repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
jjhelmus/scipy
scipy/signal/filter_design.py
14
135076
"""Filter design. """ from __future__ import division, print_function, absolute_import import warnings import math import numpy import numpy as np from numpy import (atleast_1d, poly, polyval, roots, real, asarray, resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, append, concatenate, prod, ones, array, mintypecode) from numpy.polynomial.polynomial import polyval as npp_polyval from scipy import special, optimize from scipy.special import comb, factorial from scipy._lib._numpy_compat import polyvalfromroots __all__ = ['findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize', 'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign', 'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel', 'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord', 'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap', 'BadCoefficients', 'freqs_zpk', 'freqz_zpk', 'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay', 'sosfreqz', 'iirnotch', 'iirpeak'] class BadCoefficients(UserWarning): """Warning about badly conditioned filter coefficients""" pass abs = absolute def findfreqs(num, den, N, kind='ba'): """ Find array of frequencies for computing the response of an analog filter. Parameters ---------- num, den : array_like, 1-D The polynomial coefficients of the numerator and denominator of the transfer function of the filter or LTI system, where the coefficients are ordered from highest to lowest degree. Or, the roots of the transfer function numerator and denominator (i.e. zeroes and poles). N : int The length of the array to be computed. kind : str {'ba', 'zp'}, optional Specifies whether the numerator and denominator are specified by their polynomial coefficients ('ba'), or their roots ('zp'). Returns ------- w : (N,) ndarray A 1-D array of frequencies, logarithmically spaced. Examples -------- Find a set of nine frequencies that span the "interesting part" of the frequency response for the filter with the transfer function H(s) = s / (s^2 + 8s + 25) >>> from scipy import signal >>> signal.findfreqs([1, 0], [1, 8, 25], N=9) array([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01, 1.00000000e+02]) """ if kind == 'ba': ep = atleast_1d(roots(den)) + 0j tz = atleast_1d(roots(num)) + 0j elif kind == 'zp': ep = atleast_1d(den) + 0j tz = atleast_1d(num) + 0j else: raise ValueError("input must be one of {'ba', 'zp'}") if len(ep) == 0: ep = atleast_1d(-1000) + 0j ez = r_['-1', numpy.compress(ep.imag >= 0, ep, axis=-1), numpy.compress((abs(tz) < 1e5) & (tz.imag >= 0), tz, axis=-1)] integ = abs(ez) < 1e-10 hfreq = numpy.around(numpy.log10(numpy.max(3 * abs(ez.real + integ) + 1.5 * ez.imag)) + 0.5) lfreq = numpy.around(numpy.log10(0.1 * numpy.min(abs(real(ez + integ)) + 2 * ez.imag)) - 0.5) w = logspace(lfreq, hfreq, N) return w def freqs(b, a, worN=None, plot=None): """ Compute frequency response of analog filter. Given the M-order numerator `b` and N-order denominator `a` of an analog filter, compute its frequency response:: b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M] H(w) = ---------------------------------------------- a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N] Parameters ---------- b : array_like Numerator of a linear filter. a : array_like Denominator of a linear filter. worN : {None, int, array_like}, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g. rad/s) given in `worN`. plot : callable, optional A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqs`. Returns ------- w : ndarray The angular frequencies at which `h` was computed. h : ndarray The frequency response. See Also -------- freqz : Compute the frequency response of a digital filter. Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``. Examples -------- >>> from scipy.signal import freqs, iirfilter >>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1') >>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000)) >>> import matplotlib.pyplot as plt >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.xlabel('Frequency') >>> plt.ylabel('Amplitude response [dB]') >>> plt.grid() >>> plt.show() """ if worN is None: w = findfreqs(b, a, 200) elif isinstance(worN, int): N = worN w = findfreqs(b, a, N) else: w = worN w = atleast_1d(w) s = 1j * w h = polyval(b, s) / polyval(a, s) if plot is not None: plot(w, h) return w, h def freqs_zpk(z, p, k, worN=None): """ Compute frequency response of analog filter. Given the zeros `z`, poles `p`, and gain `k` of a filter, compute its frequency response:: (jw-z[0]) * (jw-z[1]) * ... * (jw-z[-1]) H(w) = k * ---------------------------------------- (jw-p[0]) * (jw-p[1]) * ... * (jw-p[-1]) Parameters ---------- z : array_like Zeroes of a linear filter p : array_like Poles of a linear filter k : scalar Gain of a linear filter worN : {None, int, array_like}, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g. rad/s) given in `worN`. Returns ------- w : ndarray The angular frequencies at which `h` was computed. h : ndarray The frequency response. See Also -------- freqs : Compute the frequency response of an analog filter in TF form freqz : Compute the frequency response of a digital filter in TF form freqz_zpk : Compute the frequency response of a digital filter in ZPK form Notes ----- .. versionadded: 0.19.0 Examples -------- >>> from scipy.signal import freqs_zpk, iirfilter >>> z, p, k = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1', ... output='zpk') >>> w, h = freqs_zpk(z, p, k, worN=np.logspace(-1, 2, 1000)) >>> import matplotlib.pyplot as plt >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.xlabel('Frequency') >>> plt.ylabel('Amplitude response [dB]') >>> plt.grid() >>> plt.show() """ k = np.asarray(k) if k.size > 1: raise ValueError('k must be a single scalar gain') if worN is None: w = findfreqs(z, p, 200, kind='zp') elif isinstance(worN, int): N = worN w = findfreqs(z, p, N, kind='zp') else: w = worN w = atleast_1d(w) s = 1j * w num = polyvalfromroots(s, z) den = polyvalfromroots(s, p) h = k * num/den return w, h def freqz(b, a=1, worN=None, whole=False, plot=None): """ Compute the frequency response of a digital filter. Given the M-order numerator `b` and N-order denominator `a` of a digital filter, compute its frequency response:: jw -jw -jwM jw B(e ) b[0] + b[1]e + .... + b[M]e H(e ) = ---- = ----------------------------------- jw -jw -jwN A(e ) a[0] + a[1]e + .... + a[N]e Parameters ---------- b : array_like numerator of a linear filter a : array_like denominator of a linear filter worN : {None, int, array_like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If an array_like, compute the response at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample. plot : callable A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqz`. Returns ------- w : ndarray The normalized frequencies at which `h` was computed, in radians/sample. h : ndarray The frequency response, as complex numbers. See Also -------- sosfreqz Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``. Examples -------- >>> from scipy import signal >>> b = signal.firwin(80, 0.5, window=('kaiser', 8)) >>> w, h = signal.freqz(b) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.title('Digital filter frequency response') >>> ax1 = fig.add_subplot(111) >>> plt.plot(w, 20 * np.log10(abs(h)), 'b') >>> plt.ylabel('Amplitude [dB]', color='b') >>> plt.xlabel('Frequency [rad/sample]') >>> ax2 = ax1.twinx() >>> angles = np.unwrap(np.angle(h)) >>> plt.plot(w, angles, 'g') >>> plt.ylabel('Angle (radians)', color='g') >>> plt.grid() >>> plt.axis('tight') >>> plt.show() """ b, a = map(atleast_1d, (b, a)) if whole: lastpoint = 2 * pi else: lastpoint = pi if worN is None: N = 512 w = numpy.linspace(0, lastpoint, N, endpoint=False) elif isinstance(worN, int): N = worN w = numpy.linspace(0, lastpoint, N, endpoint=False) else: w = worN w = atleast_1d(w) zm1 = exp(-1j * w) h = polyval(b[::-1], zm1) / polyval(a[::-1], zm1) if plot is not None: plot(w, h) return w, h def freqz_zpk(z, p, k, worN=None, whole=False): """ Compute the frequency response of a digital filter in ZPK form. Given the Zeros, Poles and Gain of a digital filter, compute its frequency response:: :math:`H(z)=k \prod_i (z - Z[i]) / \prod_j (z - P[j])` where :math:`k` is the `gain`, :math:`Z` are the `zeros` and :math:`P` are the `poles`. Parameters ---------- z : array_like Zeroes of a linear filter p : array_like Poles of a linear filter k : scalar Gain of a linear filter worN : {None, int, array_like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If an array_like, compute the response at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample. Returns ------- w : ndarray The normalized frequencies at which `h` was computed, in radians/sample. h : ndarray The frequency response. See Also -------- freqs : Compute the frequency response of an analog filter in TF form freqs_zpk : Compute the frequency response of an analog filter in ZPK form freqz : Compute the frequency response of a digital filter in TF form Notes ----- .. versionadded: 0.19.0 Examples -------- >>> from scipy import signal >>> z, p, k = signal.butter(4, 0.2, output='zpk') >>> w, h = signal.freqz_zpk(z, p, k) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.title('Digital filter frequency response') >>> ax1 = fig.add_subplot(111) >>> plt.plot(w, 20 * np.log10(abs(h)), 'b') >>> plt.ylabel('Amplitude [dB]', color='b') >>> plt.xlabel('Frequency [rad/sample]') >>> ax2 = ax1.twinx() >>> angles = np.unwrap(np.angle(h)) >>> plt.plot(w, angles, 'g') >>> plt.ylabel('Angle (radians)', color='g') >>> plt.grid() >>> plt.axis('tight') >>> plt.show() """ z, p = map(atleast_1d, (z, p)) if whole: lastpoint = 2 * pi else: lastpoint = pi if worN is None: N = 512 w = numpy.linspace(0, lastpoint, N, endpoint=False) elif isinstance(worN, int): N = worN w = numpy.linspace(0, lastpoint, N, endpoint=False) else: w = worN w = atleast_1d(w) zm1 = exp(1j * w) h = k * polyvalfromroots(zm1, z) / polyvalfromroots(zm1, p) return w, h def group_delay(system, w=None, whole=False): r"""Compute the group delay of a digital filter. The group delay measures by how many samples amplitude envelopes of various spectral components of a signal are delayed by a filter. It is formally defined as the derivative of continuous (unwrapped) phase:: d jw D(w) = - -- arg H(e) dw Parameters ---------- system : tuple of array_like (b, a) Numerator and denominator coefficients of a filter transfer function. w : {None, int, array-like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If array, compute the delay at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to ``2*pi`` radians/sample. Returns ------- w : ndarray The normalized frequencies at which the group delay was computed, in radians/sample. gd : ndarray The group delay. Notes ----- The similar function in MATLAB is called `grpdelay`. If the transfer function :math:`H(z)` has zeros or poles on the unit circle, the group delay at corresponding frequencies is undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies. For the details of numerical computation of the group delay refer to [1]_. .. versionadded: 0.16.0 See Also -------- freqz : Frequency response of a digital filter References ---------- .. [1] Richard G. Lyons, "Understanding Digital Signal Processing, 3rd edition", p. 830. Examples -------- >>> from scipy import signal >>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1') >>> w, gd = signal.group_delay((b, a)) >>> import matplotlib.pyplot as plt >>> plt.title('Digital filter group delay') >>> plt.plot(w, gd) >>> plt.ylabel('Group delay [samples]') >>> plt.xlabel('Frequency [rad/sample]') >>> plt.show() """ if w is None: w = 512 if isinstance(w, int): if whole: w = np.linspace(0, 2 * pi, w, endpoint=False) else: w = np.linspace(0, pi, w, endpoint=False) w = np.atleast_1d(w) b, a = map(np.atleast_1d, system) c = np.convolve(b, a[::-1]) cr = c * np.arange(c.size) z = np.exp(-1j * w) num = np.polyval(cr[::-1], z) den = np.polyval(c[::-1], z) singular = np.absolute(den) < 10 * EPSILON if np.any(singular): warnings.warn( "The group delay is singular at frequencies [{0}], setting to 0". format(", ".join("{0:.3f}".format(ws) for ws in w[singular])) ) gd = np.zeros_like(w) gd[~singular] = np.real(num[~singular] / den[~singular]) - a.size + 1 return w, gd def _validate_sos(sos): """Helper to validate a SOS input""" sos = np.atleast_2d(sos) if sos.ndim != 2: raise ValueError('sos array must be 2D') n_sections, m = sos.shape if m != 6: raise ValueError('sos array must be shape (n_sections, 6)') if not (sos[:, 3] == 1).all(): raise ValueError('sos[:, 3] should be all ones') return sos, n_sections def sosfreqz(sos, worN=None, whole=False): """ Compute the frequency response of a digital filter in SOS format. Given `sos`, an array with shape (n, 6) of second order sections of a digital filter, compute the frequency response of the system function:: B0(z) B1(z) B{n-1}(z) H(z) = ----- * ----- * ... * --------- A0(z) A1(z) A{n-1}(z) for z = exp(omega*1j), where B{k}(z) and A{k}(z) are numerator and denominator of the transfer function of the k-th second order section. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients. worN : {None, int, array_like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If an array_like, compute the response at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample. Returns ------- w : ndarray The normalized frequencies at which `h` was computed, in radians/sample. h : ndarray The frequency response, as complex numbers. See Also -------- freqz, sosfilt Notes ----- .. versionadded:: 0.19.0 Examples -------- Design a 15th-order bandpass filter in SOS format. >>> from scipy import signal >>> sos = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass', ... output='sos') Compute the frequency response at 1500 points from DC to Nyquist. >>> w, h = signal.sosfreqz(sos, worN=1500) Plot the response. >>> import matplotlib.pyplot as plt >>> plt.subplot(2, 1, 1) >>> db = 20*np.log10(np.abs(h)) >>> plt.plot(w/np.pi, db) >>> plt.ylim(-75, 5) >>> plt.grid(True) >>> plt.yticks([0, -20, -40, -60]) >>> plt.ylabel('Gain [dB]') >>> plt.title('Frequency Response') >>> plt.subplot(2, 1, 2) >>> plt.plot(w/np.pi, np.angle(h)) >>> plt.grid(True) >>> plt.yticks([-np.pi, -0.5*np.pi, 0, 0.5*np.pi, np.pi], ... [r'$-\\pi$', r'$-\\pi/2$', '0', r'$\\pi/2$', r'$\\pi$']) >>> plt.ylabel('Phase [rad]') >>> plt.xlabel('Normalized frequency (1.0 = Nyquist)') >>> plt.show() If the same filter is implemented as a single transfer function, numerical error corrupts the frequency response: >>> b, a = signal.ellip(15, 0.5, 60, (0.2, 0.4), btype='bandpass', ... output='ba') >>> w, h = signal.freqz(b, a, worN=1500) >>> plt.subplot(2, 1, 1) >>> db = 20*np.log10(np.abs(h)) >>> plt.plot(w/np.pi, db) >>> plt.subplot(2, 1, 2) >>> plt.plot(w/np.pi, np.angle(h)) >>> plt.show() """ sos, n_sections = _validate_sos(sos) if n_sections == 0: raise ValueError('Cannot compute frequencies with no sections') h = 1. for row in sos: w, rowh = freqz(row[:3], row[3:], worN=worN, whole=whole) h *= rowh return w, h def _cplxreal(z, tol=None): """ Split into complex and real parts, combining conjugate pairs. The 1D input vector `z` is split up into its complex (`zc`) and real (`zr`) elements. Every complex element must be part of a complex-conjugate pair, which are combined into a single number (with positive imaginary part) in the output. Two complex numbers are considered a conjugate pair if their real and imaginary parts differ in magnitude by less than ``tol * abs(z)``. Parameters ---------- z : array_like Vector of complex numbers to be sorted and split tol : float, optional Relative tolerance for testing realness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- zc : ndarray Complex elements of `z`, with each pair represented by a single value having positive imaginary part, sorted first by real part, and then by magnitude of imaginary part. The pairs are averaged when combined to reduce error. zr : ndarray Real elements of `z` (those having imaginary part less than `tol` times their magnitude), sorted by value. Raises ------ ValueError If there are any complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxpair Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> zc, zr = _cplxreal(a) >>> print zc [ 1.+1.j 2.+1.j 2.+1.j 2.+2.j] >>> print zr [ 1. 3. 4.] """ z = atleast_1d(z) if z.size == 0: return z, z elif z.ndim != 1: raise ValueError('_cplxreal only accepts 1D input') if tol is None: # Get tolerance from dtype of input tol = 100 * np.finfo((1.0 * z).dtype).eps # Sort by real part, magnitude of imaginary part (speed up further sorting) z = z[np.lexsort((abs(z.imag), z.real))] # Split reals from conjugate pairs real_indices = abs(z.imag) <= tol * abs(z) zr = z[real_indices].real if len(zr) == len(z): # Input is entirely real return array([]), zr # Split positive and negative halves of conjugates z = z[~real_indices] zp = z[z.imag > 0] zn = z[z.imag < 0] if len(zp) != len(zn): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Find runs of (approximately) the same real part same_real = np.diff(zp.real) <= tol * abs(zp[:-1]) diffs = numpy.diff(concatenate(([0], same_real, [0]))) run_starts = numpy.where(diffs > 0)[0] run_stops = numpy.where(diffs < 0)[0] # Sort each run by their imaginary parts for i in range(len(run_starts)): start = run_starts[i] stop = run_stops[i] + 1 for chunk in (zp[start:stop], zn[start:stop]): chunk[...] = chunk[np.lexsort([abs(chunk.imag)])] # Check that negatives match positives if any(abs(zp - zn.conj()) > tol * abs(zn)): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Average out numerical inaccuracy in real vs imag parts of pairs zc = (zp + zn.conj()) / 2 return zc, zr def _cplxpair(z, tol=None): """ Sort into pairs of complex conjugates. Complex conjugates in `z` are sorted by increasing real part. In each pair, the number with negative imaginary part appears first. If pairs have identical real parts, they are sorted by increasing imaginary magnitude. Two complex numbers are considered a conjugate pair if their real and imaginary parts differ in magnitude by less than ``tol * abs(z)``. The pairs are forced to be exact complex conjugates by averaging the positive and negative values. Purely real numbers are also sorted, but placed after the complex conjugate pairs. A number is considered real if its imaginary part is smaller than `tol` times the magnitude of the number. Parameters ---------- z : array_like 1-dimensional input array to be sorted. tol : float, optional Relative tolerance for testing realness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- y : ndarray Complex conjugate pairs followed by real numbers. Raises ------ ValueError If there are any complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxreal Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> z = _cplxpair(a) >>> print(z) [ 1.-1.j 1.+1.j 2.-1.j 2.+1.j 2.-1.j 2.+1.j 2.-2.j 2.+2.j 1.+0.j 3.+0.j 4.+0.j] """ z = atleast_1d(z) if z.size == 0 or np.isrealobj(z): return np.sort(z) if z.ndim != 1: raise ValueError('z must be 1-dimensional') zc, zr = _cplxreal(z, tol) # Interleave complex values and their conjugates, with negative imaginary # parts first in each pair zc = np.dstack((zc.conj(), zc)).flatten() z = np.append(zc, zr) return z def tf2zpk(b, a): r"""Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter. Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. Notes ----- If some values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. The `b` and `a` arrays are interpreted as coefficients for positive, descending powers of the transfer function variable. So the inputs :math:`b = [b_0, b_1, ..., b_M]` and :math:`a =[a_0, a_1, ..., a_N]` can represent an analog filter of the form: .. math:: H(s) = \frac {b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M} {a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N} or a discrete-time filter of the form: .. math:: H(z) = \frac {b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M} {a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N} This "positive powers" form is found more commonly in controls engineering. If `M` and `N` are equal (which is true for all filters generated by the bilinear transform), then this happens to be equivalent to the "negative powers" discrete-time form preferred in DSP: .. math:: H(z) = \frac {b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}} {a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}} Although this is true for common filters, remember that this is not true in the general case. If `M` and `N` are not equal, the discrete-time transfer function coefficients must first be converted to the "positive powers" form before finding the poles and zeros. """ b, a = normalize(b, a) b = (b + 0.0) / a[0] a = (a + 0.0) / a[0] k = b[0] b /= b[0] z = roots(b) p = roots(a) return z, p, k def zpk2tf(z, p, k): """ Return polynomial transfer function representation from zeros and poles Parameters ---------- z : array_like Zeros of the transfer function. p : array_like Poles of the transfer function. k : float System gain. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. """ z = atleast_1d(z) k = atleast_1d(k) if len(z.shape) > 1: temp = poly(z[0]) b = zeros((z.shape[0], z.shape[1] + 1), temp.dtype.char) if len(k) == 1: k = [k[0]] * z.shape[0] for i in range(z.shape[0]): b[i] = k[i] * poly(z[i]) else: b = k * poly(z) a = atleast_1d(poly(p)) # Use real output if possible. Copied from numpy.poly, since # we can't depend on a specific version of numpy. if issubclass(b.dtype.type, numpy.