": np.min, "max": np.max, "mean": np.mean, "median": np.median, "sum": np.sum} @pytest.mark.parametrize("agg_func", ["min", "max", "mean", "median", "sum"]) def test_agg(self, simple_linear_model, agg_func): model = simple_linear_model model.timestepper.delta = 15 scenarioA = Scenario(model, "Scenario A", size=2) scenarioB = Scenario(model, "Scenario B", size=5) values = np.arange(366, dtype=np.float64) p1 = DailyProfileParameter(model, values) p2 = ConstantScenarioParameter(model, scenarioB, np.arange(scenarioB.size, dtype=np.float64)) p = AggregatedParameter(model, [p1, p2], agg_func=agg_func) func = TestAggregatedParameter.funcs[agg_func] @assert_rec(model, p) def expected_func(timestep, scenario_index): x = p1.get_value(scenario_index) y = p2.get_value(scenario_index) return func(np.array([x,y])) model.run() def test_load(self, simple_linear_model): """ Test load from JSON dict""" model = simple_linear_model data = { "type": "aggregated", "agg_func": "product", "parameters": [ 0.8, { "type": "monthlyprofile", "values": list(range(12)) } ] } p = load_parameter(model, data) # Correct instance is loaded assert isinstance(p, AggregatedParameter) @assert_rec(model, p) def expected(timestep, scenario_index): return (timestep.month - 1) * 0.8 model.run() class DummyIndexParameter(IndexParameter): """A simple IndexParameter which returns a constant value""" def __init__(self, model, index, **kwargs): super(DummyIndexParameter, self).__init__(model, **kwargs) self._index = index def index(self, timestep, scenario_index): return self._index def __repr__(self): return "<DummyIndexParameter \"{}\">".format(self.name) class TestAggregatedIndexParameter: """Tests for AggregatedIndexParameter""" funcs = {"min": np.min, "max": np.max, "sum": np.sum, "product": np.product} @pytest.mark.parametrize("agg_func", ["min", "max", "sum", "product"]) def test_agg(self, simple_linear_model, agg_func): model = simple_linear_model model.timestepper.delta = 1 model.timestepper.start = "2017-01-01" model.timestepper.end = "2017-01-03" scenarioA = Scenario(model, "Scenario A", size=2) scenarioB = Scenario(model, "Scenario B", size=5) p1 = DummyIndexParameter(model, 2) p2 = DummyIndexParameter(model, 3) p = AggregatedIndexParameter(model, [p1, p2], agg_func=agg_func) func = TestAggregatedIndexParameter.funcs[agg_func] @assert_rec(model, p) def expected_func(timestep, scenario_index): x = p1.get_index(scenario_index) y = p2.get_index(scenario_index) return func(np.array([x,y], np.int32)) model.run() def test_agg_anyall(self, simple_linear_model): """Test the "any" and "all" aggregation functions""" model = simple_linear_model model.timestepper.delta = 1 model.timestepper.start = "2017-01-01" model.timestepper.end = "2017-01-03" scenarioA = Scenario(model, "Scenario A", size=2) scenarioB = Scenario(model, "Scenario B", size=5) num_comb = len(model.scenarios.get_combinations()) parameters = { 0: DummyIndexParameter(model, 0, name="p0"), 1: DummyIndexParameter(model, 1, name="p1"), 2: DummyIndexParameter(model, 2, name="p2"), } data = [(0, 0), (1, 0), (0, 1), (1, 1), (1, 1, 1), (0, 2)] data_parameters = [[parameters[i] for i in d] for d in data] expected = [(np.any(d), np.all(d)) for d in data] for n, params in enumerate(data_parameters): for m, agg_func in enumerate(["any", "all"]): p = AggregatedIndexParameter(model, params, agg_func=agg_func) e = np.ones([len(model.timestepper), num_comb]) * expected[n][m] r = AssertionRecorder(model, p, expected_data=e, name="assertion {}-{}".format(n, agg_func)) model.run() def test_parameter_child_variables(model): p1 = Parameter(model) # Default parameter assert len(p1.parents) == 0 assert len(p1.children) == 0 c1 = Parameter(model) c1.parents.add(p1) assert len(p1.children) == 1 assert c1 in p1.children assert p1 in c1.parents # Test third level c2 = Parameter(model) c2.parents.add(c1) # Disable parent c1.parents.clear() assert len(p1.children) == 0 def test_scaled_profile_nested_load(model): """ Test `ScaledProfileParameter` loading with `AggregatedParameter` """ model.timestepper.delta = 15 s = Storage(model, 'Storage', max_volume=100.0, num_outputs=0) d = Output(model, 'Link') data = { 'type': 'scaledprofile', 'scale': 50.0, 'profile': { 'type': 'aggregated', 'agg_func': 'product', 'parameters': [ { 'type': 'monthlyprofile', 'values': [0.5]*12 }, { 'type': 'monthlyprofilecontrolcurve', 'control_curves': [0.8, 0.6], 'values': [[1.0]*12, [0.7]*np.arange(12), [0.3]*12], 'storage_node': 'Storage' } ] } } s.connect(d) d.max_flow = p = load_parameter(model, data) @assert_rec(model, p) def expected_func(timestep, scenario_index): if s.initial_volume == 90: return 50.0*0.5*1.0 elif s.initial_volume == 70: return 50.0 * 0.5 * 0.7 * (timestep.month - 1) else: return 50.0 * 0.5 * 0.3 for initial_volume in (90, 70, 30): s.initial_volume = initial_volume model.run() def test_parameter_df_upsampling(model): """ Test that the `DataFrameParameter` can upsample data from a `pandas.DataFrame` and return that correctly """ # scenario indices (not used for this test) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) # Use a 7 day timestep for this test and run 2015 model.timestepper.delta = datetime.timedelta(7) model.timestepper.start = pd.to_datetime('2015-01-01') model.timestepper.end = pd.to_datetime('2015-12-31') # Daily time-step index = pd.date_range('2015-01-01', periods=365, freq='D') series = pd.Series(np.arange(365), index=index) p = DataFrameParameter(model, series) p.setup() A = series.resample('7D').mean() for v, ts in zip(A, model.timestepper): np.testing.assert_allclose(p.value(ts, si), v) model.reset() # Daily time-step that requires aligning index = pd.date_range('2014-12-31', periods=366, freq='D') series = pd.Series(np.arange(366), index=index) p = DataFrameParameter(model, series) p.setup() # offset the resample appropriately for the test A = series[1:].resample('7D').mean() for v, ts in zip(A, model.timestepper): np.testing.assert_allclose(p.value(ts, si), v) model.reset() # Daily time-step that is not covering the require range index = pd.date_range('2015-02-01', periods=365, freq='D') series = pd.Series(np.arange(365), index=index) p = DataFrameParameter(model, series) with pytest.raises(ValueError): p.setup() model.reset() # Daily time-step that is not covering the require range index = pd.date_range('2014-11-01', periods=365, freq='D') series = pd.Series(np.arange(365), index=index) p = DataFrameParameter(model, series) with pytest.raises(ValueError): p.setup() def test_parameter_df_upsampling_multiple_columns(model): """ Test that the `DataFrameParameter` works with multiple columns that map to a `Scenario` """ scA = Scenario(model, 'A', size=20) scB = Scenario(model, 'B', size=2) # scenario indices (not used for this test) # Use a 7 day timestep for this test and run 2015 model.timestepper.delta = datetime.timedelta(7) model.timestepper.start = pd.to_datetime('2015-01-01') model.timestepper.end = pd.to_datetime('2015-12-31') # Daily time-step index = pd.date_range('2015-01-01', periods=365, freq='D') df = pd.DataFrame(np.random.rand(365, 20), index=index) p = DataFrameParameter(model, df, scenario=scA) p.setup() A = df.resample('7D', axis=0).mean() for v, ts in zip(A.values, model.timestepper): np.testing.assert_allclose([p.value(ts, ScenarioIndex(i, np.array([i], dtype=np.int32))) for i in range(20)], v) p = DataFrameParameter(model, df, scenario=scB) with pytest.raises(ValueError): p.setup() def test_parameter_df_json_load(model, tmpdir): # Daily time-step index = pd.date_range('2015-01-01', periods=365, freq='D', name='date') df = pd.DataFrame(np.random.rand(365), index=index, columns=['data']) df_path = tmpdir.join('df.csv') df.to_csv(str(df_path)) data = { 'type': 'dataframe', 'url': str(df_path), 'index_col': 'date', 'parse_dates': True, } p = load_parameter(model, data) p.setup() def test_simple_json_parameter_reference(solver): # note that parameters in the "parameters" section cannot be literals model = load_model("parameter_reference.json") max_flow = model.nodes["supply1"].max_flow assert(isinstance(max_flow, ConstantParameter)) assert(max_flow.value(None, None) == 125.0) cost = model.nodes["demand1"].cost assert(isinstance(cost, ConstantParameter)) assert(cost.value(None, None) == -10.0) assert(len(model.parameters) == 4) # 4 parameters defined def test_threshold_parameter(simple_linear_model): model = simple_linear_model model.timestepper.delta = 150 scenario = Scenario(model, "Scenario", size=2) class DummyRecorder(Recorder): def __init__(self, model, value, *args, **kwargs): super(DummyRecorder, self).__init__(model, *args, **kwargs) self.val = value def setup(self): super(DummyRecorder, self).setup() num_comb = len(model.scenarios.combinations) self.data = np.empty([len(model.timestepper), num_comb], dtype=np.float64) def after(self): timestep = model.timestepper.current self.data[timestep.index, :] = self.val threshold = 10.0 values = [50.0, 60.0] rec1 = DummyRecorder(model, threshold-5, name="rec1") # below rec2 = DummyRecorder(model, threshold, name="rec2") # equal rec3 = DummyRecorder(model, threshold+5, name="rec3") # above expected = [ ("LT", (1, 0, 0)), ("GT", (0, 0, 1)), ("EQ", (0, 1, 0)), ("LE", (1, 1, 0)), ("GE", (0, 1, 1)), ] for predicate, (value_lt, value_eq, value_gt) in expected: for rec in (rec1, rec2, rec3): param = RecorderThresholdParameter(model, rec, threshold, values=values, predicate=predicate) e_val = values[getattr(rec.val, "__{}__".format(predicate.lower()))(threshold)] e = np.ones([len(model.timestepper), len(model.scenarios.get_combinations())]) * e_val e[0, :] = values[1] # first timestep is always "on" r = AssertionRecorder(model, param, expected_data=e) r.name = "assert {} {} {}".format(rec.val, predicate, threshold) model.run() def test_constant_from_df(solver): """ Test that a dataframe can be used to provide data to ConstantParameter (single values). """ model = load_model('simple_df.json', solver=solver) assert isinstance(model.nodes['demand1'].max_flow, ConstantParameter) assert isinstance(model.nodes['demand1'].cost, ConstantParameter) ts = model.timestepper.next() si = ScenarioIndex(0, np.array([0], dtype=np.int32)) np.testing.assert_allclose(model.nodes['demand1'].max_flow.value(ts, si), 10.0) np.testing.assert_allclose(model.nodes['demand1'].cost.value(ts, si), -10.0) def test_constant_from_shared_df(solver): """ Test that a shared dataframe can be used to provide data to ConstantParameter (single values). """ model = load_model('simple_df_shared.json', solver=solver) assert isinstance(model.nodes['demand1'].max_flow, ConstantParameter) assert isinstance(model.nodes['demand1'].cost, ConstantParameter) ts = model.timestepper.next() si = ScenarioIndex(0, np.array([0], dtype=np.int32)) np.testing.assert_allclose(model.nodes['demand1'].max_flow.value(ts, si), 10.0) np.testing.assert_allclose(model.nodes['demand1'].cost.value(ts, si), -10.0) def test_constant_from_multiindex_df(solver): """ Test that a dataframe can be used to provide data to ConstantParameter (single values). """ model = load_model('multiindex_df.json', solver=solver) assert isinstance(model.nodes['demand1'].max_flow, ConstantParameter) assert isinstance(model.nodes['demand1'].cost, ConstantParameter) ts = model.timestepper.next() si = ScenarioIndex(0, np.array([0], dtype=np.int32)) np.testing.assert_allclose(model.nodes['demand1'].max_flow.value(ts, si), 10.0) np.testing.assert_allclose(model.nodes['demand1'].cost.value(ts, si), -100.0) def test_parameter_registry_overwrite(model): # define a parameter class NewParameter(Parameter): DATA = 42 def __init__(self, model, values, *args, **kwargs): super(NewParameter, self).__init__(model, *args, **kwargs) self.values = values NewParameter.register() # re-define a parameter class NewParameter(IndexParameter): DATA = 43 def __init__(self, model, values, *args, **kwargs): super(NewParameter, self).__init__(model, *args, **kwargs) self.values = values NewParameter.register() data = { "type": "new", "values": 0 } parameter = load_parameter(model, data) # parameter is instance of new class, not old class assert(isinstance(parameter, NewParameter)) assert(parameter.DATA == 43) def test_invalid_parameter_values(): """ Test that `load_parameter_values` returns a ValueError rather than KeyError. This is useful to catch and give useful messages when no valid reference to a data location is given. Regression test for Issue #247 (https://github.com/pywr/pywr/issues/247) """ from pywr.parameters._parameters import load_parameter_values m = Model() data = {'name': 'my_parameter', 'type': 'AParameterThatShouldHaveValues'} with pytest.raises(ValueError): load_parameter_values(model, data) class Test1DPolynomialParameter: """ Tests for `Polynomial1DParameter` """ def test_init(self, simple_storage_model): """ Test initialisation raises error with too many keywords """ stg = simple_storage_model.nodes['Storage'] param = ConstantParameter(simple_storage_model, 2.0) with pytest.raises(ValueError): # Passing both "parameter" and "storage_node" is invalid Polynomial1DParameter(simple_storage_model, [0.5, np.pi], parameter=param, storage_node=stg) def test_1st_order_with_parameter(self, simple_linear_model): """ Test 1st order with a `Parameter` """ model = simple_linear_model x = 2.0 p1 = Polynomial1DParameter(model, [0.5, np.pi], parameter=ConstantParameter(model, x)) @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + np.pi * x model.run() def test_2nd_order_with_parameter(self, simple_linear_model): """ Test 2nd order with a `Parameter` """ model = simple_linear_model x = 2.0 px = ConstantParameter(model, x) p1 = Polynomial1DParameter(model, [0.5, np.pi, 3.0], parameter=px) @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + np.pi*x + 3.0*x**2 model.run() def test_1st_order_with_storage(self, simple_storage_model): """ Test with a `Storage` node """ model = simple_storage_model stg = model.nodes['Storage'] x = stg.initial_volume p1 = Polynomial1DParameter(model, [0.5, np.pi], storage_node=stg) p2 = Polynomial1DParameter(model, [0.5, np.pi], storage_node=stg, use_proportional_volume=True) # Test with absolute storage @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + np.pi*x # Test with proportional storage @assert_rec(model, p2, name="proportionalassertion") def expected_func(timestep, scenario_index): return 0.5 + np.pi * x/stg.max_volume model.setup() model.step() def test_load(self, simple_linear_model): model = simple_linear_model x = 1.5 data = { "type": "polynomial1d", "coefficients": [0.5, 2.5], "parameter": { "type": "constant", "value": x } } p1 = load_parameter(model, data) @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + 2.5*x model.run() def test_load_with_scaling(self, simple_linear_model): model = simple_linear_model x = 1.5 data = { "type": "polynomial1d", "coefficients": [0.5, 2.5], "parameter": { "type": "constant", "value": x }, "scale": 1.25, "offset": 0.75 } xscaled = x*1.25 + 0.75 p1 = load_parameter(model, data) @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + 2.5*xscaled model.run() def test_interpolated_parameter(simple_linear_model): model = simple_linear_model model.timestepper.start = "1920-01-01" model.timestepper.end = "1920-01-12" p1 = ArrayIndexedParameter(model, [0,1,2,3,4,5,6,7,8,9,10,11]) p2 = InterpolatedParameter(model, p1, [0, 5, 10, 11], [0, 5*2, 10*3, 2]) @assert_rec(model, p2) def expected_func(timestep, scenario_index): values = [0, 2, 4, 6, 8, 10, 14, 18, 22, 26, 30, 2] return values[timestep.index] model.run() class Test2DStoragePolynomialParameter: def test_1st(self, simple_storage_model): """ Test 1st order """ model = simple_storage_model stg = model.nodes['Storage'] x = 2.0 y = stg.initial_volume coefs = [[0.5, np.pi], [2.5, 0.3]] p1 = Polynomial2DStorageParameter(model, coefs, stg, ConstantParameter(model, x)) @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + np.pi*x + 2.5*y+ 0.3*x*y model.setup() model.step() def test_load(self, simple_storage_model): model = simple_storage_model stg = model.nodes['Storage'] x = 2.0 y = stg.initial_volume/stg.max_volume data = { "type": "polynomial2dstorage", "coefficients": [[0.5, np.pi], [2.5, 0.3]], "use_proportional_volume": True, "parameter": { "type": "constant", "value": x }, "storage_node": "Storage" } p1 = load_parameter(model, data) @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + np.pi*x + 2.5*y+ 0.3*x*y model.setup() model.step() def test_load_wth_scaling(self, simple_storage_model): model = simple_storage_model stg = model.nodes['Storage'] x = 2.0 y = stg.initial_volume/stg.max_volume data = { "type": "polynomial2dstorage", "coefficients": [[0.5, np.pi], [2.5, 0.3]], "use_proportional_volume": True, "parameter": { "type": "constant", "value": x }, "storage_node": "Storage", "storage_scale": 1.3, "storage_offset": 0.75, "parameter_scale": 1.25, "parameter_offset": -0.5 } p1 = load_parameter(model, data) # Scaled parameters x = x*1.25 - 0.5 y = y*1.3 + 0.75 @assert_rec(model, p1) def expected_func(timestep, scenario_index): return 0.5 + np.pi*x + 2.5*y+ 0.3*x*y model.setup() model.step() class TestMinMaxNegativeParameter: @pytest.mark.parametrize("ptype,profile", [ ("max", list(range(-10, 356))), ("min", list(range(0, 366))), ("negative", list(range(-366, 0))), ("negativemax", list(range(-366, 0))), ]) def test_parameter(cls, simple_linear_model, ptype,profile): model = simple_linear_model model.timestepper.start = "2017-01-01" model.timestepper.end = "2017-01-15" data = { "type": ptype, "parameter": { "name": "raw", "type": "dailyprofile", "values": profile, } } if ptype in ("max", "min"): data["threshold"] = 3 func = {"min": min, "max": max, "negative": lambda t,x: -x, "negativemax": lambda t,x: max(t, -x)}[ptype] model.nodes["Input"].max_flow = parameter = load_parameter(model, data) model.nodes["Output"].max_flow = 9999 model.nodes["Output"].cost = -100 daily_profile = model.parameters["raw"] @assert_rec(model, parameter) def expected(timestep, scenario_index): value = daily_profile.get_value(scenario_index) return func(3, value) model.run() def test_ocptt(simple_linear_model): model = simple_linear_model inpt = model.nodes["Input"] s1 = Scenario(model, "scenario 1", size=3) s2 = Scenario(model, "scenario 1", size=2) x = np.arange(len(model.timestepper)).reshape([len(model.timestepper), 1]) + 5 y = np.arange(s1.size).reshape([1, s1.size]) z = x * y ** 2 p = ArrayIndexedScenarioParameter(model, s1, z) inpt.max_flow = p model.setup() model.reset() model.step() values1 = [p.get_value(scenario_index) for scenario_index in model.scenarios.combinations] values2 = list(p.get_all_values()) assert_allclose(values1, [0, 0, 5, 5, 20, 20]) assert_allclose(values2, [0, 0, 5, 5, 20, 20]) class TestThresholdParameters: def test_storage_threshold_parameter(self, simple_storage_model): """ Test StorageThresholdParameter """ m = simple_storage_model data = { "type": "storagethreshold", "storage_node": "Storage", "threshold": 10.0, "predicate": ">" } p1 = load_parameter(m, data) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) m.nodes['Storage'].initial_volume = 15.0 m.setup() # Storage > 10 assert p1.index(m.timestepper.current, si) == 1 m.nodes['Storage'].initial_volume = 5.0 m.setup() # Storage < 10 assert p1.index(m.timestepper.current, si) == 0 def test_node_threshold_parameter2(self, simple_linear_model): model = simple_linear_model model.nodes["Input"].max_flow = ArrayIndexedParameter(model, np.arange(0, 20)) model.nodes["Output"].cost = -10.0 model.timestepper.start = "1920-01-01" model.timestepper.end = "1920-01-15" model.timestepper.delta = 1 threshold = 5.0 parameters = {} for predicate in (">", "<", "="): data = { "type": "nodethreshold", "node": "Output", "threshold": 5.0, "predicate": predicate, # we need to define values so AssertionRecorder can be used "values": [0.0, 1.0], } parameter = load_parameter(model, data) parameter.name = "nodethresold {}".format(predicate) parameters[predicate] = parameter if predicate == ">": expected_data = (np.arange(-1, 20) > threshold).astype(int) elif predicate == "<": expected_data = (np.arange(-1, 20) < threshold).astype(int) else: expected_data = (np.arange(-1, 20) == threshold).astype(int) expected_data[0] = 0 # previous flow in initial timestep is undefined expected_data = expected_data[:, np.newaxis] rec = AssertionRecorder(model, parameter, expected_data=expected_data, name="assertion recorder {}".format(predicate)) model.run() @pytest.mark.parametrize("threshold", [ 5.0, {"type": "constant", "value": 5.0}, ], ids=["double", "parameter"]) def test_parameter_threshold_parameter(self, simple_linear_model, threshold): """ Test ParameterThresholdParameter """ m = simple_linear_model m.nodes['Input'].max_flow = 10.0 m.nodes['Output'].cost = -10.0 data = { "type": "parameterthreshold", "parameter": { "type": "constant", "value": 3.0 }, "threshold": threshold, "predicate": "<" } p1 = load_parameter(m, data) si = ScenarioIndex(0, np.array([0], dtype=np.int32)) m.setup() m.step() # value < 5 assert p1.index(m.timestepper.current, si) == 1 p1.param.update(np.array([8.0,])) m.setup() m.step() # flow < 5 assert p1.index(m.timestepper.current, si) == 0 def test_orphaned_components(simple_linear_model): model = simple_linear_model model.nodes["Input"].max_flow = ConstantParameter(model, 10.0) result = model.find_orphaned_parameters() assert(not result) # assert that warning not raised by check with pytest.warns(None) as record: model.check() for w in record: if isinstance(w, OrphanedParameterWarning): pytest.fail("OrphanedParameterWarning raised unexpectedly!") # add some orphans orphan1 = ConstantParameter(model, 5.0) orphan2 = ConstantParameter(model, 10.0) orphans = {orphan1, orphan2} result = model.find_orphaned_parameters() assert(orphans == result) with pytest.warns(OrphanedParameterWarning): model.check() def test_deficit_parameter(solver): """Test DeficitParameter Here we test both uses of the DeficitParameter: 1) Recording the deficit for a node each timestep 2) Using yesterday's deficit to control today's flow """ model = load_model("deficit.json", solver=solver) model.run() max_flow = np.array([5, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8]) demand = 10.0 supplied = np.minimum(max_flow, demand) expected = demand - supplied actual = model.recorders["deficit_recorder"].data assert_allclose(expected, actual[:,0]) expected_yesterday = [0]+list(expected[0:-1]) actual_yesterday = model.recorders["yesterday_recorder"].data assert_allclose(expected_yesterday, actual_yesterday[:,0])
gpl-3.0
dimagol/trex-core
doc/TRexDataAnalysis.py
1
10771
#!/scratch/Anaconda2.4.0/bin/python import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from matplotlib import dates as matdates from matplotlib import lines as matlines import os import time from datetime import datetime """ This Module is structured to work with a raw data at the following JSON format: {'setup_name': {'test1_name':[QUERY1,QUERY2,QUERY3], 'test2_name':[QUERY1,QUERY2,QUERY3] } 'setup_name2': {'test1_name':[QUERY1,QUERY2,QUERY3], 'test2_name':[QUERY1,QUERY2,QUERY3] } } The Query structure is set (currently) to this: (test_name,state, date,hour,minute,mpps_result,mpps_min,mpps_max,build_id) example: ["syn attack - 64 bytes, single CPU", "stl", "20161226", "01", "39", "9.631898", "9.5", "11.5", "54289"] it can be changed to support other formats of queries, simply change the query class to support your desired structure the query class specify the indexes of the data within the query tuple """ class TestQuery(object): QUERY_TIMEFORMAT = "%Y-%m-%d %H:%M:%S" # date format in the query QUERY_TIMESTAMP = 1 QUERY_MPPS_RESULT = 2 QUERY_BUILD_ID = 3 class Test: def __init__(self, name, setup_name, end_date): self.name = name self.setup_name = setup_name self.end_date = end_date self.stats = [] # tuple self.results_df = [] # dataFrame self.latest_result = [] # float self.latest_result_date = '' # string def analyze_all_test_data(self, raw_test_data): test_results = [] test_dates = [] test_build_ids = [] for query in raw_test_data: # date_formatted = time.strftime("%d-%m-%Y", # time.strptime(query[int(TestQuery.QUERY_DATE)], TestQuery.query_dateformat)) # time_of_res = date_formatted + '-' + query[int(TestQuery.QUERY_HOUR)] + ':' + query[ # int(TestQuery.QUERY_MINUTE)] time_of_query = time.strptime(query[TestQuery.QUERY_TIMESTAMP], TestQuery.QUERY_TIMEFORMAT) time_formatted = time.strftime("%d-%m-%Y-%H:%M", time_of_query) test_dates.append(time_formatted) test_results.append(float(query[int(TestQuery.QUERY_MPPS_RESULT)])) test_build_ids.append(query[int(TestQuery.QUERY_BUILD_ID)]) test_results_df = pd.DataFrame({self.name: test_results, self.name + ' Date': test_dates, "Setup": ([self.setup_name] * len(test_results)), "Build Id": test_build_ids}, dtype='str') stats_avg = float(test_results_df[self.name].mean()) stats_min = float(test_results_df[self.name].min()) stats_max = float(test_results_df[self.name].max()) stats = tuple( [stats_avg, stats_min, stats_max, float(test_results_df[self.name].std()), float(((stats_max - stats_min) / stats_avg) * 100), len(test_results)]) # stats = (avg_mpps,min,max,std,error, no of test_results) error = ((max-min)/avg)*100 self.latest_result = float(test_results_df[self.name].iloc[-1]) self.latest_result_date = str(test_results_df[test_results_df.columns[3]].iloc[-1]) self.results_df = test_results_df self.stats = stats class Setup: def __init__(self, name, end_date, raw_setup_data): self.name = name self.end_date = end_date # string of date self.tests = [] # list of test objects self.all_tests_data_table = pd.DataFrame() # dataframe self.setup_trend_stats = pd.DataFrame() # dataframe self.latest_test_results = pd.DataFrame() # dataframe self.raw_setup_data = raw_setup_data # dictionary self.test_names = raw_setup_data.keys() # list of names def analyze_all_tests(self): for test_name in self.test_names: t = Test(test_name, self.name, self.end_date) t.analyze_all_test_data(self.raw_setup_data[test_name]) self.tests.append(t) def analyze_latest_test_results(self): test_names = [] test_dates = [] test_latest_results = [] for test in self.tests: test_names.append(test.name) test_dates.append(test.latest_result_date) test_latest_results.append(test.latest_result) self.latest_test_results = pd.DataFrame( {'Date': test_dates, 'Test Name': test_names, 'MPPS\Core (Norm)': test_latest_results}, index=range(1, len(test_latest_results) + 1)) self.latest_test_results = self.latest_test_results[[2, 1, 0]] # re-order columns to name|MPPS|date def analyze_all_tests_stats(self): test_names = [] all_test_stats = [] for test in self.tests: test_names.append(test.name) all_test_stats.append(test.stats) self.setup_trend_stats = pd.DataFrame(all_test_stats, index=test_names, columns=['Avg MPPS/Core (Norm)', 'Min', 'Max', 'Std', 'Error (%)', 'Total Results']) self.setup_trend_stats.index.name = 'Test Name' def analyze_all_tests_trend(self): all_tests_trend_data = [] for test in self.tests: all_tests_trend_data.append(test.results_df) self.all_tests_data_table = reduce(lambda x, y: pd.merge(x, y, how='outer'), all_tests_trend_data) def plot_trend_graph_all_tests(self, save_path='', file_name='_trend_graph.png'): time_format1 = '%d-%m-%Y-%H:%M' time_format2 = '%Y-%m-%d-%H:%M' for test in self.tests: test_data = test.results_df[test.results_df.columns[2]].tolist() test_time_stamps = test.results_df[test.results_df.columns[3]].tolist() start_date = test_time_stamps[0] test_time_stamps.append(self.end_date + '-23:59') test_data.append(test_data[-1]) float_test_time_stamps = [] for ts in test_time_stamps: try: float_test_time_stamps.append(matdates.date2num(datetime.strptime(ts, time_format1))) except: float_test_time_stamps.append(matdates.date2num(datetime.strptime(ts, time_format2))) plt.plot_date(x=float_test_time_stamps, y=test_data, label=test.name, fmt='.-', xdate=True) plt.legend(fontsize='small', loc='best') plt.ylabel('MPPS/Core (Norm)') plt.title('Setup: ' + self.name) plt.tick_params( axis='x', which='both', bottom='off', top='off', labelbottom='off') plt.xlabel('Time Period: ' + start_date[:-6] + ' - ' + self.end_date) if save_path: plt.savefig(os.path.join(save_path, self.name + file_name)) if not self.setup_trend_stats.empty: (self.setup_trend_stats.round(2)).to_csv(os.path.join(save_path, self.name + '_trend_stats.csv')) plt.close('all') def plot_latest_test_results_bar_chart(self, save_path='', img_file_name='_latest_test_runs.png', stats_file_name='_latest_test_runs_stats.csv'): plt.figure() colors_for_bars = ['b', 'g', 'r', 'c', 'm', 'y'] self.latest_test_results[[1]].plot(kind='bar', legend=False, color=colors_for_bars) # plot only mpps data, which is in column 1 plt.xticks(rotation='horizontal') plt.xlabel('Index of Tests') plt.ylabel('MPPS/Core (Norm)') plt.title("Test Runs for Setup: " + self.name) if save_path: plt.savefig(os.path.join(save_path, self.name + img_file_name)) (self.latest_test_results.round(2)).to_csv( os.path.join(save_path, self.name + stats_file_name)) plt.close('all') def analyze_all_setup_data(self): self.analyze_all_tests() self.analyze_latest_test_results() self.analyze_all_tests_stats() self.analyze_all_tests_trend() def plot_all(self, save_path=''): self.plot_latest_test_results_bar_chart(save_path) self.plot_trend_graph_all_tests(save_path) def latest_runs_comparison_bar_chart(setup_name1, setup_name2, setup1_latest_result, setup2_latest_result, save_path='' ): s1_res = setup1_latest_result[[0, 1]] # column0 is test name, column1 is MPPS\Core s2_res = setup2_latest_result[[0, 1, 2]] # column0 is test name, column1 is MPPS\Core, column2 is Date s1_res.columns = ['Test Name', setup_name1] s2_res.columns = ['Test Name', setup_name2, 'Date'] compare_dframe = pd.merge(s1_res, s2_res, on='Test Name') compare_dframe.plot(kind='bar') plt.legend(fontsize='small', loc='best') plt.xticks(rotation='horizontal') plt.xlabel('Index of Tests') plt.ylabel('MPPS/Core (Norm)') plt.title("Comparison between " + setup_name1 + " and " + setup_name2) if save_path: plt.savefig(os.path.join(save_path, "_comparison.png")) compare_dframe = compare_dframe.round(2) compare_dframe.to_csv(os.path.join(save_path, '_comparison_stats_table.csv')) # WARNING: if the file _all_stats.csv already exists, this script deletes it, to prevent overflowing of data def create_all_data(ga_data, end_date, save_path='', detailed_test_stats=''): all_setups = {} all_setups_data = [] setup_names = ga_data.keys() for setup_name in setup_names: s = Setup(setup_name, end_date, ga_data[setup_name]) s.analyze_all_setup_data() s.plot_all(save_path) all_setups_data.append(s.all_tests_data_table) all_setups[setup_name] = s if detailed_test_stats: if os.path.exists(os.path.join(save_path, '_detailed_table.csv')): os.remove(os.path.join(save_path, '_detailed_table.csv')) if all_setups_data: all_setups_data_dframe = pd.DataFrame().append(all_setups_data) all_setups_data_dframe.to_csv(os.path.join(save_path, '_detailed_table.csv')) trex19setup = all_setups['trex19'] trex08setup = all_setups['trex08'] latest_runs_comparison_bar_chart('Mellanox ConnectX-5', 'Intel XL710', trex19setup.latest_test_results, trex08setup.latest_test_results, save_path=save_path)
apache-2.0
victorbergelin/scikit-learn
benchmarks/bench_sample_without_replacement.py
397
8008
""" Benchmarks for sampling without replacement of integer. """ from __future__ import division from __future__ import print_function import gc import sys import optparse from datetime import datetime import operator import matplotlib.pyplot as plt import numpy as np import random from sklearn.externals.six.moves import xrange from sklearn.utils.random import sample_without_replacement def compute_time(t_start, delta): mu_second = 0.0 + 10 ** 6 # number of microseconds in a second return delta.seconds + delta.microseconds / mu_second def bench_sample(sampling, n_population, n_samples): gc.collect() # start time t_start = datetime.now() sampling(n_population, n_samples) delta = (datetime.now() - t_start) # stop time time = compute_time(t_start, delta) return time if __name__ == "__main__": ########################################################################### # Option parser ########################################################################### op = optparse.OptionParser() op.add_option("--n-times", dest="n_times", default=5, type=int, help="Benchmark results are average over n_times experiments") op.add_option("--n-population", dest="n_population", default=100000, type=int, help="Size of the population to sample from.") op.add_option("--n-step", dest="n_steps", default=5, type=int, help="Number of step interval between 0 and n_population.") default_algorithms = "custom-tracking-selection,custom-auto," \ "custom-reservoir-sampling,custom-pool,"\ "python-core-sample,numpy-permutation" op.add_option("--algorithm", dest="selected_algorithm", default=default_algorithms, type=str, help="Comma-separated list of transformer to benchmark. " "Default: %default. \nAvailable: %default") # op.add_option("--random-seed", # dest="random_seed", default=13, type=int, # help="Seed used by the random number generators.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) selected_algorithm = opts.selected_algorithm.split(',') for key in selected_algorithm: if key not in default_algorithms.split(','): raise ValueError("Unknown sampling algorithm \"%s\" not in (%s)." % (key, default_algorithms)) ########################################################################### # List sampling algorithm ########################################################################### # We assume that sampling algorithm has the following signature: # sample(n_population, n_sample) # sampling_algorithm = {} ########################################################################### # Set Python core input sampling_algorithm["python-core-sample"] = \ lambda n_population, n_sample: \ random.sample(xrange(n_population), n_sample) ########################################################################### # Set custom automatic method selection sampling_algorithm["custom-auto"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="auto", random_state=random_state) ########################################################################### # Set custom tracking based method sampling_algorithm["custom-tracking-selection"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="tracking_selection", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-reservoir-sampling"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="reservoir_sampling", random_state=random_state) ########################################################################### # Set custom reservoir based method sampling_algorithm["custom-pool"] = \ lambda n_population, n_samples, random_state=None: \ sample_without_replacement(n_population, n_samples, method="pool", random_state=random_state) ########################################################################### # Numpy permutation based sampling_algorithm["numpy-permutation"] = \ lambda n_population, n_sample: \ np.random.permutation(n_population)[:n_sample] ########################################################################### # Remove unspecified algorithm sampling_algorithm = dict((key, value) for key, value in sampling_algorithm.items() if key in selected_algorithm) ########################################################################### # Perform benchmark ########################################################################### time = {} n_samples = np.linspace(start=0, stop=opts.n_population, num=opts.n_steps).astype(np.int) ratio = n_samples / opts.n_population print('Benchmarks') print("===========================") for name in sorted(sampling_algorithm): print("Perform benchmarks for %s..." % name, end="") time[name] = np.zeros(shape=(opts.n_steps, opts.n_times)) for step in xrange(opts.n_steps): for it in xrange(opts.n_times): time[name][step, it] = bench_sample(sampling_algorithm[name], opts.n_population, n_samples[step]) print("done") print("Averaging results...", end="") for name in sampling_algorithm: time[name] = np.mean(time[name], axis=1) print("done\n") # Print results ########################################################################### print("Script arguments") print("===========================") arguments = vars(opts) print("%s \t | %s " % ("Arguments".ljust(16), "Value".center(12),)) print(25 * "-" + ("|" + "-" * 14) * 1) for key, value in arguments.items(): print("%s \t | %s " % (str(key).ljust(16), str(value).strip().center(12))) print("") print("Sampling algorithm performance:") print("===============================") print("Results are averaged over %s repetition(s)." % opts.n_times) print("") fig = plt.figure('scikit-learn sample w/o replacement benchmark results') plt.title("n_population = %s, n_times = %s" % (opts.n_population, opts.n_times)) ax = fig.add_subplot(111) for name in sampling_algorithm: ax.plot(ratio, time[name], label=name) ax.set_xlabel('ratio of n_sample / n_population') ax.set_ylabel('Time (s)') ax.legend() # Sort legend labels handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels), key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=0) plt.show()
bsd-3-clause
Midafi/scikit-image
doc/examples/plot_join_segmentations.py
14
1967
""" ========================================== Find the intersection of two segmentations ========================================== When segmenting an image, you may want to combine multiple alternative segmentations. The `skimage.segmentation.join_segmentations` function computes the join of two segmentations, in which a pixel is placed in the same segment if and only if it is in the same segment in _both_ segmentations. """ import numpy as np from scipy import ndimage as ndi import matplotlib.pyplot as plt from skimage.filters import sobel from skimage.segmentation import slic, join_segmentations from skimage.morphology import watershed from skimage.color import label2rgb from skimage import data, img_as_float coins = img_as_float(data.coins()) # make segmentation using edge-detection and watershed edges = sobel(coins) markers = np.zeros_like(coins) foreground, background = 1, 2 markers[coins < 30.0 / 255] = background markers[coins > 150.0 / 255] = foreground ws = watershed(edges, markers) seg1 = ndi.label(ws == foreground)[0] # make segmentation using SLIC superpixels seg2 = slic(coins, n_segments=117, max_iter=160, sigma=1, compactness=0.75, multichannel=False) # combine the two segj = join_segmentations(seg1, seg2) # show the segmentations fig, axes = plt.subplots(ncols=4, figsize=(9, 2.5)) axes[0].imshow(coins, cmap=plt.cm.gray, interpolation='nearest') axes[0].set_title('Image') color1 = label2rgb(seg1, image=coins, bg_label=0) axes[1].imshow(color1, interpolation='nearest') axes[1].set_title('Sobel+Watershed') color2 = label2rgb(seg2, image=coins, image_alpha=0.5) axes[2].imshow(color2, interpolation='nearest') axes[2].set_title('SLIC superpixels') color3 = label2rgb(segj, image=coins, image_alpha=0.5) axes[3].imshow(color3, interpolation='nearest') axes[3].set_title('Join') for ax in axes: ax.axis('off') fig.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
bsd-3-clause
mhue/scikit-learn
sklearn/metrics/cluster/bicluster.py
359
2797
from __future__ import division import numpy as np from sklearn.utils.linear_assignment_ import linear_assignment from sklearn.utils.validation import check_consistent_length, check_array __all__ = ["consensus_score"] def _check_rows_and_columns(a, b): """Unpacks the row and column arrays and checks their shape.""" check_consistent_length(*a) check_consistent_length(*b) checks = lambda x: check_array(x, ensure_2d=False) a_rows, a_cols = map(checks, a) b_rows, b_cols = map(checks, b) return a_rows, a_cols, b_rows, b_cols def _jaccard(a_rows, a_cols, b_rows, b_cols): """Jaccard coefficient on the elements of the two biclusters.""" intersection = ((a_rows * b_rows).sum() * (a_cols * b_cols).sum()) a_size = a_rows.sum() * a_cols.sum() b_size = b_rows.sum() * b_cols.sum() return intersection / (a_size + b_size - intersection) def _pairwise_similarity(a, b, similarity): """Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j. """ a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) n_a = a_rows.shape[0] n_b = b_rows.shape[0] result = np.array(list(list(similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)) for i in range(n_a))) return result def consensus_score(a, b, similarity="jaccard"): """The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found using the Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : (rows, columns) Tuple of row and column indicators for a set of biclusters. b : (rows, columns) Another set of biclusters like ``a``. similarity : string or function, optional, default: "jaccard" May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. """ if similarity == "jaccard": similarity = _jaccard matrix = _pairwise_similarity(a, b, similarity) indices = linear_assignment(1. - matrix) n_a = len(a[0]) n_b = len(b[0]) return matrix[indices[:, 0], indices[:, 1]].sum() / max(n_a, n_b)
bsd-3-clause
almarklein/scikit-image
doc/examples/plot_ransac.py
2
1571
""" ========================================= Robust line model estimation using RANSAC ========================================= In this example we see how to robustly fit a line model to faulty data using the RANSAC algorithm. """ import numpy as np from matplotlib import pyplot as plt from skimage.measure import LineModel, ransac np.random.seed(seed=1) # generate coordinates of line x = np.arange(-200, 200) y = 0.2 * x + 20 data = np.column_stack([x, y]) # add faulty data faulty = np.array(30 * [(180., -100)]) faulty += 5 * np.random.normal(size=faulty.shape) data[:faulty.shape[0]] = faulty # add gaussian noise to coordinates noise = np.random.normal(size=data.shape) data += 0.5 * noise data[::2] += 5 * noise[::2] data[::4] += 20 * noise[::4] # fit line using all data model = LineModel() model.estimate(data) # robustly fit line only using inlier data with RANSAC algorithm model_robust, inliers = ransac(data, LineModel, min_samples=2, residual_threshold=1, max_trials=1000) outliers = inliers == False # generate coordinates of estimated models line_x = np.arange(-250, 250) line_y = model.predict_y(line_x) line_y_robust = model_robust.predict_y(line_x) plt.plot(data[inliers, 0], data[inliers, 1], '.b', alpha=0.6, label='Inlier data') plt.plot(data[outliers, 0], data[outliers, 1], '.r', alpha=0.6, label='Outlier data') plt.plot(line_x, line_y, '-k', label='Line model from all data') plt.plot(line_x, line_y_robust, '-b', label='Robust line model') plt.legend(loc='lower left') plt.show()
bsd-3-clause
RomainBrault/scikit-learn
examples/model_selection/plot_validation_curve.py
141
1931
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show()
bsd-3-clause
giorgiop/scikit-learn
examples/model_selection/randomized_search.py
35
3287
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ print(__doc__) import numpy as np from time import time from scipy.stats import randint as sp_randint from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier # get some data digits = load_digits() X, y = digits.data, digits.target # build a classifier clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores def report(results, n_top=3): for i in range(1, n_top + 1): candidates = np.flatnonzero(results['rank_test_score'] == i) for candidate in candidates: print("Model with rank: {0}".format(i)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( results['mean_test_score'][candidate], results['std_test_score'][candidate])) print("Parameters: {0}".format(results['params'][candidate])) print("") # specify parameters and distributions to sample from param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.cv_results_) # use a full grid over all parameters param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.cv_results_['params']))) report(grid_search.cv_results_)
bsd-3-clause
stylianos-kampakis/scikit-learn
examples/bicluster/plot_spectral_coclustering.py
276
1736
""" ============================================== A demo of the Spectral Co-Clustering algorithm ============================================== This example demonstrates how to generate a dataset and bicluster it using the the Spectral Co-Clustering algorithm. The dataset is generated using the ``make_biclusters`` function, which creates a matrix of small values and implants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found the biclusters. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_biclusters from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralCoclustering(n_clusters=5, random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.3f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.show()
bsd-3-clause
AnasGhrab/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
394
1770
"""Testing for bicluster metrics module""" import numpy as np from sklearn.utils.testing import assert_equal, assert_almost_equal from sklearn.metrics.cluster.bicluster import _jaccard from sklearn.metrics import consensus_score def test_jaccard(): a1 = np.array([True, True, False, False]) a2 = np.array([True, True, True, True]) a3 = np.array([False, True, True, False]) a4 = np.array([False, False, True, True]) assert_equal(_jaccard(a1, a1, a1, a1), 1) assert_equal(_jaccard(a1, a1, a2, a2), 0.25) assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7) assert_equal(_jaccard(a1, a1, a4, a4), 0) def test_consensus_score(): a = [[True, True, False, False], [False, False, True, True]] b = a[::-1] assert_equal(consensus_score((a, a), (a, a)), 1) assert_equal(consensus_score((a, a), (b, b)), 1) assert_equal(consensus_score((a, b), (a, b)), 1) assert_equal(consensus_score((a, b), (b, a)), 1) assert_equal(consensus_score((a, a), (b, a)), 0) assert_equal(consensus_score((a, a), (a, b)), 0) assert_equal(consensus_score((b, b), (a, b)), 0) assert_equal(consensus_score((b, b), (b, a)), 0) def test_consensus_score_issue2445(): ''' Different number of biclusters in A and B''' a_rows = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) a_cols = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0/3.0)
bsd-3-clause
mingwpy/scipy
scipy/special/c_misc/struve_convergence.py
76
3725
""" Convergence regions of the expansions used in ``struve.c`` Note that for v >> z both functions tend rapidly to 0, and for v << -z, they tend to infinity. The floating-point functions over/underflow in the lower left and right corners of the figure. Figure legend ============= Red region Power series is close (1e-12) to the mpmath result Blue region Asymptotic series is close to the mpmath result Green region Bessel series is close to the mpmath result Dotted colored lines Boundaries of the regions Solid colored lines Boundaries estimated by the routine itself. These will be used for determining which of the results to use. Black dashed line The line z = 0.7*|v| + 12 """ from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt try: import mpmath except: from sympy import mpmath def err_metric(a, b, atol=1e-290): m = abs(a - b) / (atol + abs(b)) m[np.isinf(b) & (a == b)] = 0 return m def do_plot(is_h=True): from scipy.special._ufuncs import \ _struve_power_series, _struve_asymp_large_z, _struve_bessel_series vs = np.linspace(-1000, 1000, 91) zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]]) rp = _struve_power_series(vs[:,None], zs[None,:], is_h) ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h) rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h) mpmath.mp.dps = 50 if is_h: sh = lambda v, z: float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z))) else: sh = lambda v, z: float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z))) ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:]) err_a = err_metric(ra[0], ex) + 1e-300 err_p = err_metric(rp[0], ex) + 1e-300 err_b = err_metric(rb[0], ex) + 1e-300 err_est_a = abs(ra[1]/ra[0]) err_est_p = abs(rp[1]/rp[0]) err_est_b = abs(rb[1]/rb[0]) z_cutoff = 0.7*abs(vs) + 12 levels = [-1000, -12] plt.cla() plt.hold(1) plt.contourf(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], alpha=0.1) plt.contour(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], linestyles=[':', ':']) lp = plt.contour(vs, zs, np.log10(err_est_p).T, levels=levels, colors=['r', 'r'], linestyles=['-', '-']) la = plt.contour(vs, zs, np.log10(err_est_a).T, levels=levels, colors=['b', 'b'], linestyles=['-', '-']) lb = plt.contour(vs, zs, np.log10(err_est_b).T, levels=levels, colors=['g', 'g'], linestyles=['-', '-']) plt.clabel(lp, fmt={-1000: 'P', -12: 'P'}) plt.clabel(la, fmt={-1000: 'A', -12: 'A'}) plt.clabel(lb, fmt={-1000: 'B', -12: 'B'}) plt.plot(vs, z_cutoff, 'k--') plt.xlim(vs.min(), vs.max()) plt.ylim(zs.min(), zs.max()) plt.xlabel('v') plt.ylabel('z') def main(): plt.clf() plt.subplot(121) do_plot(True) plt.title('Struve H') plt.subplot(122) do_plot(False) plt.title('Struve L') plt.savefig('struve_convergence.png') plt.show() if __name__ == "__main__": import os import sys if '--main' in sys.argv: main() else: import subprocess subprocess.call([sys.executable, os.path.join('..', '..', '..', 'runtests.py'), '-g', '--python', __file__, '--main'])
bsd-3-clause
NDManh/numbbo
code-postprocessing/bbob_pproc/pprldistr.py
3
35794
#! /usr/bin/env python # -*- coding: utf-8 -*- """For generating empirical cumulative distribution function figures. The outputs show empirical cumulative distribution functions (ECDFs) of the running times of trials. These ECDFs show on the y-axis the fraction of cases for which the running time (left subplots) or the df-value (right subplots) was smaller than the value given on the x-axis. On the left, ECDFs of the running times from trials are shown for different target values. Light brown lines in the background show ECDFs for target value 1e-8 of all algorithms benchmarked during BBOB-2009. On the right, ECDFs of df-values from all trials are shown for different numbers of function evaluations. **Example** .. plot:: :width: 75% import urllib import tarfile import glob from pylab import * import bbob_pproc as bb # Collect and unarchive data (3.4MB) dataurl = 'http://coco.lri.fr/BBOB2009/pythondata/BIPOP-CMA-ES.tar.gz' filename, headers = urllib.urlretrieve(dataurl) archivefile = tarfile.open(filename) archivefile.extractall() # Empirical cumulative distribution function figure ds = bb.load(glob.glob('BBOB2009pythondata/BIPOP-CMA-ES/ppdata_f0*_20.pickle')) figure() bb.pprldistr.plot(ds) bb.pprldistr.beautify() # resize the window to view whole figure CAVEAT: the naming conventions in this module mix up ERT (an estimate of the expected running length) and run lengths. """ from __future__ import absolute_import import os import warnings # I don't know what I am doing here import numpy as np import pickle, gzip import matplotlib.pyplot as plt from pdb import set_trace from . import toolsstats, genericsettings, pproc from .ppfig import consecutiveNumbers, plotUnifLogXMarkers, saveFigure, logxticks from .pptex import color_to_latex, marker_to_latex single_target_values = pproc.TargetValues((10., 1e-1, 1e-4, 1e-8)) # possibly changed in config single_runlength_factors = [0.5, 1.2, 3, 10] + [10 ** i for i in range(2, 12)] # TODO: the method names in this module seem to be overly unclear or misleading and should be revised. refcolor = 'wheat' nbperdecade = 1 # markers in x-axis decades in ecdfs runlen_xlimits_max = None # is possibly manipulated in config runlen_xlimits_min = 1 # set to 10**-0.5 in runlength case in config # Used as a global to store the largest xmax and align the FV ECD figures. fmax = None evalfmax = runlen_xlimits_max # is manipulated/stored in this module # TODO: the target function values and the styles of the line only make sense # together. Therefore we should either: # 1. keep the targets as input argument and make rldStyles depend on them or # 2. remove the targets as input argument and put them here. rldStyles = ({'color': 'k', 'ls': '-'}, {'color': 'c'}, {'color': 'm', 'ls': '-'}, {'color': 'r', 'linewidth': 3.}, {'color': 'k'}, {'color': 'c'}, {'color': 'm'}, {'color': 'r'}, {'color': 'k'}, {'color': 'c'}, {'color': 'm'}, {'color': 'r', 'linewidth': 3.}) rldUnsuccStyles = ( {'color': 'c', 'ls': '-'}, {'color': 'm', 'ls': '-'}, {'color': 'k', 'ls': '-'}, {'color': 'c'}, {'color': 'm', 'ls': '-'}, {'color': 'k', 'ls': '-'}, {'color': 'c'}, {'color': 'm', 'ls': '-'}, {'color': 'k'}, {'color': 'c', 'ls': '-'}, {'color': 'm'}, {'color': 'k'}, ) # should not be too short styles = genericsettings.line_styles caption_part_one = r"""% Empirical cumulative distribution functions (ECDF), plotting the fraction of trials with an outcome not larger than the respective value on the $x$-axis. #1""" caption_left_fixed_targets = r"""% Left subplots: ECDF of the number of function evaluations (FEvals) divided by search space dimension $D$, to fall below $\fopt+\Df$ with $\Df=10^{k}$, where $k$ is the first value in the legend. The thick red line represents the most difficult target value $\fopt+10^{-8}$. """ caption_left_rlbased_targets = r"""% Left subplots: ECDF of number of function evaluations (FEvals) divided by search space dimension $D$, to fall below $\fopt+\Df$ where \Df\ is the target just not reached by the GECCO-BBOB-2009 best algorithm within a budget of % largest $\Df$-value $\ge10^{-8}$ for which the best \ERT\ seen in the GECCO-BBOB-2009 was yet above $k\times\DIM$ evaluations, where $k$ is the first value in the legend. """ caption_wrap_up = r"""% Legends indicate for each target the number of functions that were solved in at least one trial within the displayed budget.""" caption_right = r"""% Right subplots: ECDF of the best achieved $\Df$ for running times of TO_BE_REPLACED function evaluations (from right to left cycling cyan-magenta-black\dots) and final $\Df$-value (red), where \Df\ and \textsf{Df} denote the difference to the optimal function value. Light brown lines in the background show ECDFs for the most difficult target of all algorithms benchmarked during BBOB-2009.""" caption_single_fixed = caption_part_one + caption_left_fixed_targets + caption_wrap_up + caption_right caption_single_rlbased = caption_part_one + caption_left_rlbased_targets + caption_wrap_up + caption_right caption_two_part_one = r"""% Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension $D$ (FEvals/D) """ symbAlgorithmA = r'{%s%s}' % (color_to_latex('k'), marker_to_latex(styles[0]['marker'])) symbAlgorithmB = r'{%s%s}' % (color_to_latex('k'), marker_to_latex(styles[1]['marker'])) caption_two_fixed_targets_part1 = r"""% to reach a target value $\fopt+\Df$ with $\Df=10^{k}$, where $k\in\{1, -1, -4, -8\}$ is given by the first value in the legend, for \algorithmA\ (""" caption_two_fixed_targets_part2 = r""") and \algorithmB\ (""" caption_two_fixed_targets_part3 = r""")% . Light beige lines show the ECDF of FEvals for target value $\Df=10^{-8}$ of all algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios of \algorithmA\ divided by \algorithmB for target function values $10^k$ with $k$ given in the legend; all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being $>0$ or $<1$. The legend also indicates, after the colon, the number of functions that were solved in at least one trial (\algorithmA\ first).""" caption_two_rlbased_targets_part1 = r"""% to fall below $\fopt+\Df$ for \algorithmA\ (""" caption_two_rlbased_targets_part2 = r""") and \algorithmB\ (""" caption_two_rlbased_targets_part3 = r"""% ) where \Df\ is the target just not reached by the GECCO-BBOB-2009 best algorithm within a budget of $k\times\DIM$ evaluations, with $k$ being the value in the legend. Right sub-columns: ECDF of FEval ratios of \algorithmA\ divided by \algorithmB\ for run-length-based targets; all trial pairs for each function. Pairs where both trials failed are disregarded, pairs where one trial failed are visible in the limits being $>0$ or $<1$. The legends indicate the target budget of $k\times\DIM$ evaluations and, after the colon, the number of functions that were solved in at least one trial (\algorithmA\ first).""" caption_two_fixed = (caption_two_part_one + caption_two_fixed_targets_part1 + symbAlgorithmA + caption_two_fixed_targets_part2 + symbAlgorithmB + caption_two_fixed_targets_part3) caption_two_rlbased = (caption_two_part_one + caption_two_rlbased_targets_part1 + symbAlgorithmA + caption_two_rlbased_targets_part2 + symbAlgorithmB + caption_two_rlbased_targets_part3) previous_data_filename = 'pprldistr2009_1e-8.pickle.gz' previous_RLBdata_filename = 'pprldistr2009_hardestRLB.pickle.gz' previous_data_filename = os.path.join(os.path.split(__file__)[0], previous_data_filename) previous_RLBdata_filename = os.path.join(os.path.split(__file__)[0], previous_RLBdata_filename) previous_data_dict = None previous_RLBdata_dict = None def load_previous_data(filename = previous_data_filename, force = False): if previous_data_dict and not force: return previous_data_dict try: # cocofy(previous_data_filename) f = gzip.open(previous_data_filename, 'r') return pickle.load(f) except IOError, (errno, strerror): print "I/O error(%s): %s" % (errno, strerror) previous_algorithm_data_found = False print 'Could not find file: ', previous_data_filename else: f.close() return None def load_previous_RLBdata(filename = previous_RLBdata_filename): if previous_RLBdata_dict: return previous_RLBdata_dict try: f = gzip.open(previous_RLBdata_filename, 'r') return pickle.load(f) except IOError, (errno, strerror): print "I/O error(%s): %s" % (errno, strerror) print 'Could not find file: ', previous_RLBdata_filename else: f.close() return None def caption_single(max_evals_div_dim): caption = caption_single_rlbased if genericsettings.runlength_based_targets else caption_single_fixed return caption.replace(r'TO_BE_REPLACED', '$' + 'D, '.join([str(i) for i in single_runlength_factors[:6]]) + 'D,\dots$') def caption_two(): caption = caption_two_rlbased if genericsettings.runlength_based_targets else caption_two_fixed return caption def beautifyECDF(): """Generic formatting of ECDF figures.""" plt.ylim(-0.0, 1.01) # was plt.ylim(-0.01, 1.01) plt.yticks(np.arange(0., 1.001, 0.2)) # , ('0.0', '', '0.5', '', '1.0')) plt.grid(True) xmin, xmax = plt.xlim() # plt.xlim(xmin=xmin*0.90) # why this? c = plt.gca().get_children() for i in c: # TODO: we only want to extend ECDF lines... try: if i.get_drawstyle() == 'steps' and not i.get_linestyle() in ('', 'None'): xdata = i.get_xdata() ydata = i.get_ydata() if len(xdata) > 0: # if xmin < min(xdata): # xdata = np.hstack((xmin, xdata)) # ydata = np.hstack((ydata[0], ydata)) if xmax > max(xdata): xdata = np.hstack((xdata, xmax)) ydata = np.hstack((ydata, ydata[-1])) plt.setp(i, 'xdata', xdata, 'ydata', ydata) elif (i.get_drawstyle() == 'steps' and i.get_marker() != '' and i.get_linestyle() in ('', 'None')): xdata = i.get_xdata() ydata = i.get_ydata() if len(xdata) > 0: # if xmin < min(xdata): # minidx = np.ceil(np.log10(xmin) * nbperdecade) # maxidx = np.floor(np.log10(xdata[0]) * nbperdecade) # x = 10. ** (np.arange(minidx, maxidx + 1) / nbperdecade) # xdata = np.hstack((x, xdata)) # ydata = np.hstack(([ydata[0]] * len(x), ydata)) if xmax > max(xdata): minidx = np.ceil(np.log10(xdata[-1]) * nbperdecade) maxidx = np.floor(np.log10(xmax) * nbperdecade) x = 10. ** (np.arange(minidx, maxidx + 1) / nbperdecade) xdata = np.hstack((xdata, x)) ydata = np.hstack((ydata, [ydata[-1]] * len(x))) plt.setp(i, 'xdata', xdata, 'ydata', ydata) except (AttributeError, IndexError): pass def beautifyRLD(xlimit_max = None): """Format and save the figure of the run length distribution. After calling this function, changing the boundaries of the figure will not update the ticks and tick labels. """ a = plt.gca() a.set_xscale('log') a.set_xlabel('log10 of FEvals / DIM') a.set_ylabel('proportion of trials') logxticks() if xlimit_max: plt.xlim(xmax = xlimit_max ** 1.0) # was 1.05 plt.xlim(xmin = runlen_xlimits_min) plt.text(plt.xlim()[0], plt.ylim()[0], single_target_values.short_info, fontsize = 14) beautifyECDF() def beautifyFVD(isStoringXMax = False, ylabel = True): """Formats the figure of the run length distribution. This function is to be used with :py:func:`plotFVDistr` :param bool isStoringMaxF: if set to True, the first call :py:func:`beautifyFVD` sets the global :py:data:`fmax` and all subsequent call will have the same maximum xlim :param bool ylabel: if True, y-axis will be labelled. """ a = plt.gca() a.set_xscale('log') if isStoringXMax: global fmax else: fmax = None if not fmax: xmin, fmax = plt.xlim() plt.xlim(1.01e-8, fmax) # 1e-8 was 1. # axisHandle.invert_xaxis() a.set_xlabel('log10 of Df') # / Dftarget if ylabel: a.set_ylabel('proportion of trials') logxticks(limits=plt.xlim()) beautifyECDF() if not ylabel: a.set_yticklabels(()) def plotECDF(x, n = None, **plotArgs): """Plot an empirical cumulative distribution function. :param seq x: data :param int n: number of samples, if not provided len(x) is used :param plotArgs: optional keyword arguments provided to plot. :returns: handles of the plot elements. """ if n is None: n = len(x) nx = len(x) if n == 0 or nx == 0: res = plt.plot([], [], **plotArgs) else: x = sorted(x) # do not sort in place x = np.hstack((x, x[-1])) y = np.hstack((np.arange(0., nx) / n, float(nx) / n)) res = plotUnifLogXMarkers(x, y, nbperdecade = nbperdecade, drawstyle = 'steps', **plotArgs) return res def _plotERTDistr(dsList, target, **plotArgs): """This method is obsolete, should be removed? The replacement for simulated runlengths is in pprldmany? Creates simulated run time distributions (it is not an ERT distribution) from a DataSetList. :keyword DataSet dsList: Input data sets :keyword dict target: target precision :keyword plotArgs: keyword arguments to pass to plot command :return: resulting plot. Details: calls ``plotECDF``. """ x = [] nn = 0 samplesize = genericsettings.simulated_runlength_bootstrap_sample_size # samplesize should be at least 1000 percentiles = 0.5 # could be anything... for i in dsList: # funcs.add(i.funcId) for j in i.evals: if j[0] <= target[i.funcId]: runlengthsucc = j[1:][np.isfinite(j[1:])] runlengthunsucc = i.maxevals[np.isnan(j[1:])] tmp = toolsstats.drawSP(runlengthsucc, runlengthunsucc, percentiles = percentiles, samplesize = samplesize) x.extend(tmp[1]) break nn += samplesize res = plotECDF(x, nn, **plotArgs) return res def _plotRLDistr_old(dsList, target, **plotArgs): """Creates run length distributions from a sequence dataSetList. Labels of the line (for the legend) will be set automatically with the following format: %+d: %d/%d % (log10() :param DataSetList dsList: Input data sets :param dict or float target: target precision :param plotArgs: additional arguments passed to the plot command :returns: handles of the resulting plot. """ x = [] nn = 0 fsolved = set() funcs = set() for i in dsList: funcs.add(i.funcId) try: target = target[i.funcId] # TODO: this can only work for a single function, generally looks like a bug if not genericsettings.test: print 'target:', target print 'function:', i.funcId raise Exception('please check this, it looks like a bug') except TypeError: target = target tmp = i.detEvals((target,))[0] / i.dim tmp = tmp[np.isnan(tmp) == False] # keep only success if len(tmp) > 0: fsolved.add(i.funcId) x.extend(tmp) nn += i.nbRuns() kwargs = plotArgs.copy() label = '' try: label += '%+d:' % (np.log10(target)) except NameError: pass label += '%d/%d' % (len(fsolved), len(funcs)) kwargs['label'] = kwargs.setdefault('label', label) res = plotECDF(x, nn, **kwargs) return res def erld_data(dsList, target, max_fun_evals = np.inf): """return ``[sorted_runlengths_divided_by_dimension, nb_of_all_runs, functions_ids_found, functions_ids_solved]`` `max_fun_evals` is only used to compute `function_ids_solved`, that is elements in `sorted_runlengths...` can be larger. copy-paste from `plotRLDistr` and not used. """ runlength_data = [] nruns = 0 fsolved = set() funcs = set() for ds in dsList: # ds is a DataSet funcs.add(ds.funcId) evals = ds.detEvals((target((ds.funcId, ds.dim)),))[0] / ds.dim evals = evals[np.isnan(evals) == False] # keep only success if len(evals) > 0 and sum(evals <= max_fun_evals): fsolved.add(ds.funcId) runlength_data.extend(evals) nruns += ds.nbRuns() return sorted(runlength_data), nruns, funcs, fsolved def plotRLDistr(dsList, target, label = '', max_fun_evals = np.inf, **plotArgs): """Creates run length distributions from a sequence dataSetList. Labels of the line (for the legend) will be appended with the number of functions at least solved once. :param DataSetList dsList: Input data sets :param target: a method that delivers single target values like ``target((fun, dim))`` :param str label: target value label to be displayed in the legend :param max_fun_evals: only used to determine success on a single function :param plotArgs: additional arguments passed to the plot command :returns: handles of the resulting plot. Example:: plotRLDistr(dsl, lambda f: 1e-6) Details: ``target`` is a function taking a (function_number, dimension) pair as input and returning a ``float``. It can be defined as ``lambda fun_dim: targets(fun_dim)[j]`` returning the j-th element of ``targets(fun_dim)``, where ``targets`` is an instance of ``class pproc.TargetValues`` (see the ``pproc.TargetValues.__call__`` method). TODO: data generation and plotting should be in separate methods TODO: different number of runs/data biases the results, shouldn't the number of data made the same, in case? """ x = [] nn = 0 fsolved = set() funcs = set() for ds in dsList: # ds is a DataSet funcs.add(ds.funcId) tmp = ds.detEvals((target((ds.funcId, ds.dim)),))[0] / ds.dim tmp = tmp[np.isnan(tmp) == False] # keep only success if len(tmp) > 0 and sum(tmp <= max_fun_evals): fsolved.add(ds.funcId) x.extend(tmp) nn += ds.nbRuns() kwargs = plotArgs.copy() label += ': %d/%d' % (len(fsolved), len(funcs)) kwargs['label'] = kwargs.setdefault('label', label) res = plotECDF(x, nn, **kwargs) return res def plotFVDistr(dsList, budget, min_f = 1e-8, **plotArgs): """Creates ECDF of final function values plot from a DataSetList. :param dsList: data sets :param min_f: used for the left limit of the plot :param float budget: maximum evaluations / dimension that "count" :param plotArgs: additional arguments passed to plot :returns: handle """ x = [] nn = 0 for ds in dsList: if ds.isBiobjective(): continue; for i, fvals in enumerate(ds.funvals): if fvals[0] > budget * ds.dim: assert i > 0, 'first entry ' + str(fvals[0]) + 'was smaller than maximal budget ' + str(budget * ds.dim) fvals = ds.funvals[i - 1] break # vals = fvals[1:].copy() / target[i.funcId] vals = fvals[1:].copy() # replace negative values to prevent problem with log of vals vals[vals <= 0] = min(np.append(vals[vals > 0], [min_f])) # works also when vals[vals > 0] is empty if genericsettings.runlength_based_targets: NotImplementedError('related function vals with respective budget (e.g. ERT(val)) see pplogloss.generateData()') x.extend(vals) nn += ds.nbRuns() if nn > 0: return plotECDF(x, nn, **plotArgs) else: return None def comp(dsList0, dsList1, targets, isStoringXMax = False, outputdir = '', info = 'default', verbose = True): """Generate figures of ECDF that compare 2 algorithms. :param DataSetList dsList0: list of DataSet instances for ALG0 :param DataSetList dsList1: list of DataSet instances for ALG1 :param seq targets: target function values to be displayed :param bool isStoringXMax: if set to True, the first call :py:func:`beautifyFVD` sets the globals :py:data:`fmax` and :py:data:`maxEvals` and all subsequent calls will use these values as rightmost xlim in the generated figures. :param string outputdir: output directory (must exist) :param string info: string suffix for output file names. :param bool verbose: control verbosity """ # plt.rc("axes", labelsize=20, titlesize=24) # plt.rc("xtick", labelsize=20) # plt.rc("ytick", labelsize=20) # plt.rc("font", size=20) # plt.rc("legend", fontsize=20) if not isinstance(targets, pproc.RunlengthBasedTargetValues): targets = pproc.TargetValues.cast(targets) dictdim0 = dsList0.dictByDim() dictdim1 = dsList1.dictByDim() for d in set(dictdim0.keys()) & set(dictdim1.keys()): maxEvalsFactor = max(max(i.mMaxEvals() / d for i in dictdim0[d]), max(i.mMaxEvals() / d for i in dictdim1[d])) if isStoringXMax: global evalfmax else: evalfmax = None if not evalfmax: evalfmax = maxEvalsFactor ** 1.05 if runlen_xlimits_max is not None: evalfmax = runlen_xlimits_max filename = os.path.join(outputdir, 'pprldistr_%02dD_%s' % (d, info)) fig = plt.figure() for j in range(len(targets)): tmp = plotRLDistr(dictdim0[d], lambda fun_dim: targets(fun_dim)[j], targets.label(j) if isinstance(targets, pproc.RunlengthBasedTargetValues) else targets.loglabel(j), marker = genericsettings.line_styles[1]['marker'], **rldStyles[j % len(rldStyles)]) plt.setp(tmp[-1], label = None) # Remove automatic legend # Mods are added after to prevent them from appearing in the legend plt.setp(tmp, markersize = 20., markeredgewidth = plt.getp(tmp[-1], 'linewidth'), markeredgecolor = plt.getp(tmp[-1], 'color'), markerfacecolor = 'none') tmp = plotRLDistr(dictdim1[d], lambda fun_dim: targets(fun_dim)[j], targets.label(j) if isinstance(targets, pproc.RunlengthBasedTargetValues) else targets.loglabel(j), marker = genericsettings.line_styles[0]['marker'], **rldStyles[j % len(rldStyles)]) # modify the automatic legend: remover marker and change text plt.setp(tmp[-1], marker = '', label = targets.label(j) if isinstance(targets, pproc.RunlengthBasedTargetValues) else targets.loglabel(j)) # Mods are added after to prevent them from appearing in the legend plt.setp(tmp, markersize = 15., markeredgewidth = plt.getp(tmp[-1], 'linewidth'), markeredgecolor = plt.getp(tmp[-1], 'color'), markerfacecolor = 'none') funcs = set(i.funcId for i in dictdim0[d]) | set(i.funcId for i in dictdim1[d]) text = consecutiveNumbers(sorted(funcs), 'f') if not dsList0.isBiobjective(): if not isinstance(targets, pproc.RunlengthBasedTargetValues): plot_previous_algorithms(d, funcs) else: plotRLB_previous_algorithms(d, funcs) # plt.axvline(max(i.mMaxEvals()/i.dim for i in dictdim0[d]), ls='--', color='k') # plt.axvline(max(i.mMaxEvals()/i.dim for i in dictdim1[d]), color='k') plt.axvline(max(i.mMaxEvals() / i.dim for i in dictdim0[d]), marker = '+', markersize = 20., color = 'k', markeredgewidth = plt.getp(tmp[-1], 'linewidth',)) plt.axvline(max(i.mMaxEvals() / i.dim for i in dictdim1[d]), marker = 'o', markersize = 15., color = 'k', markerfacecolor = 'None', markeredgewidth = plt.getp(tmp[-1], 'linewidth')) plt.legend(loc = 'best') plt.text(0.5, 0.98, text, horizontalalignment = "center", verticalalignment = "top", transform = plt.gca().transAxes) # bbox=dict(ec='k', fill=False), beautifyRLD(evalfmax) saveFigure(filename, verbose = verbose) plt.close(fig) def beautify(): """Format the figure of the run length distribution. Used in conjunction with plot method (obsolete/outdated, see functions ``beautifyFVD`` and ``beautifyRLD``). """ # raise NotImplementedError('this implementation is obsolete') plt.subplot(121) axisHandle = plt.gca() axisHandle.set_xscale('log') axisHandle.set_xlabel('log10 of FEvals / DIM') axisHandle.set_ylabel('proportion of trials') # Grid options logxticks() beautifyECDF() plt.subplot(122) axisHandle = plt.gca() axisHandle.set_xscale('log') xmin, fmax = plt.xlim() plt.xlim(1., fmax) axisHandle.set_xlabel('log10 of Df / Dftarget') beautifyECDF() logxticks() axisHandle.set_yticklabels(()) plt.gcf().set_size_inches(16.35, 6.175) # try: # set_trace() # plt.setp(plt.gcf(), 'figwidth', 16.35) # except AttributeError: # version error? # set_trace() # plt.setp(plt.gcf(), 'figsize', (16.35, 6.)) def plot(dsList, targets = single_target_values, **plotArgs): """Plot ECDF of evaluations and final function values in a single figure for demonstration purposes.""" # targets = targets() # TODO: this needs to be rectified # targets = targets.target_values dsList = pproc.DataSetList(dsList) assert len(dsList.dictByDim()) == 1, ('Cannot display different ' 'dimensionalities together') res = [] plt.subplot(121) maxEvalsFactor = max(i.mMaxEvals() / i.dim for i in dsList) evalfmax = maxEvalsFactor for j in range(len(targets)): tmpplotArgs = dict(plotArgs, **rldStyles[j % len(rldStyles)]) tmp = plotRLDistr(dsList, lambda fun_dim: targets(fun_dim)[j], **tmpplotArgs) res.extend(tmp) res.append(plt.axvline(x = maxEvalsFactor, color = 'k', **plotArgs)) funcs = list(i.funcId for i in dsList) text = consecutiveNumbers(sorted(funcs), 'f') res.append(plt.text(0.5, 0.98, text, horizontalalignment = "center", verticalalignment = "top", transform = plt.gca().transAxes)) plt.subplot(122) for j in [range(len(targets))[-1]]: tmpplotArgs = dict(plotArgs, **rldStyles[j % len(rldStyles)]) tmp = plotFVDistr(dsList, evalfmax, lambda fun_dim: targets(fun_dim)[j], **tmpplotArgs) if tmp: res.extend(tmp) tmp = np.floor(np.log10(evalfmax)) # coloring right to left: maxEvalsF = np.power(10, np.arange(0, tmp)) for j in range(len(maxEvalsF)): tmpplotArgs = dict(plotArgs, **rldUnsuccStyles[j % len(rldUnsuccStyles)]) tmp = plotFVDistr(dsList, maxEvalsF[j], lambda fun_dim: targets(fun_dim)[-1], **tmpplotArgs) if tmp: res.extend(tmp) res.append(plt.text(0.98, 0.02, text, horizontalalignment = "right", transform = plt.gca().transAxes)) return res def plot_previous_algorithms(dim, funcs): """Display BBOB 2009 data, by default from ``pprldistr.previous_data_filename = 'pprldistr2009_1e-8.pickle.gz'``""" global previous_data_dict if previous_data_dict is None: previous_data_dict = load_previous_data() # this takes about 6 seconds if previous_data_dict is not None: for alg in previous_data_dict: x = [] nn = 0 try: tmp = previous_data_dict[alg] for f in funcs: tmp[f][dim] # simply test that they exists except KeyError: continue for f in funcs: tmp2 = tmp[f][dim][0][1:] # [0], because the maximum #evals is also recorded # [1:] because the target function value is recorded x.append(tmp2[np.isnan(tmp2) == False]) nn += len(tmp2) if x: x = np.hstack(x) plotECDF(x[np.isfinite(x)] / float(dim), nn, color = refcolor, ls = '-', zorder = -1) def plotRLB_previous_algorithms(dim, funcs): """Display BBOB 2009 data, by default from ``pprldistr.previous_data_filename = 'pprldistr2009_1e-8.pickle.gz'``""" global previous_RLBdata_dict if previous_RLBdata_dict is None: previous_RLBdata_dict = load_previous_RLBdata() if previous_RLBdata_dict is not None: for alg in previous_RLBdata_dict: x = [] nn = 0 try: tmp = previous_RLBdata_dict[alg] for f in funcs: tmp[f][dim] # simply test that they exists except KeyError: continue for f in funcs: tmp2 = np.array(tmp[f][dim][0][1:][0]) # [0], because the maximum #evals is also recorded # [1:] because the target function value is recorded x.append(tmp2[np.isnan(tmp2) == False]) nn += len(tmp2) if x: x = np.hstack(x) plotECDF(x[np.isfinite(x)] / float(dim), nn, color = refcolor, ls = '-', zorder = -1) def main(dsList, isStoringXMax = False, outputdir = '', info = 'default', verbose = True): """Generate figures of empirical cumulative distribution functions. This method has a feature which allows to keep the same boundaries for the x-axis, if ``isStoringXMax==True``. This makes sense when dealing with different functions or subsets of functions for one given dimension. CAVE: this is bug-prone, as some data depend on the maximum evaluations and the appearence therefore depends on the calling order. :param DataSetList dsList: list of DataSet instances to process. :param bool isStoringXMax: if set to True, the first call :py:func:`beautifyFVD` sets the globals :py:data:`fmax` and :py:data:`maxEvals` and all subsequent calls will use these values as rightmost xlim in the generated figures. :param string outputdir: output directory (must exist) :param string info: string suffix for output file names. :param bool verbose: control verbosity """ # plt.rc("axes", labelsize=20, titlesize=24) # plt.rc("xtick", labelsize=20) # plt.rc("ytick", labelsize=20) # plt.rc("font", size=20) # plt.rc("legend", fontsize=20) targets = single_target_values # convenience abbreviation for d, dictdim in dsList.dictByDim().iteritems(): maxEvalsFactor = max(i.mMaxEvals() / d for i in dictdim) if isStoringXMax: global evalfmax else: evalfmax = None if not evalfmax: evalfmax = maxEvalsFactor if runlen_xlimits_max is not None: evalfmax = runlen_xlimits_max # first figure: Run Length Distribution filename = os.path.join(outputdir, 'pprldistr_%02dD_%s' % (d, info)) fig = plt.figure() for j in range(len(targets)): plotRLDistr(dictdim, lambda fun_dim: targets(fun_dim)[j], targets.label(j) if isinstance(targets, pproc.RunlengthBasedTargetValues) else targets.loglabel(j), evalfmax, # can be larger maxEvalsFactor with no effect ** rldStyles[j % len(rldStyles)]) funcs = list(i.funcId for i in dictdim) text = '{%s}, %d-D' % (consecutiveNumbers(sorted(funcs), 'f'), d) if not dsList.isBiobjective(): # try: if not isinstance(targets, pproc.RunlengthBasedTargetValues): # if targets.target_values[-1] == 1e-8: # this is a hack plot_previous_algorithms(d, funcs) else: plotRLB_previous_algorithms(d, funcs) # except: # pass plt.axvline(x = maxEvalsFactor, color = 'k') # vertical line at maxevals plt.legend(loc = 'best') plt.text(0.5, 0.98, text, horizontalalignment = "center", verticalalignment = "top", transform = plt.gca().transAxes # bbox=dict(ec='k', fill=False) ) try: # was never tested, so let's make it safe if len(funcs) == 1: plt.title(genericsettings.current_testbed.info(funcs[0])[:27]) except: warnings.warn('could not print title') beautifyRLD(evalfmax) saveFigure(filename, verbose = verbose) plt.close(fig) for ds in dictdim: if ds.isBiobjective(): return # second figure: Function Value Distribution filename = os.path.join(outputdir, 'ppfvdistr_%02dD_%s' % (d, info)) fig = plt.figure() plotFVDistr(dictdim, np.inf, 1e-8, **rldStyles[-1]) # coloring right to left for j, max_eval_factor in enumerate(single_runlength_factors): if max_eval_factor > maxEvalsFactor: break plotFVDistr(dictdim, max_eval_factor, 1e-8, **rldUnsuccStyles[j % len(rldUnsuccStyles)]) plt.text(0.98, 0.02, text, horizontalalignment = "right", transform = plt.gca().transAxes) # bbox=dict(ec='k', fill=False), beautifyFVD(isStoringXMax = isStoringXMax, ylabel = False) saveFigure(filename, verbose = verbose) plt.close(fig) # plt.rcdefaults()
bsd-3-clause
plissonf/scikit-learn
sklearn/tree/export.py
78
15814
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Trevor Stephens <[email protected]> # Licence: BSD 3 clause import numpy as np from ..externals import six from . import _criterion from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list def export_graphviz(decision_tree, out_file="tree.dot", max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) alpha = int(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0]))) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
feranick/KerogenGA
Scripts/collectGA/collectGA.py
2
5691
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ********************************************************** * CollectGA * version: 20161106b * By: Nicola Ferralis <[email protected]> * help: python collectGA.py -h *********************************************************** ''' print(__doc__) import numpy as np import sys, os.path, csv from pandas import read_csv summaryFile = "summaryFile.csv" summaryFolder = os.getenv("HOME") + '/Desktop/' fitnessFile = "output.txt" #********************************************** ''' Main ''' #********************************************** def main(): if len(sys.argv) < 2: inputFile = 'bestIndividual.txt' else: if sys.argv[1] == '-h' or sys.argv[1] == '--help': usage() sys.exit(2) else: inputFile = sys.argv[1] runCollect(inputFile) #********************************************** ''' RunCollection ''' #********************************************** def runCollect(inputFile): pos = readFitness(fitnessFile) #********************************************** ''' Read new file ''' #********************************************** X = readFile(inputFile) print (' New GA file: ' + os.path.relpath(".","..")) summaryFile_path = summaryFolder + summaryFile print (' Fitness: ' + str(pos)) #********************************************** ''' Read summary file ''' #********************************************** ind = 0 if os.path.exists(summaryFile_path) == True: L,llr = readSummary(summaryFile_path) lr = [None]*llr else: with open(summaryFile_path, 'a') as f: csv_out=csv.writer(f) csv_out.writerow(np.append(['name', 'fitness'], X[:,0])) f.close() L = np.append(['name', 'fitness'], X[:,0]).tolist() lr = np.append(os.path.relpath(".",".."), np.append(float(pos), X[:,1])).tolist() summary = lr summary[0] = os.path.relpath(".","..") summary[1] = float(pos) origL = len(L) #********************************************** ''' Detect if molecule has been already seen ''' #********************************************** for i in range(0,len(X)): if X[i,0] in L: j = L.index(X[i,0]) print(' ' + L[j] + '\t already detected') summary[j] = X[i,1] else: L.append(X[i,0]) summary[i+2] = '' print('+\033[1m' + X[i,0] + '\t first detected!' + '\033[0m') summary = np.append(summary, X[i,1]) ind += 1 #********************************************************* ''' Change header file if new molcules are detected ''' #********************************************************* if ind != 0: df = read_csv(summaryFile_path) for i in range(0,ind): df.insert(i+origL, L[i+origL], '', 0) df.columns = L df.to_csv(summaryFile_path, index=False) #********************************************** ''' Save new data into Summary ''' #********************************************** with open(summaryFile_path, 'a') as f: csv_out=csv.writer(f) csv_out.writerow(summary) f.close() print('\n Summary saved in: ' + summaryFile_path + '\n') #********************************************** ''' Read new files ''' #********************************************** def readFile(sampleFile): try: X=np.empty([0,2]) totconc=0 ind=0 with open(sampleFile, 'r') as f: data = csv.reader(f, delimiter=' ') for row in data: totconc += float(row[2]) X = np.row_stack((X, [np.array(row[0]), row[2]])) ind+=1 for i in range(0,ind): X[i,1]= float(X[i,1])*100/totconc except: print('\033[1m File: \"' + sampleFile + '\" not found \n ' + '\033[0m') sys.exit(2) return X #********************************************** ''' Read Summary ''' #********************************************** def readSummary(summaryFile): try: with open(summaryFile, 'r') as f: data = csv.reader(f, delimiter=',') L = next(data) with open(summaryFile, 'r') as f: lastrow = None for lastrow in csv.reader(f): pass except: print('\033[1m File: \"' + summaryFile + '\" not found \n ' + '\033[0m') return return L, len(lastrow) #********************************************** ''' Read Fitness ''' #********************************************** def readFitness(fitnessFile): try: with open(fitnessFile, 'r') as f: lastrow = None beforelastrow = None for lastrow in enumerate(f): if(lastrow[1].find('Predicted fit') == -1): beforelastrow = lastrow[1] else: pass except: print('\033[1m File: \"' + fitnessFile + '\" not found \n ' + '\033[0m') return pos = beforelastrow.find("Best Fitness =")+15 return beforelastrow[pos:] #************************************ ''' Lists the program usage ''' #************************************ def usage(): print(' Usage:') print('\n for default filenames:') print(' python collectGA.py ') print('\n for custom filenames:') print(' python collectGA.py <filename>\n') #************************************ ''' Main initialization routine ''' #************************************ if __name__ == "__main__": sys.exit(main())