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = numpy.asarray(z, complex) pos_roots = numpy.compress(roots.imag > 0, roots) neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) if len(pos_roots) == len(neg_roots): if numpy.all(numpy.sort_complex(neg_roots) == numpy.sort_complex(pos_roots)): b = b.real.copy() if issubclass(a.dtype.type, numpy.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = numpy.asarray(p, complex) pos_roots = numpy.compress(roots.imag > 0, roots) neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) if len(pos_roots) == len(neg_roots): if numpy.all(numpy.sort_complex(neg_roots) == numpy.sort_complex(pos_roots)): a = a.real.copy() return b, a def tf2sos(b, a, pairing='nearest'): """ Return second-order sections from transfer function representation Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See `zpk2sos`. Returns ------- sos : ndarray Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- zpk2sos, sosfilt Notes ----- It is generally discouraged to convert from TF to SOS format, since doing so usually will not improve numerical precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is converted to SOS by first converting to ZPK format, then converting ZPK to SOS. .. versionadded:: 0.16.0 """ return zpk2sos(*tf2zpk(b, a), pairing=pairing) def sos2tf(sos): """ Return a single transfer function from a series of second-order sections Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. Notes ----- .. versionadded:: 0.16.0 """ sos = np.asarray(sos) b = [1.] a = [1.] n_sections = sos.shape[0] for section in range(n_sections): b = np.polymul(b, sos[section, :3]) a = np.polymul(a, sos[section, 3:]) return b, a def sos2zpk(sos): """ Return zeros, poles, and gain of a series of second-order sections Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. Notes ----- .. versionadded:: 0.16.0 """ sos = np.asarray(sos) n_sections = sos.shape[0] z = np.empty(n_sections*2, np.complex128) p = np.empty(n_sections*2, np.complex128) k = 1. for section in range(n_sections): zpk = tf2zpk(sos[section, :3], sos[section, 3:]) z[2*section:2*(section+1)] = zpk[0] p[2*section:2*(section+1)] = zpk[1] k *= zpk[2] return z, p, k def _nearest_real_complex_idx(fro, to, which): """Get the next closest real or complex element based on distance""" assert which in ('real', 'complex') order = np.argsort(np.abs(fro - to)) mask = np.isreal(fro[order]) if which == 'complex': mask = ~mask return order[np.where(mask)[0][0]] def zpk2sos(z, p, k, pairing='nearest'): """ Return second-order sections from zeros, poles, and gain of a system Parameters ---------- z : array_like Zeros of the transfer function. p : array_like Poles of the transfer function. k : float System gain. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See Notes below. Returns ------- sos : ndarray Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- sosfilt Notes ----- The algorithm used to convert ZPK to SOS format is designed to minimize errors due to numerical precision issues. The pairing algorithm attempts to minimize the peak gain of each biquadratic section. This is done by pairing poles with the nearest zeros, starting with the poles closest to the unit circle. *Algorithms* The current algorithms are designed specifically for use with digital filters. (The output coefficents are not correct for analog filters.) The steps in the ``pairing='nearest'`` and ``pairing='keep_odd'`` algorithms are mostly shared. The ``nearest`` algorithm attempts to minimize the peak gain, while ``'keep_odd'`` minimizes peak gain under the constraint that odd-order systems should retain one section as first order. The algorithm steps and are as follows: As a pre-processing step, add poles or zeros to the origin as necessary to obtain the same number of poles and zeros for pairing. If ``pairing == 'nearest'`` and there are an odd number of poles, add an additional pole and a zero at the origin. The following steps are then iterated over until no more poles or zeros remain: 1. Take the (next remaining) pole (complex or real) closest to the unit circle to begin a new filter section. 2. If the pole is real and there are no other remaining real poles [#]_, add the closest real zero to the section and leave it as a first order section. Note that after this step we are guaranteed to be left with an even number of real poles, complex poles, real zeros, and complex zeros for subsequent pairing iterations. 3. Else: 1. If the pole is complex and the zero is the only remaining real zero*, then pair the pole with the *next* closest zero (guaranteed to be complex). This is necessary to ensure that there will be a real zero remaining to eventually create a first-order section (thus keeping the odd order). 2. Else pair the pole with the closest remaining zero (complex or real). 3. Proceed to complete the second-order section by adding another pole and zero to the current pole and zero in the section: 1. If the current pole and zero are both complex, add their conjugates. 2. Else if the pole is complex and the zero is real, add the conjugate pole and the next closest real zero. 3. Else if the pole is real and the zero is complex, add the conjugate zero and the real pole closest to those zeros. 4. Else (we must have a real pole and real zero) add the next real pole closest to the unit circle, and then add the real zero closest to that pole. .. [#] This conditional can only be met for specific odd-order inputs with the ``pairing == 'keep_odd'`` method. .. versionadded:: 0.16.0 Examples -------- Design a 6th order low-pass elliptic digital filter for a system with a sampling rate of 8000 Hz that has a pass-band corner frequency of 1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and the attenuation in the stop-band should be at least 90 dB. In the following call to `signal.ellip`, we could use ``output='sos'``, but for this example, we'll use ``output='zpk'``, and then convert to SOS format with `zpk2sos`: >>> from scipy import signal >>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk') Now convert to SOS format. >>> sos = signal.zpk2sos(z, p, k) The coefficients of the numerators of the sections: >>> sos[:, :3] array([[ 0.0014154 , 0.00248707, 0.0014154 ], [ 1. , 0.72965193, 1. ], [ 1. , 0.17594966, 1. ]]) The symmetry in the coefficients occurs because all the zeros are on the unit circle. The coefficients of the denominators of the sections: >>> sos[:, 3:] array([[ 1. , -1.32543251, 0.46989499], [ 1. , -1.26117915, 0.6262586 ], [ 1. , -1.25707217, 0.86199667]]) The next example shows the effect of the `pairing` option. We have a system with three poles and three zeros, so the SOS array will have shape (2, 6). The means there is, in effect, an extra pole and an extra zero at the origin in the SOS representation. >>> z1 = np.array([-1, -0.5-0.5j, -0.5+0.5j]) >>> p1 = np.array([0.75, 0.8+0.1j, 0.8-0.1j]) With ``pairing='nearest'`` (the default), we obtain >>> signal.zpk2sos(z1, p1, 1) array([[ 1. , 1. , 0.5 , 1. , -0.75, 0. ], [ 1. , 1. , 0. , 1. , -1.6 , 0.65]]) The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles {0, 0.75}, and the second section has the zeros {-1, 0} and poles {0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin have been assigned to different sections. With ``pairing='keep_odd'``, we obtain: >>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd') array([[ 1. , 1. , 0. , 1. , -0.75, 0. ], [ 1. , 1. , 0.5 , 1. , -1.6 , 0.65]]) The extra pole and zero at the origin are in the same section. The first section is, in effect, a first-order section. """ # TODO in the near future: # 1. Add SOS capability to `filtfilt`, `freqz`, etc. somehow (#3259). # 2. Make `decimate` use `sosfilt` instead of `lfilter`. # 3. Make sosfilt automatically simplify sections to first order # when possible. Note this might make `sosfiltfilt` a bit harder (ICs). # 4. Further optimizations of the section ordering / pole-zero pairing. # See the wiki for other potential issues. valid_pairings = ['nearest', 'keep_odd'] if pairing not in valid_pairings: raise ValueError('pairing must be one of %s, not %s' % (valid_pairings, pairing)) if len(z) == len(p) == 0: return array([[k, 0., 0., 1., 0., 0.]]) # ensure we have the same number of poles and zeros, and make copies p = np.concatenate((p, np.zeros(max(len(z) - len(p), 0)))) z = np.concatenate((z, np.zeros(max(len(p) - len(z), 0)))) n_sections = (max(len(p), len(z)) + 1) // 2 sos = zeros((n_sections, 6)) if len(p) % 2 == 1 and pairing == 'nearest': p = np.concatenate((p, [0.])) z = np.concatenate((z, [0.])) assert len(p) == len(z) # Ensure we have complex conjugate pairs # (note that _cplxreal only gives us one element of each complex pair): z = np.concatenate(_cplxreal(z)) p = np.concatenate(_cplxreal(p)) p_sos = np.zeros((n_sections, 2), np.complex128) z_sos = np.zeros_like(p_sos) for si in range(n_sections): # Select the next "worst" pole p1_idx = np.argmin(np.abs(1 - np.abs(p))) p1 = p[p1_idx] p = np.delete(p, p1_idx) # Pair that pole with a zero if np.isreal(p1) and np.isreal(p).sum() == 0: # Special case to set a first-order section z1_idx = _nearest_real_complex_idx(z, p1, 'real') z1 = z[z1_idx] z = np.delete(z, z1_idx) p2 = z2 = 0 else: if not np.isreal(p1) and np.isreal(z).sum() == 1: # Special case to ensure we choose a complex zero to pair # with so later (setting up a first-order section) z1_idx = _nearest_real_complex_idx(z, p1, 'complex') assert not np.isreal(z[z1_idx]) else: # Pair the pole with the closest zero (real or complex) z1_idx = np.argmin(np.abs(p1 - z)) z1 = z[z1_idx] z = np.delete(z, z1_idx) # Now that we have p1 and z1, figure out what p2 and z2 need to be if not np.isreal(p1): if not np.isreal(z1): # complex pole, complex zero p2 = p1.conj() z2 = z1.conj() else: # complex pole, real zero p2 = p1.conj() z2_idx = _nearest_real_complex_idx(z, p1, 'real') z2 = z[z2_idx] assert np.isreal(z2) z = np.delete(z, z2_idx) else: if not np.isreal(z1): # real pole, complex zero z2 = z1.conj() p2_idx = _nearest_real_complex_idx(p, z1, 'real') p2 = p[p2_idx] assert np.isreal(p2) else: # real pole, real zero # pick the next "worst" pole to use idx = np.where(np.isreal(p))[0] assert len(idx) > 0 p2_idx = idx[np.argmin(np.abs(np.abs(p[idx]) - 1))] p2 = p[p2_idx] # find a real zero to match the added pole assert np.isreal(p2) z2_idx = _nearest_real_complex_idx(z, p2, 'real') z2 = z[z2_idx] assert np.isreal(z2) z = np.delete(z, z2_idx) p = np.delete(p, p2_idx) p_sos[si] = [p1, p2] z_sos[si] = [z1, z2] assert len(p) == len(z) == 0 # we've consumed all poles and zeros del p, z # Construct the system, reversing order so the "worst" are last p_sos = np.reshape(p_sos[::-1], (n_sections, 2)) z_sos = np.reshape(z_sos[::-1], (n_sections, 2)) gains = np.ones(n_sections) gains[0] = k for si in range(n_sections): x = zpk2tf(z_sos[si], p_sos[si], gains[si]) sos[si] = np.concatenate(x) return sos def _align_nums(nums): """Aligns the shapes of multiple numerators. Given an array of numerator coefficient arrays [[a_1, a_2,..., a_n],..., [b_1, b_2,..., b_m]], this function pads shorter numerator arrays with zero's so that all numerators have the same length. Such alignment is necessary for functions like 'tf2ss', which needs the alignment when dealing with SIMO transfer functions. Parameters ---------- nums: array_like Numerator or list of numerators. Not necessarily with same length. Returns ------- nums: array The numerator. If `nums` input was a list of numerators then a 2d array with padded zeros for shorter numerators is returned. Otherwise returns ``np.asarray(nums)``. """ try: # The statement can throw a ValueError if one # of the numerators is a single digit and another # is array-like e.g. if nums = [5, [1, 2, 3]] nums = asarray(nums) if not np.issubdtype(nums.dtype, np.number): raise ValueError("dtype of numerator is non-numeric") return nums except ValueError: nums = [np.atleast_1d(num) for num in nums] max_width = max(num.size for num in nums) # pre-allocate aligned_nums = np.zeros((len(nums), max_width)) # Create numerators with padded zeros for index, num in enumerate(nums): aligned_nums[index, -num.size:] = num return aligned_nums def normalize(b, a): """Normalize numerator/denominator of a continuous-time transfer function. If values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. Parameters ---------- b: array_like Numerator of the transfer function. Can be a 2d array to normalize multiple transfer functions. a: array_like Denominator of the transfer function. At most 1d. Returns ------- num: array The numerator of the normalized transfer function. At least a 1d array. A 2d-array if the input `num` is a 2d array. den: 1d-array The denominator of the normalized transfer function. Notes ----- Coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). """ num, den = b, a den = np.atleast_1d(den) num = np.atleast_2d(_align_nums(num)) if den.ndim != 1: raise ValueError("Denominator polynomial must be rank-1 array.") if num.ndim > 2: raise ValueError("Numerator polynomial must be rank-1 or" " rank-2 array.") if np.all(den == 0): raise ValueError("Denominator must have at least on nonzero element.") # Trim leading zeros in denominator, leave at least one. den = np.trim_zeros(den, 'f') # Normalize transfer function num, den = num / den[0], den / den[0] # Count numerator columns that are all zero leading_zeros = 0 for col in num.T: if np.allclose(col, 0, atol=1e-14): leading_zeros += 1 else: break # Trim leading zeros of numerator if leading_zeros > 0: warnings.warn("Badly conditioned filter coefficients (numerator): the " "results may be meaningless", BadCoefficients) # Make sure at least one column remains if leading_zeros == num.shape[1]: leading_zeros -= 1 num = num[:, leading_zeros:] # Squeeze first dimension if singular if num.shape[0] == 1: num = num[0, :] return num, den def lp2lp(b, a, wo=1.0): """ Transform a lowpass filter prototype to a different frequency. Return an analog low-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) M = max((d, n)) pwo = pow(wo, numpy.arange(M - 1, -1, -1)) start1 = max((n - d, 0)) start2 = max((d - n, 0)) b = b * pwo[start1] / pwo[start2:] a = a * pwo[start1] / pwo[start1:] return normalize(b, a) def lp2hp(b, a, wo=1.0): """ Transform a lowpass filter prototype to a highpass filter. Return an analog high-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) if wo != 1: pwo = pow(wo, numpy.arange(max((d, n)))) else: pwo = numpy.ones(max((d, n)), b.dtype.char) if d >= n: outa = a[::-1] * pwo outb = resize(b, (d,)) outb[n:] = 0.0 outb[:n] = b[::-1] * pwo[:n] else: outb = b[::-1] * pwo outa = resize(a, (n,)) outa[d:] = 0.0 outa[:d] = a[::-1] * pwo[:d] return normalize(outb, outa) def lp2bp(b, a, wo=1.0, bw=1.0): """ Transform a lowpass filter prototype to a bandpass filter. Return an analog band-pass filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) ma = max([N, D]) Np = N + ma Dp = D + ma bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * b[N - i] * (wosq) ** (i - k) / bw ** i bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * a[D - i] * (wosq) ** (i - k) / bw ** i aprime[Dp - j] = val return normalize(bprime, aprime) def lp2bs(b, a, wo=1.0, bw=1.0): """ Transform a lowpass filter prototype to a bandstop filter. Return an analog band-stop filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) M = max([N, D]) Np = M + M Dp = M + M bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * b[N - i] * (wosq) ** (M - i - k) * bw ** i) bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * a[D - i] * (wosq) ** (M - i - k) * bw ** i) aprime[Dp - j] = val return normalize(bprime, aprime) def bilinear(b, a, fs=1.0): """Return a digital filter from an analog one using a bilinear transform. The bilinear transform substitutes ``(z-1) / (z+1)`` for ``s``. """ fs = float(fs) a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = float M = max([N, D]) Np = M Dp = M bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) for j in range(Np + 1): val = 0.0 for i in range(N + 1): for k in range(i + 1): for l in range(M - i + 1): if k + l == j: val += (comb(i, k) * comb(M - i, l) * b[N - i] * pow(2 * fs, i) * (-1) ** k) bprime[j] = real(val) for j in range(Dp + 1): val = 0.0 for i in range(D + 1): for k in range(i + 1): for l in range(M - i + 1): if k + l == j: val += (comb(i, k) * comb(M - i, l) * a[D - i] * pow(2 * fs, i) * (-1) ** k) aprime[j] = real(val) return normalize(bprime, aprime) def iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip', output='ba'): """Complete IIR digital and analog filter design. Given passband and stopband frequencies and gains, construct an analog or digital IIR filter of minimum order for a given basic type. Return the output in numerator, denominator ('ba'), pole-zero ('zpk') or second order sections ('sos') form. Parameters ---------- wp, ws : float Passband and stopband edge frequencies. For digital filters, these are normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in half-cycles / sample.) For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. ftype : str, optional The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- butter : Filter design using order and critical points cheby1, cheby2, ellip, bessel buttord : Find order and critical points from passband and stopband spec cheb1ord, cheb2ord, ellipord iirfilter : General filter design using order and critical frequencies Notes ----- The ``'sos'`` output parameter was added in 0.16.0. """ try: ordfunc = filter_dict[ftype][1] except KeyError: raise ValueError("Invalid IIR filter type: %s" % ftype) except IndexError: raise ValueError(("%s does not have order selection. Use " "iirfilter function.") % ftype) wp = atleast_1d(wp) ws = atleast_1d(ws) band_type = 2 * (len(wp) - 1) band_type += 1 if wp[0] >= ws[0]: band_type += 1 btype = {1: 'lowpass', 2: 'highpass', 3: 'bandstop', 4: 'bandpass'}[band_type] N, Wn = ordfunc(wp, ws, gpass, gstop, analog=analog) return iirfilter(N, Wn, rp=gpass, rs=gstop, analog=analog, btype=btype, ftype=ftype, output=output) def iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, ftype='butter', output='ba'): """ IIR digital and analog filter design given order and critical points. Design an Nth-order digital or analog filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). rp : float, optional For Chebyshev and elliptic filters, provides the maximum ripple in the passband. (dB) rs : float, optional For Chebyshev and elliptic filters, provides the minimum attenuation in the stop band. (dB) btype : {'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional The type of filter. Default is 'bandpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. ftype : str, optional The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- butter : Filter design using order and critical points cheby1, cheby2, ellip, bessel buttord : Find order and critical points from passband and stopband spec cheb1ord, cheb2ord, ellipord iirdesign : General filter design using passband and stopband spec Notes ----- The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Generate a 17th-order Chebyshev II bandpass filter and plot the frequency response: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.iirfilter(17, [50, 200], rs=60, btype='band', ... analog=True, ftype='cheby2') >>> w, h = signal.freqs(b, a, 1000) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.semilogx(w, 20 * np.log10(abs(h))) >>> ax.set_title('Chebyshev Type II bandpass frequency response') >>> ax.set_xlabel('Frequency [radians / second]') >>> ax.set_ylabel('Amplitude [dB]') >>> ax.axis((10, 1000, -100, 10)) >>> ax.grid(which='both', axis='both') >>> plt.show() """ ftype, btype, output = [x.lower() for x in (ftype, btype, output)] Wn = asarray(Wn) try: btype = band_dict[btype] except KeyError: raise ValueError("'%s' is an invalid bandtype for filter." % btype) try: typefunc = filter_dict[ftype][0] except KeyError: raise ValueError("'%s' is not a valid basic IIR filter." % ftype) if output not in ['ba', 'zpk', 'sos']: raise ValueError("'%s' is not a valid output form." % output) if rp is not None and rp < 0: raise ValueError("passband ripple (rp) must be positive") if rs is not None and rs < 0: raise ValueError("stopband attenuation (rs) must be positive") # Get analog lowpass prototype if typefunc == buttap: z, p, k = typefunc(N) elif typefunc == besselap: z, p, k = typefunc(N, norm=bessel_norms[ftype]) elif typefunc == cheb1ap: if rp is None: raise ValueError("passband ripple (rp) must be provided to " "design a Chebyshev I filter.") z, p, k = typefunc(N, rp) elif typefunc == cheb2ap: if rs is None: raise ValueError("stopband attenuation (rs) must be provided to " "design an Chebyshev II filter.") z, p, k = typefunc(N, rs) elif typefunc == ellipap: if rs is None or rp is None: raise ValueError("Both rp and rs must be provided to design an " "elliptic filter.") z, p, k = typefunc(N, rp, rs) else: raise NotImplementedError("'%s' not implemented in iirfilter." % ftype) # Pre-warp frequencies for digital filter design if not analog: if numpy.any(Wn < 0) or numpy.any(Wn > 1): raise ValueError("Digital filter critical frequencies " "must be 0 <= Wn <= 1") fs = 2.0 warped = 2 * fs * tan(pi * Wn / fs) else: warped = Wn # transform to lowpass, bandpass, highpass, or bandstop if btype in ('lowpass', 'highpass'): if numpy.size(Wn) != 1: raise ValueError('Must specify a single critical frequency Wn') if btype == 'lowpass': z, p, k = _zpklp2lp(z, p, k, wo=warped) elif btype == 'highpass': z, p, k = _zpklp2hp(z, p, k, wo=warped) elif btype in ('bandpass', 'bandstop'): try: bw = warped[1] - warped[0] wo = sqrt(warped[0] * warped[1]) except IndexError: raise ValueError('Wn must specify start and stop frequencies') if btype == 'bandpass': z, p, k = _zpklp2bp(z, p, k, wo=wo, bw=bw) elif btype == 'bandstop': z, p, k = _zpklp2bs(z, p, k, wo=wo, bw=bw) else: raise NotImplementedError("'%s' not implemented in iirfilter." % btype) # Find discrete equivalent if necessary if not analog: z, p, k = _zpkbilinear(z, p, k, fs=fs) # Transform to proper out type (pole-zero, state-space, numer-denom) if output == 'zpk': return z, p, k elif output == 'ba': return zpk2tf(z, p, k) elif output == 'sos': return zpk2sos(z, p, k) def _relative_degree(z, p): """ Return relative degree of transfer function from zeros and poles """ degree = len(p) - len(z) if degree < 0: raise ValueError("Improper transfer function. " "Must have at least as many poles as zeros.") else: return degree # TODO: merge these into existing functions or make public versions def _zpkbilinear(z, p, k, fs): """ Return a digital filter from an analog one using a bilinear transform. Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin's method, which substitutes ``(z-1) / (z+1)`` for ``s``, maintaining the shape of the frequency response. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. fs : float Sample rate, as ordinary frequency (e.g. hertz). No prewarping is done in this function. Returns ------- z : ndarray Zeros of the transformed digital filter transfer function. p : ndarray Poles of the transformed digital filter transfer function. k : float System gain of the transformed digital filter. """ z = atleast_1d(z) p = atleast_1d(p) degree = _relative_degree(z, p) fs2 = 2*fs # Bilinear transform the poles and zeros z_z = (fs2 + z) / (fs2 - z) p_z = (fs2 + p) / (fs2 - p) # Any zeros that were at infinity get moved to the Nyquist frequency z_z = append(z_z, -ones(degree)) # Compensate for gain change k_z = k * real(prod(fs2 - z) / prod(fs2 - p)) return z_z, p_z, k_z def _zpklp2lp(z, p, k, wo=1.0): r""" Transform a lowpass filter prototype to a different frequency. Return an analog low-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. wo : float Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change. Returns ------- z : ndarray Zeros of the transformed low-pass filter transfer function. p : ndarray Poles of the transformed low-pass filter transfer function. k : float System gain of the transformed low-pass filter. Notes ----- This is derived from the s-plane substitution .. math:: s \rightarrow \frac{s}{\omega_0} """ z = atleast_1d(z) p = atleast_1d(p) wo = float(wo) # Avoid int wraparound degree = _relative_degree(z, p) # Scale all points radially from origin to shift cutoff frequency z_lp = wo * z p_lp = wo * p # Each shifted pole decreases gain by wo, each shifted zero increases it. # Cancel out the net change to keep overall gain the same k_lp = k * wo**degree return z_lp, p_lp, k_lp def _zpklp2hp(z, p, k, wo=1.0): r""" Transform a lowpass filter prototype to a highpass filter. Return an analog high-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. wo : float Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change. Returns ------- z : ndarray Zeros of the transformed high-pass filter transfer function. p : ndarray Poles of the transformed high-pass filter transfer function. k : float System gain of the transformed high-pass filter. Notes ----- This is derived from the s-plane substitution .. math:: s \rightarrow \frac{\omega_0}{s} This maintains symmetry of the lowpass and highpass responses on a logarithmic scale. """ z = atleast_1d(z) p = atleast_1d(p) wo = float(wo) degree = _relative_degree(z, p) # Invert positions radially about unit circle to convert LPF to HPF # Scale all points radially from origin to shift cutoff frequency z_hp = wo / z p_hp = wo / p # If lowpass had zeros at infinity, inverting moves them to origin. z_hp = append(z_hp, zeros(degree)) # Cancel out gain change caused by inversion k_hp = k * real(prod(-z) / prod(-p)) return z_hp, p_hp, k_hp def _zpklp2bp(z, p, k, wo=1.0, bw=1.0): r""" Transform a lowpass filter prototype to a bandpass filter. Return an analog band-pass filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. wo : float Desired passband center, as angular frequency (e.g. rad/s). Defaults to no change. bw : float Desired passband width, as angular frequency (e.g. rad/s). Defaults to 1. Returns ------- z : ndarray Zeros of the transformed band-pass filter transfer function. p : ndarray Poles of the transformed band-pass filter transfer function. k : float System gain of the transformed band-pass filter. Notes ----- This is derived from the s-plane substitution .. math:: s \rightarrow \frac{s^2 + {\omega_0}^2}{s \cdot \mathrm{BW}} This is the "wideband" transformation, producing a passband with geometric (log frequency) symmetry about `wo`. """ z = atleast_1d(z) p = atleast_1d(p) wo = float(wo) bw = float(bw) degree = _relative_degree(z, p) # Scale poles and zeros to desired bandwidth z_lp = z * bw/2 p_lp = p * bw/2 # Square root needs to produce complex result, not NaN z_lp = z_lp.astype(complex) p_lp = p_lp.astype(complex) # Duplicate poles and zeros and shift from baseband to +wo and -wo z_bp = concatenate((z_lp + sqrt(z_lp**2 - wo**2), z_lp - sqrt(z_lp**2 - wo**2))) p_bp = concatenate((p_lp + sqrt(p_lp**2 - wo**2), p_lp - sqrt(p_lp**2 - wo**2))) # Move degree zeros to origin, leaving degree zeros at infinity for BPF z_bp = append(z_bp, zeros(degree)) # Cancel out gain change from frequency scaling k_bp = k * bw**degree return z_bp, p_bp, k_bp def _zpklp2bs(z, p, k, wo=1.0, bw=1.0): r""" Transform a lowpass filter prototype to a bandstop filter. Return an analog band-stop filter with center frequency `wo` and stopband width `bw` from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. wo : float Desired stopband center, as angular frequency (e.g. rad/s). Defaults to no change. bw : float Desired stopband width, as angular frequency (e.g. rad/s). Defaults to 1. Returns ------- z : ndarray Zeros of the transformed band-stop filter transfer function. p : ndarray Poles of the transformed band-stop filter transfer function. k : float System gain of the transformed band-stop filter. Notes ----- This is derived from the s-plane substitution .. math:: s \rightarrow \frac{s \cdot \mathrm{BW}}{s^2 + {\omega_0}^2} This is the "wideband" transformation, producing a stopband with geometric (log frequency) symmetry about `wo`. """ z = atleast_1d(z) p = atleast_1d(p) wo = float(wo) bw = float(bw) degree = _relative_degree(z, p) # Invert to a highpass filter with desired bandwidth z_hp = (bw/2) / z p_hp = (bw/2) / p # Square root needs to produce complex result, not NaN z_hp = z_hp.astype(complex) p_hp = p_hp.astype(complex) # Duplicate poles and zeros and shift from baseband to +wo and -wo z_bs = concatenate((z_hp + sqrt(z_hp**2 - wo**2), z_hp - sqrt(z_hp**2 - wo**2))) p_bs = concatenate((p_hp + sqrt(p_hp**2 - wo**2), p_hp - sqrt(p_hp**2 - wo**2))) # Move any zeros that were at infinity to the center of the stopband z_bs = append(z_bs, +1j*wo * ones(degree)) z_bs = append(z_bs, -1j*wo * ones(degree)) # Cancel out gain change caused by inversion k_bs = k * real(prod(-z) / prod(-p)) return z_bs, p_bs, k_bs def butter(N, Wn, btype='low', analog=False, output='ba'): """ Butterworth digital and analog filter design. Design an Nth-order digital or analog Butterworth filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For a Butterworth filter, this is the point at which the gain drops to 1/sqrt(2) that of the passband (the "-3 dB point"). For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional The type of filter. Default is 'lowpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- buttord, buttap Notes ----- The Butterworth filter has maximally flat frequency response in the passband. The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Plot the filter's frequency response, showing the critical points: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.butter(4, 100, 'low', analog=True) >>> w, h = signal.freqs(b, a) >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.title('Butterworth filter frequency response') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.axvline(100, color='green') # cutoff frequency >>> plt.show() """ return iirfilter(N, Wn, btype=btype, analog=analog, output=output, ftype='butter') def cheby1(N, rp, Wn, btype='low', analog=False, output='ba'): """ Chebyshev type I digital and analog filter design. Design an Nth-order digital or analog Chebyshev type I filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. rp : float The maximum ripple allowed below unity gain in the passband. Specified in decibels, as a positive number. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For Type I filters, this is the point in the transition band at which the gain first drops below -`rp`. For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional The type of filter. Default is 'lowpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- cheb1ord, cheb1ap Notes ----- The Chebyshev type I filter maximizes the rate of cutoff between the frequency response's passband and stopband, at the expense of ripple in the passband and increased ringing in the step response. Type I filters roll off faster than Type II (`cheby2`), but Type II filters do not have any ripple in the passband. The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters. The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Plot the filter's frequency response, showing the critical points: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.cheby1(4, 5, 100, 'low', analog=True) >>> w, h = signal.freqs(b, a) >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.title('Chebyshev Type I frequency response (rp=5)') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.axvline(100, color='green') # cutoff frequency >>> plt.axhline(-5, color='green') # rp >>> plt.show() """ return iirfilter(N, Wn, rp=rp, btype=btype, analog=analog, output=output, ftype='cheby1') def cheby2(N, rs, Wn, btype='low', analog=False, output='ba'): """ Chebyshev type II digital and analog filter design. Design an Nth-order digital or analog Chebyshev type II filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. rs : float The minimum attenuation required in the stop band. Specified in decibels, as a positive number. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For Type II filters, this is the point in the transition band at which the gain first reaches -`rs`. For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional The type of filter. Default is 'lowpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- cheb2ord, cheb2ap Notes ----- The Chebyshev type II filter maximizes the rate of cutoff between the frequency response's passband and stopband, at the expense of ripple in the stopband and increased ringing in the step response. Type II filters do not roll off as fast as Type I (`cheby1`). The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Plot the filter's frequency response, showing the critical points: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.cheby2(4, 40, 100, 'low', analog=True) >>> w, h = signal.freqs(b, a) >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.title('Chebyshev Type II frequency response (rs=40)') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.axvline(100, color='green') # cutoff frequency >>> plt.axhline(-40, color='green') # rs >>> plt.show() """ return iirfilter(N, Wn, rs=rs, btype=btype, analog=analog, output=output, ftype='cheby2') def ellip(N, rp, rs, Wn, btype='low', analog=False, output='ba'): """ Elliptic (Cauer) digital and analog filter design. Design an Nth-order digital or analog elliptic filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. rp : float The maximum ripple allowed below unity gain in the passband. Specified in decibels, as a positive number. rs : float The minimum attenuation required in the stop band. Specified in decibels, as a positive number. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For elliptic filters, this is the point in the transition band at which the gain first drops below -`rp`. For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional The type of filter. Default is 'lowpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- ellipord, ellipap Notes ----- Also known as Cauer or Zolotarev filters, the elliptical filter maximizes the rate of transition between the frequency response's passband and stopband, at the expense of ripple in both, and increased ringing in the step response. As `rp` approaches 0, the elliptical filter becomes a Chebyshev type II filter (`cheby2`). As `rs` approaches 0, it becomes a Chebyshev type I filter (`cheby1`). As both approach 0, it becomes a Butterworth filter (`butter`). The equiripple passband has N maxima or minima (for example, a 5th-order filter has 3 maxima and 2 minima). Consequently, the DC gain is unity for odd-order filters, or -rp dB for even-order filters. The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Plot the filter's frequency response, showing the critical points: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.ellip(4, 5, 40, 100, 'low', analog=True) >>> w, h = signal.freqs(b, a) >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.title('Elliptic filter frequency response (rp=5, rs=40)') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.axvline(100, color='green') # cutoff frequency >>> plt.axhline(-40, color='green') # rs >>> plt.axhline(-5, color='green') # rp >>> plt.show() """ return iirfilter(N, Wn, rs=rs, rp=rp, btype=btype, analog=analog, output=output, ftype='elliptic') def bessel(N, Wn, btype='low', analog=False, output='ba', norm='phase'): """ Bessel/Thomson digital and analog filter design. Design an Nth-order digital or analog Bessel filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. Wn : array_like A scalar or length-2 sequence giving the critical frequencies (defined by the `norm` parameter). For analog filters, `Wn` is an angular frequency (e.g. rad/s). For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) btype : {'lowpass', 'highpass', 'bandpass', 'bandstop'}, optional The type of filter. Default is 'lowpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. (See Notes.) output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. norm : {'phase', 'delay', 'mag'}, optional Critical frequency normalization: ``phase`` The filter is normalized such that the phase response reaches its midpoint at angular (e.g. rad/s) frequency `Wn`. This happens for both low-pass and high-pass filters, so this is the "phase-matched" case. The magnitude response asymptotes are the same as a Butterworth filter of the same order with a cutoff of `Wn`. This is the default, and matches MATLAB's implementation. ``delay`` The filter is normalized such that the group delay in the passband is 1/`Wn` (e.g. seconds). This is the "natural" type obtained by solving Bessel polynomials. ``mag`` The filter is normalized such that the gain magnitude is -3 dB at angular frequency `Wn`. .. versionadded:: 0.18.0 Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. Notes ----- Also known as a Thomson filter, the analog Bessel filter has maximally flat group delay and maximally linear phase response, with very little ringing in the step response. [1]_ The Bessel is inherently an analog filter. This function generates digital Bessel filters using the bilinear transform, which does not preserve the phase response of the analog filter. As such, it is only approximately correct at frequencies below about fs/4. To get maximally-flat group delay at higher frequencies, the analog Bessel filter must be transformed using phase-preserving techniques. See `besselap` for implementation details and references. The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Plot the phase-normalized frequency response, showing the relationship to the Butterworth's cutoff frequency (green): >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.butter(4, 100, 'low', analog=True) >>> w, h = signal.freqs(b, a) >>> plt.semilogx(w, 20 * np.log10(np.abs(h)), color='silver', ls='dashed') >>> b, a = signal.bessel(4, 100, 'low', analog=True, norm='phase') >>> w, h = signal.freqs(b, a) >>> plt.semilogx(w, 20 * np.log10(np.abs(h))) >>> plt.title('Bessel filter magnitude response (with Butterworth)') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.axvline(100, color='green') # cutoff frequency >>> plt.show() and the phase midpoint: >>> plt.figure() >>> plt.semilogx(w, np.unwrap(np.angle(h))) >>> plt.axvline(100, color='green') # cutoff frequency >>> plt.axhline(-np.pi, color='red') # phase midpoint >>> plt.title('Bessel filter phase response') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Phase [radians]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.show() Plot the magnitude-normalized frequency response, showing the -3 dB cutoff: >>> b, a = signal.bessel(3, 10, 'low', analog=True, norm='mag') >>> w, h = signal.freqs(b, a) >>> plt.semilogx(w, 20 * np.log10(np.abs(h))) >>> plt.axhline(-3, color='red') # -3 dB magnitude >>> plt.axvline(10, color='green') # cutoff frequency >>> plt.title('Magnitude-normalized Bessel filter frequency response') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.show() Plot the delay-normalized filter, showing the maximally-flat group delay at 0.1 seconds: >>> b, a = signal.bessel(5, 1/0.1, 'low', analog=True, norm='delay') >>> w, h = signal.freqs(b, a) >>> plt.figure() >>> plt.semilogx(w[1:], -np.diff(np.unwrap(np.angle(h)))/np.diff(w)) >>> plt.axhline(0.1, color='red') # 0.1 seconds group delay >>> plt.title('Bessel filter group delay') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Group delay [seconds]') >>> plt.margins(0, 0.1) >>> plt.grid(which='both', axis='both') >>> plt.show() References ---------- .. [1] Thomson, W.E., "Delay Networks having Maximally Flat Frequency Characteristics", Proceedings of the Institution of Electrical Engineers, Part III, November 1949, Vol. 96, No. 44, pp. 487-490. """ return iirfilter(N, Wn, btype=btype, analog=analog, output=output, ftype='bessel_'+norm) def maxflat(): pass def yulewalk(): pass def band_stop_obj(wp, ind, passb, stopb, gpass, gstop, type): """ Band Stop Objective Function for order minimization. Returns the non-integer order for an analog band stop filter. Parameters ---------- wp : scalar Edge of passband `passb`. ind : int, {0, 1} Index specifying which `passb` edge to vary (0 or 1). passb : ndarray Two element sequence of fixed passband edges. stopb : ndarray Two element sequence of fixed stopband edges. gstop : float Amount of attenuation in stopband in dB. gpass : float Amount of ripple in the passband in dB. type : {'butter', 'cheby', 'ellip'} Type of filter. Returns ------- n : scalar Filter order (possibly non-integer). """ passbC = passb.copy() passbC[ind] = wp nat = (stopb * (passbC[0] - passbC[1]) / (stopb ** 2 - passbC[0] * passbC[1])) nat = min(abs(nat)) if type == 'butter': GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) n = (log10((GSTOP - 1.0) / (GPASS - 1.0)) / (2 * log10(nat))) elif type == 'cheby': GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) n = arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / arccosh(nat) elif type == 'ellip': GSTOP = 10 ** (0.1 * gstop) GPASS = 10 ** (0.1 * gpass) arg1 = sqrt((GPASS - 1.0) / (GSTOP - 1.0)) arg0 = 1.0 / nat d0 = special.ellipk([arg0 ** 2, 1 - arg0 ** 2]) d1 = special.ellipk([arg1 ** 2, 1 - arg1 ** 2]) n = (d0[0] * d1[1] / (d0[1] * d1[0])) else: raise ValueError("Incorrect type: %s" % type) return n def buttord(wp, ws, gpass, gstop, analog=False): """Butterworth filter order selection. Return the order of the lowest order digital or analog Butterworth filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies. For digital filters, these are normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in half-cycles / sample.) For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. Returns ------- ord : int The lowest order for a Butterworth filter which meets specs. wn : ndarray or float The Butterworth natural frequency (i.e. the "3dB frequency"). Should be used with `butter` to give filter results. See Also -------- butter : Filter design using order and critical points cheb1ord : Find order and critical points from passband and stopband spec cheb2ord, ellipord iirfilter : General filter design using order and critical frequencies iirdesign : General filter design using passband and stopband spec Examples -------- Design an analog bandpass filter with passband within 3 dB from 20 to 50 rad/s, while rejecting at least -40 dB below 14 and above 60 rad/s. Plot its frequency response, showing the passband and stopband constraints in gray. >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> N, Wn = signal.buttord([20, 50], [14, 60], 3, 40, True) >>> b, a = signal.butter(N, Wn, 'band', True) >>> w, h = signal.freqs(b, a, np.logspace(1, 2, 500)) >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.title('Butterworth bandpass filter fit to constraints') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.grid(which='both', axis='both') >>> plt.fill([1, 14, 14, 1], [-40, -40, 99, 99], '0.9', lw=0) # stop >>> plt.fill([20, 20, 50, 50], [-99, -3, -3, -99], '0.9', lw=0) # pass >>> plt.fill([60, 60, 1e9, 1e9], [99, -40, -40, 