gpl-3.0
samuel1208/scikit-learn
sklearn/linear_model/logistic.py
105
56686
""" Logistic Regression """ # Author: Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Manoj Kumar <[email protected]> # Lars Buitinck # Simon Wu <[email protected]> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils import check_random_state from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, squared_norm) from ..utils.optimize import newton_cg from ..utils.validation import (as_float_array, DataConversionWarning, check_X_y) from ..utils.fixes import expit from ..externals.joblib import Parallel, delayed from ..cross_validation import check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c return w, c, y * z def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ _, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the gradient and the Hessian, in the case of a logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_grad_hess(w, X, Y, alpha, sample_weight): """ Computes the gradient and the Hessian, in the case of a multinomial loss. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) # `loss` is unused. Refactoring to avoid computing it does not # significantly speed up the computation and decreases readability loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return grad, hessp def _check_solver_option(solver, multi_class, penalty, dual): if solver not in ['liblinear', 'newton-cg', 'lbfgs']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg and lbfgs solvers, got %s" % solver) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class should be either multinomial or " "ovr, got %s" % multi_class) if multi_class == 'multinomial' and solver == 'liblinear': raise ValueError("Solver %s does not support " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("Solver %s supports only l2 penalties, " "got %s penalty." % (solver, penalty)) if dual: raise ValueError("Solver %s supports only " "dual=False, got dual=%s" % (solver, dual)) def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=True, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr', random_state=None): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when logistic_regression_path is called repeatedly with the same data, as y is modified along the path. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solvers. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. Notes ----- You might get slighly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) _check_solver_option(solver, multi_class, penalty, dual) # Preprocessing. X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy, dtype=None) _, n_features = X.shape check_consistent_length(X, y) classes = np.unique(y) random_state = check_random_state(random_state) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "auto", then # the class_weights are assigned after masking the labels with a OvR. sample_weight = np.ones(X.shape[0]) le = LabelEncoder() if isinstance(class_weight, dict): if solver == "liblinear": if classes.size == 2: # Reconstruct the weights with keys 1 and -1 temp = {1: class_weight[pos_class], -1: class_weight[classes[0]]} class_weight = temp.copy() else: raise ValueError("In LogisticRegressionCV the liblinear " "solver cannot handle multiclass with " "class_weight of type dict. Use the lbfgs, " "newton-cg solvers or set " "class_weight='auto'") else: class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight = class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = [-1, 1] mask = (y == pos_class) y[mask] = 1 y[~mask] = -1 # To take care of object dtypes, i.e 1 and -1 are in the form of # strings. y = as_float_array(y, copy=False) else: lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) if Y_bin.shape[1] == 1: Y_bin = np.hstack([1 - Y_bin, Y_bin]) w0 = np.zeros((Y_bin.shape[1], n_features + int(fit_intercept)), order='F') mask_classes = classes if class_weight == "auto": class_weight_ = compute_class_weight(class_weight, mask_classes, y) sample_weight = class_weight_[le.fit_transform(y)] if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_vectors = classes.size if n_vectors == 2: n_vectors = 1 if (coef.shape[0] != n_vectors or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1)) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. w0 = w0.ravel() target = Y_bin if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess else: target = y if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_grad_hess coefs = list() for C in Cs: if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0 = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, _, = _fit_liblinear( X, y, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, random_state) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0) return coefs, np.array(Cs) # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, copy=True, intercept_scaling=1., multi_class='ovr'): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when ``_log_reg_scoring_path`` is called repeatedly with the same data, as y is modified along the path. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. """ _check_solver_option(solver, multi_class, penalty, dual) log_reg = LogisticRegression(fit_intercept=fit_intercept) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test[mask] = 1 y_test[~mask] = -1 # To deal with object dtypes, we need to convert into an array of floats. y_test = as_float_array(y_test, copy=False) coefs, Cs = logistic_regression_path(X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, copy=copy, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores) class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr' and uses the cross-entropy loss, if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs' and 'newton-cg' solvers.) This class implements regularized logistic regression using the `liblinear` library, newton-cg and lbfgs solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, optional (default=1.0) Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. intercept_scaling : float, default: 1 Useful only if solver is liblinear. when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` max_iter : int Useful only for the newton-cg and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : int Maximum of the actual number of iterations across all classes. Valid only for the liblinear solver. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf See also -------- sklearn.linear_model.SGDClassifier """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ if not isinstance(self.C, numbers.Number) or self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if self.solver == 'liblinear': self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state) return self n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] for ind, class_ in enumerate(classes_): coef_, _ = logistic_regression_path( X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight) self.coef_.append(coef_[0]) self.coef_ = np.squeeze(self.coef_) # For the binary case, this get squeezed to a 1-D array. if self.coef_.ndim == 1: self.coef_ = self.coef_[np.newaxis, :] self.coef_ = np.asarray(self.coef_) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return self._predict_proba_lr(X) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg or LBFGS optimizer. The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to be faster for high-dimensional dense data. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.cross_validation` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. intercept_scaling : float, default 1. Useful only if solver is liblinear. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or \ ``(n_folds, len(Cs_), n_features + 1)`` dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr'): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, dtype=None) if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=True) folds = list(cv) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight in ['balanced', 'auto']): raise ValueError("class_weight provided should be a " "dict or 'balanced'") path_func = delayed(_log_reg_scoring_path) fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=self.class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] else: coefs_paths, Cs, scores = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, penalty=self.penalty, class_weight=self.class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1)) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([coefs_paths[i][best_indices[i]] for i in range(len(folds))], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
jmetzen/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
47
12381
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def safe_median(arr, *args, **kwargs): # np.median([]) raises a TypeError for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.median(arr, *args, **kwargs) def safe_mean(arr, *args, **kwargs): # np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.mean(arr, *args, **kwargs) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: safe_mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: safe_median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
IntelligentSystemsLaboratory/JGI-PURE-Challenge
data/pure_data_challenge_170327/create_connections.py
1
1811
import pandas as pd from collections import Counter csv_files = ['outputs', 'authors', 'staff'] dfs = {name:pd.read_csv(name + '.csv', infer_datetime_format=True, index_col=False) for name in csv_files} keep_columns = {'outputs': ['PUBLICATION_ID', 'PUBLICATION_YEAR'], 'authors': ['PERSON_ID', 'PUBLICATION_ID'], 'staff': ['PERSON_ID', 'ORGANISATION_CODE']} dfs = {name:dfs[name][columns] for name, columns in keep_columns.items()} for name, df in dfs.items(): print('{} shape = {}'.format(name, df.shape)) # We get: person_id, publication_id, and organization_code df = pd.merge(dfs['authors'], dfs['staff'], on='PERSON_ID') # We get: person_id, publication_id, and organization_code, publication_year df = pd.merge(df, dfs['outputs'], on='PUBLICATION_ID') # We get: publication_id, and organization_code, publication_year del df['PERSON_ID'] # We get: publication_id, list of organisation_code df_pub_org = df.groupby(['PUBLICATION_ID'])['ORGANISATION_CODE'].unique() counter = Counter(tuple(sorted(tup)) for tup in df_pub_org.values) connections = [] for tup, counts in counter.items(): if len(tup) == 1: org1 = org2 = tup[0] connections.append([2012, org1, org2, counts, counts]) else: # FIXME Solve problem with duplicated pairs for i in range(len(tup)): for j in range(i,len(tup)): org1 = tup[i] org2 = tup[j] connections.append([2012, org1, org2, counts, counts]) df_connections = pd.DataFrame(connections, columns=['year', 'importer1', 'importer2', 'flow1', 'flow2']) df_connections.to_csv('org_connections.csv', index=False)
mit
thientu/scikit-learn
examples/bicluster/plot_spectral_coclustering.py
276
1736
""" ============================================== A demo of the Spectral Co-Clustering algorithm ============================================== This example demonstrates how to generate a dataset and bicluster it using the the Spectral Co-Clustering algorithm. The dataset is generated using the ``make_biclusters`` function, which creates a matrix of small values and implants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found the biclusters. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_biclusters from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralCoclustering(n_clusters=5, random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.3f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.show()
bsd-3-clause
guoxiaolongzte/spark
python/pyspark/sql/session.py
4
37209
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings from functools import reduce from threading import RLock if sys.version >= '3': basestring = unicode = str xrange = range else: from itertools import izip as zip, imap as map from pyspark import since from pyspark.rdd import RDD, ignore_unicode_prefix from pyspark.sql.conf import RuntimeConfig from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import Row, DataType, StringType, StructType, TimestampType, \ _make_type_verifier, _infer_schema, _has_nulltype, _merge_type, _create_converter, \ _parse_datatype_string from pyspark.sql.utils import install_exception_handler __all__ = ["SparkSession"] def _monkey_patch_RDD(sparkSession): def toDF(self, schema=None, sampleRatio=None): """ Converts current :class:`RDD` into a :class:`DataFrame` This is a shorthand for ``spark.createDataFrame(rdd, schema, sampleRatio)`` :param schema: a :class:`pyspark.sql.types.StructType` or list of names of columns :param samplingRatio: the sample ratio of rows used for inferring :return: a DataFrame >>> rdd.toDF().collect() [Row(name=u'Alice', age=1)] """ return sparkSession.createDataFrame(self, schema, sampleRatio) RDD.toDF = toDF class SparkSession(object): """The entry point to programming Spark with the Dataset and DataFrame API. A SparkSession can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. To create a SparkSession, use the following builder pattern: >>> spark = SparkSession.builder \\ ... .master("local") \\ ... .appName("Word Count") \\ ... .config("spark.some.config.option", "some-value") \\ ... .getOrCreate() .. autoattribute:: builder :annotation: """ class Builder(object): """Builder for :class:`SparkSession`. """ _lock = RLock() _options = {} _sc = None @since(2.0) def config(self, key=None, value=None, conf=None): """Sets a config option. Options set using this method are automatically propagated to both :class:`SparkConf` and :class:`SparkSession`'s own configuration. For an existing SparkConf, use `conf` parameter. >>> from pyspark.conf import SparkConf >>> SparkSession.builder.config(conf=SparkConf()) <pyspark.sql.session... For a (key, value) pair, you can omit parameter names. >>> SparkSession.builder.config("spark.some.config.option", "some-value") <pyspark.sql.session... :param key: a key name string for configuration property :param value: a value for configuration property :param conf: an instance of :class:`SparkConf` """ with self._lock: if conf is None: self._options[key] = str(value) else: for (k, v) in conf.getAll(): self._options[k] = v return self @since(2.0) def master(self, master): """Sets the Spark master URL to connect to, such as "local" to run locally, "local[4]" to run locally with 4 cores, or "spark://master:7077" to run on a Spark standalone cluster. :param master: a url for spark master """ return self.config("spark.master", master) @since(2.0) def appName(self, name): """Sets a name for the application, which will be shown in the Spark web UI. If no application name is set, a randomly generated name will be used. :param name: an application name """ return self.config("spark.app.name", name) @since(2.0) def enableHiveSupport(self): """Enables Hive support, including connectivity to a persistent Hive metastore, support for Hive serdes, and Hive user-defined functions. """ return self.config("spark.sql.catalogImplementation", "hive") def _sparkContext(self, sc): with self._lock: self._sc = sc return self @since(2.0) def getOrCreate(self): """Gets an existing :class:`SparkSession` or, if there is no existing one, creates a new one based on the options set in this builder. This method first checks whether there is a valid global default SparkSession, and if yes, return that one. If no valid global default SparkSession exists, the method creates a new SparkSession and assigns the newly created SparkSession as the global default. >>> s1 = SparkSession.builder.config("k1", "v1").getOrCreate() >>> s1.conf.get("k1") == "v1" True In case an existing SparkSession is returned, the config options specified in this builder will be applied to the existing SparkSession. >>> s2 = SparkSession.builder.config("k2", "v2").getOrCreate() >>> s1.conf.get("k1") == s2.conf.get("k1") True >>> s1.conf.get("k2") == s2.conf.get("k2") True """ with self._lock: from pyspark.context import SparkContext from pyspark.conf import SparkConf session = SparkSession._instantiatedSession if session is None or session._sc._jsc is None: if self._sc is not None: sc = self._sc else: sparkConf = SparkConf() for key, value in self._options.items(): sparkConf.set(key, value) # This SparkContext may be an existing one. sc = SparkContext.getOrCreate(sparkConf) # Do not update `SparkConf` for existing `SparkContext`, as it's shared # by all sessions. session = SparkSession(sc) for key, value in self._options.items(): session._jsparkSession.sessionState().conf().setConfString(key, value) return session builder = Builder() """A class attribute having a :class:`Builder` to construct :class:`SparkSession` instances""" _instantiatedSession = None _activeSession = None @ignore_unicode_prefix def __init__(self, sparkContext, jsparkSession=None): """Creates a new SparkSession. >>> from datetime import datetime >>> spark = SparkSession(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> spark.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ from pyspark.sql.context import SQLContext self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if jsparkSession is None: if self._jvm.SparkSession.getDefaultSession().isDefined() \ and not self._jvm.SparkSession.getDefaultSession().get() \ .sparkContext().isStopped(): jsparkSession = self._jvm.SparkSession.getDefaultSession().get() else: jsparkSession = self._jvm.SparkSession(self._jsc.sc()) self._jsparkSession = jsparkSession self._jwrapped = self._jsparkSession.sqlContext() self._wrapped = SQLContext(self._sc, self, self._jwrapped) _monkey_patch_RDD(self) install_exception_handler() # If we had an instantiated SparkSession attached with a SparkContext # which is stopped now, we need to renew the instantiated SparkSession. # Otherwise, we will use invalid SparkSession when we call Builder.getOrCreate. if SparkSession._instantiatedSession is None \ or SparkSession._instantiatedSession._sc._jsc is None: SparkSession._instantiatedSession = self SparkSession._activeSession = self self._jvm.SparkSession.setDefaultSession(self._jsparkSession) self._jvm.SparkSession.setActiveSession(self._jsparkSession) def _repr_html_(self): return """ <div> <p><b>SparkSession - {catalogImplementation}</b></p> {sc_HTML} </div> """.format( catalogImplementation=self.conf.get("spark.sql.catalogImplementation"), sc_HTML=self.sparkContext._repr_html_() ) @since(2.0) def newSession(self): """ Returns a new SparkSession as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self._jsparkSession.newSession()) @classmethod @since(3.0) def getActiveSession(cls): """ Returns the active SparkSession for the current thread, returned by the builder. >>> s = SparkSession.getActiveSession() >>> l = [('Alice', 1)] >>> rdd = s.sparkContext.parallelize(l) >>> df = s.createDataFrame(rdd, ['name', 'age']) >>> df.select("age").collect() [Row(age=1)] """ from pyspark import SparkContext sc = SparkContext._active_spark_context if sc is None: return None else: if sc._jvm.SparkSession.getActiveSession().isDefined(): SparkSession(sc, sc._jvm.SparkSession.getActiveSession().get()) return SparkSession._activeSession else: return None @property @since(2.0) def sparkContext(self): """Returns the underlying :class:`SparkContext`.""" return self._sc @property @since(2.0) def version(self): """The version of Spark on which this application is running.""" return self._jsparkSession.version() @property @since(2.0) def conf(self): """Runtime configuration interface for Spark. This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying :class:`SparkContext`, if any. """ if not hasattr(self, "_conf"): self._conf = RuntimeConfig(self._jsparkSession.conf()) return self._conf @property @since(2.0) def catalog(self): """Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc. :return: :class:`Catalog` """ from pyspark.sql.catalog import Catalog if not hasattr(self, "_catalog"): self._catalog = Catalog(self) return self._catalog @property @since(2.0) def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ from pyspark.sql.udf import UDFRegistration return UDFRegistration(self) @since(2.0) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> spark.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> spark.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ if numPartitions is None: numPartitions = self._sc.defaultParallelism if end is None: jdf = self._jsparkSession.range(0, int(start), int(step), int(numPartitions)) else: jdf = self._jsparkSession.range(int(start), int(end), int(step), int(numPartitions)) return DataFrame(jdf, self._wrapped) def _inferSchemaFromList(self, data, names=None): """ Infer schema from list of Row or tuple. :param data: list of Row or tuple :param names: list of column names :return: :class:`pyspark.sql.types.StructType` """ if not data: raise ValueError("can not infer schema from empty dataset") first = data[0] if type(first) is dict: warnings.warn("inferring schema from dict is deprecated," "please use pyspark.sql.Row instead") schema = reduce(_merge_type, (_infer_schema(row, names) for row in data)) if _has_nulltype(schema): raise ValueError("Some of types cannot be determined after inferring") return schema def _inferSchema(self, rdd, samplingRatio=None, names=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ first = rdd.first() if not first: raise ValueError("The first row in RDD is empty, " "can not infer schema") if type(first) is dict: warnings.warn("Using RDD of dict to inferSchema is deprecated. " "Use pyspark.sql.Row instead") if samplingRatio is None: schema = _infer_schema(first, names=names) if _has_nulltype(schema): for row in rdd.take(100)[1:]: schema = _merge_type(schema, _infer_schema(row, names=names)) if not _has_nulltype(schema): break else: raise ValueError("Some of types cannot be determined by the " "first 100 rows, please try again with sampling") else: if samplingRatio < 0.99: rdd = rdd.sample(False, float(samplingRatio)) schema = rdd.map(lambda row: _infer_schema(row, names)).reduce(_merge_type) return schema def _createFromRDD(self, rdd, schema, samplingRatio): """ Create an RDD for DataFrame from an existing RDD, returns the RDD and schema. """ if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchema(rdd, samplingRatio, names=schema) converter = _create_converter(struct) rdd = rdd.map(converter) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data rdd = rdd.map(schema.toInternal) return rdd, schema def _createFromLocal(self, data, schema): """ Create an RDD for DataFrame from a list or pandas.DataFrame, returns the RDD and schema. """ # make sure data could consumed multiple times if not isinstance(data, list): data = list(data) if schema is None or isinstance(schema, (list, tuple)): struct = self._inferSchemaFromList(data, names=schema) converter = _create_converter(struct) data = map(converter, data) if isinstance(schema, (list, tuple)): for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct elif not isinstance(schema, StructType): raise TypeError("schema should be StructType or list or None, but got: %s" % schema) # convert python objects to sql data data = [schema.toInternal(row) for row in data] return self._sc.parallelize(data), schema def _get_numpy_record_dtype(self, rec): """ Used when converting a pandas.DataFrame to Spark using to_records(), this will correct the dtypes of fields in a record so they can be properly loaded into Spark. :param rec: a numpy record to check field dtypes :return corrected dtype for a numpy.record or None if no correction needed """ import numpy as np cur_dtypes = rec.dtype col_names = cur_dtypes.names record_type_list = [] has_rec_fix = False for i in xrange(len(cur_dtypes)): curr_type = cur_dtypes[i] # If type is a datetime64 timestamp, convert to microseconds # NOTE: if dtype is datetime[ns] then np.record.tolist() will output values as longs, # conversion from [us] or lower will lead to py datetime objects, see SPARK-22417 if curr_type == np.dtype('datetime64[ns]'): curr_type = 'datetime64[us]' has_rec_fix = True record_type_list.append((str(col_names[i]), curr_type)) return np.dtype(record_type_list) if has_rec_fix else None def _convert_from_pandas(self, pdf, schema, timezone): """ Convert a pandas.DataFrame to list of records that can be used to make a DataFrame :return list of records """ if timezone is not None: from pyspark.sql.types import _check_series_convert_timestamps_tz_local copied = False if isinstance(schema, StructType): for field in schema: # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if isinstance(field.dataType, TimestampType): s = _check_series_convert_timestamps_tz_local(pdf[field.name], timezone) if s is not pdf[field.name]: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[field.name] = s else: for column, series in pdf.iteritems(): s = _check_series_convert_timestamps_tz_local(series, timezone) if s is not series: if not copied: # Copy once if the series is modified to prevent the original # Pandas DataFrame from being updated pdf = pdf.copy() copied = True pdf[column] = s # Convert pandas.DataFrame to list of numpy records np_records = pdf.to_records(index=False) # Check if any columns need to be fixed for Spark to infer properly if len(np_records) > 0: record_dtype = self._get_numpy_record_dtype(np_records[0]) if record_dtype is not None: return [r.astype(record_dtype).tolist() for r in np_records] # Convert list of numpy records to python lists return [r.tolist() for r in np_records] def _create_from_pandas_with_arrow(self, pdf, schema, timezone): """ Create a DataFrame from a given pandas.DataFrame by slicing it into partitions, converting to Arrow data, then sending to the JVM to parallelize. If a schema is passed in, the data types will be used to coerce the data in Pandas to Arrow conversion. """ from pyspark.serializers import ArrowStreamSerializer, _create_batch from pyspark.sql.types import from_arrow_schema, to_arrow_type, TimestampType from pyspark.sql.utils import require_minimum_pandas_version, \ require_minimum_pyarrow_version require_minimum_pandas_version() require_minimum_pyarrow_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # Determine arrow types to coerce data when creating batches if isinstance(schema, StructType): arrow_types = [to_arrow_type(f.dataType) for f in schema.fields] elif isinstance(schema, DataType): raise ValueError("Single data type %s is not supported with Arrow" % str(schema)) else: # Any timestamps must be coerced to be compatible with Spark arrow_types = [to_arrow_type(TimestampType()) if is_datetime64_dtype(t) or is_datetime64tz_dtype(t) else None for t in pdf.dtypes] # Slice the DataFrame to be batched step = -(-len(pdf) // self.sparkContext.defaultParallelism) # round int up pdf_slices = (pdf[start:start + step] for start in xrange(0, len(pdf), step)) # Create Arrow record batches batches = [_create_batch([(c, t) for (_, c), t in zip(pdf_slice.iteritems(), arrow_types)], timezone) for pdf_slice in pdf_slices] # Create the Spark schema from the first Arrow batch (always at least 1 batch after slicing) if isinstance(schema, (list, tuple)): struct = from_arrow_schema(batches[0].schema) for i, name in enumerate(schema): struct.fields[i].name = name struct.names[i] = name schema = struct jsqlContext = self._wrapped._jsqlContext def reader_func(temp_filename): return self._jvm.PythonSQLUtils.readArrowStreamFromFile(jsqlContext, temp_filename) def create_RDD_server(): return self._jvm.ArrowRDDServer(jsqlContext) # Create Spark DataFrame from Arrow stream file, using one batch per partition jrdd = self._sc._serialize_to_jvm(batches, ArrowStreamSerializer(), reader_func, create_RDD_server) jdf = self._jvm.PythonSQLUtils.toDataFrame(jrdd, schema.json(), jsqlContext) df = DataFrame(jdf, self._wrapped) df._schema = schema return df @staticmethod def _create_shell_session(): """ Initialize a SparkSession for a pyspark shell session. This is called from shell.py to make error handling simpler without needing to declare local variables in that script, which would expose those to users. """ import py4j from pyspark.conf import SparkConf from pyspark.context import SparkContext try: # Try to access HiveConf, it will raise exception if Hive is not added conf = SparkConf() if conf.get('spark.sql.catalogImplementation', 'hive').lower() == 'hive': SparkContext._jvm.org.apache.hadoop.hive.conf.HiveConf() return SparkSession.builder\ .enableHiveSupport()\ .getOrCreate() else: return SparkSession.builder.getOrCreate() except (py4j.protocol.Py4JError, TypeError): if conf.get('spark.sql.catalogImplementation', '').lower() == 'hive': warnings.warn("Fall back to non-hive support because failing to access HiveConf, " "please make sure you build spark with hive") return SparkSession.builder.getOrCreate() @since(2.0) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None, verifySchema=True): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or a datatype string, it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. row, tuple, int, boolean, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a datatype string or a list of column names, default is ``None``. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for ``IntegerType``. :param samplingRatio: the sample ratio of rows used for inferring :param verifySchema: verify data types of every row against schema. :return: :class:`DataFrame` .. versionchanged:: 2.1 Added verifySchema. .. note:: Usage with spark.sql.execution.arrow.enabled=True is experimental. >>> l = [('Alice', 1)] >>> spark.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> spark.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> spark.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> spark.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = spark.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = spark.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = spark.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> spark.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> spark.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> spark.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> spark.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ SparkSession._activeSession = self self._jvm.SparkSession.setActiveSession(self._jsparkSession) if isinstance(data, DataFrame): raise TypeError("data is already a DataFrame") if isinstance(schema, basestring): schema = _parse_datatype_string(schema) elif isinstance(schema, (list, tuple)): # Must re-encode any unicode strings to be consistent with StructField names schema = [x.encode('utf-8') if not isinstance(x, str) else x for x in schema] try: import pandas has_pandas = True except Exception: has_pandas = False if has_pandas and isinstance(data, pandas.DataFrame): from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() if self._wrapped._conf.pandasRespectSessionTimeZone(): timezone = self._wrapped._conf.sessionLocalTimeZone() else: timezone = None # If no schema supplied by user then get the names of columns only if schema is None: schema = [str(x) if not isinstance(x, basestring) else (x.encode('utf-8') if not isinstance(x, str) else x) for x in data.columns] if self._wrapped._conf.arrowEnabled() and len(data) > 0: try: return self._create_from_pandas_with_arrow(data, schema, timezone) except Exception as e: from pyspark.util import _exception_message if self._wrapped._conf.arrowFallbackEnabled(): msg = ( "createDataFrame attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true; however, " "failed by the reason below:\n %s\n" "Attempting non-optimization as " "'spark.sql.execution.arrow.fallback.enabled' is set to " "true." % _exception_message(e)) warnings.warn(msg) else: msg = ( "createDataFrame attempted Arrow optimization because " "'spark.sql.execution.arrow.enabled' is set to true, but has reached " "the error below and will not continue because automatic fallback " "with 'spark.sql.execution.arrow.fallback.enabled' has been set to " "false.\n %s" % _exception_message(e)) warnings.warn(msg) raise data = self._convert_from_pandas(data, schema, timezone) if isinstance(schema, StructType): verify_func = _make_type_verifier(schema) if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj elif isinstance(schema, DataType): dataType = schema schema = StructType().add("value", schema) verify_func = _make_type_verifier( dataType, name="field value") if verifySchema else lambda _: True def prepare(obj): verify_func(obj) return obj, else: prepare = lambda obj: obj if isinstance(data, RDD): rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio) else: rdd, schema = self._createFromLocal(map(prepare, data), schema) jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd()) jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json()) df = DataFrame(jdf, self._wrapped) df._schema = schema return df @ignore_unicode_prefix @since(2.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) @since(2.0) def table(self, tableName): """Returns the specified table as a :class:`DataFrame`. :return: :class:`DataFrame` >>> df.createOrReplaceTempView("table1") >>> df2 = spark.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return DataFrame(self._jsparkSession.table(tableName), self._wrapped) @property @since(2.0) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self._wrapped) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Evolving. :return: :class:`DataStreamReader` """ return DataStreamReader(self._wrapped) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Evolving. :return: :class:`StreamingQueryManager` """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._jsparkSession.streams()) @since(2.0) def stop(self): """Stop the underlying :class:`SparkContext`. """ self._sc.stop() # We should clean the default session up. See SPARK-23228. self._jvm.SparkSession.clearDefaultSession() self._jvm.SparkSession.clearActiveSession() SparkSession._instantiatedSession = None SparkSession._activeSession = None @since(2.0) def __enter__(self): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. """ return self @since(2.0) def __exit__(self, exc_type, exc_val, exc_tb): """ Enable 'with SparkSession.builder.(...).getOrCreate() as session: app' syntax. Specifically stop the SparkSession on exit of the with block. """ self.stop() def _test(): import os import doctest from pyspark.context import SparkContext from pyspark.sql import Row import pyspark.sql.session os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.session.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc globs['spark'] = SparkSession(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")]) globs['df'] = rdd.toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.session, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
lucasdavid/Manifold-Learning
tests/integration/displayer_test.py
1
2081
from unittest import TestCase from sklearn import datasets, manifold import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from manifold.infrastructure import Displayer class DisplayerTest(TestCase): def test_random_generation(self): """Tests if the Displayer class is presenting 4 graphics correctly (manual checking). """ points = 1000 data, color = datasets.make_swiss_roll(points, random_state=0) neighbors = 10 d = Displayer(points=points, neighbors=neighbors) d \ .load(data, color, title='Graphic I') \ .load(data, color, title='Graphic II') \ .load(data, color, title='Graphic III') \ .load(data, color, title='Graphic IV') \ .show() def test_similar_graphics(self): """Tests if Displayer class is presenting a similar graphic from the one printed by the hard-coded lines bellow (manual checking). """ points = 1000 data, color = datasets.make_swiss_roll(points, random_state=0) neighbors = 10 to_dimension = 2 result = manifold.Isomap(neighbors, to_dimension).fit_transform(data) # Expected printing... Axes3D fig = plt.figure(figsize=(15, 8)) plt.suptitle("Expected image", fontsize=14) ax = fig.add_subplot(121, projection='3d') ax.scatter(data[:, 0], data[:, 1], data[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) ax = fig.add_subplot(122) plt.scatter(result[:, 0], result[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SKLearn's Isomap") ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') # Actual printing... Displayer(title="Actual image", points=points, neighbors=neighbors) \ .load(data, color, title='Graphic I') \ .load(result, color, title='SKLearn\'s Isomap') \ .show()
mit
victor-prado/broker-manager
environment/lib/python3.5/site-packages/pandas/core/config.py
8
22948
""" The config module holds package-wide configurables and provides a uniform API for working with them. Overview ======== This module supports the following requirements: - options are referenced using keys in dot.notation, e.g. "x.y.option - z". - keys are case-insensitive. - functions should accept partial/regex keys, when unambiguous. - options can be registered by modules at import time. - options can be registered at init-time (via core.config_init) - options have a default value, and (optionally) a description and validation function associated with them. - options can be deprecated, in which case referencing them should produce a warning. - deprecated options can optionally be rerouted to a replacement so that accessing a deprecated option reroutes to a differently named option. - options can be reset to their default value. - all option can be reset to their default value at once. - all options in a certain sub - namespace can be reset at once. - the user can set / get / reset or ask for the description of an option. - a developer can register and mark an option as deprecated. - you can register a callback to be invoked when the the option value is set or reset. Changing the stored value is considered misuse, but is not verboten. Implementation ============== - Data is stored using nested dictionaries, and should be accessed through the provided API. - "Registered options" and "Deprecated options" have metadata associcated with them, which are stored in auxilary dictionaries keyed on the fully-qualified key, e.g. "x.y.z.option". - the config_init module is imported by the package's __init__.py file. placing any register_option() calls there will ensure those options are available as soon as pandas is loaded. If you use register_option in a module, it will only be available after that module is imported, which you should be aware of. - `config_prefix` is a context_manager (for use with the `with` keyword) which can save developers some typing, see the docstring. """ import re from collections import namedtuple from contextlib import contextmanager import warnings from pandas.compat import map, lmap, u import pandas.compat as compat DeprecatedOption = namedtuple('DeprecatedOption', 'key msg rkey removal_ver') RegisteredOption = namedtuple('RegisteredOption', 'key defval doc validator cb') _deprecated_options = {} # holds deprecated option metdata _registered_options = {} # holds registered option metdata _global_config = {} # holds the current values for registered options _reserved_keys = ['all'] # keys which have a special meaning class OptionError(AttributeError, KeyError): """Exception for pandas.options, backwards compatible with KeyError checks """ # # User API def _get_single_key(pat, silent): keys = _select_options(pat) if len(keys) == 0: if not silent: _warn_if_deprecated(pat) raise OptionError('No such keys(s): %r' % pat) if len(keys) > 1: raise OptionError('Pattern matched multiple keys') key = keys[0] if not silent: _warn_if_deprecated(key) key = _translate_key(key) return key def _get_option(pat, silent=False): key = _get_single_key(pat, silent) # walk the nested dict root, k = _get_root(key) return root[k] def _set_option(*args, **kwargs): # must at least 1 arg deal with constraints later nargs = len(args) if not nargs or nargs % 2 != 0: raise ValueError("Must provide an even number of non-keyword " "arguments") # default to false silent = kwargs.pop('silent', False) if kwargs: raise TypeError('_set_option() got an unexpected keyword ' 'argument "{0}"'.format(list(kwargs.keys())[0])) for k, v in zip(args[::2], args[1::2]): key = _get_single_key(k, silent) o = _get_registered_option(key) if o and o.validator: o.validator(v) # walk the nested dict root, k = _get_root(key) root[k] = v if o.cb: if silent: with warnings.catch_warnings(record=True): o.cb(key) else: o.cb(key) def _describe_option(pat='', _print_desc=True): keys = _select_options(pat) if len(keys) == 0: raise OptionError('No such keys(s)') s = u('') for k in keys: # filter by pat s += _build_option_description(k) if _print_desc: print(s) else: return s def _reset_option(pat, silent=False): keys = _select_options(pat) if len(keys) == 0: raise OptionError('No such keys(s)') if len(keys) > 1 and len(pat) < 4 and pat != 'all': raise ValueError('You must specify at least 4 characters when ' 'resetting multiple keys, use the special keyword ' '"all" to reset all the options to their default ' 'value') for k in keys: _set_option(k, _registered_options[k].defval, silent=silent) def get_default_val(pat): key = _get_single_key(pat, silent=True) return _get_registered_option(key).defval class DictWrapper(object): """ provide attribute-style access to a nested dict""" def __init__(self, d, prefix=""): object.__setattr__(self, "d", d) object.__setattr__(self, "prefix", prefix) def __setattr__(self, key, val): prefix = object.__getattribute__(self, "prefix") if prefix: prefix += "." prefix += key # you can't set new keys # can you can't overwrite subtrees if key in self.d and not isinstance(self.d[key], dict): _set_option(prefix, val) else: raise OptionError("You can only set the value of existing options") def __getattr__(self, key): prefix = object.__getattribute__(self, "prefix") if prefix: prefix += "." prefix += key v = object.__getattribute__(self, "d")[key] if isinstance(v, dict): return DictWrapper(v, prefix) else: return _get_option(prefix) def __dir__(self): return list(self.d.keys()) # For user convenience, we'd like to have the available options described # in the docstring. For dev convenience we'd like to generate the docstrings # dynamically instead of maintaining them by hand. To this, we use the # class below which wraps functions inside a callable, and converts # __doc__ into a propery function. The doctsrings below are templates # using the py2.6+ advanced formatting syntax to plug in a concise list # of options, and option descriptions. class CallableDynamicDoc(object): def __init__(self, func, doc_tmpl): self.__doc_tmpl__ = doc_tmpl self.__func__ = func def __call__(self, *args, **kwds): return self.__func__(*args, **kwds) @property def __doc__(self): opts_desc = _describe_option('all', _print_desc=False) opts_list = pp_options_list(list(_registered_options.keys())) return self.__doc_tmpl__.format(opts_desc=opts_desc, opts_list=opts_list) _get_option_tmpl = """ get_option(pat) Retrieves the value of the specified option. Available options: {opts_list} Parameters ---------- pat : str Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. Returns ------- result : the value of the option Raises ------ OptionError : if no such option exists Notes ----- The available options with its descriptions: {opts_desc} """ _set_option_tmpl = """ set_option(pat, value) Sets the value of the specified option. Available options: {opts_list} Parameters ---------- pat : str Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. value : new value of option. Returns ------- None Raises ------ OptionError if no such option exists Notes ----- The available options with its descriptions: {opts_desc} """ _describe_option_tmpl = """ describe_option(pat, _print_desc=False) Prints the description for one or more registered options. Call with not arguments to get a listing for all registered options. Available options: {opts_list} Parameters ---------- pat : str Regexp pattern. All matching keys will have their description displayed. _print_desc : bool, default True If True (default) the description(s) will be printed to stdout. Otherwise, the description(s) will be returned as a unicode string (for testing). Returns ------- None by default, the description(s) as a unicode string if _print_desc is False Notes ----- The available options with its descriptions: {opts_desc} """ _reset_option_tmpl = """ reset_option(pat) Reset one or more options to their default value. Pass "all" as argument to reset all options. Available options: {opts_list} Parameters ---------- pat : str/regex If specified only options matching `prefix*` will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced. Returns ------- None Notes ----- The available options with its descriptions: {opts_desc} """ # bind the functions with their docstrings into a Callable # and use that as the functions exposed in pd.api get_option = CallableDynamicDoc(_get_option, _get_option_tmpl) set_option = CallableDynamicDoc(_set_option, _set_option_tmpl) reset_option = CallableDynamicDoc(_reset_option, _reset_option_tmpl) describe_option = CallableDynamicDoc(_describe_option, _describe_option_tmpl) options = DictWrapper(_global_config) # # Functions for use by pandas developers, in addition to User - api class option_context(object): """ Context manager to temporarily set options in the `with` statement context. You need to invoke as ``option_context(pat, val, [(pat, val), ...])``. Examples -------- >>> with option_context('display.max_rows', 10, 'display.max_columns', 5): ... """ def __init__(self, *args): if not (len(args) % 2 == 0 and len(args) >= 2): raise ValueError('Need to invoke as' 'option_context(pat, val, [(pat, val), ...)).') self.ops = list(zip(args[::2], args[1::2])) def __enter__(self): undo = [] for pat, val in self.ops: undo.append((pat, _get_option(pat, silent=True))) self.undo = undo for pat, val in self.ops: _set_option(pat, val, silent=True) def __exit__(self, *args): if self.undo: for pat, val in self.undo: _set_option(pat, val, silent=True) def register_option(key, defval, doc='', validator=None, cb=None): """Register an option in the package-wide pandas config object Parameters ---------- key - a fully-qualified key, e.g. "x.y.option - z". defval - the default value of the option doc - a string description of the option validator - a function of a single argument, should raise `ValueError` if called with a value which is not a legal value for the option. cb - a function of a single argument "key", which is called immediately after an option value is set/reset. key is the full name of the option. Returns ------- Nothing. Raises ------ ValueError if `validator` is specified and `defval` is not a valid value. """ import tokenize import keyword key = key.lower() if key in _registered_options: raise OptionError("Option '%s' has already been registered" % key) if key in _reserved_keys: raise OptionError("Option '%s' is a reserved key" % key) # the default value should be legal if validator: validator(defval) # walk the nested dict, creating dicts as needed along the path path = key.split('.') for k in path: if not bool(re.match('^' + tokenize.Name + '$', k)): raise ValueError("%s is not a valid identifier" % k) if keyword.iskeyword(k): raise ValueError("%s is a python keyword" % k) cursor = _global_config for i, p in enumerate(path[:-1]): if not isinstance(cursor, dict): raise OptionError("Path prefix to option '%s' is already an option" % '.'.join(path[:i])) if p not in cursor: cursor[p] = {} cursor = cursor[p] if not isinstance(cursor, dict): raise OptionError("Path prefix to option '%s' is already an option" % '.'.join(path[:-1])) cursor[path[-1]] = defval # initialize # save the option metadata _registered_options[key] = RegisteredOption(key=key, defval=defval, doc=doc, validator=validator, cb=cb) def deprecate_option(key, msg=None, rkey=None, removal_ver=None): """ Mark option `key` as deprecated, if code attempts to access this option, a warning will be produced, using `msg` if given, or a default message if not. if `rkey` is given, any access to the key will be re-routed to `rkey`. Neither the existence of `key` nor that if `rkey` is checked. If they do not exist, any subsequence access will fail as usual, after the deprecation warning is given. Parameters ---------- key - the name of the option to be deprecated. must be a fully-qualified option name (e.g "x.y.z.rkey"). msg - (Optional) a warning message to output when the key is referenced. if no message is given a default message will be emitted. rkey - (Optional) the name of an option to reroute access to. If specified, any referenced `key` will be re-routed to `rkey` including set/get/reset. rkey must be a fully-qualified option name (e.g "x.y.z.rkey"). used by the default message if no `msg` is specified. removal_ver - (Optional) specifies the version in which this option will be removed. used by the default message if no `msg` is specified. Returns ------- Nothing Raises ------ OptionError - if key has already been deprecated. """ key = key.lower() if key in _deprecated_options: raise OptionError("Option '%s' has already been defined as deprecated." % key) _deprecated_options[key] = DeprecatedOption(key, msg, rkey, removal_ver) # # functions internal to the module def _select_options(pat): """returns a list of keys matching `pat` if pat=="all", returns all registered options """ # short-circuit for exact key if pat in _registered_options: return [pat] # else look through all of them keys = sorted(_registered_options.keys()) if pat == 'all': # reserved key return keys return [k for k in keys if re.search(pat, k, re.I)] def _get_root(key): path = key.split('.') cursor = _global_config for p in path[:-1]: cursor = cursor[p] return cursor, path[-1] def _is_deprecated(key): """ Returns True if the given option has been deprecated """ key = key.lower() return key in _deprecated_options def _get_deprecated_option(key): """ Retrieves the metadata for a deprecated option, if `key` is deprecated. Returns ------- DeprecatedOption (namedtuple) if key is deprecated, None otherwise """ try: d = _deprecated_options[key] except KeyError: return None else: return d def _get_registered_option(key): """ Retrieves the option metadata if `key` is a registered option. Returns ------- RegisteredOption (namedtuple) if key is deprecated, None otherwise """ return _registered_options.get(key) def _translate_key(key): """ if key id deprecated and a replacement key defined, will return the replacement key, otherwise returns `key` as - is """ d = _get_deprecated_option(key) if d: return d.rkey or key else: return key def _warn_if_deprecated(key): """ Checks if `key` is a deprecated option and if so, prints a warning. Returns ------- bool - True if `key` is deprecated, False otherwise. """ d = _get_deprecated_option(key) if d: if d.msg: print(d.msg) warnings.warn(d.msg, DeprecationWarning) else: msg = "'%s' is deprecated" % key if d.removal_ver: msg += ' and will be removed in %s' % d.removal_ver if d.rkey: msg += ", please use '%s' instead." % d.rkey else: msg += ', please refrain from using it.' warnings.warn(msg, DeprecationWarning) return True return False def _build_option_description(k): """ Builds a formatted description of a registered option and prints it """ o = _get_registered_option(k) d = _get_deprecated_option(k) s = u('%s ') % k if o.doc: s += '\n'.join(o.doc.strip().split('\n')) else: s += 'No description available.' if o: s += u('\n [default: %s] [currently: %s]') % (o.defval, _get_option(k, True)) if d: s += u('\n (Deprecated') s += (u(', use `%s` instead.') % d.rkey if d.rkey else '') s += u(')') s += '\n\n' return s def pp_options_list(keys, width=80, _print=False): """ Builds a concise listing of available options, grouped by prefix """ from textwrap import wrap from itertools import groupby def pp(name, ks): pfx = ('- ' + name + '.[' if name else '') ls = wrap(', '.join(ks), width, initial_indent=pfx, subsequent_indent=' ', break_long_words=False) if ls and ls[-1] and name: ls[-1] = ls[-1] + ']' return ls ls = [] singles = [x for x in sorted(keys) if x.find('.') < 0] if singles: ls += pp('', singles) keys = [x for x in keys if x.find('.') >= 0] for k, g in groupby(sorted(keys), lambda x: x[:x.rfind('.')]): ks = [x[len(k) + 1:] for x in list(g)] ls += pp(k, ks) s = '\n'.join(ls) if _print: print(s) else: return s # # helpers @contextmanager def config_prefix(prefix): """contextmanager for multiple invocations of API with a common prefix supported API functions: (register / get / set )__option Warning: This is not thread - safe, and won't work properly if you import the API functions into your module using the "from x import y" construct. Example: import pandas.core.config as cf with cf.config_prefix("display.font"): cf.register_option("color", "red") cf.register_option("size", " 5 pt") cf.set_option(size, " 6 pt") cf.get_option(size) ... etc' will register options "display.font.color", "display.font.size", set the value of "display.font.size"... and so on. """ # Note: reset_option relies on set_option, and on key directly # it does not fit in to this monkey-patching scheme global register_option, get_option, set_option, reset_option def wrap(func): def inner(key, *args, **kwds): pkey = '%s.%s' % (prefix, key) return func(pkey, *args, **kwds) return inner _register_option = register_option _get_option = get_option _set_option = set_option set_option = wrap(set_option) get_option = wrap(get_option) register_option = wrap(register_option) yield None set_option = _set_option get_option = _get_option register_option = _register_option # These factories and methods are handy for use as the validator # arg in register_option def is_type_factory(_type): """ Parameters ---------- `_type` - a type to be compared against (e.g. type(x) == `_type`) Returns ------- validator - a function of a single argument x , which returns the True if type(x) is equal to `_type` """ def inner(x): if type(x) != _type: raise ValueError("Value must have type '%s'" % str(_type)) return inner def is_instance_factory(_type): """ Parameters ---------- `_type` - the type to be checked against Returns ------- validator - a function of a single argument x , which returns the True if x is an instance of `_type` """ if isinstance(_type, (tuple, list)): _type = tuple(_type) from pandas.formats.printing import pprint_thing type_repr = "|".join(map(pprint_thing, _type)) else: type_repr = "'%s'" % _type def inner(x): if not isinstance(x, _type): raise ValueError("Value must be an instance of %s" % type_repr) return inner def is_one_of_factory(legal_values): callables = [c for c in legal_values if callable(c)] legal_values = [c for c in legal_values if not callable(c)] def inner(x): from pandas.formats.printing import pprint_thing as pp if x not in legal_values: if not any([c(x) for c in callables]): pp_values = pp("|".join(lmap(pp, legal_values))) msg = "Value must be one of {0}".format(pp_values) if len(callables): msg += " or a callable" raise ValueError(msg) return inner # common type validators, for convenience # usage: register_option(... , validator = is_int) is_int = is_type_factory(int) is_bool = is_type_factory(bool) is_float = is_type_factory(float) is_str = is_type_factory(str) is_unicode = is_type_factory(compat.text_type) is_text = is_instance_factory((str, bytes)) def is_callable(obj): """ Parameters ---------- `obj` - the object to be checked Returns ------- validator - returns True if object is callable raises ValueError otherwise. """ if not callable(obj): raise ValueError("Value must be a callable") return True
mit
FRESNA/powerplantmatching
powerplantmatching/export.py
1
13515
# -*- coding: utf-8 -*- # Copyright 2016-2018 Fabian Hofmann (FIAS), Jonas Hoersch (KIT, IAI) and # Fabian Gotzens (FZJ, IEK-STE) # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3 of the # License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # This export script is intented for the users of PyPSA: # https://www.pypsa.org/ # or the VEDA-TIMES modelling framework: # http://iea-etsap.org/index.php/etsap-tools/data-handling-shells/veda from .core import _data_out, get_obj_if_Acc from .heuristics import set_denmark_region_id, set_known_retire_years import pandas as pd import numpy as np import pycountry import logging from scipy.spatial import cKDTree as KDTree logger = logging.getLogger(__name__) cget = pycountry.countries.get def to_pypsa_names(df): """Rename the columns of the powerplant data according to the convention in PyPSA. Arguments: df {pandas.DataFrame} -- powerplant data Returns: pandas.DataFrame -- Column renamed dataframe """ df = get_obj_if_Acc(df) return (df.assign(Fueltype=df['Fueltype'].str.lower()) .rename(columns={'Fueltype': 'carrier', 'Capacity': 'p_nom', 'Duration': 'max_hours', 'Set': 'component'})) def map_bus(df, buses): ''' Assign a 'bus' colum to the dataframe based on a list of coordinates. Parameters ---------- df : pd.DataFrame power plant list with coordinates 'lat' and 'lon' buses : pd.DataFrame bus list with coordites 'x' and 'y' Returns ------- DataFrame with an extra column 'bus' indicating the nearest bus. ''' df = get_obj_if_Acc(df) kdtree = KDTree(buses[['x', 'y']]) buses_i = buses.index.append(pd.Index([np.nan])) return df.assign(bus=buses_i[kdtree.query(df[['lon', 'lat']].values)[1]]) def map_country_bus(df, buses): ''' Assign a 'bus' colum based on a list of coordinates and countries. Parameters ---------- df : pd.DataFrame power plant list with coordinates 'lat', 'lon' and 'Country' buses : pd.DataFrame bus list with coordites 'x', 'y', 'country' Returns ------- DataFrame with an extra column 'bus' indicating the nearest bus. ''' df = get_obj_if_Acc(df) diff = set(df.Country.unique()) - set(buses.country) if len(diff): logger.warning(f'Power plants in {", ".join(diff)} cannot be mapped ' 'because the countries do not appear in `buses`.') res = [] for c in df.Country.unique(): res.append(map_bus(df.query('Country == @c'), buses.query('country == @c'))) return pd.concat(res) def to_pypsa_network(df, network, buslist=None): """ Export a powerplant dataframe to a pypsa.Network(), specify specific buses to allocate the plants (buslist). """ df = get_obj_if_Acc(df) df = map_bus(df, network.buses.reindex(buslist)) df.Set.replace('CHP', 'PP', inplace=True) if 'Duration' in df: df['weighted_duration'] = df['Duration'] * df['Capacity'] df = (df.groupby(['bus', 'Fueltype', 'Set']) .aggregate({'Capacity': sum, 'weighted_duration': sum})) df = df.assign(Duration=df['weighted_duration'] / df['Capacity']) df = df.drop(columns='weighted_duration') else: df = (df.groupby(['bus', 'Fueltype', 'Set']) .aggregate({'Capacity': sum})) df = df.reset_index() df = to_pypsa_names(df) df.index = df.bus + ' ' + df.carrier network.import_components_from_dataframe(df[df['component'] != 'Store'], 'Generator') network.import_components_from_dataframe(df[df['component'] == 'Store'], 'StorageUnit') def to_TIMES(df=None, use_scaled_capacity=False, baseyear=2015): """ Transform a given dataset into the TIMES format and export as .xlsx. """ if df is None: from .collection import matched_data df = matched_data() if df is None: raise RuntimeError("The data to be exported does not yet exist.") df = df.loc[(df.DateIn.isnull()) | (df.DateIn <= baseyear)] plausible = True # Set region via country names by iso3166-2 codes if 'Region' not in df: pos = [i for i, x in enumerate(df.columns) if x == 'Country'][0] df.insert(pos+1, 'Region', np.nan) df.Country = df.Country.replace({'Czech Republic': 'Czechia'}) df.loc[:, 'Region'] = df.Country.apply(lambda c: cget(name=c).alpha_2) df = set_denmark_region_id(df) regions = sorted(set(df.Region)) if None in regions: raise ValueError("There are rows without a valid country identifier " "in the dataframe. Please check!") # add column with TIMES-specific type. The pattern is as follows: # 'ConELC-' + Set + '_' + Fueltype + '-' Technology df.loc[:, 'Technology'].fillna('', inplace=True) if 'TimesType' not in df: pos = [i for i, x in enumerate(df.columns) if x == 'Technology'][0] df.insert(pos+1, 'TimesType', np.nan) df.loc[:, 'TimesType'] = pd.Series('ConELC-' for _ in range(len(df))) +\ np.where(df.loc[:, 'Set'].str.contains('CHP'), 'CHP', 'PP') +\ '_' + df.loc[:, 'Fueltype'].map(fueltype_to_abbrev()) df.loc[(df.Fueltype == 'Wind') & (df.Technology.str.contains('offshore', case=False)), 'TimesType'] += 'F' df.loc[(df.Fueltype == 'Wind') & ~(df.Technology.str.contains('offshore', case=False)), 'TimesType'] += 'N' df.loc[(df.Fueltype == 'Solar') & (df.Technology.str.contains('CSP', case=False)), 'TimesType'] += 'CSP' df.loc[(df.Fueltype == 'Solar') & ~(df.Technology.str.contains('CSP', case=False)), 'TimesType'] += 'SPV' df.loc[(df.Fueltype == 'Natural Gas') & (df.Technology.str.contains('CCGT', case=False)), 'TimesType'] += '-CCGT' df.loc[(df.Fueltype == 'Natural Gas') & ~(df.Technology.str.contains('CCGT', case=False)) & (df.Technology.str.contains('OCGT', case=False)), 'TimesType'] += '-OCGT' df.loc[(df.Fueltype == 'Natural Gas') & ~(df.Technology.str.contains('CCGT', case=False)) & ~(df['Technology'].str.contains('OCGT', case=False)), 'TimesType'] += '-ST' df.loc[(df.Fueltype == 'Hydro') & (df.Technology.str.contains('pumped storage', case=False)), 'TimesType'] += '-PST' df.loc[(df.Fueltype == 'Hydro') & (df.Technology.str.contains('run-of-river', case=False)) & ~(df.Technology.str.contains('pumped storage', case=False)), 'TimesType'] += '-ROR' df.loc[(df.Fueltype == 'Hydro') & ~(df.Technology.str.contains('run-of-river', case=False)) & ~(df.Technology.str.contains('pumped storage', case=False)), 'TimesType'] += '-STO' if None in set(df.TimesType): raise ValueError("There are rows without a valid TIMES-Type " "identifier in the dataframe. Please check!") # add column with technical lifetime if 'Life' not in df: pos = [i for i, x in enumerate(df.columns) if x == 'Retrofit'][0] df.insert(pos+1, 'Life', np.nan) df.loc[:, 'Life'] = df.TimesType.map(timestype_to_life()) if df.Life.isnull().any(): raise ValueError("There are rows without a given lifetime in the " "dataframe. Please check!") # add column with decommissioning year if 'YearRetire' not in df: pos = [i for i, x in enumerate(df.columns) if x == 'Life'][0] df.insert(pos+1, 'YearRetire', np.nan) df.loc[:, 'YearRetire'] = df.loc[:, 'Retrofit'] + df.loc[:, 'Life'] df = set_known_retire_years(df) # Now create empty export dataframe with headers columns = ['Attribute', '*Unit', 'LimType', 'Year'] columns.extend(regions) columns.append('Pset_Pn') # Loop stepwise through technologies, years and countries df_exp = pd.DataFrame(columns=columns) cap_column = 'Scaled Capacity' if use_scaled_capacity else 'Capacity' row = 0 for tt, df_tt in df.groupby('TimesType'): for yr in range(baseyear, 2055, 5): df_exp.loc[row, 'Year'] = yr data_regions = df_tt.groupby('Region') for reg in regions: if reg in data_regions.groups: ct_group = data_regions.get_group(reg) # Here, all matched units existing in the dataset are being # considered. This is needed since there can be units in # the system which are actually already beyond their # assumed technical lifetimes but still online in baseyear. if yr == baseyear: series = ct_group.apply(lambda x: x[cap_column], axis=1) # Here all matched units that are not retired in yr, # are being filtered. elif yr > baseyear: series = ct_group.apply(lambda x: x[cap_column] if yr >= x['DateIn'] and yr <= x['YearRetire'] else 0, axis=1) else: message = 'loop yr({}) below baseyear({})' raise ValueError(message.format(yr, baseyear)) # Divide the sum by 1000 (MW->GW) and write into export df df_exp.loc[row, reg] = series.sum()/1000.0 else: df_exp.loc[row, reg] = 0.0 # Plausibility-Check: if (yr > baseyear and (df_exp.loc[row, reg] > df_exp.loc[row-1, reg])): plausible = False logger.error( "For region '{}' and timestype '{}' the value for " "year {} ({0.000}) is higher than in the year before " "({0.000}).".format(reg, tt, yr, df_exp.loc[row, reg], df_exp.loc[row-1, reg])) df_exp.loc[row, 'Pset_Pn'] = tt row += 1 df_exp.loc[:, 'Attribute'] = 'STOCK' df_exp.loc[:, '*Unit'] = 'GW' df_exp.loc[:, 'LimType'] = 'FX' # Write resulting dataframe to file if plausible: df_exp.to_excel(_data_out('Export_Stock_TIMES.xlsx')) return df_exp def store_open_dataset(): from .collection import matched_data, reduce_matched_dataframe m = (matched_data(reduced=False) .reindex(columns=['CARMA', 'ENTSOE', 'GEO', 'GPD', 'OPSD'], level=1) [lambda df: df.Name.notnull().any(1)]) m.to_csv(_data_out('powerplants_large.csv')) m = m.pipe(reduce_matched_dataframe) m.to_csv(_data_out('powerplants.csv')) return m def fueltype_to_abbrev(): """ Return the fueltype-specific abbreviation. """ data = {'Bioenergy': 'BIO', 'Geothermal': 'GEO', 'Hard Coal': 'COA', 'Hydro': 'HYD', 'Lignite': 'LIG', 'Natural Gas': 'NG', 'Nuclear': 'NUC', 'Oil': 'OIL', 'Other': 'OTH', 'Solar': '', # DO NOT delete this entry! 'Waste': 'WST', 'Wind': 'WO'} return data def timestype_to_life(): """ Returns the timestype-specific technical lifetime. """ return {'ConELC-PP_COA': 45, 'ConELC-PP_LIG': 45, 'ConELC-PP_NG-OCGT': 40, 'ConELC-PP_NG-ST': 40, 'ConELC-PP_NG-CCGT': 40, 'ConELC-PP_OIL': 40, 'ConELC-PP_NUC': 50, 'ConELC-PP_BIO': 25, 'ConELC-PP_HYD-ROR': 200, # According to A.K. Riekkolas comment, 'ConELC-PP_HYD-STO': 200, # these will not retire after 75-100 a, 'ConELC-PP_HYD-PST': 200, # but exist way longer at retrofit costs 'ConELC-PP_WON': 25, 'ConELC-PP_WOF': 25, 'ConELC-PP_SPV': 30, 'ConELC-PP_CSP': 30, 'ConELC-PP_WST': 30, 'ConELC-PP_SYN': 5, 'ConELC-PP_CAES': 40, 'ConELC-PP_GEO': 30, 'ConELC-PP_OTH': 5, 'ConELC-CHP_COA': 45, 'ConELC-CHP_LIG': 45, 'ConELC-CHP_NG-OCGT': 40, 'ConELC-CHP_NG-ST': 40, 'ConELC-CHP_NG-CCGT': 40, 'ConELC-CHP_OIL': 40, 'ConELC-CHP_BIO': 25, 'ConELC-CHP_WST': 30, 'ConELC-CHP_SYN': 5, 'ConELC-CHP_GEO': 30, 'ConELC-CHP_OTH': 5}
gpl-3.0
wkerzendorf/tardis
tardis/plasma/properties/plasma_input.py
1
1717
import numpy as np import pandas as pd from tardis.plasma.properties.base import (Input, ArrayInput, DataFrameInput) __all__ = ['TRadiative', 'DilutionFactor', 'AtomicData', 'Abundance', 'Density', 'TimeExplosion', 'JBlues', 'LinkTRadTElectron', 'NLTESpecies', 'RadiationFieldCorrectionInput'] class TRadiative(ArrayInput): """ Outputs: t_rad : Numpy Array """ outputs = ('t_rad',) latex_name = ('T_{\\textrm{rad}}',) class DilutionFactor(ArrayInput): """ Outputs: w : Numpy Array Factor used in nebular ionisation / dilute excitation calculations to account for the dilution of the radiation field. """ outputs = ('w',) latex_name = ('W',) class AtomicData(Input): outputs = ('atomic_data',) class Abundance(Input): outputs = ('abundance',) class RadiationFieldCorrectionInput(Input): """ Outputs: delta_input : Numpy Array Used to adjust the ionisation balance to account for greater line blanketing in the blue. """ outputs = ('delta_input',) latex_name = ('\\delta_{\\textrm{input}}',) class Density(ArrayInput): outputs = ('density',) latex_name = ('\\rho',) class TimeExplosion(Input): outputs = ('time_explosion',) latex_name = ('t_{\\textrm{exp}}',) class JBlues(DataFrameInput): """ Outputs: j_blues : Pandas DataFrame Mean intensity in the blue wing of each line. """ outputs = ('j_blues',) latex_name = ('J_{lu}^{b}',) class LinkTRadTElectron(Input): outputs = ('link_t_rad_t_electron',) latex_name = ('T_{\\textrm{electron}}/T_{\\textrm{rad}}',) class NLTESpecies(Input): outputs = ('nlte_species',)
bsd-3-clause
XInterns/IPL-Sparkers
src/getprediction.py
1
2194
# coding: utf-8 # # Predicting the Outcome of Cricket Matches # In[1]: import numpy as np # imports a fast numerical programming library import pandas as pd #lets us handle data as dataframes #sets up pandas table display pd.set_option('display.width', 500) pd.set_option('display.max_columns', 100) pd.set_option('display.notebook_repr_html', True) from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics from patsy import dmatrices # In[2]: matches = pd.read_csv("../data/matcheswithfeatures.csv", index_col = 0) # In[3]: y, X = dmatrices('team1Winning ~ 0 + Avg_SR_Difference + Avg_WPR_Difference + Total_MVP_Difference + Prev_Enc_Team1_WinPerc + Total_RF_Difference', matches, return_type="dataframe") y_arr = np.ravel(y) # ### Splitting Training Set (2008-2013) and Test Set (2013-2015) based on Seasons # In[4]: X_timetrain = X.loc[X.index < 398] Y_timetrain = y.loc[y.index < 398] Y_timetrain_arr = np.ravel(Y_timetrain) X_timetest = X.loc[X.index >= 398] Y_timetest = y.loc[y.index >= 398] Y_timetest_arr = np.ravel(Y_timetest) # In[5]: # Best values of k in time-based split data knn1 = KNeighborsClassifier(n_neighbors = 31) knn1.fit(X_timetrain, Y_timetrain_arr) # In[6]: def getPrediction(match_id): '''Returns the prediction for the given match Args: match_id (int): Match ID for the required game Returns: String: Predicted winner of the game and probability of victory ''' try: assert (399 <= match_id <= 517) results = {} match_row = matches.loc[matches['id'] == match_id] team1name = match_row.team1.unique()[0] team2name = match_row.team2.unique()[0] toPredict = X_timetest.loc[X_timetest.index == match_id-1].values prediction_prob = knn1.predict_proba(toPredict) prediction = knn1.predict(toPredict) if prediction[0] > 0: results['name'] = str(team1name) results['prob'] = float(prediction_prob[0][1])*100 else: results['name'] = str(team2name) results['prob'] = float(prediction_prob[0][0])*100 return results except: return None
mit
CassioAmador/profile_tcabr
visualization_tools/test_group_delay2.py
1
2352
""" Test group delay (raw) from each band. Compare it with median filtered, smoothed and fitted group delay. """ import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button import numpy as np import scipy import sys sys.path.insert(0, './../src/') import proc_profile_abel_inversion as pp fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.25) if len(sys.argv) < 1: shot_number=int(open('shot_number.txt','r').read()) else: if (len(sys.argv) == 1) & ("py" in sys.argv[0]): shot_number=int(open('shot_number.txt','r').read()) else: shot_number = int(sys.argv[1]) shot = pp.ProcProfile(shot_number) sweeps_average = 33 shot.reference_gd(all_shot=1, sw_clustersize=sweeps_average) shot.plasma_gd(5000, sweeps_average, 1) shot.find_ne_max2() tau_coef = np.polyfit(shot.freqs2, shot.gd2, 3) ax1, = plt.plot(shot.freqs2, shot.gd2, 'ok', label="gd (raw)") ax2, = plt.plot(shot.freqs2, scipy.signal.medfilt(shot.gd2, 5), 'ob', label="gd (median filt-5)") ax3, = plt.plot(shot.freqs2, shot.smooth_signal(shot.gd2), '--c', label="gd (smothed)") ax4, = plt.plot(shot.freqs2, np.polyval(tau_coef, shot.freqs2), '--r', label="gd (fitted)") plt.xlabel("freq (GHz)") plt.ylabel("group delay (ns)") plt.title("# %s - time: %s ms" % (shot.shot, shot.sweep2time(shot.sweep_cur))) plt.legend(loc=2) plt.xlim(15, 40) plt.ylim(-0.1, 3) axcolor = 'lightgoldenrodyellow' axfreq = plt.axes([0.13, 0.1, 0.77, 0.03], axisbg=axcolor) sweep = Slider(axfreq, 'Sweep', 1, len(shot.points) - 1 - sweeps_average, valinit=1, valfmt='%1.f') def update(val): shot.plasma_gd(int(sweep.val), sweeps_average, 1) shot.find_ne_max2() tau_coef = np.polyfit(shot.freqs2, shot.gd2, 3) ax1.set_xdata(shot.freqs2) ax1.set_ydata(shot.gd2) ax2.set_xdata(shot.freqs2) ax2.set_ydata(scipy.signal.medfilt(shot.gd2, 5)) ax3.set_xdata(shot.freqs2) ax3.set_ydata(shot.smooth_signal(shot.gd2)) ax4.set_xdata(shot.freqs2) ax4.set_ydata(np.polyval(tau_coef, shot.freqs2)) ax.set_title("# %s - time: %.3f ms" % (shot.shot, shot.sweep2time(shot.sweep_cur))) fig.canvas.draw_idle() sweep.on_changed(update) resetax = plt.axes([0.8, 0.025, 0.1, 0.04]) button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975') def reset(event): sweep.reset() button.on_clicked(reset) plt.show()
mit
FrancoisRheaultUS/dipy
dipy/stats/analysis.py
2
10573
import os import numpy as np from scipy.spatial import cKDTree from scipy.ndimage.interpolation import map_coordinates from scipy.spatial.distance import mahalanobis from dipy.utils.optpkg import optional_package from dipy.io.utils import save_buan_profiles_hdf5 from dipy.segment.clustering import QuickBundles from dipy.segment.metric import AveragePointwiseEuclideanMetric from dipy.tracking.streamline import (set_number_of_points, values_from_volume, orient_by_streamline, transform_streamlines, Streamlines) pd, have_pd, _ = optional_package("pandas") _, have_tables, _ = optional_package("tables") def peak_values(bundle, peaks, dt, pname, bname, subject, group_id, ind, dir): """ Peak_values function finds the generalized fractional anisotropy (gfa) and quantitative anisotropy (qa) values from peaks object (eg: csa) for every point on a streamline used while tracking and saves it in hd5 file. Parameters ---------- bundle : string Name of bundle being analyzed peaks : peaks contains peak directions and values dt : DataFrame DataFrame to be populated pname : string Name of the dti metric bname : string Name of bundle being analyzed. subject : string subject number as a string (e.g. 10001) group_id : integer which group subject belongs to 1 patient and 0 for control ind : integer list ind tells which disk number a point belong. dir : string path of output directory """ gfa = peaks.gfa anatomical_measures(bundle, gfa, dt, pname+'_gfa', bname, subject, group_id, ind, dir) qa = peaks.qa[...,0] anatomical_measures(bundle, qa, dt, pname+'_qa', bname, subject, group_id, ind, dir) def anatomical_measures(bundle, metric, dt, pname, bname, subject, group_id, ind, dir): """ Calculates dti measure (eg: FA, MD) per point on streamlines and save it in hd5 file. Parameters ---------- bundle : string Name of bundle being analyzed metric : matrix of float values dti metric e.g. FA, MD dt : DataFrame DataFrame to be populated pname : string Name of the dti metric bname : string Name of bundle being analyzed. subject : string subject number as a string (e.g. 10001) group_id : integer which group subject belongs to 1 for patient and 0 control ind : integer list ind tells which disk number a point belong. dir : string path of output directory """ dt["streamline"] = [] dt["disk"] = [] dt["subject"] = [] dt[pname] = [] dt["group"] = [] values = map_coordinates(metric, bundle._data.T, order=1) dt["disk"].extend(ind[list(range(len(values)))]+1) dt["subject"].extend([subject]*len(values)) dt["group"].extend([group_id]*len(values)) dt[pname].extend(values) for st_i in range(len(bundle)): st = bundle[st_i] dt["streamline"].extend([st_i]*len(st)) file_name = bname + "_" + pname save_buan_profiles_hdf5(os.path.join(dir, file_name), dt) def assignment_map(target_bundle, model_bundle, no_disks): """ Calculates assignment maps of the target bundle with reference to model bundle centroids. Parameters ---------- target_bundle : streamlines target bundle extracted from subject data in common space model_bundle : streamlines atlas bundle used as reference no_disks : integer, optional Number of disks used for dividing bundle into disks. (Default 100) References ---------- .. [Chandio19] Chandio, B.Q., S. Koudoro, D. Reagan, J. Harezlak, E. Garyfallidis, Bundle Analytics: a computational and statistical analyses framework for tractometric studies, Proceedings of: International Society of Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019. """ mbundle_streamlines = set_number_of_points(model_bundle, nb_points=no_disks) metric = AveragePointwiseEuclideanMetric() qb = QuickBundles(threshold=85., metric=metric) clusters = qb.cluster(mbundle_streamlines) centroids = Streamlines(clusters.centroids) _, indx = cKDTree(centroids.get_data(), 1, copy_data=True).query(target_bundle.get_data(), k=1) return indx def gaussian_weights(bundle, n_points=100, return_mahalnobis=False, stat=np.mean): """ Calculate weights for each streamline/node in a bundle, based on a Mahalanobis distance from the core the bundle, at that node (mean, per default). Parameters ---------- bundle : Streamlines The streamlines to weight. n_points : int, optional The number of points to resample to. *If the `bundle` is an array, this input is ignored*. Default: 100. Returns ------- w : array of shape (n_streamlines, n_points) Weights for each node in each streamline, calculated as its relative inverse of the Mahalanobis distance, relative to the distribution of coordinates at that node position across streamlines. """ # Resample to same length for each streamline: bundle = set_number_of_points(bundle, n_points) # This is the output w = np.zeros((len(bundle), n_points)) # If there's only one fiber here, it gets the entire weighting: if len(bundle) == 1: if return_mahalnobis: return np.array([np.nan]) else: return np.array([1]) for node in range(n_points): # This should come back as a 3D covariance matrix with the spatial # variance covariance of this node across the different streamlines # This is a 3-by-3 array: node_coords = bundle._data[node::n_points] c = np.cov(node_coords.T, ddof=0) # Reorganize as an upper diagonal matrix for expected Mahalanobis # input: c = np.array([[c[0, 0], c[0, 1], c[0, 2]], [0, c[1, 1], c[1, 2]], [0, 0, c[2, 2]]]) # Calculate the mean or median of this node as well # delta = node_coords - np.mean(node_coords, 0) m = stat(node_coords, 0) # Weights are the inverse of the Mahalanobis distance for fn in range(len(bundle)): # In the special case where all the streamlines have the exact same # coordinate in this node, the covariance matrix is all zeros, so # we can't calculate the Mahalanobis distance, we will instead give # each streamline an identical weight, equal to the number of # streamlines: if np.allclose(c, 0): w[:, node] = len(bundle) break # Otherwise, go ahead and calculate Mahalanobis for node on # fiber[fn]: w[fn, node] = mahalanobis(node_coords[fn], m, np.linalg.inv(c)) if return_mahalnobis: return w # weighting is inverse to the distance (the further you are, the less you # should be weighted) w = 1 / w # Normalize before returning, so that the weights in each node sum to 1: return w / np.sum(w, 0) def afq_profile(data, bundle, affine, n_points=100, orient_by=None, weights=None, **weights_kwarg): """ Calculates a summarized profile of data for a bundle or tract along its length. Follows the approach outlined in [Yeatman2012]_. Parameters ---------- data : 3D volume The statistic to sample with the streamlines. bundle : StreamLines class instance The collection of streamlines (possibly already resampled into an array for each to have the same length) with which we are resampling. See Note below about orienting the streamlines. affine : array_like (4, 4) The mapping from voxel coordinates to streamline points. The voxel_to_rasmm matrix, typically from a NIFTI file. n_points: int, optional The number of points to sample along the bundle. Default: 100. orient_by: streamline, optional. A streamline to use as a standard to orient all of the streamlines in the bundle according to. weights : 1D array or 2D array or callable (optional) Weight each streamline (1D) or each node (2D) when calculating the tract-profiles. Must sum to 1 across streamlines (in each node if relevant). If callable, this is a function that calculates weights. weights_kwarg : key-word arguments Additional key-word arguments to pass to the weight-calculating function. Only to be used if weights is a callable. Returns ------- ndarray : a 1D array with the profile of `data` along the length of `bundle` Notes ----- Before providing a bundle as input to this function, you will need to make sure that the streamlines in the bundle are all oriented in the same orientation relative to the bundle (use :func:`orient_by_streamline`). References ---------- .. [Yeatman2012] Yeatman, Jason D., Robert F. Dougherty, Nathaniel J. Myall, Brian A. Wandell, and Heidi M. Feldman. 2012. "Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification" PloS One 7 (11): e49790. """ if orient_by is not None: bundle = orient_by_streamline(bundle, orient_by) if affine is None: affine = np.eye(4) if len(bundle) == 0: raise ValueError("The bundle contains no streamlines") # Resample each streamline to the same number of points: fgarray = set_number_of_points(bundle, n_points) # Extract the values values = np.array(values_from_volume(data, fgarray, affine)) if weights is None: weights = np.ones(values.shape) / values.shape[0] elif callable(weights): weights = weights(bundle, **weights_kwarg) else: # We check that weights *always sum to 1 across streamlines*: if not np.allclose(np.sum(weights, 0), np.ones(n_points)): raise ValueError("The sum of weights across streamlines must ", "be equal to 1") return np.sum(weights * values, 0)
bsd-3-clause