99], '0.9', lw=0) # stop >>> plt.axis([10, 100, -60, 3]) >>> plt.show() """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) filter_type += 1 if wp[0] >= ws[0]: filter_type += 1 # Pre-warp frequencies for digital filter design if not analog: passb = tan(pi * wp / 2.0) stopb = tan(pi * ws / 2.0) else: passb = wp * 1.0 stopb = ws * 1.0 if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'butter'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'butter'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) ord = int(ceil(log10((GSTOP - 1.0) / (GPASS - 1.0)) / (2 * log10(nat)))) # Find the Butterworth natural frequency WN (or the "3dB" frequency") # to give exactly gpass at passb. try: W0 = (GPASS - 1.0) ** (-1.0 / (2.0 * ord)) except ZeroDivisionError: W0 = 1.0 print("Warning, order is zero...check input parameters.") # now convert this frequency back from lowpass prototype # to the original analog filter if filter_type == 1: # low WN = W0 * passb elif filter_type == 2: # high WN = passb / W0 elif filter_type == 3: # stop WN = numpy.zeros(2, float) discr = sqrt((passb[1] - passb[0]) ** 2 + 4 * W0 ** 2 * passb[0] * passb[1]) WN[0] = ((passb[1] - passb[0]) + discr) / (2 * W0) WN[1] = ((passb[1] - passb[0]) - discr) / (2 * W0) WN = numpy.sort(abs(WN)) elif filter_type == 4: # pass W0 = numpy.array([-W0, W0], float) WN = (-W0 * (passb[1] - passb[0]) / 2.0 + sqrt(W0 ** 2 / 4.0 * (passb[1] - passb[0]) ** 2 + passb[0] * passb[1])) WN = numpy.sort(abs(WN)) else: raise ValueError("Bad type: %s" % filter_type) if not analog: wn = (2.0 / pi) * arctan(WN) else: wn = WN if len(wn) == 1: wn = wn[0] return ord, wn def cheb1ord(wp, ws, gpass, gstop, analog=False): """Chebyshev type I filter order selection. Return the order of the lowest order digital or analog Chebyshev Type I filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies. For digital filters, these are normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in half-cycles / sample.) For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. Returns ------- ord : int The lowest order for a Chebyshev type I filter that meets specs. wn : ndarray or float The Chebyshev natural frequency (the "3dB frequency") for use with `cheby1` to give filter results. See Also -------- cheby1 : Filter design using order and critical points buttord : Find order and critical points from passband and stopband spec cheb2ord, ellipord iirfilter : General filter design using order and critical frequencies iirdesign : General filter design using passband and stopband spec Examples -------- Design a digital lowpass filter such that the passband is within 3 dB up to 0.2*(fs/2), while rejecting at least -40 dB above 0.3*(fs/2). Plot its frequency response, showing the passband and stopband constraints in gray. >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> N, Wn = signal.cheb1ord(0.2, 0.3, 3, 40) >>> b, a = signal.cheby1(N, 3, Wn, 'low') >>> w, h = signal.freqz(b, a) >>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h))) >>> plt.title('Chebyshev I lowpass filter fit to constraints') >>> plt.xlabel('Normalized frequency') >>> plt.ylabel('Amplitude [dB]') >>> plt.grid(which='both', axis='both') >>> plt.fill([.01, 0.2, 0.2, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop >>> plt.fill([0.3, 0.3, 2, 2], [ 9, -40, -40, 9], '0.9', lw=0) # pass >>> plt.axis([0.08, 1, -60, 3]) >>> plt.show() """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) if wp[0] < ws[0]: filter_type += 1 else: filter_type += 2 # Pre-warp frequencies for digital filter design if not analog: passb = tan(pi * wp / 2.0) stopb = tan(pi * ws / 2.0) else: passb = wp * 1.0 stopb = ws * 1.0 if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) ord = int(ceil(arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / arccosh(nat))) # Natural frequencies are just the passband edges if not analog: wn = (2.0 / pi) * arctan(passb) else: wn = passb if len(wn) == 1: wn = wn[0] return ord, wn def cheb2ord(wp, ws, gpass, gstop, analog=False): """Chebyshev type II filter order selection. Return the order of the lowest order digital or analog Chebyshev Type II filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies. For digital filters, these are normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in half-cycles / sample.) For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. Returns ------- ord : int The lowest order for a Chebyshev type II filter that meets specs. wn : ndarray or float The Chebyshev natural frequency (the "3dB frequency") for use with `cheby2` to give filter results. See Also -------- cheby2 : Filter design using order and critical points buttord : Find order and critical points from passband and stopband spec cheb1ord, ellipord iirfilter : General filter design using order and critical frequencies iirdesign : General filter design using passband and stopband spec Examples -------- Design a digital bandstop filter which rejects -60 dB from 0.2*(fs/2) to 0.5*(fs/2), while staying within 3 dB below 0.1*(fs/2) or above 0.6*(fs/2). Plot its frequency response, showing the passband and stopband constraints in gray. >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> N, Wn = signal.cheb2ord([0.1, 0.6], [0.2, 0.5], 3, 60) >>> b, a = signal.cheby2(N, 60, Wn, 'stop') >>> w, h = signal.freqz(b, a) >>> plt.semilogx(w / np.pi, 20 * np.log10(abs(h))) >>> plt.title('Chebyshev II bandstop filter fit to constraints') >>> plt.xlabel('Normalized frequency') >>> plt.ylabel('Amplitude [dB]') >>> plt.grid(which='both', axis='both') >>> plt.fill([.01, .1, .1, .01], [-3, -3, -99, -99], '0.9', lw=0) # stop >>> plt.fill([.2, .2, .5, .5], [ 9, -60, -60, 9], '0.9', lw=0) # pass >>> plt.fill([.6, .6, 2, 2], [-99, -3, -3, -99], '0.9', lw=0) # stop >>> plt.axis([0.06, 1, -80, 3]) >>> plt.show() """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) if wp[0] < ws[0]: filter_type += 1 else: filter_type += 2 # Pre-warp frequencies for digital filter design if not analog: passb = tan(pi * wp / 2.0) stopb = tan(pi * ws / 2.0) else: passb = wp * 1.0 stopb = ws * 1.0 if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'cheby'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * abs(gstop)) GPASS = 10 ** (0.1 * abs(gpass)) ord = int(ceil(arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0))) / arccosh(nat))) # Find frequency where analog response is -gpass dB. # Then convert back from low-pass prototype to the original filter. new_freq = cosh(1.0 / ord * arccosh(sqrt((GSTOP - 1.0) / (GPASS - 1.0)))) new_freq = 1.0 / new_freq if filter_type == 1: nat = passb / new_freq elif filter_type == 2: nat = passb * new_freq elif filter_type == 3: nat = numpy.zeros(2, float) nat[0] = (new_freq / 2.0 * (passb[0] - passb[1]) + sqrt(new_freq ** 2 * (passb[1] - passb[0]) ** 2 / 4.0 + passb[1] * passb[0])) nat[1] = passb[1] * passb[0] / nat[0] elif filter_type == 4: nat = numpy.zeros(2, float) nat[0] = (1.0 / (2.0 * new_freq) * (passb[0] - passb[1]) + sqrt((passb[1] - passb[0]) ** 2 / (4.0 * new_freq ** 2) + passb[1] * passb[0])) nat[1] = passb[0] * passb[1] / nat[0] if not analog: wn = (2.0 / pi) * arctan(nat) else: wn = nat if len(wn) == 1: wn = wn[0] return ord, wn def ellipord(wp, ws, gpass, gstop, analog=False): """Elliptic (Cauer) filter order selection. Return the order of the lowest order digital or analog elliptic filter that loses no more than `gpass` dB in the passband and has at least `gstop` dB attenuation in the stopband. Parameters ---------- wp, ws : float Passband and stopband edge frequencies. For digital filters, these are normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in half-cycles / sample.) For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. Returns ------- ord : int The lowest order for an Elliptic (Cauer) filter that meets specs. wn : ndarray or float The Chebyshev natural frequency (the "3dB frequency") for use with `ellip` to give filter results. See Also -------- ellip : Filter design using order and critical points buttord : Find order and critical points from passband and stopband spec cheb1ord, cheb2ord iirfilter : General filter design using order and critical frequencies iirdesign : General filter design using passband and stopband spec Examples -------- Design an analog highpass filter such that the passband is within 3 dB above 30 rad/s, while rejecting -60 dB at 10 rad/s. Plot its frequency response, showing the passband and stopband constraints in gray. >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> N, Wn = signal.ellipord(30, 10, 3, 60, True) >>> b, a = signal.ellip(N, 3, 60, Wn, 'high', True) >>> w, h = signal.freqs(b, a, np.logspace(0, 3, 500)) >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.title('Elliptical highpass filter fit to constraints') >>> plt.xlabel('Frequency [radians / second]') >>> plt.ylabel('Amplitude [dB]') >>> plt.grid(which='both', axis='both') >>> plt.fill([.1, 10, 10, .1], [1e4, 1e4, -60, -60], '0.9', lw=0) # stop >>> plt.fill([30, 30, 1e9, 1e9], [-99, -3, -3, -99], '0.9', lw=0) # pass >>> plt.axis([1, 300, -80, 3]) >>> plt.show() """ wp = atleast_1d(wp) ws = atleast_1d(ws) filter_type = 2 * (len(wp) - 1) filter_type += 1 if wp[0] >= ws[0]: filter_type += 1 # Pre-warp frequencies for digital filter design if not analog: passb = tan(pi * wp / 2.0) stopb = tan(pi * ws / 2.0) else: passb = wp * 1.0 stopb = ws * 1.0 if filter_type == 1: # low nat = stopb / passb elif filter_type == 2: # high nat = passb / stopb elif filter_type == 3: # stop wp0 = optimize.fminbound(band_stop_obj, passb[0], stopb[0] - 1e-12, args=(0, passb, stopb, gpass, gstop, 'ellip'), disp=0) passb[0] = wp0 wp1 = optimize.fminbound(band_stop_obj, stopb[1] + 1e-12, passb[1], args=(1, passb, stopb, gpass, gstop, 'ellip'), disp=0) passb[1] = wp1 nat = ((stopb * (passb[0] - passb[1])) / (stopb ** 2 - passb[0] * passb[1])) elif filter_type == 4: # pass nat = ((stopb ** 2 - passb[0] * passb[1]) / (stopb * (passb[0] - passb[1]))) nat = min(abs(nat)) GSTOP = 10 ** (0.1 * gstop) GPASS = 10 ** (0.1 * gpass) arg1 = sqrt((GPASS - 1.0) / (GSTOP - 1.0)) arg0 = 1.0 / nat d0 = special.ellipk([arg0 ** 2, 1 - arg0 ** 2]) d1 = special.ellipk([arg1 ** 2, 1 - arg1 ** 2]) ord = int(ceil(d0[0] * d1[1] / (d0[1] * d1[0]))) if not analog: wn = arctan(passb) * 2.0 / pi else: wn = passb if len(wn) == 1: wn = wn[0] return ord, wn def buttap(N): """Return (z,p,k) for analog prototype of Nth-order Butterworth filter. The filter will have an angular (e.g. rad/s) cutoff frequency of 1. See Also -------- butter : Filter design function using this prototype """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") z = numpy.array([]) m = numpy.arange(-N+1, N, 2) # Middle value is 0 to ensure an exactly real pole p = -numpy.exp(1j * pi * m / (2 * N)) k = 1 return z, p, k def cheb1ap(N, rp): """ Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter. The returned filter prototype has `rp` decibels of ripple in the passband. The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first drops below ``-rp``. See Also -------- cheby1 : Filter design function using this prototype """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") elif N == 0: # Avoid divide-by-zero error # Even order filters have DC gain of -rp dB return numpy.array([]), numpy.array([]), 10**(-rp/20) z = numpy.array([]) # Ripple factor (epsilon) eps = numpy.sqrt(10 ** (0.1 * rp) - 1.0) mu = 1.0 / N * arcsinh(1 / eps) # Arrange poles in an ellipse on the left half of the S-plane m = numpy.arange(-N+1, N, 2) theta = pi * m / (2*N) p = -sinh(mu + 1j*theta) k = numpy.prod(-p, axis=0).real if N % 2 == 0: k = k / sqrt((1 + eps * eps)) return z, p, k def cheb2ap(N, rs): """ Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter. The returned filter prototype has `rs` decibels of ripple in the stopband. The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first reaches ``-rs``. See Also -------- cheby2 : Filter design function using this prototype """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") elif N == 0: # Avoid divide-by-zero warning return numpy.array([]), numpy.array([]), 1 # Ripple factor (epsilon) de = 1.0 / sqrt(10 ** (0.1 * rs) - 1) mu = arcsinh(1.0 / de) / N if N % 2: m = numpy.concatenate((numpy.arange(-N+1, 0, 2), numpy.arange(2, N, 2))) else: m = numpy.arange(-N+1, N, 2) z = -conjugate(1j / sin(m * pi / (2.0 * N))) # Poles around the unit circle like Butterworth p = -exp(1j * pi * numpy.arange(-N+1, N, 2) / (2 * N)) # Warp into Chebyshev II p = sinh(mu) * p.real + 1j * cosh(mu) * p.imag p = 1.0 / p k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real return z, p, k EPSILON = 2e-16 def _vratio(u, ineps, mp): [s, c, d, phi] = special.ellipj(u, mp) ret = abs(ineps - s / c) return ret def _kratio(m, k_ratio): m = float(m) if m < 0: m = 0.0 if m > 1: m = 1.0 if abs(m) > EPSILON and (abs(m) + EPSILON) < 1: k = special.ellipk([m, 1 - m]) r = k[0] / k[1] - k_ratio elif abs(m) > EPSILON: r = -k_ratio else: r = 1e20 return abs(r) def ellipap(N, rp, rs): """Return (z,p,k) of Nth-order elliptic analog lowpass filter. The filter is a normalized prototype that has `rp` decibels of ripple in the passband and a stopband `rs` decibels down. The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first drops below ``-rp``. See Also -------- ellip : Filter design function using this prototype References ---------- .. [1] Lutova, Tosic, and Evans, "Filter Design for Signal Processing", Chapters 5 and 12. """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") elif N == 0: # Avoid divide-by-zero warning # Even order filters have DC gain of -rp dB return numpy.array([]), numpy.array([]), 10**(-rp/20) elif N == 1: p = -sqrt(1.0 / (10 ** (0.1 * rp) - 1.0)) k = -p z = [] return asarray(z), asarray(p), k eps = numpy.sqrt(10 ** (0.1 * rp) - 1) ck1 = eps / numpy.sqrt(10 ** (0.1 * rs) - 1) ck1p = numpy.sqrt(1 - ck1 * ck1) if ck1p == 1: raise ValueError("Cannot design a filter with given rp and rs" " specifications.") val = special.ellipk([ck1 * ck1, ck1p * ck1p]) if abs(1 - ck1p * ck1p) < EPSILON: krat = 0 else: krat = N * val[0] / val[1] m = optimize.fmin(_kratio, [0.5], args=(krat,), maxfun=250, maxiter=250, disp=0) if m < 0 or m > 1: m = optimize.fminbound(_kratio, 0, 1, args=(krat,), maxfun=250, maxiter=250, disp=0) capk = special.ellipk(m) j = numpy.arange(1 - N % 2, N, 2) jj = len(j) [s, c, d, phi] = special.ellipj(j * capk / N, m * numpy.ones(jj)) snew = numpy.compress(abs(s) > EPSILON, s, axis=-1) z = 1.0 / (sqrt(m) * snew) z = 1j * z z = numpy.concatenate((z, conjugate(z))) r = optimize.fmin(_vratio, special.ellipk(m), args=(1. / eps, ck1p * ck1p), maxfun=250, maxiter=250, disp=0) v0 = capk * r / (N * val[0]) [sv, cv, dv, phi] = special.ellipj(v0, 1 - m) p = -(c * d * sv * cv + 1j * s * dv) / (1 - (d * sv) ** 2.0) if N % 2: newp = numpy.compress(abs(p.imag) > EPSILON * numpy.sqrt(numpy.sum(p * numpy.conjugate(p), axis=0).real), p, axis=-1) p = numpy.concatenate((p, conjugate(newp))) else: p = numpy.concatenate((p, conjugate(p))) k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real if N % 2 == 0: k = k / numpy.sqrt((1 + eps * eps)) return z, p, k # TODO: Make this a real public function scipy.misc.ff def _falling_factorial(x, n): r""" Return the factorial of `x` to the `n` falling. This is defined as: .. math:: x^\underline n = (x)_n = x (x-1) \cdots (x-n+1) This can more efficiently calculate ratios of factorials, since: n!/m! == falling_factorial(n, n-m) where n >= m skipping the factors that cancel out the usual factorial n! == ff(n, n) """ val = 1 for k in range(x - n + 1, x + 1): val *= k return val def _bessel_poly(n, reverse=False): """ Return the coefficients of Bessel polynomial of degree `n` If `reverse` is true, a reverse Bessel polynomial is output. Output is a list of coefficients: [1] = 1 [1, 1] = 1*s + 1 [1, 3, 3] = 1*s^2 + 3*s + 3 [1, 6, 15, 15] = 1*s^3 + 6*s^2 + 15*s + 15 [1, 10, 45, 105, 105] = 1*s^4 + 10*s^3 + 45*s^2 + 105*s + 105 etc. Output is a Python list of arbitrary precision long ints, so n is only limited by your hardware's memory. Sequence is http://oeis.org/A001498 , and output can be confirmed to match http://oeis.org/A001498/b001498.txt : >>> i = 0 >>> for n in range(51): ... for x in _bessel_poly(n, reverse=True): ... print(i, x) ... i += 1 """ if abs(int(n)) != n: raise ValueError("Polynomial order must be a nonnegative integer") else: n = int(n) # np.int32 doesn't work, for instance out = [] for k in range(n + 1): num = _falling_factorial(2*n - k, n) den = 2**(n - k) * factorial(k, exact=True) out.append(num // den) if reverse: return out[::-1] else: return out def _campos_zeros(n): """ Return approximate zero locations of Bessel polynomials y_n(x) for order `n` using polynomial fit (Campos-Calderon 2011) """ if n == 1: return asarray([-1+0j]) s = npp_polyval(n, [0, 0, 2, 0, -3, 1]) b3 = npp_polyval(n, [16, -8]) / s b2 = npp_polyval(n, [-24, -12, 12]) / s b1 = npp_polyval(n, [8, 24, -12, -2]) / s b0 = npp_polyval(n, [0, -6, 0, 5, -1]) / s r = npp_polyval(n, [0, 0, 2, 1]) a1 = npp_polyval(n, [-6, -6]) / r a2 = 6 / r k = np.arange(1, n+1) x = npp_polyval(k, [0, a1, a2]) y = npp_polyval(k, [b0, b1, b2, b3]) return x + 1j*y def _aberth(f, fp, x0, tol=1e-15, maxiter=50): """ Given a function `f`, its first derivative `fp`, and a set of initial guesses `x0`, simultaneously find the roots of the polynomial using the Aberth-Ehrlich method. ``len(x0)`` should equal the number of roots of `f`. (This is not a complete implementation of Bini's algorithm.) """ N = len(x0) x = array(x0, complex) beta = np.empty_like(x0) for iteration in range(maxiter): alpha = -f(x) / fp(x) # Newton's method # Model "repulsion" between zeros for k in range(N): beta[k] = np.sum(1/(x[k] - x[k+1:])) beta[k] += np.sum(1/(x[k] - x[:k])) x += alpha / (1 + alpha * beta) if not all(np.isfinite(x)): raise RuntimeError('Root-finding calculation failed') # Mekwi: The iterative process can be stopped when |hn| has become # less than the largest error one is willing to permit in the root. if all(abs(alpha) <= tol): break else: raise Exception('Zeros failed to converge') return x def _bessel_zeros(N): """ Find zeros of ordinary Bessel polynomial of order `N`, by root-finding of modified Bessel function of the second kind """ if N == 0: return asarray([]) # Generate starting points x0 = _campos_zeros(N) # Zeros are the same for exp(1/x)*K_{N+0.5}(1/x) and Nth-order ordinary # Bessel polynomial y_N(x) def f(x): return special.kve(N+0.5, 1/x) # First derivative of above def fp(x): return (special.kve(N-0.5, 1/x)/(2*x**2) - special.kve(N+0.5, 1/x)/(x**2) + special.kve(N+1.5, 1/x)/(2*x**2)) # Starting points converge to true zeros x = _aberth(f, fp, x0) # Improve precision using Newton's method on each for i in range(len(x)): x[i] = optimize.newton(f, x[i], fp, tol=1e-15) # Average complex conjugates to make them exactly symmetrical x = np.mean((x, x[::-1].conj()), 0) # Zeros should sum to -1 if abs(np.sum(x) + 1) > 1e-15: raise RuntimeError('Generated zeros are inaccurate') return x def _norm_factor(p, k): """ Numerically find frequency shift to apply to delay-normalized filter such that -3 dB point is at 1 rad/sec. `p` is an array_like of polynomial poles `k` is a float gain First 10 values are listed in "Bessel Scale Factors" table, "Bessel Filters Polynomials, Poles and Circuit Elements 2003, C. Bond." """ p = asarray(p, dtype=complex) def G(w): """ Gain of filter """ return abs(k / prod(1j*w - p)) def cutoff(w): """ When gain = -3 dB, return 0 """ return G(w) - 1/np.sqrt(2) return optimize.newton(cutoff, 1.5) def besselap(N, norm='phase'): """ Return (z,p,k) for analog prototype of an Nth-order Bessel filter. Parameters ---------- N : int The order of the filter. norm : {'phase', 'delay', 'mag'}, optional Frequency normalization: ``phase`` The filter is normalized such that the phase response reaches its midpoint at an angular (e.g. rad/s) cutoff frequency of 1. This happens for both low-pass and high-pass filters, so this is the "phase-matched" case. [6]_ The magnitude response asymptotes are the same as a Butterworth filter of the same order with a cutoff of `Wn`. This is the default, and matches MATLAB's implementation. ``delay`` The filter is normalized such that the group delay in the passband is 1 (e.g. 1 second). This is the "natural" type obtained by solving Bessel polynomials ``mag`` The filter is normalized such that the gain magnitude is -3 dB at angular frequency 1. This is called "frequency normalization" by Bond. [1]_ .. versionadded:: 0.18.0 Returns ------- z : ndarray Zeros of the transfer function. Is always an empty array. p : ndarray Poles of the transfer function. k : scalar Gain of the transfer function. For phase-normalized, this is always 1. See Also -------- bessel : Filter design function using this prototype Notes ----- To find the pole locations, approximate starting points are generated [2]_ for the zeros of the ordinary Bessel polynomial [3]_, then the Aberth-Ehrlich method [4]_ [5]_ is used on the Kv(x) Bessel function to calculate more accurate zeros, and these locations are then inverted about the unit circle. References ---------- .. [1] C.R. Bond, "Bessel Filter Constants", http://www.crbond.com/papers/bsf.pdf .. [2] Campos and Calderon, "Approximate closed-form formulas for the zeros of the Bessel Polynomials", :arXiv:`1105.0957`. .. [3] Thomson, W.E., "Delay Networks having Maximally Flat Frequency Characteristics", Proceedings of the Institution of Electrical Engineers, Part III, November 1949, Vol. 96, No. 44, pp. 487-490. .. [4] Aberth, "Iteration