bzero/statsmodels
statsmodels/examples/tut_ols_ancova.py
33
2455
'''Examples OLS Note: uncomment plt.show() to display graphs Summary: ======== Relevant part of construction of design matrix xg includes group numbers/labels, x1 is continuous explanatory variable >>> dummy = (xg[:,None] == np.unique(xg)).astype(float) >>> X = np.c_[x1, dummy[:,1:], np.ones(nsample)] Estimate the model >>> res2 = sm.OLS(y, X).fit() >>> print res2.params [ 1.00901524 3.08466166 -2.84716135 9.94655423] >>> print res2.bse [ 0.07499873 0.71217506 1.16037215 0.38826843] >>> prstd, iv_l, iv_u = wls_prediction_std(res2) "Test hypothesis that all groups have same intercept" >>> R = [[0, 1, 0, 0], ... [0, 0, 1, 0]] >>> print res2.f_test(R) <F test: F=array([[ 91.69986847]]), p=[[ 8.90826383e-17]], df_denom=46, df_num=2> strongly rejected because differences in intercept are very large ''' from __future__ import print_function import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.sandbox.regression.predstd import wls_prediction_std #fix a seed for these examples np.random.seed(98765789) #OLS with dummy variables, similar to ANCOVA #------------------------------------------- #construct simulated example: #3 groups common slope but different intercepts nsample = 50 x1 = np.linspace(0, 20, nsample) sig = 1. #suppose observations from 3 groups xg = np.zeros(nsample, int) xg[20:40] = 1 xg[40:] = 2 #print xg dummy = (xg[:,None] == np.unique(xg)).astype(float) #use group 0 as benchmark X = np.c_[x1, dummy[:,1:], np.ones(nsample)] beta = [1., 3, -3, 10] y_true = np.dot(X, beta) y = y_true + sig * np.random.normal(size=nsample) #estimate #~~~~~~~~ res2 = sm.OLS(y, X).fit() #print "estimated parameters: x d1-d0 d2-d0 constant" print(res2.params) #print "standard deviation of parameter estimates" print(res2.bse) prstd, iv_l, iv_u = wls_prediction_std(res2) #print res.summary() #plot #~~~~ plt.figure() plt.plot(x1, y, 'o', x1, y_true, 'b-') plt.plot(x1, res2.fittedvalues, 'r--.') plt.plot(x1, iv_u, 'r--') plt.plot(x1, iv_l, 'r--') plt.title('3 groups: different intercepts, common slope; blue: true, red: OLS') plt.show() #Test hypothesis that all groups have same intercept #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ R = [[0, 1, 0, 0], [0, 0, 1, 0]] # F test joint hypothesis R * beta = 0 # i.e. coefficient on both dummy variables equal zero print("Test hypothesis that all groups have same intercept") print(res2.f_test(R))
bsd-3-clause
RobertABT/heightmap
build/scipy/scipy/special/c_misc/struve_convergence.py
76
3725
""" Convergence regions of the expansions used in ``struve.c`` Note that for v >> z both functions tend rapidly to 0, and for v << -z, they tend to infinity. The floating-point functions over/underflow in the lower left and right corners of the figure. Figure legend ============= Red region Power series is close (1e-12) to the mpmath result Blue region Asymptotic series is close to the mpmath result Green region Bessel series is close to the mpmath result Dotted colored lines Boundaries of the regions Solid colored lines Boundaries estimated by the routine itself. These will be used for determining which of the results to use. Black dashed line The line z = 0.7*|v| + 12 """ from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt try: import mpmath except: from sympy import mpmath def err_metric(a, b, atol=1e-290): m = abs(a - b) / (atol + abs(b)) m[np.isinf(b) & (a == b)] = 0 return m def do_plot(is_h=True): from scipy.special._ufuncs import \ _struve_power_series, _struve_asymp_large_z, _struve_bessel_series vs = np.linspace(-1000, 1000, 91) zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]]) rp = _struve_power_series(vs[:,None], zs[None,:], is_h) ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h) rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h) mpmath.mp.dps = 50 if is_h: sh = lambda v, z: float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z))) else: sh = lambda v, z: float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z))) ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:]) err_a = err_metric(ra[0], ex) + 1e-300 err_p = err_metric(rp[0], ex) + 1e-300 err_b = err_metric(rb[0], ex) + 1e-300 err_est_a = abs(ra[1]/ra[0]) err_est_p = abs(rp[1]/rp[0]) err_est_b = abs(rb[1]/rb[0]) z_cutoff = 0.7*abs(vs) + 12 levels = [-1000, -12] plt.cla() plt.hold(1) plt.contourf(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], alpha=0.1) plt.contourf(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], alpha=0.1) plt.contour(vs, zs, np.log10(err_p).T, levels=levels, colors=['r', 'r'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_a).T, levels=levels, colors=['b', 'b'], linestyles=[':', ':']) plt.contour(vs, zs, np.log10(err_b).T, levels=levels, colors=['g', 'g'], linestyles=[':', ':']) lp = plt.contour(vs, zs, np.log10(err_est_p).T, levels=levels, colors=['r', 'r'], linestyles=['-', '-']) la = plt.contour(vs, zs, np.log10(err_est_a).T, levels=levels, colors=['b', 'b'], linestyles=['-', '-']) lb = plt.contour(vs, zs, np.log10(err_est_b).T, levels=levels, colors=['g', 'g'], linestyles=['-', '-']) plt.clabel(lp, fmt={-1000: 'P', -12: 'P'}) plt.clabel(la, fmt={-1000: 'A', -12: 'A'}) plt.clabel(lb, fmt={-1000: 'B', -12: 'B'}) plt.plot(vs, z_cutoff, 'k--') plt.xlim(vs.min(), vs.max()) plt.ylim(zs.min(), zs.max()) plt.xlabel('v') plt.ylabel('z') def main(): plt.clf() plt.subplot(121) do_plot(True) plt.title('Struve H') plt.subplot(122) do_plot(False) plt.title('Struve L') plt.savefig('struve_convergence.png') plt.show() if __name__ == "__main__": import os import sys if '--main' in sys.argv: main() else: import subprocess subprocess.call([sys.executable, os.path.join('..', '..', '..', 'runtests.py'), '-g', '--python', __file__, '--main'])
mit
antoinehirtz/jupyterWorkflow
jupyterworkflow/data.py
1
1048
import os from urllib.request import urlretrieve import pandas as pd FERMONT_URL = 'https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD' def get_fremont_data(filename='Fremont.csv', url=FERMONT_URL, force_download=False): """Download and cache the Fremont data Parameters ---------- filename : string (optional) location to save the data url : string (optional) web location of the data force_download : Bool (optional) if True, force redownload of data Returns ------- data : pandas.DataFrame The Fremont bridge data """ if force_download or not os.path.exists(filename): urlretrieve(URL, filename) data = pd.read_csv('Fremont.csv', index_col='Date') try: data.index = pd.to_datetime(data.index, format='%m/%d/%Y %H:%M:%S %p') except TypeError: data.index = pd.to_datetime(data.index) data.columns = ['West', 'East'] data['Total'] = data['West'] + data['East'] return data
mit
plissonf/scikit-learn
sklearn/decomposition/nmf.py
100
19059
""" Non-negative matrix factorization """ # Author: Vlad Niculae # Lars Buitinck <[email protected]> # Author: Chih-Jen Lin, National Taiwan University (original projected gradient # NMF implementation) # Author: Anthony Di Franco (original Python and NumPy port) # License: BSD 3 clause from __future__ import division from math import sqrt import warnings import numpy as np import scipy.sparse as sp from scipy.optimize import nnls from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.extmath import randomized_svd, safe_sparse_dot, squared_norm from ..utils.validation import check_is_fitted, check_non_negative def safe_vstack(Xs): if any(sp.issparse(X) for X in Xs): return sp.vstack(Xs) else: return np.vstack(Xs) def norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return sqrt(squared_norm(x)) def trace_dot(X, Y): """Trace of np.dot(X, Y.T).""" return np.dot(X.ravel(), Y.ravel()) def _sparseness(x): """Hoyer's measure of sparsity for a vector""" sqrt_n = np.sqrt(len(x)) return (sqrt_n - np.linalg.norm(x, 1) / norm(x)) / (sqrt_n - 1) def _initialize_nmf(X, n_components, variant=None, eps=1e-6, random_state=None): """NNDSVD algorithm for NMF initialization. Computes a good initial guess for the non-negative rank k matrix approximation for X: X = WH Parameters ---------- X : array, [n_samples, n_features] The data matrix to be decomposed. n_components : array, [n_components, n_features] The number of components desired in the approximation. variant : None | 'a' | 'ar' The variant of the NNDSVD algorithm. Accepts None, 'a', 'ar' None: leaves the zero entries as zero 'a': Fills the zero entries with the average of X 'ar': Fills the zero entries with standard normal random variates. Default: None eps: float Truncate all values less then this in output to zero. random_state : numpy.RandomState | int, optional The generator used to fill in the zeros, when using variant='ar' Default: numpy.random Returns ------- (W, H) : Initial guesses for solving X ~= WH such that the number of columns in W is n_components. References ---------- C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ check_non_negative(X, "NMF initialization") if variant not in (None, 'a', 'ar'): raise ValueError("Invalid variant name") random_state = check_random_state(random_state) U, S, V = randomized_svd(X, n_components, random_state=random_state) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if variant == "a": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif variant == "ar": avg = X.mean() W[W == 0] = abs(avg * random_state.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * random_state.randn(len(H[H == 0])) / 100) return W, H def _nls_subproblem(V, W, H, tol, max_iter, sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. min || WH - V ||_2 Parameters ---------- V, W : array-like Constant matrices. H : array-like Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like Solution to the non-negative least squares problem. grad : array-like The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtV = safe_sparse_dot(W.T, V) WtW = np.dot(W.T, W) # values justified in the paper alpha = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtV # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(19): # Gradient step. Hn = H - alpha * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_alpha = not suff_decr if decr_alpha: if suff_decr: H = Hn break else: alpha *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: alpha /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.") return H, grad, n_iter class ProjectedGradientNMF(BaseEstimator, TransformerMixin): """Non-Negative matrix factorization by Projected Gradient (NMF) Read more in the :ref:`User Guide <NMF>`. Parameters ---------- n_components : int or None Number of components, if n_components is not set all components are kept init : 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'random' Method used to initialize the procedure. Default: 'nndsvd' if n_components < n_features, otherwise random. Valid options:: 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness) 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired) 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired) 'random': non-negative random matrices sparseness : 'data' | 'components' | None, default: None Where to enforce sparsity in the model. beta : double, default: 1 Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. eta : double, default: 0.1 Degree of correctness to maintain, if sparsity is not None. Smaller values mean larger error. tol : double, default: 1e-4 Tolerance value used in stopping conditions. max_iter : int, default: 200 Number of iterations to compute. nls_max_iter : int, default: 2000 Number of iterations in NLS subproblem. random_state : int or RandomState Random number generator seed control. Attributes ---------- components_ : array, [n_components, n_features] Non-negative components of the data. reconstruction_err_ : number Frobenius norm of the matrix difference between the training data and the reconstructed data from the fit produced by the model. ``|| X - WH ||_2`` n_iter_ : int Number of iterations run. Examples -------- >>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from sklearn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init='random', ... random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness=None, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.00746... >>> model = ProjectedGradientNMF(n_components=2, ... sparseness='components', init='random', random_state=0) >>> model.fit(X) #doctest: +ELLIPSIS +NORMALIZE_WHITESPACE ProjectedGradientNMF(beta=1, eta=0.1, init='random', max_iter=200, n_components=2, nls_max_iter=2000, random_state=0, sparseness='components', tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [ 0. , 0.4681982 ]]) >>> model.reconstruction_err_ #doctest: +ELLIPSIS 0.513... References ---------- This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/ P. Hoyer. Non-negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research 2004. NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://tinyurl.com/nndsvd """ def __init__(self, n_components=None, init=None, sparseness=None, beta=1, eta=0.1, tol=1e-4, max_iter=200, nls_max_iter=2000, random_state=None): self.n_components = n_components self.init = init self.tol = tol if sparseness not in (None, 'data', 'components'): raise ValueError( 'Invalid sparseness parameter: got %r instead of one of %r' % (sparseness, (None, 'data', 'components'))) self.sparseness = sparseness self.beta = beta self.eta = eta self.max_iter = max_iter self.nls_max_iter = nls_max_iter self.random_state = random_state def _init(self, X): n_samples, n_features = X.shape init = self.init if init is None: if self.n_components_ < n_features: init = 'nndsvd' else: init = 'random' rng = check_random_state(self.random_state) if init == 'nndsvd': W, H = _initialize_nmf(X, self.n_components_, random_state=rng) elif init == 'nndsvda': W, H = _initialize_nmf(X, self.n_components_, variant='a', random_state=rng) elif init == 'nndsvdar': W, H = _initialize_nmf(X, self.n_components_, variant='ar', random_state=rng) elif init == "random": W = rng.randn(n_samples, self.n_components_) # we do not write np.abs(W, out=W) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(W, W) H = rng.randn(self.n_components_, n_features) np.abs(H, H) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'nndsvd', 'nndsvda', 'nndsvdar', 'random'))) return W, H def _update_W(self, X, H, W, tolW): n_samples, n_features = X.shape if self.sparseness is None: W, gradW, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, self.nls_max_iter) elif self.sparseness == 'data': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((1, n_samples))]), safe_vstack([H.T, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), W.T, tolW, self.nls_max_iter) elif self.sparseness == 'components': W, gradW, iterW = _nls_subproblem( safe_vstack([X.T, np.zeros((self.n_components_, n_samples))]), safe_vstack([H.T, np.sqrt(self.eta) * np.eye(self.n_components_)]), W.T, tolW, self.nls_max_iter) return W.T, gradW.T, iterW def _update_H(self, X, H, W, tolH): n_samples, n_features = X.shape if self.sparseness is None: H, gradH, iterH = _nls_subproblem(X, W, H, tolH, self.nls_max_iter) elif self.sparseness == 'data': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((self.n_components_, n_features))]), safe_vstack([W, np.sqrt(self.eta) * np.eye(self.n_components_)]), H, tolH, self.nls_max_iter) elif self.sparseness == 'components': H, gradH, iterH = _nls_subproblem( safe_vstack([X, np.zeros((1, n_features))]), safe_vstack([W, np.sqrt(self.beta) * np.ones((1, self.n_components_))]), H, tolH, self.nls_max_iter) return H, gradH, iterH def fit_transform(self, X, y=None): """Learn a NMF model for the data X and returns the transformed data. This is more efficient than calling fit followed by transform. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- data: array, [n_samples, n_components] Transformed data """ X = check_array(X, accept_sparse='csr') check_non_negative(X, "NMF.fit") n_samples, n_features = X.shape if not self.n_components: self.n_components_ = n_features else: self.n_components_ = self.n_components W, H = self._init(X) gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = norm(np.r_[gradW, gradH.T]) tolW = max(0.001, self.tol) * init_grad # why max? tolH = tolW tol = self.tol * init_grad for n_iter in range(1, self.max_iter + 1): # stopping condition # as discussed in paper proj_norm = norm(np.r_[gradW[np.logical_or(gradW < 0, W > 0)], gradH[np.logical_or(gradH < 0, H > 0)]]) if proj_norm < tol: break # update W W, gradW, iterW = self._update_W(X, H, W, tolW) if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = self._update_H(X, H, W, tolH) if iterH == 1: tolH = 0.1 * tolH if not sp.issparse(X): error = norm(X - np.dot(W, H)) else: sqnorm_X = np.dot(X.data, X.data) norm_WHT = trace_dot(np.dot(np.dot(W.T, W), H), H) cross_prod = trace_dot((X * H.T), W) error = sqrt(sqnorm_X + norm_WHT - 2. * cross_prod) self.reconstruction_err_ = error self.comp_sparseness_ = _sparseness(H.ravel()) self.data_sparseness_ = _sparseness(W.ravel()) H[H == 0] = 0 # fix up negative zeros self.components_ = H if n_iter == self.max_iter: warnings.warn("Iteration limit reached during fit. Solving for W exactly.") return self.transform(X) self.n_iter_ = n_iter return W def fit(self, X, y=None, **params): """Learn a NMF model for the data X. Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be decomposed Returns ------- self """ self.fit_transform(X, **params) return self def transform(self, X): """Transform the data X according to the fitted NMF model Parameters ---------- X: {array-like, sparse matrix}, shape = [n_samples, n_features] Data matrix to be transformed by the model Returns ------- data: array, [n_samples, n_components] Transformed data """ check_is_fitted(self, 'n_components_') X = check_array(X, accept_sparse='csc') Wt = np.zeros((self.n_components_, X.shape[0])) check_non_negative(X, "ProjectedGradientNMF.transform") if sp.issparse(X): Wt, _, _ = _nls_subproblem(X.T, self.components_.T, Wt, tol=self.tol, max_iter=self.nls_max_iter) else: for j in range(0, X.shape[0]): Wt[:, j], _ = nnls(self.components_.T, X[j, :]) return Wt.T class NMF(ProjectedGradientNMF): __doc__ = ProjectedGradientNMF.__doc__ pass
bsd-3-clause
ACLARKNET/aclarknet-database
aclarknet/database/plot.py
1
1471
from django.http import HttpResponse from django.utils import timezone from io import BytesIO from matplotlib.dates import DateFormatter from matplotlib.dates import date2num from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from .query import get_query_string def get_plot(request): # http://stackoverflow.com/a/5515994/185820 """ """ costs = get_query_string(request, 'costs') grosses = get_query_string(request, 'grosses') nets = get_query_string(request, 'nets') # Cost x1 = [ # http://matplotlib.org/examples/api/date_demo.html date2num(timezone.datetime.strptime(i[1], '%Y-%m-%d')) for i in costs ] y1 = [i[0] for i in costs] # Gross x2 = [ date2num(timezone.datetime.strptime(i[1], '%Y-%m-%d')) for i in grosses ] y2 = [i[0] for i in grosses] # Net x3 = [date2num(timezone.datetime.strptime(i[1], '%Y-%m-%d')) for i in nets] y3 = [i[0] for i in nets] figure = Figure() canvas = FigureCanvasAgg(figure) axes = figure.add_subplot(1, 1, 1) axes.grid(True) axes.plot(x1, y1) axes.plot(x2, y2) axes.plot(x3, y3) axes.xaxis.set_major_formatter(DateFormatter('%m')) # write image data to a string buffer and get the PNG image bytes buf = BytesIO() canvas.print_png(buf) data = buf.getvalue() # write image bytes back to the browser return HttpResponse(data, content_type="image/png")
mit
francisliyy/caravel-aidp
caravel/dataframe.py
3
3272
""" Caravel wrapper around pandas.DataFrame. TODO(bkyryliuk): add support for the conventions like: *_dim or dim_* dimensions, *_ts, ts_*, ds_*, *_ds - datetime, etc. TODO(bkyryliuk): recognize integer encoded enums. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import pandas as pd import numpy as np INFER_COL_TYPES_THRESHOLD = 95 INFER_COL_TYPES_SAMPLE_SIZE = 100 # http://pandas.pydata.org/pandas-docs/stable/internals.html# # subclassing-pandas-data-structures class CaravelDataFrame(object): def __init__(self, df): self.__df = df.where((pd.notnull(df)), None) @property def size(self): return len(self.__df.index) @property def data(self): return self.__df.to_dict(orient='records') @property def columns_dict(self): """Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg. """ if self.__df.empty: return None columns = [] sample_size = min(INFER_COL_TYPES_SAMPLE_SIZE, len(self.__df.index)) sample = self.__df if sample_size: sample = self.__df.sample(sample_size) for col in self.__df.dtypes.keys(): column = { 'name': col, 'type': self.__df.dtypes[col].name, 'is_date': is_date(self.__df.dtypes[col]), 'is_dim': is_dimension(self.__df.dtypes[col], col), } agg = agg_func(self.__df.dtypes[col], col) if agg_func: column['agg'] = agg if column['type'] == 'object': # check if encoded datetime if (datetime_conversion_rate(sample[col]) > INFER_COL_TYPES_THRESHOLD): column.update({ 'type': 'datetime_string', 'is_date': True, 'is_dim': False, 'agg': None }) # 'agg' is optional attribute if not column['agg']: column.pop('agg', None) columns.append(column) return columns # It will give false positives on the numbers that are stored as strings. # It is hard to distinguish integer numbers and timestamps def datetime_conversion_rate(data_series): success = 0 total = 0 for value in data_series: total = total + 1 try: pd.to_datetime(value) success = success + 1 except Exception: continue return 100 * success / total def is_date(dtype): return dtype.name.startswith('datetime') def is_dimension(dtype, column_name): if is_id(column_name): return False return dtype == np.object or dtype == np.bool def is_id(column_name): return column_name.startswith('id') or column_name.endswith('id') def agg_func(dtype, column_name): # consider checking for key substring too. if is_id(column_name): return 'count_distinct' if np.issubdtype(dtype, np.number): return 'sum' return None
apache-2.0
codyhan94/epidemic-graph-inference
scripts/generaltest.py
1
2557
"""This is a general file used to test the basic functionality of our system""" from __future__ import print_function from pdb import set_trace import networkx as nx import matplotlib.pyplot as plt import math import sys, os sys.path.append(os.getcwd()) # CONSTANTS GENERATOR = "TREE" # or "GNP" graphfile = "data/testin.graphml" inferredfile = "data/testout.graphml" from graph_inference.graphs.gnp import GNPGraph from graph_inference.graphs.tree import TreeGraph from graph_inference.sim.sirsim import SIRSim from graph_inference.sim.sisim import SISim from graph_inference.solver.greedysolver import GreedySolver from graph_inference.analysis.baseanalysis import BaseAnalysis def circlepos(G, r0=10): pos = {} d = max(G.degree().values()) n = G.number_of_nodes() for node in G.nodes(): deg = 2 * math.pi * int(node) / n r = r0 * (1 - float(G.degree(node)) / d) + 1 pos[node] = (r * math.sin(deg), r * math.cos(deg)) return pos if __name__ == "__main__": n = 100 if GENERATOR is "TREE": graph = TreeGraph() graph.generate(n, .2) else: graph = GNPGraph() graph.generate(n=n, p=1./n, directed=True) print(graphfile, "created") n_cascades = 500 p_init = 0.05 model = SIRSim(graph.G, n_cascades, p_init) cascades = model.run() print() print("Done simulating! Now solving...") solver = GreedySolver(cascades) inferred = solver.solve_graph() print() print("Solved graph saved to", inferredfile) print() print("Starting analysis...") analysis = BaseAnalysis(graph.G, inferred) print("correct edges", analysis.edgeCorrect()) print("missing edges:", analysis.edgeError()) print("extra edges:", analysis.edgeExtra()) print("edge number:", analysis.edgeDifference()) print("degree sequence", analysis.degreeSequence()) print("degree difference", analysis.nodeDegreeDifference()) print("similarity = ", analysis.similarity()) # Make plots, using the dot package to make trees look nice. plt.figure(1) plt.title('Original Graph') pos = nx.graphviz_layout(analysis.G, prog='dot') # pos = circlepos(analysis.G) nx.draw(analysis.G, pos, with_labels=True) plt.figure(2) plt.title('Analyzed Graph') label = "{} cascades with p_init = {}.".format(n_cascades, p_init) plt.figtext(0.3, 0.1, label) pos = nx.graphviz_layout(analysis.H, prog='dot') # pos = circlepos(analysis.G) nx.draw(analysis.H, pos, with_labels=True) # plt.show()
mit
annoviko/pyclustering
pyclustering/cluster/bang.py
1
44713
"""! @brief Cluster analysis algorithm: BANG. @details Implementation based on paper @cite inproceedings::bang::1. @authors Andrei Novikov ([email protected]) @date 2014-2020 @copyright BSD-3-Clause """ import itertools import matplotlib import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.animation as animation from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.encoder import type_encoding from pyclustering.utils import data_corners from pyclustering.utils.color import color as color_list class bang_visualizer: """! @brief Visualizer of BANG algorithm's results. @details BANG visualizer provides visualization services that are specific for BANG algorithm. """ __maximum_density_alpha = 0.6 @staticmethod def show_blocks(directory): """! @brief Show BANG-blocks (leafs only) in data space. @details BANG-blocks represents grid that was used for clustering process. @param[in] directory (bang_directory): Directory that was created by BANG algorithm during clustering process. """ dimension = len(directory.get_data()[0]) amount_canvases = 1 if dimension > 1: amount_canvases = int(dimension * (dimension - 1) / 2) figure = plt.figure() grid_spec = gridspec.GridSpec(1, amount_canvases) pairs = list(itertools.combinations(range(dimension), 2)) if len(pairs) == 0: pairs = [(0, 0)] for index in range(amount_canvases): ax = figure.add_subplot(grid_spec[index]) bang_visualizer.__draw_blocks(ax, directory.get_leafs(), pairs[index]) bang_visualizer.__draw_two_dimension_data(ax, directory.get_data(), pairs[index]) plt.show() plt.close(figure) @staticmethod def show_dendrogram(dendrogram): """! @brief Display dendrogram of BANG-blocks. @param[in] dendrogram (list): List representation of dendrogram of BANG-blocks. @see bang.get_dendrogram() """ figure = plt.figure() axis = plt.subplot(1, 1, 1) current_position = 0 for index_cluster in range(len(dendrogram)): densities = [ block.get_density() for block in dendrogram[index_cluster] ] xrange = range(current_position, current_position + len(densities)) axis.bar(xrange, densities, 1.0, linewidth=0.0, color=color_list.get_color(index_cluster)) current_position += len(densities) axis.set_ylabel("density") axis.set_xlabel("block") axis.xaxis.set_ticklabels([]) plt.xlim([-0.5, current_position - 0.5]) plt.show() plt.close(figure) @staticmethod def show_clusters(data, clusters, noise=None): """! @brief Display BANG clustering results. @param[in] data (list): Dataset that was used for clustering. @param[in] clusters (array_like): Clusters that were allocated by the algorithm. @param[in] noise (array_like): Noise that were allocated by the algorithm. """ visualizer = cluster_visualizer() visualizer.append_clusters(clusters, data) visualizer.append_cluster(noise or [], data, marker='x') figure = visualizer.show() visualizer.close(figure) @staticmethod def __draw_two_dimension_data(ax, data, pair): """! @brief Display data in two-dimensional canvas. @param[in] ax (Axis): Canvas where data should be displayed. @param[in] data (list): Data points that should be displayed. @param[in] pair (tuple): Pair of dimension indexes. """ ax.set_xlabel("x%d" % pair[0]) ax.set_ylabel("x%d" % pair[1]) for point in data: if len(data[0]) > 1: ax.plot(point[pair[0]], point[pair[1]], color='red', marker='.') else: ax.plot(point[pair[0]], 0, color='red', marker='.') ax.yaxis.set_ticklabels([]) @staticmethod def __draw_blocks(ax, blocks, pair): """! @brief Display BANG-blocks on specified figure. @param[in] ax (Axis): Axis where bang-blocks should be displayed. @param[in] blocks (list): List of blocks that should be displyed. @param[in] pair (tuple): Pair of coordinate index that should be displayed. """ ax.grid(False) density_scale = blocks[-1].get_density() for block in blocks: bang_visualizer.__draw_block(ax, pair, block, density_scale) @staticmethod def __draw_block(ax, pair, block, density_scale): """! @brief Display BANG-block on the specified ax. @param[in] ax (Axis): Axis where block should be displayed. @param[in] pair (tuple): Pair of coordinate index that should be displayed. @param[in] block (bang_block): BANG-block that should be displayed. @param[in] density_scale (double): Max density to display density of the block by appropriate tone. """ max_corner, min_corner = bang_visualizer.__get_rectangle_description(block, pair) belong_cluster = block.get_cluster() is not None if density_scale != 0.0: density_scale = bang_visualizer.__maximum_density_alpha * block.get_density() / density_scale face_color = matplotlib.colors.to_rgba('blue', alpha=density_scale) edge_color = matplotlib.colors.to_rgba('black', alpha=1.0) rect = patches.Rectangle(min_corner, max_corner[0] - min_corner[0], max_corner[1] - min_corner[1], fill=belong_cluster, facecolor=face_color, edgecolor=edge_color, linewidth=0.5) ax.add_patch(rect) @staticmethod def __get_rectangle_description(block, pair): """! @brief Create rectangle description for block in specific dimension. @param[in] pair (tuple): Pair of coordinate index that should be displayed. @param[in] block (bang_block): BANG-block that should be displayed @return (tuple) Pair of corners that describes rectangle. """ max_corner, min_corner = block.get_spatial_block().get_corners() max_corner = [max_corner[pair[0]], max_corner[pair[1]]] min_corner = [min_corner[pair[0]], min_corner[pair[1]]] if pair == (0, 0): max_corner[1], min_corner[1] = 1.0, -1.0 return max_corner, min_corner class bang_animator: """! @brief Provides service for creating 2-D animation using BANG clustering results. @details The animator does not support visualization of clustering process where non 2-dimensional was used. Code example of animation of BANG clustering process: @code from pyclustering.cluster.bang import bang, bang_animator from pyclustering.utils import read_sample from pyclustering.samples.definitions import FCPS_SAMPLES # Read data two dimensional data. data = read_sample(FCPS_SAMPLES.SAMPLE_LSUN) # Create instance of BANG algorithm. bang_instance = bang(data, 9) bang_instance.process() # Obtain clustering results. clusters = bang_instance.get_clusters() noise = bang_instance.get_noise() directory = bang_instance.get_directory() # Create BANG animation using class 'bang_animator': animator = bang_animator(directory, clusters) animator.animate() @endcode """ def __init__(self, directory, clusters): """! @brief Creates BANG animator instance. @param[in] directory (bang_directory): BANG directory that was formed during BANG clustering process. @param[in] clusters (list): Allocated clusters during BANG clustering process. """ self.__directory = directory self.__clusters = clusters self.__noise = [] self.__current_block = 0 self.__current_level = 0 self.__level_blocks = directory.get_level(0) self.__figure = plt.figure() self.__ax = self.__figure.add_subplot(1, 1, 1) self.__special_frame = 0 self.__validate_arguments() def __del__(self): """! @brief Destructor of the BANG animator. """ plt.close(self.__figure) def __validate_arguments(self): """! @brief Check correctness of input arguments and throw exception if incorrect is found. """ if len(self.__directory.get_data()[0]) != 2: raise ValueError("Impossible to animate BANG clustering process for non 2D data.") def __increment_block(self): """! @brief Increment BANG block safely by updating block index, level and level block. """ self.__current_block += 1 if self.__current_block >= len(self.__level_blocks): self.__current_block = 0 self.__current_level += 1 if self.__current_level < self.__directory.get_height(): self.__level_blocks = self.__directory.get_level(self.__current_level) def __draw_block(self, block, block_alpha=0.0): """! @brief Display single BANG block on axis. @param[in] block (bang_block): BANG block that should be displayed. @param[in] block_alpha (double): Transparency level - value of alpha. """ max_corner, min_corner = block.get_spatial_block().get_corners() face_color = matplotlib.colors.to_rgba('blue', alpha=block_alpha) edge_color = matplotlib.colors.to_rgba('black', alpha=1.0) rect = patches.Rectangle(min_corner, max_corner[0] - min_corner[0], max_corner[1] - min_corner[1], fill=True, facecolor=face_color, edgecolor=edge_color, linewidth=0.5) self.__ax.add_patch(rect) def __draw_leaf_density(self): """! @brief Display densities by filling blocks by appropriate colors. """ leafs = self.__directory.get_leafs() density_scale = leafs[-1].get_density() if density_scale == 0.0: density_scale = 1.0 for block in leafs: alpha = 0.8 * block.get_density() / density_scale self.__draw_block(block, alpha) def __draw_clusters(self): """! @brief Display clusters and outliers using different colors. """ data = self.__directory.get_data() for index_cluster in range(len(self.__clusters)): color = color_list.get_color(index_cluster) self.__draw_cluster(data, self.__clusters[index_cluster], color, '.') self.__draw_cluster(self.__directory.get_data(), self.__noise, 'gray', 'x') def __draw_cluster(self, data, cluster, color, marker): """! @brief Draw 2-D single cluster on axis using specified color and marker. """ for item in cluster: self.__ax.plot(data[item][0], data[item][1], color=color, marker=marker) def animate(self, animation_velocity=75, movie_fps=25, movie_filename=None): """! @brief Animates clustering process that is performed by BANG algorithm. @param[in] animation_velocity (uint): Interval between frames in milliseconds (for run-time animation only). @param[in] movie_fps (uint): Defines frames per second (for rendering movie only). @param[in] movie_filename (string): If it is specified then animation will be stored to file that is specified in this parameter. """ def init_frame(): self.__figure.clf() self.__ax = self.__figure.add_subplot(1, 1, 1) self.__figure.suptitle("BANG algorithm", fontsize=18, fontweight='bold') for point in self.__directory.get_data(): self.__ax.plot(point[0], point[1], color='red', marker='.') return frame_generation(0) def frame_generation(index_iteration): if self.__current_level < self.__directory.get_height(): block = self.__level_blocks[self.__current_block] self.__draw_block(block) self.__increment_block() else: if self.__special_frame == 0: self.__draw_leaf_density() elif self.__special_frame == 15: self.__draw_clusters() elif self.__special_frame == 30: self.__figure.clf() self.__ax = self.__figure.add_subplot(1, 1, 1) self.__figure.suptitle("BANG algorithm", fontsize=18, fontweight='bold') self.__draw_clusters() self.__special_frame += 1 iterations = len(self.__directory) + 60 # print("Total number of iterations: %d" % iterations) cluster_animation = animation.FuncAnimation(self.__figure, frame_generation, iterations, interval=animation_velocity, init_func=init_frame, repeat_delay=5000) if movie_filename is not None: cluster_animation.save(movie_filename, writer = 'ffmpeg', fps = movie_fps, bitrate = 3500) else: plt.show() class bang_directory: """! @brief BANG directory stores BANG-blocks that represents grid in data space. @details The directory build BANG-blocks in binary tree manner. Leafs of the tree stored separately to provide a direct access to the leafs that should be analysed. Leafs cache data-points. """ def __init__(self, data, levels, **kwargs): """! @brief Create BANG directory - basically tree structure with direct access to leafs. @param[in] data (list): Input data that is clustered. @param[in] levels (uint): Height of the tree of blocks. @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'observe'). <b>Keyword Args:</b><br> - observe (bool): If 'True' then blocks on each level are stored. - density_threshold (double): The lowest level of density when contained data in bang-block is considered as a noise and there is no need to split it till the last level. Be aware that this parameter is used with 'amount_threshold' parameter. - amount_threshold (uint): Amount of points in the block when it contained data in bang-block is considered as a noise and there is no need to split it till the last level. """ self.__data = data self.__levels = levels self.__density_threshold = kwargs.get('density_threshold', 0.0) self.__amount_density = kwargs.get('amount_threshold', 0) self.__leafs = [] self.__root = None self.__level_blocks = [] self.__size = 0 self.__observe = kwargs.get('observe', True) self.__create_directory() def __len__(self): """! @brief Returns amount of blocks that is stored in the directory @return (uint) Amount of blocks in the BANG directory. """ return self.__size def get_data(self): """! @brief Return data that is stored in the directory. @return (list) List of points that represents stored data. """ return self.__data def get_leafs(self): """! @brief Return leafs - the smallest blocks. @details Some leafs can be bigger than others because splitting is not performed for blocks whose density is less than threshold. @return (list) List of blocks that are leafs of BANG directory. """ return self.__leafs def get_level(self, level): """! @brief Returns BANG blocks on the specific level. @param[in] level (uint): Level of tree where BANG blocks are located. @return (list) List of BANG blocks on the specific level. """ return self.__level_blocks[level] def get_height(self): """! @brief Returns height of BANG tree where blocks are stored. @return (uint) Height of BANG tree. """ return len(self.__level_blocks) def __create_directory(self): """! @brief Create BANG directory as a tree with separate storage for leafs. """ min_corner, max_corner = data_corners(self.__data) data_block = spatial_block(max_corner, min_corner) cache_require = (self.__levels == 1) self.__root = bang_block(self.__data, 0, 0, data_block, cache_require) if cache_require: self.__leafs.append(self.__root) self.__store_level_blocks([self.__root]) else: self.__build_directory_levels() def __store_level_blocks(self, level_blocks): """! @brief Store level blocks if observing is enabled. @param[in] level_blocks (list): Created blocks on a new level. """ self.__size += len(level_blocks) if self.__observe is True: self.__level_blocks.append(level_blocks) def __build_directory_levels(self): """! @brief Build levels of direction if amount of level is greater than one. """ previous_level_blocks = [ self.__root ] for level in range(1, self.__levels): previous_level_blocks = self.__build_level(previous_level_blocks, level) self.__store_level_blocks(previous_level_blocks) self.__leafs = sorted(self.__leafs, key=lambda block: block.get_density()) def __build_level(self, previous_level_blocks, level): """! @brief Build new level of directory. @param[in] previous_level_blocks (list): BANG-blocks on the previous level. @param[in] level (uint): Level number that should be built. @return (list) New block on the specified level. """ current_level_blocks = [] split_dimension = level % len(self.__data[0]) cache_require = (level == self.__levels - 1) for block in previous_level_blocks: self.__split_block(block, split_dimension, cache_require, current_level_blocks) if cache_require: self.__leafs += current_level_blocks return current_level_blocks def __split_block(self, block, split_dimension, cache_require, current_level_blocks): """! @brief Split specific block in specified dimension. @details Split is not performed for block whose density is lower than threshold value, such blocks are putted to leafs. @param[in] block (bang_block): BANG-block that should be split. @param[in] split_dimension (uint): Dimension at which splitting should be performed. @param[in] cache_require (bool): Defines when points in cache should be stored during density calculation. @param[in|out] current_level_blocks (list): Block storage at the current level where new blocks should be added. """ if block.get_density() <= self.__density_threshold or len(block) <= self.__amount_density: self.__leafs.append(block) else: left, right = block.split(split_dimension, cache_require) current_level_blocks.append(left) current_level_blocks.append(right) class spatial_block: """! @brief Geometrical description of BANG block in data space. @details Provides services related to spatial functionality and used by bang_block @see bang_block """ def __init__(self, max_corner, min_corner): """! @brief Creates spatial block in data space. @param[in] max_corner (array_like): Maximum corner coordinates of the block. @param[in] min_corner (array_like): Minimal corner coordinates of the block. """ self.__max_corner = max_corner self.__min_corner = min_corner self.__volume = self.__calculate_volume() def __str__(self): """! @brief Returns string block description. @return String representation of the block. """ return "(max: %s; min: %s)" % (self.__max_corner, self.__min_corner) def __contains__(self, point): """! @brief Point is considered as contained if it lies in block (belong to it). @return (bool) True if point is in block, otherwise False. """ for i in range(len(point)): if point[i] < self.__min_corner[i] or point[i] > self.__max_corner[i]: return False return True def get_corners(self): """! @brief Return spatial description of current block. @return (tuple) Pair of maximum and minimum corners (max_corner, min_corner). """ return self.__max_corner, self.__min_corner def get_volume(self): """! @brief Returns volume of current block. @details Volume block has uncommon mining here: for 1D is length of a line, for 2D is square of rectangle, for 3D is volume of 3D figure, and for ND is volume of ND figure. @return (double) Volume of current block. """ return self.__volume def split(self, dimension): """! @brief Split current block into two spatial blocks in specified dimension. @param[in] dimension (uint): Dimension where current block should be split. @return (tuple) Pair of new split blocks from current block. """ first_max_corner = self.__max_corner[:] second_min_corner = self.__min_corner[:] split_border = (self.__max_corner[dimension] + self.__min_corner[dimension]) / 2.0 first_max_corner[dimension] = split_border second_min_corner[dimension] = split_border return spatial_block(first_max_corner, self.__min_corner), spatial_block(self.__max_corner, second_min_corner) def is_neighbor(self, block): """! @brief Performs calculation to identify whether specified block is neighbor of current block. @details It also considers diagonal blocks as neighbors. @param[in] block (spatial_block): Another block that is check whether it is neighbor. @return (bool) True is blocks are neighbors, False otherwise. """ if block is not self: block_max_corner, _ = block.get_corners() dimension = len(block_max_corner) neighborhood_score = self.__calculate_neighborhood(block_max_corner) if neighborhood_score == dimension: return True return False def __calculate_neighborhood(self, block_max_corner): """! @brief Calculates neighborhood score that defined whether blocks are neighbors. @param[in] block_max_corner (list): Maximum coordinates of other block. @return (uint) Neighborhood score. """ dimension = len(block_max_corner) length_edges = [self.__max_corner[i] - self.__min_corner[i] for i in range(dimension)] neighborhood_score = 0 for i in range(dimension): diff = abs(block_max_corner[i] - self.__max_corner[i]) if diff <= length_edges[i] + length_edges[i] * 0.0001: neighborhood_score += 1 return neighborhood_score def __calculate_volume(self): """! @brief Calculates volume of current spatial block. @details If empty dimension is detected (where all points has the same value) then such dimension is ignored during calculation of volume. @return (double) Volume of current spatial block. """ volume = 0.0 for i in range(0, len(self.__max_corner)): side_length = self.__max_corner[i] - self.__min_corner[i] if side_length != 0.0: if volume == 0.0: volume = side_length else: volume *= side_length return volume class bang_block: """! @brief BANG-block that represent spatial region in data space. """ def __init__(self, data, region, level, space_block, cache_points=False): """! @brief Create BANG-block. @param[in] data (list): List of points that are processed. @param[in] region (uint): Region number - unique value on a level. @param[in] level (uint): Level number where block is created. @param[in] space_block (spatial_block): Spatial block description in data space. @param[in] cache_points (bool): if True then points are stored in memory (used for leaf blocks). """ self.__data = data self.__region_number = region self.__level = level self.__spatial_block = space_block self.__cache_points = cache_points self.__cluster = None self.__points = None self.__amount_points = self.__get_amount_points() self.__density = self.__calculate_density(self.__amount_points) def __str__(self): """! @brief Returns string representation of BANG-block using region number and level where block is located. """ return "(" + str(self.__region_number) + ", " + str(self.__level) + ")" def __len__(self): """! @brief Returns block size defined by amount of points that are contained by this block. """ return self.__amount_points def get_region(self): """! @brief Returns region number of BANG-block. @details Region number is unique on among region numbers on a directory level. Pair of region number and level is unique for all directory. @return (uint) Region number. """ return self.__region_number def get_density(self): """! @brief Returns density of the BANG-block. @return (double) BANG-block density. """ return self.__density def get_cluster(self): """! @brief Return index of cluster to which the BANG-block belongs to. @details Index of cluster may have None value if the block was not assigned to any cluster. @return (uint) Index of cluster or None if the block does not belong to any cluster. """ return self.__cluster def get_spatial_block(self): """! @brief Return spatial block - BANG-block description in data space. @return (spatial_block) Spatial block of the BANG-block. """ return self.__spatial_block def get_points(self): """! @brief Return points that covers by the BANG-block. @return (list) List of point indexes that are covered by the block. """ if self.__points is None: self.__cache_covered_data() return self.__points def set_cluster(self, index): """! @brief Assign cluster to the BANG-block by index. @param[in] index (uint): Index cluster that is assigned to BANG-block. """ self.__cluster = index def is_neighbor(self, block): """! @brief Performs calculation to check whether specified block is neighbor to the current. @param[in] block (bang_block): Other BANG-block that should be checked for neighborhood. @return (bool) True if blocks are neighbors, False if blocks are not neighbors. """ return self.get_spatial_block().is_neighbor(block.get_spatial_block()) def split(self, split_dimension, cache_points): """! @brief Split BANG-block into two new blocks in specified dimension. @param[in] split_dimension (uint): Dimension where block should be split. @param[in] cache_points (bool): If True then covered points are cached. Used for leaf blocks. @return (tuple) Pair of BANG-block that were formed from the current. """ left_region_number = self.__region_number right_region_number = self.__region_number + 2 ** self.__level first_spatial_block, second_spatial_block = self.__spatial_block.split(split_dimension) left = bang_block(self.__data, left_region_number, self.__level + 1, first_spatial_block, cache_points) right = bang_block(self.__data, right_region_number, self.__level + 1, second_spatial_block, cache_points) return left, right def __calculate_density(self, amount_points): """! @brief Calculates BANG-block density. @param[in] amount_points (uint): Amount of points in block. @return (double) BANG-block density. """ volume = self.__spatial_block.get_volume() if volume != 0.0: return amount_points / volume return 0.0 def __get_amount_points(self): """! @brief Count covered points by the BANG-block and if cache is enable then covered points are stored. @return (uint) Amount of covered points. """ amount = 0 for index in range(len(self.__data)): if self.__data[index] in self.__spatial_block: self.__cache_point(index) amount += 1 return amount def __cache_covered_data(self): """! @brief Cache covered data. """ self.__cache_points = True self.__points = [] for index_point in range(len(self.__data)): if self.__data[index_point] in self.__spatial_block: self.__cache_point(index_point) def __cache_point(self, index): """! @brief Store index points. @param[in] index (uint): Index point that should be stored. """ if self.__cache_points: if self.__points is None: self.__points = [] self.__points.append(index) class bang: """! @brief Class implements BANG grid based clustering algorithm. @details BANG clustering algorithms uses a multidimensional grid structure to organize the value space surrounding the pattern values. The patterns are grouped into blocks and clustered with respect to the blocks by a topological neighbor search algorithm @cite inproceedings::bang::1. Code example of BANG usage: @code from pyclustering.cluster.bang import bang, bang_visualizer from pyclustering.utils import read_sample from pyclustering.samples.definitions import FCPS_SAMPLES # Read data three dimensional data. data = read_sample(FCPS_SAMPLES.SAMPLE_CHAINLINK) # Prepare algorithm's parameters. levels = 11 # Create instance of BANG algorithm. bang_instance = bang(data, levels) bang_instance.process() # Obtain clustering results. clusters = bang_instance.get_clusters() noise = bang_instance.get_noise() directory = bang_instance.get_directory() dendrogram = bang_instance.get_dendrogram() # Visualize BANG clustering results. bang_visualizer.show_blocks(directory) bang_visualizer.show_dendrogram(dendrogram) bang_visualizer.show_clusters(data, clusters, noise) @endcode There is visualization of BANG-clustering of three-dimensional data 'chainlink'. BANG-blocks that were formed during processing are shown on following figure. The darkest color means highest density, blocks that does not cover points are transparent: @image html bang_blocks_chainlink.png "Fig. 1. BANG-blocks that cover input data." Here is obtained dendrogram that can be used for further analysis to improve clustering results: @image html bang_dendrogram_chainlink.png "Fig. 2. BANG dendrogram where the X-axis contains BANG-blocks, the Y-axis contains density." BANG clustering result of 'chainlink' data: @image html bang_clustering_chainlink.png "Fig. 3. BANG clustering result. Data: 'chainlink'." """ def __init__(self, data, levels, ccore=False, **kwargs): """! @brief Create BANG clustering algorithm. @param[in] data (list): Input data (list of points) that should be clustered. @param[in] levels (uint): Amount of levels in tree that is used for splitting (how many times block should be split). For example, if amount of levels is two then surface will be divided into two blocks and each obtained block will be divided into blocks also. @param[in] ccore (bool): Reserved positional argument - not used yet. @param[in] **kwargs: Arbitrary keyword arguments (available arguments: 'observe'). <b>Keyword Args:</b><br> - density_threshold (double): If block density is smaller than this value then contained data by this block is considered as a noise and its points as outliers. Block density is defined by amount of points in block divided by block volume: <i>amount_block_points</i>/<i>block_volume</i>. By default it is 0.0 - means than only empty blocks are considered as noise. Be aware that this parameter is used with parameter 'amount_threshold' - the maximum threshold is considered during processing. - amount_threshold (uint): Amount of points in the block when it contained data in bang-block is considered as a noise and there is no need to split it till the last level. Be aware that this parameter is used with parameter 'density_threshold' - the maximum threshold is considered during processing. """ self.__data = data self.__levels = levels self.__directory = None self.__clusters = [] self.__noise = [] self.__cluster_blocks = [] self.__dendrogram = [] self.__density_threshold = kwargs.get('density_threshold', 0.0) self.__amount_threshold = kwargs.get('amount_threshold', 0) self.__ccore = ccore self.__validate_arguments() def process(self): """! @brief Performs clustering process in line with rules of BANG clustering algorithm. @return (bang) Returns itself (BANG instance). @see get_clusters() @see get_noise() @see get_directory() @see get_dendrogram() """ self.__directory = bang_directory(self.__data, self.__levels, density_threshold=self.__density_threshold, amount_threshold=self.__amount_threshold) self.__allocate_clusters() return self def get_clusters(self): """! @brief Returns allocated clusters. @remark Allocated clusters are returned only after data processing (method process()). Otherwise empty list is returned. @return (list) List of allocated clusters, each cluster contains indexes of objects in list of data. @see process() @see get_noise() """ return self.__clusters def get_noise(self): """! @brief Returns allocated noise. @remark Allocated noise is returned only after data processing (method process()). Otherwise empty list is returned. @return (list) List of indexes that are marked as a noise. @see process() @see get_clusters() """ return self.__noise def get_directory(self): """! @brief Returns grid directory that describes grid of the processed data. @remark Grid directory is returned only after data processing (method process()). Otherwise None value is returned. @return (bang_directory) BANG directory that describes grid of process data. @see process() """ return self.__directory def get_dendrogram(self): """! @brief Returns dendrogram of clusters. @details Dendrogram is created in following way: the density indices of all regions are calculated and sorted in decreasing order for each cluster during clustering process. @remark Dendrogram is returned only after data processing (method process()). Otherwise empty list is returned. """ return self.__dendrogram def get_cluster_encoding(self): """! @brief Returns clustering result representation type that indicate how clusters are encoded. @return (type_encoding) Clustering result representation. @see get_clusters() """ return type_encoding.CLUSTER_INDEX_LIST_SEPARATION def __validate_arguments(self): """! @brief Check input arguments of BANG algorithm and if one of them is not correct then appropriate exception is thrown. """ if len(self.__data) == 0: raise ValueError("Input data is empty (size: '%d')." % len(self.__data)) if self.__levels < 1: raise ValueError("Height of the tree should be greater than 0 (current value: '%d')." % self.__levels) if self.__density_threshold < 0.0: raise ValueError("Density threshold should be greater or equal to 0 (current value: '%d')." % self.__density_threshold) if self.__amount_threshold < 0: raise ValueError("Amount of points threshold should be greater than 0 (current value: '%d')" % self.__amount_threshold) def __allocate_clusters(self): """! @brief Performs cluster allocation using leafs of tree in BANG directory (the smallest cells). """ leaf_blocks = self.__directory.get_leafs() unhandled_block_indexes = set([i for i in range(len(leaf_blocks)) if leaf_blocks[i].get_density() > self.__density_threshold]) current_block = self.__find_block_center(leaf_blocks, unhandled_block_indexes) cluster_index = 0 while current_block is not None: if current_block.get_density() <= self.__density_threshold or len(current_block) <= self.__amount_threshold: break self.__expand_cluster_block(current_block, cluster_index, leaf_blocks, unhandled_block_indexes) current_block = self.__find_block_center(leaf_blocks, unhandled_block_indexes) cluster_index += 1 self.__store_clustering_results(cluster_index, leaf_blocks) def __expand_cluster_block(self, block, cluster_index, leaf_blocks, unhandled_block_indexes): """! @brief Expand cluster from specific block that is considered as a central block. @param[in] block (bang_block): Block that is considered as a central block for cluster. @param[in] cluster_index (uint): Index of cluster that is assigned to blocks that forms new cluster. @param[in] leaf_blocks (list): Leaf BANG-blocks that are considered during cluster formation. @param[in] unhandled_block_indexes (set): Set of candidates (BANG block indexes) to become a cluster member. The parameter helps to reduce traversing among BANG-block providing only restricted set of block that should be considered. """ block.set_cluster(cluster_index) self.__update_cluster_dendrogram(cluster_index, [block]) neighbors = self.__find_block_neighbors(block, leaf_blocks, unhandled_block_indexes) self.__update_cluster_dendrogram(cluster_index, neighbors) for neighbor in neighbors: neighbor.set_cluster(cluster_index) neighbor_neighbors = self.__find_block_neighbors(neighbor, leaf_blocks, unhandled_block_indexes) self.__update_cluster_dendrogram(cluster_index, neighbor_neighbors) neighbors += neighbor_neighbors def __store_clustering_results(self, amount_clusters, leaf_blocks): """! @brief Stores clustering results in a convenient way. @param[in] amount_clusters (uint): Amount of cluster that was allocated during processing. @param[in] leaf_blocks (list): Leaf BANG-blocks (the smallest cells). """ self.__clusters = [[] for _ in range(amount_clusters)] for block in leaf_blocks: index = block.get_cluster() if index is not None: self.__clusters[index] += block.get_points() else: self.__noise += block.get_points() self.__clusters = [ list(set(cluster)) for cluster in self.__clusters ] self.__noise = list(set(self.__noise)) def __find_block_center(self, level_blocks, unhandled_block_indexes): """! @brief Search block that is cluster center for new cluster. @return (bang_block) Central block for new cluster, if cluster is not found then None value is returned. """ for i in reversed(range(len(level_blocks))): if level_blocks[i].get_density() <= self.__density_threshold: return None if level_blocks[i].get_cluster() is None: unhandled_block_indexes.remove(i) return level_blocks[i] return None def __find_block_neighbors(self, block, level_blocks, unhandled_block_indexes): """! @brief Search block neighbors that are parts of new clusters (density is greater than threshold and that are not cluster members yet), other neighbors are ignored. @param[in] block (bang_block): BANG-block for which neighbors should be found (which can be part of cluster). @param[in] level_blocks (list): BANG-blocks on specific level. @param[in] unhandled_block_indexes (set): Blocks that have not been processed yet. @return (list) Block neighbors that can become part of cluster. """ neighbors = [] handled_block_indexes = [] for unhandled_index in unhandled_block_indexes: if block.is_neighbor(level_blocks[unhandled_index]): handled_block_indexes.append(unhandled_index) neighbors.append(level_blocks[unhandled_index]) # Maximum number of neighbors is eight if len(neighbors) == 8: break for handled_index in handled_block_indexes: unhandled_block_indexes.remove(handled_index) return neighbors def __update_cluster_dendrogram(self, index_cluster, blocks): """! @brief Append clustered blocks to dendrogram. @param[in] index_cluster (uint): Cluster index that was assigned to blocks. @param[in] blocks (list): Blocks that were clustered. """ if len(self.__dendrogram) <= index_cluster: self.__dendrogram.append([]) blocks = sorted(blocks, key=lambda block: block.get_density(), reverse=True) self.__dendrogram[index_cluster] += blocks
gpl-3.0
automl/SpySMAC
cave/plot/cdf.py
1
1207
import matplotlib.pyplot as plt import numpy as np def plot_cdf(x_list, y_list, label_list, timeout, out_fn): """ Parameters ---------- x_list, y_list: List[np.array] zip lists and plot all data on one plot label_list: str strings for legend corresponding to x, y timeout: float if set, timeouts are marked at this point out_fn: str filename Returns ------- out_fn: str filename """ f = plt.figure(1, dpi=100, figsize=(10, 10)) ax = f.add_subplot(1, 1, 1) colors = ['red', 'blue', 'green'] for x, y, l, c in zip(x_list, y_list, label_list, colors): ax.step(x, y, color=c, linestyle='-', label=l) ax.legend() ax.grid(True) ax.set_xscale('log') ax.set_ylabel('probability of being solved') ax.set_xlabel('time') # Plot 'timeout' if timeout: ax.text(timeout, ax.get_ylim()[0] - 0.1 * np.abs(ax.get_ylim()[0]), "timeout ", horizontalalignment='center', verticalalignment="top", rotation=30) ax.axvline(x=timeout, linestyle='--') f.tight_layout() f.savefig(out_fn) plt.close(f) return out_fn
bsd-3-clause
rsivapr/scikit-learn
examples/cluster/plot_segmentation_toy.py
8
3318
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import pylab as pl from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels pl.matshow(img) pl.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels pl.matshow(img) pl.matshow(label_im) pl.show()
bsd-3-clause
harisbal/pandas
pandas/core/util/hashing.py
3
10765
""" data hash pandas / numpy objects """ import itertools import numpy as np from pandas._libs import hashing, tslibs from pandas.core.dtypes.generic import ( ABCMultiIndex, ABCIndexClass, ABCSeries, ABCDataFrame) from pandas.core.dtypes.common import ( is_categorical_dtype, is_list_like, is_extension_array_dtype) from pandas.core.dtypes.missing import isna from pandas.core.dtypes.cast import infer_dtype_from_scalar # 16 byte long hashing key _default_hash_key = '0123456789123456' def _combine_hash_arrays(arrays, num_items): """ Parameters ---------- arrays : generator num_items : int Should be the same as CPython's tupleobject.c """ try: first = next(arrays) except StopIteration: return np.array([], dtype=np.uint64) arrays = itertools.chain([first], arrays) mult = np.uint64(1000003) out = np.zeros_like(first) + np.uint64(0x345678) for i, a in enumerate(arrays): inverse_i = num_items - i out ^= a out *= mult mult += np.uint64(82520 + inverse_i + inverse_i) assert i + 1 == num_items, 'Fed in wrong num_items' out += np.uint64(97531) return out def hash_pandas_object(obj, index=True, encoding='utf8', hash_key=None, categorize=True): """ Return a data hash of the Index/Series/DataFrame .. versionadded:: 0.19.2 Parameters ---------- index : boolean, default True include the index in the hash (if Series/DataFrame) encoding : string, default 'utf8' encoding for data & key when strings hash_key : string key to encode, default to _default_hash_key categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. .. versionadded:: 0.20.0 Returns ------- Series of uint64, same length as the object """ from pandas import Series if hash_key is None: hash_key = _default_hash_key if isinstance(obj, ABCMultiIndex): return Series(hash_tuples(obj, encoding, hash_key), dtype='uint64', copy=False) if isinstance(obj, ABCIndexClass): h = hash_array(obj.values, encoding, hash_key, categorize).astype('uint64', copy=False) h = Series(h, index=obj, dtype='uint64', copy=False) elif isinstance(obj, ABCSeries): h = hash_array(obj.values, encoding, hash_key, categorize).astype('uint64', copy=False) if index: index_iter = (hash_pandas_object(obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize).values for _ in [None]) arrays = itertools.chain([h], index_iter) h = _combine_hash_arrays(arrays, 2) h = Series(h, index=obj.index, dtype='uint64', copy=False) elif isinstance(obj, ABCDataFrame): hashes = (hash_array(series.values) for _, series in obj.iteritems()) num_items = len(obj.columns) if index: index_hash_generator = (hash_pandas_object(obj.index, index=False, encoding=encoding, hash_key=hash_key, categorize=categorize).values # noqa for _ in [None]) num_items += 1 hashes = itertools.chain(hashes, index_hash_generator) h = _combine_hash_arrays(hashes, num_items) h = Series(h, index=obj.index, dtype='uint64', copy=False) else: raise TypeError("Unexpected type for hashing %s" % type(obj)) return h def hash_tuples(vals, encoding='utf8', hash_key=None): """ Hash an MultiIndex / list-of-tuples efficiently .. versionadded:: 0.20.0 Parameters ---------- vals : MultiIndex, list-of-tuples, or single tuple encoding : string, default 'utf8' hash_key : string key to encode, default to _default_hash_key Returns ------- ndarray of hashed values array """ is_tuple = False if isinstance(vals, tuple): vals = [vals] is_tuple = True elif not is_list_like(vals): raise TypeError("must be convertible to a list-of-tuples") from pandas import Categorical, MultiIndex if not isinstance(vals, ABCMultiIndex): vals = MultiIndex.from_tuples(vals) # create a list-of-Categoricals vals = [Categorical(vals.labels[level], vals.levels[level], ordered=False, fastpath=True) for level in range(vals.nlevels)] # hash the list-of-ndarrays hashes = (_hash_categorical(cat, encoding=encoding, hash_key=hash_key) for cat in vals) h = _combine_hash_arrays(hashes, len(vals)) if is_tuple: h = h[0] return h def hash_tuple(val, encoding='utf8', hash_key=None): """ Hash a single tuple efficiently Parameters ---------- val : single tuple encoding : string, default 'utf8' hash_key : string key to encode, default to _default_hash_key Returns ------- hash """ hashes = (_hash_scalar(v, encoding=encoding, hash_key=hash_key) for v in val) h = _combine_hash_arrays(hashes, len(val))[0] return h def _hash_categorical(c, encoding, hash_key): """ Hash a Categorical by hashing its categories, and then mapping the codes to the hashes Parameters ---------- c : Categorical encoding : string, default 'utf8' hash_key : string key to encode, default to _default_hash_key Returns ------- ndarray of hashed values array, same size as len(c) """ # Convert ExtensionArrays to ndarrays values = np.asarray(c.categories.values) hashed = hash_array(values, encoding, hash_key, categorize=False) # we have uint64, as we don't directly support missing values # we don't want to use take_nd which will coerce to float # instead, directly construct the result with a # max(np.uint64) as the missing value indicator # # TODO: GH 15362 mask = c.isna() if len(hashed): result = hashed.take(c.codes) else: result = np.zeros(len(mask), dtype='uint64') if mask.any(): result[mask] = np.iinfo(np.uint64).max return result def hash_array(vals, encoding='utf8', hash_key=None, categorize=True): """ Given a 1d array, return an array of deterministic integers. .. versionadded:: 0.19.2 Parameters ---------- vals : ndarray, Categorical encoding : string, default 'utf8' encoding for data & key when strings hash_key : string key to encode, default to _default_hash_key categorize : bool, default True Whether to first categorize object arrays before hashing. This is more efficient when the array contains duplicate values. .. versionadded:: 0.20.0 Returns ------- 1d uint64 numpy array of hash values, same length as the vals """ if not hasattr(vals, 'dtype'): raise TypeError("must pass a ndarray-like") dtype = vals.dtype if hash_key is None: hash_key = _default_hash_key # For categoricals, we hash the categories, then remap the codes to the # hash values. (This check is above the complex check so that we don't ask # numpy if categorical is a subdtype of complex, as it will choke). if is_categorical_dtype(dtype): return _hash_categorical(vals, encoding, hash_key) elif is_extension_array_dtype(dtype): vals, _ = vals._values_for_factorize() dtype = vals.dtype # we'll be working with everything as 64-bit values, so handle this # 128-bit value early if np.issubdtype(dtype, np.complex128): return hash_array(vals.real) + 23 * hash_array(vals.imag) # First, turn whatever array this is into unsigned 64-bit ints, if we can # manage it. elif isinstance(dtype, np.bool): vals = vals.astype('u8') elif issubclass(dtype.type, (np.datetime64, np.timedelta64)): vals = vals.view('i8').astype('u8', copy=False) elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8: vals = vals.view('u{}'.format(vals.dtype.itemsize)).astype('u8') else: # With repeated values, its MUCH faster to categorize object dtypes, # then hash and rename categories. We allow skipping the categorization # when the values are known/likely to be unique. if categorize: from pandas import factorize, Categorical, Index codes, categories = factorize(vals, sort=False) cat = Categorical(codes, Index(categories), ordered=False, fastpath=True) return _hash_categorical(cat, encoding, hash_key) try: vals = hashing.hash_object_array(vals, hash_key, encoding) except TypeError: # we have mixed types vals = hashing.hash_object_array(vals.astype(str).astype(object), hash_key, encoding) # Then, redistribute these 64-bit ints within the space of 64-bit ints vals ^= vals >> 30 vals *= np.uint64(0xbf58476d1ce4e5b9) vals ^= vals >> 27 vals *= np.uint64(0x94d049bb133111eb) vals ^= vals >> 31 return vals def _hash_scalar(val, encoding='utf8', hash_key=None): """ Hash scalar value Returns ------- 1d uint64 numpy array of hash value, of length 1 """ if isna(val): # this is to be consistent with the _hash_categorical implementation return np.array([np.iinfo(np.uint64).max], dtype='u8') if getattr(val, 'tzinfo', None) is not None: # for tz-aware datetimes, we need the underlying naive UTC value and # not the tz aware object or pd extension type (as # infer_dtype_from_scalar would do) if not isinstance(val, tslibs.Timestamp): val = tslibs.Timestamp(val) val = val.tz_convert(None) dtype, val = infer_dtype_from_scalar(val) vals = np.array([val], dtype=dtype) return hash_array(vals, hash_key=hash_key, encoding=encoding, categorize=False)
bsd-3-clause
datapythonista/pandas
pandas/tests/test_common.py
1
4503
import collections from functools import partial import string import numpy as np import pytest from pandas.compat import np_version_under1p18 import pandas as pd from pandas import Series import pandas._testing as tm from pandas.core import ops import pandas.core.common as com from pandas.util.version import Version def test_get_callable_name(): getname = com.get_callable_name def fn(x): return x lambda_ = lambda x: x part1 = partial(fn) part2 = partial(part1) class somecall: def __call__(self): return x # noqa assert getname(fn) == "fn" assert getname(lambda_) assert getname(part1) == "fn" assert getname(part2) == "fn" assert getname(somecall()) == "somecall" assert getname(1) is None def test_any_none(): assert com.any_none(1, 2, 3, None) assert not com.any_none(1, 2, 3, 4) def test_all_not_none(): assert com.all_not_none(1, 2, 3, 4) assert not com.all_not_none(1, 2, 3, None) assert not com.all_not_none(None, None, None, None) def test_random_state(): import numpy.random as npr # Check with seed state = com.random_state(5) assert state.uniform() == npr.RandomState(5).uniform() # Check with random state object state2 = npr.RandomState(10) assert com.random_state(state2).uniform() == npr.RandomState(10).uniform() # check with no arg random state assert com.random_state() is np.random # check array-like # GH32503 state_arr_like = npr.randint(0, 2 ** 31, size=624, dtype="uint32") assert ( com.random_state(state_arr_like).uniform() == npr.RandomState(state_arr_like).uniform() ) # Check BitGenerators # GH32503 if not np_version_under1p18: assert ( com.random_state(npr.MT19937(3)).uniform() == npr.RandomState(npr.MT19937(3)).uniform() ) assert ( com.random_state(npr.PCG64(11)).uniform() == npr.RandomState(npr.PCG64(11)).uniform() ) # Error for floats or strings msg = ( "random_state must be an integer, array-like, a BitGenerator, " "a numpy RandomState, or None" ) with pytest.raises(ValueError, match=msg): com.random_state("test") with pytest.raises(ValueError, match=msg): com.random_state(5.5) @pytest.mark.parametrize( "left, right, expected", [ (Series([1], name="x"), Series([2], name="x"), "x"), (Series([1], name="x"), Series([2], name="y"), None), (Series([1]), Series([2], name="x"), None), (Series([1], name="x"), Series([2]), None), (Series([1], name="x"), [2], "x"), ([1], Series([2], name="y"), "y"), ], ) def test_maybe_match_name(left, right, expected): assert ops.common._maybe_match_name(left, right) == expected def test_standardize_mapping(): # No uninitialized defaultdicts msg = r"to_dict\(\) only accepts initialized defaultdicts" with pytest.raises(TypeError, match=msg): com.standardize_mapping(collections.defaultdict) # No non-mapping subtypes, instance msg = "unsupported type: <class 'list'>" with pytest.raises(TypeError, match=msg): com.standardize_mapping([]) # No non-mapping subtypes, class with pytest.raises(TypeError, match=msg): com.standardize_mapping(list) fill = {"bad": "data"} assert com.standardize_mapping(fill) == dict # Convert instance to type assert com.standardize_mapping({}) == dict dd = collections.defaultdict(list) assert isinstance(com.standardize_mapping(dd), partial) def test_git_version(): # GH 21295 git_version = pd.__git_version__ assert len(git_version) == 40 assert all(c in string.hexdigits for c in git_version) def test_version_tag(): version = Version(pd.__version__) try: version > Version("0.0.1") except TypeError: raise ValueError( "No git tags exist, please sync tags between upstream and your repo" ) @pytest.mark.parametrize( "obj", [(obj,) for obj in pd.__dict__.values() if callable(obj)] ) def test_serializable(obj): # GH 35611 unpickled = tm.round_trip_pickle(obj) assert type(obj) == type(unpickled) class TestIsBoolIndexer: def test_non_bool_array_with_na(self): # in particular, this should not raise arr = np.array(["A", "B", np.nan], dtype=object) assert not com.is_bool_indexer(arr)
bsd-3-clause
hbenniou/trunk
doc/sphinx/ipython_directive013.py
8
27280
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. From: https://github.com/ipython/ipython/blob/master/docs/sphinxext/ipython_directive.py This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import cStringIO import os import re import sys import tempfile import ast # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive matplotlib.use('Agg') # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = cStringIO.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? seen_docs = [i for i in os.listdir(tempfile.tempdir) if i.startswith('seen_doc')] if seen_docs: fname = os.path.join(tempfile.tempdir, seen_docs[0]) docs = open(fname).read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fd, fname = tempfile.mkstemp(prefix="seen_doc", text=True) fout = open(fname, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup self.teardown() return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print 'All OK? Check figures in _static/'
gpl-2.0
mxjl620/scikit-learn
sklearn/datasets/mlcomp.py
289
3855
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
Erotemic/ibeis
ibeis/unstable/demobayes.py
1
36463