Methods for Finding all Zeros of a Polynomial Simultaneously", Mathematics of Computation, Vol. 27, No. 122, April 1973 .. [5] Ehrlich, "A modified Newton method for polynomials", Communications of the ACM, Vol. 10, Issue 2, pp. 107-108, Feb. 1967, :DOI:`10.1145/363067.363115` .. [6] Miller and Bohn, "A Bessel Filter Crossover, and Its Relation to Others", RaneNote 147, 1998, http://www.rane.com/note147.html """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") if N == 0: p = [] k = 1 else: # Find roots of reverse Bessel polynomial p = 1/_bessel_zeros(N) a_last = _falling_factorial(2*N, N) // 2**N # Shift them to a different normalization if required if norm in ('delay', 'mag'): # Normalized for group delay of 1 k = a_last if norm == 'mag': # -3 dB magnitude point is at 1 rad/sec norm_factor = _norm_factor(p, k) p /= norm_factor k = norm_factor**-N * a_last elif norm == 'phase': # Phase-matched (1/2 max phase shift at 1 rad/sec) # Asymptotes are same as Butterworth filter p *= 10**(-math.log10(a_last)/N) k = 1 else: raise ValueError('normalization not understood') return asarray([]), asarray(p, dtype=complex), float(k) def iirnotch(w0, Q): """ Design second-order IIR notch digital filter. A notch filter is a band-stop filter with a narrow bandwidth (high quality factor). It rejects a narrow frequency band and leaves the rest of the spectrum little changed. Parameters ---------- w0 : float Normalized frequency to remove from a signal. It is a scalar that must satisfy ``0 < w0 < 1``, with ``w0 = 1`` corresponding to half of the sampling frequency. Q : float Quality factor. Dimensionless parameter that characterizes notch filter -3 dB bandwidth ``bw`` relative to its center frequency, ``Q = w0/bw``. Returns ------- b, a : ndarray, ndarray Numerator (``b``) and denominator (``a``) polynomials of the IIR filter. See Also -------- iirpeak Notes ----- .. versionadded: 0.19.0 References ---------- .. [1] Sophocles J. Orfanidis, "Introduction To Signal Processing", Prentice-Hall, 1996 Examples -------- Design and plot filter to remove the 60Hz component from a signal sampled at 200Hz, using a quality factor Q = 30 >>> from scipy import signal >>> import numpy as np >>> import matplotlib.pyplot as plt >>> fs = 200.0 # Sample frequency (Hz) >>> f0 = 60.0 # Frequency to be removed from signal (Hz) >>> Q = 30.0 # Quality factor >>> w0 = f0/(fs/2) # Normalized Frequency >>> # Design notch filter >>> b, a = signal.iirnotch(w0, Q) >>> # Frequency response >>> w, h = signal.freqz(b, a) >>> # Generate frequency axis >>> freq = w*fs/(2*np.pi) >>> # Plot >>> fig, ax = plt.subplots(2, 1, figsize=(8, 6)) >>> ax[0].plot(freq, 20*np.log10(abs(h)), color='blue') >>> ax[0].set_title("Frequency Response") >>> ax[0].set_ylabel("Amplitude (dB)", color='blue') >>> ax[0].set_xlim([0, 100]) >>> ax[0].set_ylim([-25, 10]) >>> ax[0].grid() >>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green') >>> ax[1].set_ylabel("Angle (degrees)", color='green') >>> ax[1].set_xlabel("Frequency (Hz)") >>> ax[1].set_xlim([0, 100]) >>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90]) >>> ax[1].set_ylim([-90, 90]) >>> ax[1].grid() >>> plt.show() """ return _design_notch_peak_filter(w0, Q, "notch") def iirpeak(w0, Q): """ Design second-order IIR peak (resonant) digital filter. A peak filter is a band-pass filter with a narrow bandwidth (high quality factor). It rejects components outside a narrow frequency band. Parameters ---------- w0 : float Normalized frequency to be retained in a signal. It is a scalar that must satisfy ``0 < w0 < 1``, with ``w0 = 1`` corresponding to half of the sampling frequency. Q : float Quality factor. Dimensionless parameter that characterizes peak filter -3 dB bandwidth ``bw`` relative to its center frequency, ``Q = w0/bw``. Returns ------- b, a : ndarray, ndarray Numerator (``b``) and denominator (``a``) polynomials of the IIR filter. See Also -------- iirnotch Notes ----- .. versionadded: 0.19.0 References ---------- .. [1] Sophocles J. Orfanidis, "Introduction To Signal Processing", Prentice-Hall, 1996 Examples -------- Design and plot filter to remove the frequencies other than the 300Hz component from a signal sampled at 1000Hz, using a quality factor Q = 30 >>> from scipy import signal >>> import numpy as np >>> import matplotlib.pyplot as plt >>> fs = 1000.0 # Sample frequency (Hz) >>> f0 = 300.0 # Frequency to be retained (Hz) >>> Q = 30.0 # Quality factor >>> w0 = f0/(fs/2) # Normalized Frequency >>> # Design peak filter >>> b, a = signal.iirpeak(w0, Q) >>> # Frequency response >>> w, h = signal.freqz(b, a) >>> # Generate frequency axis >>> freq = w*fs/(2*np.pi) >>> # Plot >>> fig, ax = plt.subplots(2, 1, figsize=(8, 6)) >>> ax[0].plot(freq, 20*np.log10(abs(h)), color='blue') >>> ax[0].set_title("Frequency Response") >>> ax[0].set_ylabel("Amplitude (dB)", color='blue') >>> ax[0].set_xlim([0, 500]) >>> ax[0].set_ylim([-50, 10]) >>> ax[0].grid() >>> ax[1].plot(freq, np.unwrap(np.angle(h))*180/np.pi, color='green') >>> ax[1].set_ylabel("Angle (degrees)", color='green') >>> ax[1].set_xlabel("Frequency (Hz)") >>> ax[1].set_xlim([0, 500]) >>> ax[1].set_yticks([-90, -60, -30, 0, 30, 60, 90]) >>> ax[1].set_ylim([-90, 90]) >>> ax[1].grid() >>> plt.show() """ return _design_notch_peak_filter(w0, Q, "peak") def _design_notch_peak_filter(w0, Q, ftype): """ Design notch or peak digital filter. Parameters ---------- w0 : float Normalized frequency to remove from a signal. It is a scalar that must satisfy ``0 < w0 < 1``, with ``w0 = 1`` corresponding to half of the sampling frequency. Q : float Quality factor. Dimensionless parameter that characterizes notch filter -3 dB bandwidth ``bw`` relative to its center frequency, ``Q = w0/bw``. ftype : str The type of IIR filter to design: - notch filter : ``notch`` - peak filter : ``peak`` Returns ------- b, a : ndarray, ndarray Numerator (``b``) and denominator (``a``) polynomials of the IIR filter. """ # Guarantee that the inputs are floats w0 = float(w0) Q = float(Q) # Checks if w0 is within the range if w0 > 1.0 or w0 < 0.0: raise ValueError("w0 should be such that 0 < w0 < 1") # Get bandwidth bw = w0/Q # Normalize inputs bw = bw*np.pi w0 = w0*np.pi # Compute -3dB atenuation gb = 1/np.sqrt(2) if ftype == "notch": # Compute beta: formula 11.3.4 (p.575) from reference [1] beta = (np.sqrt(1.0-gb**2.0)/gb)*np.tan(bw/2.0) elif ftype == "peak": # Compute beta: formula 11.3.19 (p.579) from reference [1] beta = (gb/np.sqrt(1.0-gb**2.0))*np.tan(bw/2.0) else: raise ValueError("Unknown ftype.") # Compute gain: formula 11.3.6 (p.575) from reference [1] gain = 1.0/(1.0+beta) # Compute numerator b and denominator a # formulas 11.3.7 (p.575) and 11.3.21 (p.579) # from reference [1] if ftype == "notch": b = gain*np.array([1.0, -2.0*np.cos(w0), 1.0]) else: b = (1.0-gain)*np.array([1.0, 0.0, -1.0]) a = np.array([1.0, -2.0*gain*np.cos(w0), (2.0*gain-1.0)]) return b, a filter_dict = {'butter': [buttap, buttord], 'butterworth': [buttap, buttord], 'cauer': [ellipap, ellipord], 'elliptic': [ellipap, ellipord], 'ellip': [ellipap, ellipord], 'bessel': [besselap], 'bessel_phase': [besselap], 'bessel_delay': [besselap], 'bessel_mag': [besselap], 'cheby1': [cheb1ap, cheb1ord], 'chebyshev1': [cheb1ap, cheb1ord], 'chebyshevi': [cheb1ap, cheb1ord], 'cheby2': [cheb2ap, cheb2ord], 'chebyshev2': [cheb2ap, cheb2ord], 'chebyshevii': [cheb2ap, cheb2ord], } band_dict = {'band': 'bandpass', 'bandpass': 'bandpass', 'pass': 'bandpass', 'bp': 'bandpass', 'bs': 'bandstop', 'bandstop': 'bandstop', 'bands': 'bandstop', 'stop': 'bandstop', 'l': 'lowpass', 'low': 'lowpass', 'lowpass': 'lowpass', 'lp': 'lowpass', 'high': 'highpass', 'highpass': 'highpass', 'h': 'highpass', 'hp': 'highpass', } bessel_norms = {'bessel': 'phase', 'bessel_phase': 'phase', 'bessel_delay': 'delay', 'bessel_mag': 'mag'}
bsd-3-clause
shenzebang/scikit-learn
examples/exercises/plot_cv_digits.py
232
1206
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn import cross_validation, datasets, svm digits = datasets.load_digits() X = digits.data y = digits.target svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import matplotlib.pyplot as plt plt.figure(1, figsize=(4, 3)) plt.clf() plt.semilogx(C_s, scores) plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = plt.yticks() plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) plt.ylabel('CV score') plt.xlabel('Parameter C') plt.ylim(0, 1.1) plt.show()
bsd-3-clause
andreasvc/disco-dop
web/browse.py
1
12449
"""Web interface to browse a corpus with various visualizations.""" # stdlib import os import re import sys import glob import math import logging from collections import OrderedDict from functools import wraps import matplotlib matplotlib.use('AGG') import matplotlib.cm as cm import pandas # Flask & co from flask import Flask, Response from flask import request, render_template # disco-dop from discodop import treebank, treebanktransforms from discodop.tree import DrawTree DEBUG = False # when True: enable debugging interface, disable multiprocessing PASSWD = None # optionally, dict with user=>pass strings HEADRULES = '../alpino.headrules' logging.basicConfig( format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG) APP = Flask(__name__) log = APP.logger STANDALONE = __name__ == '__main__' CORPUS_DIR = "corpus/" COLORS = dict(enumerate(''' Black Red Green Orange Blue Turquoise SlateGray Peru Teal Aqua Aquamarine BlanchedAlmond Brown Burlywood CadetBlue Chartreuse Chocolate Coral Crimson Cyan Firebrick ForestGreen Fuchsia Gainsboro Gold Goldenrod Gray GreenYellow HotPink IndianRed Indigo Khaki Lime YellowGreen Magenta Maroon Yellow MidnightBlue Moccasin NavyBlue Olive OliveDrab Orchid PapayaWhip Pink Plum PowderBlue Purple RebeccaPurple RoyalBlue SaddleBrown Salmon SandyBrown SeaGreen Sienna Silver SkyBlue SlateBlue Tan Thistle Tomato Violet Wheat'''.split())) WORDLIST = pandas.read_table('sonar-word.freqsort.lower.gz', encoding='utf8', index_col=0, header=None, names=['word', 'count'], nrows=20000).index def getdeplen(item): """Compute dependency length.""" tree = item.tree.copy(True) deps = treebank.dependencies(tree) a, b = treebank.deplen(deps) return ([abs(x - y) > 7 for x, _, y in deps], a / b if b else 0) # cannot highlight due to removing punct # return (None, a / b if b else 0) def getmodifiers(item): """Count and highlight REL/PP-modifiers.""" nodes = list(item.tree.subtrees(lambda n: n.label in ('REL', 'PP') and treebanktransforms.function(n) == 'mod')) return toboolvec(len(item.sent), {a for x in nodes for a in x.leaves()}), len(nodes) def toboolvec(length, indices): """Convert a list of indices into a list of booleans.""" return [n in indices for n in range(length)] # Functions that accept item object with item.tree and item.sent members; # return tuple (wordhighlights, sentweight). FILTERS = { 'average dependency length': getdeplen, 'd-level': lambda i: (None, treebanktransforms.dlevel(i.tree)), 'rare words': lambda i: (list(~pandas.Index( t.lower() for t in i.sent ).isin(WORDLIST) & pandas.Series([ # filter names 'eigen' not in n.source[treebank.MORPH] for n in sorted(i.tree.subtrees(lambda n: isinstance(n[0], int)), key=lambda n: n[0])]) ), None), 'PP/REL modifiers': getmodifiers, 'punctuation': lambda i: (None, max('.,\'"?!(:;'.find(t) + 1 for t in i.sent)), 'direct speech': lambda i: (None, re.match(r"^- .*$|(?:^|.* )['\"](?: .*|$)", ' '.join(i.sent)) is not None), } def torgb(val, mappable): """Return hexadecimal HTML color string.""" return '#%02x%02x%02x' % mappable.to_rgba(val, bytes=True)[:3] def charvalues(sent, values): """Project token values to character values. >>> sorted(charvalues(['The', 'cat', 'is', 'on', 'the', 'mat'], ... [0, 0, 1, 1, 0, 1])) [0, 1, 2, 3, 8, 9, 10, 14, 15, 16, 17] """ assert len(sent) == len(values) result = [] for a, b in zip(sent, values): result.extend([b] * (len(a) + 1)) return result # http://flask.pocoo.org/snippets/8/ def check_auth(username, password): """This function is called to check if a username / password combination is valid.""" return PASSWD is None or (username in PASSWD and password == PASSWD[username]) def authenticate(): """Sends a 401 response that enables basic auth.""" return Response( 'Could not verify your access level for that URL.\n' 'You have to login with proper credentials', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'}) def requires_auth(f): """Decorator to require basic authentication for route.""" @wraps(f) def decorated(*args, **kwargs): """This docstring intentionally left blank.""" auth = request.authorization if not auth or not check_auth(auth.username, auth.password): return authenticate() return f(*args, **kwargs) return decorated # end snipppet def applyhighlight(sent, high1, high2, colorvec=None): """Return a version of sent where given char. indices are highlighted.""" cur = None start = 0 out = [] for n, _ in enumerate(sent): if colorvec is not None: if cur != COLORS.get(colorvec[n], 'gray'): out.append(sent[start:n]) if cur is not None: out.append('</font>') out.append('<font color=%s>' % COLORS.get(colorvec[n], 'gray')) start = n cur = COLORS.get(colorvec[n], 'gray') elif n in high1: if cur != 'red': out.append(sent[start:n]) if cur is not None: out.append('</span>') out.append('<span class=r>') start = n cur = 'red' elif n in high2: if cur != 'blue': out.append(sent[start:n]) if cur is not None: out.append('</span>') out.append('<span class=b>') start = n cur = 'blue' else: if cur is not None: out.append(sent[start:n]) out.append('</span>') start = n cur = None out.append(sent[start:]) if cur is not None: out.append('</font>') return ''.join(out) def addsentweight(x): wordhighlights, sentweight = x if sentweight is None: return wordhighlights, sum(wordhighlights) return x @APP.route('/browse') @requires_auth def browsetrees(): """Browse through trees in a file.""" chunk = 20 # number of trees to fetch for one request if 'text' in request.args and 'sent' in request.args: textno = int(request.args['text']) sentno = int(request.args['sent']) start = max(1, sentno - sentno % chunk) stop = start + chunk nofunc = 'nofunc' in request.args nomorph = 'nomorph' in request.args filename = os.path.join(CORPUS_DIR, TEXTS[textno] + '.export') trees = CORPORA[filename].itertrees(start, stop) results = ['<pre id="t%s"%s>%s\n%s</pre>' % (n, ' style="display: none; "' if 'ajax' in request.args else '', ', '.join('%s: %.3g' % (f, addsentweight(FILTERS[f](item))[1]) for f in sorted(FILTERS)), DrawTree(item.tree, item.sent).text( unicodelines=True, html=True)) for n, (_key, item) in enumerate(trees, start)] if 'ajax' in request.args: return '\n'.join(results) prevlink = '<a id=prev>prev</a>' if sentno > chunk: prevlink = '<a href="browse?text=%d;sent=%d" id=prev>prev</a>' % ( textno, sentno - chunk + 1) nextlink = '<a id=next>next</a>' nextlink = '<a href="browse?text=%d;sent=%d" id=next>next</a>' % ( textno, sentno + chunk + 1) return render_template('browse.html', textno=textno, sentno=sentno, text=TEXTS[textno], totalsents=1000, trees=results, prevlink=prevlink, nextlink=nextlink, chunk=chunk, nofunc=nofunc, nomorph=nomorph, mintree=start, maxtree=stop) return '<h1>Browse through trees</h1>\n<ol>\n%s</ol>\n' % '\n'.join( '<li><a href="browse?text=%d;sent=1;nomorph">%s</a> ' % (n, text) for n, text in enumerate(TEXTS)) @APP.route('/') @APP.route('/browsesents') @requires_auth def browsesents(): """Browse through sentences in a file; highlight selectable features.""" chunk = 20 # number of sentences per page if 'text' in request.args and 'sent' in request.args: textno = int(request.args['text']) sentno = int(request.args['sent']) sentno = max(chunk // 2 + 1, sentno) start = max(1, sentno - chunk // 2) stop = start + chunk filename = os.path.join(CORPUS_DIR, TEXTS[textno] + '.export') feat = request.args.get('feat', next(iter(FILTERS))) trees = list(CORPORA[filename].itertrees(start, stop)) results = [] values = [addsentweight(FILTERS[feat](item)) for n, (_key, item) in enumerate(trees, start)] norm = matplotlib.colors.Normalize( vmin=0, vmax=max(a for _, a in values) * 2) mappable = cm.ScalarMappable(norm, 'YlOrBr') for n, ((_key, item), (wordhighlights, sentweight)) in enumerate( zip(trees, values), start): if sentweight is None: sentweight = sum(wordhighlights) if wordhighlights is not None: xsent = applyhighlight( ' '.join(item.sent), None, None, colorvec=charvalues(item.sent, wordhighlights)) else: xsent = ' '.join(item.sent) results.append( '<a href="browse?text=%d;sent=%d" ' 'style="text-decoration: none; color: black;">' '<span style="background: %s; " title="%s: %.3g">' ' %s </span></a>' % (textno, n, torgb(sentweight, mappable), feat, sentweight, xsent)) legend = 'Feature: [ %s ]<br>' % ', '.join(f if f == feat else ('<a href="browsesents?text=%d;sent=%d;feat=%s">' '%s</a>' % (textno, sentno, f, f)) for f in sorted(FILTERS)) legend += 'Legend: ' + ''.join( '<span style="background-color: %s; width: 30px; ' 'display: inline-block; text-align: center; ">' '%d</span>' % (torgb(n, mappable), n) for n in range(0, int(math.ceil(max(a for _, a in values))) + 1)) prevlink = '<a id=prev>prev</a>' if sentno > chunk: prevlink = ( '<a href="browsesents?text=%d;sent=%d;feat=%s" id=prev>' 'prev</a>' % (textno, sentno - chunk, feat)) nextlink = '<a id=next>next</a>' nextlink = ('<a href="browsesents?text=%d;sent=%d;feat=%s" id=next>' 'next</a>' % (textno, sentno + chunk, feat)) return render_template('browsesents.html', textno=textno, sentno=sentno, text=TEXTS[textno], totalsents='??', # FIXME sents=results, prevlink=prevlink, nextlink=nextlink, chunk=chunk, mintree=start, legend=legend, query=request.args.get('query', ''), engine='') return render_template('browsemain.html', texts=TEXTS) def querydict(queries): """Return an OrderedDict of names and queries. name is abbreviated query if not given.""" result = OrderedDict() for line in (x for x in queries.splitlines() if x.strip()): if ':' in line and line[:line.index(':')].isalnum(): name, query = line.split(':', 1) else: name = line[:100] + ('' if len(line) < 100 else '...') query = line if '\t' in query: normquery, query = query.split('\t') else: normquery = None result[name] = normquery, query return result def getcorpus(): """Get list of files and number of lines in them.""" files = sorted(glob.glob(os.path.join(CORPUS_DIR, '*.export'))) assert files, ('no corpus files with extension .export ' 'found.') texts = [os.path.splitext(os.path.basename(a))[0] for a in files] corpora = {filename: treebank.NegraCorpusReader(filename, headrules=HEADRULES, punct='move') for filename in files} if os.path.exists('metadata.csv'): metadata = pandas.read_csv('metadata.csv', index_col=0) assert set(metadata.index) == set(texts), ( 'metadata.csv does not match list of files.\n' 'only in metadata: %s\nonly in files: %s' % ( set(metadata.index) - set(texts), set(texts) - set(metadata.index))) metadata = metadata.loc[texts] else: metadata = None return texts, corpora, metadata class QueryStringRedirectMiddleware(object): """Support ; as query delimiter. http://flask.pocoo.org/snippets/43/""" def __init__(self, application): self.application = application def __call__(self, environ, start_response): qs = environ.get('QUERY_STRING', '') environ['QUERY_STRING'] = qs.replace(';', '&') return self.application(environ, start_response) APP.wsgi_app = QueryStringRedirectMiddleware(APP.wsgi_app) log.info('loading corpus.') if STANDALONE: from getopt import gnu_getopt, GetoptError try: opts, _args = gnu_getopt(sys.argv[1:], '', ['port=', 'ip=', 'numproc=', 'debug']) opts = dict(opts) except GetoptError as err: print('error: %r' % err, file=sys.stderr) sys.exit(2) DEBUG = '--debug' in opts # NB: load corpus regardless of whether running standalone: (TEXTS, CORPORA, METADATA) = getcorpus() log.info('corpus loaded.') try: with open('treesearchpasswd.txt', 'rt') as fileobj: PASSWD = {a.strip(): b.strip() for a, b in (line.split(':', 1) for line in fileobj)} log.info('password protection enabled.') except IOError: log.info('no password protection.') if STANDALONE: APP.run(use_reloader=False, host=opts.get('--ip', '0.0.0.0'), port=int(opts.get('--port', 5003)), debug=DEBUG)
gpl-2.0
ShuboshaKuro/SimpleGameEngine
Test.py
1
1251
import numpy as np import os from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # has to change whenever noise_width and noise_height change in the PerlinNoise.hpp file DIMENSION1 = 200 DIMENSION2 = 200 # works if the working directory is set path = os.path.dirname(os.path.realpath(__file__)) FILENAME = path + "\input0.txt" if __name__ == '__main__': string = open(FILENAME, '+r') noise = np.fromstring(string.read(), sep=" ", dtype=float).reshape(DIMENSION2, DIMENSION1) # Build a grid by the 2 dimensions Xr = np.arange(DIMENSION1) Yr = np.arange(DIMENSION2) X, Y = np.meshgrid(Xr, Yr) # Build a figure with 2 subplots, the first is 3D fig = plt.figure() fig.suptitle("3D and 2D heighmap") colormap = 'coolwarm' ax = fig.add_subplot(2, 1, 1, projection='3d') surf = ax.plot_surface(X, Y, noise, rstride=1, cstride=1, cmap=colormap, linewidth=0, antialiased=False) ax2 = fig.add_subplot(2, 1, 2) im = ax2.imshow(noise, cmap=colormap, interpolation='nearest') # swap the Y axis so it aligns with the 3D plot ax2.invert_yaxis() # add an explanatory colour bar plt.colorbar(im, orientation='horizontal') # Show the image plt.show()
mit
shzygmyx/Adaboost
boosting.py
1
13043