from __future__ import absolute_import, division, print_function, unicode_literals import six # NOQA import utool as ut import numpy as np from ibeis.algo.hots.bayes import make_name_model, temp_model, draw_tree_model print, rrr, profile = ut.inject2(__name__) def trytestdata_demo_cfgs(): alias_keys = {'nA': 'num_annots', 'nN': 'num_names', 'nS': 'num_scores'} cfg_list = ut.parse_argv_cfg('--ev', alias_keys=alias_keys) return cfg_list def demo_bayesnet(cfg={}): r""" Make a model that knows who the previous annots are and tries to classify a new annot CommandLine: python -m ibeis --tf demo_bayesnet --diskshow --verbose --save demo4.png --dpath . --figsize=20,10 --dpi=128 --clipwhite python -m ibeis --tf demo_bayesnet --ev :nA=3,Sab=0,Sac=0,Sbc=1 python -m ibeis --tf demo_bayesnet --ev :nA=4,Sab=0,Sac=0,Sbc=1,Sbd=1 --show python -m ibeis --tf demo_bayesnet --ev :nA=4,Sab=0,Sac=0,Sbc=1,Scd=1 --show python -m ibeis --tf demo_bayesnet --ev :nA=4,Sab=0,Sac=0,Sbc=1,Sbd=1,Scd=1 --show python -m ibeis --tf demo_bayesnet --ev :nA=3,Sab=0,Sac=0,Sbc=1 python -m ibeis --tf demo_bayesnet --ev :nA=5,rand_scores=True --show python -m ibeis --tf demo_bayesnet --ev :nA=4,nS=3,rand_scores=True --show --verbose python -m ibeis --tf demo_bayesnet --ev :nA=5,nS=2,Na=fred,rand_scores=True --show --verbose python -m ibeis --tf demo_bayesnet --ev :nA=5,nS=5,Na=fred,rand_scores=True --show --verbose python -m ibeis --tf demo_bayesnet --ev :nA=4,nS=2,Na=fred,rand_scores=True --show --verbose python -m ibeis.unstable.demobayes --exec-demo_bayesnet \ --ev =:nA=4,Sab=0,Sac=0,Sbc=1 \ :Sbd=1 :Scd=1 :Sbd=1,Scd=1 :Sbd=1,Scd=1,Sad=0 \ --show --present Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> cfg_list = testdata_demo_cfgs() >>> print('cfg_list = %r' % (cfg_list,)) >>> for cfg in cfg_list: >>> demo_bayesnet(cfg) >>> ut.show_if_requested() """ cfg = cfg.copy() num_annots = cfg.pop('num_annots', 3) num_names = cfg.pop('num_names', None) num_scores = cfg.pop('num_scores', 2) rand_scores = cfg.pop('rand_scores', False) method = cfg.pop('method', 'bp') other_evidence = {k: v for k, v in cfg.items() if not k.startswith('_')} if rand_scores: #import randomdotorg #import sys #r = randomdotorg.RandomDotOrg('ExampleCode') #seed = int((1 - 2 * r.random()) * sys.maxint) toy_data = get_toy_data_1v1(num_annots, nid_sequence=[0, 0, 1, 0, 1, 2]) print('toy_data = ' + ut.repr3(toy_data, nl=1)) diag_scores, = ut.dict_take( toy_data, 'diag_scores'.split(', ')) discr_domain, discr_p_same = learn_prob_score(num_scores)[0:2] def discretize_scores(scores): # Assign continuous scores to discrete index score_idxs = np.abs(1 - (discr_domain / scores[:, None])).argmin(axis=1) return score_idxs score_evidence = discretize_scores(diag_scores) else: score_evidence = [] discr_p_same = None discr_domain = None model, evidence, query_results = temp_model( num_annots=num_annots, num_names=num_names, num_scores=num_scores, score_evidence=score_evidence, mode=1, other_evidence=other_evidence, p_score_given_same=discr_p_same, score_basis=discr_domain, method=method, ) def classify_k(cfg={}): """ CommandLine: python -m ibeis.unstable.demobayes --exec-classify_k --show --ev :nA=3 python -m ibeis.unstable.demobayes --exec-classify_k --show --ev :nA=3,k=1 python -m ibeis.unstable.demobayes --exec-classify_k --show --ev :nA=3,k=0 --method=approx python -m ibeis.unstable.demobayes --exec-classify_k --show --ev :nA=10,k=1 --method=approx Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> cfg_list = testdata_demo_cfgs() >>> classify_k(cfg_list[0]) >>> ut.show_if_requested() """ cfg = cfg.copy() num_annots = cfg.pop('num_annots', 3) num_scores = cfg.pop('num_scores', 2) num_iter = cfg.pop('k', 0) nid_sequence = np.array([0, 0, 1, 2, 2, 1, 1]) toy_data = get_toy_data_1v1(num_annots, nid_sequence=nid_sequence) force_evidence = None force_evidence = 0 diag_scores, = ut.dict_take( toy_data, 'diag_scores'.split(', ')) #print('diag_scores = %r' % (diag_scores,)) #diag_labels = pairwise_matches.compress(is_diag) #diag_pairs = ut.compress(pairwise_aidxs, is_diag) discr_domain, discr_p_same = learn_prob_score(num_scores)[0:2] def discretize_scores(scores): # Assign continuous scores to closest discrete index score_idxs = np.abs(1 - (discr_domain / scores[:, None])).argmin(axis=1) return score_idxs # Careful ordering is important here score_evidence = discretize_scores(diag_scores) if force_evidence is not None: for x in range(len(score_evidence)): score_evidence[x] = 0 model, evidence, query_results = temp_model( num_annots=num_annots, num_names=num_annots, num_scores=num_scores, mode=1, score_evidence=score_evidence, p_score_given_same=discr_p_same, score_basis=discr_domain, #verbose=True ) print(query_results['top_assignments'][0]) toy_data1 = toy_data print('toy_data1 = ' + ut.repr3(toy_data1, nl=1)) num_annots2 = num_annots + 1 score_evidence1 = [None] * len(score_evidence) full_evidence = score_evidence.tolist() factor_list = query_results['factor_list'] using_soft = False if using_soft: soft_evidence1 = [dict(zip(x.statenames[0], x.values)) for x in factor_list] for _ in range(num_iter): print('\n\n ---------- \n\n') #toy_data1['all_nids'].max() + 1 num_names_gen = len(toy_data1['all_aids']) + 1 num_names_gen = toy_data1['all_nids'].max() + 2 toy_data2 = get_toy_data_1v1( 1, num_names_gen, initial_aids=toy_data1['all_aids'], initial_nids=toy_data1['all_nids'], nid_sequence=nid_sequence) diag_scores2, = ut.dict_take( toy_data2, 'diag_scores'.split(', ')) print('toy_data2 = ' + ut.repr3(toy_data2, nl=1)) score_evidence2 = discretize_scores(diag_scores2).tolist() if force_evidence is not None: for x in range(len(score_evidence2)): score_evidence2[x] = force_evidence print('score_evidence2 = %r' % (score_evidence2,)) if using_soft: # Demo with soft evidence model, evidence, query_results2 = temp_model( num_annots=num_annots2, num_names=num_annots2, num_scores=num_scores, mode=1, name_evidence=soft_evidence1, #score_evidence=score_evidence1 + score_evidence2, score_evidence=score_evidence2, p_score_given_same=discr_p_same, score_basis=discr_domain, #verbose=True, hack_score_only=len(score_evidence2), ) if 1: # Demo with full evidence model, evidence, query_results2 = temp_model( num_annots=num_annots2, num_names=num_annots2, num_scores=num_scores, mode=1, score_evidence=full_evidence + score_evidence2, p_score_given_same=discr_p_same, score_basis=discr_domain, verbose=True ) factor_list2 = query_results2['factor_list'] if using_soft: soft_evidence1 = [dict(zip(x.statenames[0], x.values)) for x in factor_list2] score_evidence1 += ([None] * len(score_evidence2)) full_evidence = full_evidence + score_evidence2 num_annots2 += 1 toy_data1 = toy_data2 def show_toy_distributions(toy_params): import vtool_ibeis as vt import plottool_ibeis as pt pt.ensureqt() xdata = np.linspace(0, 8, 1000) tp_pdf = vt.gauss_func1d(xdata, **toy_params[True]) fp_pdf = vt.gauss_func1d(xdata, **toy_params[False]) pt.plot_probabilities( [tp_pdf, fp_pdf], ['TP', 'TF'], prob_colors=[pt.TRUE_BLUE, pt.FALSE_RED], xdata=xdata, figtitle='Toy Distributions') def get_toy_data_1vM(num_annots, num_names=None, **kwargs): r""" Args: num_annots (int): num_names (int): (default = None) Kwargs: initial_aids, initial_nids, nid_sequence, seed Returns: tuple: (pair_list, feat_list) CommandLine: python -m ibeis.unstable.demobayes --exec-get_toy_data_1vM --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> num_annots = 1000 >>> num_names = 40 >>> get_toy_data_1vM(num_annots, num_names) >>> ut.quit_if_noshow() >>> import plottool_ibeis as pt >>> ut.show_if_requested() """ import vtool_ibeis as vt tup_ = get_toy_annots(num_annots, num_names, **kwargs) aids, nids, aids1, nids1, all_aids, all_nids = tup_ rng = vt.ensure_rng(None) # Test a simple SVM classifier nid2_nexemp = ut.dict_hist(nids1) aid2_nid = dict(zip(aids, nids)) ut.fix_embed_globals() #def add_to_globals(globals_, subdict): # globals_.update(subdict) unique_nids = list(nid2_nexemp.keys()) def annot_to_class_feats2(aid, aid2_nid, top=None): pair_list = [] score_list = [] nexemplar_list = [] for nid in unique_nids: label = (aid2_nid[aid] == nid) num_exemplars = nid2_nexemp.get(nid, 0) if num_exemplars == 0: continue params = toy_params[label] mu, sigma = ut.dict_take(params, ['mu', 'sigma']) score_ = rng.normal(mu, sigma, size=num_exemplars).max() score = np.clip(score_, 0, np.inf) pair_list.append((aid, nid)) score_list.append(score) nexemplar_list.append(num_exemplars) rank_list = ut.argsort(score_list, reverse=True) feat_list = np.array([score_list, rank_list, nexemplar_list]).T sortx = np.argsort(rank_list) feat_list = feat_list.take(sortx, axis=0) pair_list = np.array(pair_list).take(sortx, axis=0) if top is not None: feat_list = feat_list[:top] pair_list = pair_list[0:top] return pair_list, feat_list toclass_features = [annot_to_class_feats2(aid, aid2_nid, top=5) for aid in aids] aidnid_pairs = np.vstack(ut.get_list_column(toclass_features, 0)) feat_list = np.vstack(ut.get_list_column(toclass_features, 1)) score_list = feat_list.T[0:1].T lbl_list = [aid2_nid[aid] == nid for aid, nid in aidnid_pairs] from sklearn import svm #clf1 = svm.LinearSVC() print('Learning classifiers') clf3 = svm.SVC(probability=True) clf3.fit(feat_list, lbl_list) #prob_true, prob_false = clf3.predict_proba(feat_list).T clf1 = svm.LinearSVC() clf1.fit(score_list, lbl_list) # Score new annots against the training database tup_ = get_toy_annots(num_annots * 2, num_names, initial_aids=all_aids, initial_nids=all_nids) aids, nids, aids1, nids1, all_aids, all_nids = tup_ aid2_nid = dict(zip(aids, nids)) toclass_features = [annot_to_class_feats2(aid, aid2_nid) for aid in aids] aidnid_pairs = np.vstack(ut.get_list_column(toclass_features, 0)) feat_list = np.vstack(ut.get_list_column(toclass_features, 1)) lbl_list = np.array([aid2_nid[aid] == nid for aid, nid in aidnid_pairs]) print('Running tests') score_list = feat_list.T[0:1].T tp_feat_list = feat_list[lbl_list] tn_feat_list = feat_list[~lbl_list] tp_lbls = lbl_list[lbl_list] tn_lbls = lbl_list[~lbl_list] print('num tp: %d' % len(tp_lbls)) print('num fp: %d' % len(tn_lbls)) tp_score_list = score_list[lbl_list] tn_score_list = score_list[~lbl_list] print('tp_feat' + ut.repr3(ut.get_stats(tp_feat_list, axis=0), precision=2)) print('tp_feat' + ut.repr3(ut.get_stats(tn_feat_list, axis=0), precision=2)) print('tp_score' + ut.repr2(ut.get_stats(tp_score_list), precision=2)) print('tp_score' + ut.repr2(ut.get_stats(tn_score_list), precision=2)) tp_pred3 = clf3.predict(tp_feat_list) tn_pred3 = clf3.predict(tn_feat_list) print((tp_pred3.sum(), tp_pred3.shape)) print((tn_pred3.sum(), tn_pred3.shape)) tp_score3 = clf3.score(tp_feat_list, tp_lbls) tn_score3 = clf3.score(tn_feat_list, tn_lbls) tp_pred1 = clf1.predict(tp_score_list) tn_pred1 = clf1.predict(tn_score_list) print((tp_pred1.sum(), tp_pred1.shape)) print((tn_pred1.sum(), tn_pred1.shape)) tp_score1 = clf1.score(tp_score_list, tp_lbls) tn_score1 = clf1.score(tn_score_list, tn_lbls) print('tp score with rank = %r' % (tp_score3,)) print('tn score with rank = %r' % (tn_score3,)) print('tp score without rank = %r' % (tp_score1,)) print('tn score without rank = %r' % (tn_score1,)) toy_data = {} return toy_data def get_toy_annots(num_annots, num_names=None, initial_aids=None, initial_nids=None, nid_sequence=None, seed=None): r""" Args: num_annots (int): num_names (int): (default = None) initial_aids (None): (default = None) initial_nids (None): (default = None) nid_sequence (None): (default = None) seed (None): (default = None) Returns: tuple: (aids, nids, aids1, nids1, all_aids, all_nids) CommandLine: python -m ibeis.unstable.demobayes --exec-get_toy_annots Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> num_annots = 1 >>> num_names = 5 >>> initial_aids = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.int64) >>> initial_nids = np.array([0, 0, 1, 2, 2, 1, 1, 1, 2, 3], dtype=np.int64) >>> nid_sequence = np.array([0, 0, 1, 2, 2, 1, 1], dtype=np.int64) >>> seed = 0 >>> (aids, nids, aids1, nids1, all_aids, all_nids) = get_toy_annots(num_annots, num_names, initial_aids, initial_nids, nid_sequence, seed) >>> result = ('(aids, nids, aids1, nids1, all_aids, all_nids) = %s' % (ut.repr2((aids, nids, aids1, nids1, all_aids, all_nids), nl=1),)) >>> print(result) """ import vtool_ibeis as vt if num_names is None: num_names = num_annots print('Generating toy data with num_annots=%r' % (num_annots,)) if initial_aids is None: assert initial_nids is None first_step = True initial_aids = [] initial_nids = [] else: first_step = False assert initial_nids is not None aids = np.arange(len(initial_aids), num_annots + len(initial_aids)) rng = vt.ensure_rng(seed) if nid_sequence is None: nids = rng.randint(0, num_names, num_annots) else: unused_from_sequence = max(len(nid_sequence) - len(initial_aids), 0) if unused_from_sequence == 0: nids = rng.randint(0, num_names, num_annots) elif unused_from_sequence > 0 and unused_from_sequence < num_annots: num_remain = num_annots - unused_from_sequence nids = np.append(nid_sequence[-unused_from_sequence:], rng.randint(0, num_names, num_remain)) else: nids = nid_sequence[-unused_from_sequence] nids = np.array(ut.take(nid_sequence, range(len(initial_aids), len(initial_aids) + num_annots))) if first_step: aids1 = aids nids1 = nids else: aids1 = initial_aids nids1 = initial_nids all_nids = np.append(initial_nids, nids) all_aids = np.append(initial_aids, aids) import utool with utool.embed_on_exception_context: ut.assert_eq(len(aids), len(nids), 'len new') ut.assert_eq(len(aids1), len(nids1), 'len comp') ut.assert_eq(len(all_aids), len(all_nids), 'len all') return aids, nids, aids1, nids1, all_aids, all_nids toy_params = { True: {'mu': 1.5, 'sigma': 3.0}, False: {'mu': 0.5, 'sigma': .4} #True: {'mu': 3.5, 'sigma': 1.1}, #False: {'mu': .3, 'sigma': .7} #'p': .7}, #'p': .2} } #@ut.cached_func('_toy_bayes_data3') def get_toy_data_1v1(num_annots=5, num_names=None, **kwargs): r""" CommandLine: python -m ibeis.unstable.demobayes --exec-get_toy_data_1v1 --show Example: >>> # ENABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> toy_data = get_toy_data_1v1() >>> ut.quit_if_noshow() >>> import plottool_ibeis as pt >>> show_toy_distributions(toy_data['toy_params']) >>> ut.show_if_requested() Example1: >>> # ENABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> toy_data = get_toy_data_1v1() >>> kwargs = {} >>> initial_aids = toy_data['aids'] >>> initial_nids = toy_data['nids'] >>> num_annots = 1 >>> num_names = 6 >>> toy_data2 = get_toy_data_1v1(num_annots, num_names, initial_aids=initial_aids, initial_nids=initial_nids) >>> ut.quit_if_noshow() >>> import plottool_ibeis as pt >>> show_toy_distributions(toy_data['toy_params']) >>> ut.show_if_requested() Ignore: >>> num_annots = 1000 >>> num_names = 400 """ import vtool_ibeis as vt tup_ = get_toy_annots(num_annots, num_names, **kwargs) aids, nids, aids1, nids1, all_aids, all_nids = tup_ rng = vt.ensure_rng(None) def pairwise_feature(aidx1, aidx2, all_nids=all_nids, toy_params=toy_params): if aidx1 == aidx2: score = -1 else: #rng = np.random.RandomState(int((aidx1 + 13) * (aidx2 + 13))) nid1 = all_nids[int(aidx1)] nid2 = all_nids[int(aidx2)] params = toy_params[nid1 == nid2] mu, sigma = ut.dict_take(params, ['mu', 'sigma']) score_ = rng.normal(mu, sigma) score = np.clip(score_, 0, np.inf) return score pairwise_nids = list([tup[::-1] for tup in ut.iprod(nids, nids1)]) pairwise_matches = np.array( [nid1 == nid2 for nid1, nid2 in pairwise_nids]) pairwise_aidxs = list([tup[::-1] for tup in ut.iprod(aids, aids1)]) pairwise_features = np.array( [pairwise_feature(aidx1, aidx2) for aidx1, aidx2 in pairwise_aidxs]) #pairwise_scores_mat = pairwise_scores.reshape(num_annots, num_annots) is_diag = [r < c for r, c, in pairwise_aidxs] diag_scores = pairwise_features.compress(is_diag) diag_aidxs = ut.compress(pairwise_aidxs, is_diag) import utool with utool.embed_on_exception_context: diag_nids = ut.compress(pairwise_nids, is_diag) diag_labels = pairwise_matches.compress(is_diag) #import utool #utool.embed() toy_data = { 'aids': aids, 'nids': nids, 'all_nids': all_nids, 'all_aids': all_aids, #'pairwise_aidxs': pairwise_aidxs, #'pairwise_scores': pairwise_scores, #'pairwise_matches': pairwise_matches, 'diag_labels': diag_labels, 'diag_scores': diag_scores, 'diag_nids': diag_nids, 'diag_aidxs': diag_aidxs, 'toy_params': toy_params, } return toy_data @ut.cached_func('_toy_learn_prob_score5') def learn_prob_score(num_scores=5, pad=55, ret_enc=False, use_cache=None): r""" Args: num_scores (int): (default = 5) Returns: tuple: (discr_domain, discr_p_same) CommandLine: python -m ibeis.unstable.demobayes --exec-learn_prob_score --show Example: >>> # ENABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> num_scores = 2 >>> (discr_domain, discr_p_same, encoder) = learn_prob_score(num_scores, ret_enc=True, use_cache=False) >>> print('discr_p_same = %r' % (discr_p_same,)) >>> ut.quit_if_noshow() >>> import plottool_ibeis as pt >>> encoder.visualize() >>> ut.show_if_requested() """ num_annots_train = 200 num_names_train = 5 toy_data = get_toy_data_1v1(num_annots_train, num_names_train) #pairwise_aidxs, pairwise_scores, pairwise_matches = ut.dict_take( # toy_data, 'pairwise_aidxs, pairwise_scores, pairwise_matches'.split(', ')) diag_scores, diag_labels = ut.dict_take( toy_data, 'diag_scores, diag_labels'.split(', ')) #is_diag = [r < c for r, c, in pairwise_aidxs] #diag_scores = pairwise_scores.compress(is_diag) #diag_labels = pairwise_matches.compress(is_diag) # Learn P(S_{ij} | M_{ij}) import vtool_ibeis as vt encoder = vt.ScoreNormalizer( reverse=True, monotonize=True, adjust=4, ) encoder.fit(X=diag_scores, y=diag_labels, verbose=True) if False: import plottool_ibeis as pt pt.ensureqt() encoder.visualize() #show_toy_distributions() def discretize_probs(encoder): p_tp_given_score = encoder.p_tp_given_score / encoder.p_tp_given_score.sum() bins = len(p_tp_given_score) - (pad * 2) stride = int(np.ceil(bins / num_scores)) idxs = np.arange(0, bins, stride) + pad discr_p_same = p_tp_given_score.take(idxs) discr_p_same = discr_p_same / discr_p_same.sum() discr_domain = encoder.score_domain.take(idxs) return discr_domain, discr_p_same discr_domain, discr_p_same = discretize_probs(encoder) if ret_enc: return discr_domain, discr_p_same, encoder return discr_domain, discr_p_same def classify_one_new_unknown(): r""" Make a model that knows who the previous annots are and tries to classify a new annot CommandLine: python -m ibeis.unstable.demobayes --exec-classify_one_new_unknown --verbose python -m ibeis.unstable.demobayes --exec-classify_one_new_unknown --show --verbose --present python3 -m ibeis.unstable.demobayes --exec-classify_one_new_unknown --verbose python3 -m ibeis.unstable.demobayes --exec-classify_one_new_unknown --verbose --diskshow --verbose --present --save demo5.png --dpath . --figsize=20,10 --dpi=128 --clipwhite Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = classify_one_new_unknown() >>> ut.show_if_requested() """ if False: constkw = dict( num_annots=5, num_names=3, name_evidence=[0] #name_evidence=[0, 0, 1, 1, None], #name_evidence=[{0: .99}, {0: .99}, {1: .99}, {1: .99}, None], #name_evidence=[0, {0: .99}, {1: .99}, 1, None], ) temp_model(score_evidence=[1, 0, 0, 0, 0, 1], mode=1, **constkw) #from ibeis.unstable.demobayes import * constkw = dict( num_annots=4, num_names=4, ) model, evidence = temp_model( mode=1, # lll and llh have strikingly different # probability of M marginals score_evidence=[0, 0, 1], other_evidence={ }, **constkw) def tst_triangle_property(): r""" CommandLine: python -m ibeis.unstable.demobayes --exec-test_triangle_property --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = test_triangle_property() >>> ut.show_if_requested() """ constkw = dict( num_annots=3, num_names=3, name_evidence=[], ) temp_model( mode=1, other_evidence={ 'Mab': False, 'Mac': False, #'Na': 'fred', #'Nb': 'sue', }, **constkw) def demo_structure(): r""" CommandLine: python -m ibeis.unstable.demobayes --exec-demo_structure --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = demo_structure() >>> ut.show_if_requested() """ constkw = dict(score_evidence=[], name_evidence=[], mode=3) model, = temp_model(num_annots=4, num_names=4, **constkw) draw_tree_model(model) def make_bayes_notebook(): r""" CommandLine: python -m ibeis.unstable.demobayes --exec-make_bayes_notebook Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = make_bayes_notebook() >>> print(result) """ from ibeis.templates import generate_notebook initialize = ut.codeblock( r''' # STARTBLOCK import os os.environ['UTOOL_NO_CNN'] = 'True' from ibeis.unstable.demobayes import * # NOQA # Matplotlib stuff import matplotlib as mpl %matplotlib inline %load_ext autoreload %autoreload from IPython.core.display import HTML HTML("<style>body .container { width:99% !important; }</style>") # ENDBLOCK ''' ) cell_list_def = [ initialize, show_model_templates, demo_modes, demo_name_annot_complexity, ###demo_model_idependencies, demo_single_add, demo_ambiguity, demo_conflicting_evidence, demo_annot_idependence_overlap, ] def format_cell(cell): if ut.is_funclike(cell): header = '# ' + ut.to_title_caps(ut.get_funcname(cell)) code = (header, ut.get_func_sourcecode(cell, stripdef=True, stripret=True)) else: code = (None, cell) return generate_notebook.format_cells(code) cell_list = ut.flatten([format_cell(cell) for cell in cell_list_def]) nbstr = generate_notebook.make_notebook(cell_list) print('nbstr = %s' % (nbstr,)) fpath = 'demobayes.ipynb' ut.writeto(fpath, nbstr) ut.startfile(fpath) def show_model_templates(): r""" CommandLine: python -m ibeis.unstable.demobayes --exec-show_model_templates Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = show_model_templates() >>> ut.show_if_requested() """ make_name_model(2, 2, verbose=True, mode=1) print('-------------') make_name_model(2, 2, verbose=True, mode=2) def demo_single_add(): """ This demo shows how a name is assigned to a new annotation. CommandLine: python -m ibeis.unstable.demobayes --exec-demo_single_add --show --present --mode=1 Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> demo_single_add() >>> ut.show_if_requested() """ # Initially there are only two annotations that have a strong match name_evidence = [{0: .9}] # Soft label name_evidence = [0] # Hard label temp_model(num_annots=2, num_names=5, score_evidence=[1], name_evidence=name_evidence) # Adding a new annotation does not change the original probabilites temp_model(num_annots=3, num_names=5, score_evidence=[1], name_evidence=name_evidence) # Adding evidence that Na matches Nc does not influence the probability # that Na matches Nb. However the probability that Nb matches Nc goes up. temp_model(num_annots=3, num_names=5, score_evidence=[1, 1], name_evidence=name_evidence) # However, once Nb is scored against Nb that does increase the likelihood # that all 3 are fred goes up significantly. temp_model(num_annots=3, num_names=5, score_evidence=[1, 1, 1], name_evidence=name_evidence) def demo_conflicting_evidence(): """ Notice that the number of annotations in the graph does not affect the probability of names. """ # Initialized with two annots. Each are pretty sure they are someone else constkw = dict(num_annots=2, num_names=5, score_evidence=[]) temp_model(name_evidence=[{0: .9}, {1: .9}], **constkw) # Having evidence that they are different increases this confidence. temp_model(name_evidence=[{0: .9}, {1: .9}], other_evidence={'Sab': 0}, **constkw) # However,, confusion is introduced if there is evidence that they are the same temp_model(name_evidence=[{0: .9}, {1: .9}], other_evidence={'Sab': 1}, **constkw) # When Na is forced to be fred, this doesnt change Nbs evaulatation by more # than a few points temp_model(name_evidence=[0, {1: .9}], other_evidence={'Sab': 1}, **constkw) def demo_ambiguity(): r""" Test what happens when an annotation need to choose between one of two names CommandLine: python -m ibeis.unstable.demobayes --exec-demo_ambiguity --show --verbose --present Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = demo_ambiguity() >>> ut.show_if_requested() """ constkw = dict( num_annots=3, num_names=3, name_evidence=[0], #name_evidence=[], #name_evidence=[{0: '+eps'}, {1: '+eps'}, {2: '+eps'}], ) temp_model(score_evidence=[0, 0, 1], mode=1, **constkw) def demo_annot_idependence_overlap(): r""" Given: * an unknown annotation \d * three annots with the same name (Fred) \a, \b, and \c * \a and \b are near duplicates * (\a and \c) / (\b and \c) are novel views Goal: * If \d matches to \a and \b the probably that \d is Fred should not be much more than if \d matched only \a or only \b. * The probability that \d is Fred given it matches to any of the 3 annots alone should be equal P(\d is Fred | Mad=1) = P(\d is Fred | Mbd=1) = P(\d is Fred | Mcd=1) * The probability that \d is fred given two matches to any of those two annots should be greater than the probability given only one. P(\d is Fred | Mad=1, Mbd=1) > P(\d is Fred | Mad=1) P(\d is Fred | Mad=1, Mcd=1) > P(\d is Fred | Mad=1) * The probability that \d is fred given matches to two near duplicate matches should be less than if \d matches two non-duplicate matches. P(\d is Fred | Mad=1, Mcd=1) > P(\d is Fred | Mad=1, Mbd=1) * The probability that \d is fred given two near duplicates should be only epsilon greater than a match to either one individually. P(\d is Fred | Mad=1, Mbd=1) = P(\d is Fred | Mad=1) + \epsilon Method: We need to model the fact that there are other causes that create the effect of a high score. Namely, near duplicates. This can be done by adding an extra conditional that score depends on if they match as well as if they are near duplicates. P(S_ij | Mij) --> P(S_ij | Mij, Dij) where Dij is a random variable indicating if the image is a near duplicate. We can model this as an independant variable P(Dij) = {True: .5, False: .5} or as depending on if the names match. P(Dij | Mij) = {'same': {True: .5, False: .5} diff: {True: 0, False 1}} CommandLine: python -m ibeis.unstable.demobayes --exec-demo_annot_idependence_overlap --verbose --present --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = demo_annot_idependence_overlap() >>> ut.show_if_requested() """ # We will end up making annots a and b fred and c and d sue constkw = dict( num_annots=4, num_names=4, name_evidence=[{0: '+eps'}, {1: '+eps'}, {2: '+eps'}, {3: '+eps'}], #name_evidence=[{0: .9}, None, None, {1: .9}] #name_evidence=[0, None, None, None] #name_evidence=[0, None, None, None] ) temp_model(score_evidence=[1, 1, 1, None, None, None], **constkw) temp_model(score_evidence=[1, 1, 0, None, None, None], **constkw) temp_model(score_evidence=[1, 0, 0, None, None, None], **constkw) def demo_modes(): """ Look at the last result of the different names demo under differet modes """ constkw = dict( num_annots=4, num_names=8, score_evidence=[1, 0, 0, 0, 0, 1], #name_evidence=[{0: .9}, None, None, {1: .9}], #name_evidence=[0, None, None, 1], name_evidence=[0, None, None, None], #other_evidence={ # 'Sad': 0, # 'Sab': 1, # 'Scd': 1, # 'Sac': 0, # 'Sbc': 0, # 'Sbd': 0, #} ) # The first mode uses a hidden Match layer temp_model(mode=1, **constkw) # The second mode directly maps names to scores temp_model(mode=2, **constkw) temp_model(mode=3, noquery=True, **constkw) temp_model(mode=4, noquery=True, **constkw) def demo_name_annot_complexity(): """ This demo is meant to show the structure of the graph as more annotations and names are added. CommandLine: python -m ibeis.unstable.demobayes --exec-demo_name_annot_complexity --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> demo_name_annot_complexity() >>> ut.show_if_requested() """ constkw = dict(score_evidence=[], name_evidence=[], mode=1) # Initially there are 2 annots and 4 names model, = temp_model(num_annots=2, num_names=4, **constkw) draw_tree_model(model) # Adding a name causes the probability of the other names to go down model, = temp_model(num_annots=2, num_names=5, **constkw) draw_tree_model(model) # Adding an annotation wihtout matches dos not effect probabilities of # names model, = temp_model(num_annots=3, num_names=5, **constkw) draw_tree_model(model) model, = temp_model(num_annots=4, num_names=10, **constkw) draw_tree_model(model) # Given A annots, the number of score nodes is (A ** 2 - A) / 2 model, = temp_model(num_annots=5, num_names=5, **constkw) draw_tree_model(model) #model, = temp_model(num_annots=6, num_names=5, score_evidence=[], name_evidence=[], mode=1) #draw_tree_model(model) def demo_model_idependencies(): """ Independences of the 3 annot 3 name model CommandLine: python -m ibeis.unstable.demobayes --exec-demo_model_idependencies --mode=1 --num-names=2 --show python -m ibeis.unstable.demobayes --exec-demo_model_idependencies --mode=2 Example: >>> # DISABLE_DOCTEST >>> from ibeis.unstable.demobayes import * # NOQA >>> result = demo_model_idependencies() >>> print(result) >>> ut.show_if_requested() """ num_names = ut.get_argval('--num-names', default=3) model = temp_model(num_annots=num_names, num_names=num_names, score_evidence=[], name_evidence=[])[0] # This model has the following independenceis idens = model.get_independencies() iden_strs = [', '.join(sorted(iden.event1)) + ' _L ' + ','.join(sorted(iden.event2)) + ' | ' + ', '.join(sorted(iden.event3)) for iden in idens.independencies] print('general idependencies') print(ut.align(ut.align('\n'.join(sorted(iden_strs)), '_'), '|')) #ut.embed() #model.is_active_trail('Na', 'Nb', 'Sab') # Might not be valid, try and collapse S and M #xs = list(map(str, idens.independencies)) #import re #xs = [re.sub(', M..', '', x) for x in xs] #xs = [re.sub('M..,?', '', x) for x in xs] #xs = [x for x in xs if not x.startswith('( _')] #xs = [x for x in xs if not x.endswith('| )')] #print('\n'.join(sorted(list(set(xs))))) if __name__ == '__main__': r""" CommandLine: python -m ibeis.unstable.demobayes python -m ibeis.unstable.demobayes --allexamples """ if ut.VERBOSE: print('[hs] demobayes') import multiprocessing multiprocessing.freeze_support() # for win32 import utool as ut # NOQA ut.doctest_funcs()
apache-2.0
seanli9jan/tensorflow
tensorflow/contrib/eager/python/examples/l2hmc/main.py
19
7805
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """L2HMC on simple Gaussian mixture model with TensorFlow eager.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from absl import flags import numpy as np import tensorflow as tf from tensorflow.contrib.eager.python.examples.l2hmc import l2hmc try: import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: HAS_MATPLOTLIB = False tfe = tf.contrib.eager def main(_): tf.enable_eager_execution() global_step = tf.train.get_or_create_global_step() global_step.assign(1) energy_fn, mean, covar = { "scg": l2hmc.get_scg_energy_fn(), "rw": l2hmc.get_rw_energy_fn() }[FLAGS.energy_fn] x_dim = 2 train_iters = 5000 eval_iters = 2000 eps = 0.1 n_steps = 10 # Chain length n_samples = 200 record_loss_every = 100 dynamics = l2hmc.Dynamics( x_dim=x_dim, minus_loglikelihood_fn=energy_fn, n_steps=n_steps, eps=eps) learning_rate = tf.train.exponential_decay( 1e-3, global_step, 1000, 0.96, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) checkpointer = tf.train.Checkpoint( optimizer=optimizer, dynamics=dynamics, global_step=global_step) if FLAGS.train_dir: summary_writer = tf.contrib.summary.create_file_writer(FLAGS.train_dir) if FLAGS.restore: latest_path = tf.train.latest_checkpoint(FLAGS.train_dir) checkpointer.restore(latest_path) print("Restored latest checkpoint at path:\"{}\" ".format(latest_path)) sys.stdout.flush() if not FLAGS.restore: # Training if FLAGS.use_defun: # Use `tfe.deun` to boost performance when there are lots of small ops loss_fn = tfe.function(l2hmc.compute_loss) else: loss_fn = l2hmc.compute_loss samples = tf.random_normal(shape=[n_samples, x_dim]) for i in range(1, train_iters + 1): loss, samples, accept_prob = train_one_iter( dynamics, samples, optimizer, loss_fn=loss_fn, global_step=global_step) if i % record_loss_every == 0: print("Iteration {}, loss {:.4f}, x_accept_prob {:.4f}".format( i, loss.numpy(), accept_prob.numpy().mean())) if FLAGS.train_dir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("Training loss", loss, step=global_step) print("Training complete.") sys.stdout.flush() if FLAGS.train_dir: saved_path = checkpointer.save( file_prefix=os.path.join(FLAGS.train_dir, "ckpt")) print("Saved checkpoint at path: \"{}\" ".format(saved_path)) sys.stdout.flush() # Evaluation if FLAGS.use_defun: # Use tfe.deun to boost performance when there are lots of small ops apply_transition = tfe.function(dynamics.apply_transition) else: apply_transition = dynamics.apply_transition samples = tf.random_normal(shape=[n_samples, x_dim]) samples_history = [] for i in range(eval_iters): samples_history.append(samples.numpy()) _, _, _, samples = apply_transition(samples) samples_history = np.array(samples_history) print("Sampling complete.") sys.stdout.flush() # Mean and covariance of target distribution mean = mean.numpy() covar = covar.numpy() ac_spectrum = compute_ac_spectrum(samples_history, mean, covar) print("First 25 entries of the auto-correlation spectrum: {}".format( ac_spectrum[:25])) ess = compute_ess(ac_spectrum) print("Effective sample size per Metropolis-Hastings step: {}".format(ess)) sys.stdout.flush() if FLAGS.train_dir: # Plot autocorrelation spectrum in tensorboard plot_step = tfe.Variable(1, trainable=False, dtype=tf.int64) for ac in ac_spectrum: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("Autocorrelation", ac, step=plot_step) plot_step.assign(plot_step + n_steps) if HAS_MATPLOTLIB: # Choose a single chain and plot the trajectory single_chain = samples_history[:, 0, :] xs = single_chain[:100, 0] ys = single_chain[:100, 1] plt.figure() plt.plot(xs, ys, color="orange", marker="o", alpha=0.6) # Trained chain plt.savefig(os.path.join(FLAGS.train_dir, "single_chain.png")) def train_one_iter(dynamics, x, optimizer, loss_fn=l2hmc.compute_loss, global_step=None): """Train the sampler for one iteration.""" loss, grads, out, accept_prob = l2hmc.loss_and_grads( dynamics, x, loss_fn=loss_fn) optimizer.apply_gradients( zip(grads, dynamics.trainable_variables), global_step=global_step) return loss, out, accept_prob def compute_ac_spectrum(samples_history, target_mean, target_covar): """Compute autocorrelation spectrum. Follows equation 15 from the L2HMC paper. Args: samples_history: Numpy array of shape [T, B, D], where T is the total number of time steps, B is the batch size, and D is the dimensionality of sample space. target_mean: 1D Numpy array of the mean of target(true) distribution. target_covar: 2D Numpy array representing a symmetric matrix for variance. Returns: Autocorrelation spectrum, Numpy array of shape [T-1]. """ # Using numpy here since eager is a bit slow due to the loop time_steps = samples_history.shape[0] trace = np.trace(target_covar) rhos = [] for t in range(time_steps - 1): rho_t = 0. for tau in range(time_steps - t): v_tau = samples_history[tau, :, :] - target_mean v_tau_plus_t = samples_history[tau + t, :, :] - target_mean # Take dot product over observation dims and take mean over batch dims rho_t += np.mean(np.sum(v_tau * v_tau_plus_t, axis=1)) rho_t /= trace * (time_steps - t) rhos.append(rho_t) return np.array(rhos) def compute_ess(ac_spectrum): """Compute the effective sample size based on autocorrelation spectrum. This follows equation 16 from the L2HMC paper. Args: ac_spectrum: Autocorrelation spectrum Returns: The effective sample size """ # Cutoff from the first value less than 0.05 cutoff = np.argmax(ac_spectrum[1:] < .05) if cutoff == 0: cutoff = len(ac_spectrum) ess = 1. / (1. + 2. * np.sum(ac_spectrum[1:cutoff])) return ess if __name__ == "__main__": flags.DEFINE_string( "train_dir", default=None, help="[Optional] Directory to store the training information") flags.DEFINE_boolean( "restore", default=False, help="[Optional] Restore the latest checkpoint from `train_dir` if True") flags.DEFINE_boolean( "use_defun", default=False, help="[Optional] Use `tfe.defun` to boost performance") flags.DEFINE_string( "energy_fn", default="scg", help="[Optional] The energy function used for experimentation" "Other options include `rw`") FLAGS = flags.FLAGS tf.app.run(main)
apache-2.0
lhyqie/rtree
python/trajectory_test.py
1
1931
# input is a trajectory Q and a couple of trajectory S to query on from matplotlib.pyplot import figure # each trajectory is a sequence of points # each point is (x,y) q = [(1,1),(2,2),(3,3)] S = [] S.append([(1,0),(2, 3),(2,3)]) S.append([(1,3),(2, 4),(5, 3.8)]) S.append([(1,1.5),(2, 6),(3, 7)]) print q for t in S : # for each trajaetory in S, print t # Given multiple query points, a k-BCT query finds k closest trajectories to the set of query points. # The distance Distq between a query location qi and a trajectory R = {p1, p2, . . . , pl} is defined as: # (2.2) def point_distance(p1, p2): """ euclidean distance between two points """ from math import sqrt return sqrt((p1[0] - p2[0]) **2 + (p1[1] - p2[1]) **2) def point_traj_distance(p1, t): """ distance between one point p1 and a trajectory t is the minimum distance of p1 to each point p2 in t refer to Equation (2.2) """ min_dist = 99999 for p2 in t: dist = point_distance(p1, p2) if dist < min_dist: min_dist = dist return min_dist def traj_sim(t1, t2): """ similarity of two trajectories is defined as (2.3) """ from math import exp sum = 0 for p1 in t1: dist = point_traj_distance(p1, t2) sum += exp(-dist) return sum def t_query(q, S): #find the k - closest traj in S for Q for t in S: print 'distance between ', q, ' and ', t, ' is ' ,traj_sim(q, t) t_query(q, S) import matplotlib.pyplot as plt zipq = zip(*q) plt.figure(figsize=(10,5)) plt.plot(zipq[0], zipq[1], '-bo') plt.text(zipq[0][-1], zipq[1][-1] + 0.2, s="q") for i, t in enumerate(S): zipt = zip(*t) plt.plot(zipt[0], zipt[1], '-rx') plt.text(zipt[0][-1], zipt[1][-1] + 0.2, s="trajectory"+str(i)) plt.xlim([0,8]) plt.ylim([-1,8]) plt.show()
apache-2.0
Sharmarajnish/Allstate-Claims-Severity
allstate_data_analysis.py
1
2458
import pandas as pd import matplotlib.pyplot as plt from scipy import stats import numpy as np import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score as AUC from sklearn.metrics import mean_absolute_error from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder, LabelBinarizer from sklearn.cross_validation import cross_val_score from copy import deepcopy train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') print train.shape print test.shape print train.describe() print pd.isnull(train).values.any() # print train.info() cat_features = list(train.select_dtypes(include=['object']).columns) print("Number of categorical variables are:", len(cat_features)) print cat_features cont_features = [cont for cont in list(train.select_dtypes( include=['float64', 'int64']).columns) if cont not in ['loss', 'id']] print "Continuous: {} features".format(len(cont_features)) id_col = list(train.select_dtypes(include=['int64']).columns) print "A column of int64: {}".format(id_col) cat_uniques =[] for cat in cat_features: cat_uniques.append(len(train[cat].unique())) print cat_uniques unique_val_categories = pd.DataFrame.from_items([('cat_names',cat_features),('unique_values',cat_uniques)]) print unique_val_categories.head() fig,(ax1,ax2)= plt.subplots(1,2) fig.set_size_inches(16,5) ax1.hist(unique_val_categories.unique_values,bins=50) ax1.set_title('Amount of categorical features with X distinct values') ax1.set_xlabel('Distinct values in a feature') ax1.set_ylabel('Features') plt.figure(figsize=(16,8)) plt.plot(train['id'], train['loss']) plt.title('Loss values per id') plt.xlabel('id') plt.ylabel('loss') plt.legend() print stats.mstats.skew(train['loss']).data print stats.mstats.skew(np.log(train['loss'])).data fig, (ax1, ax2) = plt.subplots(1,2) fig.set_size_inches(16,5) ax1.hist(train['loss'], bins=50) ax1.set_title('Train Loss target histogram') ax1.grid(True) ax2.hist(np.log(train['loss']), bins=50, color='g') ax2.set_title('Train Log Loss target histogram') ax2.grid(True) # plt.show() train[cont_features].hist(bins=50,figsize=(16,12)) # plt.show() for con in cont_features: print stats.mstats.skew(train[con]).data plt.subplots(figsize=(16,9)) correlation_mat = train[cont_features].corr() sns.heatmap(correlation_mat, annot=True) plt.show()
mit
ajylee/gpaw-rtxs
gpaw/transport/jstm.py
1
66345
from ase.units import Bohr, Hartree from gpaw import GPAW from gpaw.fd_operators import Laplace from gpaw.utilities.tools import tri2full from gpaw.lcao.projected_wannier import dots from gpaw.grid_descriptor import GridDescriptor from gpaw.lfc import NewLocalizedFunctionsCollection as LFC from gpaw.lcao.tools import remove_pbc, get_lcao_hamiltonian, \ get_lead_lcao_hamiltonian from gpaw.mpi import world from gpaw.mpi import world as w from gpaw import mpi import time import numpy as np import numpy.linalg as la from math import cos, sin, pi import cPickle as pickle class LocalizedFunctions: def __init__(self, gd, f_iG, corner_c, index=None, vt_G=None): self.gd = gd self.size_c = np.array(f_iG.shape[1:4]) self.f_iG = f_iG self.corner_c = corner_c self.index = index self.vt_G = vt_G self.restricted = False self.phase = 1 self.sdisp_c = np.array([0, 0]) def __len__(self): return len(self.f_iG) def set_phase_factor(self, k_c): self.phase = np.exp(-2.j * pi * np.inner(k_c, self.sdisp_c)) def apply_t(self): """Apply kinetic energy operator and return new object.""" p = 2 # padding newsize_c = self.size_c + 2 * p assert self.gd.orthogonal gd = GridDescriptor(N_c=newsize_c + 1, cell_cv=self.gd.h_cv.diagonal() * (newsize_c + 1), pbc_c=False, comm=mpi.serial_comm) T = Laplace(gd, scale=-1/2., n=p) f_ig = np.zeros((len(self.f_iG),) + tuple(newsize_c)) f_ig[:, p:-p, p:-p, p:-p] = self.f_iG Tf_iG = np.empty_like(f_ig) T.apply(f_ig, Tf_iG) return LocalizedFunctions(self.gd, Tf_iG, self.corner_c - p, self.index) def overlap(self, other): """Calculate the overlap between two Localized functions objects""" start_c = np.maximum(self.corner_c, other.corner_c) stop_c = np.minimum(self.corner_c + self.size_c, other.corner_c + other.size_c) if (start_c < stop_c).all(): astart_c = start_c - self.corner_c astop_c = stop_c - self.corner_c a_iG = self.f_iG[:, astart_c[0]:astop_c[0], astart_c[1]:astop_c[1], astart_c[2]:astop_c[2]].reshape((len(self.f_iG), -1)) bstart_c = start_c - other.corner_c bstop_c = stop_c - other.corner_c b_iG = other.f_iG[:, bstart_c[0]:bstop_c[0], bstart_c[1]:bstop_c[1], bstart_c[2]:bstop_c[2]].reshape((len(other.f_iG), -1)) a_iG1 = a_iG.copy() if self.vt_G is not None: a_iG1 *= self.vt_G[start_c[0]:stop_c[0], start_c[1]:stop_c[1], start_c[2]:stop_c[2]].reshape((-1,)) return (self.gd.dv * np.inner(a_iG1, b_iG) * self.phase * np.conj(other.phase)) else: return None def restrict(self): """Restricts the box of the object to the current grid""" start_c = np.maximum(self.corner_c, np.zeros(3)) stop_c = np.minimum(self.corner_c + self.size_c, self.gd.N_c) if (start_c < stop_c).all(): astart_c = start_c - self.corner_c astop_c = stop_c -self.corner_c a_iG = self.f_iG[:, astart_c[0]:astop_c[0], astart_c[1]:astop_c[1], astart_c[2]:astop_c[2]] new_corner_c = self.corner_c for i in np.where(self.corner_c<0): new_corner_c[i] = 0 if (self.f_iG.shape != a_iG.shape): self.restricted = True self.corner_c = new_corner_c self.f_iG = a_iG self.size_c=np.asarray(a_iG.shape[1:]) def __or__(self, other): if isinstance(other, LocalizedFunctions): return self.overlap(other) # other is a potential: vt_G = other newf = LocalizedFunctions(self.gd, self.f_iG, self.corner_c, self.index, vt_G) newf.sdisp_c = self.sdisp_c newf.phase = self.phase return newf class WannierFunction(LocalizedFunctions): def __init__(self, gd, wanf_G, corner_c, index=None): LocalizedFunctions.__init__(self, gd, wanf_G[np.newaxis, :, :, :], corner_c, index) class AtomCenteredFunctions(LocalizedFunctions): def __init__(self, gd, spline_j, spos_c, index=None): rcut = max([spline.get_cutoff() for spline in spline_j]) cell = gd.cell_cv.copy() diagonal = cell[0]+cell[1] diagonal = diagonal/np.linalg.norm(diagonal) a = np.zeros_like(diagonal).astype(float) a[0]=cell[0][1] a[1]=-cell[0][0] a=-a/np.linalg.norm(a) c = rcut/np.dot(diagonal,a) # Determine corner A = cell.T / gd.cell_cv.diagonal() # Basis change matrix pos = np.dot(np.linalg.inv(cell.T), diagonal * c) pos[2] = rcut / gd.cell_cv[2, 2] h_c = gd.h_cv.diagonal() cell_c = gd.cell_cv.diagonal() assert gd.orthogonal corner_c = np.ceil(spos_c * gd.N_c - pos * cell_c / h_c).astype(int) self.center = pos * cell_c / h_c - corner_c size_c = np.ceil(spos_c * gd.N_c + pos * cell_c / h_c).astype(int) - corner_c smallgd = GridDescriptor(N_c=size_c + 1, cell_cv=(np.dot(A, np.diag(h_c * (size_c + 1))).T), pbc_c=False, comm=mpi.serial_comm) self.test = (np.dot(A,np.diag(h_c * (size_c +1))).T) self.smallgd=smallgd lfc = LFC(smallgd, [spline_j]) lfc.set_positions((spos_c[np.newaxis, :] * gd.N_c - corner_c + 1) / smallgd.N_c) ni = lfc.Mmax f_iG = smallgd.zeros(ni) lfc.add(f_iG, {0: np.eye(ni)}) LocalizedFunctions.__init__(self, gd, f_iG, corner_c, index=index) class STM: """Simulate STM-images using Green's function methods""" def __init__(self, tip=None, surface=None, lead1=None, lead2=None, **kwargs): """Create the STM-calculators. Parameters: tip_atom_index: int index of the atom that defines the tip apex dmin: float minimal distance between tip and surface hs1: {None, (h1, s1) tuple} here h1 and s1 are the Hamiltonan and overlap matrix for the tip region. hs10: {None, (h10, s10) tuple} where h10 and s10 are the Hamiltonian and overlap matrix for tip lead. hs2: {None, (h2, s2) tuple} here h2 and s2 are the Hamiltonan and overlap matrix for the tip region. hs20: {None (h20, s20) tuple} here h20 and s20 are the Hamiltonian and overlap matrix for tip lead. align_bf: {1, Int} Use align_bf=m to shift the surface region by a constant potential so that the m'th onsite element in the surface is aligned with the m'th onsite element in the surface lead. Further the tip lead is shifted so that the -m'th onsite element of the tip is aligned with the -m'th onsite element of the tip lead. bias: {1, float} sets the bias value across the tunneling junction de: {0.01, float} spacing of the energy grid which the transmission function should be calcualted on. w: {0.0, [0:1], float} symmetry of the applied bias: w=0 surface potential is fixed, w=1 tip potential is fixed. k_c: {(0, 0), array} array of a k-point of the irreducible transverse Brillouin zone. energies: {None, array} A custom energy grid, on which the transmission function should be calculated. eta1/eta2: {1e-4, float} Infinitesimal for the calculation of the tip/surface lead self-energies cpu_grid: {None, (N,N) ndarray, dtype=Int} define the cpu grid that is used for the calculation. The first index refers to a parallelisation over tip positions, while the second index refers to a prallelisation over basis functions. If 'None' is used the prallelisation is over tip position only. logfile: {None , str} Write a logfile in the local directory with name given by 'str' """ self.input_parameters = {'tip_atom_index': 0, 'dmin': 6.0, 'hs1': None, 'hs10': None, 'hs2': None, 'hs20': None, 'align_bf': 1, 'bias': 1.0, 'de': 0.01, 'k_c': (0, 0), 'energies': None, 'w': 0.0, 'eta1': 1e-4, 'eta2': 1e-4, 'cpu_grid': None, 'logfile': None} self.tip = tip self.srf = surface self.lead1 = lead1 self.lead2 = lead2 self.stm_calc = None self.scans = {} self.potential_shift = 0 #initialize communicators if 'cpu_grid' in kwargs: self.input_parameters['cpu_grid'] = kwargs['cpu_grid'] if self.input_parameters['cpu_grid'] == None: # parallelization over domains only self.input_parameters['cpu_grid'] = (world.size, 1) n, m = self.input_parameters['cpu_grid'] assert n * m == world.size ranks = np.arange(world.rank % m, world.size, m) domain_comm = world.new_communicator(ranks) # comm for tip positions r = world.rank // m * m bfs_comm = world.new_communicator(np.arange(r, r + m)) # comm for bfs self.world = world self.domain_comm = domain_comm self.bfs_comm = bfs_comm self.initialized = False self.transport_uptodate = False self.hs_aligned = False self.set(**kwargs) def set(self, **kwargs): for key in kwargs: if key in ['hs1', 'hs10', 'hs2', 'hs20', 'cvl1', 'cvl2', 'bias', 'de', 'energies', 'w', 'align_bf', 'eta1', 'eta2']: self.transport_uptodate = False break elif key in ['tip_atom_index', 'dmin']: self.initialized = False elif key in ['k_c']: self.transport_uptodate = False self.initialized = False elif key not in self.input_parameters: raise KeyError, '\'%s\' not a valid keyword' % key self.input_parameters.update(kwargs) log = self.input_parameters['logfile'] if log is None: class Trash: def write(self,s): pass def flush(self): pass self.log = Trash() elif log == '-': from sys import stdout self.log = stdout elif 'logfile' in kwargs: self.log = open(log + str(world.rank), 'w') def initialize(self): """Initialize the STM-calculator: 1. Preselect tip and surface basis functions with overlapping values in the z-direction. 2. Initialize the tip region 3. Initialize the surface region 4. Initialize the transport calculator. This includes a pre-calculation of the Green's functions. """ if self.initialized and self.transport_uptodate: return elif not self.transport_uptodate and self.initialized: self.initialize_transport() return if world.rank == 0: T = time.localtime() self.log.write('#%d:%02d:%02d' % (T[3], T[4], T[5]) + ' Initializing\n') self.log.flush() p = self.input_parameters self.dmin = p['dmin'] / Bohr tip_atom_index = p['tip_atom_index'] # preselect tip and surface functions tip_pos_av = self.tip.atoms.get_positions() / Bohr srf_pos_av = self.srf.atoms.get_positions() / Bohr tip_zmin = tip_pos_av[tip_atom_index, 2] srf_zmax = srf_pos_av[:, 2].max() tip_zmin_a = np.empty(len(tip_pos_av)) for a, setup in enumerate(self.tip.wfs.setups): rcutmax = max([phit.get_cutoff() for phit in setup.phit_j]) tip_zmin_a[a] = tip_pos_av[a, 2] - rcutmax - tip_zmin srf_zmax_a = np.empty(len(srf_pos_av)) for a, setup in enumerate(self.srf.wfs.setups): rcutmax = max([phit.get_cutoff() for phit in setup.phit_j]) srf_zmax_a[a] = srf_pos_av[a, 2] + rcutmax - srf_zmax tip_indices = np.where(tip_zmin_a < srf_zmax_a.max() - self.dmin)[0] srf_indices = np.where(srf_zmax_a > tip_zmin_a.min() + self.dmin)[0] srf_indices = np.arange(srf_indices.min(), len(srf_zmax_a)).astype(int) # tip initialization self.tip_cell = TipCell(self.tip, self.srf) self.tip_cell.initialize(tip_indices, tip_atom_index) self.ni = self.tip_cell.ni # number tip basis functions # distribution of surface basis functions over CPUs in bfs-communicator bcomm = self.bfs_comm bfs_indices = [] j = 0 for a in srf_indices: setup = self.srf.wfs.setups[a] spos_c = self.srf.atoms.get_scaled_positions()[a] for phit in setup.phit_j: f = AtomCenteredFunctions(self.srf.wfs.gd, [phit], spos_c, j) bfs_indices.append(j) j += len(f.f_iG) assert len(bfs_indices) >= bcomm.size l = len(bfs_indices) // bcomm.size rest = len(bfs_indices) % bcomm.size if bcomm.rank < rest: start = (l + 1) * bcomm.rank stop = (l + 1) * (bcomm.rank + 1) else: start = l * bcomm.rank + rest stop = l * (bcomm.rank + 1) + rest bfs_indices = bfs_indices[start:stop] # surface bfs on this CPU # surface initialization self.srf_cell = SrfCell(self.srf) self.srf_cell.initialize(self.tip_cell, srf_indices, bfs_indices, p['k_c']) self.nj = self.srf_cell.nj self.set_tip_position([0, 0]) if world.rank == 0: self.log.write(' dmin = %.3f\n' % (self.dmin * Bohr) + ' tip atoms: %i to %i, tip functions: %i\n' % (tip_indices.min(), tip_indices.max(), len(self.tip_cell.functions)) +' surface atoms: %i to %i, srf functions %i\n' %(srf_indices.min(), srf_indices.max(), len(self.srf_cell.functions)) ) self.log.flush() if not self.transport_uptodate: self.initialize_transport() # Shift the potential of the tip cell so that the fermi level # of the combined stm # is in the middle of the original tip and surface fermi level. srf_efermi = self.srf.get_fermi_level() / Hartree tip_efermi = self.tip.get_fermi_level() / Hartree self.tip_cell.shift_potential(-self.potential_shift -(srf_efermi + tip_efermi) / 2) self.initialized = True def initialize_transport(self, restart = False): """Initialize the transport calculator that is used to calculate the Green's function matrices.""" p = self.input_parameters h1, s1 = p['hs1'] h10, s10 = p['hs10'] h2, s2 = p['hs2'] h20, s20 = p['hs20'] align_bf = p['align_bf'] de = p['de'] bias = p['bias'] w = p['w'] eta1 = p['eta1'] eta2 = p['eta2'] if not self.hs_aligned: tip_efermi = self.tip.get_fermi_level() / Hartree srf_efermi = self.srf.get_fermi_level() / Hartree fermi_diff = tip_efermi - srf_efermi # Align bfs with the surface lead as a reference diff = (h2[align_bf, align_bf] - h20[align_bf, align_bf]) \ / s2[align_bf, align_bf] self.potential_shift = diff / Hartree h2 -= diff * s2 h1 -= diff * s1 diff1 = (h10[-1, -1] - h1[-1, -1]) / s1[-1, -1] h10 -= diff1 * s10 self.hs_aligned = True if not self.transport_uptodate: from ase.transport.stm import STM as STMCalc if world.rank == 0: T = time.localtime() self.log.write('\n %d:%02d:%02d' % (T[3], T[4], T[5]) + ' Precalculating Green\'s functions\n') self.log.flush() # Determine the energy grid on which the transmission function # should be evaluated. if p['energies'] == None: energies = np.sign(bias) * \ np.arange(-abs(bias) * w, -abs(bias) * (w - 1) + de, de) energies.sort() else: energies = p['energies'] # distribute energy grid over all cpu's self.energies = energies # global energy grid l = len(energies) // world.size # minimum number of enpts per cpu rest = len(energies) % world.size # first #rest cpus get +1 enpt if world.rank < rest: start = (l + 1) * world.rank stop = (l + 1) * (world.rank + 1) else: start = l * world.rank + rest stop = l * (world.rank + 1) + rest energies = energies[start:stop] # energy grid on this cpu # set up current calculator stm_calc = STMCalc(h2, s2, h1, s1, h20, s20, h10, s10, eta1, eta2, w=w, logfile=self.log) # precalculate Green's functions for tip and surface. if not restart: stm_calc.initialize(energies, bias=bias,) self.stm_calc = stm_calc self.transport_uptodate = True if world.rank == 0: T = time.localtime() self.log.write(' %d:%02d:%02d' % (T[3], T[4], T[5]) + ' Done\n') self.log.flush() self.world.barrier() def set_tip_position(self, position_c): """Set tip positions. Positions tip atom as close as possible above the surface at the grid point given by positions_c and sums the tip and surface potentials""" position_c = np.resize(position_c,3) assert self.srf_cell.gd.orthogonal h_c = self.srf_cell.gd.h_cv.diagonal() tip_cell = self.tip_cell tip_atom_index = tip_cell.tip_atom_index tip_pos_av = tip_cell.atoms.get_positions() / Bohr tip_zmin = tip_pos_av[tip_atom_index, 2] tip_pos_av_grpt = self.tip_cell.gd.N_c\ * self.tip_cell.atoms.get_scaled_positions() srf_pos_av = self.srf_cell.atoms.get_positions() / Bohr srf_zmax = srf_pos_av[:, 2].max() extension_c = np.resize(self.srf_cell.ext1,3) extension_c[-1] = 0 #corner of the tip unit cell in the extended grid cell_corner_c = position_c + extension_c\ - tip_pos_av_grpt[tip_atom_index] cell_corner_c[2] = (srf_zmax + self.dmin - tip_zmin) / h_c[2] cell_corner_c = np.round(cell_corner_c).astype(int) self.tip_position = cell_corner_c + \ tip_pos_av_grpt[tip_atom_index] - extension_c self.dmin = self.tip_position[2] * h_c[2] - srf_zmax self.tip_cell.set_position(cell_corner_c) # sum potentials size_c = self.tip_cell.gd.n_c current_Vt = self.srf_cell.vt_G.copy() current_Vt[cell_corner_c[0] + 1:cell_corner_c[0] + 1 + size_c[0], cell_corner_c[1] + 1:cell_corner_c[1] + 1 + size_c[1], cell_corner_c[2] + 1:cell_corner_c[2] + 1 + size_c[2]]\ += self.tip_cell.vt_G # +1 since grid starts at (1,1,1), pbc = 0 self.current_v = current_Vt def get_V(self, position_c): """Returns the overlap hamiltonian at position_c""" if not self.initialized: self.initialize() dtype = 'float' if np.any(self.input_parameters['k_c']): dtype = 'complex' f_iGs = self.srf_cell.f_iGs self.set_tip_position(position_c) nj = self.nj ni = self.ni V_ij = np.zeros((nj, ni), dtype=dtype ) vt_G = self.current_v for s in self.srf_cell.functions: j1 = s.index s.f_iG = f_iGs[j1] j2 = j1 + len(s) for t, t_kin in zip(self.tip_cell.functions, self.tip_cell.functions_kin): i1 = t.index i2 = i1 + len(t) V = (s | vt_G | t) if V is None: V = 0 kin = (s | t_kin) if kin is None: kin = 0 vk = np.asarray(V + kin) assert abs(vk.imag).max() < 1e-14 V_ij[j1:j2, i1:i2] += vk.real s.f_iG = None self.bfs_comm.sum(V_ij) return V_ij * Hartree def get_transmission(self, position_c): """Calculates the transmission function for a given tip postion_c""" energies = self.energies # global energy grid l = len(energies) / world.size # minimum number of enpts per cpu rest = len(energies) % world.size # first #rest cpus get +1 enpt if world.rank < rest: start = (l + 1) * world.rank stop = (l + 1) * (world.rank + 1) else: start = l * world.rank + rest stop = l * (world.rank + 1) + rest T_glob = np.zeros_like(energies) V_ts = self.get_V(position_c) T_glob[start:stop] = self.stm_calc.get_transmission(V_ts) world.sum(T_glob) return T_glob def get_current(self, position_c, bias=None): self.initialize() energies=self.energies if bias == None: bias = self.stm_calc.bias T_e = self.get_transmission(position_c) bias = self.stm_calc.bias w = self.stm_calc.w bias_window = -np.array([bias * w, bias * (w - 1)]) bias_window.sort() i1 = sum(energies < bias_window[0]) i2 = sum(energies < bias_window[1]) step = 1 if i2 < i1: step = -1 I = np.sign(bias)*np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step]) return I * 77466.1509 #units: nA def get_s(self, position_c): """Returns the overlap matrix for a given tip postion position_c""" dtype = 'float' if np.any(self.input_parameters['k_c']): dtype = 'complex' self.set_tip_position(position_c) S_ij = np.zeros((self.nj, self.ni), dtype=dtype ) f_iGs = self.srf_cell.f_iGs for s in self.srf_cell.functions: j1 = s.index s.f_iG = self.srf_cell.f_iGs[j1] j2 = j1 + len(s) for t in self.tip_cell.functions: i1 = t.index i2 = i1 + len(t) overlap = (s | t) if overlap is not None: S_ij[j1:j2, i1:i2] += overlap return S_ij def reset(self): self.scans = {} def scan(self): """Performs a scan at constant height. Parallel run: The calculation of the Green's functions is done in parallel by all processors. Hence the energy grid is, at this point, distributed over all processors. Further it is possible to parallize over 1. tip-positions (domain_comm) 2. basis functions (bfs_comm) Assume a processor grid of NxM CPU's. The first axis corresponds to a parallelization over tip positions an the second axis corresponds to a parallelization over basis functions: 1. The tip positions are distributed among the N rows of the cpu grid. 2. For each tip position the basis functions are distributed over the M colums of the processor grid. Primarily, the overlap Hamiltonian at each tip position is calculated. Secondly the transmission function is evaluated for each tip-position. Since the energy grid is distributed over all processors, the total transmission has to be calculated in succesive steps by sending the Green's function matrices along the N-axis of the processor grid. """ dtype = 'float' if np.any(self.input_parameters['k_c']): dtype = 'complex' if world.rank == 0: T = time.localtime() self.log.write(' %d:%02d:%02d ' % (T[3], T[4], T[5]) + 'Fullscan\n') self.log.flush() #distribute grid points over cpu's dcomm = self.domain_comm N_c = self.srf.wfs.gd.N_c[:2] gpts_i = np.arange(N_c[0] * N_c[1]) l = len(gpts_i) // dcomm.size rest = len(gpts_i) % dcomm.size if dcomm.rank < rest: start = (l + 1) * dcomm.rank stop = (l + 1) * (dcomm.rank + 1) else: start = l * dcomm.rank +rest stop = l * (dcomm.rank + 1) + rest gpts_i = gpts_i[start:stop] # gridpoints on this cpu V_g = np.zeros((len(gpts_i), self.nj, self.ni), dtype=dtype) # V_ij's on this cpu for i, gpt in enumerate(gpts_i): x = gpt / N_c[1] y = gpt % N_c[1] V_g[i] = self.get_V((x, y)) #get the distribution of the energy grid over CPUs el = len(self.energies) // world.size # minimum number of enpts per cpu erest = len(self.energies) % world.size # first #rest cpus get +1 enpt if world.rank < erest: estart = (el + 1) * world.rank else: estart = el * world.rank + erest bias = self.stm_calc.bias if world.rank == 0: T = time.localtime() self.log.write(' %d:%02d:%02d ' % (T[3], T[4], T[5]) + 'Done VS, starting T\n') self.log.flush() nepts = len(self.stm_calc.energies) # number of e-points on this cpu T_pe = np.zeros((len(V_g), len(self.energies))) # Transmission function self.log.write(str(T_pe.shape)) for j, V in enumerate(V_g): T_pe[j, estart:estart + nepts] = self.stm_calc.get_transmission(V) self.log.flush() if world.rank == 0: T = time.localtime() self.log.write(' %d:%02d:%02d ' % (T[3], T[4], T[5]) + 'T done\n') self.log.flush() world.barrier() #send Green's functions if a parallel run self.stm_calc.energies_req = self.stm_calc.energies.copy() for i in range(dcomm.size - 1): # parallel run over tip positions # send Green functions along the domain_comm axis # tip and surface Green's functions have to be send separately, # since in general they do not have the same shapes rank_send = (dcomm.rank + 1) % dcomm.size rank_receive = (dcomm.rank - 1) % dcomm.size # send shape of gft, send also the initial index of the # local energy list gft1 = self.stm_calc.gft1_emm request = dcomm.send(np.asarray((estart,) + gft1.shape), rank_send, block=False) data = np.array((0, 0, 0, 0), dtype=int) dcomm.receive(data, rank_receive) dcomm.wait(request) estart, nepts = data[:2] shape = data[1:] # send Green function of the tip gft1_receive = np.empty(tuple(shape), dtype = complex) request = dcomm.send(gft1, rank_send, block=False) dcomm.receive(gft1_receive, rank_receive) dcomm.wait(request) # send shape the surface green functions gft2 = self.stm_calc.gft2_emm request = dcomm.send(np.asarray(gft2.shape), rank_send, block=False) shape = np.array((0, 0, 0), dtype=int) dcomm.receive(shape, rank_receive) dcomm.wait(request) #send surface green function gft2_receive = np.empty(tuple(shape), dtype=complex) request = dcomm.send(gft2, rank_send, block=False) dcomm.receive(gft2_receive, rank_receive) dcomm.wait(request) self.stm_calc.gft1_emm = gft1_receive self.stm_calc.gft2_emm = gft2_receive self.stm_calc.energies = self.energies[estart:estart + nepts] T = time.localtime() if world.rank == 0: self.log.write(' %d:%02d:%02d ' % (T[3], T[4], T[5]) + 'Received another gft, start T\n') self.log.flush() for j, V in enumerate(V_g): T_pe[j, estart:estart + nepts] = \ self.stm_calc.get_transmission(V) T = time.localtime() if world.rank == 0: self.log.write(' %d:%02d:%02d ' % (T[3], T[4], T[5]) + 'Done\n') self.log.flush() self.bfs_comm.sum(T_pe) # next calculate the current. Parallelize over bfs_comm # distribute energy grid over all cpu's bcomm = self.bfs_comm energies = self.energies # global energy grid l = len(energies) // bcomm.size rest = len(energies) % bcomm.size if bcomm.rank < rest: start = (l + 1) * bcomm.rank stop = (l + 1) * (bcomm.rank + 1) + 1 # +1 is important else: start = l * bcomm.rank + rest stop = l * (bcomm.rank + 1) + rest + 1 T = time.localtime() if world.rank == 0: self.log.write(' %d:%02d:%02d ' % (T[3], T[4], T[5]) + 'start Current\n') self.log.flush() energies = energies[start:stop] # energy grid on this CPU T_pe = T_pe[:, start:stop] ngpts = len(T_pe) bias = self.stm_calc.bias w = self.stm_calc.w bias_window = -np.array([bias * w, bias * (w - 1)]) bias_window.sort() i1 = sum(energies < bias_window[0]) i2 = sum(energies < bias_window[1]) step = 1 if i2 < i1: step = -1 I_g = np.sign(bias) * np.trapz(x=energies[i1:i2:step], y=T_pe[:, i1:i2:step]) bcomm.sum(I_g) I_g *= 77466.1509 # units are nA T = time.localtime() if world.rank == 0: self.log.write(' %d:%02d:%02d ' % (T[3], T[4], T[5]) + 'stop current\n') self.log.flush() # next gather the domains scan = np.zeros(N_c) for i, gpt in enumerate(gpts_i): x = gpt / N_c[1] y = gpt % N_c[1] scan[x, y] = I_g[i] self.domain_comm.sum(scan) # gather image sgd = self.srf.wfs.gd data = (bias, sgd.N_c, sgd.h_cv.diagonal(), sgd.cell_cv, sgd.cell_cv.diagonal()) dmin = self.get_dmin() fullscan = (data, scan) if world.rank == 0: fd = open('scan_' + str(np.round(self.get_dmin(), 2)) + '_bias_'\ + str(bias) + '_.pckl', 'wb') pickle.dump((dmin,fullscan[0], fullscan[1]), fd, 2) fd.close() world.barrier() self.scans['fullscan'] = fullscan T = time.localtime() self.log.write(' %d:%02d:%02d' % (T[3], T[4], T[5]) + 'Fullscan done\n') def scan3d(self, zmin, zmax, filename = 'scan3d.pckl'): """Map the current between the minumum tip height zmin and the maximum tip height zmax. The result is dumped to a file in the local direcotry""" sgd = self.srf.wfs.gd bias = self.input_parameters['bias'] data = (bias, sgd.N_c, sgd.h_cv.diagonal(), sgd.cell_cv, sgd.cell_cv.diagonal()) self.scans['scan3d'] = (data, {}) hz = self.srf.wfs.gd.h_cv[2, 2] * Bohr dmins = -np.arange(zmin, zmax + hz, hz) dmins.sort() dmins = -dmins for dmin in dmins: world.barrier() self.set(dmin=dmin) self.initialize() self.scan() dmin = self.get_dmin() self.scans['scan3d'][1][dmin] = self.scans['fullscan'][1].copy() world.barrier() if world.rank == 0: fd = open(filename, 'wb') pickle.dump(self.scans['scan3d'], fd, 2) fd.close() world.barrier() def get_constant_current_image(self, I): """Calculate the constant current image by interpolation between constant height scans. """ assert self.scans.has_key('scan3d') data, scans = self.scans['scan3d'] hz = data[2][2] * Bohr dmins = [] for dmin in scans.keys(): dmins.append(dmin) dmins.sort() scans3d = np.zeros(tuple(scans.values()[0].shape) + (len(dmins),)) for i, dmin in enumerate(dmins): scans3d[:, :, i] = scans[dmin] scans = scans3d.copy() shape = tuple(scans.shape[:2]) cons = np.zeros(shape) for x in range(shape[0]): for y in range(shape[1]): x_I = abs(scans[x, y, :]) i1 = np.where(x_I <= I)[0].min() i2 = i1 - 1 I1 = x_I[i1] I2 = x_I[i2] h = I2 - I1 Ih = (I - I1) / h result = i1 * (1 - Ih) + i2 * Ih if i2 < 0: result = 0 cons[x, y] = result * hz + dmins[0] self.scans['fullscan'] = (data, cons) def get_constant_height_image(self, index): assert self.scans.has_key('scan3d') data, scans = self.scans['scan3d'] dmins = [] for dmin in scans.keys(): dmins.append(dmin) dmins.sort() key = dmins[index] print key self.scans['fullscan'] = (data, abs(scans[key])) def linescan(self, startstop=None): if 'fullscan' in self.scans: data, scan = self.scans['fullscan'] cell_cv = data[3] #XXX cell_c = data[4] #XXX h_c = data[2] #XXX N_c = data[1] #XXX else: sgd = self.srf.wfs.gd cell_cv = sgd.cell_cv cell_c = sgd.cell_cv.diagonal() h_c = sgd.h_cv.diagonal() N_c = sgd.N_c if startstop == None: start = np.array([0, 0]) stop = N_c[:2] - 1 else: start = np.asarray(startstop[0]) stop = np.asarray(startstop[1]) assert ((N_c[:2] - stop)>=0).all() v = (stop - start) / np.linalg.norm(stop - start) n_c = N_c[:2] h_c = h_c[:2] h = np.linalg.norm(v*h_c) n = np.floor(np.linalg.norm((stop - start) * h_c) / h).astype(int) + 1 linescan_n = np.zeros((n, )) line = np.arange(n)*Bohr*h for i in range(n): grpt = start + v * i if np.round((grpt % 1), 5).any(): # Interpolate if nessesary C = np.empty((2, 2, 2)) # find four nearest neighbours C[0,0] = np.floor(grpt) C[1,0] = C[0, 0] + np.array([1, 0]) C[0,1] = C[0, 0] + np.array([0, 1]) C[1,1] = C[0, 0] + np.array([1, 1]) xd = (grpt % 1)[0] yd = (grpt % 1)[1] if not 'fullscan' in self.scans: I1 = self.get_current(C[0, 0]) * (1 - xd) \ + self.get_current(C[1, 0]) * xd I2 = self.get_current(C[0, 1]) * (1 - xd) \ + self.get_current(C[1, 1]) * xd I = I1 * (1 - yd) + I2 * yd else: fullscan = scan I1 = fullscan[tuple(C[0, 0])] * (1 - xd) \ + fullscan[tuple(C[1, 0])] * xd I2 = fullscan[tuple(C[0, 1])] * (1 - xd) \ + fullscan[tuple(C[1, 1])] * xd I = I1 * (1 - yd) + I2 * yd else: if not 'fullscan' in self.scans: I = self.get_current(grpt.astype(int)) else: I = scan[tuple(grpt.astype(int))] linescan_n[i] = I self.scans['linescan'] = ([start, stop], line, linescan_n) def get_dmin(self): return self.dmin * Bohr def read_scans_from_file(self, filename): scan3d = pickle.load(open(filename)) self.scans['scan3d'] = scan3d def plot(self, repeat=(1, 1), vmin=None, vmax = None, show = True, label=None): import matplotlib import pylab from pylab import ogrid, imshow, cm, colorbar repeat = np.asarray(repeat) if self.scans.has_key('fullscan'): data, scan0_iG = self.scans['fullscan'] cell_cv = data[3] #XXX cell_c = data[4] #XXX h_c = data[2] #XXX gdN_C = data[1] #XXX shape0 = np.asarray(scan0_iG.shape) scan1_iG = np.zeros(shape0 * repeat) for i in range(repeat[0]): for j in range(repeat[1]): start = np.array([i,j]) * shape0 stop = start + shape0 scan1_iG[start[0]:stop[0], start[1]:stop[1]] = scan0_iG is_orthogonal = np.round(np.trace(cell_cv)-np.sum(cell_c), 5) == 0 if not is_orthogonal: h = [0.2, 0.2] else: h = h_c[:2] scan0_iG = scan1_iG shape = scan0_iG.shape scan_iG = np.zeros(tuple(np.asarray(shape)+1)) scan_iG[:shape[0],:shape[1]] = scan0_iG scan_iG[-1,:shape[1]] = scan0_iG[0,:] scan_iG[:,-1] = scan_iG[:,0] N_c = np.floor((cell_cv[0,:2] * repeat[0]\ + cell_cv[1, :2] * repeat[1]) / h[0]).astype(int) ortho_cell_c = np.array(N_c * h_c[:2]) plot = np.zeros(tuple(N_c)) # is srf_cell orthogonal ? if not is_orthogonal: h = [0.2, 0.2] # Basis change matrix # e -> usual basis {(1,0),(0,1)} # o -> basis descrining original original cell # n -> basis describing the new cell eMo = (cell_cv.T / cell_c * h_c)[:2,:2] eMn = np.eye(2) * h oMn = np.dot(np.linalg.inv(eMo), eMn) for i in range(N_c[0]): for j in range(N_c[1]): grpt = np.dot(oMn, [i,j]) if (grpt<0).any() or (np.ceil(grpt)>shape).any(): plot[i,j] = plot.min() - 1000 else: # interpolate C00 = np.floor(grpt).astype(int) C01 = C00.copy() C01[0] += 1 C10 = C00.copy() C10[1] += 1 C11 = C10.copy() C11[0] += 1 x0 = grpt[0] - C00[0] y0 = grpt[1] - C00[1] P0 = scan_iG[tuple(C00)] * (1 - x0)\ + scan_iG[tuple(C01)] * x0 P1 = scan_iG[tuple(C10)] * (1 - x0)\ + scan_iG[tuple(C11)] * x0 plot[i,j] = P0 * (1 - y0) + P1 * y0 else: plot = scan_iG.copy() plot = plot.T # origin to the lower left corner self.scans['interpolated_plot'] = plot if vmin == None: vmin = scan0_iG.min() if vmax == None: vmax=scan0_iG.max() norm = matplotlib.colors.normalize(vmin=vmin, vmax=vmax) self.pylab = pylab f0 = pylab.figure() self.fig0 = f0 p0 = f0.add_subplot(111) x,y = ogrid[0:plot.shape[0]:1, 0:plot.shape[1]:1] extent=[0, (plot.shape[1] - 1) * h[1] * Bohr, 0, (plot.shape[0] - 1) * h[0] * Bohr] p0.set_ylabel('\xc5') p0.set_xlabel('\xc5') imshow(plot, norm=norm, interpolation='bicubic', origin='lower', cmap=cm.hot, extent=extent) fontsize=100 cb = colorbar() ax = cb.ax if label is not None: cb.set_label(label) if self.scans.has_key('linescan'): startstop, line, linescan_n = self.scans['linescan'] start = startstop[0] stop = startstop[1] f1 = pylab.figure() self.fig1 = f1 p1 = f1.add_subplot(111) self.p1 = p1 if label is not None: p1.set_ylabel(label) p1.plot(line, linescan_n) eMo = (cell_cv.T / cell_c)[:2,:2] start = np.dot(eMo, start * h_c[:2]) * Bohr stop = np.dot(eMo, stop * h_c[:2]) * Bohr if self.scans.has_key('fullscan'): #Add a line p0.plot([start[0], stop[0]], [start[1], stop[1]],'-b') p0.set_xlim(tuple(extent[:2])) p0.set_ylim(tuple(extent[-2:])) if world.rank == 0: if show == True: pylab.show() else: return None class TipCell: def __init__(self, tip, srf): self.tip = tip self.srf = srf self.gd = None self.vt_G = None self.tip_atom_index = None self.functions = [] self.functions_kin = [] self.energy_shift = 0 def initialize(self, tip_indices, tip_atom_index, debug=False): self.tip_indices = tip_indices self.tip_atom_index = tip_atom_index assert tip_atom_index in tip_indices tgd = self.tip.wfs.gd sgd = self.srf.wfs.gd tip_atoms = self.tip.atoms.copy()[tip_indices] tip_atoms.pbc = 0 tip_pos_av = tip_atoms.get_positions().copy() / Bohr tip_cell_cv = tgd.cell_cv srf_cell_cv = sgd.cell_cv tip_zmin = tip_pos_av[tip_atom_index, 2] tip_zmin_a = np.zeros(len(tip_indices)) # size of the simulation cell in the z-direction m = 0 for a, setup in enumerate(self.tip.wfs.setups): if a in tip_indices: rcutmax = max([phit.get_cutoff() for phit in setup.phit_j]) tip_zmin_a[m] = tip_pos_av[m, 2] - rcutmax - tip_zmin m+=1 p=2 zmax_index = np.where(tip_pos_av[:, 2] == tip_pos_av[:, 2].max())[0][0] cell_zmin = tip_zmin + tip_zmin_a.min() cell_zmax = 2 * tip_pos_av[zmax_index, 2]\ - tip_zmin - tip_zmin_a[zmax_index] self.cell_zmin = cell_zmin self.cell_zmax = cell_zmax if cell_zmax > tgd.cell_cv[2, 2] - tgd.h_cv[2, 2]: cell_zmax = tgd.cell_cv[2, 2] - tgd.h_cv[2, 2] cell_zmin_grpt = np.floor(cell_zmin / tgd.h_cv[2, 2] - p).astype(int) if cell_zmin_grpt < 0: cell_zmin_grpt = 0 cell_zmax_grpt = np.floor(cell_zmax / tgd.h_cv[2, 2]).astype(int) new_sizez = cell_zmax_grpt - cell_zmin_grpt self.cell_zmax_grpt = cell_zmax_grpt self.cell_zmin_grpt = cell_zmin_grpt # If tip and surface cells differ in the xy-plane, # determine the 2d-cell with the smallest area, having lattice vectors # along those vectors describing the 2d-cell belonging to the surface. # This part is messy and can be disregarded if tip and surface a calculated # in equal unit cells. srf_basis = srf_cell_cv.T / sgd.cell_cv.diagonal() tip_basis = tip_cell_cv.T / tgd.cell_cv.diagonal() if (srf_basis - tip_basis).any(): # different unit cells dointerpolate = True steps = 500 # XXX crap thetas = np.arange(0, pi, pi/steps) areas = np.zeros_like(thetas).astype(float) for i, theta in enumerate(thetas): cell = smallestbox(tip_cell_cv, srf_cell_cv, theta)[0] area = np.cross(cell[0, :2], cell[1, :2]) areas[i] = abs(area) area_min_index = np.where(areas == areas.min())[0].min() theta_min = thetas[area_min_index] newcell_cv, origo_c = smallestbox(tip_cell_cv, srf_cell_cv, theta_min) tip_pos_av = np.dot(rotate(theta_min), tip_pos_av.T).T + origo_c newcell_c = np.array([la.norm(cell_cv[x]) for x in range(3)]) newsize2_c = np.around(newcell_c / sgd.h_cv.diagonal()).astype(int) elif (sgd.h_cv - tgd.h_cv).any(): # different grid spacings dointerpolate = True newcell_cv = tip_cell_cv newcell_c = tgd.cell_cv.diagonal() newsize2_c = np.around(newcell_c / sgd.h_cv.diagonal()).astype(int) theta_min = 0.0 origo_c = np.array([0,0,0]) else: dointerpolate = False newsize2_c = tgd.N_c.copy() vt_sG = self.tip.hamiltonian.vt_sG.copy() vt_sG = self.tip.wfs.gd.collect(vt_sG, broadcast=True) vt_G = vt_sG[0] vt_G = vt_G[:, :, cell_zmin_grpt:cell_zmax_grpt] theta_min = 0.0 origo_c = np.array([0,0,0]) self.vt_G = vt_G N_c_bak = self.tip.wfs.gd.N_c.copy() tip_pos_av[:,2] -= cell_zmin_grpt * tgd.h_cv[2, 2] newsize2_c[2] = new_sizez.copy() newcell_c = (newsize2_c + 1) * sgd.h_cv.diagonal() newcell_cv = srf_basis * newcell_c newgd = GridDescriptor(N_c=newsize2_c+1, cell_cv=newcell_cv, pbc_c=False, comm=mpi.serial_comm) new_basis = newgd.cell_cv.T / newgd.cell_cv.diagonal() origo_c += np.dot(new_basis, newgd.h_cv.diagonal()) tip_pos_av += np.dot(new_basis, newgd.h_cv.diagonal()) tip_atoms.set_positions(tip_pos_av * Bohr) tip_atoms.set_cell(newcell_cv * Bohr) self.atoms = tip_atoms self.gd = newgd # quick check assert not (np.around(new_basis - srf_basis, 5)).all() assert not (np.around(newgd.h_cv - sgd.h_cv, 5)).all() # add functions functions = [] i=0 for k, a in enumerate(tip_indices): setup = self.tip.wfs.setups[a] spos_c = self.atoms.get_scaled_positions()[k] for phit in setup.phit_j: f = AtomCenteredFunctions(self.gd, [phit], spos_c, i) functions.append(f) i += len(f.f_iG) self.ni = i # Apply kinetic energy: functions_kin = [] for f in functions: functions_kin.append(f.apply_t()) for f, f_kin in zip(functions, functions_kin): f.restrict() f_kin.restrict() self.attach(functions,functions_kin) if dointerpolate: self.interpolate_vt_G(theta_min, origo_c) def attach(self, functions, functions_kin): self.functions = functions self.functions_kin = functions_kin p0 = {} p0_kin = {} for f, f_kin in zip(self.functions, self.functions_kin): p0[f]=f.corner_c.copy() p0_kin[f_kin]=f_kin.corner_c.copy() self.p0 = p0 self.p0_kin = p0_kin def set_position(self, position_c): self.position = position_c for f, f_kin in zip(self.functions, self.functions_kin): f.corner_c = position_c + self.p0[f] f_kin.corner_c = position_c + self.p0_kin[f_kin] def shift_potential(self, shift): self.vt_G -= self.energy_shift self.vt_G += shift self.energy_shift = shift def interpolate_vt_G(self, theta_min, origo_c): """Interpolates the effective potential of the tip calculation onto the grid of the simulation cell for the tip. The transformation iMj maps a point from grid 'j' to a point on grid 'i', j --> i. Definitions: e - 'natural' grid, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} o - grid of the original tip calculation r - rotated grid of the original tip calculation n - grid of the tip simulation cell. Outside the unitcell of the original tip calculation the effective potential is set to zero""" vt_sG0 = self.tip.hamiltonian.vt_sG.copy() vt_sG0 = self.tip.wfs.gd.collect(vt_sG0, broadcast = True) vt_G0 = vt_sG0[0] vt_G0 = vt_G0[:, :, self.cell_zmin_grpt:self.cell_zmax_grpt] tgd = self.tip.wfs.gd newgd = self.gd shape0 = vt_G0.shape tip_basis = tgd.cell_cv.T / tgd.cell_cv.diagonal() new_basis = newgd.cell_cv.T / newgd.cell_cv.diagonal() eMo = tip_basis * tgd.h_cv.diagonal() eMr = np.dot(rotate(theta_min), eMo) eMn = new_basis * newgd.h_cv.diagonal() rMn = np.dot(la.inv(eMr), eMn) vt_G = newgd.zeros() shape = vt_G.shape self.shape2 = shape for i in range(shape[0]): for j in range(shape[1]): for k in range(shape[2]): gpt_n = [i, j, k] gpt_r = np.dot(rMn, gpt_n) - np.dot(la.inv(eMr), origo_c) if (gpt_r < 0).any() or (np.ceil(gpt_r) > tgd.n_c).any(): vt_G[i,j,k] = 0 else: # trilinear interpolation C000 = np.floor(gpt_r).astype(int) z00 = gpt_r[2] - C000[2] C001 = C000.copy() C001[2] += 1 C100 = C000.copy() C100[0] += 1 C101 = C100.copy() C101[2] += 1 C010 = C000.copy() C010[1] += 1 C011 = C010.copy() C011[2] += 1 C110 = C000.copy() C110[:2] += 1 C111 = C110.copy() C111[2] += 1 x0 = gpt_r[0] - C000[0] y0 = gpt_r[1] - C000[1] C = np.zeros((4,2)) C1 = np.array([[vt_G0[tuple(C000%shape0)], vt_G0[tuple(C001 % shape0)]], [vt_G0[tuple(C010 % shape0)], vt_G0[tuple(C011 % shape0)]]]) C2 = np.array([[vt_G0[tuple(C100 % shape0)], vt_G0[tuple(C101 % shape0)]], [vt_G0[tuple(C110 % shape0)], vt_G0[tuple(C111 % shape0)]]]) Z = np.array([1 - z00, z00]) X = np.array([1 - x0, x0]) Y = np.array([1 - y0, y0]) Q = np.zeros((2, 2)) Q[:,0]=np.dot(C1, Z) Q[:,1]=np.dot(C2, Z) F2 = dots(Y, Q, X) vt_G[i, j, k] = F2 self.vt_G = vt_G class SrfCell: def __init__(self, srf): self.srf = srf self.functions = [] self.energy_shift = 0.0 def initialize(self, tip_cell, srf_indices, bfs_indices, k_c): self.srf_indices = srf_indices # determine the extended unitcell # The code is really messy. In short, this part determines teh number # of times the # original unit cell has to be repeated so that the tip cell # fits in the simulation cell for all tip positions. Needs to be # re-written badly. srf_vt_sG = self.srf.hamiltonian.vt_sG.copy() srf_vt_sG = self.srf.wfs.gd.collect(srf_vt_sG, broadcast = True) srf_vt_G = srf_vt_sG[0] tip = tip_cell tip_atom_index = tip.tip_atom_index spos_ac = tip.atoms.get_scaled_positions() tip_atom_spos = spos_ac[tip_atom_index][:2] tgd = tip.gd sgd = self.srf.wfs.gd tip_cell_cv = tgd.cell_cv[:2, :2] tip_cell_c = tgd.cell_cv.diagonal()[:2] tip_basis = tip_cell_cv.T / tip_cell_c srf_cell_cv = sgd.cell_cv[:2, :2] srf_cell_c = sgd.cell_cv.diagonal()[:2] srf_basis = tip_cell_cv.T / tip_cell_c assert not (np.round(tgd.h_cv - sgd.h_cv, 5)).all() assert not (np.round(tip_basis - srf_basis, 5)).all() extension1_c = tip_atom_spos * tip_cell_c / srf_cell_c extension2_c = (1 - tip_atom_spos) * tip_cell_c / srf_cell_c ext1_c = np.ceil(extension1_c * sgd.N_c[:2]).astype(int) ext2_c = np.ceil(extension2_c * sgd.N_c[:2]).astype(int) srf_shape = sgd.N_c[:2] extension1 = ext1_c / srf_shape.astype(float) extension2 = ext2_c / srf_shape.astype(float) # Size of the extended grid in the transverse directions. newsize_c = ext1_c + ext2_c + sgd.N_c[:2] sizez = srf_vt_G.shape[2] # New size of the extended grid in the z direction. newsizez = sizez + 10.0 / Bohr / sgd.h_cv[2, 2] # The extended potential vt_G = np.zeros(tuple(newsize_c) + (newsizez,)) # Add the potential to the grid intexa = ext1_c / srf_shape[:2] rest1 = ext1_c % srf_shape[:2] intexb = ext2_c / srf_shape[:2] rest2 = ext2_c % srf_shape[:2] for n in range(intexa[0]+intexb[0] + 1 ): for m in range(intexa[1] + intexb[1] + 1): vt_G[rest1[0] + n * srf_shape[0]:\ rest1[0] + (n + 1) * srf_shape[0],\ rest1[1] + m * srf_shape[1]:\ rest1[1] + (m + 1) * srf_shape[1], :sizez] = srf_vt_G if rest2[1] == 0: rest2[1] += 1 if rest2[0] == 0: rest2[0] += 1 vt_G[:rest1[0], rest1[1]: -rest2[1]]\ = vt_G[-rest1[0] - rest2[0]:-rest2[0], rest1[1]:-rest2[1]] vt_G[-rest2[0]:, rest1[1]:-rest2[1]]\ = vt_G[rest1[0]:rest1[0] + rest2[0], rest1[1]:-rest2[1]] vt_G[:, :rest1[1]] = vt_G[:, -rest2[1] - rest1[1]:-rest2[1]] vt_G[:, -rest2[1]:] = vt_G[:, rest1[1]:rest1[1]+rest2[1]] # Grid descriptor of the extended unit cell self.vt_G = vt_G newsize_c = np.resize(newsize_c, 3) newsize_c[2] = sgd.N_c[2] newcell_cv = (newsize_c + 1) * (sgd.cell_cv.T / sgd.cell_cv.diagonal() * sgd.h_cv.diagonal()) newgd = GridDescriptor(N_c=newsize_c + 1, cell_cv=newcell_cv, pbc_c=False, comm=mpi.serial_comm) self.gd = newgd srf_atoms = self.srf.atoms.copy()[srf_indices] self.atoms = srf_atoms # add functions j = 0 for a in srf_indices: setup = self.srf.wfs.setups[a] spos_c = self.srf.atoms.get_scaled_positions()[a] for phit in setup.phit_j: f = AtomCenteredFunctions(self.srf.wfs.gd, [phit], spos_c, j) if j in bfs_indices: self.functions.append(f) j += len(f.f_iG) self.nj = j # shift corners so that the origin now is the extended surface for f in self.functions: f.corner_c[:2] += ext1_c self.ext1 = ext1_c # Add an appropriate number of periodic images. The function values are # only saved in the memory, f_iGs, for those functions belonging to # the original unit cell. In order to be included a periodic image has # to have a finite overlap with the extended surface cell. origo = np.array([0, 0]) list = [] f_iGs = {} for f in self.functions: f_iGs[f.index] = f.f_iG f.f_iG = None list.append(f) for n in range(-100, 100, 1): for m in range(-100, 100, 1): # Translation vector of the periodic image: R = np.array((n, m)) newcorner_c = f.corner_c[:2] + R * sgd.N_c[:2] start_c = np.maximum(newcorner_c, origo) stop_c = np.minimum(newcorner_c + f.size_c[:2], newgd.n_c[:2]) # Check if the periodic image has an overlap with the # extended surface cell. if (start_c < stop_c).all(): newcorner_c = np.resize(newcorner_c, 3) newcorner_c[2] = f.corner_c[2] newf = LocalizedFunctions(f.gd, f_iGs[f.index], corner_c=newcorner_c, index=f.index, vt_G=f.vt_G) newf.f_iG = None newf.sdisp_c = R newf.set_phase_factor(k_c) if np.any(R): list.append(newf) self.functions = list self.f_iGs = f_iGs self.atoms = srf_atoms def shift_potential(self, shift): self.vt_G -= self.energy_shift self.vt_G += shift self.energy_shift = shift def dump_hs(calc, filename, region, cvl=0, direction= 'z', return_hs=False): """Pickle H and S. Pickle LCAO - Hamiltonian and overlap matrix for a tip or surface calculation. region: {['tip', 'surface', 'None'] str} has to be set. cvl: {0, Int} Number of basis functions in the convergence layer, that has to be 'cut' away in order to assure a smooth matching of the potential at the lead-surface/tip interface. """ assert region in ['tip', 'surface', 'None'] if calc.wfs.S_qMM is None: calc.initialize(calc.atoms) calc.initialize_positions(calc.atoms) dir = 'xyz'.index(direction) h_skmm, s_kmm = get_lcao_hamiltonian(calc) atoms = calc.atoms.copy() atoms.set_calculator(calc) ibzk2d_kc = calc.get_ibz_k_points()[:, :2] weight2d_k = calc.get_k_point_weights() if w.rank == 0: efermi = calc.get_fermi_level() h_kmm = h_skmm[0] - s_kmm * efermi for i in range(len(h_kmm)): remove_pbc(atoms, h_kmm[i], s_kmm[i], dir) if region == 'tip': if cvl!=0: h_kmm = h_kmm[:, :-cvl, :-cvl] s_kmm = s_kmm[:, :-cvl, :-cvl] if region == 'surface': h_kmm = h_kmm[:, cvl:, cvl:] s_kmm = s_kmm[:, cvl:, cvl:] fd = open(filename + '_hs.pckl', 'wb') pickle.dump((h_kmm, s_kmm), fd, 2) fd.close() fd = open(filename + '_data.pckl', 'wb') pickle.dump((ibzk2d_kc, weight2d_k), fd, 2) fd.close() if return_hs: return ibzk2d_kc, weight2d_k, h_kmm, s_kmm def dump_lead_hs(calc, filename, direction='z', return_hs=False): """Pickle real space LCAO - Hamiltonian and overlap matrix for a periodic lead calculation. """ efermi = calc.get_fermi_level() ibzk2d_c, weight2d_k, h_skmm, s_kmm\ = get_lead_lcao_hamiltonian(calc, direction=direction) if w.rank == 0: h_kmm = h_skmm[0] - efermi * s_kmm fd = open(filename + '_hs.pckl', 'wb') pickle.dump((h_kmm, s_kmm), fd, 2) fd.close() fd = open(filename + '_data.pckl', 'wb') pickle.dump((ibzk2d_c, weight2d_k), fd, 2) fd.close() if return_hs: return ibzk2d_c, weight2d_k, h_kmm, s_kmm else: return None, None, None, None def intersection(l1, l2): """Intersection (x, y, t) between two lines. Two points on each line have to be specified. """ a1 = l1[0] b1 = l1[1] a2 = l2[0] b2 = l2[1] A = np.zeros((2,2)) A[:,0] = b1-a1 A[:,1] = a2-b2 if np.round(np.linalg.det(A),5) == 0: #parallel lines return None r = a2 - a1 t = np.dot(la.inv(A), r.T) xy = a2 + t[1] * (b2 - a2) return (list(xy), t) def rotate(theta): return np.array([[cos(theta), sin(theta), 0], [-sin(theta), cos(theta), 0], [0, 0, 1]]) def unravel2d(data, shape): pass def smallestbox(cell1, cell2, theta, plot=False): """Determines the smallest 2d unit cell which encloses cell1 rotated at an angle theta around the z-axis and which has lattice vectors parallel to those of cell2.""" ct = cell1[:2,:2] * Bohr cs = cell2[:2,:2] * Bohr v3 = [cs[0],cs[1]] lsrf = [np.array([0.,0.]),v3[1],v3[0]+v3[1],v3[0],np.array([0,0])] cs = cs/np.array([la.norm(cs[0]),la.norm(cs[1])]) v4 = [ct[0],ct[1]] lct = [np.array([0.,0.]),v4[1],v4[0]+v4[1],v4[0],np.array([0,0])] new_ct = np.dot(R(theta), ct.T).T v1 = [new_ct[0],new_ct[1]] v2 = [cs[0],cs[1]] l1 = [np.array([0.,0.]),v1[1],v1[0]+v1[1],v1[0],np.array([0,0])] sides1 = [] for j in range(4): intersections = 0 for i in range(4): line = (l1[j], l1[j]+v2[0]) side = (l1[i], l1[i+1]) test = intersection(line,side) if test is not None: t = test[1] if np.round(t[1],5)<=1 and np.round(t[1],5)>=0: intersections += 1 if intersections == 2: sides1.append(line) sides2 = [] for j in range(4): intersections = 0 for i in range(4): line = (l1[j],l1[j]+v2[1]) side = (l1[i], l1[i+1]) test = intersection(line,side) if test is not None: t = test[1] if np.round(t[1],5)<=1 and np.round(t[1],5)>=0: intersections += 1 if intersections == 2: sides2.append(line) corners = [] for side1 in sides1: for side2 in sides2: corner=np.round(intersection(side1,side2),5) if corner is not None: corners.append(list(corner[0])) for i in range(len(corners)): for j in range(2): if np.round(corners[i][j],5) == 0: corners[i][j] = abs(corners[i][j]) corners.sort() if len(corners)==8: corners = [corners[0],corners[2],corners[4],corners[6]] if len(corners)==16: corners = [corners[0],corners[4],corners[8],corners[12]] origo = np.array(corners.pop(0)) end =np.array(corners.pop(-1)) pa = corners[0] pb = corners[1] if pa[1]/pa[0] < pb[1]/pb[0]: lat1 = pa-origo lat2 = pb-origo else: lat1 = pb-origo lat2 = pa-origo l1-=origo area = np.cross(lat1,lat2)
gpl-3.0
davidam/python-examples
matplotlib/boxplot-example2.py
1
1353
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (C) 2018 David Arroyo Menéndez # Author: David Arroyo Menéndez <[email protected]> # Maintainer: David Arroyo Menéndez <[email protected]> # This file is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # This file is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with GNU Emacs; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, # Boston, MA 02110-1301 USA, import numpy as np import matplotlib.pyplot as plt # fake data np.random.seed(937) data = np.random.lognormal(size=(37, 4), mean=1.5, sigma=1.75) labels = list('ABCD') fs = 10 # fontsize # demonstrate how to toggle the display of different elements: fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True) axes[0, 0].boxplot(data, labels=labels) axes[0, 0].set_title('Default', fontsize=fs) fig.subplots_adjust(hspace=0.4) plt.show()
gpl-3.0
PeterSchichtel/hepstore
hepstore/core/school/books/regression/mlp.py
1
3334
#!/usr/bin/env python import sklearn.neural_network import sklearn.svm import sklearn.discriminant_analysis import numpy as np import time import os from hepstore.core.utility import * from hepstore.core.statistic.distribution import Log10Flat from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report import sklearn.model_selection from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ShuffleSplit import scipy import tuning class MLPRegressor(sklearn.neural_network.MLPRegressor): def __init__( self, hidden_layer_sizes=(100, ), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, path=os.getcwd(), jobs=1 ): sklearn.neural_network.MLPRegressor.__init__( self, hidden_layer_sizes=hidden_layer_sizes, activation=activation, solver=solver, alpha=alpha, batch_size=batch_size, learning_rate=learning_rate, learning_rate_init=learning_rate_init, power_t=power_t, max_iter=200, shuffle=True, random_state=None, tol=tol, verbose=verbose, warm_start=warm_start, momentum=momentum, nesterovs_momentum=nesterovs_momentum, early_stopping=early_stopping, validation_fraction=validation_fraction, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon ) self.path = path self.jobs = jobs pass def explore( self, X, y ): path = os.path.join(self.path,self.solver,self.activation) print '--MLP: explore' # specify parameters for exploration if self.solver == 'lbfgs': param_dist = { 'alpha' : Log10Flat(-10,-0.001), 'tol' : Log10Flat(-10,-0.001), } pass elif self.solver == 'adam': param_dist = { 'alpha' : Log10Flat(-10,-0.001), 'tol' : Log10Flat(-10,-0.001), 'beta_1' : Log10Flat(-10,-0.001), 'beta_2' : Log10Flat(-10,-0.001), } pass else: raise KeyError("explore solver '%s' not implementd" % self.solver) # tune regressor tuning.tune( self, X, y, param_dist, path = path, jobs = 1, ## bug in MLPRegressor!! random_state = self.random_state ) pass def predict_proba( self, data ): return self.predict( data ) pass