# -*- coding: utf-8 -*- """ Created on Mon Nov 14 14:39:38 2016 @author: Meng Yuxian This is an implementation of <Improved boosting algorithms using confidence-rated predictions>, Schapire, 1999. """ from math import e, log import numpy as np from sklearn.tree import DecisionTreeClassifier class Adaboost(): """ Adaboost(X, y, estimator = DecisionTreeClassifier, itern = 20, mode = "si gn") Basic Adaboost to solve two-class problem Parameters ---------- X: numpy 2d array (m samples * n features) y: numpy 1d array (m samples' label) estimator: base_estimator of boosting itern: number of iterations mode: sign mode output label directly, while num mode output a confidence rate x. The more positive x is ,the more likely the label is Adaboost.cls0; the more negative x is, the more likely the label is not Adaboost.cls0 e.g. >>> x = np.array([[1,2,3,4],[2,3,4,5],[6,7,8,9],[2,5,7,8]]) >>> y = np.array([1,2,2,1]) >>> clf = Adaboost(x, y, mode = "num") >>> clf.predict(np.array([[1,7,2,8],[2,5,6,9]])) array([ 27.5707191 , 32.16583895]) >>> clf.cls0 1 >>> clf = Adaboost(x, y, mode = "sign") >>> clf.predict(np.array([[1,7,2,8],[2,5,6,9]])) array([ 1., 1.]) Note that outputs of clf.predict in num model are positive, so outputs of clf.predict in sign model are both clf.cls0, which is label 1. Methods ------- predict score See also -------- Adaboost References ---------- <Improved boosting algorithms using confidence-rated predictions>, Schapire , 1999 """ def __init__(self, X, y, estimator = DecisionTreeClassifier, itern = 20, mode = "sign"): self.X = X self.y = y.copy() self.estimator = estimator self.mode = mode self.itern = itern self.estimators = [] # estimators produced by boosting algorithm self.alphas = np.array([]) # weights of each boost estimator self.m = self.X.shape[0] # number of samples self.w = np.array([1/self.m] * self.m) # weights of samples self.cls_list = [] # list used to store classes' name and numbers self.cls0 = y[0] for i in range(self.m): if y[i] not in self.cls_list: self.cls_list.append(y[i]) if y[i] == self.cls0: self.y[i] = 1 else: self.y[i] = -1 if len(self.cls_list) != 2: raise TypeError( '''This Adaboost only support two-class problem, for multiclass problem, please use AdaboostMH.''') self.train() def train(self): m = self.m for k in range(self.itern): cls = self.estimator(max_depth = 3, presort = True) cls.fit(self.X, self.y, sample_weight = self.w) self.estimators.append(cls) y_predict = cls.predict(self.X) error = 0 # number of wrong prediction for i in range(m): if y_predict[i] != self.y[i]: error += self.w[i] if error == 0: error += 0.01 # smoothness alpha = 0.5*log((1-error)/error) # estimator weight self.alphas = np.append(self.alphas, alpha) for i in range(m): # update sample weights if y_predict[i] != self.y[i]: self.w[i] *= e**alpha else: self.w[i] /= e**alpha self.w /= sum(self.w) def predict(self, X): y_predict = np.array([]) if self.mode == "sign": for i in range(X.shape[0]): predict_i = (sum(self.alphas * np.array([int(self.estimators[k].predict(X[i].reshape(1,-1))) for k in range(len(self.alphas))]))) y_predict = np.append(y_predict, self.transfer(np.sign(predict_i))) else: for i in range(X.shape[0]): predict_i = (sum(self.alphas * np.array([int(self.estimators[k].predict(X[i].reshape(1,-1))) for k in range(len(self.alphas))]))) y_predict = np.append(y_predict, predict_i) return y_predict def transfer(self, l): """turn -1/+1 to previous initial label name""" if l == 1: return self.cls0 else: return self.cls_list[1] def score(self, X_test, y_test): """return precision of trained estimator on x_test and y_test""" y_predict = self.predict(X_test) error = 0 # error for i in range(X_test.shape[0]): if y_predict[i] != y_test[i]: error += 1 error /= X_test.shape[0] return 1 - error class AdaboostMH(): """ AdaboostMH(X, y, estimator = DecisionTreeClassifier, itern = 20, mode = "si gn") Adaboost that could solve multiclass and multilabel problem. Parameters ---------- X: numpy 2d array (m samples * n features) y: numpy 1d array (m samples' label) estimator: base_estimator of boosting itern: number of iterations mode: "sign" mode will return label directly when you use predict method, while "num" mode will return an array of confidence rates x which reflects how likely the labels i belongs to corresbonding sample j. the more positive x is, the more likely the label i belongs to sample j; the more negative x is, the more likely the label i doesn't belong to j. e.g. >>> x = np.array([[1,2,3,4],[2,3,4,5],[6,7,8,9],[2,5,7,8]]) >>> y = np.array([[1,2],[2],[3,1],[2,3]]) >>> clf = AdaboostMH(x, y, mode = "num") >>> clf.predict(np.array([[1,7,2,8],[2,5,6,9]])) array([[ 3.89458577, 3.89458577, 1.14677695], [-1.45489964, 1.51029301, 7.75042082]]) Methods ------- predict score See also -------- Adaboost References ---------- <Improved boosting algorithms using confidence-rated predictions>, Schapire , 1999 """ def __init__(self, X, y, estimator = DecisionTreeClassifier, itern = 20, mode = "sign"): self.X = X self.y = y self.estimator = estimator self.itern = itern self.mode = mode self.m = self.X.shape[0] # number of samples self.cls_list = [] # list used to store classes' name and numbers # if type(y[0]) != np.ndarray: # self.y = y.reshape(len(y),-1) for i in range(self.m): for cls in self.y[i]: if cls not in self.cls_list: self.cls_list.append(cls) self.k = len(self.cls_list) # number of classes self.boost = self.train() def train(self): X = self.X new_X = [] #from initial problem generate new problem new_y = [] for i in range(self.m): for cls in self.cls_list: new_X.append(list(X[i])+[cls]) if cls in self.y[i]: new_y.append(1) else: new_y.append(-1) new_X = np.array(new_X) new_y = np.array(new_y) boost = Adaboost(new_X, new_y, estimator = self.estimator, itern = self.itern, mode = self.mode) return boost def predict(self, X): """Use trained model to predict new X clf.predict(x) """ y_predict = [] if self.mode == "sign": for i in range(X.shape[0]): y = [] for cls in self.cls_list: new_X = np.append(X[i], cls).reshape(1,-1) predict = int(self.boost.predict(new_X)) if predict == 1: y.append(cls) y_predict.append(y) else: for i in range(X.shape[0]): y = [] for cls in self.cls_list: new_X = np.append(X[i], cls).reshape(1,-1) predict = self.boost.predict(new_X)[0] y.append(predict) y_predict.append(y) y_predict = np.array(y_predict) return y_predict def score(self, X_test, y_test): """return precision of trained estimator on test dataset X and y""" if self.mode != "sign": raise TypeError("score only support sign mode") y_predict = self.predict(X_test) error = 0 # error for i in range(X_test.shape[0]): for cls in self.cls_list: if cls in y_test[i]: if cls not in y_predict[i]: error += 1 else: if cls in y_predict[i]: error += 1 error /= (X_test.shape[0] * self.k) return 1 - error class AdaboostMO(): """ AdaboostMO(X, y, code_dic = None, estimator = DecisionTreeClassifier, itern = 20) A multiclass version of Adaboost based on output codes to solve singlelabel problem Parameters ---------- X: numpy 2d array (m samples * n features) y: numpy 1d array (m samples' label) code_dic: dictionary (key:label, value: numpy array of -1/+1) estimator: base_estimator of boosting itern: number of iterations e.g. >>> x = np.array([[1,2,3,4],[2,3,4,5],[6,7,8,9],[2,5,7,8]]) >>> y = np.array([1,2,3,1]) >>> clf = AdaboostMO(x, y, code_dic = {1:np.array([1,-1,-1], 2:np.array([-1 ,1,-1], 3:np.array([-1,-1,1])))}, itern = 15) >>> clf.predict(np.array([[1,7,2,8],[2,5,6,9]])) array([1,1]) Methods ------- predict score See also -------- AdaboostMH References ---------- <Improved boosting algorithms using confidence-rated predictions>, Schapire , 1999 """ def __init__(self, X, y, code_dic = None, estimator = DecisionTreeClassifier, itern = 20): self.X = X self.y = y self.estimator = estimator self.itern = itern self.m = self.X.shape[0] # number of samples self.cls_list = [] # list used to store classes' name and numbers for i in range(self.m): if y[i] not in self.cls_list: self.cls_list.append(y[i]) if code_dic != None: self.k = len(code_dic[cls_list[0]]) # dimension of encoding space else: self.k = len(self.cls_list) if code_dic == None: # generate default encode dictionary code_dic = {} for i in range(self.k): code = np.array([-1] * self.k) code[i] = 1 code_dic[self.cls_list[i]] = code self.code_dic = code_dic #store {label: array-like code} self.boost = self.train() def train(self): y = self.encode(self.y) #encoding y and train it as AdaboostMH in num mode for i in range(self.m): y[i] = [k for k in range(self.k) if y[i][k] == 1] boost = AdaboostMH(self.X, y, estimator = self.estimator, itern = self.itern, mode = "num") return boost def encode(self, y): if not isinstance(y, np.ndarray): return self.code_dic[y] return np.array([self.code_dic[i] for i in y]) def decode(self, y): """decode an array_like labels""" decode_y = [] for i in range(len(y)): for cls in self.code_dic: if self.code_dic[cls] == i: decode_y.append(cls) break return np.array(decode_y) def predict(self, X): """Use trained model to predict on new X""" y_predict = [] for i in range(X.shape[0]): confidences = self.boost.predict(X[i].reshape(1,-1))[0] cls_score = [sum(self.encode(cls) * confidences)for cls in self.cls_list] cls = self.cls_list[cls_score.index(max(cls_score))] y_predict.append(cls) return np.array(y_predict) def score(self, x_test, y_test): """return precision of trained estimator on x_test and y_test""" error = 0 y_predict = self.predict(x_test) for i in range(len(y_test)): if y_predict[i] != y_test[i]: error += 1 return 1 - error/len(y_test)
gpl-3.0
benhamner/GEFlightQuest
PythonModule/geflight/fq2/basic_filter.py
3
3642
import csv from geflight.transform import flighthistory from geflight.transform import utilities import gzip import os import pandas as pd def get_us_airport_icao_codes(codes_file): df = pd.read_csv(codes_file) return set(df["icao_code"]) def is_flight_in_or_out_of_us(row, us_icao_codes): if ((row["arrival_airport_icao_code"] not in us_icao_codes) or (row["departure_airport_icao_code"] not in us_icao_codes)): return False return True def filter_flight_history(input_path, output_path): codes_file = os.path.join(os.environ["DataPath"], "GEFlight", "Reference", "usairporticaocodes.txt") us_icao_codes = get_us_airport_icao_codes(codes_file) reader = utilities.HeaderCsvReader(gzip.open(input_path, 'rb')) out_handle = gzip.open(output_path, 'wb') writer = csv.writer(out_handle, dialect=utilities.CsvDialect()) header_out = reader.get_header() for col in flighthistory.get_flight_history_columns_to_delete(): header_out.remove(col) writer.writerow(header_out) row_buffer = [] flight_history_ids = set() i_row_mod = 0 cnt = 0 i = 0 for row in reader: i_row_mod += 1 if not is_flight_in_or_out_of_us(row, us_icao_codes): continue cnt += 1 row_buffer.append([row[col] for col in header_out]) flight_history_ids.add(row["flight_history_id"]) if i_row_mod < 100000: continue i += 1 print("%s: %d00k records processed, %d with relevant flights in this chunk" % ("flighthistory", i, cnt)) cnt = 0 i_row_mod = 0 writer.writerows(row_buffer) out_handle.flush() row_buffer = [] out_handle.close() return flight_history_ids def get_input_path(input_dir, table): return os.path.join(input_dir, "flightstats_%s.csv.gz" % table) def get_output_path(output_dir, table): return os.path.join(output_dir, "%s.csv.gz" % table) def filter_file_based_on_ids_streaming( input_dir, output_dir, table, id_column_name, valid_ids): """ Takes in one file, outputs one file """ input_path = get_input_path(input_dir, table) output_path = get_output_path(output_dir, table) f_in = gzip.open(input_path, "rb") reader = utilities.HeaderCsvReader(f_in) f_out = gzip.open(output_path, "wb") writer = csv.writer(f_out, dialect=utilities.CsvDialect()) writer.writerow(reader.header) i_total = 0 i_keep = 0 for row in reader: i_total += 1 if row[id_column_name] not in valid_ids: continue i_keep += 1 writer.writerow([row[col_name] for col_name in reader.header]) if i_total % 100000 == 0: print("%s, %d00k lines processed, %d00k lines kept" % (table, int(i_total/1000), int(i_keep/1000))) remainder, file_name = os.path.split(input_path) day_str = os.path.split(remainder)[1] print("%s, %s: %d lines remaining out of %d original lines" % (day_str, file_name, i_keep, i_total)) f_out.close() def main(input_dir, output_dir): tables = [ "asdiposition" , "flighthistory" ] flight_history_ids = filter_flight_history(get_input_path(input_dir, "flighthistory"), get_output_path(output_dir, "flighthistory")) filter_file_based_on_ids_streaming(input_dir, output_dir, "asdiposition", "flighthistoryid", flight_history_ids) if __name__=="__main__": input_dir = os.path.join(os.environ["DataPath"], "GEFlight2", "DataSet1", "Raw") output_dir = os.path.join(os.environ["DataPath"], "GEFlight2", "DataSet1", "Filtered") main(input_dir, output_dir)
bsd-2-clause
ronnyandersson/zignal
examples/ex_chunks.py
1
2576
''' Created on 12 Apr 2020 @author: Ronny Andersson ([email protected]) @copyright: (c) 2020 Ronny Andersson @license: MIT Demo of how to iterate over an instance of the Audio class, for chunk-based processing. Typically the chunks have a size that is a power of two, for example 256, 1024 or 4096. In this example the chunk size is set to 1000 for simplicity in the plots. The sample rate in this example is also set to a value that enhances the effect of the example, since hera a chunk equals to one second of data. ''' # Standard library import logging # Third party import matplotlib.pyplot as plt import numpy as np # Internal import zignal if __name__ == '__main__': logging.basicConfig( format='%(levelname)-7s: %(module)s.%(funcName)-15s %(message)s', level='DEBUG', ) logging.getLogger("matplotlib").setLevel(logging.INFO) logging.getLogger("zignal").setLevel(logging.DEBUG) fs = 1000 # Create various ramp signals, to visualise the chunks better. Not real # audio, but shows in a plot what the chunks look like a1 = zignal.Audio(fs=fs, initialdata=np.linspace(0, 1, num=(1000/2))) a2 = zignal.Audio(fs=fs, initialdata=np.linspace(0, -1, num=(1000*1)+500)) a3 = zignal.Audio(fs=fs, initialdata=np.linspace(0, 1, num=(1000*2)+200)) a = zignal.Audio(fs=fs) a.append(a1, a2, a3) print(a) # We now have 2.2 seconds of audio in three channels. This does not add up # to even chunk sizes, so padding will have to be done in order to iterate. # # Three (3) chunks are expected. for val in a.iter_chunks(chunksize=1000): print("------------------------------------------------") print("shape of data in chunk: %s" % str(val.shape)) print(val) plt.figure(1) plt.plot(val[:, 0], ls="-", label="a1") plt.plot(val[:, 1], ls="--", label="a2") plt.plot(val[:, 2], ls="-.", label="a3") plt.grid() plt.ylim(-1.1, 1.1) plt.xlabel("samples in chunk") plt.ylabel("magnitude [lin]") plt.legend(loc="upper right") plt.show() # We can pad beforehand if we know how many samples are missing, then no # padding will occur inside the iterator b = a.copy() b.gain(-20) # just to get a debug logging entry b.pad(nofsamples=800) print(b) for val in b.iter_chunks(chunksize=1000): print("------------------------------------------------") print("shape of data in chunk: %s" % str(val.shape)) print(val) print('-- Done --')
mit
thomasorb/orb
orb/utils/io.py
1
33933
#!/usr/bin/python # *-* coding: utf-8 *-* # Author: Thomas Martin <[email protected]> # File: io.py ## Copyright (c) 2010-2020 Thomas Martin <[email protected]> ## ## This file is part of ORB ## ## ORB is free software: you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## ORB is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ## License for more details. ## ## You should have received a copy of the GNU General Public License ## along with ORB. If not, see <http://www.gnu.org/licenses/>. import logging import os import numpy as np import time import warnings import astropy.io.fits as pyfits from astropy.io.fits.verify import VerifyWarning, VerifyError, AstropyUserWarning from astropy.wcs import FITSFixedWarning import astropy.io.votable import pandas as pd import orb.cutils import h5py import datetime import orb.utils.validate def open_file(file_name, mode='r'): """Open a file in write mode (by default) and return a file object. Create the file if it doesn't exist (only in write mode). :param file_name: Path to the file, can be either relative or absolute. :param mode: (Optional) Can be 'w' for write mode, 'r' for read mode and 'a' for append mode. """ if mode not in ['w','r','a']: raise Exception("mode option must be 'w', 'r' or 'a'") if mode in ['w','a']: # create folder if it does not exist dirname = os.path.dirname(file_name) if dirname != '': if not os.path.exists(dirname): os.makedirs(dirname) return open(file_name, mode) def write_fits(fits_path, fits_data, fits_header=None, silent=False, overwrite=True, mask=None, replace=False, record_stats=False, mask_path=None): """Write data in FITS format. If the file doesn't exist create it with its directories. If the file already exists add a number to its name before the extension (unless 'overwrite' option is set to True). :param fits_path: Path to the file, can be either relative or absolut. :param fits_data: Data to be written in the file. :param fits_header: (Optional) Optional keywords to update or create. It can be a pyfits.Header() instance or a list of tuples [(KEYWORD_1, VALUE_1, COMMENT_1), (KEYWORD_2, VALUE_2, COMMENT_2), ...]. Standard keywords like SIMPLE, BITPIX, NAXIS, EXTEND does not have to be passed. :param silent: (Optional) If True turn this function won't display any message (default False) :param overwrite: (Optional) If True overwrite the output file if it exists (default True). :param mask: (Optional) It not None must be an array with the same size as the given data but filled with ones and zeros. Bad values (NaN or Inf) are converted to 1 and the array is converted to 8 bit unsigned integers (uint8). This array will be written to the disk with the same path terminated by '_mask'. The header of the mask FITS file will be the same as the original data (default None). :param replace: (Optional) If True and if the file already exist, new data replace old data in the existing file. NaN values do not replace old values. Other values replace old values. New array MUST have the same size as the existing array. Note that if replace is True, overwrite is automatically set to True. :param record_stats: (Optional) If True, record mean and median of data. Useful if they often have to be computed (default False). :param mask_path: (Optional) Path to the corresponding mask image. .. note:: float64 data is converted to float32 data to avoid too big files with unnecessary precision .. note:: Please refer to http://www.stsci.edu/institute/software_hardware/pyfits/ for more information on PyFITS module and http://fits.gsfc.nasa.gov/ for more information on FITS files. """ SECURED_KEYS = ['SIMPLE', 'BITPIX', 'NAXIS', 'NAXIS1', 'NAXIS2', 'NAXIS3', 'EXTEND', 'INHERIT', 'BZERO', 'BSCALE'] if not isinstance(fits_data, np.ndarray): raise TypeError('Data type must be numpy.ndarray') start_time = time.time() # change extension if nescessary if os.path.splitext(fits_path)[1] != '.fits': fits_path = os.path.splitext(fits_path)[0] + '.fits' if mask is not None: if np.shape(mask) != np.shape(fits_data): raise ValueError('Mask must have the same shape as data') if replace: overwrite=True if overwrite: warnings.filterwarnings( 'ignore', message='Overwriting existing file.*', module='astropy.io.*') if replace and os.path.exists(fits_path): old_data = read_fits(fits_path) if old_data.shape == fits_data.shape: fits_data[np.isnan(fits_data)] = old_data[np.isnan(fits_data)] else: raise Exception("New data shape %s and old data shape %s are not the same. Do not set the option 'replace' to True in this case"%(str(fits_data.shape), str(old_data.shape))) # float64/128 data conversion to float32 to avoid too big files # with unnecessary precision if fits_data.dtype == np.float64 or fits_data.dtype == np.float128: fits_data = fits_data.astype(np.float32) # complex data cannot be written in fits if np.iscomplexobj(fits_data): fits_data = fits_data.real.astype(np.float32) logging.warning('Complex data cast to float32 (FITS format do not support complex data)') base_fits_path = fits_path dirname = os.path.dirname(fits_path) if (dirname != []) and (dirname != ''): if not os.path.exists(dirname): os.makedirs(dirname) index=0 file_written = False while not file_written: if ((not (os.path.exists(fits_path))) or overwrite): if len(fits_data.shape) > 1: hdu = pyfits.PrimaryHDU(fits_data.transpose()) elif len(fits_data.shape) == 1: hdu = pyfits.PrimaryHDU(fits_data[np.newaxis, :]) else: # 1 number only hdu = pyfits.PrimaryHDU(np.array([fits_data])) if mask is not None: # mask conversion to only zeros or ones mask = mask.astype(float) mask[np.nonzero(np.isnan(mask))] = 1. mask[np.nonzero(np.isinf(mask))] = 1. mask[np.nonzero(mask)] = 1. mask = mask.astype(np.uint8) # UINT8 is the # smallest allowed # type hdu_mask = pyfits.PrimaryHDU(mask.transpose()) # add header optional keywords if fits_header is not None: ## remove keys of the passed header which corresponds ## to the description of the data set for ikey in SECURED_KEYS: if ikey in fits_header: fits_header.pop(ikey) hdu.header.extend(fits_header, strip=False, update=True, end=True) # Remove 3rd axis related keywords if there is no # 3rd axis if len(fits_data.shape) <= 2: for ikey in range(len(hdu.header)): if isinstance(hdu.header[ikey], str): if ('Wavelength axis' in hdu.header[ikey]): del hdu.header[ikey] del hdu.header[ikey] break if 'CTYPE3' in hdu.header: del hdu.header['CTYPE3'] if 'CRVAL3' in hdu.header: del hdu.header['CRVAL3'] if 'CRPIX3' in hdu.header: del hdu.header['CRPIX3'] if 'CDELT3' in hdu.header: del hdu.header['CDELT3'] if 'CROTA3' in hdu.header: del hdu.header['CROTA3'] if 'CUNIT3' in hdu.header: del hdu.header['CUNIT3'] # add median and mean of the image in the header # data is nan filtered before if record_stats: fdata = fits_data[np.nonzero(~np.isnan(fits_data))] if np.size(fdata) > 0: data_mean = np.nanmean(fdata) data_median = np.nanmedian(fdata) else: data_mean = np.nan data_median = np.nan hdu.header.set('MEAN', str(data_mean), 'Mean of data (NaNs filtered)', after=5) hdu.header.set('MEDIAN', str(data_median), 'Median of data (NaNs filtered)', after=5) # add some basic keywords in the header date = time.strftime("%Y-%m-%d", time.localtime(time.time())) hdu.header.set('MASK', 'False', '', after=5) hdu.header.set('DATE', date, 'Creation date', after=5) hdu.header.set('PROGRAM', "ORB", 'Thomas Martin: [email protected]', after=5) # write FITS file hdu.writeto(fits_path, overwrite=overwrite) if mask is not None: hdu_mask.header = hdu.header hdu_mask.header.set('MASK', 'True', '', after=6) if mask_path is None: mask_path = os.path.splitext(fits_path)[0] + '_mask.fits' hdu_mask.writeto(mask_path, overwrite=overwrite) if not (silent): logging.info("Data written as {} in {:.2f} s ".format( fits_path, time.time() - start_time)) return fits_path else : fits_path = (os.path.splitext(base_fits_path)[0] + "_" + str(index) + os.path.splitext(base_fits_path)[1]) index += 1 def read_fits(fits_path, no_error=False, nan_filter=False, return_header=False, return_hdu_only=False, return_mask=False, silent=False, delete_after=False, data_index=None, image_mode='classic', chip_index=None, binning=None, fix_header=True, dtype=float, mask_path=None): """Read a FITS data file and returns its data. :param fits_path: Path to the file, can be either relative or absolut. :param no_error: (Optional) If True this function will only display a warning message if the file does not exist (so it does not raise an exception) (default False) :param nan_filter: (Optional) If True replace NaN by zeros (default False) :param return_header: (Optional) If True return a tuple (data, header) (default False). :param return_hdu_only: (Optional) If True return FITS header data unit only. No data will be returned (default False). :param return_mask: (Optional) If True return only the mask corresponding to the data file (default False). :param silent: (Optional) If True no message is displayed except if an error is raised (default False). :param delete_after: (Optional) If True delete file after reading (default False). :param data_index: (Optional) Index of data in the header data unit (Default None). :param image_mode: (Optional) Can be 'sitelle', 'spiomm' or 'classic'. In 'sitelle' mode, the parameter chip_index must also be set to 0 or 1. In this mode only one of both SITELLE quadrants is returned. In 'classic' mode the whole frame is returned (default 'classic'). :param chip_index: (Optional) Index of the chip of the SITELLE image. Used only if image_mode is set to 'sitelle' In this case, must be 1 or 2. Else must be None (default None). :param binning: (Optional) If not None, returned data is binned by this amount (must be an integer >= 1) :param fix_header: (Optional) If True, fits header is fixed to avoid errors due to header inconsistencies (e.g. WCS errors) (default True). :param dtype: (Optional) Data is converted to the given dtype (e.g. np.float32, default float). :param mask_path: (Optional) Path to the corresponding mask image. .. note:: Please refer to http://www.stsci.edu/institute/software_hardware/pyfits/ for more information on PyFITS module. And http://fits.gsfc.nasa.gov/ for more information on FITS files. """ # avoid bugs fits with no data in the first hdu fits_path = ((fits_path.splitlines())[0]).strip() if return_mask: if mask_path is None: mask_path = os.path.splitext(fits_path)[0] + '_mask.fits' fits_path = mask_path try: warnings.filterwarnings('ignore', module='astropy') warnings.filterwarnings('ignore', category=ResourceWarning) hdulist = pyfits.open(fits_path) if data_index is None: data_index = get_hdu_data_index(hdulist) fits_header = hdulist[data_index].header except Exception as e: if not no_error: raise IOError( "File '%s' could not be opened: {}, {}".format(fits_path, e)) else: if not silent: logging.warning( "File '%s' could not be opened {}, {}".format(fits_path, e)) return None # Correct header if fix_header: if fits_header['NAXIS'] == 2: if 'CTYPE3' in fits_header: del fits_header['CTYPE3'] if 'CRVAL3' in fits_header: del fits_header['CRVAL3'] if 'CUNIT3' in fits_header: del fits_header['CUNIT3'] if 'CRPIX3' in fits_header: del fits_header['CRPIX3'] if 'CROTA3' in fits_header: del fits_header['CROTA3'] if return_hdu_only: return hdulist[data_index] else: if image_mode == 'classic': fits_data = np.array( hdulist[data_index].data.transpose()).astype(dtype) elif image_mode == 'sitelle': fits_data = read_sitelle_chip(hdulist[data_index], chip_index) elif image_mode == 'spiomm': fits_data, fits_header = read_spiomm_data( hdulist, fits_path) else: raise ValueError("Image_mode must be set to 'sitelle', 'spiomm' or 'classic'") hdulist.close if binning is not None: fits_data = utils.image.bin_image(fits_data, binning) if (nan_filter): fits_data = np.nan_to_num(fits_data) if delete_after: try: os.remove(fits_path) except: logging.warning("The file '%s' could not be deleted"%fits_path) if return_header: return np.squeeze(fits_data), fits_header else: return np.squeeze(fits_data) def get_hdu_data_index(hdul): """Return the index of the first header data unit (HDU) containing data. :param hdul: A pyfits.HDU instance """ hdu_data_index = 0 while (hdul[hdu_data_index].data is None): hdu_data_index += 1 if hdu_data_index >= len(hdul): raise Exception('No data recorded in FITS file') return hdu_data_index def read_sitelle_chip(hdu, chip_index, substract_bias=True): """Return chip data of a SITELLE FITS image. :param hdu: pyfits.HDU Instance of the SITELLE image :param chip_index: Index of the chip to read. Must be 1 or 2. :param substract_bias: If True bias is automatically substracted by using the overscan area (default True). """ def get_slice(key, index): key = '{}{}'.format(key, index) if key not in hdu.header: raise Exception( 'Bad SITELLE image header') chip_section = hdu.header[key] return get_sitelle_slice(chip_section) def get_data(key, index, frame): xslice, yslice = get_slice(key, index) return np.copy(frame[yslice, xslice]).transpose() if int(chip_index) not in (1,2): raise Exception( 'Chip index must be 1 or 2') frame = hdu.data.astype(np.float) # get data without bias substraction if not substract_bias: return get_data('DSEC', chip_index, frame) if chip_index == 1: amps = ['A', 'B', 'C', 'D'] elif chip_index == 2: amps = ['E', 'F', 'G', 'H'] xchip, ychip = get_slice('DSEC', chip_index) data = np.empty((xchip.stop - xchip.start, ychip.stop - ychip.start), dtype=float) # removing bias for iamp in amps: xamp, yamp = get_slice('DSEC', iamp) amp_data = get_data('DSEC', iamp, frame) bias_data = get_data('BSEC', iamp, frame) overscan_size = int(bias_data.shape[0]/2) if iamp in ['A', 'C', 'E', 'G']: bias_data = bias_data[-overscan_size:,:] else: bias_data = bias_data[:overscan_size,:] bias_data = np.mean(bias_data, axis=0) amp_data = amp_data - bias_data data[xamp.start - xchip.start: xamp.stop - xchip.start, yamp.start - ychip.start: yamp.stop - ychip.start] = amp_data return data def get_sitelle_slice(slice_str): """ Strip a string containing SITELLE like slice coordinates. :param slice_str: Slice string. """ if "'" in slice_str: slice_str = slice_str[1:-1] section = slice_str[1:-1].split(',') x_min = int(section[0].split(':')[0]) - 1 x_max = int(section[0].split(':')[1]) y_min = int(section[1].split(':')[0]) - 1 y_max = int(section[1].split(':')[1]) return slice(x_min,x_max,1), slice(y_min,y_max,1) def read_spiomm_data(hdu, image_path, substract_bias=True): """Return data of an SpIOMM FITS image. :param hdu: pyfits.HDU Instance of the SpIOMM image :param image_path: Image path :param substract_bias: If True bias is automatically substracted by using the associated bias frame as an overscan frame. Mean bias level is thus computed along the y axis of the bias frame (default True). """ CENTER_SIZE_COEFF = 0.1 data_index = get_hdu_data_index(hdu) frame = np.array(hdu[data_index].data.transpose()).astype(np.float) hdr = hdu[data_index].header # check presence of a bias bias_path = os.path.splitext(image_path)[0] + '_bias.fits' if os.path.exists(bias_path): bias_frame = read_fits(bias_path) if substract_bias: ## create overscan line overscan = orb.cutils.meansigcut2d(bias_frame, axis=1) frame = (frame.T - overscan.T).T x_min = int(bias_frame.shape[0]/2. - CENTER_SIZE_COEFF * bias_frame.shape[0]) x_max = int(bias_frame.shape[0]/2. + CENTER_SIZE_COEFF * bias_frame.shape[0] + 1) y_min = int(bias_frame.shape[1]/2. - CENTER_SIZE_COEFF * bias_frame.shape[1]) y_max = int(bias_frame.shape[1]/2. + CENTER_SIZE_COEFF * bias_frame.shape[1] + 1) bias_level = np.nanmedian(bias_frame[x_min:x_max, y_min:y_max]) if bias_level is not np.nan: hdr['BIAS-LVL'] = ( bias_level, 'Bias level (moment, at the center of the frame)') return frame, hdr def open_hdf5(file_path, mode): """Return a :py:class:`h5py.File` instance with some informations. :param file_path: Path to the hdf5 file. :param mode: Opening mode. Can be 'r', 'r+', 'w', 'w-', 'x', 'a'. .. note:: Please refer to http://www.h5py.org/. """ if mode in ['w', 'a', 'w-', 'x']: # create folder if it does not exist dirname = os.path.dirname(file_path) if dirname != '': if not os.path.exists(dirname): os.makedirs(dirname) f = h5py.File(file_path, mode) if mode in ['w', 'a', 'w-', 'x', 'r+']: f.attrs['program'] = 'Created/modified with ORB' f.attrs['date'] = str(datetime.datetime.now()) return f def write_hdf5(file_path, data, header=None, silent=False, overwrite=True, max_hdu_check=True, compress=False): """ Write data in HDF5 format. A header can be added to the data. This method is useful to handle an HDF5 data file like a FITS file. It implements most of the functionality of the method :py:meth:`core.Tools.write_fits`. .. note:: The output HDF5 file can contain mutiple data header units (HDU). Each HDU is in a specific group named 'hdu*', * being the index of the HDU. The first HDU is named HDU0. Each HDU contains one data group (HDU*/data) which contains a numpy.ndarray and one header group (HDU*/header). Each subgroup of a header group is a keyword and its associated value, comment and type. :param file_path: Path to the HDF5 file to create :param data: A numpy array (numpy.ndarray instance) of numeric values. If a list of arrays is given, each array will be placed in a specific HDU. The header keyword must also be set to a list of headers of the same length. :param header: (Optional) Optional keywords to update or create. It can be a pyfits.Header() instance or a list of tuples [(KEYWORD_1, VALUE_1, COMMENT_1), (KEYWORD_2, VALUE_2, COMMENT_2), ...]. Standard keywords like SIMPLE, BITPIX, NAXIS, EXTEND does not have to be passed (default None). It can also be a list of headers if a list of arrays has been passed to the option 'data'. :param max_hdu_check: (Optional): When True, if the input data is a list (interpreted as a list of data unit), check if it's length is not too long to make sure that the input list is not a single data array that has not been converted to a numpy.ndarray format. If the number of HDU to create is indeed very long this can be set to False (default True). :param silent: (Optional) If True turn this function won't display any message (default False) :param overwrite: (Optional) If True overwrite the output file if it exists (default True). :param compress: (Optional) If True data is compressed using the SZIP library (see https://www.hdfgroup.org/doc_resource/SZIP/). SZIP library must be installed (default False). .. note:: Please refer to http://www.h5py.org/. """ MAX_HDUS = 3 start_time = time.time() # change extension if nescessary if os.path.splitext(file_path)[1] != '.hdf5': file_path = os.path.splitext(file_path)[0] + '.hdf5' # Check if data is a list of arrays. if not isinstance(data, list): data = [data] if max_hdu_check and len(data) > MAX_HDUS: raise Exception('Data list length is > {}. As a list is interpreted has a list of data unit make sure to pass a numpy.ndarray instance instead of a list. '.format(MAX_HDUS)) # Check header format if header is not None: if isinstance(header, pyfits.Header): header = [header] elif isinstance(header, list): if (isinstance(header[0], list) or isinstance(header[0], tuple)): header_seems_ok = False if (isinstance(header[0][0], list) or isinstance(header[0][0], tuple)): # we have a list of headers if len(header) == len(data): header_seems_ok = True elif isinstance(header[0][0], str): # we only have one header if len(header[0]) > 2: header = [header] header_seems_ok = True if not header_seems_ok: raise Exception('Badly formated header') elif not isinstance(header[0], pyfits.Header): raise Exception('Header must be a pyfits.Header instance or a list') else: raise Exception('Header must be a pyfits.Header instance or a list') if len(header) != len(data): raise Exception('The number of headers must be the same as the number of data units.') # change path if file exists and must not be overwritten new_file_path = str(file_path) if not overwrite and os.path.exists(new_file_path): index = 0 while os.path.exists(new_file_path): new_file_path = (os.path.splitext(file_path)[0] + "_" + str(index) + os.path.splitext(file_path)[1]) index += 1 # open file with open_hdf5(new_file_path, 'w') as f: ## add data + header for i in range(len(data)): idata = data[i] # Check if data has a valid format. if not isinstance(idata, np.ndarray): try: idata = np.array(idata, dtype=float) except Exception as e: raise Exception('Data to write must be convertible to a numpy array of numeric values: {}'.format(e)) # convert data to float32 if idata.dtype == np.float64: idata = idata.astype(np.float32) # hdu name hdu_group_name = 'hdu{}'.format(i) if compress: f.create_dataset( hdu_group_name + '/data', data=idata, compression='lzf', compression_opts=None) #compression='szip', compression_opts=('nn', 32)) #compression='gzip', compression_opts=9) else: f.create_dataset( hdu_group_name + '/data', data=idata) # add header if header is not None: iheader = header[i] if not isinstance(iheader, pyfits.Header): iheader = pyfits.Header(iheader) f[hdu_group_name + '/header'] = header_fits2hdf5( iheader) logging.info('Data written as {} in {:.2f} s'.format( new_file_path, time.time() - start_time)) return new_file_path castables = [int, float, bool, str, np.int64, np.float64, int, np.float128, np.bool_] def cast(a, t_str): if isinstance(t_str, bytes): t_str = t_str.decode() if 'type' in t_str: t_str = t_str.replace('type', 'class') if 'long' in t_str: t_str = t_str.replace('long', 'int') for _t in castables: if t_str == repr(_t): return _t(a) raise Exception('Bad type string {} should be in {}'.format(t_str, [repr(_t) for _t in castables])) def dict2array(data): """Convert a dictionary to an array that can be written in an hdf5 file :param data: Must be a dict instance """ if not isinstance(data, dict): raise TypeError('data must be a dict') arr = list() for key in data: if type(data[key]) in castables: _tstr = str(type(data[key])) arr.append(np.array( (key, data[key], _tstr))) else: logging.debug('{} of type {} not passed to array'.format(key, type(data[key]))) return np.array(arr) def array2dict(data): """Convert an array read from an hdf5 file to a dict. :param data: array of params returned by dict2array """ _dict = dict() for i in range(len(data)): _dict[data[i][0]] = cast(data[i][1], data[i][2]) return _dict def dict2header(params): """convert a dict to a pyfits.Header() instance .. warning:: this is a destructive process, illegal values are removed from the header. :param params: a dict instance """ # filter illegal header values cards = list() for iparam in params: val = params[iparam] val_ok = False for itype in castables: if isinstance(val, itype): val_ok = True if val_ok: if isinstance(val, bool): val = int(val) card = pyfits.Card( keyword=iparam, value=val, comment=None) try: card.verify(option='exception') cards.append(card) except (VerifyError, ValueError, TypeError): pass warnings.simplefilter('ignore', category=VerifyWarning) warnings.simplefilter('ignore', category=AstropyUserWarning) warnings.simplefilter('ignore', category=FITSFixedWarning) header = pyfits.Header(cards) return header def header_fits2hdf5(fits_header): """convert a pyfits.Header() instance to a header for an hdf5 file :param fits_header: Header of the FITS file """ hdf5_header = list() for ikey in range(len(fits_header)): _tstr = str(type(fits_header[ikey])) ival = np.array( (list(fits_header.keys())[ikey], str(fits_header[ikey]), fits_header.comments[ikey], _tstr)) hdf5_header.append(ival) return np.array(hdf5_header, dtype='S300') def header_hdf52fits(hdf5_header): """convert an hdf5 header to a pyfits.Header() instance. :param hdf5_header: Header of the HDF5 file """ fits_header = pyfits.Header() for i in range(hdf5_header.shape[0]): ival = hdf5_header[i,:] ival = [iival.decode() for iival in ival] if ival[3] != 'comment': fits_header[ival[0]] = cast(ival[1], ival[3]), str(ival[2]) else: fits_header['comment'] = ival[1] return fits_header def read_hdf5(file_path, return_header=False, dtype=float): """Read an HDF5 data file created with :py:meth:`core.Tools.write_hdf5`. :param file_path: Path to the file, can be either relative or absolute. :param return_header: (Optional) If True return a tuple (data, header) (default False). :param dtype: (Optional) Data is converted to the given type (e.g. np.float32, default float). .. note:: Please refer to http://www.h5py.org/.""" with open_hdf5(file_path, 'r') as f: data = list() header = list() for hdu_name in f: data.append(f[hdu_name + '/data'][:].astype(dtype)) if return_header: if hdu_name + '/header' in f: # extract header header.append( header_hdf52fits(f[hdu_name + '/header'][:])) else: header.append(None) if len(data) == 1: if return_header: return data[0], header[0] else: return data[0] else: if return_header: return data, header else: return data def cast2hdf5(val): if val is None: return 'None' elif isinstance(val, np.float128): return val.astype(np.float64) #elif isinstance(val, int): # return str(val) elif isinstance(val, np.ndarray): if val.dtype == np.float128: return val.astype(np.float64) return val def get_storing_dtype(arr): if not isinstance(arr, np.ndarray): raise TypeError('arr must be a numpy.ndarray instance') if arr.dtype == np.float64: return np.float32 if arr.dtype == np.complex128: return np.complex64 else: return arr.dtype def cast_storing_dtype(arr): if not isinstance(arr, np.ndarray): raise TypeError('arr must be a numpy.ndarray instance') return arr.astype(get_storing_dtype(arr)) def save_dflist(dflist, path): """Save a list of dataframes :param dflist: list of pandas dataframes :param path: path to the output file """ if os.path.exists(path): os.remove(path) with open_hdf5(path, 'w') as f: f.attrs['len'] = len(dflist) for idf in range(len(dflist)): if dflist[idf] is not None: dflist[idf].to_hdf(path, 'df{:06d}'.format(idf), format='table', mode='a') def load_dflist(path): """Save a list of dataframes :param path: path to the output file """ with open_hdf5(path, 'r') as f: _len = f.attrs['len'] dflist = list() for i in range(_len): try: idf = pd.read_hdf(path, key='df{:06d}'.format(i)) dflist.append(idf) except KeyError: dflist.append(None) return dflist def read_votable(votable_file): """read a votable and transfer it as as pandas dataframe. taken from https://gist.github.com/icshih/52ca49eb218a2d5b660ee4a653301b2b """ votable = astropy.io.votable.parse(votable_file) table = votable.get_first_table().to_table(use_names_over_ids=True) return table.to_pandas() def save_starlist(path, starlist): """Save a star list as a two columnfile X, Y readable by ds9 """ orb.utils.validate.is_2darray(starlist, object_name='starlist') if starlist.shape[1] != 2: raise TypeError('starlist must be of shape (n,2)') with open_file(path, 'w') as f: for i in range(starlist.shape[0]): f.write('{} {}\n'.format(starlist[i,0], starlist[i,1])) f.flush()
gpl-3.0
antiface/mne-python
examples/time_frequency/plot_compute_raw_data_spectrum.py
16
2573