gpl-3.0
dharmasam9/moose-core
tests/python/test_kkit.py
1
2609
# -*- coding: utf-8 -*- import matplotlib # Tests may be run over ssh without -X e.g. on travis. matplotlib.use( 'Agg' ) import matplotlib.pyplot as plt import numpy import sys import os import moose scriptdir = os.path.dirname( os.path.realpath( __file__ ) ) print( 'Script dir %s' % scriptdir ) def main(): """ This example illustrates loading, running, and saving a kinetic model defined in kkit format. It uses a default kkit model but you can specify another using the command line ``python filename runtime solver``. We use the gsl solver here. The model already defines a couple of plots and sets the runtime to 20 seconds. """ solver = "gsl" # Pick any of gsl, gssa, ee.. mfile = os.path.join( scriptdir, 'genesis/kkit_objects_example.g' ) runtime = 20.0 if ( len( sys.argv ) >= 3 ): if sys.argv[1][0] == '/': mfile = sys.argv[1] else: mfile = './genesis/' + sys.argv[1] runtime = float( sys.argv[2] ) if ( len( sys.argv ) == 4 ): solver = sys.argv[3] modelId = moose.loadModel( mfile, 'model', solver ) # Increase volume so that the stochastic solver gssa # gives an interesting output #compt = moose.element( '/model/kinetics' ) #compt.volume = 1e-19 moose.reinit() moose.start( runtime ) # Report parameters ''' for x in moose.wildcardFind( '/model/kinetics/##[ISA=PoolBase]' ): print x.name, x.nInit, x.concInit for x in moose.wildcardFind( '/model/kinetics/##[ISA=ReacBase]' ): print x.name, 'num: (', x.numKf, ', ', x.numKb, '), conc: (', x.Kf, ', ', x.Kb, ')' for x in moose.wildcardFind('/model/kinetics/##[ISA=EnzBase]'): print x.name, '(', x.Km, ', ', x.numKm, ', ', x.kcat, ')' ''' # Display all plots. for x in moose.wildcardFind( '/model/#graphs/conc#/#' ): t = numpy.arange( 0, x.vector.size, 1 ) * x.dt plt.plot( t, x.vector, label=x.name ) vals = x.vector stats = [ vals.min(), vals.max( ), vals.mean(), vals.std( ) ] expected = [ 0.0, 0.00040464 , 0.0001444 , 0.00013177 ] assert numpy.allclose(stats, expected, rtol=1e-4) , 'Got %s expected %s' % (stats, expected ) plt.legend() plt.savefig( '%s.png' % sys.argv[0] ) print( 'Wrote results to %s.png' % sys.argv[0] ) # Run the 'main' if this script is executed standalone. if __name__ == '__main__': main()
gpl-3.0
rafin/Spotify-Visualizations
spot/analysis.py
1
4129
import pl as spotify import pandas as pd import numpy as np import scipy.stats from sklearn.manifold import TSNE from sklearn.preprocessing import scale def dict_to_frame(playlist): pl_frame = pd.DataFrame(playlist) raw_data = pl_frame[['energy', 'speechiness', 'acousticness', 'danceability', 'loudness', 'valence', 'instrumentalness']] return raw_data def simple_stats(playlist): ''' outputs basic statitics for given playlist such as average value for each feature ''' pl_frame = dict_to_frame(playlist) means = pl_frame.mean().to_dict() means_list = [] for key, value in means.iteritems(): means_list.append([key, round(value, 1)]) return means_list def confidence_interval(songs, confidence=.9999): ''' experimental bound generator for sifter ''' pl_frame = dict_to_frame(songs) n = len(pl_frame) m, se = np.mean(pl_frame), scipy.stats.sem(pl_frame) h = se * scipy.stats.t._ppf((1+confidence)/2., n-1) uppers = (m+h).to_dict() lowers = (m-h).to_dict() keys = ['energy', 'speechiness', 'acousticness', 'danceability', 'loudness', 'valence', 'instrumentalness'] set = [] for key in keys: if key == 'popularity': set.append([0, 100]) continue set.append([round(lowers[key], 0),round(uppers[key], 0)]) return set def pca(playlist): ''' Principle Component Analysis implementation ''' pl_frame = pd.DataFrame(playlist) features = ['energy', 'speechiness', 'acousticness', 'danceability', 'loudness', 'valence', 'instrumentalness'] data = pl_frame[features].T.as_matrix() ## computing d-dimensional mean vector mean = [] for row in data: mean.append(np.mean(row)) mean_vector = np.array([mean]).T size = len(mean_vector) ## computing the scatter matrix scatter_matrix = np.zeros((size,size)) for i in range(data.shape[1]): scatter_matrix += (data[:,i].reshape(size,1) - mean_vector).dot((data[:,i].reshape(size,1) - mean_vector).T) ## computing eigenvectors and coor. eigenvalues with scatter .. eig_val_sc, eig_vec_sc = np.linalg.eig(scatter_matrix) for i in range(len(eig_val_sc)): eigvec_sc = eig_vec_sc[:,i].reshape(1,size).T ## Sorting Eignevectors by Decreasing eigenvalues eig_pairs = [(np.abs(eig_val_sc[i]), eig_vec_sc[:,i]) for i in range(len(eig_val_sc))] eig_pairs.sort(key = lambda x: x[0], reverse=True) print eig_pairs ## store two largest eigenvectors for display vector1 = [round(n, 2) for n in eig_pairs[0][1].tolist()] vector2 = [round(n, 2) for n in eig_pairs[1][1].tolist()] weights = map(list, zip(features, vector1, vector2)) ## Choosing k eigenvectors with the largest eigenvalues matrix_w = np.hstack((eig_pairs[0][1].reshape(size,1), eig_pairs[1][1].reshape(size,1))) ## Transforming the samples onto the new subspace transformed = matrix_w.T.dot(data) trasnformed = scale(transformed) coords = pd.DataFrame(transformed.T) return {"coords": coords, "weights": weights} def merge_pca(songs, pca): for index, row in pca.iterrows(): songs[index]['pca1'] = round(row[0], 2) songs[index]['pca2'] = round(row[1], 2) return songs def tSNE(playlist): ''' t-distributed stochastic neighbor embedding implementation (heavier alternate to pca) ''' pl_frame = pd.DataFrame(playlist) features = ['energy', 'speechiness', 'acousticness', 'danceability', 'loudness', 'valence', 'instrumentalness'] data = pl_frame[features].T.as_matrix() data = scale(data) data = data.T data_tsne = TSNE(learning_rate=100, init='pca').fit_transform(data) data_tsne = scale(data_tsne) return pd.DataFrame(data_tsne) def merge_tsne(songs, tsne): for index, row in tsne.iterrows(): songs[index]['tSNE1'] = round(row[0] * 100, 2) songs[index]['tSNE2'] = round(row[1] * 100, 2) return songs
mit
argriffing/scipy
scipy/interpolate/ndgriddata.py
39
7457
""" Convenience interface to N-D interpolation .. versionadded:: 0.9 """ from __future__ import division, print_function, absolute_import import numpy as np from .interpnd import LinearNDInterpolator, NDInterpolatorBase, \ CloughTocher2DInterpolator, _ndim_coords_from_arrays from scipy.spatial import cKDTree __all__ = ['griddata', 'NearestNDInterpolator', 'LinearNDInterpolator', 'CloughTocher2DInterpolator'] #------------------------------------------------------------------------------ # Nearest-neighbour interpolation #------------------------------------------------------------------------------ class NearestNDInterpolator(NDInterpolatorBase): """ NearestNDInterpolator(points, values) Nearest-neighbour interpolation in N dimensions. .. versionadded:: 0.9 Methods ------- __call__ Parameters ---------- x : (Npoints, Ndims) ndarray of floats Data point coordinates. y : (Npoints,) ndarray of float or complex Data values. rescale : boolean, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. .. versionadded:: 0.14.0 tree_options : dict, optional Options passed to the underlying ``cKDTree``. .. versionadded:: 0.17.0 Notes ----- Uses ``scipy.spatial.cKDTree`` """ def __init__(self, x, y, rescale=False, tree_options=None): NDInterpolatorBase.__init__(self, x, y, rescale=rescale, need_contiguous=False, need_values=False) if tree_options is None: tree_options = dict() self.tree = cKDTree(self.points, **tree_options) self.values = y def __call__(self, *args): """ Evaluate interpolator at given points. Parameters ---------- xi : ndarray of float, shape (..., ndim) Points where to interpolate data at. """ xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1]) xi = self._check_call_shape(xi) xi = self._scale_x(xi) dist, i = self.tree.query(xi) return self.values[i] #------------------------------------------------------------------------------ # Convenience interface function #------------------------------------------------------------------------------ def griddata(points, values, xi, method='linear', fill_value=np.nan, rescale=False): """ Interpolate unstructured D-dimensional data. Parameters ---------- points : ndarray of floats, shape (n, D) Data point coordinates. Can either be an array of shape (n, D), or a tuple of `ndim` arrays. values : ndarray of float or complex, shape (n,) Data values. xi : ndarray of float, shape (M, D) Points at which to interpolate data. method : {'linear', 'nearest', 'cubic'}, optional Method of interpolation. One of ``nearest`` return the value at the data point closest to the point of interpolation. See `NearestNDInterpolator` for more details. ``linear`` tesselate the input point set to n-dimensional simplices, and interpolate linearly on each simplex. See `LinearNDInterpolator` for more details. ``cubic`` (1-D) return the value determined from a cubic spline. ``cubic`` (2-D) return the value determined from a piecewise cubic, continuously differentiable (C1), and approximately curvature-minimizing polynomial surface. See `CloughTocher2DInterpolator` for more details. fill_value : float, optional Value used to fill in for requested points outside of the convex hull of the input points. If not provided, then the default is ``nan``. This option has no effect for the 'nearest' method. rescale : bool, optional Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude. .. versionadded:: 0.14.0 Notes ----- .. versionadded:: 0.9 Examples -------- Suppose we want to interpolate the 2-D function >>> def func(x, y): ... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 on a grid in [0, 1]x[0, 1] >>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j] but we only know its values at 1000 data points: >>> points = np.random.rand(1000, 2) >>> values = func(points[:,0], points[:,1]) This can be done with `griddata` -- below we try out all of the interpolation methods: >>> from scipy.interpolate import griddata >>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest') >>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear') >>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic') One can see that the exact result is reproduced by all of the methods to some degree, but for this smooth function the piecewise cubic interpolant gives the best results: >>> import matplotlib.pyplot as plt >>> plt.subplot(221) >>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower') >>> plt.plot(points[:,0], points[:,1], 'k.', ms=1) >>> plt.title('Original') >>> plt.subplot(222) >>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Nearest') >>> plt.subplot(223) >>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Linear') >>> plt.subplot(224) >>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower') >>> plt.title('Cubic') >>> plt.gcf().set_size_inches(6, 6) >>> plt.show() """ points = _ndim_coords_from_arrays(points) if points.ndim < 2: ndim = points.ndim else: ndim = points.shape[-1] if ndim == 1 and method in ('nearest', 'linear', 'cubic'): from .interpolate import interp1d points = points.ravel() if isinstance(xi, tuple): if len(xi) != 1: raise ValueError("invalid number of dimensions in xi") xi, = xi # Sort points/values together, necessary as input for interp1d idx = np.argsort(points) points = points[idx] values = values[idx] if method == 'nearest': fill_value = 'extrapolate' ip = interp1d(points, values, kind=method, axis=0, bounds_error=False, fill_value=fill_value) return ip(xi) elif method == 'nearest': ip = NearestNDInterpolator(points, values, rescale=rescale) return ip(xi) elif method == 'linear': ip = LinearNDInterpolator(points, values, fill_value=fill_value, rescale=rescale) return ip(xi) elif method == 'cubic' and ndim == 2: ip = CloughTocher2DInterpolator(points, values, fill_value=fill_value, rescale=rescale) return ip(xi) else: raise ValueError("Unknown interpolation method %r for " "%d dimensional data" % (method, ndim))
bsd-3-clause
ChinaQuants/zipline
tests/test_perf_tracking.py
2
80474
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import collections from datetime import ( datetime, timedelta, ) import logging import operator import unittest from nose_parameterized import parameterized import nose.tools as nt import pytz import itertools import pandas as pd import numpy as np from six.moves import range, zip import zipline.utils.factory as factory import zipline.finance.performance as perf from zipline.finance.performance import position_tracker from zipline.finance.slippage import Transaction, create_transaction import zipline.utils.math_utils as zp_math from zipline.gens.composites import date_sorted_sources from zipline.finance.trading import SimulationParameters from zipline.finance.blotter import Order from zipline.finance.commission import PerShare, PerTrade, PerDollar from zipline.finance.trading import TradingEnvironment from zipline.utils.factory import create_simulation_parameters from zipline.utils.serialization_utils import ( loads_with_persistent_ids, dumps_with_persistent_ids ) import zipline.protocol as zp from zipline.protocol import Event, DATASOURCE_TYPE from zipline.sources.data_frame_source import DataPanelSource logger = logging.getLogger('Test Perf Tracking') onesec = timedelta(seconds=1) oneday = timedelta(days=1) tradingday = timedelta(hours=6, minutes=30) # nose.tools changed name in python 3 if not hasattr(nt, 'assert_count_equal'): nt.assert_count_equal = nt.assert_items_equal def check_perf_period(pp, gross_leverage, net_leverage, long_exposure, longs_count, short_exposure, shorts_count): perf_data = pp.to_dict() np.testing.assert_allclose( gross_leverage, perf_data['gross_leverage'], rtol=1e-3) np.testing.assert_allclose( net_leverage, perf_data['net_leverage'], rtol=1e-3) np.testing.assert_allclose( long_exposure, perf_data['long_exposure'], rtol=1e-3) np.testing.assert_allclose( longs_count, perf_data['longs_count'], rtol=1e-3) np.testing.assert_allclose( short_exposure, perf_data['short_exposure'], rtol=1e-3) np.testing.assert_allclose( shorts_count, perf_data['shorts_count'], rtol=1e-3) def check_account(account, settled_cash, equity_with_loan, total_positions_value, regt_equity, available_funds, excess_liquidity, cushion, leverage, net_leverage, net_liquidation): # this is a long only portfolio that is only partially invested # so net and gross leverage are equal. np.testing.assert_allclose(settled_cash, account['settled_cash'], rtol=1e-3) np.testing.assert_allclose(equity_with_loan, account['equity_with_loan'], rtol=1e-3) np.testing.assert_allclose(total_positions_value, account['total_positions_value'], rtol=1e-3) np.testing.assert_allclose(regt_equity, account['regt_equity'], rtol=1e-3) np.testing.assert_allclose(available_funds, account['available_funds'], rtol=1e-3) np.testing.assert_allclose(excess_liquidity, account['excess_liquidity'], rtol=1e-3) np.testing.assert_allclose(cushion, account['cushion'], rtol=1e-3) np.testing.assert_allclose(leverage, account['leverage'], rtol=1e-3) np.testing.assert_allclose(net_leverage, account['net_leverage'], rtol=1e-3) np.testing.assert_allclose(net_liquidation, account['net_liquidation'], rtol=1e-3) def create_txn(trade_event, price, amount): """ Create a fake transaction to be filled and processed prior to the execution of a given trade event. """ mock_order = Order(trade_event.dt, trade_event.sid, amount, id=None) return create_transaction(trade_event, mock_order, price, amount) def benchmark_events_in_range(sim_params, env): return [ Event({'dt': dt, 'returns': ret, 'type': zp.DATASOURCE_TYPE.BENCHMARK, # We explicitly rely on the behavior that benchmarks sort before # any other events. 'source_id': '1Abenchmarks'}) for dt, ret in env.benchmark_returns.iteritems() if dt.date() >= sim_params.period_start.date() and dt.date() <= sim_params.period_end.date() ] def calculate_results(sim_params, env, benchmark_events, trade_events, dividend_events=None, splits=None, txns=None): """ Run the given events through a stripped down version of the loop in AlgorithmSimulator.transform. IMPORTANT NOTE FOR TEST WRITERS/READERS: This loop has some wonky logic for the order of event processing for datasource types. This exists mostly to accomodate legacy tests accomodate existing tests that were making assumptions about how events would be sorted. In particular: - Dividends passed for a given date are processed PRIOR to any events for that date. - Splits passed for a given date are process AFTER any events for that date. Tests that use this helper should not be considered useful guarantees of the behavior of AlgorithmSimulator on a stream containing the same events unless the subgroups have been explicitly re-sorted in this way. """ txns = txns or [] splits = splits or [] perf_tracker = perf.PerformanceTracker(sim_params, env) if dividend_events is not None: dividend_frame = pd.DataFrame( [ event.to_series(index=zp.DIVIDEND_FIELDS) for event in dividend_events ], ) perf_tracker.update_dividends(dividend_frame) # Raw trades trade_events = sorted(trade_events, key=lambda ev: (ev.dt, ev.source_id)) # Add a benchmark event for each date. trades_plus_bm = date_sorted_sources(trade_events, benchmark_events) # Filter out benchmark events that are later than the last trade date. filtered_trades_plus_bm = (filt_event for filt_event in trades_plus_bm if filt_event.dt <= trade_events[-1].dt) grouped_trades_plus_bm = itertools.groupby(filtered_trades_plus_bm, lambda x: x.dt) results = [] bm_updated = False for date, group in grouped_trades_plus_bm: for txn in filter(lambda txn: txn.dt == date, txns): # Process txns for this date. perf_tracker.process_transaction(txn) for event in group: if event.type == zp.DATASOURCE_TYPE.TRADE: perf_tracker.process_trade(event) elif event.type == zp.DATASOURCE_TYPE.DIVIDEND: perf_tracker.process_dividend(event) elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: perf_tracker.process_benchmark(event) bm_updated = True elif event.type == zp.DATASOURCE_TYPE.COMMISSION: perf_tracker.process_commission(event) for split in filter(lambda split: split.dt == date, splits): # Process splits for this date. perf_tracker.process_split(split) if bm_updated: msg = perf_tracker.handle_market_close_daily() msg['account'] = perf_tracker.get_account(True) results.append(msg) bm_updated = False return results def check_perf_tracker_serialization(perf_tracker): scalar_keys = [ 'emission_rate', 'txn_count', 'market_open', 'last_close', '_dividend_count', 'period_start', 'day_count', 'capital_base', 'market_close', 'saved_dt', 'period_end', 'total_days', ] p_string = dumps_with_persistent_ids(perf_tracker) test = loads_with_persistent_ids(p_string, env=perf_tracker.env) for k in scalar_keys: nt.assert_equal(getattr(test, k), getattr(perf_tracker, k), k) for period in test.perf_periods: nt.assert_true(hasattr(period, '_position_tracker')) class TestSplitPerformance(unittest.TestCase): def setUp(self): self.env = TradingEnvironment() self.env.write_data(equities_identifiers=[1]) self.sim_params = create_simulation_parameters(num_days=2) # start with $10,000 self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_split_long_position(self): events = factory.create_trade_history( 1, [20, 20], [100, 100], oneday, self.sim_params, env=self.env ) # set up a long position in sid 1 # 100 shares at $20 apiece = $2000 position txns = [create_txn(events[0], 20, 100)] # set up a split with ratio 3 occurring at the start of the second # day. splits = [ factory.create_split( 1, 3, events[1].dt, ), ] results = calculate_results(self.sim_params, self.env, self.benchmark_events, events, txns=txns, splits=splits) # should have 33 shares (at $60 apiece) and $20 in cash self.assertEqual(2, len(results)) latest_positions = results[1]['daily_perf']['positions'] self.assertEqual(1, len(latest_positions)) # check the last position to make sure it's been updated position = latest_positions[0] self.assertEqual(1, position['sid']) self.assertEqual(33, position['amount']) self.assertEqual(60, position['cost_basis']) self.assertEqual(60, position['last_sale_price']) # since we started with $10000, and we spent $2000 on the # position, but then got $20 back, we should have $8020 # (or close to it) in cash. # we won't get exactly 8020 because sometimes a split is # denoted as a ratio like 0.3333, and we lose some digits # of precision. thus, make sure we're pretty close. daily_perf = results[1]['daily_perf'] self.assertTrue( zp_math.tolerant_equals(8020, daily_perf['ending_cash'], 1)) # Validate that the account attributes were updated. account = results[1]['account'] self.assertEqual(float('inf'), account['day_trades_remaining']) # this is a long only portfolio that is only partially invested # so net and gross leverage are equal. np.testing.assert_allclose(0.198, account['leverage'], rtol=1e-3) np.testing.assert_allclose(0.198, account['net_leverage'], rtol=1e-3) np.testing.assert_allclose(8020, account['regt_equity'], rtol=1e-3) self.assertEqual(float('inf'), account['regt_margin']) np.testing.assert_allclose(8020, account['available_funds'], rtol=1e-3) self.assertEqual(0, account['maintenance_margin_requirement']) np.testing.assert_allclose(10000, account['equity_with_loan'], rtol=1e-3) self.assertEqual(float('inf'), account['buying_power']) self.assertEqual(0, account['initial_margin_requirement']) np.testing.assert_allclose(8020, account['excess_liquidity'], rtol=1e-3) np.testing.assert_allclose(8020, account['settled_cash'], rtol=1e-3) np.testing.assert_allclose(10000, account['net_liquidation'], rtol=1e-3) np.testing.assert_allclose(0.802, account['cushion'], rtol=1e-3) np.testing.assert_allclose(1980, account['total_positions_value'], rtol=1e-3) self.assertEqual(0, account['accrued_interest']) for i, result in enumerate(results): for perf_kind in ('daily_perf', 'cumulative_perf'): perf_result = result[perf_kind] # prices aren't changing, so pnl and returns should be 0.0 self.assertEqual(0.0, perf_result['pnl'], "day %s %s pnl %s instead of 0.0" % (i, perf_kind, perf_result['pnl'])) self.assertEqual(0.0, perf_result['returns'], "day %s %s returns %s instead of 0.0" % (i, perf_kind, perf_result['returns'])) class TestCommissionEvents(unittest.TestCase): def setUp(self): self.env = TradingEnvironment() self.env.write_data( equities_identifiers=[0, 1, 133] ) self.sim_params = create_simulation_parameters(num_days=5) logger.info("sim_params: %s" % self.sim_params) self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_commission_event(self): events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) # Test commission models and validate result # Expected commission amounts: # PerShare commission: 1.00, 1.00, 1.50 = $3.50 # PerTrade commission: 5.00, 5.00, 5.00 = $15.00 # PerDollar commission: 1.50, 3.00, 4.50 = $9.00 # Total commission = $3.50 + $15.00 + $9.00 = $27.50 # Create 3 transactions: 50, 100, 150 shares traded @ $20 transactions = [create_txn(events[0], 20, i) for i in [50, 100, 150]] # Create commission models and validate that produce expected # commissions. models = [PerShare(cost=0.01, min_trade_cost=1.00), PerTrade(cost=5.00), PerDollar(cost=0.0015)] expected_results = [3.50, 15.0, 9.0] for model, expected in zip(models, expected_results): total_commission = 0 for trade in transactions: total_commission += model.calculate(trade)[1] self.assertEqual(total_commission, expected) # Verify that commission events are handled correctly by # PerformanceTracker. cash_adj_dt = events[0].dt cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) events.append(cash_adjustment) # Insert a purchase order. txns = [create_txn(events[0], 20, 1)] results = calculate_results(self.sim_params, self.env, self.benchmark_events, events, txns=txns) # Validate that we lost 320 dollars from our cash pool. self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], 9680) # Validate that the cost basis of our position changed. self.assertEqual(results[-1]['daily_perf']['positions'] [0]['cost_basis'], 320.0) # Validate that the account attributes were updated. account = results[1]['account'] self.assertEqual(float('inf'), account['day_trades_remaining']) np.testing.assert_allclose(0.001, account['leverage'], rtol=1e-3, atol=1e-4) np.testing.assert_allclose(9680, account['regt_equity'], rtol=1e-3) self.assertEqual(float('inf'), account['regt_margin']) np.testing.assert_allclose(9680, account['available_funds'], rtol=1e-3) self.assertEqual(0, account['maintenance_margin_requirement']) np.testing.assert_allclose(9690, account['equity_with_loan'], rtol=1e-3) self.assertEqual(float('inf'), account['buying_power']) self.assertEqual(0, account['initial_margin_requirement']) np.testing.assert_allclose(9680, account['excess_liquidity'], rtol=1e-3) np.testing.assert_allclose(9680, account['settled_cash'], rtol=1e-3) np.testing.assert_allclose(9690, account['net_liquidation'], rtol=1e-3) np.testing.assert_allclose(0.999, account['cushion'], rtol=1e-3) np.testing.assert_allclose(10, account['total_positions_value'], rtol=1e-3) self.assertEqual(0, account['accrued_interest']) def test_commission_zero_position(self): """ Ensure no div-by-zero errors. """ events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) # Buy and sell the same sid so that we have a zero position by the # time of events[3]. txns = [ create_txn(events[0], 20, 1), create_txn(events[1], 20, -1), ] # Add a cash adjustment at the time of event[3]. cash_adj_dt = events[3].dt cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) events.append(cash_adjustment) results = calculate_results(self.sim_params, self.env, self.benchmark_events, events, txns=txns) # Validate that we lost 300 dollars from our cash pool. self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], 9700) def test_commission_no_position(self): """ Ensure no position-not-found or sid-not-found errors. """ events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) # Add a cash adjustment at the time of event[3]. cash_adj_dt = events[3].dt cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) events.append(cash_adjustment) results = calculate_results(self.sim_params, self.env, self.benchmark_events, events) # Validate that we lost 300 dollars from our cash pool. self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], 9700) class TestDividendPerformance(unittest.TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() cls.env.write_data(equities_identifiers=[1, 2]) @classmethod def tearDownClass(cls): del cls.env def setUp(self): self.sim_params = create_simulation_parameters(num_days=6) self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_market_hours_calculations(self): # DST in US/Eastern began on Sunday March 14, 2010 before = datetime(2010, 3, 12, 14, 31, tzinfo=pytz.utc) after = factory.get_next_trading_dt( before, timedelta(days=1), self.env, ) self.assertEqual(after.hour, 13) def test_long_position_receives_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, # declared date, when the algorithm finds out about # the dividend events[0].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend events[1].dt, # pay date, when the algorithm receives the dividend. events[2].dt ) # Simulate a transaction being filled prior to the ex_date. txns = [create_txn(events[0], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.1, 0.1, 0.1]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.10, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 1000, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000, -1000, 0, 0, 0]) cash_pos = \ [event['cumulative_perf']['ending_cash'] for event in results] self.assertEqual(cash_pos, [9000, 9000, 10000, 10000, 10000]) def test_long_position_receives_stock_dividend(self): # post some trades in the market events = [] for sid in (1, 2): events.extend( factory.create_trade_history( sid, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env) ) dividend = factory.create_stock_dividend( 1, payment_sid=2, ratio=2, # declared date, when the algorithm finds out about # the dividend declared_date=events[0].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend ex_date=events[1].dt, # pay date, when the algorithm receives the dividend. pay_date=events[2].dt ) txns = [create_txn(events[0], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.2, 0.2, 0.2]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.2, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000] * 5) cash_pos = \ [event['cumulative_perf']['ending_cash'] for event in results] self.assertEqual(cash_pos, [9000] * 5) def test_long_position_purchased_on_ex_date_receives_no_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[0].dt, # Declared date events[1].dt, # Exclusion date events[2].dt # Pay date ) # Simulate a transaction being filled on the ex_date. txns = [create_txn(events[1], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, -1000, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, -1000, -1000, -1000, -1000]) def test_selling_before_dividend_payment_still_gets_paid(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[0].dt, # Declared date events[1].dt, # Exclusion date events[3].dt # Pay date ) buy_txn = create_txn(events[0], 10.0, 100) sell_txn = create_txn(events[2], 10.0, -100) txns = [buy_txn, sell_txn] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0.1, 0.1]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0.1, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 1000, 1000, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000, -1000, 0, 1000, 1000]) def test_buy_and_sell_before_ex(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10, 10], [100, 100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[3].dt, events[4].dt, events[5].dt ) buy_txn = create_txn(events[1], 10.0, 100) sell_txn = create_txn(events[2], 10.0, -100) txns = [buy_txn, sell_txn] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 6) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0, 0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0, 0, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, -1000, 1000, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, -1000, 0, 0, 0, 0]) def test_ending_before_pay_date(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) pay_date = self.sim_params.first_open # find pay date that is much later. for i in range(30): pay_date = factory.get_next_trading_dt(pay_date, oneday, self.env) dividend = factory.create_dividend( 1, 10.00, events[0].dt, events[0].dt, pay_date ) txns = [create_txn(events[1], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0.0, 0.0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, -1000, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual( cumulative_cash_flows, [0, -1000, -1000, -1000, -1000] ) def test_short_position_pays_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, # declare at open of test events[0].dt, # ex_date same as trade 2 events[2].dt, events[3].dt ) txns = [create_txn(events[1], 10.0, -100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, -0.1, -0.1]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.0, -0.1, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, 1000, 0, -1000, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, 1000, 1000, 0, 0]) def test_no_position_receives_no_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[0].dt, events[1].dt, events[2].dt ) results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, 0, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, 0, 0, 0, 0]) def test_no_dividend_at_simulation_end(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, # declared date, when the algorithm finds out about # the dividend events[-3].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend events[-2].dt, # pay date, when the algorithm receives the dividend. # This pays out on the day after the last event self.env.next_trading_day(events[-1].dt) ) # Set the last day to be the last event self.sim_params.period_end = events[-1].dt self.sim_params.update_internal_from_env(self.env) # Simulate a transaction being filled prior to the ex_date. txns = [create_txn(events[0], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000, -1000, -1000, -1000, -1000]) class TestDividendPerformanceHolidayStyle(TestDividendPerformance): # The holiday tests begins the simulation on the day # before Thanksgiving, so that the next trading day is # two days ahead. Any tests that hard code events # to be start + oneday will fail, since those events will # be skipped by the simulation. def setUp(self): self.dt = datetime(2003, 11, 30, tzinfo=pytz.utc) self.end_dt = datetime(2004, 11, 25, tzinfo=pytz.utc) self.sim_params = SimulationParameters( self.dt, self.end_dt, env=self.env) self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) class TestPositionPerformance(unittest.TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() cls.env.write_data(equities_identifiers=[1, 2]) @classmethod def tearDownClass(cls): del cls.env def setUp(self): self.sim_params = create_simulation_parameters(num_days=4) self.finder = self.env.asset_finder self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_long_short_positions(self): """ start with $1000 buy 100 stock1 shares at $10 sell short 100 stock2 shares at $10 stock1 then goes down to $9 stock2 goes to $11 """ trades_1 = factory.create_trade_history( 1, [10, 10, 10, 9], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) trades_2 = factory.create_trade_history( 2, [10, 10, 10, 11], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) txn1 = create_txn(trades_1[1], 10.0, 100) txn2 = create_txn(trades_2[1], 10.0, -100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn1) pp.handle_execution(txn1) pt.execute_transaction(txn2) pp.handle_execution(txn2) for trade in itertools.chain(trades_1[:-2], trades_2[:-2]): pt.update_last_sale(trade) pp.calculate_performance() check_perf_period( pp, gross_leverage=2.0, net_leverage=0.0, long_exposure=1000.0, longs_count=1, short_exposure=-1000.0, shorts_count=1) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=1000.0, equity_with_loan=1000.0, total_positions_value=0.0, regt_equity=1000.0, available_funds=1000.0, excess_liquidity=1000.0, cushion=1.0, leverage=2.0, net_leverage=0.0, net_liquidation=1000.0) # now simulate stock1 going to $9 pt.update_last_sale(trades_1[-1]) # and stock2 going to $11 pt.update_last_sale(trades_2[-1]) pp.calculate_performance() # Validate that the account attributes were updated. account = pp.as_account() check_perf_period( pp, gross_leverage=2.5, net_leverage=-0.25, long_exposure=900.0, longs_count=1, short_exposure=-1100.0, shorts_count=1) check_account(account, settled_cash=1000.0, equity_with_loan=800.0, total_positions_value=-200.0, regt_equity=1000.0, available_funds=1000.0, excess_liquidity=1000.0, cushion=1.25, leverage=2.5, net_leverage=-0.25, net_liquidation=800.0) def test_levered_long_position(self): """ start with $1,000, then buy 1000 shares at $10. price goes to $11 """ # post some trades in the market trades = factory.create_trade_history( 1, [10, 10, 10, 11], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) txn = create_txn(trades[1], 10.0, 1000) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn) pp.handle_execution(txn) for trade in trades[:-2]: pt.update_last_sale(trade) pp.calculate_performance() check_perf_period( pp, gross_leverage=10.0, net_leverage=10.0, long_exposure=10000.0, longs_count=1, short_exposure=0.0, shorts_count=0) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=-9000.0, equity_with_loan=1000.0, total_positions_value=10000.0, regt_equity=-9000.0, available_funds=-9000.0, excess_liquidity=-9000.0, cushion=-9.0, leverage=10.0, net_leverage=10.0, net_liquidation=1000.0) # now simulate a price jump to $11 pt.update_last_sale(trades[-1]) pp.calculate_performance() check_perf_period( pp, gross_leverage=5.5, net_leverage=5.5, long_exposure=11000.0, longs_count=1, short_exposure=0.0, shorts_count=0) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=-9000.0, equity_with_loan=2000.0, total_positions_value=11000.0, regt_equity=-9000.0, available_funds=-9000.0, excess_liquidity=-9000.0, cushion=-4.5, leverage=5.5, net_leverage=5.5, net_liquidation=2000.0) def test_long_position(self): """ verify that the performance period calculates properly for a single buy transaction """ # post some trades in the market trades = factory.create_trade_history( 1, [10, 10, 10, 11], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) txn = create_txn(trades[1], 10.0, 100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn) pp.handle_execution(txn) # This verifies that the last sale price is being correctly # set in the positions. If this is not the case then returns can # incorrectly show as sharply dipping if a transaction arrives # before a trade. This is caused by returns being based on holding # stocks with a last sale price of 0. self.assertEqual(pp.positions[1].last_sale_price, 10.0) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.period_cash_flow, -1 * txn.price * txn.amount, "capital used should be equal to the opposite of the transaction \ cost of sole txn in test" ) self.assertEqual( len(pp.positions), 1, "should be just one position") self.assertEqual( pp.positions[1].sid, txn.sid, "position should be in security with id 1") self.assertEqual( pp.positions[1].amount, txn.amount, "should have a position of {sharecount} shares".format( sharecount=txn.amount ) ) self.assertEqual( pp.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( pp.positions[1].last_sale_price, trades[-1]['price'], "last sale should be same as last trade. \ expected {exp} actual {act}".format( exp=trades[-1]['price'], act=pp.positions[1].last_sale_price) ) self.assertEqual( pp.ending_value, 1100, "ending value should be price of last trade times number of \ shares in position" ) self.assertEqual(pp.pnl, 100, "gain of 1 on 100 shares should be 100") check_perf_period( pp, gross_leverage=1.0, net_leverage=1.0, long_exposure=1100.0, longs_count=1, short_exposure=0.0, shorts_count=0) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=0.0, equity_with_loan=1100.0, total_positions_value=1100.0, regt_equity=0.0, available_funds=0.0, excess_liquidity=0.0, cushion=0.0, leverage=1.0, net_leverage=1.0, net_liquidation=1100.0) def test_short_position(self): """verify that the performance period calculates properly for a \ single short-sale transaction""" trades = factory.create_trade_history( 1, [10, 10, 10, 11, 10, 9], [100, 100, 100, 100, 100, 100], onesec, self.sim_params, env=self.env ) trades_1 = trades[:-2] txn = create_txn(trades[1], 10.0, -100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn) pp.handle_execution(txn) for trade in trades_1: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.period_cash_flow, -1 * txn.price * txn.amount, "capital used should be equal to the opposite of the transaction\ cost of sole txn in test" ) self.assertEqual( len(pp.positions), 1, "should be just one position") self.assertEqual( pp.positions[1].sid, txn.sid, "position should be in security from the transaction" ) self.assertEqual( pp.positions[1].amount, -100, "should have a position of -100 shares" ) self.assertEqual( pp.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( pp.positions[1].last_sale_price, trades_1[-1]['price'], "last sale should be price of last trade" ) self.assertEqual( pp.ending_value, -1100, "ending value should be price of last trade times number of \ shares in position" ) self.assertEqual(pp.pnl, -100, "gain of 1 on 100 shares should be 100") # simulate additional trades, and ensure that the position value # reflects the new price trades_2 = trades[-2:] # simulate a rollover to a new period pp.rollover() for trade in trades_2: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.period_cash_flow, 0, "capital used should be zero, there were no transactions in \ performance period" ) self.assertEqual( len(pp.positions), 1, "should be just one position" ) self.assertEqual( pp.positions[1].sid, txn.sid, "position should be in security from the transaction" ) self.assertEqual( pp.positions[1].amount, -100, "should have a position of -100 shares" ) self.assertEqual( pp.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( pp.positions[1].last_sale_price, trades_2[-1].price, "last sale should be price of last trade" ) self.assertEqual( pp.ending_value, -900, "ending value should be price of last trade times number of \ shares in position") self.assertEqual( pp.pnl, 200, "drop of 2 on -100 shares should be 200" ) # now run a performance period encompassing the entire trade sample. ptTotal = perf.PositionTracker(self.env.asset_finder) ppTotal = perf.PerformancePeriod(1000.0, self.env.asset_finder) ppTotal.position_tracker = pt for trade in trades_1: ptTotal.update_last_sale(trade) ptTotal.execute_transaction(txn) ppTotal.handle_execution(txn) for trade in trades_2: ptTotal.update_last_sale(trade) ppTotal.calculate_performance() self.assertEqual( ppTotal.period_cash_flow, -1 * txn.price * txn.amount, "capital used should be equal to the opposite of the transaction \ cost of sole txn in test" ) self.assertEqual( len(ppTotal.positions), 1, "should be just one position" ) self.assertEqual( ppTotal.positions[1].sid, txn.sid, "position should be in security from the transaction" ) self.assertEqual( ppTotal.positions[1].amount, -100, "should have a position of -100 shares" ) self.assertEqual( ppTotal.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( ppTotal.positions[1].last_sale_price, trades_2[-1].price, "last sale should be price of last trade" ) self.assertEqual( ppTotal.ending_value, -900, "ending value should be price of last trade times number of \ shares in position") self.assertEqual( ppTotal.pnl, 100, "drop of 1 on -100 shares should be 100" ) check_perf_period( pp, gross_leverage=0.8181, net_leverage=-0.8181, long_exposure=0.0, longs_count=0, short_exposure=-900.0, shorts_count=1) # Validate that the account attributes. account = ppTotal.as_account() check_account(account, settled_cash=2000.0, equity_with_loan=1100.0, total_positions_value=-900.0, regt_equity=2000.0, available_funds=2000.0, excess_liquidity=2000.0, cushion=1.8181, leverage=0.8181, net_leverage=-0.8181, net_liquidation=1100.0) def test_covering_short(self): """verify performance where short is bought and covered, and shares \ trade after cover""" trades = factory.create_trade_history( 1, [10, 10, 10, 11, 9, 8, 7, 8, 9, 10], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100], onesec, self.sim_params, env=self.env ) short_txn = create_txn( trades[1], 10.0, -100, ) cover_txn = create_txn(trades[6], 7.0, 100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(short_txn) pp.handle_execution(short_txn) pt.execute_transaction(cover_txn) pp.handle_execution(cover_txn) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() short_txn_cost = short_txn.price * short_txn.amount cover_txn_cost = cover_txn.price * cover_txn.amount self.assertEqual( pp.period_cash_flow, -1 * short_txn_cost - cover_txn_cost, "capital used should be equal to the net transaction costs" ) self.assertEqual( len(pp.positions), 1, "should be just one position" ) self.assertEqual( pp.positions[1].sid, short_txn.sid, "position should be in security from the transaction" ) self.assertEqual( pp.positions[1].amount, 0, "should have a position of -100 shares" ) self.assertEqual( pp.positions[1].cost_basis, 0, "a covered position should have a cost basis of 0" ) self.assertEqual( pp.positions[1].last_sale_price, trades[-1].price, "last sale should be price of last trade" ) self.assertEqual( pp.ending_value, 0, "ending value should be price of last trade times number of \ shares in position" ) self.assertEqual( pp.pnl, 300, "gain of 1 on 100 shares should be 300" ) check_perf_period( pp, gross_leverage=0.0, net_leverage=0.0, long_exposure=0.0, longs_count=0, short_exposure=0.0, shorts_count=0) account = pp.as_account() check_account(account, settled_cash=1300.0, equity_with_loan=1300.0, total_positions_value=0.0, regt_equity=1300.0, available_funds=1300.0, excess_liquidity=1300.0, cushion=1.0, leverage=0.0, net_leverage=0.0, net_liquidation=1300.0) def test_cost_basis_calc(self): history_args = ( 1, [10, 11, 11, 12], [100, 100, 100, 100], onesec, self.sim_params, self.env ) trades = factory.create_trade_history(*history_args) transactions = factory.create_txn_history(*history_args) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt average_cost = 0 for i, txn in enumerate(transactions): pt.execute_transaction(txn) pp.handle_execution(txn) average_cost = (average_cost * i + txn.price) / (i + 1) self.assertEqual(pp.positions[1].cost_basis, average_cost) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.positions[1].last_sale_price, trades[-1].price, "should have a last sale of 12, got {val}".format( val=pp.positions[1].last_sale_price) ) self.assertEqual( pp.positions[1].cost_basis, 11, "should have a cost basis of 11" ) self.assertEqual( pp.pnl, 400 ) down_tick = factory.create_trade( 1, 10.0, 100, trades[-1].dt + onesec) sale_txn = create_txn( down_tick, 10.0, -100) pp.rollover() pt.execute_transaction(sale_txn) pp.handle_execution(sale_txn) pt.update_last_sale(down_tick) pp.calculate_performance() self.assertEqual( pp.positions[1].last_sale_price, 10, "should have a last sale of 10, was {val}".format( val=pp.positions[1].last_sale_price) ) self.assertEqual( pp.positions[1].cost_basis, 11, "should have a cost basis of 11" ) self.assertEqual(pp.pnl, -800, "this period goes from +400 to -400") pt3 = perf.PositionTracker(self.env.asset_finder) pp3 = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp3.position_tracker = pt3 average_cost = 0 for i, txn in enumerate(transactions): pt3.execute_transaction(txn) pp3.handle_execution(txn) average_cost = (average_cost * i + txn.price) / (i + 1) self.assertEqual(pp3.positions[1].cost_basis, average_cost) pt3.execute_transaction(sale_txn) pp3.handle_execution(sale_txn) trades.append(down_tick) for trade in trades: pt3.update_last_sale(trade) pp3.calculate_performance() self.assertEqual( pp3.positions[1].last_sale_price, 10, "should have a last sale of 10" ) self.assertEqual( pp3.positions[1].cost_basis, 11, "should have a cost basis of 11" ) self.assertEqual( pp3.pnl, -400, "should be -400 for all trades and transactions in period" ) def test_cost_basis_calc_close_pos(self): history_args = ( 1, [10, 9, 11, 8, 9, 12, 13, 14], [200, -100, -100, 100, -300, 100, 500, 400], onesec, self.sim_params, self.env ) cost_bases = [10, 10, 0, 8, 9, 9, 13, 13.5] trades = factory.create_trade_history(*history_args) transactions = factory.create_txn_history(*history_args) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt for txn, cb in zip(transactions, cost_bases): pt.execute_transaction(txn) pp.handle_execution(txn) self.assertEqual(pp.positions[1].cost_basis, cb) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual(pp.positions[1].cost_basis, cost_bases[-1]) class TestPerformanceTracker(unittest.TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() cls.env.write_data(equities_identifiers=[1, 2, 133, 134]) @classmethod def tearDownClass(cls): del cls.env NumDaysToDelete = collections.namedtuple( 'NumDaysToDelete', ('start', 'middle', 'end')) @parameterized.expand([ ("Don't delete any events", NumDaysToDelete(start=0, middle=0, end=0)), ("Delete first day of events", NumDaysToDelete(start=1, middle=0, end=0)), ("Delete first two days of events", NumDaysToDelete(start=2, middle=0, end=0)), ("Delete one day of events from the middle", NumDaysToDelete(start=0, middle=1, end=0)), ("Delete two events from the middle", NumDaysToDelete(start=0, middle=2, end=0)), ("Delete last day of events", NumDaysToDelete(start=0, middle=0, end=1)), ("Delete last two days of events", NumDaysToDelete(start=0, middle=0, end=2)), ("Delete all but one event.", NumDaysToDelete(start=2, middle=1, end=2)), ]) def test_tracker(self, parameter_comment, days_to_delete): """ @days_to_delete - configures which days in the data set we should remove, used for ensuring that we still return performance messages even when there is no data. """ # This date range covers Columbus day, # however Columbus day is not a market holiday # # October 2008 # Su Mo Tu We Th Fr Sa # 1 2 3 4 # 5 6 7 8 9 10 11 # 12 13 14 15 16 17 18 # 19 20 21 22 23 24 25 # 26 27 28 29 30 31 start_dt = datetime(year=2008, month=10, day=9, tzinfo=pytz.utc) end_dt = datetime(year=2008, month=10, day=16, tzinfo=pytz.utc) trade_count = 6 sid = 133 price = 10.1 price_list = [price] * trade_count volume = [100] * trade_count trade_time_increment = timedelta(days=1) sim_params = SimulationParameters( period_start=start_dt, period_end=end_dt, env=self.env, ) benchmark_events = benchmark_events_in_range(sim_params, self.env) trade_history = factory.create_trade_history( sid, price_list, volume, trade_time_increment, sim_params, source_id="factory1", env=self.env ) sid2 = 134 price2 = 12.12 price2_list = [price2] * trade_count trade_history2 = factory.create_trade_history( sid2, price2_list, volume, trade_time_increment, sim_params, source_id="factory2", env=self.env ) # 'middle' start of 3 depends on number of days == 7 middle = 3 # First delete from middle if days_to_delete.middle: del trade_history[middle:(middle + days_to_delete.middle)] del trade_history2[middle:(middle + days_to_delete.middle)] # Delete start if days_to_delete.start: del trade_history[:days_to_delete.start] del trade_history2[:days_to_delete.start] # Delete from end if days_to_delete.end: del trade_history[-days_to_delete.end:] del trade_history2[-days_to_delete.end:] sim_params.capital_base = 1000.0 sim_params.frame_index = [ 'sid', 'volume', 'dt', 'price', 'changed'] perf_tracker = perf.PerformanceTracker( sim_params, self.env ) events = date_sorted_sources(trade_history, trade_history2) events = [event for event in self.trades_with_txns(events, trade_history[0].dt)] # Extract events with transactions to use for verification. txns = [event for event in events if event.type == zp.DATASOURCE_TYPE.TRANSACTION] orders = [event for event in events if event.type == zp.DATASOURCE_TYPE.ORDER] all_events = date_sorted_sources(events, benchmark_events) filtered_events = [filt_event for filt_event in all_events if filt_event.dt <= end_dt] filtered_events.sort(key=lambda x: x.dt) grouped_events = itertools.groupby(filtered_events, lambda x: x.dt) perf_messages = [] for date, group in grouped_events: for event in group: if event.type == zp.DATASOURCE_TYPE.TRADE: perf_tracker.process_trade(event) elif event.type == zp.DATASOURCE_TYPE.ORDER: perf_tracker.process_order(event) elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: perf_tracker.process_benchmark(event) elif event.type == zp.DATASOURCE_TYPE.TRANSACTION: perf_tracker.process_transaction(event) msg = perf_tracker.handle_market_close_daily() perf_messages.append(msg) self.assertEqual(perf_tracker.txn_count, len(txns)) self.assertEqual(perf_tracker.txn_count, len(orders)) positions = perf_tracker.cumulative_performance.positions if len(txns) == 0: self.assertNotIn(sid, positions) else: expected_size = len(txns) / 2 * -25 cumulative_pos = positions[sid] self.assertEqual(cumulative_pos.amount, expected_size) self.assertEqual(len(perf_messages), sim_params.days_in_period) check_perf_tracker_serialization(perf_tracker) def trades_with_txns(self, events, no_txn_dt): for event in events: # create a transaction for all but # first trade in each sid, to simulate None transaction if event.dt != no_txn_dt: order = Order( sid=event.sid, amount=-25, dt=event.dt ) order.source_id = 'MockOrderSource' yield order yield event txn = Transaction( sid=event.sid, amount=-25, dt=event.dt, price=10.0, commission=0.50, order_id=order.id ) txn.source_id = 'MockTransactionSource' yield txn else: yield event def test_minute_tracker(self): """ Tests minute performance tracking.""" start_dt = self.env.exchange_dt_in_utc(datetime(2013, 3, 1, 9, 31)) end_dt = self.env.exchange_dt_in_utc(datetime(2013, 3, 1, 16, 0)) foosid = 1 barsid = 2 sim_params = SimulationParameters( period_start=start_dt, period_end=end_dt, emission_rate='minute', env=self.env, ) tracker = perf.PerformanceTracker(sim_params, env=self.env) foo_event_1 = factory.create_trade(foosid, 10.0, 20, start_dt) order_event_1 = Order(sid=foo_event_1.sid, amount=-25, dt=foo_event_1.dt) bar_event_1 = factory.create_trade(barsid, 100.0, 200, start_dt) txn_event_1 = Transaction(sid=foo_event_1.sid, amount=-25, dt=foo_event_1.dt, price=10.0, commission=0.50, order_id=order_event_1.id) benchmark_event_1 = Event({ 'dt': start_dt, 'returns': 0.01, 'type': zp.DATASOURCE_TYPE.BENCHMARK }) foo_event_2 = factory.create_trade( foosid, 11.0, 20, start_dt + timedelta(minutes=1)) bar_event_2 = factory.create_trade( barsid, 11.0, 20, start_dt + timedelta(minutes=1)) benchmark_event_2 = Event({ 'dt': start_dt + timedelta(minutes=1), 'returns': 0.02, 'type': zp.DATASOURCE_TYPE.BENCHMARK }) events = [ foo_event_1, order_event_1, benchmark_event_1, txn_event_1, bar_event_1, foo_event_2, benchmark_event_2, bar_event_2, ] grouped_events = itertools.groupby( events, operator.attrgetter('dt')) messages = {} for date, group in grouped_events: tracker.set_date(date) for event in group: if event.type == zp.DATASOURCE_TYPE.TRADE: tracker.process_trade(event) elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: tracker.process_benchmark(event) elif event.type == zp.DATASOURCE_TYPE.ORDER: tracker.process_order(event) elif event.type == zp.DATASOURCE_TYPE.TRANSACTION: tracker.process_transaction(event) msg, _ = tracker.handle_minute_close(date) messages[date] = msg self.assertEquals(2, len(messages)) msg_1 = messages[foo_event_1.dt] msg_2 = messages[foo_event_2.dt] self.assertEquals(1, len(msg_1['minute_perf']['transactions']), "The first message should contain one " "transaction.") # Check that transactions aren't emitted for previous events. self.assertEquals(0, len(msg_2['minute_perf']['transactions']), "The second message should have no " "transactions.") self.assertEquals(1, len(msg_1['minute_perf']['orders']), "The first message should contain one orders.") # Check that orders aren't emitted for previous events. self.assertEquals(0, len(msg_2['minute_perf']['orders']), "The second message should have no orders.") # Ensure that period_close moves through time. # Also, ensure that the period_closes are the expected dts. self.assertEquals(foo_event_1.dt, msg_1['minute_perf']['period_close']) self.assertEquals(foo_event_2.dt, msg_2['minute_perf']['period_close']) # In this test event1 transactions arrive on the first bar. # This leads to no returns as the price is constant. # Sharpe ratio cannot be computed and is None. # In the second bar we can start establishing a sharpe ratio. self.assertIsNone(msg_1['cumulative_risk_metrics']['sharpe']) self.assertIsNotNone(msg_2['cumulative_risk_metrics']['sharpe']) check_perf_tracker_serialization(tracker) def test_close_position_event(self): pt = perf.PositionTracker(asset_finder=self.env.asset_finder) dt = pd.Timestamp("1984/03/06 3:00PM") pos1 = perf.Position(1, amount=np.float64(120.0), last_sale_date=dt, last_sale_price=3.4) pos2 = perf.Position(2, amount=np.float64(-100.0), last_sale_date=dt, last_sale_price=3.4) pt.update_positions({1: pos1, 2: pos2}) event_type = DATASOURCE_TYPE.CLOSE_POSITION index = [dt + timedelta(days=1)] pan = pd.Panel({1: pd.DataFrame({'price': 1, 'volume': 0, 'type': event_type}, index=index), 2: pd.DataFrame({'price': 1, 'volume': 0, 'type': event_type}, index=index), 3: pd.DataFrame({'price': 1, 'volume': 0, 'type': event_type}, index=index)}) source = DataPanelSource(pan) for i, event in enumerate(source): txn = pt.maybe_create_close_position_transaction(event) if event.sid == 1: # Test owned long self.assertEqual(-120, txn.amount) elif event.sid == 2: # Test owned short self.assertEqual(100, txn.amount) elif event.sid == 3: # Test not-owned SID self.assertIsNone(txn) def test_handle_sid_removed_from_universe(self): # post some trades in the market sim_params = create_simulation_parameters(num_days=5) events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, sim_params, env=self.env ) # Create a tracker and a dividend perf_tracker = perf.PerformanceTracker(sim_params, env=self.env) dividend = factory.create_dividend( 1, 10.00, # declared date, when the algorithm finds out about # the dividend events[0].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend events[1].dt, # pay date, when the algorithm receives the dividend. events[2].dt ) dividend_frame = pd.DataFrame( [dividend.to_series(index=zp.DIVIDEND_FIELDS)], ) perf_tracker.update_dividends(dividend_frame) # Ensure that the dividend is in the tracker self.assertIn(1, perf_tracker.dividend_frame['sid'].values) # Inform the tracker that sid 1 has been removed from the universe perf_tracker.handle_sid_removed_from_universe(1) # Ensure that the dividend for sid 1 has been removed from dividend # frame self.assertNotIn(1, perf_tracker.dividend_frame['sid'].values) def test_serialization(self): start_dt = datetime(year=2008, month=10, day=9, tzinfo=pytz.utc) end_dt = datetime(year=2008, month=10, day=16, tzinfo=pytz.utc) sim_params = SimulationParameters( period_start=start_dt, period_end=end_dt, env=self.env, ) perf_tracker = perf.PerformanceTracker( sim_params, env=self.env ) check_perf_tracker_serialization(perf_tracker) class TestPosition(unittest.TestCase): def setUp(self): pass def test_serialization(self): dt = pd.Timestamp("1984/03/06 3:00PM") pos = perf.Position(10, amount=np.float64(120.0), last_sale_date=dt, last_sale_price=3.4) p_string = dumps_with_persistent_ids(pos) test = loads_with_persistent_ids(p_string, env=None) nt.assert_dict_equal(test.__dict__, pos.__dict__) class TestPositionTracker(unittest.TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() equities_metadata = {1: {'asset_type': 'equity'}, 2: {'asset_type': 'equity'}} futures_metadata = {3: {'asset_type': 'future', 'contract_multiplier': 1000}, 4: {'asset_type': 'future', 'contract_multiplier': 1000}} cls.env.write_data(equities_data=equities_metadata, futures_data=futures_metadata) @classmethod def tearDownClass(cls): del cls.env def test_empty_positions(self): """ make sure all the empty position stats return a numeric 0 Originally this bug was due to np.dot([], []) returning np.bool_(False) """ pt = perf.PositionTracker(self.env.asset_finder) pos_stats = position_tracker.calc_position_stats(pt) stats = [ 'net_value', 'net_exposure', 'gross_value', 'gross_exposure', 'short_value', 'short_exposure', 'shorts_count', 'long_value', 'long_exposure', 'longs_count', ] for name in stats: val = getattr(pos_stats, name) self.assertEquals(val, 0) self.assertNotIsInstance(val, (bool, np.bool_)) def test_update_last_sale(self): pt = perf.PositionTracker(self.env.asset_finder) dt = pd.Timestamp("1984/03/06 3:00PM") pos1 = perf.Position(1, amount=np.float64(100.0), last_sale_date=dt, last_sale_price=10) pos3 = perf.Position(3, amount=np.float64(100.0), last_sale_date=dt, last_sale_price=10) pt.update_positions({1: pos1, 3: pos3}) event1 = Event({'sid': 1, 'price': 11, 'dt': dt}) event3 = Event({'sid': 3, 'price': 11, 'dt': dt}) # Check cash-adjustment return value self.assertEqual(0, pt.update_last_sale(event1)) self.assertEqual(100000, pt.update_last_sale(event3)) def test_position_values_and_exposures(self): pt = perf.PositionTracker(self.env.asset_finder) dt = pd.Timestamp("1984/03/06 3:00PM") pos1 = perf.Position(1, amount=np.float64(10.0), last_sale_date=dt, last_sale_price=10) pos2 = perf.Position(2, amount=np.float64(-20.0), last_sale_date=dt, last_sale_price=10) pos3 = perf.Position(3, amount=np.float64(30.0), last_sale_date=dt, last_sale_price=10) pos4 = perf.Position(4, amount=np.float64(-40.0), last_sale_date=dt, last_sale_price=10) pt.update_positions({1: pos1, 2: pos2, 3: pos3, 4: pos4}) # Test long-only methods pos_stats = position_tracker.calc_position_stats(pt) self.assertEqual(100, pos_stats.long_value) self.assertEqual(100 + 300000, pos_stats.long_exposure) self.assertEqual(2, pos_stats.longs_count) # Test short-only methods self.assertEqual(-200, pos_stats.short_value) self.assertEqual(-200 - 400000, pos_stats.short_exposure) self.assertEqual(2, pos_stats.shorts_count) # Test gross and net values self.assertEqual(100 + 200, pos_stats.gross_value) self.assertEqual(100 - 200, pos_stats.net_value) # Test gross and net exposures self.assertEqual(100 + 200 + 300000 + 400000, pos_stats.gross_exposure) self.assertEqual(100 - 200 + 300000 - 400000, pos_stats.net_exposure) def test_serialization(self): pt = perf.PositionTracker(self.env.asset_finder) dt = pd.Timestamp("1984/03/06 3:00PM") pos1 = perf.Position(1, amount=np.float64(120.0), last_sale_date=dt, last_sale_price=3.4) pos3 = perf.Position(3, amount=np.float64(100.0), last_sale_date=dt, last_sale_price=3.4) pt.update_positions({1: pos1, 3: pos3}) p_string = dumps_with_persistent_ids(pt) test = loads_with_persistent_ids(p_string, env=self.env) nt.assert_count_equal(test.positions.keys(), pt.positions.keys()) for sid in pt.positions: nt.assert_dict_equal(test.positions[sid].__dict__, pt.positions[sid].__dict__) class TestPerformancePeriod(unittest.TestCase): def test_serialization(self): env = TradingEnvironment() pt = perf.PositionTracker(env.asset_finder) pp = perf.PerformancePeriod(100, env.asset_finder) pp.position_tracker = pt p_string = dumps_with_persistent_ids(pp) test = loads_with_persistent_ids(p_string, env=env) correct = pp.__dict__.copy() del correct['_position_tracker'] nt.assert_count_equal(test.__dict__.keys(), correct.keys()) equal_keys = list(correct.keys()) equal_keys.remove('_account_store') equal_keys.remove('_portfolio_store') for k in equal_keys: nt.assert_equal(test.__dict__[k], correct[k])
apache-2.0
Schallaven/ffeimg
bin/rendertrajectories.py
1
13909
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- # # Copyright (C) 2017 by Sven Kochmann # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # Description: # Renders trajectories in an input-file (console program) # # This program opens a FFE.png file and renders the trajectories in this file to a plot. This program # uses minimal logging. # # Import modules import cv2 # OpenCV import numpy as np # Numpy - You always need this. import ffe # frequently-used function script import sys # Sys functions import logging # Logging functions import getopt # Get and parse command-line arguments import matplotlib.pyplot as plt # For plotting intermediate graphs (debug) import matplotlib.collections import scipy import scipy.interpolate # Function: Prints help page # -------------------------------------------------------------------------------------------------------------------- def printHelpPage(): print("USAGE: script.py [options] --input-file <file>") print("") print("Order of options is not important. The input file is mandatory.") print("") print("Switches:") print("\t--help:\t\t\t\tShows this help page.") print("\t--debug:\t\t\tDebug mode.") print("\t--silent:\t\t\tSilent mode.") print("\t--output-file <file>\t\tSave output to a file rather than screen.") print("\t--output-style <style>\t\tUse render style <style>. Possible values: linear, spline, skeleton. " "Default: linear.") print("\t--useinlet #\t\t\tUse inlet # (zero based!) as origin point (if present). Default: Uses inlet nearest " "to left/middle point.") print("") # Step 0: Parse command-line arguments # -------------------------------------------------------------------------------------------------------------------- # Input/Outputfile inputfile = "" outputfile = "" # Debugmode debugmode = False # Silent mode silentmode = False # How to render trajectories? outputstyle = "linear" # Use inlet useinlet = -1 # Uses only inlet # for evaluating paths; default (-1): use every inlet. # No parameters given? if len(sys.argv) == 1: printHelpPage() sys.exit(1) # Try to find all the arguments try: # All the options to recognize opts, args = getopt.getopt(sys.argv[1:], "", ["help", "debug", "silent", "input-file=", "output-file=", "output-style=", "useinlet="]) # Found something unexpected? Display help page! except getopt.GetoptError as parametererror: print("ERROR: %s." % parametererror.msg) printHelpPage() sys.exit(2) # Otherwise, collect the user input for opt, arg in opts: if opt == '--help': printHelpPage() sys.exit(0) elif opt == "--input-file": inputfile = arg elif opt == "--output-file": outputfile = arg elif opt == "--debug": debugmode = True elif opt == "--silent": silentmode = True elif opt == "--output-style": if str(arg) in ["linear", "spline", "skeleton"]: outputstyle = arg else: print("Outputstyle '%s' not recognized." % str(arg)) printHelpPage() sys.exit(3) elif opt == "--useinlet": if 0 <= int(arg): useinlet = int(arg) else: print("Useinlet should be a positive integer. '%s' was given." % str(arg)) # No input file given? if len(inputfile) == 0: print("No input file given.") printHelpPage() sys.exit(1) # Step 1: Setup logging # -------------------------------------------------------------------------------------------------------------------- # Create logger object for this script logger = logging.getLogger('FFE') # Set level of information logger.setLevel(logging.DEBUG) # Create log file handler which records everything; append the new information fh = logging.FileHandler('evaluating.log', mode='a') fh.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s\t%(filename)s\t%(levelname)s\t%(lineno)d\t%(message)s') fh.setFormatter(formatter) logger.addHandler(fh) # Create console handler which shows INFO and above (WARNING, ERRORS, CRITICALS, ...) if not silentmode: ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(message)s') ch.setFormatter(formatter) logger.addHandler(ch) # Start the program logger.info(u"####### Render trajectories #######") logger.info(u"Render trajectories on '%s'", inputfile) # Debug mode? if debugmode: ffe.enableDebugMode() # Step 2: Open file and read data # -------------------------------------------------------------------------------------------------------------------- # Read source image inputimage = cv2.imread(inputfile, cv2.IMREAD_COLOR) # Error? if inputimage is None: logger.error(u"Input file could not be read.") sys.exit(3) # Shape of image imageheight, imagewidth, imagebits = inputimage.shape # Read data ffedata = ffe.loadDictionaryFromPng(inputfile) # Are there trajectories in file's data? if "Inner separation zone" not in ffedata: logger.error(u"No inner separation zone in file.") sys.exit(-1) # Extracts the separation zone from the image zoneimage, transmatrix = ffe.extractZoneFromImage(inputimage, ffedata["Inner separation zone"], 10) # Shape of zone image zoneheight, zonewidth, zonebits = zoneimage.shape # Are there trajectories in file's data? if "Trajectories" not in ffedata: logger.error(u"No trajectories in file.") sys.exit(-1) # Read trajectories trajectories = ffedata["Trajectories"] # Sort trajectories trajectories = ffe.sortTrajectoriesByWeightedCoordinates(trajectories) # This is the resolution for both axes in mm per pixel resolution = (0.15, 0.15) # Given in input file? if "Physical zone dimensions" in ffedata: resolution = (float(ffedata["Physical zone dimensions"][0]) / float(zonewidth), float(ffedata["Physical zone dimensions"][1]) / float(zoneheight)) # Step 3: Rendering the trajectories # -------------------------------------------------------------------------------------------------------------------- # Let the origin be the first inlet if exists (origin is in real dimensions, i.e. mm!) origin = (0, 0) if "Inlets" in ffedata: # Inlets inlets = np.array([(item[0], item[1]) for item in ffedata["Inlets"]]) # Useinlet given and in the range of given inlets? Well, then only use this one start point if 0 <= useinlet < len(inlets): logger.info(u"Use inlet %d for origin point.", useinlet) origin = (inlets[useinlet][0], inlets[useinlet][1]) # or just select the point nearest to center of the left side else: # First sort the points by distance from the center of the left side (0, zoneheight/2) inlets = ffe.sortCoordinatesByDistanceToPoint(inlets, (0, int(ffedata["Physical zone dimensions"][1]/2))) # Calculate new origin from nearest point (first point in array) origin = (inlets[0][0], inlets[0][1]) # These are the "Tableau 10" colors as RGB. Changed the order a little bit. # Source: http://tableaufriction.blogspot.ca/2012/11/finally-you-can-use-tableau-data-colors.html tableau10 = [(31, 119, 180), (214, 39, 40), (44, 160, 44), (148, 103, 189), (255, 127, 14), (140, 86, 75), (227, 119, 194), (127, 127, 127), (188, 189, 34), (23, 190, 207)] # Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts. for i in range(len(tableau10)): r, g, b = tableau10[i] tableau10[i] = (r / 255., g / 255., b / 255.) # Get axes ax = plt.axes() # Set axes ticks ax.set_xticks(np.arange(-50, 50, 5)) ax.set_xticks(np.arange(-50, 50, 1), minor=True) ax.set_yticks(np.arange(-50, 50, 5)) ax.set_yticks(np.arange(-50, 50, 1), minor=True) # Set axes limits ax.set_xlim([0-origin[0], float(ffedata["Physical zone dimensions"][0])-origin[0]]) ax.set_ylim([0-origin[1], float(ffedata["Physical zone dimensions"][1])-origin[1]]) # Set ticks ax.get_yaxis().set_tick_params(which='both', direction='out') ax.get_xaxis().set_tick_params(which='both', direction='out') # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') # Set aspect ratio to 1:1 ax.set_aspect('equal') # Invert y-axis ax.invert_yaxis() # Add grid plt.grid() # Draw axis lines plt.axhline(y=0, color='black', ls='dashed', linewidth=3, zorder=0) plt.axvline(x=0, color='black', ls='dashed', linewidth=3, zorder=1) # Handles for legend handles = [] # Process each trajectory for index, trajectory in enumerate(trajectories): # Get the skin of the trajectory skin = ffe.getSkinOfTrajectory(trajectory) # Add handle handles.append(matplotlib.lines.Line2D([0, 1], [0, 1], color=tableau10[index % len(tableau10)], linewidth=5, alpha=0.5)) # How to draw the trajectories... skeleton? if outputstyle == 'skeleton': logger.info(u"Skeleton rendering of trajectory %d...", index+1) # x-values for width xvalues = [float(t[0] * resolution[0]) - origin[0] for t in skin] # y-values for width yvalues = [float(t[1] * resolution[1]) - origin[1] for t in skin] # Number of xvalues should be number of yvalues and it should be a multiply of 2 for drawing the lines properly if len(xvalues) == len(yvalues) and (len(xvalues) % 2) == 0: # Number of values devided by two halflen = int(len(xvalues)/2) for l in xrange(halflen): plt.plot([xvalues[l], xvalues[halflen*2-l-1]], [yvalues[l], yvalues[halflen*2-l-1]], lw=1, color=tableau10[index % len(tableau10)]) # Plot all width points (small) plt.scatter(xvalues, yvalues, s=1, color=tableau10[index % len(tableau10)], zorder=100 + index) # x-values for trajectory xvalues = [float(t[0] * resolution[0]) - origin[0] for t in trajectory] # y-values for trajectory yvalues = [float(t[1] * resolution[1]) - origin[1] for t in trajectory] # Plot trajectory points itself plt.plot(xvalues, yvalues, color=tableau10[index % len(tableau10)], zorder=100 + index) plt.scatter(xvalues, yvalues, color=tableau10[index % len(tableau10)], zorder=100 + index) # or splines? elif outputstyle == 'spline': logger.info(u"Spline rendering of trajectory %d...", index+1) # Convert to real-world dimensions data = np.array([(float(t[0] * resolution[0]) - origin[0], float(t[1] * resolution[1]) - origin[1]) for t in skin]) # Resolution for interpolation newres = np.arange(0, 1.01, 0.01) # Interpolate as spline (cubic, k=3) spline, _ = scipy.interpolate.splprep(data.transpose(), s=0) # Get spline points of spline splinepoints = scipy.interpolate.splev(newres, spline) # Convert to vertices vertices = [zip(splinepoints[0], splinepoints[1])] # Patch collection pc = matplotlib.collections.PolyCollection(vertices, color=tableau10[index % len(tableau10)], zorder=100 + index, alpha=0.5) # Add the collection ax.add_collection(pc) # Draw the weighted-y lines weightedy = ffe.calculateWeightedYOfTrajectory(trajectory) * resolution[1] - origin[1] plt.axhline(y=weightedy, color=tableau10[index % len(tableau10)], ls='dashed', linewidth=3, zorder=50 + index) # otherwise just use linear drawing (skin) elif outputstyle == 'linear': logger.info(u"Linear rendering of trajectory %d...", index+1) # x-values xvalues = [float(t[0] * resolution[0]) - origin[0] for t in skin] # y-values yvalues = [float(t[1] * resolution[1]) - origin[1] for t in skin] # Convert the skin to vertices vertices = [zip(xvalues, yvalues)] # Patch collection pc = matplotlib.collections.PolyCollection(vertices, color=tableau10[index % len(tableau10)], zorder=100+index, alpha=0.5) # Add the collection ax.add_collection(pc) # Draw the weighted-y lines weightedy = ffe.calculateWeightedYOfTrajectory(trajectory) * resolution[1] - origin[1] plt.axhline(y=weightedy, color=tableau10[index % len(tableau10)], ls='dashed', linewidth=3, zorder=50+index) # Set title ax.set_title("Trajectories of %s" % inputfile, fontsize=18) ax.set_xlabel('x [mm]', fontsize=16, fontweight='bold') ax.set_ylabel('y [mm]', fontsize=16, fontweight='bold') # Set legend for trajectories ax.legend(handles, ["Trajectory %d" % (i+1) for i in xrange(len(trajectories))], loc='lower left').set_zorder(200) # Show the plot if len(outputfile) > 0: plt.savefig(outputfile) logger.info(u"Saved plot to file %s.", outputfile) else: plt.show() logger.info(u"Plotted.") # Final logging logger.info(u"####### Render trajectories end #######")
gpl-3.0
beni55/sympy
sympy/mpmath/visualization.py
18
9232
""" Plotting (requires matplotlib) """ from colorsys import hsv_to_rgb, hls_to_rgb from .libmp import NoConvergence from .libmp.backend import xrange class VisualizationMethods(object): plot_ignore = (ValueError, ArithmeticError, ZeroDivisionError, NoConvergence) def plot(ctx, f, xlim=[-5,5], ylim=None, points=200, file=None, dpi=None, singularities=[], axes=None): r""" Shows a simple 2D plot of a function `f(x)` or list of functions `[f_0(x), f_1(x), \ldots, f_n(x)]` over a given interval specified by *xlim*. Some examples:: plot(lambda x: exp(x)*li(x), [1, 4]) plot([cos, sin], [-4, 4]) plot([fresnels, fresnelc], [-4, 4]) plot([sqrt, cbrt], [-4, 4]) plot(lambda t: zeta(0.5+t*j), [-20, 20]) plot([floor, ceil, abs, sign], [-5, 5]) Points where the function raises a numerical exception or returns an infinite value are removed from the graph. Singularities can also be excluded explicitly as follows (useful for removing erroneous vertical lines):: plot(cot, ylim=[-5, 5]) # bad plot(cot, ylim=[-5, 5], singularities=[-pi, 0, pi]) # good For parts where the function assumes complex values, the real part is plotted with dashes and the imaginary part is plotted with dots. .. note :: This function requires matplotlib (pylab). """ if file: axes = None fig = None if not axes: import pylab fig = pylab.figure() axes = fig.add_subplot(111) if not isinstance(f, (tuple, list)): f = [f] a, b = xlim colors = ['b', 'r', 'g', 'm', 'k'] for n, func in enumerate(f): x = ctx.arange(a, b, (b-a)/float(points)) segments = [] segment = [] in_complex = False for i in xrange(len(x)): try: if i != 0: for sing in singularities: if x[i-1] <= sing and x[i] >= sing: raise ValueError v = func(x[i]) if ctx.isnan(v) or abs(v) > 1e300: raise ValueError if hasattr(v, "imag") and v.imag: re = float(v.real) im = float(v.imag) if not in_complex: in_complex = True segments.append(segment) segment = [] segment.append((float(x[i]), re, im)) else: if in_complex: in_complex = False segments.append(segment) segment = [] if hasattr(v, "real"): v = v.real segment.append((float(x[i]), v)) except ctx.plot_ignore: if segment: segments.append(segment) segment = [] if segment: segments.append(segment) for segment in segments: x = [s[0] for s in segment] y = [s[1] for s in segment] if not x: continue c = colors[n % len(colors)] if len(segment[0]) == 3: z = [s[2] for s in segment] axes.plot(x, y, '--'+c, linewidth=3) axes.plot(x, z, ':'+c, linewidth=3) else: axes.plot(x, y, c, linewidth=3) axes.set_xlim([float(_) for _ in xlim]) if ylim: axes.set_ylim([float(_) for _ in ylim]) axes.set_xlabel('x') axes.set_ylabel('f(x)') axes.grid(True) if fig: if file: pylab.savefig(file, dpi=dpi) else: pylab.show() def default_color_function(ctx, z): if ctx.isinf(z): return (1.0, 1.0, 1.0) if ctx.isnan(z): return (0.5, 0.5, 0.5) pi = 3.1415926535898 a = (float(ctx.arg(z)) + ctx.pi) / (2*ctx.pi) a = (a + 0.5) % 1.0 b = 1.0 - float(1/(1.0+abs(z)**0.3)) return hls_to_rgb(a, b, 0.8) def cplot(ctx, f, re=[-5,5], im=[-5,5], points=2000, color=None, verbose=False, file=None, dpi=None, axes=None): """ Plots the given complex-valued function *f* over a rectangular part of the complex plane specified by the pairs of intervals *re* and *im*. For example:: cplot(lambda z: z, [-2, 2], [-10, 10]) cplot(exp) cplot(zeta, [0, 1], [0, 50]) By default, the complex argument (phase) is shown as color (hue) and the magnitude is show as brightness. You can also supply a custom color function (*color*). This function should take a complex number as input and return an RGB 3-tuple containing floats in the range 0.0-1.0. To obtain a sharp image, the number of points may need to be increased to 100,000 or thereabout. Since evaluating the function that many times is likely to be slow, the 'verbose' option is useful to display progress. .. note :: This function requires matplotlib (pylab). """ if color is None: color = ctx.default_color_function import pylab if file: axes = None fig = None if not axes: fig = pylab.figure() axes = fig.add_subplot(111) rea, reb = re ima, imb = im dre = reb - rea dim = imb - ima M = int(ctx.sqrt(points*dre/dim)+1) N = int(ctx.sqrt(points*dim/dre)+1) x = pylab.linspace(rea, reb, M) y = pylab.linspace(ima, imb, N) # Note: we have to be careful to get the right rotation. # Test with these plots: # cplot(lambda z: z if z.real < 0 else 0) # cplot(lambda z: z if z.imag < 0 else 0) w = pylab.zeros((N, M, 3)) for n in xrange(N): for m in xrange(M): z = ctx.mpc(x[m], y[n]) try: v = color(f(z)) except ctx.plot_ignore: v = (0.5, 0.5, 0.5) w[n,m] = v if verbose: print(str(n) + ' of ' + str(N)) rea, reb, ima, imb = [float(_) for _ in [rea, reb, ima, imb]] axes.imshow(w, extent=(rea, reb, ima, imb), origin='lower') axes.set_xlabel('Re(z)') axes.set_ylabel('Im(z)') if fig: if file: pylab.savefig(file, dpi=dpi) else: pylab.show() def splot(ctx, f, u=[-5,5], v=[-5,5], points=100, keep_aspect=True, \ wireframe=False, file=None, dpi=None, axes=None): """ Plots the surface defined by `f`. If `f` returns a single component, then this plots the surface defined by `z = f(x,y)` over the rectangular domain with `x = u` and `y = v`. If `f` returns three components, then this plots the parametric surface `x, y, z = f(u,v)` over the pairs of intervals `u` and `v`. For example, to plot a simple function:: >>> from sympy.mpmath import * >>> f = lambda x, y: sin(x+y)*cos(y) >>> splot(f, [-pi,pi], [-pi,pi]) # doctest: +SKIP Plotting a donut:: >>> r, R = 1, 2.5 >>> f = lambda u, v: [r*cos(u), (R+r*sin(u))*cos(v), (R+r*sin(u))*sin(v)] >>> splot(f, [0, 2*pi], [0, 2*pi]) # doctest: +SKIP .. note :: This function requires matplotlib (pylab) 0.98.5.3 or higher. """ import pylab import mpl_toolkits.mplot3d as mplot3d if file: axes = None fig = None if not axes: fig = pylab.figure() axes = mplot3d.axes3d.Axes3D(fig) ua, ub = u va, vb = v du = ub - ua dv = vb - va if not isinstance(points, (list, tuple)): points = [points, points] M, N = points u = pylab.linspace(ua, ub, M) v = pylab.linspace(va, vb, N) x, y, z = [pylab.zeros((M, N)) for i in xrange(3)] xab, yab, zab = [[0, 0] for i in xrange(3)] for n in xrange(N): for m in xrange(M): fdata = f(ctx.convert(u[m]), ctx.convert(v[n])) try: x[m,n], y[m,n], z[m,n] = fdata except TypeError: x[m,n], y[m,n], z[m,n] = u[m], v[n], fdata for c, cab in [(x[m,n], xab), (y[m,n], yab), (z[m,n], zab)]: if c < cab[0]: cab[0] = c if c > cab[1]: cab[1] = c if wireframe: axes.plot_wireframe(x, y, z, rstride=4, cstride=4) else: axes.plot_surface(x, y, z, rstride=4, cstride=4) axes.set_xlabel('x') axes.set_ylabel('y') axes.set_zlabel('z') if keep_aspect: dx, dy, dz = [cab[1] - cab[0] for cab in [xab, yab, zab]] maxd = max(dx, dy, dz) if dx < maxd: delta = maxd - dx axes.set_xlim3d(xab[0] - delta / 2.0, xab[1] + delta / 2.0) if dy < maxd: delta = maxd - dy axes.set_ylim3d(yab[0] - delta / 2.0, yab[1] + delta / 2.0) if dz < maxd: delta = maxd - dz axes.set_zlim3d(zab[0] - delta / 2.0, zab[1] + delta / 2.0) if fig: if file: pylab.savefig(file, dpi=dpi) else: pylab.show() VisualizationMethods.plot = plot VisualizationMethods.default_color_function = default_color_function VisualizationMethods.cplot = cplot VisualizationMethods.splot = splot
bsd-3-clause
rrohan/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
286
4353
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from time import time from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=5, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignment with fixed number of classes. """ random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes - 1, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, metrics.adjusted_mutual_info_score, metrics.mutual_info_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) plt.figure(1) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.legend(plots, names) plt.ylim(ymin=-0.05, ymax=1.05) # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 plt.figure(2) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for random uniform labeling\n" "against reference assignment with %d classes" % n_classes) plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.ylim(ymin=-0.05, ymax=1.05) plt.legend(plots, names) plt.show()
bsd-3-clause
deisi/SFG2D
sfg2d/models.py
1
53293
"""Fitting Models to Fit data with.""" import numpy as np from scipy.integrate import odeint from scipy.special import erf, erfc from scipy.stats import norm, skewnorm from iminuit import Minuit, describe import sys import yaml import logging from .utils.static import sfgn thismodule = sys.modules[__name__] logger = logging.getLogger(__name__) flatten = lambda l: [item for sublist in l for item in sublist] #logger.setLevel(logging.DEBUG) def read_fit_results(fname): with open(fname) as ifile: fit_results = yaml.load(ifile) return fit_results def model_fit_record( model, record, kwargs_select_y, kwargs_select_x, kwargs_select_yerr=None, kwargs_model=None, run=False, ): """Make a model using selected data from SfgRecrod. **Parameters**: - **model**: String, Class name of the model to use - **record**: SfgRecord obj to select data from - **kwargs_ydata**: kwargs to select y data with - **kwargs_xdata**: kwargs to select x data with - **kwargs_model**: kwargs to pass to model - **kwargs_yerr**: kwargs to select yerr with **Keywords:** - **run**: Actually run the fit **Returns:** A model obj for the fit. """ if not kwargs_model: kwargs_model = {} #if not kwargs_select_yerr: # raise NotImplementedError('Models without errorbar not implemented yet') logger.debug('Selecting model data from record with:') logger.debug('ydata :{}'.format(kwargs_select_y)) xdata = record.select(**kwargs_select_x).squeeze() ydata = record.select(**kwargs_select_y).squeeze() if not kwargs_select_yerr: yerr = np.ones_like(ydata) else: yerr = record.sem(**kwargs_select_yerr).squeeze() logger.debug('Setting model with:') logger.debug('xdata: {}'.format(xdata)) logger.debug('ydata: {}'.format(ydata)) logger.debug('yerr: {}'.format(yerr)) logger.debug('kwargs_module: {}'.format(kwargs_model)) model = getattr(thismodule, model)(xdata, ydata, yerr, **kwargs_model) if run: fit_model( model, # print_matrix=print_matrix ) return model def make_model_fit( model, xdata, ydata, yerr=None, fit=False, print_matrix=True, model_kwargs={} ): """Generig interface for model fits. **Arguments:** - **model**: String name of model class - **xdata**: x-data to the model - **ydata**: y-data to model **Keywords:** - **yerr**: yerr to model - **fit**: boolean weather to run the fit - **model_kwargs**: Keywords passed to model during creation """ model = getattr(thismodule, model)(xdata, ydata, yerr, **model_kwargs) if fit: fit_model( model, print_matrix=print_matrix ) return model def fit_model(model, minos=False, print_matrix=True): """Function to run migrad minimizations. **Arguments:** - **model**: Model instance to run migrad of. **Keywords:** - **minos**: Boolean, If Errors should be calculated with minos. Slow but more precise error estimation of the fit parameters. """ model.minuit.migrad() # Run the minimization if minos: model.minuit.minos() model.minuit.migrad() if print_matrix: try: model.minuit.print_matrix() except ValueError: pass def normalize_trace(model, shift_mu=False, scale_amp=False, shift_heat=False, scale_x=None): """Normalize trace. model: model to work on shift_mu: Schift by mu value of fit scale_amp: Scale by realtive height between heat and minimum. shift_heat: Make heat value equal returns shiftet data arrays with: """ mu = 0 if shift_mu: mu = model.minuit.fitarg['mu'] offset = 0 if shift_heat: offset = 1-model.yfit_sample[-1] scale = 1 if scale_amp: x_mask = np.where((model.xsample-mu>0) & (model.xsample-mu<1000)) scale = 1-offset-model.yfit_sample[x_mask].min() xdata = model.xdata - mu ydata = (model.ydata+offset-1)/scale+1 yerr = model.yerr/scale xsample = model.xsample - mu yfit_sample = (model.yfit_sample+offset-1)/scale+1 if scale_x: xdata = scale_x * xdata xsample = scale_x * xsample return xdata, ydata, yerr, xsample, yfit_sample class Fitter(): def __init__( self, xdata=None, ydata=None, sigma=None, fitarg={}, box_coords=None, roi=None, name='', ignore_errors=False, **kwargs ): """Base Class to fit with Minuit. - **ignore_errors**: Optional if given, sigmas will get ignored during the fit. **fitarg**: Dictionary gets passed to minuit. and sets the starting parameters. **kwargs:** Get passed to minuit. Most important is """ self.xdata = xdata self.ydata = ydata self.sigma = sigma # y-errors. self.cov = None # The covariance of the fit # Coordinates of the fit result box in fig coordinates self._box_coords = box_coords self._box_str_format = '{:2}: {:8.3g} $\pm$ {:6.1g}\n' if not roi: roi = slice(None) self.roi = roi self._pnames = None self._xsample_num = 400 self.name = name self.ignore_errors=ignore_errors # Buffer for figures self.figures = {} kwargs.setdefault('pedantic', False) # Minuit is used for fitting. This makes self.chi2 the fit function #logger.info(self.chi2) #kwargs['forced_parameters'] = self.parameters logger.info(fitarg) logger.info(kwargs) self.minuit = Minuit(self.chi2, **fitarg, **kwargs) def _setup_fitter_kwargs(self, fitarg, kwargs=None): """Setup initial fitter kwargs Use this to pass default fitargs and parameter names to Minuit. This allows to initialize a Model class with only a fitfunc and no boilerplate chi2 function. """ # This gurantees correct oder and names of fitparameters # we start at 1 because running value (x or t) must be skipped self.parameter_names = describe(self.fit_func)[1:] # The oder of parameters is important fitarg['forced_parameters'] = self.parameter_names if not kwargs: kwargs = {} if not kwargs.get('fitarg'): kwargs['fitarg'] = {} kwargs['fitarg'] = {**fitarg, **kwargs['fitarg']} # DODO add check that fitargs and parameter_names fit together return kwargs def chi2(self, *args, **kwargs): """Sum of distance of data and fit. Weighted by uncertainty of data.""" return np.sum( ( (self.ydata - self.fit_func(self.xdata, *args, **kwargs)) / self.sigma )**2 ) def fit_func(self): """Fit function that must be implemented by child classes.""" raise NotImplementedError @property def parameters(self): return describe(self.fit_func)[1:] @property def box_coords(self): """Coordinades for the fit results box.""" if not self._box_coords: return self.xdata.mean(), self.ydata.mean() return self._box_coords def draw_text_box(self, box_coords=None, **kwargs): """Draw a textbox on current axes.""" from matplotlib.pyplot import text if not box_coords: box_coords = self.box_coords text(*box_coords, self.box_str, **kwargs) @property def p(self): """Parameters of the Fit.""" #return self.minuit.args return [self.minuit.fitarg[param] for param in self.minuit.parameters] @property def box_str(self): """String to place on the plot. Showing Fit Statistics.""" text = '' for name, value in zip(self.minuit.parameters, self.minuit.args): text += self._box_str_format.format( name, value, self.minuit.errors[name] ) return text @property def xdata(self): """X data for the fit.""" return self._xdata[self.roi] @xdata.setter def xdata(self, value): if len(np.shape(value)) != 1: raise IndexError('Shappe if xdata is not of dim 1') self._xdata = value @property def ydata(self): """Y data for the fit.""" return self._ydata[self.roi] @ydata.setter def ydata(self, value): if len(np.shape(value)) != 1: raise IndexError('Shappe if ydata is not of dim 1') self._ydata = value @property def sigma(self): """Error of the ydata for the fit.""" if isinstance(self._sigma, type(None)): return np.ones_like(self.ydata) if self.ignore_errors: return np.ones_like(self.ydata) return self._sigma[self.roi] @sigma.setter def sigma(self, value): self._sigma = value if isinstance(value, type(None)): self._sigma = np.ones_like(self._ydata) elif len(np.shape(value)) != 1: raise IndexError('Shappe of yerr is not of dim 1') if np.any(value==0): pos = np.where(value==0) #replace = np.nanmedian(value) logger.warn('Zero value within ucertainty.') logger.warn('Zero Values @ {}'.format(pos)) #logger.warn('Replacing error with {}'.format(replace)) #logger.warn('Errors passed were {}'.format(value)) #self._sigma = np.ones_like(self._ydata) #self.ignore_errors = True @property def yerr(self): """Error of the ydata for the fit.""" return np.array(self.sigma) def fit_res(self, x): """Fit function wit fit result parameters""" return self.fit_func(x, *self.p) @property def x_edges(self): """Edges of the x data of the fit.""" return self.xdata[0], self.xdata[-1] @property def y_edges(self): """Edges of the y data of the fit.""" return self.ydata[0], self.ydata[-1] @property def xsample(self): """A sampled version of the xdata. `Fitter._xsample_num` is the number of samples. `Fitter.xsample` is used to generate a smooth plot of the fitting curve. """ return np.linspace(self.xdata[0], self.xdata[-1], self._xsample_num) @property def ysample(self): """Y vales of the fit function sampled with `Fitter.xsample`.""" return self.yfit_sample @property def y_fit(self): """Y vales of the fit function sampled with `Fitter.xsample`.""" return self.yfit_sample @property def yfit_sample(self): """Y vales of the fit function sampled with `Fitter.xsample`.""" return self.fit_res(self.xsample) @property def fitarg(self): """Minuit fitargs.""" return self.minuit.fitarg def plot(self, kwargs_data=None, kwargs_fit=None): """Function to easily look at a plot. Not very flexible. But usefull during interactive sessions. """ import matplotlib.pyplot as plt if not kwargs_data: kwargs_data = {} kwargs_data.setdefault('x', self.xdata) kwargs_data.setdefault('y', self.ydata) kwargs_data.setdefault('yerr', self.yerr) kwargs_data.setdefault('fmt', 'o') if not kwargs_fit: kwargs_fit = {} kwargs_fit.setdefault('x', self.xsample) kwargs_fit.setdefault('y', self.ysample) kwargs_fit.setdefault('color', 'r') plt.errorbar(**kwargs_data) plt.plot(**kwargs_fit) def save(fpath): """Save fit.""" with open(fpath, 'w') as ofile: yaml.dump( self.fitarg ) @property def kwargs(self): """Dict containing the most important kwargs of the Model.""" return { 'xdata' : self.xdata.tolist(), 'ydata' : self.ydata.tolist(), 'sigma': self.sigma.tolist(), 'fitarg' : self.fitarg, } @property def dict(self): """Dict containing class name and most important kwargs.""" return { 'name': self.__class__.__name__, 'module': self.__module__, 'kwargs': self.kwargs } class GaussianModelM(Fitter): def __init__(self, *args, **kwargs): ''' Fit Gausian model using Minuit. **args**/**kwargs:** Get passed to `sfg2d.models.Fitter`. Options are: - **xdata**: array of x data points - **ydata**: array of y data points - **sigma**: Array of y data errors - **fitarg**: Dictionary with fit conditions. Each parameter has an entry with its name `'parameter'` `'error_parameter'` `'fix_parameter'` and `'limit_parameter'` - **box_coords**: Coordinates of the fit result box in data coordinates. - **roi**: Slice. Region of interest of the data. This subregion will be used for fitting. - **name**: Str, Name to describe the Model. ''' kwargs = self._setup_fitter_kwargs( {'A': 1, 'mu':0, 'sigma': 1, 'c': 0,}, kwargs ) Fitter.__init__(self, *args, **kwargs) self._box_str_format = '{:5}: {:7.3g} $\\pm$ {:6.1g}\n' def fit_func(self, x, A, mu, sigma, c): """Guassian function A: amplitude mu: position sigma: std deviation c : offset """ # Minuit passes negative values for sigma # and these values lead to failures of the fitting if sigma < 0: return 0 return A * norm.pdf(x, mu, sigma) + c class GaussianModelN(Fitter): def __init__(self, *args, parameter_dict=None, **kwargs): ''' Fit Gausian model using Minuit. **args**/**kwargs:** Get passed to `sfg2d.models.Fitter`. Options are: - **parameter_dict**: Dict of parameters for gaussian fit. - **xdata**: array of x data points - **ydata**: array of y data points - **sigma**: Array of y data errors - **fitarg**: Dictionary with fit conditions. Each parameter has an entry with its name `'parameter'` `'error_parameter'` `'fix_parameter'` and `'limit_parameter'` - **box_coords**: Coordinates of the fit result box in data coordinates. - **roi**: Slice. Region of interest of the data. This subregion will be used for fitting. - **name**: Str, Name to describe the Model. ''' self._parameter_names = None self._parameter_dict_fitarg = None self._pmn = ['A', 'mu', 'sigma', 'c'] #Numberfy params if not parameter_dict: raise NotImplementedError('Must have parameter dict currently') self.parameter_dict = parameter_dict if not kwargs: kwargs = {} kwargs['forced_parameters'] = self.parameter_names kwargs['fitarg'] = self.parameter_dict_fitarg Fitter.__init__(self, *args, **kwargs) self._box_str_format = '{:5}: {:7.3g} $\\pm$ {:6.1g}\n' @property def parameter_names(self): if isinstance(self._parameter_names, type(None)): ret = [] for name in self._pmn: pos = 0 for value in self.parameter_dict[name]: ret.append('%s%d'%(name, pos)) pos += 1 self._parameter_names = ret return self._parameter_names @property def parameter_dict_fitarg(self): """Creates a numbered dictionary that can be used as fitargs dict to create the fit function.""" if isinstance(self._parameter_dict_fitarg, type(None)): ret = {} for pm in self._pmn: values = self.parameter_dict[pm] pos = 0 for value in values: ret['%s%d'%(pm,pos)] = value pos += 1 self._parameter_dict_fitarg = ret return self._parameter_dict_fitarg def _params_from_parameter_dict(self): ret = [] for name in self._parameter_names: [ret.append(value) for value in self.parameter_dict[name]] return np.array(ret) def fit_func(self, x, *params): """ Gaussian functions. Pass parameters as list. Sorting of parameters is: A0, A1,.. mu0, mu1,... sigma0, sigma1,....c0,c1,.... """ # Minuit passes negative values for sigma # and these values lead to failures of the fitting i = len(params)//4 pparams = np.reshape(params, (4, i)).T ret = np.zeros_like(x) for _p in pparams: ret += self._gaussian(x, *_p) return ret def _gaussian(self, x, A, mu, sigma, c): """Gaussian function""" if sigma < 0: return 0 return A * norm.pdf(x, mu, sigma) + c class LorenzianModel(Fitter): """ N-Lorenzian Peaks and Non Resonant background to fit SFG Spectra with. """ def __init__(self, *args, n_lorenzians=1, **kwargs): # Must definde forced_parameters because iminuits parameter auto # discovery fails for sfgn as fit function self.n_lorenzians = n_lorenzians _fitarg = {k: 0 for k in flatten([('amp_%i'%i, 'pos_%i'%i, 'width_%i'%i) for i in range(n_lorenzians)])} _fitarg = {'nr': 0, 'phase': 0, **_fitarg} self.parameter_names = list(_fitarg.keys()) kwargs['forced_parameters'] = self.parameter_names # If no fitargs is defined, we define a minimum set and use # sane parameter defaults # This has a problem if n_lorenzians is wrong. Currently the user # has to take care to use it correctly fitarg = kwargs.get('fitarg') if not fitarg: kwargs['fitarg'] = _fitarg Fitter.__init__(self, *args, **kwargs) def fit_func(self, x, *args, **kwargs): return sfgn(x, *args, **kwargs) @property def kwargs(self): """n_lorenzians is needed for model to work.""" ret = super().kwargs ret['n_lorenzians'] = self.n_lorenzians return ret class SkewedNormal(Fitter): def __init__(self, *args, **kwargs): Fitter.__init__(self, *args, **kwargs) self._box_str_format = '{:5}: {:7.3g} $\\pm$ {:6.1g}\n' def fit_funct(self, x, A, mu, sigma, kurt, c): return A * skewnorm.pdf(x, kurt, mu, sigma) + c class FourLevelMolKinM(Fitter): def __init__( self, *args, gSigma=150, N0=[1, 0, 0, 0], rtol=1.09012e-9, atol=1.49012e-9, full_output=True, **kwargs ): """4 Level Model Fitter. To use set following `kwargs` `xdata`, `ydata` and `fitarg`. Optinal pass `sigma` for y errors. **Arguments:** - **N0**: Boundary condition of the DGL - **rtol**: Precision parameter of the DGL - **atol**: Precision parameter of the DGL - **full_output**: Weather to get full_output of the DGL Solver. Usefull for debugging. atol and rtol **args**/**kwargs:** Get passed to `sfg2d.models.Fitter`. Options are: - **xdata**: array of x data points - **ydata**: array of y data points - **sigma**: Array of y data errors - **fitarg**: Dictionary with fit conditions. Each parameter has an entry with its name `'parameter'` `'error_parameter'` `'fix_parameter'` and `'limit_parameter'` - **box_coords**: Coordinates of the fit result box in data coordinates. - **roi**: Slice. Region of interest of the data. This subregion will be used for fitting. - **name**: Str, Name to describe the Model. """ self.gSigma = gSigma # width of the excitation self.rtol = rtol # Precition of the numerical integrator. self.atol = atol # Starting conditions of the Populations, not to be confuesed with starting conditions of the plot self.N0 = N0 self.full_output = full_output self.infodict = None # Infodict return of the Odeint. kwargs = self._setup_fitter_kwargs( {'s': 1, 't1': 1, 't2': 0.7, 'c': 1, 'mu': 0,}, kwargs ) Fitter.__init__(self, *args, **kwargs) def ext_gaus(self, t, mu, sigma): """Gausian excitation function. Due to historic reasons its not a strict gausian, but something very cloe to it. The Igor Code is: 1/sqrt(pi)/coeff1*exp(-(coeff0-x)^2/coeff1^2) The here wanted sigma is sqrt(2)*sigma of a normal gaussian and then its also normalized. If you have FWHM, then sigma is sigma = FWHM/(2*sqrt(log(2))) """ return 1 / np.sqrt(np.pi) / sigma * np.exp(-((mu-t)/sigma)**2) # The Physical Water model def dgl(self, N, t, ext_func, s, t1, t2): """Dgl of the 4 Level DGL system. **Arguments:** - **N**: deg 4 array Population of the 4 levels respectively - **t**: float time - **ext_func**: exictation function in time. Time profile of the pump laser. Function of t. Usaully a gaussian function. - **s**: scaling factor of the pump laser. - **t1**: Time constant of first level - **t2**: Time constant of second level. **Returns:** Derivatives of the system. As 4 dim array. """ # This is the DGL written as a Matrix multiplication. # dNdt = A x N # A is the constructing matrix of the DGL # and N is a 4-level vector with (N0, N1, N2, N3) # as the population of the states at time t. # dNdt is the state wise derivative of N # See https://en.wikipedia.org/wiki/Matrix_differential_equation A = np.array([ [-s * ext_func(t), s * ext_func(t), 0, 0], [s * ext_func(t), -s * ext_func(t) - 1/t1, 0, 0], [0, 1 / t1, -1 / t2, 0], [0, 0, 1 / t2, 0], ], dtype=np.float64) dNdt = A.dot(N) return dNdt def fit_func(self, t, s, t1, t2, c, mu): """ Function we use to fit. **Arguments:** - **t**: time - **s**: Gaussian Amplitude - **t1**: Livetime of first state - **t2**: livetime of second(intermediate) state - **c**: Coefficient of third(Heat) state - **mu**: Position of pump pulse, the zero. **Returns** The bleach of the water model and the Matrix with the populations""" N = self.population( t, lambda t: self.ext_gaus(t, mu, self.gSigma), s, t1, t2 ).T return ((N[0] - N[1]+ N[2] + c * N[3])**2) / (self.N0[0]**2) def population(self, t, *args, **kwargs): """Numerical solution to the 4 Level DGL-Water system. **Arguments:** - **t**: array of time values **Args**: Arguments of the dgl function - **ext_func**: Function of excitation. - **s**: scalar factor for the pump - **t1**: Live time of the first exited state - **t2**: livetime of the intermediate state. **kwargs**: Get passe to differential equation solver odeing **Returns** (len(t), 4) shaped array with the 4 entires beeing the population of the N0 t0 N3 levels of the system """ ret = odeint( func=self.dgl, # the DGL of the 4 level water system y0=self.N0, # Starting conditions of the DGL t=t, # Time as parameter args=args, # Aguments of the dgl # Dfun=self.jac, # The Jacobean of the DGL. Its optional. # The precisioin parameter for the nummerical DGL solver. rtol=self.rtol, atol=self.atol, full_output=self.full_output, **kwargs, ) if self.full_output: ret, self.infodict = ret return ret def jac(self, N, t, ext_func, s, t1, t2): """Jacobean matrix of the DGL.""" # In this case the Jacobean Matrix is euqal the # Consturcting matrix of the DGL. # So it doesn't help much. It just speeds up the thing # a little. A = np.array([ [-s * ext_func(t), s * ext_func(t), 0, 0], [s * ext_func(t), -s * ext_func(t) - 1/t1, 0, 0], [0, 1 / t1, -1 / t2, 0], [0, 0, 1 / t2, 0], ], dtype=np.float64) return A def fit_populations(self, t): s, t1, t2, c1, mu = self.p return self.population( t, lambda t: self.ext_gaus(t, mu, self.gSigma), s, t1, t2 ) def start_population(self, t): s, t1, t2, c1, mu = self.p0 return self.population( t, lambda t: self.ext_gaus(t, mu, self.gSigma), s, t1, t2 ) def save(self, fname): """Save FourLevelMolKin results.""" parameter_dict = { 'gSigma': self.gSigma, 'rtol': self.rtol, 'atol': self.atol, 'N0': self.N0, } super().__save__(fname, parameter_dict) class Crosspeak(FourLevelMolKinM): def __init__( self, *args, N0=[1, 0, 0, 0, 0], **kwargs ): """4 Level Model based crosspeak fitter. """ FourLevelMolKinM.__init__(self, *args, N0=N0, **kwargs) def matrix(self, t, t1, teq, tup, tdown, ext_func, s): """Matrix to construct the DGL""" return np.array([ [-s * ext_func(t), -s * ext_func(t), 0, 0, 0], [s * ext_func(t), -s * ext_func(t)-1/tup-1/t1, 1/tdown, 0, 0], [0, 1/tup, -1/tdown, 0, 0], [0, 1/t1, 0, -1/teq, 0], [0, 0, 0, 1/teq, 0] ], dtype=np.float64) def dgl(self, N, *args): """Matrix form of the DGL""" dNdt = self.matrix(*args).dot(N) return dNdt def fit_func(self, t, t1, teq, tup, tdown, mu, gSigma, s, c): """Function that is used for fitting the data. """ N = self.population( t, t1, teq, tup, tdown, lambda t: self.ext_gaus(t, mu, gSigma), s, ).T # On Pump vibration y0 = (N[0] + c * N[3] - N[1])**2 / self.N0[0]**2 # Off Pump vibration y1 = (N[0] + c * N[3] - N[2])**2 / self.N0[0]**2 # Fit function is two dimensional because input data consist of two # traces. return np.array([y0, y1]) @property def ydata(self): return self._ydata @ydata.setter def ydata(self, value): self._ydata = np.array(value) @property def sigma(self): """Error of the ydata for the fit.""" if isinstance(self._sigma, type(None)): return np.ones_like(self.ydata) if self.ignore_errors: return np.ones_like(self.ydata) return self._sigma[self.roi] @sigma.setter def sigma(self, value): if isinstance(value, type(None)): self._sigma = np.ones_like(self._ydata) if np.any(value == 0): raise ValueError('Cant handle 0 errors') from warnings import warn warn('Passed uncertainty has a 0 value\nIgnoring errorbars.\n{}'.format(value)) self._sigma = value self.ignore_errors = True self._sigma = value class SingleLifetime(Fitter): def __init__( self, *args, fit_func_dtype=np.float64, **kwargs ): """Fitting Model with convolution of single exponential and gaussian. **Arguments**: - **xsample**: Optional Stepping size of the convolution. Default minimal difference of xdata and in the range of xdata. - **xsample_ext**: Boundary effects of the convolution make int necesarry to, add additional Datapoints to the xsample data. By default 10% are added. - **fit_func_dtype**: The exponential function in the fitfunc can become very huge. To cope with that one can set the dtype of the fit func. **args**/**kwargs:** Get passed to `sfg2d.models.Fitter`. Options are: - **xdata**: array of x data points - **ydata**: array of y data points - **sigma**: Array of y data errors - **fitarg**: Dictionary with fit conditions. Each parameter has an entry with its name `'parameter'` `'error_parameter'` `'fix_parameter'` and `'limit_parameter'` - **box_coords**: Coordinates of the fit result box in data coordinates. - **roi**: Slice. Region of interest of the data. This subregion will be used for fitting. - **name**: Str, Name to describe the Model. """ self.fit_func_dtype = fit_func_dtype kwargs = self._setup_fitter_kwargs( {'A': 1, 't1':1000, 'c': 0, 'mu': 0, 'sigma': 200 }, kwargs ) Fitter.__init__(self, *args, **kwargs) def fit_func(self, t, A, t1, c, mu, ofs, sigma): """Result of a convolution of Gausian an exponential recovery. This function is the Analytically solution to the convolution of: f = (- A*exp(-t/tau) + c)*UnitStep(t) g = Gausian(t, mu, sigma) result = Convolve(f, g) **Arguments:** - **t**: array of times - **A**: Amplitude of the recovery - **t1**: Livetime of the recovery - **c**: Convergence of the recovery - **mu**: Tempoaral Position of the Pulse - **ofs**: Global offset factor - **sigma**: Width of the gaussian """ ## This dtype hack is needed because the exp cant get very large. return 1/2 * ( c + c * erf((t - mu)/(np.sqrt(2) * sigma)) - A * np.exp(((sigma**2 - 2 * t * t1 + 2 * mu * t1)/(2 * t1**2)), dtype=self.fit_func_dtype) * erfc((sigma**2 - t * t1 + mu * t1)/(np.sqrt(2) * sigma * t1)) ) + ofs class ThreeLevelMolkin(Fitter): def __init__( self, *args, gSigma=150, N0=[1, 0, 0], rtol=1.09012e-9, atol=1.49012e-9, full_output=True, **kwargs ): """ **args**/**kwargs:** Get passed to `sfg2d.models.Fitter`. Options are: - **xdata**: array of x data points - **ydata**: array of y data points - **sigma**: Array of y data errors - **fitarg**: Dictionary with fit conditions. Each parameter has an entry with its name `'parameter'` `'error_parameter'` `'fix_parameter'` and `'limit_parameter'` - **box_coords**: Coordinates of the fit result box in data coordinates. - **roi**: Slice. Region of interest of the data. This subregion will be used for fitting. - **name**: Str, Name to describe the Model. """ Fitter.__init__(self, *args, **kwargs) self.gSigma = gSigma # width of the excitation self.rtol = rtol # Precition of the numerical integrator. self.atol = atol # Starting conditions of the Populations, not to be confuesed with starting conditions of the plot self.N0 = N0 self.full_output = full_output self.infodict = None # Infodict return of the Odeint. def ext_gaus(self, t, mu, sigma): """Gausian excitation function. Due to historic reasons its not a strict gausian, but something very cloe to it. The Igor Code is: 1/sqrt(pi)/coeff1*exp(-(coeff0-x)^2/coeff1^2) """ return 1 / np.sqrt(np.pi) / sigma * np.exp(-((mu-t)/sigma)**2) def dgl(self, N, t, ext_func, s, t1): """DGL of the three level system. Parameters ---------- N: deg 3 Array with initial populations of the levels typically [1, 0, 0] t: float time ext_func: excitation function of the laser. Typically a gaussian. Function of t. s: scaling factor of the pump laser. t1: Livetime of the excited state. Returns ------- Dericatives of the system as 3dim array. """ A = np.array([ [-s*ext_func(t), s*ext_func(t), 0], [s*ext_func(t), -s*ext_func(t) - 1/t1, 0], [0, 1/t1, 0] ], dtype=np.float64) dNdt = A.dot(N) return dNdt def population(self, t, ext_func, s, t1, **kwargs): """Nummerical solution of the DGL. Parameters ---------- t: array if times ext_func: excitation function. Depends on t. s: scaling factor of the pump. t1: livetime of the first state. Returns ------- Populations of the 3 levels at the times t. """ ret = odeint( func=self.dgl, # the DGL of the 3 level water system y0=self.N0, # Starting conditions of the DGL t=t, args=(ext_func, s, t1), rtol=self.rtol, atol=self.atol, full_output=self.full_output, **kwargs, ) if self.full_output: ret, self.infodict = ret return ret def fit_populations(self, t): s, t1, c1, mu = self.p return self.population( t, lambda t: self.ext_gaus(t, mu, self.gSigma), s, t1, ) def fit_func(self, t, s, t1, c, mu): """ Function we use to fit. parameters ---------- t: time s: Gaussian Amplitude t1: Livetime of first state c: Coefficient of third(Heat) state scale: Scaling factor at the very end Returns: The bleach of the water model and the Matrix with the populations""" N = self.population( t, lambda t: self.ext_gaus(t, mu, self.gSigma), s, t1, ).T return ((N[0] + c * N[2] - N[1])**2) / (self.N0[0]**2) class TwoExponentials(Fitter): def __init__(self, *args, **kwargs): """Two exponentials convoluted with gaussian. Dont use this. Its has a causality problem. """ Fitter.__init__(self, *args, **kwargs) self.N0 = [1, 0, 0, 0] def fit_func(self, x, Amp, Aheat, t1, t2, offs, pwidth, mu): """Analytical solution to the four level system with gaussian excitation pulse.""" e1 = np.exp((0.5*((t2**-2.)*((pwidth**2)+((-2.*(x*t2))+(2.*(mu*t2))))))) e2 = np.exp((0.5*((t1**-2.)*((pwidth**2)+((-2.*(x*t1))+(2.*(mu*t1))))))) er_1 = ((((2.**-0.5)*(((pwidth**2)+(mu*t2))-(x*t2)))/t2)/pwidth) er_2 = ((((2.**-0.5)*(((pwidth**2)+(mu*t1))-(x*t1)))/t1)/pwidth) er_3 = (((2.**-0.5)*(x-mu))/pwidth) aux0=(e1)*(erfc(er_1)); aux1=(e2)*(erfc(er_2)); aux2=Amp*(((offs+(offs*(erf(er_3))))-(Aheat*aux0))-aux1); output=0.5*aux2+1 # Due to exp overflow, nans can occur. # However they result in 1 because they happen at negative times. output[np.isnan(output)] = 1 # +1 to have right population return output class FourLevel(Fitter): """Analytical Solution to the 4 Level Model. The Conzept for the solution was taken from: (doi:10.1021/jp003158e) Lock, A. J.; Woutersen, S. & Bakker, H. J. """ def __init__(self, *args, **kwargs): # Autodiscovery of iminuit doesnt work with implicit # variable definitions. Thus we must specify parameters # and there names specifically. We also define some sane defalts, # that should be updated by the user. # The oder of the arguments matters, because kwargs = self._setup_fitter_kwargs( {'Amp': 1, 't1': 1, 't2': 0.7, 'c': 1, 'sigma':0.2, 'mu': 0,}, kwargs ) Fitter.__init__(self, *args, **kwargs) self.N = 1 # Number of initial oszillators. def N(self, t, t1, t2, N10, N20=0, N30=0): """Populations of the solution to the 4 level model. This is only true for t>0. **Parameters:** - **t**: Time points to calculated population of - **t1**: Lifetime of first excited state - **t2**: Lifetime of intermediate (heat) state - **N10**: Fraction of initialy excited oszillators 0<N10<1 - **N20**: Fraction of initialy excited oszillators in heated state - **N30**: Fraction if initialy excited oszillators in final state **Returns:** Tuple of N0, N1, N2, N3 at times t """ N1 = np.exp(((-t)/t1))*N10 aux0=(np.exp((((-t)/t2)-(t/t1))))*(((np.exp((t/t2)))-(np.exp((t/t1))))\ *(N10*t2)); N2=((np.exp(((-t)/t2)))*N20)+(aux0/(t1-t2)); aux0=(((np.exp(((t/t1)+(t/t2))))*t1)+((np.exp((t/t1)))*t2))-((np.exp((\ (t/t1)+(t/t2))))*t2); aux1=((np.exp((((-t)/t2)-(t/t1))))*(N10*(aux0-((np.exp((t/t2)))*t1))))\ /(t1-t2); N3=((np.exp(((-t)/t2)))*((-1.+(np.exp((t/t2))))*N20))+(N30+aux1); N0 = self.N - N1 - N2 - N3 return N0, N1, N2, N3 def fit_func(self, t, Amp, t1, t2, c, mu, sigma): """Function for the time dependency of pump-probe sfg data. Function is derived by analytically solving the 4 level system and subsequent convolution with a gaussian excitation function of the model. Initial state is N0=1. All other states are empty. This exact implementation has a problem when t1==t2 exactly. Due to numerical constrains this must be avoided. If difference instead of ratio is used. The function keeps the same due to the distributivity of the convolution and the fact that gaussian convolved with -1 gives -1. Therefore only -1 needs to be subtract. **Arguments**: - **t**: Array of Time values. Usually given by experiment. - **Amp**: Amplitude of the excitation pulse. Determines the fraction of oscillators excited by the excitation pulse. - **t1**: Lifetime of the first excited vibrational state in units of **t** - **t2**: Lifetime of the second excited vibrational state in units of **t** - **c**: Scaling factor of final (heated) state. Used to account for spectral differences induced by residual heat. - **mu**: Tempoaral position of pump pulse in units of **t**. - **sigma**: Temporal width of pump pulse in units of **t**. **Returns** Modeled result as deduced from the 4 level system for the given array of **t** time values. """ pi=np.pi; #a0 = erf((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/sigma)) def mysqrt(x): return np.sqrt(x) aux0=sigma*((t1**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma)))))); aux1=sigma*((t1**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma)))))); aux2=sigma*((t1**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma)))))); aux3=(((t1-t2)**2))*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma))))); aux4=sigma*(t1*(t2*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma))))))); aux5=sigma*(t1*(t2*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma))))))); aux6=sigma*(t1*(t2*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma))))))); aux7=sigma*((t2**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma)))))); aux8=sigma*((t2**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma)))))); aux9=sigma*((t2**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)/\ sigma)))))); aux10=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t1))-(((2.**-0.5)*\ t)/sigma); aux11=(np.exp((((0.5*((sigma**2)*(t1**-2.)))+(mu/t1))-(t/t1))))*((\ mysqrt((2.*pi)))*(sigma*((t1**2)*(-1.+(erf(aux10)))))); aux12=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t1))-(((2.**-0.5)*\ t)/sigma); aux13=(np.exp((((0.5*((sigma**2)*(t1**-2.)))+(mu/t1))-(t/t1))))*((\ mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux12))))))); aux14=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t1))-(((2.**-0.5)*\ t)/sigma); aux15=(np.exp((((0.5*((sigma**2)*(t1**-2.)))+(mu/t1))-(t/t1))))*((\ mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux14))))))); aux16=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t1))-(((2.**-0.5)*\ t)/sigma); aux17=(np.exp((((0.5*((sigma**2)*(t1**-2.)))+(mu/t1))-(t/t1))))*((\ mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf(aux16)))))); aux18=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t1))-(((2.**-0.5)*\ t)/sigma); aux19=(np.exp((((0.5*((sigma**2)*(t1**-2.)))+(mu/t1))-(t/t1))))*((\ mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf(aux18)))))); aux20=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t1))-(((2.**-0.5)\ *t)/sigma); aux21=(np.exp(((2.*((sigma**2)*(t1**-2.)))+(((2.*mu)/t1)+((-2.*t)/t1))\ )))*((mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux20))))))); aux22=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t1))-(((2.**-0.5)\ *t)/sigma); aux23=(np.exp(((2.*((sigma**2)*(t1**-2.)))+(((2.*mu)/t1)+((-2.*t)/t1))\ )))*((mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux22))))))); aux24=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t1))-(((2.**-0.5)\ *t)/sigma); aux25=(np.exp(((2.*((sigma**2)*(t1**-2.)))+(((2.*mu)/t1)+((-2.*t)/t1))\ )))*((mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf(aux24)))))); aux26=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t2))-(((2.**-0.5)*\ t)/sigma); aux27=(np.exp((((0.5*((sigma**2)*(t2**-2.)))+(mu/t2))-(t/t2))))*((\ mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux26))))))); aux28=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t2))-(((2.**-0.5)*\ t)/sigma); aux29=(np.exp((((0.5*((sigma**2)*(t2**-2.)))+(mu/t2))-(t/t2))))*((\ mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf(aux28)))))); aux30=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t2))-(((2.**-0.5)*\ t)/sigma); aux31=(np.exp((((0.5*((sigma**2)*(t2**-2.)))+(mu/t2))-(t/t2))))*((\ mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf(aux30)))))); aux32=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t2))-(((2.**-0.5)*\ t)/sigma); aux33=(np.exp((((0.5*((sigma**2)*(t2**-2.)))+(mu/t2))-(t/t2))))*((\ mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf(aux32)))))); aux34=(0.5*((sigma**2)*(t1**-2.)))+((mu/t1)+((0.5*((sigma**2)*(t2**-2.\ )))+((mu/t2)+(((sigma**2)/t2)/t1)))); aux35=(((2.**-0.5)*mu)/sigma)+((((2.**-0.5)*sigma)/t1)+(((2.**-0.5)*\ sigma)/t2)); aux36=(mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf((aux35-(((2.**-0.5)*t)/sigma)))))))); aux37=(0.5*((sigma**2)*(t1**-2.)))+((mu/t1)+((0.5*((sigma**2)*(t2**-2.\ )))+((mu/t2)+(((sigma**2)/t2)/t1)))); aux38=(((2.**-0.5)*mu)/sigma)+((((2.**-0.5)*sigma)/t1)+(((2.**-0.5)*\ sigma)/t2)); aux39=(mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf((aux38-(((2.**-0.5)*t)/sigma))))))); aux40=(0.5*((sigma**2)*(t1**-2.)))+((mu/t1)+((0.5*((sigma**2)*(t2**-2.\ )))+((mu/t2)+(((sigma**2)/t2)/t1)))); aux41=(((2.**-0.5)*mu)/sigma)+((((2.**-0.5)*sigma)/t1)+(((2.**-0.5)*\ sigma)/t2)); aux42=(mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf((aux41-(((2.**-0.5)*t)/sigma))))))); aux43=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t2))-(((2.**-0.5)\ *t)/sigma); aux44=(np.exp(((2.*((sigma**2)*(t2**-2.)))+(((2.*mu)/t2)+((-2.*t)/t2))\ )))*((mysqrt((2.*pi)))*(sigma*((t2**2)*(-1.+(erf(aux43)))))); aux45=t1*(t2*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t1))-(t*t1)))/t1)/\ sigma)))); aux46=(np.exp((0.5*((t1**-2.)*((sigma**2)+((2.*(mu*t1))+(-2.*(t*t1))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux45)); aux47=t1*(t2*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t1))-(t*t1)))/t1)/\ sigma)))); aux48=(np.exp((0.5*((t1**-2.)*((sigma**2)+((2.*(mu*t1))+(-2.*(t*t1))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux47)); aux49=(t2**2)*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t1))-(t*t1)))/t1)/\ sigma))); aux50=(np.exp((0.5*((t1**-2.)*((sigma**2)+((2.*(mu*t1))+(-2.*(t*t1))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux49)); aux51=t1*(t2*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t2))-(t*t2)))/t2)/\ sigma)))); aux52=(np.exp((0.5*((t2**-2.)*((sigma**2)+((2.*(mu*t2))+(-2.*(t*t2))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux51)); aux53=(t2**2)*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t2))-(t*t2)))/t2)/\ sigma))); aux54=(np.exp((0.5*((t2**-2.)*((sigma**2)+((2.*(mu*t2))+(-2.*(t*t2))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux53)); aux55=(3.*(Amp*aux46))+((Amp*(c*aux48))+((-2.*(Amp*aux50))+((Amp*(c*\ aux52))+(Amp*aux54)))); aux56=(-2.*((Amp**2)*(c*((np.exp(((aux40-(t/t2))-(t/t1))))*aux42))))+(\ ((Amp**2)*(c*aux44))+aux55); aux57=((Amp**2)*((c**2)*((np.exp(((aux34-(t/t2))-(t/t1))))*aux36)))+((\ 2.*((Amp**2)*((np.exp(((aux37-(t/t2))-(t/t1))))*aux39)))+aux56); aux58=((Amp**2)*aux29)+((-2.*((Amp**2)*(c*aux31)))+(((Amp**2)*((c**2)*\ aux33))+aux57)); aux59=(2.*((Amp**2)*(c*aux23)))+((-2.*((Amp**2)*aux25))+((2.*((Amp**2)\ *(c*aux27)))+aux58)); aux60=(-2.*((Amp**2)*aux17))+((2.*((Amp**2)*(c*aux19)))+((2.*((Amp**2)\ *aux21))+aux59)); aux61=((Amp**2)*((c**2)*aux11))+((3.*((Amp**2)*aux13))+((-2.*((Amp**2)\ *(c*aux15)))+aux60)); aux62=((Amp**2)*((c**2)*((mysqrt((0.5*pi)))*aux8)))+((Amp*(c*((\ mysqrt((2.*pi)))*aux9)))+aux61); aux63=(2.*((Amp**2)*(c*((mysqrt((2.*pi)))*aux6))))+(((Amp**2)*((\ mysqrt((0.5*pi)))*aux7))+aux62); aux64=(2.*(Amp*((mysqrt((2.*pi)))*aux4)))+((-2.*(Amp*(c*((mysqrt((\ 2.*pi)))*aux5))))+aux63); aux65=(Amp*(c*((mysqrt((2.*pi)))*aux2)))+(((mysqrt((0.5*pi)))*(\ sigma*aux3))+aux64); aux66=((Amp**2)*((mysqrt((0.5*pi)))*aux0))+(((Amp**2)*((c**2)*((\ mysqrt((0.5*pi)))*aux1)))+aux65); aux67=(t2**2)*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t2))-(t*t2)))/t2)/\ sigma))); aux68=(np.exp((0.5*((t2**-2.)*((sigma**2)+((2.*(mu*t2))+(-2.*(t*t2))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux67)); aux69=t1*(t2*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t2))-(t*t2)))/t2)/\ sigma)))); aux70=(np.exp((0.5*((t2**-2.)*((sigma**2)+((2.*(mu*t2))+(-2.*(t*t2))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux69)); aux71=(t1**2)*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t1))-(t*t1)))/t1)/\ sigma))); aux72=(np.exp((0.5*((t1**-2.)*((sigma**2)+((2.*(mu*t1))+(-2.*(t*t1))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux71)); aux73=(t1**2)*(erfc(((((2.**-0.5)*(((sigma**2)+(mu*t1))-(t*t1)))/t1)/\ sigma))); aux74=(np.exp((0.5*((t1**-2.)*((sigma**2)+((2.*(mu*t1))+(-2.*(t*t1))))\ ))))*((mysqrt((2.*pi)))*(sigma*aux73)); aux75=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t2))-(((2.**-0.5)\ *t)/sigma); aux76=(np.exp(((2.*((sigma**2)*(t2**-2.)))+(((2.*mu)/t2)+((-2.*t)/t2))\ )))*((mysqrt((0.5*pi)))*(sigma*((t2**2)*(-1.+(erf(aux75)))))); aux77=((((aux66-(Amp*(c*aux68)))-(Amp*aux70))-(Amp*(c*aux72)))-(Amp*\ aux74))-((Amp**2)*((c**2)*aux76)); aux78=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t2))-(((2.**-0.5)\ *t)/sigma); aux79=(np.exp(((2.*((sigma**2)*(t2**-2.)))+(((2.*mu)/t2)+((-2.*t)/t2))\ )))*((mysqrt((0.5*pi)))*(sigma*((t2**2)*(-1.+(erf(aux78)))))); aux80=(0.5*((sigma**2)*(t1**-2.)))+((mu/t1)+((0.5*((sigma**2)*(t2**-2.)))+((mu/t2)+(((sigma**2)/t2)/t1)))); aux81=(((2.**-0.5)*mu)/sigma)+((((2.**-0.5)*sigma)/t1)+(((2.**-0.5)*\ sigma)/t2)); aux82=(mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf((aux81-(((2.**-0.5)*t)/sigma)))))))); aux83=(aux77-((Amp**2)*aux79))-((Amp**2)*((np.exp(((aux80-(t/t2))-(t/\ t1))))*aux82)); aux84=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t2))-(((2.**-0.5)*\ t)/sigma); aux85=(np.exp((((0.5*((sigma**2)*(t2**-2.)))+(mu/t2))-(t/t2))))*((\ mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux84))))))); aux86=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t2))-(((2.**-0.5)*\ t)/sigma); aux87=(np.exp((((0.5*((sigma**2)*(t2**-2.)))+(mu/t2))-(t/t2))))*((\ mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux86))))))); aux88=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t1))-(((2.**-0.5)\ *t)/sigma); aux89=(np.exp(((2.*((sigma**2)*(t1**-2.)))+(((2.*mu)/t1)+((-2.*t)/t1))\ )))*((mysqrt((2.*pi)))*(sigma*((t1**2)*(-1.+(erf(aux88)))))); aux90=((aux83-((Amp**2)*((c**2)*aux85)))-((Amp**2)*aux87))-((Amp**2)*(\ c*aux89)); aux91=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t1))-(((2.**-0.5)\ *t)/sigma); aux92=(np.exp(((2.*((sigma**2)*(t1**-2.)))+(((2.*mu)/t1)+((-2.*t)/t1))\ )))*((mysqrt((0.5*pi)))*(sigma*((t1**2)*(-1.+(erf(aux91)))))); aux93=((((2.**-0.5)*mu)/sigma)+(((mysqrt(2.))*sigma)/t1))-(((2.**-0.5)\ *t)/sigma); aux94=(np.exp(((2.*((sigma**2)*(t1**-2.)))+(((2.*mu)/t1)+((-2.*t)/t1))\ )))*((mysqrt((0.5*pi)))*(sigma*((t1**2)*(-1.+(erf(aux93)))))); aux95=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t1))-(((2.**-0.5)*\ t)/sigma); aux96=(np.exp((((0.5*((sigma**2)*(t1**-2.)))+(mu/t1))-(t/t1))))*((\ mysqrt((2.*pi)))*(sigma*(t1*(t2*(-1.+(erf(aux95))))))); aux97=((aux90-((Amp**2)*((c**2)*aux92)))-((Amp**2)*aux94))-((Amp**2)*(\ (c**2)*aux96)); aux98=((((2.**-0.5)*mu)/sigma)+(((2.**-0.5)*sigma)/t1))-(((2.**-0.5)*\ t)/sigma); aux99=(np.exp((((0.5*((sigma**2)*(t1**-2.)))+(mu/t1))-(t/t1))))*((\ mysqrt((2.*pi)))*(sigma*((t1**2)*(-1.+(erf(aux98)))))); aux100=sigma*((t2**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*\ t)/sigma)))))); aux101=sigma*((t2**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*\ t)/sigma)))))); aux102=((aux97-((Amp**2)*aux99))-((Amp**2)*(c*((mysqrt((2.*pi)))*\ aux100))))-(Amp*((mysqrt((2.*pi)))*aux101)); aux103=sigma*(t1*(t2*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)\ /sigma))))))); aux104=sigma*(t1*(t2*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*t)\ /sigma))))))); aux105=(aux102-((Amp**2)*((c**2)*((mysqrt((2.*pi)))*aux103))))-((\ Amp**2)*((mysqrt((2.*pi)))*aux104)); aux106=sigma*((t1**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*\ t)/sigma)))))); aux107=sigma*((t1**2)*(1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*\ t)/sigma)))))); aux108=(aux105-((Amp**2)*(c*((mysqrt((2.*pi)))*aux106))))-(Amp*((\ mysqrt((2.*pi)))*aux107)); aux109=(((t1-t2)**2))*(-1.-(erf(((((2.**-0.5)*mu)/sigma)-(((2.**-0.5)*\ t)/sigma))))); aux110=((2.*pi)**-0.5)*(((t1-t2)**-2.)*(aux108-((mysqrt((0.5*pi)\ ))*(sigma*aux109)))); output=aux110/sigma; return output class FourLevelDifference(FourLevel): """This is the fit model for the four level model if difference instead of ratio is used. The only difference is that we need to subtract -1. This is due to two things. First, the convolution is distributive, second convolution of -1 with gaussian is -1. Therefore this is the correct and most simple solution. """ def fit_func(self, t, Amp, t1, t2, c, mu, sigma): return super().fit_func(t, Amp, t1, t2, c, mu, sigma) - 1
mit
jmmease/pandas
pandas/tests/io/parser/test_network.py
4
8535
# -*- coding: utf-8 -*- """ Tests parsers ability to read and parse non-local files and hence require a network connection to be read. """ import os import pytest import moto import pandas.util.testing as tm from pandas import DataFrame from pandas.io.parsers import read_csv, read_table from pandas.compat import BytesIO @pytest.fixture(scope='module') def tips_file(): return os.path.join(tm.get_data_path(), 'tips.csv') @pytest.fixture(scope='module') def salaries_table(): path = os.path.join(tm.get_data_path(), 'salaries.csv') return read_table(path) @pytest.fixture(scope='module') def s3_resource(tips_file): pytest.importorskip('s3fs') moto.mock_s3().start() test_s3_files = [ ('tips.csv', tips_file), ('tips.csv.gz', tips_file + '.gz'), ('tips.csv.bz2', tips_file + '.bz2'), ] def add_tips_files(bucket_name): for s3_key, file_name in test_s3_files: with open(file_name, 'rb') as f: conn.Bucket(bucket_name).put_object( Key=s3_key, Body=f) boto3 = pytest.importorskip('boto3') # see gh-16135 bucket = 'pandas-test' conn = boto3.resource("s3", region_name="us-east-1") conn.create_bucket(Bucket=bucket) add_tips_files(bucket) conn.create_bucket(Bucket='cant_get_it', ACL='private') add_tips_files('cant_get_it') yield conn moto.mock_s3().stop() @pytest.mark.network @pytest.mark.parametrize( "compression,extension", [('gzip', '.gz'), ('bz2', '.bz2'), ('zip', '.zip'), pytest.param('xz', '.xz', marks=pytest.mark.skipif(not tm._check_if_lzma(), reason='need backports.lzma ' 'to run'))]) @pytest.mark.parametrize('mode', ['explicit', 'infer']) @pytest.mark.parametrize('engine', ['python', 'c']) def test_compressed_urls(salaries_table, compression, extension, mode, engine): check_compressed_urls(salaries_table, compression, extension, mode, engine) @tm.network def check_compressed_urls(salaries_table, compression, extension, mode, engine): # test reading compressed urls with various engines and # extension inference base_url = ('https://github.com/pandas-dev/pandas/raw/master/' 'pandas/tests/io/parser/data/salaries.csv') url = base_url + extension if mode != 'explicit': compression = mode url_table = read_table(url, compression=compression, engine=engine) tm.assert_frame_equal(url_table, salaries_table) class TestS3(object): @tm.network def test_parse_public_s3_bucket(self): pytest.importorskip('s3fs') # more of an integration test due to the not-public contents portion # can probably mock this though. for ext, comp in [('', None), ('.gz', 'gzip'), ('.bz2', 'bz2')]: df = read_csv('s3://pandas-test/tips.csv' + ext, compression=comp) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv( tm.get_data_path('tips.csv')), df) # Read public file from bucket with not-public contents df = read_csv('s3://cant_get_it/tips.csv') assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv(tm.get_data_path('tips.csv')), df) def test_parse_public_s3n_bucket(self, s3_resource): # Read from AWS s3 as "s3n" URL df = read_csv('s3n://pandas-test/tips.csv', nrows=10) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv( tm.get_data_path('tips.csv')).iloc[:10], df) def test_parse_public_s3a_bucket(self, s3_resource): # Read from AWS s3 as "s3a" URL df = read_csv('s3a://pandas-test/tips.csv', nrows=10) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv( tm.get_data_path('tips.csv')).iloc[:10], df) def test_parse_public_s3_bucket_nrows(self, s3_resource): for ext, comp in [('', None), ('.gz', 'gzip'), ('.bz2', 'bz2')]: df = read_csv('s3://pandas-test/tips.csv' + ext, nrows=10, compression=comp) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv( tm.get_data_path('tips.csv')).iloc[:10], df) def test_parse_public_s3_bucket_chunked(self, s3_resource): # Read with a chunksize chunksize = 5 local_tips = read_csv(tm.get_data_path('tips.csv')) for ext, comp in [('', None), ('.gz', 'gzip'), ('.bz2', 'bz2')]: df_reader = read_csv('s3://pandas-test/tips.csv' + ext, chunksize=chunksize, compression=comp) assert df_reader.chunksize == chunksize for i_chunk in [0, 1, 2]: # Read a couple of chunks and make sure we see them # properly. df = df_reader.get_chunk() assert isinstance(df, DataFrame) assert not df.empty true_df = local_tips.iloc[ chunksize * i_chunk: chunksize * (i_chunk + 1)] tm.assert_frame_equal(true_df, df) def test_parse_public_s3_bucket_chunked_python(self, s3_resource): # Read with a chunksize using the Python parser chunksize = 5 local_tips = read_csv(tm.get_data_path('tips.csv')) for ext, comp in [('', None), ('.gz', 'gzip'), ('.bz2', 'bz2')]: df_reader = read_csv('s3://pandas-test/tips.csv' + ext, chunksize=chunksize, compression=comp, engine='python') assert df_reader.chunksize == chunksize for i_chunk in [0, 1, 2]: # Read a couple of chunks and make sure we see them properly. df = df_reader.get_chunk() assert isinstance(df, DataFrame) assert not df.empty true_df = local_tips.iloc[ chunksize * i_chunk: chunksize * (i_chunk + 1)] tm.assert_frame_equal(true_df, df) def test_parse_public_s3_bucket_python(self, s3_resource): for ext, comp in [('', None), ('.gz', 'gzip'), ('.bz2', 'bz2')]: df = read_csv('s3://pandas-test/tips.csv' + ext, engine='python', compression=comp) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv( tm.get_data_path('tips.csv')), df) def test_infer_s3_compression(self, s3_resource): for ext in ['', '.gz', '.bz2']: df = read_csv('s3://pandas-test/tips.csv' + ext, engine='python', compression='infer') assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv( tm.get_data_path('tips.csv')), df) def test_parse_public_s3_bucket_nrows_python(self, s3_resource): for ext, comp in [('', None), ('.gz', 'gzip'), ('.bz2', 'bz2')]: df = read_csv('s3://pandas-test/tips.csv' + ext, engine='python', nrows=10, compression=comp) assert isinstance(df, DataFrame) assert not df.empty tm.assert_frame_equal(read_csv( tm.get_data_path('tips.csv')).iloc[:10], df) def test_s3_fails(self, s3_resource): with pytest.raises(IOError): read_csv('s3://nyqpug/asdf.csv') # Receive a permission error when trying to read a private bucket. # It's irrelevant here that this isn't actually a table. with pytest.raises(IOError): read_csv('s3://cant_get_it/') def test_read_csv_handles_boto_s3_object(self, s3_resource, tips_file): # see gh-16135 s3_object = s3_resource.meta.client.get_object( Bucket='pandas-test', Key='tips.csv') result = read_csv(BytesIO(s3_object["Body"].read()), encoding='utf8') assert isinstance(result, DataFrame) assert not result.empty expected = read_csv(tips_file) tm.assert_frame_equal(result, expected)
bsd-3-clause
yunfeilu/scikit-learn
sklearn/tests/test_kernel_approximation.py
244
7588
import numpy as np from scipy.sparse import csr_matrix from sklearn.utils.testing import assert_array_equal, assert_equal, assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal, assert_raises from sklearn.utils.testing import assert_less_equal from sklearn.metrics.pairwise import kernel_metrics from sklearn.kernel_approximation import RBFSampler from sklearn.kernel_approximation import AdditiveChi2Sampler from sklearn.kernel_approximation import SkewedChi2Sampler from sklearn.kernel_approximation import Nystroem from sklearn.metrics.pairwise import polynomial_kernel, rbf_kernel # generate data rng = np.random.RandomState(0) X = rng.random_sample(size=(300, 50)) Y = rng.random_sample(size=(300, 50)) X /= X.sum(axis=1)[:, np.newaxis] Y /= Y.sum(axis=1)[:, np.newaxis] def test_additive_chi2_sampler(): # test that AdditiveChi2Sampler approximates kernel on random data # compute exact kernel # appreviations for easier formular X_ = X[:, np.newaxis, :] Y_ = Y[np.newaxis, :, :] large_kernel = 2 * X_ * Y_ / (X_ + Y_) # reduce to n_samples_x x n_samples_y by summing over features kernel = (large_kernel.sum(axis=2)) # approximate kernel mapping transform = AdditiveChi2Sampler(sample_steps=3) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) X_sp_trans = transform.fit_transform(csr_matrix(X)) Y_sp_trans = transform.transform(csr_matrix(Y)) assert_array_equal(X_trans, X_sp_trans.A) assert_array_equal(Y_trans, Y_sp_trans.A) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) # test error on invalid sample_steps transform = AdditiveChi2Sampler(sample_steps=4) assert_raises(ValueError, transform.fit, X) # test that the sample interval is set correctly sample_steps_available = [1, 2, 3] for sample_steps in sample_steps_available: # test that the sample_interval is initialized correctly transform = AdditiveChi2Sampler(sample_steps=sample_steps) assert_equal(transform.sample_interval, None) # test that the sample_interval is changed in the fit method transform.fit(X) assert_not_equal(transform.sample_interval_, None) # test that the sample_interval is set correctly sample_interval = 0.3 transform = AdditiveChi2Sampler(sample_steps=4, sample_interval=sample_interval) assert_equal(transform.sample_interval, sample_interval) transform.fit(X) assert_equal(transform.sample_interval_, sample_interval) def test_skewed_chi2_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel c = 0.03 # appreviations for easier formular X_c = (X + c)[:, np.newaxis, :] Y_c = (Y + c)[np.newaxis, :, :] # we do it in log-space in the hope that it's more stable # this array is n_samples_x x n_samples_y big x n_features log_kernel = ((np.log(X_c) / 2.) + (np.log(Y_c) / 2.) + np.log(2.) - np.log(X_c + Y_c)) # reduce to n_samples_x x n_samples_y by summing over features in log-space kernel = np.exp(log_kernel.sum(axis=2)) # approximate kernel mapping transform = SkewedChi2Sampler(skewedness=c, n_components=1000, random_state=42) X_trans = transform.fit_transform(X) Y_trans = transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) assert_array_almost_equal(kernel, kernel_approx, 1) # test error is raised on negative input Y_neg = Y.copy() Y_neg[0, 0] = -1 assert_raises(ValueError, transform.transform, Y_neg) def test_rbf_sampler(): # test that RBFSampler approximates kernel on random data # compute exact kernel gamma = 10. kernel = rbf_kernel(X, Y, gamma=gamma) # approximate kernel mapping rbf_transform = RBFSampler(gamma=gamma, n_components=1000, random_state=42) X_trans = rbf_transform.fit_transform(X) Y_trans = rbf_transform.transform(Y) kernel_approx = np.dot(X_trans, Y_trans.T) error = kernel - kernel_approx assert_less_equal(np.abs(np.mean(error)), 0.01) # close to unbiased np.abs(error, out=error) assert_less_equal(np.max(error), 0.1) # nothing too far off assert_less_equal(np.mean(error), 0.05) # mean is fairly close def test_input_validation(): # Regression test: kernel approx. transformers should work on lists # No assertions; the old versions would simply crash X = [[1, 2], [3, 4], [5, 6]] AdditiveChi2Sampler().fit(X).transform(X) SkewedChi2Sampler().fit(X).transform(X) RBFSampler().fit(X).transform(X) X = csr_matrix(X) RBFSampler().fit(X).transform(X) def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel linear_kernel = lambda X, Y: np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y))) def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)
bsd-3-clause
richardtran415/pymatgen
pymatgen/io/abinit/pseudos.py
5
65306
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module provides objects describing the basic parameters of the pseudopotentials used in Abinit, and a parser to instantiate pseudopotential objects.. """ import abc import collections import logging import os import sys from collections import OrderedDict, defaultdict, namedtuple import numpy as np from monty.collections import AttrDict, Namespace # from monty.dev import deprecated from monty.functools import lazy_property from monty.itertools import iterator_from_slice from monty.json import MontyDecoder, MSONable from monty.os.path import find_exts from monty.string import is_string, list_strings from tabulate import tabulate from pymatgen.core.periodic_table import Element from pymatgen.core.xcfunc import XcFunc from pymatgen.util.plotting import add_fig_kwargs, get_ax_fig_plt from pymatgen.util.serialization import pmg_serialize logger = logging.getLogger(__name__) __all__ = [ "Pseudo", "PseudoTable", ] __author__ = "Matteo Giantomassi" __version__ = "0.1" __maintainer__ = "Matteo Giantomassi" # Tools and helper functions. def straceback(): """Returns a string with the traceback.""" import traceback return "\n".join((traceback.format_exc(), str(sys.exc_info()[0]))) def _read_nlines(filename, nlines): """ Read at most nlines lines from file filename. If nlines is < 0, the entire file is read. """ if nlines < 0: with open(filename, "r") as fh: return fh.readlines() lines = [] with open(filename, "r") as fh: for lineno, line in enumerate(fh): if lineno == nlines: break lines.append(line) return lines _l2str = { 0: "s", 1: "p", 2: "d", 3: "f", 4: "g", 5: "h", 6: "i", } _str2l = {v: k for k, v in _l2str.items()} def l2str(l): """Convert the angular momentum l (int) to string.""" try: return _l2str[l] except KeyError: return "Unknown angular momentum, received l = %s" % l def str2l(s): """Convert a string to the angular momentum l (int)""" return _str2l[s] class Pseudo(MSONable, metaclass=abc.ABCMeta): """ Abstract base class defining the methods that must be implemented by the concrete pseudopotential sub-classes. """ @classmethod def as_pseudo(cls, obj): """ Convert obj into a pseudo. Accepts: * Pseudo object. * string defining a valid path. """ return obj if isinstance(obj, cls) else cls.from_file(obj) @staticmethod def from_file(filename): """ Build an instance of a concrete Pseudo subclass from filename. Note: the parser knows the concrete class that should be instantiated Client code should rely on the abstract interface provided by Pseudo. """ return PseudoParser().parse(filename) def __eq__(self, other): if other is None: return False return ( self.md5 == other.md5 and self.__class__ == other.__class__ and self.Z == other.Z and self.Z_val == other.Z_val and self.l_max == other.l_max ) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): try: return "<%s at %s>" % ( self.__class__.__name__, os.path.relpath(self.filepath), ) except Exception: # relpath can fail if the code is executed in demon mode. return "<%s at %s>" % (self.__class__.__name__, self.filepath) def __str__(self): return self.to_string() def to_string(self, verbose=0): """String representation.""" # pylint: disable=E1101 lines = [] app = lines.append app("<%s: %s>" % (self.__class__.__name__, self.basename)) app(" summary: " + self.summary.strip()) app(" number of valence electrons: %s" % self.Z_val) app(" maximum angular momentum: %s" % l2str(self.l_max)) app(" angular momentum for local part: %s" % l2str(self.l_local)) app(" XC correlation: %s" % self.xc) app(" supports spin-orbit: %s" % self.supports_soc) if self.isnc: app(" radius for non-linear core correction: %s" % self.nlcc_radius) if self.has_hints: for accuracy in ("low", "normal", "high"): hint = self.hint_for_accuracy(accuracy=accuracy) app(" hint for %s accuracy: %s" % (accuracy, str(hint))) return "\n".join(lines) @property @abc.abstractmethod def summary(self): """String summarizing the most important properties.""" @property def filepath(self): """Absolute path to pseudopotential file.""" # pylint: disable=E1101 return os.path.abspath(self.path) @property def basename(self): """File basename.""" # pylint: disable=E1101 return os.path.basename(self.filepath) @property @abc.abstractmethod def Z(self): """The atomic number of the atom.""" @property @abc.abstractmethod def Z_val(self): """Valence charge.""" @property def type(self): """Type of pseudo.""" return self.__class__.__name__ @property def element(self): """Pymatgen :class:`Element`.""" try: return Element.from_Z(self.Z) except (KeyError, IndexError): return Element.from_Z(int(self.Z)) @property def symbol(self): """Element symbol.""" return self.element.symbol @property @abc.abstractmethod def l_max(self): """Maximum angular momentum.""" @property @abc.abstractmethod def l_local(self): """Angular momentum used for the local part.""" @property def isnc(self): """True if norm-conserving pseudopotential.""" return isinstance(self, NcPseudo) @property def ispaw(self): """True if PAW pseudopotential.""" return isinstance(self, PawPseudo) @lazy_property def md5(self): """MD5 hash value.""" # if self.has_dojo_report and "md5" in self.dojo_report: return self.dojo_report["md5"] return self.compute_md5() def compute_md5(self): """Compute and erturn MD5 hash value.""" # pylint: disable=E1101 import hashlib with open(self.path, "rt") as fh: text = fh.read() m = hashlib.md5(text.encode("utf-8")) return m.hexdigest() @property @abc.abstractmethod def supports_soc(self): """ True if the pseudo can be used in a calculation with spin-orbit coupling. Base classes should provide a concrete implementation that computes this value. """ @pmg_serialize def as_dict(self, **kwargs): """Return dictionary for MSONable protocol.""" # pylint: disable=E1101 return dict( basename=self.basename, type=self.type, symbol=self.symbol, Z=self.Z, Z_val=self.Z_val, l_max=self.l_max, md5=self.md5, filepath=self.filepath, # xc=self.xc.as_dict(), ) @classmethod def from_dict(cls, d): """Build instance from dictionary (MSONable protocol).""" new = cls.from_file(d["filepath"]) # Consistency test based on md5 if "md5" in d and d["md5"] != new.md5: raise ValueError( "The md5 found in file does not agree with the one in dict\n" "Received %s\nComputed %s" % (d["md5"], new.md5) ) return new def as_tmpfile(self, tmpdir=None): """ Copy the pseudopotential to a temporary a file and returns a new pseudopotential object. Useful for unit tests in which we have to change the content of the file. Args: tmpdir: If None, a new temporary directory is created and files are copied here else tmpdir is used. """ # pylint: disable=E1101 import shutil import tempfile tmpdir = tempfile.mkdtemp() if tmpdir is None else tmpdir new_path = os.path.join(tmpdir, self.basename) shutil.copy(self.filepath, new_path) # Copy dojoreport file if present. root, ext = os.path.splitext(self.filepath) djrepo = root + ".djrepo" if os.path.exists(djrepo): shutil.copy(djrepo, os.path.join(tmpdir, os.path.basename(djrepo))) # Build new object and copy dojo_report if present. new = self.__class__.from_file(new_path) if self.has_dojo_report: new.dojo_report = self.dojo_report.deepcopy() return new @property def has_dojo_report(self): """True if the pseudo has an associated `DOJO_REPORT` section.""" # pylint: disable=E1101 return hasattr(self, "dojo_report") and bool(self.dojo_report) @property def djrepo_path(self): """The path of the djrepo file. None if file does not exist.""" # pylint: disable=E1101 root, ext = os.path.splitext(self.filepath) path = root + ".djrepo" return path # if os.path.exists(path): return path # return None def hint_for_accuracy(self, accuracy="normal"): """ Returns a :class:`Hint` object with the suggested value of ecut [Ha] and pawecutdg [Ha] for the given accuracy. ecut and pawecutdg are set to zero if no hint is available. Args: accuracy: ["low", "normal", "high"] """ # pylint: disable=E1101 if not self.has_dojo_report: return Hint(ecut=0.0, pawecutdg=0.0) # Get hints from dojoreport. Try first in hints then in ppgen_hints. if "hints" in self.dojo_report: return Hint.from_dict(self.dojo_report["hints"][accuracy]) if "ppgen_hints" in self.dojo_report: return Hint.from_dict(self.dojo_report["ppgen_hints"][accuracy]) return Hint(ecut=0.0, pawecutdg=0.0) @property def has_hints(self): """ True if self provides hints on the cutoff energy. """ for acc in ["low", "normal", "high"]: try: if self.hint_for_accuracy(acc) is None: return False except KeyError: return False return True def open_pspsfile(self, ecut=20, pawecutdg=None): """ Calls Abinit to compute the internal tables for the application of the pseudopotential part. Returns :class:`PspsFile` object providing methods to plot and analyze the data or None if file is not found or it's not readable. Args: ecut: Cutoff energy in Hartree. pawecutdg: Cutoff energy for the PAW double grid. """ from abipy.abio.factories import gs_input from abipy.core.structure import Structure from abipy.electrons.psps import PspsFile from abipy.flowtk import AbinitTask # Build fake structure. lattice = 10 * np.eye(3) structure = Structure(lattice, [self.element], coords=[[0, 0, 0]]) if self.ispaw and pawecutdg is None: pawecutdg = ecut * 4 inp = gs_input( structure, pseudos=[self], ecut=ecut, pawecutdg=pawecutdg, spin_mode="unpolarized", kppa=1, ) # Add prtpsps = -1 to make Abinit print the PSPS.nc file and stop. inp["prtpsps"] = -1 # Build temporary task and run it (ignore retcode because we don't exit cleanly) task = AbinitTask.temp_shell_task(inp) task.start_and_wait() filepath = task.outdir.has_abiext("_PSPS.nc") if not filepath: logger.critical("Cannot find PSPS.nc file in %s" % task.outdir) return None # Open the PSPS.nc file. try: return PspsFile(filepath) except Exception as exc: logger.critical("Exception while reading PSPS file at %s:\n%s" % (filepath, str(exc))) return None class NcPseudo(metaclass=abc.ABCMeta): """ Abstract class defining the methods that must be implemented by the concrete classes representing norm-conserving pseudopotentials. """ @property @abc.abstractmethod def nlcc_radius(self): """ Radius at which the core charge vanish (i.e. cut-off in a.u.). Returns 0.0 if nlcc is not used. """ @property def has_nlcc(self): """True if the pseudo is generated with non-linear core correction.""" return self.nlcc_radius > 0.0 @property def rcore(self): """Radius of the pseudization sphere in a.u.""" try: return self._core except AttributeError: return None class PawPseudo(metaclass=abc.ABCMeta): """ Abstract class that defines the methods that must be implemented by the concrete classes representing PAW pseudopotentials. """ # def nlcc_radius(self): # """ # Radius at which the core charge vanish (i.e. cut-off in a.u.). # Returns 0.0 if nlcc is not used. # """ # return 0.0 # # @property # def has_nlcc(self): # """True if the pseudo is generated with non-linear core correction.""" # return True @property @abc.abstractmethod def paw_radius(self): """Radius of the PAW sphere in a.u.""" @property def rcore(self): """Alias of paw_radius.""" return self.paw_radius class AbinitPseudo(Pseudo): """ An AbinitPseudo is a pseudopotential whose file contains an abinit header. """ def __init__(self, path, header): """ Args: path: Filename. header: :class:`AbinitHeader` instance. """ self.path = path self.header = header self._summary = header.summary # Build xc from header. self.xc = XcFunc.from_abinit_ixc(header["pspxc"]) for attr_name, desc in header.items(): value = header.get(attr_name, None) # Hide these attributes since one should always use the public interface. setattr(self, "_" + attr_name, value) @property def summary(self): """Summary line reported in the ABINIT header.""" return self._summary.strip() @property def Z(self): # pylint: disable=E1101 return self._zatom @property def Z_val(self): # pylint: disable=E1101 return self._zion @property def l_max(self): # pylint: disable=E1101 return self._lmax @property def l_local(self): # pylint: disable=E1101 return self._lloc @property def supports_soc(self): # Treate ONCVPSP pseudos # pylint: disable=E1101 if self._pspcod == 8: switch = self.header["extension_switch"] if switch in (0, 1): return False if switch in (2, 3): return True raise ValueError("Don't know how to handle extension_switch: %s" % switch) # TODO Treat HGH HGHK pseudos # As far as I know, other Abinit pseudos do not support SOC. return False class NcAbinitPseudo(NcPseudo, AbinitPseudo): """Norm-conserving pseudopotential in the Abinit format.""" @property def summary(self): return self._summary.strip() @property def Z(self): # pylint: disable=E1101 return self._zatom @property def Z_val(self): """Number of valence electrons.""" # pylint: disable=E1101 return self._zion @property def l_max(self): # pylint: disable=E1101 return self._lmax @property def l_local(self): # pylint: disable=E1101 return self._lloc @property def nlcc_radius(self): # pylint: disable=E1101 return self._rchrg class PawAbinitPseudo(PawPseudo, AbinitPseudo): """Paw pseudopotential in the Abinit format.""" @property def paw_radius(self): # pylint: disable=E1101 return self._r_cut # def orbitals(self): @property def supports_soc(self): return True class Hint: """ Suggested value for the cutoff energy [Hartree units] and the cutoff energy for the dense grid (only for PAW pseudos). """ def __init__(self, ecut, pawecutdg=None): self.ecut = ecut self.pawecutdg = ecut if pawecutdg is None else pawecutdg def __str__(self): if self.pawecutdg is not None: return "ecut: %s, pawecutdg: %s" % (self.ecut, self.pawecutdg) return "ecut: %s" % (self.ecut) @pmg_serialize def as_dict(self): """Return dictionary for MSONable protocol.""" return dict(ecut=self.ecut, pawecutdg=self.pawecutdg) @classmethod def from_dict(cls, d): """Build instance from dictionary (MSONable protocol).""" return cls(**{k: v for k, v in d.items() if not k.startswith("@")}) def _dict_from_lines(lines, key_nums, sep=None): """ Helper function to parse formatted text structured like: value1 value2 ... sep key1, key2 ... key_nums is a list giving the number of keys for each line. 0 if line should be skipped. sep is a string denoting the character that separates the keys from the value (None if no separator is present). Returns: dict{key1 : value1, key2 : value2, ...} Raises: ValueError if parsing fails. """ if is_string(lines): lines = [lines] if not isinstance(key_nums, collections.abc.Iterable): key_nums = list(key_nums) if len(lines) != len(key_nums): err_msg = "lines = %s\n key_num = %s" % (str(lines), str(key_nums)) raise ValueError(err_msg) kwargs = Namespace() for (i, nk) in enumerate(key_nums): if nk == 0: continue line = lines[i] tokens = [t.strip() for t in line.split()] values, keys = tokens[:nk], "".join(tokens[nk:]) # Sanitize keys: In some case we might get strings in the form: foo[,bar] keys.replace("[", "").replace("]", "") keys = keys.split(",") if sep is not None: check = keys[0][0] if check != sep: raise ValueError("Expecting separator %s, got %s" % (sep, check)) keys[0] = keys[0][1:] if len(values) != len(keys): msg = "line: %s\n len(keys) != len(value)\nkeys: %s\n values: %s" % ( line, keys, values, ) raise ValueError(msg) kwargs.update(zip(keys, values)) return kwargs class AbinitHeader(dict): """Dictionary whose keys can be also accessed as attributes.""" def __getattr__(self, name): try: # Default behaviour return super().__getattribute__(name) except AttributeError: try: # Try in the dictionary. return self[name] except KeyError as exc: raise AttributeError(str(exc)) def _int_from_str(string): """ Convert string into integer Raise: TypeError if string is not a valid integer """ float_num = float(string) int_num = int(float_num) if float_num == int_num: return int_num # Needed to handle pseudos with fractional charge int_num = np.rint(float_num) logger.warning("Converting float %s to int %s" % (float_num, int_num)) return int_num class NcAbinitHeader(AbinitHeader): """The abinit header found in the NC pseudopotential files.""" _attr_desc = namedtuple("_attr_desc", "default astype") _VARS = { # Mandatory "zatom": _attr_desc(None, _int_from_str), "zion": _attr_desc(None, float), "pspdat": _attr_desc(None, float), "pspcod": _attr_desc(None, int), "pspxc": _attr_desc(None, int), "lmax": _attr_desc(None, int), "lloc": _attr_desc(None, int), "r2well": _attr_desc(None, float), "mmax": _attr_desc(None, float), # Optional variables for non linear-core correction. HGH does not have it. "rchrg": _attr_desc(0.0, float), # radius at which the core charge vanish (i.e. cut-off in a.u.) "fchrg": _attr_desc(0.0, float), "qchrg": _attr_desc(0.0, float), } del _attr_desc def __init__(self, summary, **kwargs): super().__init__() # pseudos generated by APE use llocal instead of lloc. if "llocal" in kwargs: kwargs["lloc"] = kwargs.pop("llocal") self.summary = summary.strip() for key, desc in NcAbinitHeader._VARS.items(): default, astype = desc.default, desc.astype value = kwargs.pop(key, None) if value is None: value = default if default is None: raise RuntimeError("Attribute %s must be specified" % key) else: try: value = astype(value) except Exception: raise RuntimeError("Conversion Error for key %s, value %s" % (key, value)) self[key] = value # Add remaining arguments, e.g. extension_switch if kwargs: self.update(kwargs) @staticmethod def fhi_header(filename, ppdesc): """ Parse the FHI abinit header. Example: Troullier-Martins psp for element Sc Thu Oct 27 17:33:22 EDT 1994 21.00000 3.00000 940714 zatom, zion, pspdat 1 1 2 0 2001 .00000 pspcod,pspxc,lmax,lloc,mmax,r2well 1.80626423934776 .22824404341771 1.17378968127746 rchrg,fchrg,qchrg """ lines = _read_nlines(filename, 4) try: header = _dict_from_lines(lines[:4], [0, 3, 6, 3]) except ValueError: # The last record with rchrg ... seems to be optional. header = _dict_from_lines(lines[:3], [0, 3, 6]) summary = lines[0] return NcAbinitHeader(summary, **header) @staticmethod def hgh_header(filename, ppdesc): """ Parse the HGH abinit header. Example: Hartwigsen-Goedecker-Hutter psp for Ne, from PRB58, 3641 (1998) 10 8 010605 zatom,zion,pspdat 3 1 1 0 2001 0 pspcod,pspxc,lmax,lloc,mmax,r2well """ lines = _read_nlines(filename, 3) header = _dict_from_lines(lines[:3], [0, 3, 6]) summary = lines[0] return NcAbinitHeader(summary, **header) @staticmethod def gth_header(filename, ppdesc): """ Parse the GTH abinit header. Example: Goedecker-Teter-Hutter Wed May 8 14:27:44 EDT 1996 1 1 960508 zatom,zion,pspdat 2 1 0 0 2001 0. pspcod,pspxc,lmax,lloc,mmax,r2well 0.2000000 -4.0663326 0.6778322 0 0 rloc, c1, c2, c3, c4 0 0 0 rs, h1s, h2s 0 0 rp, h1p 1.36 .2 0.6 rcutoff, rloc """ lines = _read_nlines(filename, 7) header = _dict_from_lines(lines[:3], [0, 3, 6]) summary = lines[0] return NcAbinitHeader(summary, **header) @staticmethod def oncvpsp_header(filename, ppdesc): """ Parse the ONCVPSP abinit header. Example: Li ONCVPSP r_core= 2.01 3.02 3.0000 3.0000 140504 zatom,zion,pspd 8 2 1 4 600 0 pspcod,pspxc,lmax,lloc,mmax,r2well 5.99000000 0.00000000 0.00000000 rchrg fchrg qchrg 2 2 0 0 0 nproj 0 extension_switch 0 -2.5000025868368D+00 -1.2006906995331D+00 1 0.0000000000000D+00 0.0000000000000D+00 0.0000000000000D+00 2 1.0000000000000D-02 4.4140499497377D-02 1.9909081701712D-02 """ lines = _read_nlines(filename, 6) header = _dict_from_lines(lines[:3], [0, 3, 6]) summary = lines[0] # Replace pspd with pspdata header.update({"pspdat": header["pspd"]}) header.pop("pspd") # Read extension switch header["extension_switch"] = int(lines[5].split()[0]) return NcAbinitHeader(summary, **header) @staticmethod def tm_header(filename, ppdesc): """ Parse the TM abinit header. Example: Troullier-Martins psp for element Fm Thu Oct 27 17:28:39 EDT 1994 100.00000 14.00000 940714 zatom, zion, pspdat 1 1 3 0 2001 .00000 pspcod,pspxc,lmax,lloc,mmax,r2well 0 4.085 6.246 0 2.8786493 l,e99.0,e99.9,nproj,rcpsp .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm 1 3.116 4.632 1 3.4291849 l,e99.0,e99.9,nproj,rcpsp .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm 2 4.557 6.308 1 2.1865358 l,e99.0,e99.9,nproj,rcpsp .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm 3 23.251 29.387 1 2.4776730 l,e99.0,e99.9,nproj,rcpsp .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm 3.62474762267880 .07409391739104 3.07937699839200 rchrg,fchrg,qchrg """ lines = _read_nlines(filename, -1) header = [] for lineno, line in enumerate(lines): header.append(line) if lineno == 2: # Read lmax. tokens = line.split() pspcod, pspxc, lmax, lloc = map(int, tokens[:4]) mmax, r2well = map(float, tokens[4:6]) # if tokens[-1].strip() != "pspcod,pspxc,lmax,lloc,mmax,r2well": # raise RuntimeError("%s: Invalid line\n %s" % (filename, line)) lines = lines[3:] break # TODO # Parse the section with the projectors. # 0 4.085 6.246 0 2.8786493 l,e99.0,e99.9,nproj,rcpsp # .00000000 .0000000000 .0000000000 .00000000 rms,ekb1,ekb2,epsatm projectors = OrderedDict() for idx in range(2 * (lmax + 1)): line = lines[idx] if idx % 2 == 0: proj_info = [ line, ] if idx % 2 == 1: proj_info.append(line) d = _dict_from_lines(proj_info, [5, 4]) projectors[int(d["l"])] = d # Add the last line with info on nlcc. header.append(lines[idx + 1]) summary = header[0] header = _dict_from_lines(header, [0, 3, 6, 3]) return NcAbinitHeader(summary, **header) class PawAbinitHeader(AbinitHeader): """The abinit header found in the PAW pseudopotential files.""" _attr_desc = namedtuple("_attr_desc", "default astype") _VARS = { "zatom": _attr_desc(None, _int_from_str), "zion": _attr_desc(None, float), "pspdat": _attr_desc(None, float), "pspcod": _attr_desc(None, int), "pspxc": _attr_desc(None, int), "lmax": _attr_desc(None, int), "lloc": _attr_desc(None, int), "mmax": _attr_desc(None, int), "r2well": _attr_desc(None, float), "pspfmt": _attr_desc(None, str), "creatorID": _attr_desc(None, int), "basis_size": _attr_desc(None, int), "lmn_size": _attr_desc(None, int), "orbitals": _attr_desc(None, list), "number_of_meshes": _attr_desc(None, int), "r_cut": _attr_desc(None, float), # r_cut(PAW) in the header "shape_type": _attr_desc(None, int), "rshape": _attr_desc(None, float), } del _attr_desc def __init__(self, summary, **kwargs): super().__init__() self.summary = summary.strip() for key, desc in self._VARS.items(): default, astype = desc.default, desc.astype value = kwargs.pop(key, None) if value is None: value = default if default is None: raise RuntimeError("Attribute %s must be specified" % key) else: try: value = astype(value) except Exception: raise RuntimeError("Conversion Error for key %s, with value %s" % (key, value)) self[key] = value if kwargs: raise RuntimeError("kwargs should be empty but got %s" % str(kwargs)) @staticmethod def paw_header(filename, ppdesc): """ Parse the PAW abinit header. Examples: Paw atomic data for element Ni - Generated by AtomPAW (N. Holzwarth) + AtomPAW2Abinit v3.0.5 28.000 18.000 20061204 : zatom,zion,pspdat 7 7 2 0 350 0. : pspcod,pspxc,lmax,lloc,mmax,r2well paw3 1305 : pspfmt,creatorID 5 13 : basis_size,lmn_size 0 0 1 1 2 : orbitals 3 : number_of_meshes 1 3 350 1.1803778368E-05 3.5000000000E-02 : mesh 1, type,size,rad_step[,log_step] 2 1 921 2.500000000000E-03 : mesh 2, type,size,rad_step[,log_step] 3 3 391 1.1803778368E-05 3.5000000000E-02 : mesh 3, type,size,rad_step[,log_step] 2.3000000000 : r_cut(SPH) 2 0. Another format: C (US d-loc) - PAW data extracted from US-psp (D.Vanderbilt) - generated by USpp2Abinit v2.3.0 6.000 4.000 20090106 : zatom,zion,pspdat 7 11 1 0 560 0. : pspcod,pspxc,lmax,lloc,mmax,r2well paw4 2230 : pspfmt,creatorID 4 8 : basis_size,lmn_size 0 0 1 1 : orbitals 5 : number_of_meshes 1 2 560 1.5198032759E-04 1.6666666667E-02 : mesh 1, type,size,rad_step[,log_step] 2 2 556 1.5198032759E-04 1.6666666667E-02 : mesh 2, type,size,rad_step[,log_step] 3 2 576 1.5198032759E-04 1.6666666667E-02 : mesh 3, type,size,rad_step[,log_step] 4 2 666 1.5198032759E-04 1.6666666667E-02 : mesh 4, type,size,rad_step[,log_step] 5 2 673 1.5198032759E-04 1.6666666667E-02 : mesh 5, type,size,rad_step[,log_step] 1.5550009124 : r_cut(PAW) 3 0. : shape_type,rshape Yet nnother one: Paw atomic data for element Si - Generated by atompaw v3.0.1.3 & AtomPAW2Abinit v3.3.1 14.000 4.000 20120814 : zatom,zion,pspdat 7 11 1 0 663 0. : pspcod,pspxc,lmax,lloc,mmax,r2well paw5 1331 : pspfmt,creatorID 4 8 : basis_size,lmn_size 0 0 1 1 : orbitals 5 : number_of_meshes 1 2 663 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 1, type,size,rad_step[,log_step] 2 2 658 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 2, type,size,rad_step[,log_step] 3 2 740 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 3, type,size,rad_step[,log_step] 4 2 819 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 4, type,size,rad_step[,log_step] 5 2 870 8.2129718540404674E-04 1.1498160595656655E-02 : mesh 5, type,size,rad_step[,log_step] 1.5669671236 : r_cut(PAW) 2 0. : shape_type,rshape """ supported_formats = ["paw3", "paw4", "paw5"] if ppdesc.format not in supported_formats: raise NotImplementedError("format %s not in %s" % (ppdesc.format, supported_formats)) lines = _read_nlines(filename, -1) summary = lines[0] header = _dict_from_lines(lines[:5], [0, 3, 6, 2, 2], sep=":") lines = lines[5:] # TODO # Parse orbitals and number of meshes. header["orbitals"] = [int(t) for t in lines[0].split(":")[0].split()] header["number_of_meshes"] = num_meshes = int(lines[1].split(":")[0]) # print filename, header # Skip meshes = lines = lines[2 + num_meshes :] # for midx in range(num_meshes): # l = midx + 1 # print lines[0] header["r_cut"] = float(lines[0].split(":")[0]) # print lines[1] header.update(_dict_from_lines(lines[1], [2], sep=":")) # print("PAW header\n", header) return PawAbinitHeader(summary, **header) class PseudoParserError(Exception): """Base Error class for the exceptions raised by :class:`PseudoParser`""" class PseudoParser: """ Responsible for parsing pseudopotential files and returning pseudopotential objects. Usage:: pseudo = PseudoParser().parse("filename") """ Error = PseudoParserError # Supported values of pspcod ppdesc = namedtuple("ppdesc", "pspcod name psp_type format") # TODO Recheck _PSPCODES = OrderedDict( { 1: ppdesc(1, "TM", "NC", None), 2: ppdesc(2, "GTH", "NC", None), 3: ppdesc(3, "HGH", "NC", None), 4: ppdesc(4, "Teter", "NC", None), # 5: ppdesc(5, "NC", , None), 6: ppdesc(6, "FHI", "NC", None), 7: ppdesc(6, "PAW_abinit_text", "PAW", None), 8: ppdesc(8, "ONCVPSP", "NC", None), 10: ppdesc(10, "HGHK", "NC", None), } ) del ppdesc # renumber functionals from oncvpsp todo confrim that 3 is 2 # _FUNCTIONALS = {1: {'n': 4, 'name': 'Wigner'}, # 2: {'n': 5, 'name': 'HL'}, # 3: {'n': 2, 'name': 'PWCA'}, # 4: {'n': 11, 'name': 'PBE'}} def __init__(self): # List of files that have been parsed succesfully. self._parsed_paths = [] # List of files that could not been parsed. self._wrong_paths = [] def scan_directory(self, dirname, exclude_exts=(), exclude_fnames=()): """ Analyze the files contained in directory dirname. Args: dirname: directory path exclude_exts: list of file extensions that should be skipped. exclude_fnames: list of file names that should be skipped. Returns: List of pseudopotential objects. """ for i, ext in enumerate(exclude_exts): if not ext.strip().startswith("."): exclude_exts[i] = "." + ext.strip() # Exclude files depending on the extension. paths = [] for fname in os.listdir(dirname): root, ext = os.path.splitext(fname) path = os.path.join(dirname, fname) if ext in exclude_exts or fname in exclude_fnames or fname.startswith(".") or not os.path.isfile(path): continue paths.append(path) pseudos = [] for path in paths: # Parse the file and generate the pseudo. try: pseudo = self.parse(path) except Exception: pseudo = None if pseudo is not None: pseudos.append(pseudo) self._parsed_paths.extend(path) else: self._wrong_paths.extend(path) return pseudos def read_ppdesc(self, filename): """ Read the pseudopotential descriptor from file filename. Returns: Pseudopotential descriptor. None if filename is not a valid pseudopotential file. Raises: `PseudoParserError` if fileformat is not supported. """ if filename.endswith(".xml"): raise self.Error("XML pseudo not supported yet") # Assume file with the abinit header. lines = _read_nlines(filename, 80) for lineno, line in enumerate(lines): if lineno == 2: try: tokens = line.split() pspcod, pspxc = map(int, tokens[:2]) except Exception: msg = "%s: Cannot parse pspcod, pspxc in line\n %s" % ( filename, line, ) logger.critical(msg) return None # if tokens[-1].strip().replace(" ","") not in ["pspcod,pspxc,lmax,lloc,mmax,r2well", # "pspcod,pspxc,lmax,llocal,mmax,r2well"]: # raise self.Error("%s: Invalid line\n %s" % (filename, line)) # return None if pspcod not in self._PSPCODES: raise self.Error("%s: Don't know how to handle pspcod %s\n" % (filename, pspcod)) ppdesc = self._PSPCODES[pspcod] if pspcod == 7: # PAW -> need to know the format pspfmt tokens = lines[lineno + 1].split() pspfmt, creatorID = tokens[:2] # if tokens[-1].strip() != "pspfmt,creatorID": # raise self.Error("%s: Invalid line\n %s" % (filename, line)) # return None ppdesc = ppdesc._replace(format=pspfmt) return ppdesc return None def parse(self, filename): """ Read and parse a pseudopotential file. Main entry point for client code. Returns: pseudopotential object or None if filename is not a valid pseudopotential file. """ path = os.path.abspath(filename) # Only PAW supports XML at present. if filename.endswith(".xml"): return PawXmlSetup(path) ppdesc = self.read_ppdesc(path) if ppdesc is None: logger.critical("Cannot find ppdesc in %s" % path) return None psp_type = ppdesc.psp_type parsers = { "FHI": NcAbinitHeader.fhi_header, "GTH": NcAbinitHeader.gth_header, "TM": NcAbinitHeader.tm_header, "Teter": NcAbinitHeader.tm_header, "HGH": NcAbinitHeader.hgh_header, "HGHK": NcAbinitHeader.hgh_header, "ONCVPSP": NcAbinitHeader.oncvpsp_header, "PAW_abinit_text": PawAbinitHeader.paw_header, } try: header = parsers[ppdesc.name](path, ppdesc) except Exception: raise self.Error(path + ":\n" + straceback()) if psp_type == "NC": pseudo = NcAbinitPseudo(path, header) elif psp_type == "PAW": pseudo = PawAbinitPseudo(path, header) else: raise NotImplementedError("psp_type not in [NC, PAW]") return pseudo # TODO use RadialFunction from pseudo_dojo. class RadialFunction(namedtuple("RadialFunction", "mesh values")): """ Radial Function class. """ pass class PawXmlSetup(Pseudo, PawPseudo): """ Setup class for PawXml. """ def __init__(self, filepath): """ :param filepath: """ # pylint: disable=E1101 self.path = os.path.abspath(filepath) # Get the XML root (this trick is used to that the object is pickleable). root = self.root # Get the version of the XML format self.paw_setup_version = root.get("version") # Info on the atom. atom_attrib = root.find("atom").attrib # self._symbol = atom_attrib["symbol"] self._zatom = int(float(atom_attrib["Z"])) self.core, self.valence = map(float, [atom_attrib["core"], atom_attrib["valence"]]) # Build xc from header. xc_info = root.find("xc_functional").attrib self.xc = XcFunc.from_type_name(xc_info["type"], xc_info["name"]) # Old XML files do not define this field! # In this case we set the PAW radius to None. # self._paw_radius = float(root.find("PAW_radius").attrib["rpaw"]) # self.ae_energy = {k: float(v) for k,v in root.find("ae_energy").attrib.items()} pawr_element = root.find("PAW_radius") self._paw_radius = None if pawr_element is not None: self._paw_radius = float(pawr_element.attrib["rpaw"]) # <valence_states> # <state n="2" l="0" f="2" rc="1.10" e="-0.6766" id="N-2s"/> # <state n="2" l="1" f="3" rc="1.10" e="-0.2660" id="N-2p"/> # <state l="0" rc="1.10" e=" 0.3234" id="N-s1"/> # <state l="1" rc="1.10" e=" 0.7340" id="N-p1"/> # <state l="2" rc="1.10" e=" 0.0000" id="N-d1"/> # </valence_states> # # The valence_states element contains several state elements. # For this setup, the first two lines describe bound eigenstates # with occupation numbers and principal quantum numbers. # Notice, that the three additional unbound states should have no f and n attributes. # In this way, we know that only the first two bound states (with f and n attributes) # should be used for constructing an initial guess for the wave functions. self.valence_states = OrderedDict() for node in root.find("valence_states"): attrib = AttrDict(node.attrib) assert attrib.id not in self.valence_states self.valence_states[attrib.id] = attrib # print(self.valence_states) # Parse the radial grids self.rad_grids = {} for node in root.findall("radial_grid"): grid_params = node.attrib gid = grid_params["id"] assert gid not in self.rad_grids self.rad_grids[gid] = self._eval_grid(grid_params) def __getstate__(self): """ Return state is pickled as the contents for the instance. In this case we just remove the XML root element process since Element object cannot be pickled. """ return {k: v for k, v in self.__dict__.items() if k not in ["_root"]} @lazy_property def root(self): """ Root tree of XML. """ from xml.etree import cElementTree as Et tree = Et.parse(self.filepath) return tree.getroot() @property def Z(self): return self._zatom @property def Z_val(self): """Number of valence electrons.""" return self.valence # FIXME @property def l_max(self): """Maximum angular momentum.""" return None @property def l_local(self): """Angular momentum used for the local part.""" return None @property def summary(self): """String summarizing the most important properties.""" return "" @property def paw_radius(self): return self._paw_radius @property def supports_soc(self): """ Here I assume that the ab-initio code can treat the SOC within the on-site approximation """ return True @staticmethod def _eval_grid(grid_params): """ This function receives a dictionary with the parameters defining the radial mesh and returns a `ndarray` with the mesh """ eq = grid_params.get("eq").replace(" ", "") istart, iend = int(grid_params.get("istart")), int(grid_params.get("iend")) indices = list(range(istart, iend + 1)) if eq == "r=a*exp(d*i)": a, d = float(grid_params["a"]), float(grid_params["d"]) mesh = [a * np.exp(d * i) for i in indices] elif eq == "r=a*i/(n-i)": a, n = float(grid_params["a"]), float(grid_params["n"]) mesh = [a * i / (n - i) for i in indices] elif eq == "r=a*(exp(d*i)-1)": a, d = float(grid_params["a"]), float(grid_params["d"]) mesh = [a * (np.exp(d * i) - 1.0) for i in indices] elif eq == "r=d*i": d = float(grid_params["d"]) mesh = [d * i for i in indices] elif eq == "r=(i/n+a)^5/a-a^4": a, n = float(grid_params["a"]), float(grid_params["n"]) mesh = [(i / n + a) ** 5 / a - a ** 4 for i in indices] else: raise ValueError("Unknown grid type: %s" % eq) return np.array(mesh) def _parse_radfunc(self, func_name): """Parse the first occurence of func_name in the XML file.""" # pylint: disable=E1101 node = self.root.find(func_name) grid = node.attrib["grid"] values = np.array([float(s) for s in node.text.split()]) return self.rad_grids[grid], values, node.attrib def _parse_all_radfuncs(self, func_name): """Parse all the nodes with tag func_name in the XML file.""" # pylint: disable=E1101 for node in self.root.findall(func_name): grid = node.attrib["grid"] values = np.array([float(s) for s in node.text.split()]) yield self.rad_grids[grid], values, node.attrib @lazy_property def ae_core_density(self): """The all-electron radial density.""" mesh, values, attrib = self._parse_radfunc("ae_core_density") return RadialFunction(mesh, values) @lazy_property def pseudo_core_density(self): """The pseudized radial density.""" mesh, values, attrib = self._parse_radfunc("pseudo_core_density") return RadialFunction(mesh, values) @lazy_property def ae_partial_waves(self): """Dictionary with the AE partial waves indexed by state.""" ae_partial_waves = OrderedDict() for mesh, values, attrib in self._parse_all_radfuncs("ae_partial_wave"): state = attrib["state"] # val_state = self.valence_states[state] ae_partial_waves[state] = RadialFunction(mesh, values) return ae_partial_waves @property def pseudo_partial_waves(self): """Dictionary with the pseudo partial waves indexed by state.""" pseudo_partial_waves = OrderedDict() for (mesh, values, attrib) in self._parse_all_radfuncs("pseudo_partial_wave"): state = attrib["state"] # val_state = self.valence_states[state] pseudo_partial_waves[state] = RadialFunction(mesh, values) return pseudo_partial_waves @lazy_property def projector_functions(self): """Dictionary with the PAW projectors indexed by state.""" projector_functions = OrderedDict() for (mesh, values, attrib) in self._parse_all_radfuncs("projector_function"): state = attrib["state"] # val_state = self.valence_states[state] projector_functions[state] = RadialFunction(mesh, values) return projector_functions def yield_figs(self, **kwargs): # pragma: no cover """ This function *generates* a predefined list of matplotlib figures with minimal input from the user. """ yield self.plot_densities(title="PAW densities", show=False) yield self.plot_waves(title="PAW waves", show=False) yield self.plot_projectors(title="PAW projectors", show=False) # yield self.plot_potentials(title="potentials", show=False) @add_fig_kwargs def plot_densities(self, ax=None, **kwargs): """ Plot the PAW densities. Args: ax: matplotlib :class:`Axes` or None if a new figure should be created. Returns: `matplotlib` figure """ ax, fig, plt = get_ax_fig_plt(ax) ax.grid(True) ax.set_xlabel("r [Bohr]") # ax.set_ylabel('density') for i, den_name in enumerate(["ae_core_density", "pseudo_core_density"]): rden = getattr(self, den_name) label = "$n_c$" if i == 1 else r"$\tilde{n}_c$" ax.plot(rden.mesh, rden.mesh * rden.values, label=label, lw=2) ax.legend(loc="best") return fig @add_fig_kwargs def plot_waves(self, ax=None, fontsize=12, **kwargs): """ Plot the AE and the pseudo partial waves. Args: ax: matplotlib :class:`Axes` or None if a new figure should be created. fontsize: fontsize for legends and titles Returns: `matplotlib` figure """ # pylint: disable=E1101 ax, fig, plt = get_ax_fig_plt(ax) ax.grid(True) ax.set_xlabel("r [Bohr]") ax.set_ylabel(r"$r\phi,\, r\tilde\phi\, [Bohr]^{-\frac{1}{2}}$") # ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--") # ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1)) for state, rfunc in self.pseudo_partial_waves.items(): ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, lw=2, label="PS-WAVE: " + state) for state, rfunc in self.ae_partial_waves.items(): ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, lw=2, label="AE-WAVE: " + state) ax.legend(loc="best", shadow=True, fontsize=fontsize) return fig @add_fig_kwargs def plot_projectors(self, ax=None, fontsize=12, **kwargs): """ Plot the PAW projectors. Args: ax: matplotlib :class:`Axes` or None if a new figure should be created. Returns: `matplotlib` figure """ # pylint: disable=E1101 ax, fig, plt = get_ax_fig_plt(ax) ax.grid(True) ax.set_xlabel("r [Bohr]") ax.set_ylabel(r"$r\tilde p\, [Bohr]^{-\frac{1}{2}}$") # ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--") # ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1)) for state, rfunc in self.projector_functions.items(): ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, label="TPROJ: " + state) ax.legend(loc="best", shadow=True, fontsize=fontsize) return fig # @add_fig_kwargs # def plot_potentials(self, **kwargs): # """ # ================ ============================================================== # kwargs Meaning # ================ ============================================================== # title Title of the plot (Default: None). # show True to show the figure (Default). # savefig 'abc.png' or 'abc.eps' to save the figure to a file. # ================ ============================================================== # Returns: # `matplotlib` figure # """ # title = kwargs.pop("title", "Potentials") # show = kwargs.pop("show", True) # savefig = kwargs.pop("savefig", None) # import matplotlib.pyplot as plt # fig = plt.figure() # ax = fig.add_subplot(1,1,1) # ax.grid(True) # ax.set_xlabel('r [Bohr]') # ax.set_ylabel('density') # ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--") # ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1)) # for state, rfunc in self.potentials.items(): # ax.plot(rfunc.mesh, rfunc.values, label="TPROJ: " + state) # ax.legend(loc="best") # if title is not None: fig.suptitle(title) # if show: plt.show() # if savefig: fig.savefig(savefig) # return fig class PseudoTable(collections.abc.Sequence, MSONable, metaclass=abc.ABCMeta): """ Define the pseudopotentials from the element table. Individidual elements are accessed by name, symbol or atomic number. For example, the following all retrieve iron: print elements[26] Fe print elements.Fe Fe print elements.symbol('Fe') Fe print elements.name('iron') Fe print elements.isotope('Fe') Fe """ @classmethod def as_table(cls, items): """ Return an instance of :class:`PseudoTable` from the iterable items. """ if isinstance(items, cls): return items return cls(items) @classmethod def from_dir(cls, top, exts=None, exclude_dirs="_*"): """ Find all pseudos in the directory tree starting from top. Args: top: Top of the directory tree exts: List of files extensions. if exts == "all_files" we try to open all files in top exclude_dirs: Wildcard used to exclude directories. return: :class:`PseudoTable` sorted by atomic number Z. """ pseudos = [] if exts == "all_files": for f in [os.path.join(top, fn) for fn in os.listdir(top)]: if os.path.isfile(f): try: p = Pseudo.from_file(f) if p: pseudos.append(p) else: logger.info("Skipping file %s" % f) except Exception: logger.info("Skipping file %s" % f) if not pseudos: logger.warning("No pseudopotentials parsed from folder %s" % top) return None logger.info("Creating PseudoTable with %i pseudopotentials" % len(pseudos)) else: if exts is None: exts = ("psp8",) for p in find_exts(top, exts, exclude_dirs=exclude_dirs): try: pseudos.append(Pseudo.from_file(p)) except Exception as exc: logger.critical("Error in %s:\n%s" % (p, exc)) return cls(pseudos).sort_by_z() def __init__(self, pseudos): """ Args: pseudos: List of pseudopotentials or filepaths """ # Store pseudos in a default dictionary with z as key. # Note that we can have more than one pseudo for given z. # hence the values are lists of pseudos. if not isinstance(pseudos, collections.abc.Iterable): pseudos = [pseudos] if len(pseudos) and is_string(pseudos[0]): pseudos = list_strings(pseudos) self._pseudos_with_z = defaultdict(list) for pseudo in pseudos: if not isinstance(pseudo, Pseudo): pseudo = Pseudo.from_file(pseudo) if pseudo is not None: self._pseudos_with_z[pseudo.Z].append(pseudo) for z in self.zlist: pseudo_list = self._pseudos_with_z[z] symbols = [p.symbol for p in pseudo_list] symbol = symbols[0] if any(symb != symbol for symb in symbols): raise ValueError("All symbols must be equal while they are: %s" % str(symbols)) setattr(self, symbol, pseudo_list) def __getitem__(self, Z): """ Retrieve pseudos for the atomic number z. Accepts both int and slice objects. """ if isinstance(Z, slice): assert Z.stop is not None pseudos = [] for znum in iterator_from_slice(Z): pseudos.extend(self._pseudos_with_z[znum]) return self.__class__(pseudos) return self.__class__(self._pseudos_with_z[Z]) def __len__(self): return len(list(self.__iter__())) def __iter__(self): """Process the elements in Z order.""" for z in self.zlist: for pseudo in self._pseudos_with_z[z]: yield pseudo def __repr__(self): return "<%s at %s>" % (self.__class__.__name__, id(self)) def __str__(self): return self.to_table() @property def allnc(self): """True if all pseudos are norm-conserving.""" return all(p.isnc for p in self) @property def allpaw(self): """True if all pseudos are PAW.""" return all(p.ispaw for p in self) @property def zlist(self): """Ordered list with the atomic numbers available in the table.""" return sorted(list(self._pseudos_with_z.keys())) # def max_ecut_pawecutdg(self, accuracy): # """Return the maximum value of ecut and pawecutdg based on the hints available in the pseudos.""" # ecut = max(p.hint_for_accuracy(accuracy=accuracy).ecut for p in self) # pawecutdg = max(p.hint_for_accuracy(accuracy=accuracy).pawecutdg for p in self) # return ecut, pawecutdg def as_dict(self, **kwargs): """Return dictionary for MSONable protocol.""" d = {} for p in self: k, count = p.element.name, 1 # k, count = p.element, 1 # Handle multiple-pseudos with the same name! while k in d: k += k.split("#")[0] + "#" + str(count) count += 1 d.update({k: p.as_dict()}) d["@module"] = self.__class__.__module__ d["@class"] = self.__class__.__name__ return d @classmethod def from_dict(cls, d): """Build instance from dictionary (MSONable protocol).""" pseudos = [] dec = MontyDecoder() for k, v in d.items(): if not k.startswith("@"): pseudos.append(dec.process_decoded(v)) return cls(pseudos) def is_complete(self, zmax=118): """ True if table is complete i.e. all elements with Z < zmax have at least on pseudopotential """ for z in range(1, zmax): if not self[z]: return False return True def all_combinations_for_elements(self, element_symbols): """ Return a list with all the the possible combination of pseudos for the given list of element_symbols. Each item is a list of pseudopotential objects. Example:: table.all_combinations_for_elements(["Li", "F"]) """ d = OrderedDict() for symbol in element_symbols: d[symbol] = self.select_symbols(symbol, ret_list=True) from itertools import product return list(product(*d.values())) def pseudo_with_symbol(self, symbol, allow_multi=False): """ Return the pseudo with the given chemical symbol. Args: symbols: String with the chemical symbol of the element allow_multi: By default, the method raises ValueError if multiple occurrences are found. Use allow_multi to prevent this. Raises: ValueError if symbol is not found or multiple occurences are present and not allow_multi """ pseudos = self.select_symbols(symbol, ret_list=True) if not pseudos or (len(pseudos) > 1 and not allow_multi): raise ValueError("Found %d occurrences of symbol %s" % (len(pseudos), symbol)) if not allow_multi: return pseudos[0] return pseudos def pseudos_with_symbols(self, symbols): """ Return the pseudos with the given chemical symbols. Raises: ValueError if one of the symbols is not found or multiple occurences are present. """ pseudos = self.select_symbols(symbols, ret_list=True) found_symbols = [p.symbol for p in pseudos] duplicated_elements = [s for s, o in collections.Counter(found_symbols).items() if o > 1] if duplicated_elements: raise ValueError("Found multiple occurrences of symbol(s) %s" % ", ".join(duplicated_elements)) missing_symbols = [s for s in symbols if s not in found_symbols] if missing_symbols: raise ValueError("Missing data for symbol(s) %s" % ", ".join(missing_symbols)) return pseudos def select_symbols(self, symbols, ret_list=False): """ Return a :class:`PseudoTable` with the pseudopotentials with the given list of chemical symbols. Args: symbols: str or list of symbols Prepend the symbol string with "-", to exclude pseudos. ret_list: if True a list of pseudos is returned instead of a :class:`PseudoTable` """ symbols = list_strings(symbols) exclude = symbols[0].startswith("-") if exclude: if not all(s.startswith("-") for s in symbols): raise ValueError("When excluding symbols, all strings must start with `-`") symbols = [s[1:] for s in symbols] symbols = set(symbols) pseudos = [] for p in self: if exclude: if p.symbol in symbols: continue else: if p.symbol not in symbols: continue pseudos.append(p) if ret_list: return pseudos return self.__class__(pseudos) def get_pseudos_for_structure(self, structure): """ Return the list of :class:`Pseudo` objects to be used for this :class:`Structure`. Args: structure: pymatgen :class:`Structure`. Raises: `ValueError` if one of the chemical symbols is not found or multiple occurences are present in the table. """ return self.pseudos_with_symbols(structure.symbol_set) def print_table(self, stream=sys.stdout, filter_function=None): """ A pretty ASCII printer for the periodic table, based on some filter_function. Args: stream: file-like object filter_function: A filtering function that take a Pseudo as input and returns a boolean. For example, setting filter_function = lambda p: p.Z_val > 2 will print a periodic table containing only pseudos with Z_val > 2. """ print(self.to_table(filter_function=filter_function), file=stream) def to_table(self, filter_function=None): """Return string with data in tabular form.""" table = [] for p in self: if filter_function is not None and filter_function(p): continue table.append([p.basename, p.symbol, p.Z_val, p.l_max, p.l_local, p.xc, p.type]) return tabulate( table, headers=["basename", "symbol", "Z_val", "l_max", "l_local", "XC", "type"], tablefmt="grid", ) def sorted(self, attrname, reverse=False): """ Sort the table according to the value of attribute attrname. Return: New class:`PseudoTable` object """ attrs = [] for i, pseudo in self: try: a = getattr(pseudo, attrname) except AttributeError: a = np.inf attrs.append((i, a)) # Sort attrs, and build new table with sorted pseudos. return self.__class__([self[a[0]] for a in sorted(attrs, key=lambda t: t[1], reverse=reverse)]) def sort_by_z(self): """Return a new :class:`PseudoTable` with pseudos sorted by Z""" return self.__class__(sorted(self, key=lambda p: p.Z)) def select(self, condition): """ Select only those pseudopotentials for which condition is True. Return new class:`PseudoTable` object. Args: condition: Function that accepts a :class:`Pseudo` object and returns True or False. """ return self.__class__([p for p in self if condition(p)]) def with_dojo_report(self): """Select pseudos containing the DOJO_REPORT section. Return new class:`PseudoTable` object.""" return self.select(condition=lambda p: p.has_dojo_report) def select_rows(self, rows): """ Return new class:`PseudoTable` object with pseudos in the given rows of the periodic table. rows can be either a int or a list of integers. """ if not isinstance(rows, (list, tuple)): rows = [rows] return self.__class__([p for p in self if p.element.row in rows]) def select_family(self, family): """ Return PseudoTable with element beloging to the specified family, e.g. familiy="alkaline" """ # e.g element.is_alkaline return self.__class__([p for p in self if getattr(p.element, "is_" + family)])
mit
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/doc/mpl_examples/pylab_examples/newscalarformatter_demo.py
13
3313
#!/usr/bin/env python # Demonstrating the improvements and options of the proposed new ScalarFormatter from pylab import * from matplotlib.ticker import OldScalarFormatter x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The old formatter',horizontalalignment='center',verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The new formatter, default settings',horizontalalignment='center', verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The new formatter, no numerical offset',horizontalalignment='center', verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The new formatter, with mathtext',horizontalalignment='center', verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) show()
gpl-2.0
chenyyx/scikit-learn-doc-zh
examples/zh/linear_model/plot_logistic_path.py
37
1195
#!/usr/bin/env python """ ================================= Path with L1- Logistic Regression ================================= Computes path on IRIS dataset. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets from sklearn.svm import l1_min_c iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X -= np.mean(X, 0) # ############################################################################# # Demo path functions cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3) print("Computing regularization path ...") start = datetime.now() clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) print("This took ", datetime.now() - start) coefs_ = np.array(coefs_) plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title('Logistic Regression Path') plt.axis('tight') plt.show()
gpl-3.0
beepee14/scikit-learn
sklearn/utils/tests/test_class_weight.py
90
12846
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_dict(): classes = np.arange(3) class_weights = {0: 1.0, 1: 2.0, 2: 3.0} y = np.asarray([0, 0, 1, 2]) cw = compute_class_weight(class_weights, classes, y) # When the user specifies class weights, compute_class_weights should just # return them. assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw) # When a class weight is specified that isn't in classes, a ValueError # should get raised msg = 'Class label 4 not present.' class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) msg = 'Class label -1 not present.' class_weights = {-1: 5.0, 0: 1.0, 1: 2.0, 2: 3.0} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
jbhuang0604/WSL
lib/roi_data_layer/minibatch.py
44
7337
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Compute minibatch blobs for training a Fast R-CNN network.""" import numpy as np import numpy.random as npr import cv2 from fast_rcnn.config import cfg from utils.blob import prep_im_for_blob, im_list_to_blob def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" num_images = len(roidb) # Sample random scales to use for each image in this batch random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \ 'num_images ({}) must divide BATCH_SIZE ({})'. \ format(num_images, cfg.TRAIN.BATCH_SIZE) rois_per_image = cfg.TRAIN.BATCH_SIZE / num_images fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image) # Get the input image blob, formatted for caffe im_blob, im_scales = _get_image_blob(roidb, random_scale_inds) # Now, build the region of interest and label blobs rois_blob = np.zeros((0, 5), dtype=np.float32) labels_blob = np.zeros((0), dtype=np.float32) bbox_targets_blob = np.zeros((0, 4 * num_classes), dtype=np.float32) bbox_loss_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32) # all_overlaps = [] for im_i in xrange(num_images): labels, overlaps, im_rois, bbox_targets, bbox_loss \ = _sample_rois(roidb[im_i], fg_rois_per_image, rois_per_image, num_classes) # Add to RoIs blob rois = _project_im_rois(im_rois, im_scales[im_i]) batch_ind = im_i * np.ones((rois.shape[0], 1)) rois_blob_this_image = np.hstack((batch_ind, rois)) rois_blob = np.vstack((rois_blob, rois_blob_this_image)) # Add to labels, bbox targets, and bbox loss blobs labels_blob = np.hstack((labels_blob, labels)) bbox_targets_blob = np.vstack((bbox_targets_blob, bbox_targets)) bbox_loss_blob = np.vstack((bbox_loss_blob, bbox_loss)) # all_overlaps = np.hstack((all_overlaps, overlaps)) # For debug visualizations # _vis_minibatch(im_blob, rois_blob, labels_blob, all_overlaps) blobs = {'data': im_blob, 'rois': rois_blob, 'labels': labels_blob} if cfg.TRAIN.BBOX_REG: blobs['bbox_targets'] = bbox_targets_blob blobs['bbox_loss_weights'] = bbox_loss_blob return blobs def _sample_rois(roidb, fg_rois_per_image, rois_per_image, num_classes): """Generate a random sample of RoIs comprising foreground and background examples. """ # label = class RoI has max overlap with labels = roidb['max_classes'] overlaps = roidb['max_overlaps'] rois = roidb['boxes'] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0] # Guard against the case when an image has fewer than fg_rois_per_image # foreground RoIs fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_inds.size) # Sample foreground regions without replacement if fg_inds.size > 0: fg_inds = npr.choice(fg_inds, size=fg_rois_per_this_image, replace=False) # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0] # Compute number of background RoIs to take from this image (guarding # against there being fewer than desired) bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_inds.size) # Sample foreground regions without replacement if bg_inds.size > 0: bg_inds = npr.choice(bg_inds, size=bg_rois_per_this_image, replace=False) # The indices that we're selecting (both fg and bg) keep_inds = np.append(fg_inds, bg_inds) # Select sampled values from various arrays: labels = labels[keep_inds] # Clamp labels for the background RoIs to 0 labels[fg_rois_per_this_image:] = 0 overlaps = overlaps[keep_inds] rois = rois[keep_inds] bbox_targets, bbox_loss_weights = \ _get_bbox_regression_labels(roidb['bbox_targets'][keep_inds, :], num_classes) return labels, overlaps, rois, bbox_targets, bbox_loss_weights def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales def _project_im_rois(im_rois, im_scale_factor): """Project image RoIs into the rescaled training image.""" rois = im_rois * im_scale_factor return rois def _get_bbox_regression_labels(bbox_target_data, num_classes): """Bounding-box regression targets are stored in a compact form in the roidb. This function expands those targets into the 4-of-4*K representation used by the network (i.e. only one class has non-zero targets). The loss weights are similarly expanded. Returns: bbox_target_data (ndarray): N x 4K blob of regression targets bbox_loss_weights (ndarray): N x 4K blob of loss weights """ clss = bbox_target_data[:, 0] bbox_targets = np.zeros((clss.size, 4 * num_classes), dtype=np.float32) bbox_loss_weights = np.zeros(bbox_targets.shape, dtype=np.float32) inds = np.where(clss > 0)[0] for ind in inds: cls = clss[ind] start = 4 * cls end = start + 4 bbox_targets[ind, start:end] = bbox_target_data[ind, 1:] bbox_loss_weights[ind, start:end] = [1., 1., 1., 1.] return bbox_targets, bbox_loss_weights def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show()
mit
yuanagain/seniorthesis
venv/lib/python2.7/site-packages/matplotlib/sphinxext/plot_directive.py
7
28322
""" A directive for including a matplotlib plot in a Sphinx document. By default, in HTML output, `plot` will include a .png file with a link to a high-res .png and .pdf. In LaTeX output, it will include a .pdf. The source code for the plot may be included in one of three ways: 1. **A path to a source file** as the argument to the directive:: .. plot:: path/to/plot.py When a path to a source file is given, the content of the directive may optionally contain a caption for the plot:: .. plot:: path/to/plot.py This is the caption for the plot Additionally, one may specify the name of a function to call (with no arguments) immediately after importing the module:: .. plot:: path/to/plot.py plot_function1 2. Included as **inline content** to the directive:: .. plot:: import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np img = mpimg.imread('_static/stinkbug.png') imgplot = plt.imshow(img) 3. Using **doctest** syntax:: .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) Options ------- The ``plot`` directive supports the following options: format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. The default can be changed using the `plot_include_source` variable in conf.py encoding : str If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be specified using the `:encoding:` option. The encoding will not be inferred using the ``-*- coding -*-`` metacomment. context : bool or str If provided, the code will be run in the context of all previous plot directives for which the `:context:` option was specified. This only applies to inline code plot directives, not those run from files. If the ``:context: reset`` option is specified, the context is reset for this and future plots, and previous figures are closed prior to running the code. ``:context:close-figs`` keeps the context but closes previous figures before running the code. nofigs : bool If specified, the code block will be run, but no figures will be inserted. This is usually useful with the ``:context:`` option. Additionally, this directive supports all of the options of the `image` directive, except for `target` (since plot will add its own target). These include `alt`, `height`, `width`, `scale`, `align` and `class`. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_html_show_source_link Whether to show a link to the source in HTML. plot_pre_code Code that should be executed before each plot. plot_basedir Base directory, to which ``plot::`` file names are relative to. (If None or empty, file names are relative to the directory where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. When passing from the command line through sphinx_build the list should be passed as suffix:dpi,suffix:dpi, .... plot_html_show_formats Whether to show links to the files in HTML. plot_rcparams A dictionary containing any non-standard rcParams that should be applied before each plot. plot_apply_rcparams By default, rcParams are applied when `context` option is not used in a plot directive. This configuration option overrides this behavior and applies rcParams before each plot. plot_working_directory By default, the working directory will be changed to the directory of the example, so the code can get at its data files, if any. Also its path will be added to `sys.path` so it can import any helper modules sitting beside it. This configuration option can be used to specify a central directory (also added to `sys.path`) where data files and helper modules for all code are located. plot_template Provide a customized template for preparing restructured text. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange import sys, os, shutil, io, re, textwrap from os.path import relpath import traceback import warnings if not six.PY3: import cStringIO from docutils.parsers.rst import directives from docutils.parsers.rst.directives.images import Image align = Image.align import sphinx sphinx_version = sphinx.__version__.split(".") # The split is necessary for sphinx beta versions where the string is # '6b1' sphinx_version = tuple([int(re.split('[^0-9]', x)[0]) for x in sphinx_version[:2]]) try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) import matplotlib import matplotlib.cbook as cbook try: with warnings.catch_warnings(record=True): warnings.simplefilter("error", UserWarning) matplotlib.use('Agg') except UserWarning: import matplotlib.pyplot as plt plt.switch_backend("Agg") else: import matplotlib.pyplot as plt from matplotlib import _pylab_helpers __version__ = 2 #------------------------------------------------------------------------------ # Registration hook #------------------------------------------------------------------------------ def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return run(arguments, content, options, state_machine, state, lineno) plot_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_context(arg): if arg in [None, 'reset', 'close-figs']: return arg raise ValueError("argument should be None or 'reset' or 'close-figs'") def _option_format(arg): return directives.choice(arg, ('python', 'doctest')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) def mark_plot_labels(app, document): """ To make plots referenceable, we need to move the reference from the "htmlonly" (or "latexonly") node to the actual figure node itself. """ for name, explicit in six.iteritems(document.nametypes): if not explicit: continue labelid = document.nameids[name] if labelid is None: continue node = document.ids[labelid] if node.tagname in ('html_only', 'latex_only'): for n in node: if n.tagname == 'figure': sectname = name for c in n: if c.tagname == 'caption': sectname = c.astext() break node['ids'].remove(labelid) node['names'].remove(name) n['ids'].append(labelid) n['names'].append(name) document.settings.env.labels[name] = \ document.settings.env.docname, labelid, sectname break def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, 'context': _option_context, 'nofigs': directives.flag, 'encoding': directives.encoding } app.add_directive('plot', plot_directive, True, (0, 2, False), **options) app.add_config_value('plot_pre_code', None, True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_html_show_source_link', True, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_config_value('plot_rcparams', {}, True) app.add_config_value('plot_apply_rcparams', False, True) app.add_config_value('plot_working_directory', None, True) app.add_config_value('plot_template', None, True) app.connect(str('doctree-read'), mark_plot_labels) #------------------------------------------------------------------------------ # Doctest handling #------------------------------------------------------------------------------ def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """ Split code at plt.show() """ parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts def remove_coding(text): """ Remove the coding comment, which six.exec_ doesn't like. """ sub_re = re.compile("^#\s*-\*-\s*coding:\s*.*-\*-$", flags=re.MULTILINE) return sub_re.sub("", text) #------------------------------------------------------------------------------ # Template #------------------------------------------------------------------------------ TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {{ caption }} {% endfor %} {{ only_latex }} {% for img in images %} {% if 'pdf' in img.formats -%} .. image:: {{ build_dir }}/{{ img.basename }}.pdf {% endif -%} {% endfor %} {{ only_texinfo }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% endfor %} """ exception_template = """ .. htmlonly:: [`source code <%(linkdir)s/%(basename)s.py>`__] Exception occurred rendering plot. """ # the context of the plot for all directives specified with the # :context: option plot_context = dict() class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or (os.path.exists(original) and os.stat(derived).st_mtime < os.stat(original).st_mtime)) class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None, function_name=None): """ Import a Python module from a path, and run the function given by name, if function_name is not None. """ # Change the working directory to the directory of the example, so # it can get at its data files, if any. Add its path to sys.path # so it can import any helper modules sitting beside it. if six.PY2: pwd = os.getcwdu() else: pwd = os.getcwd() old_sys_path = list(sys.path) if setup.config.plot_working_directory is not None: try: os.chdir(setup.config.plot_working_directory) except OSError as err: raise OSError(str(err) + '\n`plot_working_directory` option in' 'Sphinx configuration file must be a valid ' 'directory path') except TypeError as err: raise TypeError(str(err) + '\n`plot_working_directory` option in ' 'Sphinx configuration file must be a string or ' 'None') sys.path.insert(0, setup.config.plot_working_directory) elif code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] # Redirect stdout stdout = sys.stdout if six.PY3: sys.stdout = io.StringIO() else: sys.stdout = cStringIO.StringIO() # Assign a do-nothing print function to the namespace. There # doesn't seem to be any other way to provide a way to (not) print # that works correctly across Python 2 and 3. def _dummy_print(*arg, **kwarg): pass try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: if setup.config.plot_pre_code is None: six.exec_(six.text_type("import numpy as np\n" + "from matplotlib import pyplot as plt\n"), ns) else: six.exec_(six.text_type(setup.config.plot_pre_code), ns) ns['print'] = _dummy_print if "__main__" in code: six.exec_("__name__ = '__main__'", ns) code = remove_coding(code) six.exec_(code, ns) if function_name is not None: six.exec_(function_name + "()", ns) except (Exception, SystemExit) as err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns def clear_state(plot_rcparams, close=True): if close: plt.close('all') matplotlib.rc_file_defaults() matplotlib.rcParams.update(plot_rcparams) def render_figures(code, code_path, output_dir, output_base, context, function_name, config, context_reset=False, close_figs=False): """ Run a pyplot script and save the low and high res PNGs and a PDF in *output_dir*. Save the images under *output_dir* with file names derived from *output_base* """ # -- Parse format list default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 200} formats = [] plot_formats = config.plot_formats if isinstance(plot_formats, six.string_types): # String Sphinx < 1.3, Split on , to mimic # Sphinx 1.3 and later. Sphinx 1.3 always # returns a list. plot_formats = plot_formats.split(',') for fmt in plot_formats: if isinstance(fmt, six.string_types): if ':' in fmt: suffix,dpi = fmt.split(':') formats.append((str(suffix), int(dpi))) else: formats.append((fmt, default_dpi.get(fmt, 80))) elif type(fmt) in (tuple, list) and len(fmt)==2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) if all_exists: return [(code, [img])] # Then look for multi-figure output files results = [] all_exists = True for i, code_piece in enumerate(code_pieces): images = [] for j in xrange(1000): if len(code_pieces) > 1: img = ImageFile('%s_%02d_%02d' % (output_base, i, j), output_dir) else: img = ImageFile('%s_%02d' % (output_base, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # We didn't find the files, so build them results = [] if context: ns = plot_context else: ns = {} if context_reset: clear_state(config.plot_rcparams) plot_context.clear() close_figs = not context or close_figs for i, code_piece in enumerate(code_pieces): if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close_figs) elif close_figs: plt.close('all') run_code(code_piece, code_path, ns, function_name) images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) elif len(code_pieces) == 1: img = ImageFile("%s_%02d" % (output_base, j), output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, i, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except Exception as err: raise PlotError(traceback.format_exc()) img.formats.append(format) results.append((code_piece, images)) if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close=not context) return results def run(arguments, content, options, state_machine, state, lineno): # The user may provide a filename *or* Python code content, but not both if arguments and content: raise RuntimeError("plot:: directive can't have both args and content") document = state_machine.document config = document.settings.env.config nofigs = 'nofigs' in options options.setdefault('include-source', config.plot_include_source) keep_context = 'context' in options context_opt = None if not keep_context else options['context'] rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if len(arguments): if not config.plot_basedir: source_file_name = os.path.join(setup.app.builder.srcdir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) # If there is content, it will be passed as a caption. caption = '\n'.join(content) # If the optional function name is provided, use it if len(arguments) == 2: function_name = arguments[1] else: function_name = None with io.open(source_file_name, 'r', encoding='utf-8') as fd: code = fd.read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) function_name = None caption = '' base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) # get rid of .. in paths, also changes pathsep # see note in Python docs for warning about symbolic links on Windows. # need to compare source and dest paths at end build_dir = os.path.normpath(build_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) if not os.path.exists(dest_dir): os.makedirs(dest_dir) # no problem here for me, but just use built-ins # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') try: build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') except ValueError: # on Windows, relpath raises ValueError when path and start are on # different mounts/drives build_dir_link = build_dir source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = render_figures(code, source_file_name, build_dir, output_base, keep_context, function_name, config, context_reset=context_opt == 'reset', close_figs=context_opt == 'close-figs') errors = [] except PlotError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s\n from %s:\n%s" % (output_base, source_file_name, err), line=lineno) results = [(code, [])] errors = [sm] # Properly indent the caption caption = '\n'.join(' ' + line.strip() for line in caption.split('\n')) # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" if nofigs: images = [] opts = [':%s: %s' % (key, val) for key, val in six.iteritems(options) if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" only_texinfo = ".. only:: texinfo" # Not-None src_link signals the need for a source link in the generated # html if j == 0 and config.plot_html_show_source_link: src_link = source_link else: src_link = None result = format_template( config.plot_template or TEMPLATE, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, only_texinfo=only_texinfo, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats and len(images), caption=caption) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory, if necessary if not os.path.exists(dest_dir): cbook.mkdirs(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): destimg = os.path.join(dest_dir, os.path.basename(fn)) if fn != destimg: shutil.copyfile(fn, destimg) # copy script (if necessary) target_name = os.path.join(dest_dir, output_base + source_ext) with io.open(target_name, 'w', encoding="utf-8") as f: if source_file_name == rst_file: code_escaped = unescape_doctest(code) else: code_escaped = code f.write(code_escaped) return errors
mit
dnidever/lsst-tools
python/qascript.py
1
14469
#!/usr/bin/env python # call this like: % python test_matcher.py #repodir = "/data/lsst/decam/redux/cp/cosmos/" #visitid = 177341 #ccdnum = 15 import lsst.afw.image as afwImage import lsst.afw.table as afwTable import lsst.afw.geom as afwGeom import lsst.daf.persistence as dafPersist import lsst.meas.astrom as measAstrom import math import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg def mad(arr): """ Median Absolute Deviation: a "Robust" version of standard deviation. Indices variabililty of the sample. https://en.wikipedia.org/wiki/Median_absolute_deviation It needs to be scaled by 1.4826x to be on the same "scale" as std. dev. """ med = np.median(arr) return 1.4826*np.median(np.abs(arr - med)) #def getqainfo(repodir,visitid,ccdnum): def getqainfo(dataref): #butler = dataRef.butlerSubset.butler #butler = dafPersist.Butler(repodir) #exp = butler.get('calexp',visit=visitid,ccdnum=ccdnum) # Start the structure dt = np.dtype([('visit',int),('ccdnum',int),('calexp_exists',bool),('background_exists',bool),('src_exists',bool),('metadata_exists',bool), ('icsrc_exists',bool),('icmatch_exists',bool),('psf_exists',bool),('wcs_exists',bool), ('ra',float),('dec',float),('filter',np.str_,1),('datetime',np.str_,30),('nx',int),('ny',int),('exptime',float),('ncrpix',int), ('fluxmag0',float),('fluxmag0sigma',float), ('calexp_bgmean',float),('calexp_bgvar',float),('calexp_bgmean2',float),('calexp_bgvar2',float),('calexp_magzero',float), ('calexp_magzero_rms',float),('calexp_magzero_nobj',int),('calexp_colorterm1',float),('calexp_colorterm2',float),('calexp_colorterm3',float), ('apcorr_exists',bool),('apcorr_med',float),('apcorr_std',float), ('ixx',float),('iyy',float),('ixy',float),('semimajor_pix',float),('semiminor_pix',float),('pa_pix',float), ('ellipticity_pix',float),('semimajor_arcsec',float),('semiminor_arcsec',float), ('pa_arcsec',float),('ellipticity_arcsec',float),('nsources',int),('bkgdmed',float),('bkgdsig',float), ('measurePsf_numAvailStars',int),('measurePsf_numGoodStars',int),('measurePsf_spatialFitChi2',float), ('detection_sigma',float),('detection_nGrow',int),('detection_doSmooth',bool), ('detection_smoothingKernelWidth',int), ('metadata_processccd_exists',bool),('metadata_processccd_calibrate_exists',bool),('metadata_processccd_calibrate_astrometry_exists',bool), ('metadata_processccd_calibrate_astrometry_matcher_exists',bool),('metadata_processccd_calibrate_astrometry_refobjloader_exists',bool), ('metadata_processccd_calibrate_astrometry_wcsfitter_exists',bool),('metadata_processccd_calibrate_detection_exists',bool), ('metadata_processccd_calibrate_measurepsf_exists',bool),('metadata_processccd_calibrate_photocal_exists',bool), ('metadata_processccd_calibrate_repair_exists',bool),('metadata_processccd_deblend_exists',bool),('metadata_processccd_detection_exists',bool)]) #data = np.empty(1,dtype=dt) data = np.zeros(1,dtype=dt) visit = dataref.dataId['visit'] ccdnum = dataref.dataId['ccdnum'] data['visit'] = visit data['ccdnum'] = ccdnum # Check if the files/products exist data['calexp_exists'] = dataref.datasetExists('calexp') data['background_exists'] = dataref.datasetExists('calexpBackground') data['src_exists'] = dataref.datasetExists('src') data['metadata_exists'] = dataref.datasetExists('processCcdDecam_metadata') data['icsrc_exists'] = dataref.datasetExists('icSrc') data['icmatch_exists'] = dataref.datasetExists('icMatch') # Load the exposure if data['calexp_exists']: exp = dataref.get('calexp') mask = exp.getMaskedImage().getMask() data['wcs_exists'] = exp.hasWcs() wcs = exp.getWcs() calib = exp.getCalib() data['psf_exists'] = exp.hasPsf() psf = exp.getPsf() shape = psf.computeShape() # Chip/Exposure level information filt = exp.getFilter().getName() exptime = calib.getExptime() fluxmag0 = calib.getFluxMag0() datetime = calib.getMidTime() data['filter'] = filt data['exptime'] = exptime data['fluxmag0'] = fluxmag0[0] data['fluxmag0sigma'] = fluxmag0[1] data['datetime'] = datetime.toString()[0:30] # can only be 30 char long # Get calexp metadata calexp_meta = exp.getMetadata() calexp_meta_names = ['BGMEAN','BGVAR','BGMEAN2','BGVAR2','MAGZERO','MAGZERO_RMS','MAGZERO_NOBJ','COLORTERM1','COLORTERM2','COLORTERM3'] for name in calexp_meta_names: if calexp_meta.exists(name): data['calexp_'+name.lower()] = calexp_meta.get(name) # Size of the image nx = exp.getWidth() ny = exp.getHeight() data['nx'] = nx data['ny'] = ny # Central coordinates cen = wcs.pixelToSky(nx/2,ny/2) ra = cen.getLongitude().asDegrees() dec = cen.getLatitude().asDegrees() data['ra'] = ra data['dec'] = dec # Get aperture correction info = exp.getInfo() data['apcorr_exists'] = info.hasApCorrMap() if data['apcorr_exists']: apcorr = info.getApCorrMap() apcorr_psfflux = apcorr.get('base_PsfFlux_flux') # fill the entire image, THIS IS SLOW!! sample the data instead apcorr_im = exp.getMaskedImage().getImage() # initialize with flux image apcorr_psfflux.fillImage(apcorr_im) # sample the area apcorr_med = np.median(apcorr_im.getArray()) apcorr_std = np.std(apcorr_im.getArray()) data['apcorr_med'] = apcorr_med data['apcorr_std'] = apcorr_std # Get shape parameters ixx = shape.getIxx() iyy = shape.getIyy() ixy = shape.getIxy() data['ixx'] = ixx data['iyy'] = iyy data['ixy'] = ixy # Get ellipticity and PA axes = afwGeom.ellipses.Axes(shape) pa_pix = axes.getTheta() * 180 / math.pi # CCW from x-axis on pixel-grid semimajor_pix = axes.getA() semiminor_pix = axes.getB() ellipticity_pix = (semimajor_pix-semiminor_pix)/(semimajor_pix+semiminor_pix) data['semimajor_pix'] = semimajor_pix data['semiminor_pix'] = semiminor_pix data['pa_pix'] = pa_pix data['ellipticity_pix'] = ellipticity_pix # Transform ellipse to on sky point = afwGeom.Point2D(nx/2, ny/2) local_transform = wcs.linearizePixelToSky(point, afwGeom.arcseconds) # or whatever angle unit you want for radii; PA is always radians pixel_ellipse = afwGeom.ellipses.Axes(psf.computeShape(point)) sky_ellipse = pixel_ellipse.transform(local_transform.getLinear()) pa_arcsec = sky_ellipse.getTheta() * 180 / math.pi # east of north??? semimajor_arcsec = sky_ellipse.getA() semiminor_arcsec = sky_ellipse.getB() ellipticity_arcsec = (semimajor_arcsec-semiminor_arcsec)/(semimajor_arcsec+semiminor_arcsec) data['semimajor_arcsec'] = semimajor_arcsec data['semiminor_arcsec'] = semiminor_arcsec data['pa_arcsec'] = pa_arcsec data['ellipticity_arcsec'] = ellipticity_arcsec # Number of CR pixels, I don't know what bit it is #threshold = 16 # is there a better way of selecting "CR" pixels than this?? #cr = np.bitwise_and(np.int16(mask.getArray()),threshold) == threshold crBit = mask.getPlaneBitMask('CR') crmask = (mask.getArray() & crBit) == crBit ncrpix = crmask.sum() data['ncrpix'] = ncrpix # No calexp, try to get basic info from raw or instcal else: # Try to load raw or instcal try: raw = dataref.get('raw') except: try: instcal = dataref.get('instcal') calib = instcal.getCalib() # Chip/Exposure level information filt = instcal.getFilter().getName() exptime = calib.getExptime() datetime = calib.getMidTime() data['filter'] = filt data['exptime'] = exptime data['datetime'] = datetime.toString()[0:30] # can only be 30 char long # Size of the image nx = instcal.getWidth() ny = instcal.getHeight() data['nx'] = nx data['ny'] = ny # Central coordinates wcs = instcal.getWcs() cen = wcs.pixelToSky(nx/2,ny/2) ra = cen.getLongitude().asDegrees() dec = cen.getLatitude().asDegrees() data['ra'] = ra data['dec'] = dec except: pass # Load the source catalog if data['src_exists']: src = dataref.get('src') nsources = len(src) data['nsources'] = nsources # Background level if data['background_exists']: backgrounds = dataref.get('calexpBackground') bkgdimage = backgrounds.getImage() bkgdmed = np.median(bkgdimage.getArray()) bkgdsig = mad(bkgdimage.getArray()) data['bkgdmed'] = bkgdmed data['bkgdsig'] = bkgdsig # Getting metadata if dataref.datasetExists('processCcdDecam_metadata'): try: meta = dataref.get('processCcdDecam_metadata') # check for the existence of various entries in the metadata data['metadata_processccd_exists'] = meta.exists('processCcdDecam') data['metadata_processccd_calibrate_exists'] = meta.exists('processCcdDecam:calibrate') data['metadata_processccd_calibrate_astrometry_exists'] = meta.exists('processCcdDecam:calibrate:astrometry') data['metadata_processccd_calibrate_astrometry_matcher_exists'] = meta.exists('processCcdDecam:calibrate:astrometry:matcher') data['metadata_processccd_calibrate_astrometry_refobjloader_exists'] = meta.exists('processCcdDecam:calibrate:astrometry:refObjLoader') data['metadata_processccd_calibrate_astrometry_wcsfitter_exists'] = meta.exists('processCcdDecam:calibrate:astrometry:wcsFitter') data['metadata_processccd_calibrate_detection_exists'] = meta.exists('processCcdDecam:calibrate:detection') data['metadata_processccd_calibrate_measurepsf_exists'] = meta.exists('processCcdDecam:calibrate:measurePsf') data['metadata_processccd_calibrate_photocal_exists'] = meta.exists('processCcdDecam:calibrate:photocal') data['metadata_processccd_calibrate_repair_exists'] = meta.exists('processCcdDecam:calibrate:repair') data['metadata_processccd_deblend_exists'] = meta.exists('processCcdDecam:deblend') data['metadata_processccd_detection_exists'] = meta.exists('processCcdDecam:detection') # PSF values if data['metadata_processccd_calibrate_measurepsf_exists']: meta_measurePsf = meta.get('processCcdDecam:calibrate:measurePsf') numAvailStars = meta_measurePsf.get('numAvailStars') numGoodStars = meta_measurePsf.get('numGoodStars') spatialFitChi2 = meta_measurePsf.get('spatialFitChi2') data['measurePsf_numAvailStars'] = numAvailStars data['measurePsf_numGoodStars'] = numGoodStars data['measurePsf_spatialFitChi2'] = spatialFitChi2 # Detection information if data['metadata_processccd_detection_exists']: meta_det = meta.get('processCcdDecam:detection') sigma = meta_det.get('sigma') doSmooth = meta_det.get('doSmooth') nGrow = meta_det.get('nGrow') smoothingKernelWidth = meta_det.get('smoothingKernelWidth') data['detection_sigma'] = sigma data['detection_doSmooth'] = doSmooth data['detection_nGrow'] = nGrow data['detection_smoothingKernelWidth'] = smoothingKernelWidth except: print "Error loading metadata for ",visit,ccdnum return data #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Get QA metric data for a calexp data.") parser.add_argument('--datarepo', '-d', action="store", help="The data repository directory", default="/data/lsst/decam/redux/cp/cosmos/") parser.add_argument('--outfile', '-o', action="store", help="The output filename for the metrics.", default="qametrics.csv") parser.add_argument('--verbose', '-v', action="store_true", help="Print out the data as it is gathered.", default=False) args = parser.parse_args() print "Getting QA metric data for ", args.datarepo # Get all the data IDs butler = dafPersist.Butler(args.datarepo) # Get the total number of dataIds that EXIST #ndata=0 #for dataref in butler.subset(datasetType='calexp'): # if dataref.datasetExists(): # processCcd did not fail # ndata = ndata+1 ndata = len(butler.subset(datasetType='calexp')) print ndata, "calexps" count = 0 for dataref in butler.subset(datasetType='calexp'): #if dataref.datasetExists(): # processCcd did not fail data1 = getqainfo(dataref) # Create the structured array for all calexps if count == 0: dt = data1.dtype data = np.empty(ndata,dtype=dt) # Stuff in the data for THIS calexp data[count] = data1 # Print out the information if args.verbose: print count, data1[0] count = count+1 # output to csv file print "Writing outputs to", args.outfile data.tofile(args.outfile,sep='\n') # Add header line f = open(args.outfile,'r') # read it all back in first temp = f.read() f.close() # now write out with header line f = open(args.outfile, 'w') f.write(str(dt.names)+'\n') f.write(temp) f.close()
mit
YinongLong/scikit-learn
sklearn/learning_curve.py
8
14757
"""Utilities to evaluate models with respect to a variable """ # Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from .base import is_classifier, clone from .cross_validation import check_cv from .externals.joblib import Parallel, delayed from .cross_validation import _safe_split, _score, _fit_and_score from .metrics.scorer import check_scoring from .utils import indexable from .utils.fixes import astype warnings.warn("This module was deprecated in version 0.18 in favor of the " "model_selection module into which all the functions are moved." " This module will be removed in 0.20", DeprecationWarning) __all__ = ['learning_curve', 'validation_curve'] def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0): """Learning curve. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curves>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <sphx_glr_auto_examples_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y = indexable(X, y) # Make a list since we will be iterating multiple times over the folds cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator))) scorer = check_scoring(estimator, scoring=scoring) # HACK as long as boolean indices are allowed in cv generators if cv[0][0].dtype == bool: new_cv = [] for i in range(len(cv)): new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0])) cv = new_cv n_max_training_samples = len(cv[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv) else: out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train[:n_train_samples], test, verbose, parameters=None, fit_params=None, return_train_score=True) for train, test in cv for n_train_samples in train_sizes_abs) out = np.array(out)[:, :2] n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.float): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = astype(train_sizes_abs * n_max_training_samples, dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <validation_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_validation_curve.py <sphx_glr_auto_examples_model_selection_plot_validation_curve.py>` """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( estimator, X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) for train, test in cv for v in param_range) out = np.asarray(out)[:, :2] n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
bsd-3-clause
peterwilletts24/Python-Scripts
plot_scripts/EMBRACE/plot_geopotential_diff_8km.py
1
13240
""" Load mean geopotential heights and plot in colour """ import os, sys from matplotlib import rc import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.cm as mpl_cm from mpl_toolkits.basemap import Basemap import iris import iris.analysis.cartography import numpy as np import imp import h5py import cartopy.crs as ccrs #import cartopy.io.img_tiles as cimgt import matplotlib.ticker as mticker from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import scipy.interpolate try: import cStringIO as StringIO except: import StringIO import PIL import Image #from matplotlib.font_manager import FontProperties #from matplotlib import rcParams font = {'family' : 'normal', 'weight' : 'bold', 'size' : 14} matplotlib.rc('font', **font) from textwrap import wrap import math model_name_convert_title = imp.load_source('util', '/nfs/see-fs-01_users/eepdw/python_scripts/modules/model_name_convert_title.py') save_path='/nfs/a90/eepdw/Figures/EMBRACE/' def main(): # Plot diagnostics, model and pressure levels etc. to plot on for looping through plot_type='mean_masked' plot_type_h5py_var = 'mean' plot_diags=['temp', 'sp_hum'] plot_levels = [925, 850, 700, 500] #plot_levels = [925] experiment_ids = ['dklyu'] difference_id = 'dkmgw' diffidmin1 = difference_id[:-1] divisor=10 # for lat/lon rounding p_levels = [1000, 950, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10] degs_crop_top = 3.7 degs_crop_bottom = 3.5 degs_crop_left = 2 degs_crop_right = 3 ############################################################################### #################### Load heights, winds and temp/sp_hum for difference id ##################### f_glob_h = '/nfs/a90/eepdw/Data/EMBRACE/Pressure_level_means/408_pressure_levels_interp_pressure_%s_%s' % (difference_id, plot_type) with h5py.File(f_glob_h, 'r') as i: mh = i['%s' % plot_type_h5py_var] mean_heights_global = mh[. . .] ###################################################################################### fu_g = '/nfs/a90/eepdw/Data/EMBRACE/Mean_State/pp_files/%s/%s/30201_mean.pp' % (diffidmin1, difference_id) u_wind_g,v_wind_g = iris.load(fu_g) for pl in plot_diags: plot_diag=pl f_glob_d = '/nfs/a90/eepdw/Data/EMBRACE/Pressure_level_means/%s_pressure_levels_interp_%s_%s' % (plot_diag, difference_id, plot_type) with h5py.File(f_glob_d, 'r') as i: mg = i['%s' % plot_type_h5py_var] mean_var_global = mg[. . .] for experiment_id in experiment_ids: expmin1 = experiment_id[:-1] ############################################################################### #################### Load heights and temp/sp_hum ##################### fname_h = '/nfs/a90/eepdw/Data/EMBRACE/Pressure_level_means/408_pressure_levels_interp_pressure_%s_%s' % (experiment_id, plot_type) fname_d = '/nfs/a90/eepdw/Data/EMBRACE/Pressure_level_means/%s_pressure_levels_interp_%s_%s' % (plot_diag, experiment_id, plot_type) # print fname_h # print fname_d # Height data file with h5py.File(fname_h, 'r') as i: mh = i['%s' % plot_type_h5py_var] mean_heights = mh[. . .] # print mean_heights.shape with h5py.File(fname_d, 'r') as i: mh = i['%s' % plot_type_h5py_var] mean_var = mh[. . .] # print mean_var.shape f_oro = '/nfs/a90/eepdw/Data/EMBRACE/Mean_State/pp_files/%s/%s/33.pp' % (expmin1, experiment_id) oro = iris.load_cube(f_oro) fu = '/nfs/a90/eepdw/Data/EMBRACE/Mean_State/pp_files/%s/%s/30201_mean.pp' % (expmin1, experiment_id) u_wind,v_wind = iris.load(fu) lat_w = u_wind.coord('grid_latitude').points lon_w = u_wind.coord('grid_longitude').points p_levs = u_wind.coord('pressure').points lat = oro.coord('grid_latitude').points lon = oro.coord('grid_longitude').points cs = oro.coord_system('CoordSystem') if isinstance(cs, iris.coord_systems.RotatedGeogCS): print ' 33.pp - %s - Unrotate pole %s' % (experiment_id, cs) lons, lats = np.meshgrid(lon, lat) lon_low= np.min(lons) lon_high = np.max(lons) lat_low = np.min(lats) lat_high = np.max(lats) lon_corners, lat_corners = np.meshgrid((lon_low, lon_high), (lat_low, lat_high)) lons,lats = iris.analysis.cartography.unrotate_pole(lons,lats, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) lon_corner_u,lat_corner_u = iris.analysis.cartography.unrotate_pole(lon_corners, lat_corners, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) #lon_highu,lat_highu = iris.analysis.cartography.unrotate_pole(lon_high, lat_high, cs.grid_north_pole_longitude, cs.grid_north_pole_latitude) lon=lons[0] lat=lats[:,0] lon_low = lon_corner_u[0,0] lon_high = lon_corner_u[0,1] lat_low = lat_corner_u[0,0] lat_high = lat_corner_u[1,0] lon_min=np.min(lon) lon_max=np.max(lon) lon_low_tick=lon_min -(lon_min%divisor) lon_high_tick=math.ceil(lon_max/divisor)*divisor lat_min=np.min(lat) lat_max=np.max(lat) lat_low_tick=lat_min - (lat_min%divisor) lat_high_tick=math.ceil(lat_max/divisor)*divisor cs_w = u_wind.coord_system('CoordSystem') if isinstance(cs_w, iris.coord_systems.RotatedGeogCS): print ' Wind - %s - Unrotate pole %s' % (experiment_id, cs_w) lons_w, lats_w = np.meshgrid(lon_w, lat_w) lons_w,lats_w = iris.analysis.cartography.unrotate_pole(lons_w,lats_w, cs_w.grid_north_pole_longitude, cs_w.grid_north_pole_latitude) lon_w=lons_w[0] lat_w=lats_w[:,0] lon_high = 102 lon_low = 64 lat_high= 30. lat_low=-10 csur_w=cs_w.ellipsoid for p in plot_levels: ### Search for pressure level match s = np.searchsorted(p_levels[::-1], p) # Difference heights plt_h = np.where(np.isnan(mean_heights[:,:,-(s+1)]), np.nan, mean_heights[:,:,-(s+1)] - mean_heights_global[:,:,-(s+1)]) #Difference temperature/specific humidity plt_v = np.where(np.isnan(mean_var[:,:,-(s+1)]), np.nan, mean_var[:,:,-(s+1)] - mean_var_global[:,:,-(s+1)]) # Set u,v for winds, linear interpolate to approx. 2 degree grid sc = np.searchsorted(p_levs, p) lat_wind_1deg = np.arange(lat_low,lat_high, 2) lon_wind_1deg = np.arange(lon_low,lon_high, 2) ### Regrid winds to 2 degree spacing lons_wi, lats_wi = np.meshgrid(lon_wind_1deg, lat_wind_1deg) fl_la_lo = (lats_w.flatten(),lons_w.flatten()) u_wind_diff = u_wind[sc,:,:] - u_wind_g[sc,:,:] v_wind_diff = v_wind[sc,:,:] - v_wind_g[sc,:,:] u = scipy.interpolate.griddata(fl_la_lo, u_wind_diff.data.flatten(), (lats_wi, lons_wi), method='linear') v = scipy.interpolate.griddata(fl_la_lo, v_wind_diff.data.flatten(), (lats_wi, lons_wi), method='linear') ####################################################################################### ### Plotting ######################################################################### rc('font', family = 'serif', serif = 'cmr10') rc('text', usetex=True) #m_title = 'Height of %s-hPa level (m)' % (p) # Set pressure height contour min/max if p == 925: clev_min = -24. clev_max = 24. elif p == 850: clev_min = -24. clev_max = 24. elif p == 700: clev_min = -24. clev_max = 24. elif p == 500: clev_min = -24. clev_max = 24. else: print 'Contour min/max not set for this pressure level' # Set potential temperature min/max if p == 925: clevpt_min = -3. clevpt_max = 3. elif p == 850: clevpt_min = -3. clevpt_max = 3. elif p == 700: clevpt_min = -3. clevpt_max = 3. elif p == 500: clevpt_min = -3. clevpt_max = 3. else: print 'Potential temperature min/max not set for this pressure level' # Set specific humidity min/max if p == 925: clevsh_min = -0.0025 clevsh_max = 0.0025 elif p == 850: clevsh_min = -0.0025 clevsh_max = 0.0025 elif p == 700: clevsh_min = -0.0025 clevsh_max = 0.0025 elif p == 500: clevsh_min = -0.0025 clevsh_max = 0.0025 else: print 'Specific humidity min/max not set for this pressure level' clevs_lin = np.linspace(clev_min, clev_max, num=24) m =\ Basemap(llcrnrlon=lon_low,llcrnrlat=lat_low,urcrnrlon=lon_high,urcrnrlat=lat_high, rsphere = 6371229) x,y = m(lons,lats) x_w,y_w = m(lons_wi, lats_wi) fig=plt.figure(figsize=(8,10)) ax = fig.add_axes([0.05,0.05,0.9,0.85], axisbg='#262626') m.drawcoastlines(color='#262626') m.drawcountries(color='#262626') m.drawcoastlines(linewidth=0.5) #m.fillcontinents(color='#CCFF99') m.drawparallels(np.arange(int(lat_low_tick),int(lat_high_tick)+divisor,divisor),labels=[1,0,0,0], color='#262626') m.drawmeridians(np.arange(int(lon_low_tick),int(lon_high_tick)+divisor,divisor),labels=[0,0,0,1], color='#262626' ) cs_lin = m.contour(x,y, plt_h, clevs_lin,colors='#262626',linewidths=0.5) cmap=plt.cm.RdBu_r if plot_diag=='temp': plt_v = np.ma.masked_outside(plt_v, clevpt_max+20, clevpt_min-20) cs_col = m.contourf(x,y, plt_v, np.linspace(clevpt_min, clevpt_max, 256), cmap=cmap, extend='both') cbar = m.colorbar(cs_col,location='bottom',pad="5%", format = '%d') #cbar = plt.colorbar(cs_col, orientation='horizontal', pad=0.05, extend='both', format = '%d') tick_gap=1. cbar.set_ticks(np.arange(clevpt_min,clevpt_max+tick_gap,tick_gap)) cbar.set_ticklabels(np.arange(clevpt_min,clevpt_max+tick_gap,tick_gap)) cbar.set_label('K') pn='8km Explicit model (dklyu) minus 8km parametrised model geopotential height (grey contours), potential temperature (colours), and wind (vectors)' elif plot_diag=='sp_hum': plt_v = np.ma.masked_outside(plt_v, clevsh_max+20, clevsh_min-20) cs_col = m.contourf(x,y, plt_v, np.linspace(clevsh_min, clevsh_max, 256), cmap=cmap, extend='both') cbar = m.colorbar(cs_col,location='bottom',pad="5%", format = '%.3f') #cbar = plt.colorbar(cs_col, orientation='horizontal', pad=0.05, extend='both', format = '%d') cbar.set_label('kg/kg') pn='8km Explicit model (dklyu) minus 8km parametrised model geopotential height (grey contours), specific humidity (colours), and wind (vectors)' wind = m.quiver(x_w,y_w, u, v,scale=75, color='#262626' ) qk = plt.quiverkey(wind, 0.1, 0.1, 1, '5 m/s', labelpos='W') plt.clabel(cs_lin, fontsize=14, fmt='%d', color='black') #pn='%s' % (model_name_convert_title.main(experiment_id)) # pn in sphum and temp loops if not os.path.exists('%s%s/%s' % (save_path, experiment_id, plot_diag)): os.makedirs('%s%s/%s' % (save_path, experiment_id, plot_diag)) # Save no title # # ram = StringIO.StringIO() plt.savefig(ram, format='png', bbox_inches='tight', rasterized=True) #plt.savefig('%s%s/%s/geop_height_difference_8km_%shPa_%s_%s_notitle.png' % (save_path, experiment_id, plot_diag, p, experiment_id, plot_diag), format='png', bbox_inches='tight', rasterized=True) ram.seek(0) im = Image.open(ram) im2 = im.convert('RGB').convert('P', palette=Image.ADAPTIVE) im2.save('%s%s/%s/geop_height_difference_%shPa_%s_minus_%s_%s_notitle_large_font.png' \ % (save_path, experiment_id, plot_diag, p, experiment_id, diff_id, plot_diag) , format='PNG', optimize=True) plt.title('\n'.join(wrap('%s-hPa\n%s' % (p, pn) , 75, replace_whitespace=False)), fontsize=16, color='#262626') #plt.show() # Save with title # # ram = StringIO.StringIO() plt.savefig(ram, format='png', bbox_inches='tight', rasterized=True) #plt.savefig('%s%s/%s/geop_height_difference_8km_%shPa_%s_%s.png' % (save_path, experiment_id, plot_diag, p, experiment_id, plot_diag), format='png', bbox_inches='tight', rasterized=True) ram.seek(0) im = Image.open(ram) im2 = im.convert('RGB').convert('P', palette=Image.ADAPTIVE) im2.save('%s%s/%s/geop_height_difference_8km_%shPa_%s_minus_%s_%s_large_font.png' \ % (save_path, experiment_id, plot_diag, p, experiment_id, diff_id, plot_diag) , format='PNG', optimize=True) plt.cla() plt.clf() # Save fig - update dpi if need for printing if __name__ == '__main__': main()
mit
lamastex/scalable-data-science
dbcArchives/2021/000_0-sds-3-x-projects/student-project-08_group-DistributedEnsemble/00_project.py
1
34478
# Databricks notebook source # MAGIC %md # MAGIC ScaDaMaLe Course [site](https://lamastex.github.io/scalable-data-science/sds/3/x/) and [book](https://lamastex.github.io/ScaDaMaLe/index.html) # COMMAND ---------- # MAGIC %md # MAGIC # Distributed ensembles # MAGIC # MAGIC _Amanda Olmin, Amirhossein Ahmadian and Jakob Lindqvist_ # MAGIC # MAGIC [Video presentation](https://www.youtube.com/watch?v=zbYewn3nDtk) # COMMAND ---------- # MAGIC %md # MAGIC Python version: python 3.7 # MAGIC # MAGIC **Library dependencies** # MAGIC - PySpark # MAGIC - PyTorch # MAGIC - toolz # MAGIC - matplotlib # COMMAND ---------- # MAGIC %md # MAGIC ## Introduction # MAGIC # MAGIC In this project, we create a distributed ensemble of neural networks that we can train and make predictions with in a distributed fashion, and we also apply this model to the out-of-distribution detection problem [2] (detecting inputs that are highly dissimilar from the training data). # MAGIC # MAGIC #### Why ensembles? # MAGIC Ensembles of neural networks # MAGIC - often have better predictive performance than single ensemble members [1] # MAGIC - have shown to provide reliable uncertainty estimates # MAGIC # MAGIC The latter quality is beneficial in itself but is especially useful when it comes to tasks such as out-of-distribution detection, where a model’s uncertainty estimates can be used to determine if a sample is in-distribution or not. We demonstrate this in the experiments below. # MAGIC # MAGIC # MAGIC #### Distributed ensembles # MAGIC In Spark, it is common to distribute *data* over several worker nodes. In this way, the same function is performed on several nodes on different parts of the data. The result from each node is then communicated and aggregated to a final function output. Similarily, we can train a neural network (a single ensemble member) in a distributed way by distributing the data that we use to train it. This can for example be done using the built-in MLP and MLPC classes in Pyspark [3]. However, this approach requires continuous communication between nodes to update model weights (possibly at every iteration) since every node keeps its own version of the model weights. The approach therefore scales badly as # MAGIC - the number of model parameters grow (more information to communicate between nodes) # MAGIC - when the complexity of the training algorithm increases, e.g. we wish to use a stochastic training algorithm # MAGIC # MAGIC In this regard, the communication becomes a bottleneck. Asynchronous updating can reduce the amount of communication, but might also hurt model performance [4]. # MAGIC # MAGIC Considering that the ensemble members are independent models, they never need to communicate during the training phase. Hence, training ensemble members in a way that requires the otherwise independent training processes to integrate or synchronize, would cause unnecessary costs, for example since the training processes all need to communicate through the driver node. The same holds for prediction; no communication is needed between ensemble members except at the very end when the predictions are aggregated. # MAGIC # MAGIC To avoid unnecessary communication, we distribute the *ensemble members* and train them on separate worker nodes such that we # MAGIC - are able to train several ensemble members in parallell (limited by the number of nodes in our cluster) and independently # MAGIC - avoid communication between worker nodes # MAGIC # MAGIC To achieve this, we implement our own training processes below. In addition, we implement our own MLP class with the help of PyTorch. MLP objects and their training data are then distributed on worker nodes using Spark. This is not only to avoid distributing the training data over several nodes during training but also to package the ensemble members in a way that makes it possible for us to send them between the driver and the worker nodes prior to and at the end of training. # MAGIC # MAGIC <img src="files/shared_uploads/[email protected]/distributed_fig_small.png"/> # COMMAND ---------- # MAGIC %md # MAGIC ##Imports # COMMAND ---------- from random import randrange import random from pathlib import Path # External libs added to cluster from pyspark.mllib.random import RandomRDDs from pyspark.ml.feature import StringIndexer, OneHotEncoder, StandardScaler, VectorAssembler from pyspark.ml import Pipeline from pyspark.rdd import PipelinedRDD from toolz.itertoolz import partition_all from toolz.itertoolz import cons import numpy as np import torch import torch.nn as nn import torch.optim as optim from matplotlib import pyplot as plt # COMMAND ---------- # MAGIC %md # MAGIC ## Data # MAGIC # MAGIC We introduce the functions that we use to load the data for the experiments that we conduct. We split the available training data between ensemble members using sampling with or without replacement. The number of training data points that we can distribute to each ensemble member is only limited by the memory available to each worker node. # COMMAND ---------- # MAGIC %md # MAGIC **TOY DATA** # MAGIC # MAGIC We create a function for generating data consisting of Gaussian clusters. The function takes as input, user defined means and variances for each cluster in the data as well as the total number of observations and a vector of intended class proportions. It also comes with an option to split the final RDD into train and test sets. # MAGIC # MAGIC We will use this data later on to demonstrate our distributed ensembles framework as well as to generate out-of-distribution data for OOD detection. # COMMAND ---------- def create_gaussian_RDD(means, variances, num_observations, class_proportions, train_test_split=False): """Create toy Gaussian classification data Let C := number of clusters/classes and P := number of data features Args: means (np.array[float]): mean vector of shape (C, P) variances (np.array[float]): vector of variances, shape (C, P) num_observations (scalar[int]): the total number of observations in the final data set class_proportions (np.array[float]): vector of class proportions, length C train_test_split: whether to split the data into train/test sets or not Returns: Gaussian data, RDD of tuples (list(features), int(label)) """ assert means.shape[0] == variances.shape[0] assert means.shape[1] == variances.shape[1] assert class_proportions.sum() == 1 num_classes = means.shape[0] num_features = means.shape[1] data_rdd = sc.emptyRDD() for k in range(num_classes): # Generate standard normal data class_size = int(num_observations * class_proportions[k]) class_rdd = RandomRDDs.normalVectorRDD(sc, numRows=class_size, numCols=num_features, numPartitions=1) #, seed=123) # Map to true distribution class_rdd_transformed = class_rdd.map(lambda v: means[k, :] + (variances[k, :]**0.5) * v) # Add labels class_rdd_w_label = class_rdd_transformed.map(lambda v: (v, k)) data_rdd = data_rdd.union(class_rdd_w_label) # We will shuffle and repartition the data num_partitions = 10 shuffled_rdd = data_rdd.sortBy(lambda v: randrange(num_observations)).repartition(num_partitions) final_rdd = shuffled_rdd.map(tuple).map(lambda v: (list(v[0]), int(v[1]))) if train_test_split: train_rdd, test_rdd = final_rdd.randomSplit(weights=[0.8, 0.2], seed=12) final_rdd = (train_rdd, test_rdd) return final_rdd # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC **FIRE WALL DATA** # MAGIC # MAGIC We will also consider some real data. The dataset that we will use consits of traffic from a firewall tracking record. We have accessed it through the UCI Machine Learning repository [4]: https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data. # MAGIC # MAGIC - Number of data points: 65,532. # MAGIC # MAGIC - Number of features: 11 (all numerical). # MAGIC # MAGIC - Number of classes: 4 (allow/deny/drop/reset both). # COMMAND ---------- def load_firewall_data(train_test_split=False,file_location="/FileStore/shared_uploads/[email protected]/fire_wall_data.csv"): """Load and preprocess firewall data Args: file_location: file location from which to load the data train_test_split: whether to split the data into train/test sets or not Returns: Firewall data, RDD of tuples (list(features), int(label)) """ # File location and type # file_location = "/FileStore/shared_uploads/[email protected]/fire_wall_data.csv" file_type = "csv" # CSV options infer_schema = "true" first_row_is_header = "true" delimiter = "," # Load the data from file df = spark.read.format(file_type) \ .option("inferSchema", infer_schema) \ .option("header", first_row_is_header) \ .option("sep", delimiter) \ .load(file_location) # Preprocess data col_num = ["Source Port", "Destination Port", "NAT Source Port", "NAT Destination Port", "Bytes", "Bytes Sent", "Bytes Received", "Packets", "Elapsed Time (sec)", "pkts_sent", "pkts_received"] # Index qualitative variable indexer = StringIndexer(inputCol = "Action", outputCol = "label") # Scale numerical features va = VectorAssembler(inputCols = col_num, outputCol = "numerical_features") scaler = StandardScaler(inputCol = "numerical_features", outputCol = "features") # Apply pipeline pipeline = Pipeline(stages=[indexer, va, scaler]) final_df = pipeline.fit(df).transform(df).select("features", "label") # Convert to RDD final_rdd = final_df.rdd.map(tuple).map(lambda v: (list(v[0]), int(v[1]))) if train_test_split: train_rdd, test_rdd = final_rdd.randomSplit(weights=[0.8, 0.2], seed=12) final_rdd = (train_rdd, test_rdd) return final_rdd # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC ** RDD partition ** # MAGIC # MAGIC Below, we provide a function that partitions an RDD. We will use it to distribute data between ensemble members. # COMMAND ---------- def get_partitioned_rdd(input_rdd, partition_size=1000): """Partition RDD Args: input_rdd: RDD to be partitioned Returns: Partitioned RDD """ return input_rdd.mapPartitions(lambda partition: partition_all(partition_size, partition)) # COMMAND ---------- # MAGIC %md # MAGIC ## Distributed ensemble of neural networks # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC **PyTorch Model** # COMMAND ---------- # MAGIC %md # MAGIC To implement the ensemble members, we first write an ordinary feedforward (MLP) neural network class using PyTorch, which has a Softmax output and Tanh activation functions. The number of layers and neurons in each layer is passed as an argument to the constructor of this class. Moreover, any instance of this network class (parameters and structure) can be easily stored in and loaded from a state dictionary (state_dict) object. # COMMAND ---------- #Feedforward network for classification class MLP(nn.Module): def __init__(self,shape): #shape: number of neurons in each layer (including the input and output layers) super(MLP,self).__init__() self.units=nn.ModuleList() for i in range(len(shape)-1): self.units.append(nn.Linear(shape[i],shape[i+1])) self._shape=shape self._nlayers=len(shape) def forward(self,x): y=x for i,layer in enumerate(self.units): if i<self._nlayers-2: y=nn.functional.tanh(layer(y)) else: y=nn.functional.softmax(layer(y),dim=1) return y #constructing an instance of this class based on a state dictionary (network parameters) @staticmethod def from_state_dict(state_dict): net_shape = MLP.shape_from_state_dict(state_dict) net=MLP(net_shape) net.load_state_dict(state_dict) return net @staticmethod def shape_from_state_dict(state_dict): """Infer MLP layer shapes from state_dict""" iter_ = iter(state_dict.items()) _, input_size = next(iter_) bias_tensors = filter(lambda key_val: key_val[0].find("bias") != -1, iter_) shapes = map(lambda key_val: key_val[1].size(0), bias_tensors) return list(cons(input_size.size(1), shapes)) # COMMAND ---------- # MAGIC %md # MAGIC **Functions for training and testing networks** # COMMAND ---------- # MAGIC %md # MAGIC Here we have some functions that are used to train/test each individual network in the ensemble. The *Train* function takes the initial weights of a network, trains it on a set of input-taraget data based on stochastic gradient optimization and cross-entropy loss, and returns the state dictionary of the trained network. PyTorch's backpropagation and optimization tools are used to implement this function as usual. The *Predict* function simply takes the state dictionary corresponding to a network as well as a data point (or batch of data), and returns the output (probabilities) of the network at that point. # MAGIC # MAGIC We note that Spark can automatically distribute these functions on the nodes, and thus writing them for a distributed ensemble is not basically different from a local setup. # COMMAND ---------- #utility class for pytorch data loader class DataSet(torch.utils.data.Dataset): def __init__(self, x, y): self.x = x self.y = y def __len__(self): return self.x.shape[0] def __getitem__(self, ind): x = self.x[ind] y = self.y[ind] return x, y #The main training function (is run on worker nodes) def Train(net_params,x,y): #net_params: initial parameters of the feedforward network (state dictionary) #x,y: training data (pytorch tensors) n_epochs=100 batchsize=10 net=MLP.from_state_dict(net_params) train_data = DataSet(x, y) dataloader = torch.utils.data.DataLoader(train_data, batch_size=batchsize) opt=optim.Adam(net.parameters()) loss=nn.CrossEntropyLoss() for i in range(n_epochs): for batch in dataloader: opt.zero_grad() xb,yb=batch yhat=net(xb) err=loss(yhat,yb) err.backward() opt.step() err=loss(net(x),y) lossval=float(err.detach().numpy()) #returns parameters of the trained network and loss return (net.state_dict(),lossval) #Get the output of a feedforward network given an input tensor def Predict(net_params, x): #net_params: parameters (state dictionary) of the network #x: input (pytorch tensor) net = MLP.from_state_dict(net_params) net.eval() return net(x) #Reshaping and converting the tuples stored in a dataset RDD into input and target tensors def Totensor(d): #d: the dataset (list of tuples) x=[v[0] for v in d] y=[v[1] for v in d] x=torch.tensor(x,dtype=torch.float) y=torch.tensor(y,dtype=torch.long) return (x,y) def make_prediction(state_dict, x): print(state_dict) return Predict(state_dict, x) # COMMAND ---------- # MAGIC %md # MAGIC **Creating an ensemble of networks, and training them in parallel** # COMMAND ---------- # MAGIC %md # MAGIC We now use the class and functions defined above to create an ensemble of feedforward neural networks, and train it in a distributed fashion, where each network is trained on a single worker independently from the other ones. Firstly, several networks are initialized using the MLP class with a random number of hidden layers and neurons, and random initial weights. Using randomness helps to increase the diversity in the ensemble (without which, the outputs of ensemble members could get correlated with each other). # MAGIC # MAGIC As mentioned before, the training data is partioned into equal size parts, and each of the networks in the ensemble is assigned one part. Since the dataset is assumed to be an RDD (to let it be huge), an iterator object is needed which collects one part of the data RDD (transfers it from the cloud to the driver node) in each call. Note that we here implicitly assume that each part of the data (but not the whole dataset) fits into the memory of a single machine. # MAGIC # MAGIC After constructing the network object and loading data for each member of the ensemble, the state dictionary of the network and its corresponding training data are packed into a tuple, and appended to a list. The list of state_dict/data tuples is then parallelized to obtain an Spark RDD. We found out that it is difficult to directly put the PyTorch neural network objects in an RDD, apparently becasue Spark does not know by default how to encode these objects and transfer them between nodes. Therefore, we use the state dictionary instead, which contains all the necessary information about a network. # MAGIC # MAGIC Finally, the network training function (*Train* defined above) is applied to each element of the model/data RDD, in the form of a *map* operation. This tells Spark to run the function on each element in parallel (on worker machines) independently. # COMMAND ---------- def train_ensemble(n_models, inputdims, nclasses, max_layers, min_neurons, max_neurons, data_iterator): """Constructing and training a distributed ensemble of feedforward networks Args: n_models: number of the ensemble memebrs inputdims: number of features dimesnions nclasses: number of the classes max_layers: maximum allowed number of hidden layers for the networks min_neurons,max_neurons: the valid range for the number of neurons in each hidden layer data_iterator: a Python iterator over the parts of the training data (one part per each member of the ensemble) Returns: a list of state dictionaries of the trained networks """ # initialization model_data=[] # pairs of model parameters and their training data for i in range(n_models): # pick random number of hidden layers and neurons for each network nhidden=random.randint(1, max_layers) shape=[inputdims] for k in range(nhidden): shape.append(random.randint(min_neurons, max_neurons)) shape.append(nclasses) net=MLP(shape) #fetch the next part of data d=next(data_iterator) x=d[0] y=d[1] model_data.append((net.state_dict(),x,y)) # distribute the array model_data_par= sc.parallelize(model_data) # execute the train function on the worker nodes models_trained = model_data_par.map(lambda t: Train(*t)) #transfer the trained models and loss values to the driver models_trained=models_trained.collect() #print the training loss values print("training losses:") print([v[1] for v in models_trained]) # return the state dicts return [v[0] for v in models_trained] # COMMAND ---------- # MAGIC %md # MAGIC ** Utility functions for saving and loading the ensemble model from the disk ** # COMMAND ---------- def save_models_distr(models, dir_, model_names=None): dir_ = Path(dir_) dir_.mkdir(exist_ok=True, parents=True) if model_names is None: model_names = [f"m{idx}.pt" for idx in range(0, models.count())] assert len(model_names) == models.count() model_paths = [dir_ / model_name for model_name in model_names] model_paths = sc.parallelize(model_paths) models.zip(model_paths).foreach(lambda dict_and_path: torch.save(*dict_and_path)) def save_models(models, dir_, model_names=None): dir_ = Path(dir_) dir_.mkdir(exist_ok=True, parents=True) if model_names is None: model_names = [f"m{idx}.pt" for idx in range(0, len(models))] assert len(model_names) == len(models) model_paths = [dir_ / model_name for model_name in model_names] for state_dict, path in zip(models, model_paths): torch.save(state_dict, path) def load_models(model_names, dir_): dir_ = Path(dir_) model_paths = [dir_ / model_name for model_name in model_names] state_dicts = [torch.load(path) for path in model_paths] return sc.parallelize(state_dicts) # COMMAND ---------- # MAGIC %md # MAGIC # Distributed ensembles prediction API # MAGIC # MAGIC From the training process we get a distributed iterator `models` over the trained models. # MAGIC (NB. the `train_ensemble` function actually collects the trained models for convenience.) # MAGIC Internally this is an iterator over `torch.state_dicts` holding the param's of each model respectively. # MAGIC # MAGIC There are different ways in which we can do predictions: # MAGIC # MAGIC - Distributed predictions with `ens_preds(models, test_x)`, which maps the combined model and test data to predictions for each data point. # MAGIC This iterator can be collected to a list of the predictions for each ensemble member, or further processed in a distributed and functional manner. # MAGIC This is the most flexible variant since it preserves the prediction of every member on every datapoint. # MAGIC It is also the most expensive (if we do collect all the data). # MAGIC # MAGIC - Reduced/aggregated predictions with `ens_preds_reduced(models, test_x, red_fn)`. Working with an ensemble, we are often concerned with some aggregate of the members' predictions, eg., the average prediction. # MAGIC For this we provide an reducing version of `ens_preds` where the user need only supply the reduce function `red_fn`, describing how to combine the predictions of two ensemble members. # MAGIC For instance, if you would like to get the average probability vector of a classifier ensemble for every data point you would use: # MAGIC ```python # MAGIC avg_prob_vecs = ens_preds_reduced(models, x, lambda x, y: (x+y)/2) # MAGIC ``` # MAGIC Internally, this simply calls `.reduce(red_fn)` on the iterator returned from `ens_preds`. This is merely a convenience function. # MAGIC # MAGIC - Metrics per ensemble member. If the number of test samples is large, we will collect a lot of predictions over the cluster. If we know that we only want an aggregate metric for each member across the whole test data, # MAGIC we use the `ens_metrics` method for aggregation on the worker nodes. # MAGIC ```python # MAGIC avg_acc_per_member = ens_metrics(models, test_input, test_true_labels, <list of metric functions>) # MAGIC ``` # MAGIC Note that each metric function must be on the form: f: R^(N x D_x) x R^(N) --> T # COMMAND ---------- def ens_preds(models, test_x): """Distributed ensemble predictions Takes a set of models and test data and makes distributed predictions Let N := number of data points and D_x := the dimension of a single datapoint x Args: models (list[state_dict]): set of models represented as a list (state_dict, shape) test_x (torch.Tensor): Tensor of size (N, D_x) Returns: Distributed iterator over the predictions. E.g. an iterator over probability vectors in the case of a classifier ens. """ pred_iter = _pred_models_iter(models, test_x) return pred_iter.map(lambda t: Predict(*t)) def ens_preds_reduced(models, test_x, red_fn): """Reduced/aggregated ensemble predictions Takes a set of models and test data and makes distributed predictions and reduces them with a provided `red_fn` Let N := number of data points and D_x := the dimension of a single datapoint x Args: models (list[state_dict]): set of models represented as a list (state_dict, shape) test_x (torch.Tensor): Tensor of size (N, D_x) red_fn function: f: R^D_x x R^D_x --> R^D_x Returns: Single reduced/aggregated prediction of the whole ensemble """ return ens_preds(models, test_x).reduce(red_fn) def ens_metrics(models, test_x, test_y, metrics): """Distributed ensemble metrics Takes a set of models and test data, predicts probability vectors and calculates the provided metrics given true labels `test_y` Let N := number of data points and D_x := the dimension of a single datapoint x Args: models (list[state_dict]): set of models represented as a list (state_dict, shape) test_x (torch.Tensor): Tensor of size (N, D_x) test_y (torch.Tensor): Tensor of size (N). NB: hard labels metrics (list[functions]): List of functions where each funcion f: R^(N x D_x) x R^(N) --> T, where T is a generic output type. """ return ens_preds(models, test_x).map(lambda prob_vecs: [metric(prob_vecs, test_y) for metric in metrics]) def _pred_models_iter(models, test_x): """Helper function to generate a distributed iterator over models and test data NB: the same `test_x` is given to all elements in the iterator Args: models (list[state_dict]): set of models represented as a list (state_dict, shape) test_x (torch.Tensor): Tensor of size (N, D_x) """ if isinstance(models, PipelinedRDD): return models.map(lambda model: (model, test_x)) elif isinstance(models, list): models_and_data = [(params, test_x) for params in models] return sc.parallelize(models_and_data) else: raise TypeError("'models' must be an RDD or a list") def avg_accuracy(prob_vecs, labels): """Example metrics function: average accuracy Let N := number of data points and C := the number of classes Args: prob_vecs (torch.Tensor): Tensor of size (N, C) labels (torch.Tensor): Tensor of size (N), hard labels, with classes corresponding to indices 0, ..., C-1 Returns: torch.Tensor: Tensor of size (N), average accuracy over all datapoints. """ hard_preds = torch.argmax(prob_vecs, 1) return (hard_preds == labels).float().mean() def entropy(prob_vecs): return - (prob_vecs * torch.log(prob_vecs)).sum(1) def avg_entropy(prob_vec_1, prob_vec_2): e_1 = entropy(prob_vec_1) e_2 = entropy(prob_vec_2) return (e_1 + e_2) # COMMAND ---------- # MAGIC %md # MAGIC # Application example: Distributed predictions # MAGIC # MAGIC Let's first demonstrate our distributed ensembles with a simple toy example. # MAGIC We'll create gaussian toy data with three slightly overlapping clusters: # COMMAND ---------- means = np.array([(0, 0), (1,0), (1, 1)]) variances = 0.1 * np.ones((3, 2)) num_observations = 5000 class_proportions = np.array([1/3, 1/3, 1/3]) data_train, data_test = create_gaussian_RDD(means, variances, num_observations, class_proportions, train_test_split=True) # COMMAND ---------- # MAGIC %md # MAGIC Now we'll create and distributedly train a classifier ensemble and save it to file. # MAGIC This is not necessary, we can -- in fact -- make predictions with the trained ensemble without ever collecting it from the worker nodes, but in most use cases it will be convenient to save the ensemble on disk. # COMMAND ---------- data_iterator=get_partitioned_rdd(data_train).map(Totensor).toLocalIterator() n_models=5 # ensemble size inputdims=2 # features dimensions nclasses=3 # number of classes max_layers=2 min_neurons=2 max_neurons=5 models_trained = train_ensemble(n_models, inputdims, nclasses, max_layers, min_neurons, max_neurons, data_iterator) saved_models_dir = Path("saved_models/gaussian") save_models(models_trained, saved_models_dir) # COMMAND ---------- # MAGIC %md # MAGIC ## Making distributed predictions # MAGIC # MAGIC With the trained ensemble we can make predictions and calculate metrics, all in a distributed manner. # COMMAND ---------- test_xx, test_yy = Totensor(data_test.collect()) model_names = [f"m{idx}.pt" for idx in range(n_models)] models = load_models(model_names, saved_models_dir).collect() avg_prob_vecs = ens_preds_reduced(models, test_xx, lambda x, y: (x+y)/2) # (A single) Average prob. vec for all data points. avg_acc = ens_metrics(models, test_xx, test_yy, [avg_accuracy]).collect() # Average acc. for each ens. over all data points print(f"Average accuracy for each ensemble member: {[acc[0].item() for acc in avg_acc]}") print(f"Average accuracy for the whole ensemble: {avg_accuracy(avg_prob_vecs, test_yy).item()}") # COMMAND ---------- # MAGIC %md # MAGIC We can also make use of the uncertainty description provided by the ensemble. # MAGIC We'll plot the test data, each point coloured the predicted distribution, which will illustrate the certain predictions with distinct colur and uncertain with muddied colours. # COMMAND ---------- preds = avg_prob_vecs.detach().numpy() hard_preds = avg_prob_vecs.argmax(1).detach().numpy() every_nth = 5 train_xx, train_yy = Totensor(data_train.collect()) (fig, (ax_1, ax_2)) = plt.subplots(1, 2) # For the train data we use the true labels to simulate a completely certain prediction. color_map = {0: [1, 0 ,0], 1: [0, 1, 0], 2: [0, 0, 1]} ax_1.scatter(train_xx[:, 0], train_xx[:, 1], c=[color_map[class_.item()] for class_ in train_yy], label="Train") ax_2.scatter(test_xx[::every_nth, 0], test_xx[::every_nth, 1], c=preds[::every_nth], label="Test") ax_1.set_title("Train") ax_2.set_title("Test") plt.show() # COMMAND ---------- # MAGIC %md # MAGIC # Application example: Out of distribution detection # MAGIC # MAGIC Our distributed ensemble can be used for out of distribution (OOD) detection. # MAGIC A simple way is to measure the entropy of the combined ensemble prediction; high entropy signals weird data, not seen in the training distribution. # MAGIC # MAGIC "Real world" out of distribution data can be hard to come by, but a typical example would be images in different contexts. E.g. scenic vistas or pathology scans may share the same feature space but have very different distribution. For the data we have collected, no such OOD set exists, so we will showcase it with an OOD set of gaussian noise. # MAGIC Of course, noise that is very far from the in distribution (ID) data will saturate the classifiers softmax for one element, actually yielding very confident, low entropy, nonsense predictions. # MAGIC # MAGIC Regardless, let's see how to do this with the distributed ensemble. # MAGIC First, we train it and again, save the trained parameters to file # COMMAND ---------- data_train, data_test = load_firewall_data(True) data_iterator=get_partitioned_rdd(data_train).map(Totensor).toLocalIterator() n_models=10 models_trained=train_ensemble(n_models, inputdims=11, nclasses=4, max_layers=4, min_neurons=5, max_neurons=15, data_iterator=data_iterator) saved_models_dir = Path("saved_models/firewall") save_models(models_trained, saved_models_dir) # COMMAND ---------- def gen_ood_data(test_x, num_samples): num_test_samples, dim_x = test_x.size() random_mean = np.random.rand(dim_x).reshape(1, dim_x) random_cov = np.random.rand(dim_x).reshape(1, dim_x) * 10 ood_x, _ = Totensor(create_gaussian_RDD(random_mean, random_cov, num_test_samples, np.array([1.0]), train_test_split=False).collect()) return ood_x data = data_test.collect() batch_size = -1 batch = data[0:batch_size] test_xx, test_yy = Totensor(batch) ood_x = gen_ood_data(test_xx, batch_size) models_p = load_models(model_names, saved_models_dir).collect() # We can either calculate the average entropy of the ensemble members avg_entropy_id = ens_preds(models_p, test_xx).map(entropy).reduce(lambda x, y: (x+y)/2).detach().numpy() avg_entropy_ood = ens_preds(models_p, ood_x).map(entropy).reduce(lambda x, y: (x+y)/2).detach().numpy() # ... or we the entropy of the average ensemble prediction. entropy_avg_id = entropy(ens_preds_reduced(models_p, test_xx, lambda x, y: (x+y)/2)).detach().numpy() entropy_avg_ood = entropy(ens_preds_reduced(models_p, ood_x, lambda x, y: (x+y)/2)).detach().numpy() # Set entropy measure entropy_id = avg_entropy_id entropy_ood = avg_entropy_ood # COMMAND ---------- # MAGIC %md # MAGIC **Comparison of the entropy of the ensemble classifier on in-distribution and OOD data** # COMMAND ---------- def entropy_hist(id_, ood, n_bins, upper_x_bound): (fig, (ax_1, ax_2)) = plt.subplots(2, 1) _plot_hist(ax_1, id_, n_bins, "ID", "b", upper_x_bound) _plot_hist(ax_2, ood, n_bins, "OOD", "r", upper_x_bound) fig.suptitle("Entropy histogram") ax_2.set_xlabel("entropy") plt.show() def _plot_hist(ax, counts, n_bins, label, color, upper_x_bound): ax.hist(counts, bins=n_bins, label=label, color=color, density=True) ax.set_xbound(lower = 0.0, upper = upper_x_bound) ax.set_ylabel("rel freq") ax.legend() n_bins = 100 entropy_bound = 0.15 entropy_hist(entropy_id, entropy_ood, n_bins, entropy_bound) # COMMAND ---------- # MAGIC %md # MAGIC **Evaluation of the OOD detection in terms of ROC curve and area under this curve (AUROC)** # COMMAND ---------- def is_ood(entropies, cut_off_entropy): return entropies > cut_off_entropy def fpr_and_tpr(id_, ood, res): max_entropy = max(id_.max(), ood.max()) # max_entropy = id_.max() thresholds = np.arange(0.0, max_entropy, max_entropy / res) roc = np.array([(fpr(id_, th), tpr(ood, th)) for th in thresholds]) roc = roc[roc[:,0].argsort()] fprs, tprs = (roc[:, 0], roc[:, 1]) return fprs, tprs def fpr(id_, th): id_pred = is_ood(id_, th) fp = id_pred.sum() tn = id_pred.shape[0] - fp return fp / (tn + fp) def tpr(ood, th): ood_pred = is_ood(ood, th) tp = ood_pred.sum() fn = ood_pred.shape[0] - tp return tp / (tp + fn) fpr, tpr = fpr_and_tpr(avg_entropy_id, avg_entropy_ood, res = 100) (fig, ax) = plt.subplots() ax.plot(fpr, tpr) ax.set_xlabel("FPR") ax.set_ylabel("TPR") ax.set_title("ROC") # COMMAND ---------- print(f"AUROC: {np.trapz(tpr, fpr)}") # COMMAND ---------- # MAGIC %md # MAGIC ## References # MAGIC [1] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. In Advances in neural information processing systems (pp. 6402-6413). # MAGIC # MAGIC [2] Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., ... & Snoek, J. (2019). Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift. In Advances in Neural Information Processing Systems (pp. 13991-14002). # MAGIC # MAGIC [3] Apache Spark. (2021, 01, 11). Classification and Regression [https://spark.apache.org/docs/latest/ml-classification-regression.html]. # MAGIC # MAGIC [4] Chen, J., Pan, X., Monga, R., Bengio, S., & Jozefowicz, R. (2016). Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981. # MAGIC # MAGIC [5] Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
unlicense
pierre-chaville/automlk
automlk/worker.py
1
24631
import eli5 import threading import _thread import sys import os from copy import deepcopy from .config import * from .dataset import get_dataset, get_dataset_status from .graphs import graph_histogram_regression, graph_histogram_classification, graph_predict_regression, \ graph_predict_classification from .prepare import get_eval_sets from .solutions import * from .monitor import * from .metrics import evaluate_metric from .specific import apply_specific_metrics, return_specific_metrics from .solutions_pp import pp_solutions_map from .results import get_pred_eval_test from .xyset import XySet from sklearn.pipeline import make_pipeline log = logging.getLogger(__name__) def get_search_rounds(dataset_id): """ get all the results of the search with preprocessing and models :param dataset_id: id of the dataset :return: results of the search as a dataframe """ results = list_key_store('dataset:%s:rounds' % dataset_id) return pd.DataFrame(results) def create_model_json(dataset_id, round_id): """ creates a json file to be downloaded :param dataset_id: id of the dataset :param round_id: id of the round :return: file name """ search = get_search_rounds(dataset_id) round = search[search.round_id == int(round_id)].to_dict(orient='records')[0] d = {} for key in ['solution', 'pipeline', 'model_params', 'mode', 'model_class', 'level']: d[key] = round[key] # update n_estimators when early stopping solution = model_solutions_map[round['solution']] if solution.early_stopping != '': model = pickle.load(open(get_dataset_folder(dataset_id) + '/models/%s_model.pkl' % round_id, 'rb')) if hasattr(model, 'n_estimators'): d['model_params']['n_estimators'] = model.n_estimators filename = get_dataset_folder(dataset_id) + '/models/model_%s.json' % round_id with open(filename, 'w') as f: f.write(json.dumps(d)) return filename def __timer_control(f_stop): global __worker_timer_start global __worker_timer_limit global __worker_dataset t = time.time() # check if duration > max if (__worker_timer_limit > 0) and (t - __worker_timer_start > __worker_timer_limit): f_stop.set() log.info('max delay %d seconds reached...' % __worker_timer_limit) _thread.interrupt_main() # check dataset is in searching model if __worker_dataset != '': if get_dataset_status(__worker_dataset) != 'searching': f_stop.set() log.info('dataset %s is no more in searching mode, aborting...' % __worker_dataset) _thread.interrupt_main() if not f_stop.is_set(): # call again in 10 seconds threading.Timer(10, __timer_control, [f_stop]).start() def worker_loop(worker_id, gpu=False): """ periodically pool the receiver queue for a search job :param worker_id: index of the worker on this machine :param gpu: can use gpu on this machine :return: """ global __worker_timer_start global __worker_timer_limit global __worker_dataset __worker_dataset = '' __worker_timer_start = 0 __worker_timer_limit = 0 f_stop = threading.Event() # start calling f now and every 60 sec thereafter __timer_control(f_stop) while True: try: # poll queue msg_search = brpop_key_store('controller:search_queue') heart_beep('worker', msg_search, worker_id, gpu) __worker_timer_start = time.time() __worker_timer_limit = 0 __worker_dataset = '' if msg_search is not None: __worker_dataset = msg_search['dataset_id'] __worker_timer_limit = msg_search['time_limit'] log.info('received %s' % msg_search) msg_search = {**msg_search, **{'start_time': datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), 'host_name': socket.gethostname()}} job_search(msg_search) except KeyboardInterrupt: log.info('Keyboard interrupt: exiting') # stop the timer thread f_stop.set() exit() except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] log.error('%s in %s line:%s error: %s' % (exc_type.__name__, fname, str(exc_tb.tb_lineno), str(e))) with open(get_data_folder() + '/errors.txt', 'a') as f: f.write(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") + str(msg_search) + '\n') f.write('%s in %s line:%s error: %s' % (exc_type.__name__, fname, str(exc_tb.tb_lineno), str(e)) + '\n') f.write('-'*80 + '\n') def job_search(msg_search): """ execute the search on the scope defined in the messsage msg :param msg_search: message with parameters of the searcg :return: """ # load dataset dataset = get_dataset(msg_search['dataset_id']) # define function for specific metric if any if dataset.metric == 'specific': apply_specific_metrics(dataset.dataset_id) # load train/eval/test data ds_ini = get_eval_sets(msg_search['dataset_id']) if msg_search['level'] == 2: ds_ini = __create_stacking(dataset, __get_pool_models(dataset, msg_search['ensemble_depth']), ds_ini) # pre-processing t_start = time.time() feature_names, ds, pipe = __pre_processing(dataset, msg_search['pipeline'], deepcopy(ds_ini)) t_end = time.time() msg_search['duration_process'] = int(t_end - t_start) # generate model from solution solution = model_solutions_map[msg_search['solution']] if solution.is_wrapper: model = solution.model(**{**{'problem_type': dataset.problem_type, 'y_n_classes': dataset.y_n_classes}, **msg_search['model_params']}) else: model = solution.model(**msg_search['model_params']) msg_search['model_class'] = model.__class__.__name__ pipe_transform, pipe_model = make_pipeline(*pipe), make_pipeline(*(pipe + [model])) # then proceed to the search __search(dataset, feature_names, solution, pipe_transform, pipe_model, model, msg_search, ds) def make_model(dataset, msg_search, ds_ini): # pre-processing feature_names, ds, pipe = __pre_processing(dataset, msg_search['pipeline'], deepcopy(ds_ini)) # generate model from solution solution = model_solutions_map[msg_search['solution']] if solution.is_wrapper: model = solution.model(**{**{'problem_type': dataset.problem_type, 'y_n_classes': dataset.y_n_classes}, **msg_search['model_params']}) else: model = solution.model(**msg_search['model_params']) msg_search['model_class'] = model.__class__.__name__ pipe_transform, pipe_model = make_pipeline(*pipe), make_pipeline(*(pipe + [model])) return pipe_model def __pre_processing(dataset, pipeline, ds): # performs the different pre-processing steps pipe = [] feature_names = None p_context = [{'name': f.name, 'col_type': f.col_type, 'raw_type': f.raw_type, 'n_missing': int(f.n_missing), 'n_unique_values': int(f.n_unique_values), 'text_ref': f.text_ref} for f in dataset.features if f.name in dataset.x_cols] for ref, category, name, params in pipeline: if category != 'sampling': solution = pp_solutions_map[ref] p_class = solution.process process = p_class(**{**params, 'context': p_context}) log.info('executing process %s %s %s' % (category, name, process.transformer_params)) ds.X_train = process.fit_transform(ds.X_train, ds.y_train) pipe.append(process) if len(ds.X_test) > 0: ds.X_test = process.transform(ds.X_test) ds.X = process.transform(ds.X) if len(ds.X_submit) > 0: ds.X_submit = process.transform(ds.X_submit) log.info('-> %d features (%s)' % (len(process.get_feature_names()), type(ds.X_train))) feature_names = process.get_feature_names() return feature_names, ds, pipe def __search(dataset, feature_names, solution, pipe_transform, pipe_model, model, msg_search, ds): log.info('optimizing with %s, params: %s' % (solution.name, msg_search['model_params'])) # fit, test & score t_start = time.time() round_id = msg_search['round_id'] level = msg_search['level'] threshold = msg_search['threshold'] pct = msg_search['pct'] cv = msg_search['cv'] outlier, y_pred_eval_list, y_pred_test, y_pred_submit, ds = __cross_validation(solution, model, dataset, ds, threshold, pct, cv) if hasattr(model, 'num_rounds'): msg_search['num_rounds'] = model.num_rounds elif hasattr(model, 'n_estimators'): msg_search['num_rounds'] = model.n_estimators else: msg_search['num_rounds'] = None # check outlier if outlier: log.info('outlier, skipping this round') return # save model importance if level == 2 and solution.is_wrapper: __save_importance(model.model, dataset, feature_names, round_id) else: __save_importance(model, dataset, feature_names, round_id) # create eval and submit results y_pred_eval = __create_eval_submit(dataset, ds, round_id, y_pred_eval_list, y_pred_submit, cv) # save predictions (eval and test set) pickle.dump([y_pred_eval, y_pred_test, y_pred_submit], open(get_dataset_folder(dataset.dataset_id) + '/predict/%s.pkl' % round_id, 'wb')) # then feature names pickle.dump(ds.X_train.columns, open( get_dataset_folder(dataset.dataset_id) + '/models/' + '%s_feature_names.pkl' % msg_search['round_id'], 'wb')) # generate graphs __create_graphs(dataset, round_id, ds, y_pred_eval, y_pred_test) t_end = time.time() msg_search['duration_model'] = int(t_end - t_start) # calculate metrics __evaluate_round(dataset, msg_search, ds.y_train, y_pred_eval, ds.y_test, y_pred_test, ds.y_eval_list, y_pred_eval_list) # then save model, pipe __save_model(dataset, round_id, pipe_transform, pipe_model, model) # explain model __explain_model(dataset, msg_search['round_id'], pipe_model, model, feature_names) def __cross_validation(solution, model, dataset, ds, threshold, pct, cv): # performs a cross validation on cv_folds, and predict also on X_test y_pred_eval, y_pred_test, y_pred_submit = [], [], [] for i, (train_index, eval_index) in enumerate(ds.cv_folds): # use only a percentage of data (default is 100% ) train_index1 = train_index[:int(len(train_index)*pct)] X1, y1 = ds.X_train.iloc[train_index1], ds.y_train[train_index1] X2, y2 = ds.X_train.iloc[eval_index], ds.y_train[eval_index] if i == 0 and solution.use_early_stopping: log.info('early stopping round') if __fit_early_stopping(solution, model, dataset, threshold, X1, y1, X2, y2): return True, 0, 0, 0, ds # then train on train set and predict on eval set model.fit(X1, y1) y_pred = __predict(solution, model, X2) if threshold != 0: # test outlier: score = __evaluate_metric(dataset, y2, y_pred) if score > threshold: log.info('%dth round found outlier: %.5f with threshold %.5f' % (i, score, threshold)) return True, 0, 0, 0, ds y_pred_eval.append(y_pred) # we also predict on test & submit set (to be averaged later) y_pred_test.append(__predict(solution, model, ds.X_test)) if not cv: # we stop at the first fold y_pred_test = y_pred_test[0] if dataset.mode == 'competition': y_pred_submit = __predict(solution, model, ds.X_submit) # update y_train on fold, in order to compute metrics and graphs ds.y_train = y2 return False, y_pred_eval, y_pred_test, y_pred_submit, ds if dataset.mode == 'standard': # train on complete train set model.fit(ds.X_train, ds.y_train) y_pred_test = __predict(solution, model, ds.X_test) else: # train on complete X y set model.fit(ds.X, ds.y) if dataset.mode == 'competition': y_pred_submit = __predict(solution, model, ds.X_submit) # test = mean of y_pred_test on multiple folds y_pred_test = np.mean(y_pred_test, axis=0) else: y_pred_test = __predict(solution, model, ds.X_test) return False, y_pred_eval, y_pred_test, y_pred_submit, ds def __create_stacking(dataset, pool, ds): # create X by stacking predictions for j, (u, m, p_eval, p_test, p_submit) in enumerate( zip(pool.pool_model_round_ids, pool.pool_model_names, pool.pool_eval_preds, pool.pool_test_preds, pool.pool_submit_preds)): # check if array has 2 dimensions shape = len(np.shape(p_eval)) if shape == 1: p_eval = np.reshape(p_eval, (len(p_eval), 1)) p_test = np.reshape(p_test, (len(p_test), 1)) if dataset.mode == 'competition': p_submit = np.reshape(p_submit, (len(p_submit), 1)) if j == 0: ds.X_train = p_eval ds.X_test = p_test if dataset.mode == 'competition': ds.X_submit = p_submit else: # stack vertically the predictions ds.X_train = np.concatenate((ds.X_train, p_eval), axis=1) ds.X_test = np.concatenate((ds.X_test, p_test), axis=1) if dataset.mode == 'competition': ds.X_submit = np.concatenate((ds.X_submit, p_submit), axis=1) # then convert to dataframes ds.X_train, ds.X_test, ds.X_submit = pd.DataFrame(ds.X_train), pd.DataFrame(ds.X_test), pd.DataFrame(ds.X_submit) # update feature names feature_names = __get_pool_features(dataset, pool) ds.X_train.columns = feature_names if len(ds.X_test) > 0: ds.X_test.columns = feature_names if len(ds.X_submit) > 0: ds.X_submit.columns = feature_names # X and y for fit ds.X = pd.concat([ds.X_train, ds.X_test]) ds.y = np.concatenate((ds.y_train, ds.y_test)) return ds def __create_eval_submit(dataset, ds, round_id, y_pred_eval_list, y_pred_submit, cv): # create eval and submit results from lists if cv: # y_pred_eval as concat of folds y_pred_eval = np.concatenate(y_pred_eval_list) # reindex eval to be aligned with y y_pred_eval[ds.i_eval] = y_pred_eval.copy() else: y_pred_eval = y_pred_eval_list[0] # generate submit file if dataset.filename_submit != '': ls = len(ds.id_submit) # if dataset.problem_type == 'regression': if np.shape(y_pred_submit)[1] == 1: submit = np.concatenate((np.reshape(ds.id_submit, (ls, 1)), np.reshape(y_pred_submit, (ls, 1))), axis=1) else: submit = np.concatenate((np.reshape(ds.id_submit, (ls, 1)), np.reshape(y_pred_submit[:, 1], (ls, 1))), axis=1) # create submission file df_submit = pd.DataFrame(submit) df_submit.columns = [dataset.col_submit, dataset.y_col] # allocate id column to avoid type conversion (to float) df_submit[dataset.col_submit] = np.reshape(ds.id_submit, (ls, 1)) df_submit.to_csv(get_dataset_folder(dataset.dataset_id) + '/submit/submit_%s.csv' % round_id, index=False) return y_pred_eval def __create_graphs(dataset, round_id, ds, y_pred_eval, y_pred_test): # generate graphs if dataset.problem_type == 'regression': graph_predict_regression(dataset, round_id, ds.y_train, y_pred_eval, 'eval') graph_predict_regression(dataset, round_id, ds.y_test, y_pred_test, 'test') graph_histogram_regression(dataset, round_id, y_pred_eval, 'eval') graph_histogram_regression(dataset, round_id, y_pred_test, 'test') else: graph_predict_classification(dataset, round_id, ds.y_train, y_pred_eval, 'eval') graph_predict_classification(dataset, round_id, ds.y_test, y_pred_test, 'test') graph_histogram_classification(dataset, round_id, y_pred_eval, 'eval') graph_histogram_classification(dataset, round_id, y_pred_test, 'test') def __fit_early_stopping(solution, model, dataset, threshold, X1, y1, X2, y2): # fit with early stopping the model if solution.is_wrapper: # with early stopping, we perform an initial round to get number of rounds model.fit_early_stopping(X1, y1, X2, y2) else: model.fit(X1, y1, eval_set=[(X2, y2)], early_stopping_rounds=PATIENCE, verbose=False) if solution.early_stopping == 'LGBM': num_rounds = model.best_iteration_ if model.best_iteration_ != 0 else MAX_ROUNDS elif solution.early_stopping == 'XGB': num_rounds = model.best_iteration if model.best_iteration != 0 else MAX_ROUNDS params = model.get_params() params['n_estimators'] = num_rounds model.set_params(**params) log.info('early stopping best iteration = %d' % num_rounds) if threshold != 0: # test outlier (i.e. exceeds threshold) y_pred = __predict(solution, model, X2) score = __evaluate_metric(dataset, y2, y_pred) if score > threshold: log.info('early stopping found outlier: %.5f with threshold %.5f' % (score, threshold)) time.sleep(10) return True return False def __predict(solution, model, X): if solution.problem_type == 'regression': return model.predict(X) else: return model.predict_proba(X) def __resample(pipeline, X, y): # apply resampling steps in pipeline for ref, category, name, params in pipeline: if category == 'sampling': solution = pp_solutions_map[ref] p_class = solution.process process = p_class(params) return process.fit_sample(X, y) return X, y def __save_importance(model, dataset, feature_names, round_id): # saves feature importance (as a dataframe) if hasattr(model, 'feature_importances_'): importance = pd.DataFrame(feature_names) importance['importance'] = model.feature_importances_ importance.columns = ['feature', 'importance'] pickle.dump(importance, open(get_dataset_folder(dataset.dataset_id) + '/features/%s.pkl' % round_id, 'wb')) elif hasattr(model, 'dict_importance_'): # xgboost type: feature importance is a dictionary imp = model.dict_importance_ importance = pd.DataFrame([{'feature': key, 'importance': imp[key]} for key in imp.keys()]) pickle.dump(importance, open(get_dataset_folder(dataset.dataset_id) + '/features/%s.pkl' % round_id, 'wb')) def __evaluate_round(dataset, msg_search, y_train, y_pred_eval, y_test, y_pred_test, y_eval_list, y_pred_eval_list): # score on full eval set, test set and cv msg_search['score_eval'] = __evaluate_metric(dataset, y_train, y_pred_eval) msg_search['score_test'] = __evaluate_metric(dataset, y_test, y_pred_test) msg_search['scores_cv'] = [__evaluate_metric(dataset, y_act, y_pred) for y_act, y_pred in zip(y_eval_list, y_pred_eval_list)] msg_search['cv_mean'] = np.mean(msg_search['scores_cv']) msg_search['cv_std'] = np.std(msg_search['scores_cv']) msg_search['cv_max'] = np.max(msg_search['scores_cv']) # score with secondary metrics msg_search['eval_other_metrics'] = {m: __evaluate_other_metrics(dataset, m, y_train, y_pred_eval) for m in dataset.other_metrics} msg_search['test_other_metrics'] = {m: __evaluate_other_metrics(dataset, m, y_test, y_pred_test) for m in dataset.other_metrics} rpush_key_store(RESULTS_QUEUE, msg_search) log.info('completed search') def __get_pool_features(dataset, pool): # return the lst of features in an ensemble model if dataset.problem_type == 'regression': feature_names = [name + '_' + str(round_id) for round_id, name in zip(pool.pool_model_round_ids, pool.pool_model_names)] else: feature_names = [] for round_id, name in zip(pool.pool_model_round_ids, pool.pool_model_names): for k in range(dataset.y_n_classes): feature_names.append(name + '_' + str(k) + '_' + str(round_id)) return feature_names def __get_pool_models(dataset, depth): # retrieves all results in order to build and ensemble df = get_search_rounds(dataset.dataset_id) # keep only the first (depth) models of level 0 df = df[((df.level == 1) & (df.score_eval != METRIC_NULL)) & df.cv].sort_values(by=['model_name', 'score_eval']) round_ids = [] model_names = [] k_model = '' for index, row in df.iterrows(): if k_model != row['model_name']: count_model = 0 k_model = row['model_name'] if count_model > depth: continue model_names.append(row['model_name']) round_ids.append(row['round_id']) count_model += 1 log.info('length of pool: %d for ensemble of depth %d' % (len(round_ids), depth)) # retrieves predictions preds = [get_pred_eval_test(dataset.dataset_id, round_id) for round_id in round_ids] # exclude predictions with nan excluded = [i for i, x in enumerate(preds) if not (np.max(x[0]) == np.max(x[0]))] preds = [x for i, x in enumerate(preds) if i not in excluded] round_ids = [x for i, x in enumerate(round_ids) if i not in excluded] model_names = [x for i, x in enumerate(model_names) if i not in excluded] preds_eval = [x[0] for x in preds] preds_test = [x[1] for x in preds] preds_submit = [x[2] for x in preds] return EnsemblePool(round_ids, model_names, preds_eval, preds_test, preds_submit) def __store_search_error(dataset, t, e, model): log.info('Error: %s' % e) # track error def __evaluate_metric(dataset, y_act, y_pred): """ evaluates primary metrics for the dataset :param dataset: dataset object :param y_act: actual values :param y_pred: predicted values :return: metrics """ if dataset.metric == 'specific': if dataset.best_is_min: return return_specific_metrics(y_act, y_pred) else: return -return_specific_metrics(y_act, y_pred) else: return evaluate_metric(y_act, y_pred, dataset.metric, dataset.y_n_classes) def __evaluate_other_metrics(dataset, m, y_act, y_pred): """ evaluates other metrics for the dataset :param dataset: dataset object :param m: name of the other metric :param y_act: actual values :param y_pred: predicted values :return: metrics """ return evaluate_metric(y_act, y_pred, m, dataset.y_n_classes) def __save_model(dataset, round_id, pipe_transform, pipe_model, model): """ save model, pipe :param dataset: dataset object :param round_id: round id :param pipe_transform: sklearn pipeline of pre-processing steps only :param pipe_model: sklearn pipeline of pre-processing steps + model :param model: estimator model :return: """ folder = get_dataset_folder(dataset.dataset_id) + '/models/' pickle.dump(model, open(folder + '%s_model.pkl' % round_id, 'wb')) pickle.dump(pipe_model, open(folder + '%s_pipe_model.pkl' % round_id, 'wb')) pickle.dump(pipe_transform, open(folder + '%s_pipe_transform.pkl' % round_id, 'wb')) def __explain_model(dataset, round_id, pipe_model, model, feature_names): """ explain the weights and the prediction of the model :param dataset: dataset :param round_id: round if :param pipe_model: the pipeline including the model :param model: the model only :param feature_names: feature names :return: """ try: exp = eli5.explain_weights(model, feature_names=list(feature_names)) with open(get_dataset_folder(dataset.dataset_id) + '/predict/eli5_model_%s.html' % round_id, 'w') as f: f.write(eli5.format_as_html(exp)) except: return
mit
sagark/tsdb-perf-test
logparse/logparser_insertquery.py
1
2749
import sys import matplotlib.pyplot as plt from matplotlib.figure import Figure import numpy as np #filename = sys.argv[1] DB_NAMES = ["mysql-myisam", "mysql-innodb", "opentsdb", "postgres", "readingdb", "scidb"] itervals = ['r-', 'g-', 'b-', 'k-', 'r:', 'g:', 'b:', 'k:'] graph_1_iter = iter(itervals) graph_2_iter = iter(itervals) graph_3_iter = iter(itervals) def parsedata(filearg): log = file(filearg) lines = log.readlines() log.close() while "Started Logging" not in lines[0]: lines.pop(0) #get title title = lines.pop(0).split("Started Logging: ")[1].split(' at')[0] while "[ run-0 ]" not in lines[0]: lines.pop(0) #print(lines[0]) points = [] counter = 0 while "finished" not in lines[0]: insert = lines.pop(0).split(": ")[2] query = lines.pop(0).split(": ")[2] size = lines.pop(0).split("now ")[1].replace(" bytes.", "") points.append([counter, eval(insert), eval(query), eval(size)]) counter += 10000 #number of records before each round graphthis = [] for x in points: addtog = [] addtog.append(x[0]) #number of points in db already addtog.append(x[1][2]) #time to insert addtog.append(x[2][2]) #time to query all addtog.append(x[3]/1000000) #db size after completion, convert to MB graphthis.append(addtog) a = np.array(graphthis) for name in DB_NAMES: if name in filearg: a = (name, a) return a db_arrays = [] for x in sys.argv[1:]: db_arrays.append(parsedata(x)) fig = plt.figure(figsize=(20, 30), dpi=300) ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax1.set_title('Insert: Add 1 Record to 10000 Streams, 100 times') ax1.set_xlabel('# of Records in DB') ax1.set_ylabel('Time for operation completion (s)') ax2.set_title('Query: Add 1 Record to 10000 Streams, 100 times') ax2.set_xlabel('# of Records in DB') ax2.set_ylabel('Time for operation completion (s)') ax3.set_title('DB Size: Add 1 Record to 10000 Streams, 100 times') ax3.set_xlabel('# of Records in DB') ax3.set_ylabel('DB size (MB)') legend1 = () legend2 = () legend3 = () for a in db_arrays: name = a[0] a = a[1] x = a[:,0] y1 = a[:,1] y2 = a[:,2] y3 = a[:,3] ax1.plot(x, y1, graph_1_iter.next()) ax2.plot(x, y2, graph_2_iter.next()) ax3.plot(x, y3, graph_3_iter.next()) legend1 += (name,) legend2 += (name,) legend3 += (name,) leg1 = ax1.legend(legend1, 'upper left', shadow=True) leg2 = ax2.legend(legend2, 'upper left', shadow=True) leg3 = ax3.legend(legend3, 'upper left', shadow=True) plt.savefig('test.png')
bsd-2-clause
ericmckean/syzygy
third_party/numpy/files/numpy/fft/fftpack.py
22
39261
""" Discrete Fourier Transforms Routines in this module: fft(a, n=None, axis=-1) ifft(a, n=None, axis=-1) rfft(a, n=None, axis=-1) irfft(a, n=None, axis=-1) hfft(a, n=None, axis=-1) ihfft(a, n=None, axis=-1) fftn(a, s=None, axes=None) ifftn(a, s=None, axes=None) rfftn(a, s=None, axes=None) irfftn(a, s=None, axes=None) fft2(a, s=None, axes=(-2,-1)) ifft2(a, s=None, axes=(-2, -1)) rfft2(a, s=None, axes=(-2,-1)) irfft2(a, s=None, axes=(-2, -1)) i = inverse transform r = transform of purely real data h = Hermite transform n = n-dimensional transform 2 = 2-dimensional transform (Note: 2D routines are just nD routines with different default behavior.) The underlying code for these functions is an f2c-translated and modified version of the FFTPACK routines. """ __all__ = ['fft','ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn', 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn'] from numpy.core import asarray, zeros, swapaxes, shape, conjugate, \ take import fftpack_lite as fftpack _fft_cache = {} _real_fft_cache = {} def _raw_fft(a, n=None, axis=-1, init_function=fftpack.cffti, work_function=fftpack.cfftf, fft_cache = _fft_cache ): a = asarray(a) if n is None: n = a.shape[axis] if n < 1: raise ValueError("Invalid number of FFT data points (%d) specified." % n) try: wsave = fft_cache[n] except(KeyError): wsave = init_function(n) fft_cache[n] = wsave if a.shape[axis] != n: s = list(a.shape) if s[axis] > n: index = [slice(None)]*len(s) index[axis] = slice(0,n) a = a[index] else: index = [slice(None)]*len(s) index[axis] = slice(0,s[axis]) s[axis] = n z = zeros(s, a.dtype.char) z[index] = a a = z if axis != -1: a = swapaxes(a, axis, -1) r = work_function(a, wsave) if axis != -1: r = swapaxes(r, axis, -1) return r def fft(a, n=None, axis=-1): """ Compute the one-dimensional discrete Fourier Transform. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT]. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input (along the axis specified by `axis`) is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError if `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : for definition of the DFT and conventions used. ifft : The inverse of `fft`. fft2 : The two-dimensional FFT. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. fftfreq : Frequency bins for given FFT parameters. Notes ----- FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when `n` is a power of 2, and the transform is therefore most efficient for these sizes. The DFT is defined, with the conventions used in this implementation, in the documentation for the `numpy.fft` module. References ---------- .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the machine calculation of complex Fourier series," *Math. Comput.* 19: 297-301. Examples -------- >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([ -3.44505240e-16 +1.14383329e-17j, 8.00000000e+00 -5.71092652e-15j, 2.33482938e-16 +1.22460635e-16j, 1.64863782e-15 +1.77635684e-15j, 9.95839695e-17 +2.33482938e-16j, 0.00000000e+00 +1.66837030e-15j, 1.14383329e-17 +1.22460635e-16j, -1.64863782e-15 +1.77635684e-15j]) >>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[-1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show() In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in the imaginary part, as described in the `numpy.fft` documentation. """ return _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache) def ifft(a, n=None, axis=-1): """ Compute the one-dimensional inverse discrete Fourier Transform. This function computes the inverse of the one-dimensional *n*-point discrete Fourier transform computed by `fft`. In other words, ``ifft(fft(a)) == a`` to within numerical accuracy. For a general description of the algorithm and definitions, see `numpy.fft`. The input should be ordered in the same way as is returned by `fft`, i.e., ``a[0]`` should contain the zero frequency term, ``a[1:n/2+1]`` should contain the positive-frequency terms, and ``a[n/2+1:]`` should contain the negative-frequency terms, in order of decreasingly negative frequency. See `numpy.fft` for details. Parameters ---------- a : array_like Input array, can be complex. n : int, optional Length of the transformed axis of the output. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input (along the axis specified by `axis`) is used. See notes about padding issues. axis : int, optional Axis over which to compute the inverse DFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. Raises ------ IndexError If `axes` is larger than the last axis of `a`. See Also -------- numpy.fft : An introduction, with definitions and general explanations. fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse ifft2 : The two-dimensional inverse FFT. ifftn : The n-dimensional inverse FFT. Notes ----- If the input parameter `n` is larger than the size of the input, the input is padded by appending zeros at the end. Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it must be performed before calling `ifft`. Examples -------- >>> np.fft.ifft([0, 4, 0, 0]) array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) Create and plot a band-limited signal with random phases: >>> import matplotlib.pyplot as plt >>> t = np.arange(400) >>> n = np.zeros((400,), dtype=complex) >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) >>> s = np.fft.ifft(n) >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--') [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.legend(('real', 'imaginary')) <matplotlib.legend.Legend object at 0x...> >>> plt.show() """ a = asarray(a).astype(complex) if n is None: n = shape(a)[axis] return _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache) / n def rfft(a, n=None, axis=-1): """ Compute the one-dimensional discrete Fourier Transform for real input. This function computes the one-dimensional *n*-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array n : int, optional Number of points along transformation axis in the input to use. If `n` is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If `n` is not given, the length of the input (along the axis specified by `axis`) is used. axis : int, optional Axis over which to compute the FFT. If not given, the last axis is used. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is ``n/2+1``. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. irfft : The inverse of `rfft`. fft : The one-dimensional FFT of general (complex) input. fftn : The *n*-dimensional FFT. rfftn : The *n*-dimensional FFT of real input. Notes ----- When the DFT is computed for purely real input, the output is Hermite-symmetric, i.e. the negative frequency terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency terms are therefore redundant. This function does not compute the negative frequency terms, and the length of the transformed axis of the output is therefore ``n/2+1``. When ``A = rfft(a)``, ``A[0]`` contains the zero-frequency term, which must be purely real due to the Hermite symmetry. If `n` is even, ``A[-1]`` contains the term for frequencies ``n/2`` and ``-n/2``, and must also be purely real. If `n` is odd, ``A[-1]`` contains the term for frequency ``A[(n-1)/2]``, and is complex in the general case. If the input `a` contains an imaginary part, it is silently discarded. Examples -------- >>> np.fft.fft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) >>> np.fft.rfft([0, 1, 0, 0]) array([ 1.+0.j, 0.-1.j, -1.+0.j]) Notice how the final element of the `fft` output is the complex conjugate of the second element, for real input. For `rfft`, this symmetry is exploited to compute only the non-negative frequency terms. """ a = asarray(a).astype(float) return _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf, _real_fft_cache) def irfft(a, n=None, axis=-1): """ Compute the inverse of the n-point DFT for real input. This function computes the inverse of the one-dimensional *n*-point discrete Fourier Transform of real input computed by `rfft`. In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical accuracy. (See Notes below for why ``len(a)`` is necessary here.) The input is expected to be in the form returned by `rfft`, i.e. the real zero-frequency term followed by the complex positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is Hermite-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding positive frequency terms. Parameters ---------- a : array_like The input array. n : int, optional Length of the transformed axis of the output. For `n` output points, ``n/2+1`` input points are necessary. If the input is longer than this, it is cropped. If it is shorter than this, it is padded with zeros. If `n` is not given, it is determined from the length of the input (along the axis specified by `axis`). axis : int, optional Axis over which to compute the inverse FFT. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axis indicated by `axis`, or the last one if `axis` is not specified. The length of the transformed axis is `n`, or, if `n` is not given, ``2*(m-1)`` where `m` is the length of the transformed axis of the input. To get an odd number of output points, `n` must be specified. Raises ------ IndexError If `axis` is larger than the last axis of `a`. See Also -------- numpy.fft : For definition of the DFT and conventions used. rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. fft : The one-dimensional FFT. irfft2 : The inverse of the two-dimensional FFT of real input. irfftn : The inverse of the *n*-dimensional FFT of real input. Notes ----- Returns the real valued `n`-point inverse discrete Fourier transform of `a`, where `a` contains the non-negative frequency terms of a Hermite-symmetric sequence. `n` is the length of the result, not the input. If you specify an `n` such that `a` must be zero-padded or truncated, the extra/removed values will be added/removed at high frequencies. One can thus resample a series to `m` points via Fourier interpolation by: ``a_resamp = irfft(rfft(a), m)``. Examples -------- >>> np.fft.ifft([1, -1j, -1, 1j]) array([ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) >>> np.fft.irfft([1, -1j, -1]) array([ 0., 1., 0., 0.]) Notice how the last term in the input to the ordinary `ifft` is the complex conjugate of the second term, and the output has zero imaginary part everywhere. When calling `irfft`, the negative frequencies are not specified, and the output array is purely real. """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb, _real_fft_cache) / n def hfft(a, n=None, axis=-1): """ Compute the FFT of a signal whose spectrum has Hermitian symmetry. Parameters ---------- a : array_like The input array. n : int, optional The length of the FFT. axis : int, optional The axis over which to compute the FFT, assuming Hermitian symmetry of the spectrum. Default is the last axis. Returns ------- out : ndarray The transformed input. See also -------- rfft : Compute the one-dimensional FFT for real input. ihfft : The inverse of `hfft`. Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. Examples -------- >>> signal = np.array([[1, 1.j], [-1.j, 2]]) >>> np.conj(signal.T) - signal # check Hermitian symmetry array([[ 0.-0.j, 0.+0.j], [ 0.+0.j, 0.-0.j]]) >>> freq_spectrum = np.fft.hfft(signal) >>> freq_spectrum array([[ 1., 1.], [ 2., -2.]]) """ a = asarray(a).astype(complex) if n is None: n = (shape(a)[axis] - 1) * 2 return irfft(conjugate(a), n, axis) * n def ihfft(a, n=None, axis=-1): """ Compute the inverse FFT of a signal whose spectrum has Hermitian symmetry. Parameters ---------- a : array_like Input array. n : int, optional Length of the inverse FFT. axis : int, optional Axis over which to compute the inverse FFT, assuming Hermitian symmetry of the spectrum. Default is the last axis. Returns ------- out : ndarray The transformed input. See also -------- hfft, irfft Notes ----- `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the opposite case: here the signal is real in the frequency domain and has Hermite symmetry in the time domain. So here it's `hfft` for which you must supply the length of the result if it is to be odd: ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy. """ a = asarray(a).astype(float) if n is None: n = shape(a)[axis] return conjugate(rfft(a, n, axis))/n def _cook_nd_args(a, s=None, axes=None, invreal=0): if s is None: shapeless = 1 if axes is None: s = list(a.shape) else: s = take(a.shape, axes) else: shapeless = 0 s = list(s) if axes is None: axes = range(-len(s), 0) if len(s) != len(axes): raise ValueError, "Shape and axes have different lengths." if invreal and shapeless: s[axes[-1]] = (s[axes[-1]] - 1) * 2 return s, axes def _raw_fftnd(a, s=None, axes=None, function=fft): a = asarray(a) s, axes = _cook_nd_args(a, s, axes) itl = range(len(axes)) itl.reverse() for ii in itl: a = function(a, n=s[ii], axis=axes[ii]) return a def fftn(a, s=None, axes=None): """ Compute the N-dimensional discrete Fourier Transform. This function computes the *N*-dimensional discrete Fourier Transform over any number of axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input (along the axes specified by `axes`) is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the transform over that axis is performed multiple times. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. fft : The one-dimensional FFT, with definitions and conventions used. rfftn : The *n*-dimensional FFT of real input. fft2 : The two-dimensional FFT. fftshift : Shifts zero-frequency terms to centre of array Notes ----- The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. See `numpy.fft` for details, definitions and conventions used. Examples -------- >>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a,s,axes,fft) def ifftn(a, s=None, axes=None): """ Compute the N-dimensional inverse discrete Fourier Transform. This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifftn(fftn(a)) == a`` to within numerical accuracy. For a description of the definitions and conventions used, see `numpy.fft`. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fftn`, i.e. it should have the term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to ``n`` for ``ifft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input (along the axes specified by `axes`) is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the IFFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. ifft : The one-dimensional inverse FFT. ifft2 : The two-dimensional inverse FFT. ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning of array. Notes ----- See `numpy.fft` for definitions and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifftn` is called. Examples -------- >>> a = np.eye(4) >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) Create and plot an image with band-limited frequency content: >>> import matplotlib.pyplot as plt >>> n = np.zeros((200,200), dtype=complex) >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) >>> im = np.fft.ifftn(n).real >>> plt.imshow(im) <matplotlib.image.AxesImage object at 0x...> >>> plt.show() """ return _raw_fftnd(a, s, axes, ifft) def fft2(a, s=None, axes=(-2,-1)): """ Compute the 2-dimensional discrete Fourier Transform This function computes the *n*-dimensional discrete Fourier Transform over any axes in an *M*-dimensional array by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of the input array, i.e., a 2-dimensional FFT. Parameters ---------- a : array_like Input array, can be complex s : sequence of ints, optional Shape (length of each transformed axis) of the output (`s[0]` refers to axis 0, `s[1]` to axis 1, etc.). This corresponds to `n` for `fft(x, n)`. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input (along the axes specified by `axes`) is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. ifft2 : The inverse two-dimensional FFT. fft : The one-dimensional FFT. fftn : The *n*-dimensional FFT. fftshift : Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and third quadrants, and second and fourth quadrants. Notes ----- `fft2` is just `fftn` with a different default for `axes`. The output, analogously to `fft`, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative frequency. See `fftn` for details and a plotting example, and `numpy.fft` for definitions and conventions used. Examples -------- >>> a = np.mgrid[:5, :5][0] >>> np.fft.fft2(a) array([[ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 5.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 10.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 15.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 20.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]]) """ return _raw_fftnd(a,s,axes,fft) def ifft2(a, s=None, axes=(-2,-1)): """ Compute the 2-dimensional inverse discrete Fourier Transform. This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the input array. The input, analogously to `ifft`, should be ordered in the same way as is returned by `fft2`, i.e. it should have the term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of both axes, in order of decreasingly negative frequency. Parameters ---------- a : array_like Input array, can be complex. s : sequence of ints, optional Shape (length of each axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. Along each axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input (along the axes specified by `axes`) is used. See notes for issue on `ifft` zero padding. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last two axes are used. A repeated index in `axes` means the transform over that axis is performed multiple times. A one-element sequence means that a one-dimensional FFT is performed. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or the last two axes if `axes` is not given. Raises ------ ValueError If `s` and `axes` have different length, or `axes` not given and ``len(s) != 2``. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- numpy.fft : Overall view of discrete Fourier transforms, with definitions and conventions used. fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. ifftn : The inverse of the *n*-dimensional FFT. fft : The one-dimensional FFT. ifft : The one-dimensional inverse FFT. Notes ----- `ifft2` is just `ifftn` with a different default for `axes`. See `ifftn` for details and a plotting example, and `numpy.fft` for definition and conventions used. Zero-padding, analogously with `ifft`, is performed by appending zeros to the input along the specified dimension. Although this is the common approach, it might lead to surprising results. If another form of zero padding is desired, it must be performed before `ifft2` is called. Examples -------- >>> a = 4 * np.eye(4) >>> np.fft.ifft2(a) array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [ 0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [ 0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) """ return _raw_fftnd(a, s, axes, ifft) def rfftn(a, s=None, axes=None): """ Compute the N-dimensional discrete Fourier Transform for real input. This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed, with the real transform performed over the last axis, while the remaining transforms are complex. Parameters ---------- a : array_like Input array, taken to be real. s : sequence of ints, optional Shape (length along each transformed axis) to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). The final element of `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. if `s` is not given, the shape of the input (along the axes specified by `axes`) is used. axes : sequence of ints, optional Axes over which to compute the FFT. If not given, the last ``len(s)`` axes are used, or all axes if `s` is also not specified. Returns ------- out : complex ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` and `a`, as explained in the parameters section above. The length of the last axis transformed will be ``s[-1]//2+1``, while the remaining transformed axes will have lengths according to `s`, or unchanged from the input. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT of real input. fft : The one-dimensional FFT, with definitions and conventions used. rfft : The one-dimensional FFT of real input. fftn : The n-dimensional FFT. rfft2 : The two-dimensional FFT of real input. Notes ----- The transform for real input is performed over the last transformation axis, as by `rfft`, then the transform over the remaining axes is performed as by `fftn`. The order of the output is as for `rfft` for the final transformation axis, and as for `fftn` for the remaining transformation axes. See `fft` for details, definitions and conventions used. Examples -------- >>> a = np.ones((2, 2, 2)) >>> np.fft.rfftn(a) array([[[ 8.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) >>> np.fft.rfftn(a, axes=(2, 0)) array([[[ 4.+0.j, 0.+0.j], [ 4.+0.j, 0.+0.j]], [[ 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j]]]) """ a = asarray(a).astype(float) s, axes = _cook_nd_args(a, s, axes) a = rfft(a, s[-1], axes[-1]) for ii in range(len(axes)-1): a = fft(a, s[ii], axes[ii]) return a def rfft2(a, s=None, axes=(-2,-1)): """ Compute the 2-dimensional FFT of a real array. Parameters ---------- a : array Input array, taken to be real. s : sequence of ints, optional Shape of the FFT. axes : sequence of ints, optional Axes over which to compute the FFT. Returns ------- out : ndarray The result of the real 2-D FFT. See Also -------- rfftn : Compute the N-dimensional discrete Fourier Transform for real input. Notes ----- This is really just `rfftn` with different default behavior. For more details see `rfftn`. """ return rfftn(a, s, axes) def irfftn(a, s=None, axes=None): """ Compute the inverse of the N-dimensional FFT of real input. This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, and for the same reason.) The input should be ordered in the same way as is returned by `rfftn`, i.e. as for `irfft` for the final transformation axis, and as for `ifftn` along all the other axes. Parameters ---------- a : array_like Input array. s : sequence of ints, optional Shape (length of each transformed axis) of the output (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used. Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. If `s` is not given, the shape of the input (along the axes specified by `axes`) is used. axes : sequence of ints, optional Axes over which to compute the inverse FFT. If not given, the last `len(s)` axes are used, or all axes if `s` is also not specified. Repeated indices in `axes` means that the inverse transform over that axis is performed multiple times. Returns ------- out : ndarray The truncated or zero-padded input, transformed along the axes indicated by `axes`, or by a combination of `s` or `a`, as explained in the parameters section above. The length of each transformed axis is as given by the corresponding element of `s`, or the length of the input in every axis except for the last one if `s` is not given. In the final transformed axis the length of the output when `s` is not given is ``2*(m-1)`` where `m` is the length of the final transformed axis of the input. To get an odd number of output points in the final axis, `s` must be specified. Raises ------ ValueError If `s` and `axes` have different length. IndexError If an element of `axes` is larger than than the number of axes of `a`. See Also -------- rfftn : The forward n-dimensional FFT of real input, of which `ifftn` is the inverse. fft : The one-dimensional FFT, with definitions and conventions used. irfft : The inverse of the one-dimensional FFT of real input. irfft2 : The inverse of the two-dimensional FFT of real input. Notes ----- See `fft` for definitions and conventions used. See `rfft` for definitions and conventions used for real input. Examples -------- >>> a = np.zeros((3, 2, 2)) >>> a[0, 0, 0] = 3 * 2 * 2 >>> np.fft.irfftn(a) array([[[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]], [[ 1., 1.], [ 1., 1.]]]) """ a = asarray(a).astype(complex) s, axes = _cook_nd_args(a, s, axes, invreal=1) for ii in range(len(axes)-1): a = ifft(a, s[ii], axes[ii]) a = irfft(a, s[-1], axes[-1]) return a def irfft2(a, s=None, axes=(-2,-1)): """ Compute the 2-dimensional inverse FFT of a real array. Parameters ---------- a : array_like The input array s : sequence of ints, optional Shape of the inverse FFT. axes : sequence of ints, optional The axes over which to compute the inverse fft. Default is the last two axes. Returns ------- out : ndarray The result of the inverse real 2-D FFT. See Also -------- irfftn : Compute the inverse of the N-dimensional FFT of real input. Notes ----- This is really `irfftn` with different defaults. For more details see `irfftn`. """ return irfftn(a, s, axes)
apache-2.0
cactusbin/nyt
matplotlib/lib/matplotlib/tight_layout.py
16
13115
""" This module provides routines to adjust subplot params so that subplots are nicely fit in the figure. In doing so, only axis labels, tick labels and axes titles are currently considered. Internally, it assumes that the margins (left_margin, etc.) which are differences between ax.get_tightbbox and ax.bbox are independent of axes position. This may fail if Axes.adjustable is datalim. Also, This will fail for some cases (for example, left or right margin is affected by xlabel). """ import warnings import matplotlib from matplotlib.transforms import TransformedBbox, Bbox from matplotlib.font_manager import FontProperties rcParams = matplotlib.rcParams def _get_left(tight_bbox, axes_bbox): return axes_bbox.xmin - tight_bbox.xmin def _get_right(tight_bbox, axes_bbox): return tight_bbox.xmax - axes_bbox.xmax def _get_bottom(tight_bbox, axes_bbox): return axes_bbox.ymin - tight_bbox.ymin def _get_top(tight_bbox, axes_bbox): return tight_bbox.ymax - axes_bbox.ymax def auto_adjust_subplotpars(fig, renderer, nrows_ncols, num1num2_list, subplot_list, ax_bbox_list=None, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Return a dictionary of subplot parameters so that spacing between subplots are adjusted. Note that this function ignore geometry information of subplot itself, but uses what is given by *nrows_ncols* and *num1num2_list* parameteres. Also, the results could be incorrect if some subplots have ``adjustable=datalim``. Parameters: nrows_ncols number of rows and number of columns of the grid. num1num2_list list of numbers specifying the area occupied by the subplot subplot_list list of subplots that will be used to calcuate optimal subplot_params. pad : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. h_pad, w_pad : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. rect [left, bottom, right, top] in normalized (0, 1) figure coordinates. """ rows, cols = nrows_ncols pad_inches = pad * FontProperties( size=rcParams["font.size"]).get_size_in_points() / 72. if h_pad is not None: vpad_inches = h_pad * FontProperties( size=rcParams["font.size"]).get_size_in_points() / 72. else: vpad_inches = pad_inches if w_pad is not None: hpad_inches = w_pad * FontProperties( size=rcParams["font.size"]).get_size_in_points() / 72. else: hpad_inches = pad_inches if len(subplot_list) == 0: raise RuntimeError("") if len(num1num2_list) != len(subplot_list): raise RuntimeError("") if rect is None: margin_left = None margin_bottom = None margin_right = None margin_top = None else: margin_left, margin_bottom, _right, _top = rect if _right: margin_right = 1. - _right else: margin_right = None if _top: margin_top = 1. - _top else: margin_top = None vspaces = [[] for i in range((rows + 1) * cols)] hspaces = [[] for i in range(rows * (cols + 1))] union = Bbox.union if ax_bbox_list is None: ax_bbox_list = [] for subplots in subplot_list: ax_bbox = union([ax.get_position(original=True) for ax in subplots]) ax_bbox_list.append(ax_bbox) for subplots, ax_bbox, (num1, num2) in zip(subplot_list, ax_bbox_list, num1num2_list): #ax_bbox = union([ax.get_position(original=True) for ax in subplots]) tight_bbox_raw = union([ax.get_tightbbox(renderer) for ax in subplots]) tight_bbox = TransformedBbox(tight_bbox_raw, fig.transFigure.inverted()) row1, col1 = divmod(num1, cols) if num2 is None: # left hspaces[row1 * (cols + 1) + col1].append( _get_left(tight_bbox, ax_bbox)) # right hspaces[row1 * (cols + 1) + (col1 + 1)].append( _get_right(tight_bbox, ax_bbox)) # top vspaces[row1 * cols + col1].append( _get_top(tight_bbox, ax_bbox)) # bottom vspaces[(row1 + 1) * cols + col1].append( _get_bottom(tight_bbox, ax_bbox)) else: row2, col2 = divmod(num2, cols) for row_i in range(row1, row2 + 1): # left hspaces[row_i * (cols + 1) + col1].append( _get_left(tight_bbox, ax_bbox)) # right hspaces[row_i * (cols + 1) + (col2 + 1)].append( _get_right(tight_bbox, ax_bbox)) for col_i in range(col1, col2 + 1): # top vspaces[row1 * cols + col_i].append( _get_top(tight_bbox, ax_bbox)) # bottom vspaces[(row2 + 1) * cols + col_i].append( _get_bottom(tight_bbox, ax_bbox)) fig_width_inch, fig_height_inch = fig.get_size_inches() # margins can be negative for axes with aspect applied. And we # append + [0] to make minimum margins 0 if not margin_left: margin_left = max([sum(s) for s in hspaces[::cols + 1]] + [0]) margin_left += pad_inches / fig_width_inch if not margin_right: margin_right = max([sum(s) for s in hspaces[cols::cols + 1]] + [0]) margin_right += pad_inches / fig_width_inch if not margin_top: margin_top = max([sum(s) for s in vspaces[:cols]] + [0]) margin_top += pad_inches / fig_height_inch if not margin_bottom: margin_bottom = max([sum(s) for s in vspaces[-cols:]] + [0]) margin_bottom += pad_inches / fig_height_inch kwargs = dict(left=margin_left, right=1 - margin_right, bottom=margin_bottom, top=1 - margin_top) if cols > 1: hspace = max([sum(s) for i in range(rows) for s in hspaces[i * (cols + 1) + 1:(i + 1) * (cols + 1) - 1]]) hspace += hpad_inches / fig_width_inch h_axes = ((1 - margin_right - margin_left) - hspace * (cols - 1)) / cols kwargs["wspace"] = hspace / h_axes if rows > 1: vspace = max([sum(s) for s in vspaces[cols:-cols]]) vspace += vpad_inches / fig_height_inch v_axes = ((1 - margin_top - margin_bottom) - vspace * (rows - 1)) / rows kwargs["hspace"] = vspace / v_axes return kwargs def get_renderer(fig): if fig._cachedRenderer: renderer = fig._cachedRenderer else: canvas = fig.canvas if canvas and hasattr(canvas, "get_renderer"): renderer = canvas.get_renderer() else: # not sure if this can happen warnings.warn("tight_layout : falling back to Agg renderer") from matplotlib.backends.backend_agg import FigureCanvasAgg canvas = FigureCanvasAgg(fig) renderer = canvas.get_renderer() return renderer def get_subplotspec_list(axes_list, grid_spec=None): """ Return a list of subplotspec from the given list of axes. For an instance of axes that does not support subplotspec, None is inserted in the list. If grid_spec is given, None is inserted for those not from the given grid_spec. """ subplotspec_list = [] for ax in axes_list: axes_or_locator = ax.get_axes_locator() if axes_or_locator is None: axes_or_locator = ax if hasattr(axes_or_locator, "get_subplotspec"): subplotspec = axes_or_locator.get_subplotspec() subplotspec = subplotspec.get_topmost_subplotspec() gs = subplotspec.get_gridspec() if grid_spec is not None: if gs != grid_spec: subplotspec = None elif gs.locally_modified_subplot_params(): subplotspec = None else: subplotspec = None subplotspec_list.append(subplotspec) return subplotspec_list def get_tight_layout_figure(fig, axes_list, subplotspec_list, renderer, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Return subplot parameters for tight-layouted-figure with specified padding. Parameters: *fig* : figure instance *axes_list* : a list of axes *subplotspec_list* : a list of subplotspec associated with each axes in axes_list *renderer* : renderer instance *pad* : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. *h_pad*, *w_pad* : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. *rect* : if rect is given, it is interpreted as a rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ subplot_list = [] nrows_list = [] ncols_list = [] ax_bbox_list = [] subplot_dict = {} # multiple axes can share # same subplot_interface (e.g., axes_grid1). Thus # we need to join them together. subplotspec_list2 = [] for ax, subplotspec in zip(axes_list, subplotspec_list): if subplotspec is None: continue subplots = subplot_dict.setdefault(subplotspec, []) if not subplots: myrows, mycols, _, _ = subplotspec.get_geometry() nrows_list.append(myrows) ncols_list.append(mycols) subplotspec_list2.append(subplotspec) subplot_list.append(subplots) ax_bbox_list.append(subplotspec.get_position(fig)) subplots.append(ax) max_nrows = max(nrows_list) max_ncols = max(ncols_list) num1num2_list = [] for subplotspec in subplotspec_list2: rows, cols, num1, num2 = subplotspec.get_geometry() div_row, mod_row = divmod(max_nrows, rows) div_col, mod_col = divmod(max_ncols, cols) if (mod_row != 0) or (mod_col != 0): raise RuntimeError("") rowNum1, colNum1 = divmod(num1, cols) if num2 is None: rowNum2, colNum2 = rowNum1, colNum1 else: rowNum2, colNum2 = divmod(num2, cols) num1num2_list.append((rowNum1 * div_row * max_ncols + colNum1 * div_col, ((rowNum2 + 1) * div_row - 1) * max_ncols + (colNum2 + 1) * div_col - 1)) kwargs = auto_adjust_subplotpars(fig, renderer, nrows_ncols=(max_nrows, max_ncols), num1num2_list=num1num2_list, subplot_list=subplot_list, ax_bbox_list=ax_bbox_list, pad=pad, h_pad=h_pad, w_pad=w_pad) if rect is not None: # if rect is given, the whole subplots area (including # labels) will fit into the rect instead of the # figure. Note that the rect argument of # *auto_adjust_subplotpars* specify the area that will be # covered by the total area of axes.bbox. Thus we call # auto_adjust_subplotpars twice, where the second run # with adjusted rect parameters. left, bottom, right, top = rect if left is not None: left += kwargs["left"] if bottom is not None: bottom += kwargs["bottom"] if right is not None: right -= (1 - kwargs["right"]) if top is not None: top -= (1 - kwargs["top"]) #if h_pad is None: h_pad = pad #if w_pad is None: w_pad = pad kwargs = auto_adjust_subplotpars(fig, renderer, nrows_ncols=(max_nrows, max_ncols), num1num2_list=num1num2_list, subplot_list=subplot_list, ax_bbox_list=ax_bbox_list, pad=pad, h_pad=h_pad, w_pad=w_pad, rect=(left, bottom, right, top)) return kwargs
unlicense
jfinkels/networkx
examples/drawing/knuth_miles.py
34
2952
#!/usr/bin/env python """ An example using networkx.Graph(). miles_graph() returns an undirected graph over the 128 US cities from the datafile miles_dat.txt. The cities each have location and population data. The edges are labeled with the distance betwen the two cities. This example is described in Section 1.1 in Knuth's book [1,2]. References. ----------- [1] Donald E. Knuth, "The Stanford GraphBase: A Platform for Combinatorial Computing", ACM Press, New York, 1993. [2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html """ # Author: Aric Hagberg ([email protected]) # Copyright (C) 2004-2016 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx def miles_graph(): """ Return the cites example graph in miles_dat.txt from the Stanford GraphBase. """ # open file miles_dat.txt.gz (or miles_dat.txt) import gzip fh = gzip.open('knuth_miles.txt.gz','r') G=nx.Graph() G.position={} G.population={} cities=[] for line in fh.readlines(): line = line.decode() if line.startswith("*"): # skip comments continue numfind=re.compile("^\d+") if numfind.match(line): # this line is distances dist=line.split() for d in dist: G.add_edge(city,cities[i],weight=int(d)) i=i+1 else: # this line is a city, position, population i=1 (city,coordpop)=line.split("[") cities.insert(0,city) (coord,pop)=coordpop.split("]") (y,x)=coord.split(",") G.add_node(city) # assign position - flip x axis for matplotlib, shift origin G.position[city]=(-int(x)+7500,int(y)-3000) G.population[city]=float(pop)/1000.0 return G if __name__ == '__main__': import networkx as nx import re import sys G=miles_graph() print("Loaded miles_dat.txt containing 128 cities.") print("digraph has %d nodes with %d edges"\ %(nx.number_of_nodes(G),nx.number_of_edges(G))) # make new graph of cites, edge if less then 300 miles between them H=nx.Graph() for v in G: H.add_node(v) for (u,v,d) in G.edges(data=True): if d['weight'] < 300: H.add_edge(u,v) # draw with matplotlib/pylab try: import matplotlib.pyplot as plt plt.figure(figsize=(8,8)) # with nodes colored by degree sized by population node_color=[float(H.degree(v)) for v in H] nx.draw(H,G.position, node_size=[G.population[v] for v in H], node_color=node_color, with_labels=False) # scale the axes equally plt.xlim(-5000,500) plt.ylim(-2000,3500) plt.savefig("knuth_miles.png") except: pass
bsd-3-clause