""" ================================================== Compute the power spectral density of raw data ================================================== This script shows how to compute the power spectral density (PSD) of measurements on a raw dataset. It also show the effect of applying SSP to the data to reduce ECG and EOG artifacts. """ # Authors: Alexandre Gramfort <[email protected]> # Martin Luessi <[email protected]> # Eric Larson <[email protected]> # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io, read_proj, read_selection from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' proj_fname = data_path + '/MEG/sample/sample_audvis_eog_proj.fif' # Setup for reading the raw data raw = io.Raw(raw_fname, preload=True) raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # Add SSP projection vectors to reduce EOG and ECG artifacts projs = read_proj(proj_fname) raw.add_proj(projs, remove_existing=True) tmin, tmax = 0, 60 # use the first 60s of data fmin, fmax = 2, 300 # look at frequencies between 2 and 300Hz n_fft = 2048 # the FFT size (n_fft). Ideally a power of 2 plt.ion() # Let's first check out all channel types raw.plot_psd(area_mode='range', tmax=10.0) # Now let's focus on a smaller subset: # Pick MEG magnetometers in the Left-temporal region selection = read_selection('Left-temporal') picks = mne.pick_types(raw.info, meg='mag', eeg=False, eog=False, stim=False, exclude='bads', selection=selection) # Let's just look at the first few channels for demonstration purposes picks = picks[:4] plt.figure() ax = plt.axes() raw.plot_psd(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, n_fft=n_fft, n_jobs=1, proj=False, ax=ax, color=(0, 0, 1), picks=picks) # And now do the same with SSP applied raw.plot_psd(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, n_fft=n_fft, n_jobs=1, proj=True, ax=ax, color=(0, 1, 0), picks=picks) # And now do the same with SSP + notch filtering raw.notch_filter(np.arange(60, 241, 60), picks=picks, n_jobs=1) raw.plot_psd(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, n_fft=n_fft, n_jobs=1, proj=True, ax=ax, color=(1, 0, 0), picks=picks) ax.set_title('Four left-temporal magnetometers') plt.legend(['Without SSP', 'With SSP', 'SSP + Notch'])
bsd-3-clause
sumspr/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
samzhang111/scikit-learn
sklearn/preprocessing/tests/test_imputation.py
8
12376
import numpy as np from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.preprocessing.imputation import Imputer from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn import tree from sklearn.random_projection import sparse_random_matrix def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test: - along the two axes - with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, " \ "axis = {0}, sparse = {1}" % (strategy, missing_values) # Normal matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) X_trans = imputer.fit(X).transform(X.copy()) assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, False)) assert_array_equal(X_trans, X_true, err_msg.format(0, False)) # Normal matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(X.transpose()) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, X.copy().transpose()) else: X_trans = imputer.transform(X.copy().transpose()) assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, False)) # Sparse matrix, axis = 0 imputer = Imputer(missing_values, strategy=strategy, axis=0) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(imputer.statistics_, statistics, err_msg.format(0, True)) assert_array_equal(X_trans, X_true, err_msg.format(0, True)) # Sparse matrix, axis = 1 imputer = Imputer(missing_values, strategy=strategy, axis=1) imputer.fit(sparse.csc_matrix(X.transpose())) if np.isnan(statistics).any(): assert_raises(ValueError, imputer.transform, sparse.csc_matrix(X.copy().transpose())) else: X_trans = imputer.transform(sparse.csc_matrix(X.copy().transpose())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_array_equal(X_trans, X_true.transpose(), err_msg.format(1, True)) def test_imputation_shape(): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan for strategy in ['mean', 'median', 'most_frequent']: imputer = Imputer(strategy=strategy) X_imputed = imputer.fit_transform(X) assert_equal(X_imputed.shape, (10, 2)) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert_equal(X_imputed.shape, (10, 2)) def test_imputation_mean_median_only_zero(): # Test imputation using the mean and median strategies, when # missing_values == 0. X = np.array([ [np.nan, 0, 0, 0, 5], [np.nan, 1, 0, np.nan, 3], [np.nan, 2, 0, 0, 0], [np.nan, 6, 0, 5, 13], ]) X_imputed_mean = np.array([ [3, 5], [1, 3], [2, 7], [6, 13], ]) statistics_mean = [np.nan, 3, np.nan, np.nan, 7] # Behaviour of median with NaN is undefined, e.g. different results in # np.median and np.ma.median X_for_median = X[:, [0, 1, 2, 4]] X_imputed_median = np.array([ [2, 5], [1, 3], [2, 5], [6, 13], ]) statistics_median = [np.nan, 2, np.nan, 5] _check_statistics(X, X_imputed_mean, "mean", statistics_mean, 0) _check_statistics(X_for_median, X_imputed_median, "median", statistics_median, 0) def safe_median(arr, *args, **kwargs): # np.median([]) raises a TypeError for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.median(arr, *args, **kwargs) def safe_mean(arr, *args, **kwargs): # np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1 length = arr.size if hasattr(arr, 'size') else len(arr) return np.nan if length == 0 else np.mean(arr, *args, **kwargs) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0]+1) values[4::2] = - values[4::2] tests = [("mean", "NaN", lambda z, v, p: safe_mean(np.hstack((z, v)))), ("mean", 0, lambda z, v, p: np.mean(v)), ("median", "NaN", lambda z, v, p: safe_median(np.hstack((z, v)))), ("median", 0, lambda z, v, p: np.median(v))] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: X_true[:, j] = np.hstack((v, np.repeat( true_statistics[j], nb_missing_values + nb_zeros))) else: X_true[:, j] = np.hstack((v, z, np.repeat(true_statistics[j], nb_missing_values))) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array([ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ]).transpose() X_imputed_median = np.array([ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, .5], ]).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, .5] _check_statistics(X, X_imputed_median, "median", statistics_median, 'NaN') def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array([ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ]) X_true = np.array([ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ]) # scipy.stats.mode, used in Imputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, Imputer will need to be updated # to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. pipeline = Pipeline([('imputer', Imputer(missing_values=0)), ('tree', tree.DecisionTreeRegressor(random_state=0))]) parameters = { 'imputer__strategy': ["mean", "median", "most_frequent"], 'imputer__axis': [0, 1] } l = 100 X = sparse_random_matrix(l, l, density=0.10) Y = sparse_random_matrix(l, 1, density=0.10).toarray() gs = grid_search.GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_pickle(): # Test for pickling imputers. import pickle l = 100 X = sparse_random_matrix(l, l, density=0.10) for strategy in ["mean", "median", "most_frequent"]: imputer = Imputer(missing_values=0, strategy=strategy) imputer.fit(X) imputer_pickled = pickle.loads(pickle.dumps(imputer)) assert_array_equal(imputer.transform(X.copy()), imputer_pickled.transform(X.copy()), "Fail to transform the data after pickling " "(strategy = %s)" % (strategy)) def test_imputation_copy(): # Test imputation with copy X_orig = sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_false(np.all(X == Xt)) # copy=True, sparse csr => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = Imputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_true(np.all(X == Xt)) # copy=False, sparse csr, axis=1 => no copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=0 => no copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_true(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=0) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csc, axis=1 => copy X = X_orig.copy().tocsc() imputer = Imputer(missing_values=X.data[0], strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_false(np.all(X.data == Xt.data)) # copy=False, sparse csr, axis=1, missing_values=0 => copy X = X_orig.copy() imputer = Imputer(missing_values=0, strategy="mean", copy=False, axis=1) Xt = imputer.fit(X).transform(X) assert_false(sparse.issparse(Xt)) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False.
bsd-3-clause
DavidNorman/tensorflow
tensorflow/examples/tutorials/word2vec/word2vec_basic.py
2
14485
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Basic word2vec example.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import collections import hashlib import math import os import random import sys from tempfile import gettempdir import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from tensorflow.contrib.tensorboard.plugins import projector data_index = 0 def _hash_file(fpath): hasher = hashlib.sha256() with open(fpath, 'rb') as fpath_file: for chunk in iter(lambda: fpath_file.read(65535), b''): hasher.update(chunk) return hasher.hexdigest() def word2vec_basic(log_dir): """Example of building, training and visualizing a word2vec model.""" # Create the directory for TensorBoard variables if there is not. if not os.path.exists(log_dir): os.makedirs(log_dir) # Step 1: Download the data. # Note: Source website does not support HTTPS right now. url = 'http://mattmahoney.net/dc/' # pylint: disable=redefined-outer-name def maybe_download(filename, expected_bytes, sha256=None): """Download a file if not present, and make sure it's the right size.""" local_filename = os.path.join(gettempdir(), filename) if not os.path.exists(local_filename): local_filename, _ = urllib.request.urlretrieve(url + filename, local_filename) statinfo = os.stat(local_filename) if sha256 and _hash_file(local_filename) != sha256: raise Exception('Failed to verify ' + local_filename + ' due to hash ' 'mismatch. Can you get to it with a browser?') if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception('Failed to verify ' + local_filename + '. Can you get to it with a browser?') return local_filename filename = maybe_download( 'text8.zip', 31344016, sha256='a6640522afe85d1963ad56c05b0ede0a0c000dddc9671758a6cc09b7a38e5232') # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data vocabulary = read_data(filename) print('Data size', len(vocabulary)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words, n_words): """Process raw inputs into a dataset.""" count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) dictionary = {word: index for index, (word, _) in enumerate(count)} data = [] unk_count = 0 for word in words: index = dictionary.get(word, 0) if index == 0: # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary # Filling 4 global variables: # data - list of codes (integers from 0 to vocabulary_size-1). # This is the original text but words are replaced by their codes # count - map of words(strings) to count of occurrences # dictionary - map of words(strings) to their codes(integers) # reverse_dictionary - map of codes(integers) to words(strings) data, count, unused_dictionary, reverse_dictionary = build_dataset( vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) # pylint: disable=redefined-builtin if data_index + span > len(data): data_index = 0 buffer.extend(data[data_index:data_index + span]) data_index += span for i in range(batch_size // num_skips): context_words = [w for w in range(span) if w != skip_window] words_to_use = random.sample(context_words, num_skips) for j, context_word in enumerate(words_to_use): batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[context_word] if data_index == len(data): buffer.extend(data[0:span]) data_index = span else: buffer.append(data[data_index]) data_index += 1 # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. num_sampled = 64 # Number of negative examples to sample. # We pick a random validation set to sample nearest neighbors. Here we limit # the validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. These 3 variables are used only for # displaying model accuracy, they don't affect calculation. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) graph = tf.Graph() with graph.as_default(): # Input data. with tf.name_scope('inputs'): train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. with tf.name_scope('embeddings'): embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss with tf.name_scope('weights'): nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) with tf.name_scope('biases'): nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. # Explanation of the meaning of NCE loss and why choosing NCE over tf.nn.sampled_softmax_loss: # http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ # http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf with tf.name_scope('loss'): loss = tf.reduce_mean( tf.nn.nce_loss( weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Add the loss value as a scalar to summary. tf.summary.scalar('loss', loss) # Construct the SGD optimizer using a learning rate of 1.0. with tf.name_scope('optimizer'): optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all # embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keepdims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Merge all summaries. merged = tf.summary.merge_all() # Add variable initializer. init = tf.global_variables_initializer() # Create a saver. saver = tf.train.Saver() # Step 5: Begin training. num_steps = 100001 with tf.compat.v1.Session(graph=graph) as session: # Open a writer to write summaries. writer = tf.summary.FileWriter(log_dir, session.graph) # We must initialize all variables before we use them. init.run() print('Initialized') average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # Define metadata variable. run_metadata = tf.RunMetadata() # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() # Also, evaluate the merged op to get all summaries from the returned # "summary" variable. Feed metadata variable to session for visualizing # the graph in TensorBoard. _, summary, loss_val = session.run([optimizer, merged, loss], feed_dict=feed_dict, run_metadata=run_metadata) average_loss += loss_val # Add returned summaries to writer in each step. writer.add_summary(summary, step) # Add metadata to visualize the graph for the last run. if step == (num_steps - 1): writer.add_run_metadata(run_metadata, 'step%d' % step) if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 # batches. print('Average loss at step ', step, ': ', average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word print( log_str, ', '.join([reverse_dictionary[nearest[k]] for k in range(top_k)])) final_embeddings = normalized_embeddings.eval() # Write corresponding labels for the embeddings. with open(log_dir + '/metadata.tsv', 'w') as f: for i in xrange(vocabulary_size): f.write(reverse_dictionary[i] + '\n') # Save the model for checkpoints. saver.save(session, os.path.join(log_dir, 'model.ckpt')) # Create a configuration for visualizing embeddings with the labels in # TensorBoard. config = projector.ProjectorConfig() embedding_conf = config.embeddings.add() embedding_conf.tensor_name = embeddings.name embedding_conf.metadata_path = os.path.join(log_dir, 'metadata.tsv') projector.visualize_embeddings(writer, config) writer.close() # Step 6: Visualize the embeddings. # pylint: disable=missing-docstring # Function to draw visualization of distance between embeddings. def plot_with_labels(low_dim_embs, labels, filename): assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate( label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE( perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact') plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels, os.path.join(gettempdir(), 'tsne.png')) except ImportError as ex: print('Please install sklearn, matplotlib, and scipy to show embeddings.') print(ex) # All functionality is run after tf.compat.v1.app.run() (b/122547914). This # could be split up but the methods are laid sequentially with their usage for # clarity. def main(unused_argv): # Give a folder path as an argument with '--log_dir' to save # TensorBoard summaries. Default is a log folder in current directory. current_path = os.path.dirname(os.path.realpath(sys.argv[0])) parser = argparse.ArgumentParser() parser.add_argument( '--log_dir', type=str, default=os.path.join(current_path, 'log'), help='The log directory for TensorBoard summaries.') flags, unused_flags = parser.parse_known_args() word2vec_basic(flags.log_dir) if __name__ == '__main__': tf.app.run()
apache-2.0
ankurankan/scikit-learn
examples/gaussian_process/plot_gp_regression.py
253
4054
#!/usr/bin/python # -*- coding: utf-8 -*- r""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression exercise computed in two different ways: 1. A noise-free case with a cubic correlation model 2. A noisy case with a squared Euclidean correlation model In both cases, the model parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``nugget`` is applied as a Tikhonov regularization of the assumed covariance between the training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to a normalized variance: That is .. math:: \mathrm{nugget}_i = \left[\frac{\sigma_i}{y_i}\right]^2 """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Licence: BSD 3 clause import numpy as np from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') #---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, thetaL=1e-3, thetaU=1, nugget=(dy / y) ** 2, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show()
bsd-3-clause
nvoron23/scikit-learn
sklearn/svm/classes.py
126
40114
import warnings import numpy as np from .base import _fit_liblinear, BaseSVC, BaseLibSVM from ..base import BaseEstimator, RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \ LinearModel from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_X_y from ..utils.validation import _num_samples class LinearSVC(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge') Specifies the loss function. 'hinge' is the standard SVM loss (used e.g. by the SVC class) while 'squared_hinge' is the square of the hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a smaller ``tol`` parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000): self.dual = dual self.tol = tol self.C = C self.multi_class = multi_class self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.penalty = penalty self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, self.multi_class, self.loss) if self.multi_class == "crammer_singer" and len(self.classes_) == 2: self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1) if self.fit_intercept: intercept = self.intercept_[1] - self.intercept_[0] self.intercept_ = np.array([intercept]) return self class LinearSVR(LinearModel, RegressorMixin): """Linear Support Vector Regression. Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger this parameter, the less regularization is used. loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive') Specifies the loss function. 'l1' is the epsilon-insensitive loss (standard SVR) while 'l2' is the squared epsilon-insensitive loss. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblinear). SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as LinearSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, epsilon=0.0, tol=1e-4, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1., dual=True, verbose=0, random_state=None, max_iter=1000): self.tol = tol self.C = C self.epsilon = epsilon self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.dual = dual self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'epsilon_insensitive', 'l2': 'squared_epsilon_insensitive' }.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") penalty = 'l2' # SVR only accepts l2 penalty self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, None, penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, loss=self.loss, epsilon=self.epsilon) self.coef_ = self.coef_.ravel() return self class SVC(BaseSVC): """C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)``. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(SVC, self).__init__( impl='c_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') ecision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(NuSVC, self).__init__( impl='nu_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class SVR(BaseLibSVM, RegressorMixin): """Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. epsilon : float, optional (default=0.1) Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1): super(SVR, self).__init__( 'epsilon_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, max_iter=max_iter, random_state=None) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1): super(NuSVR, self).__init__( 'nu_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None) class OneClassSVM(BaseLibSVM): """Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_outlier_detection>`. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking : boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [n_classes-1, n_SV] Coefficients of the support vectors in the decision function. coef_ : array, shape = [n_classes-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` intercept_ : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, y=None, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight, **params) return self def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples,) Returns the decision function of the samples. """ dec = self._decision_function(X) return dec
bsd-3-clause
idlead/scikit-learn
sklearn/externals/joblib/__init__.py
23
4764
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.9.3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
harshaneelhg/scikit-learn
sklearn/utils/tests/test_murmurhash.py
261
2836
# Author: Olivier Grisel <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.externals.six import b, u from sklearn.utils.murmurhash import murmurhash3_32 from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from nose.tools import assert_equal, assert_true def test_mmhash3_int(): assert_equal(murmurhash3_32(3), 847579505) assert_equal(murmurhash3_32(3, seed=0), 847579505) assert_equal(murmurhash3_32(3, seed=42), -1823081949) assert_equal(murmurhash3_32(3, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=False), -1823081949) assert_equal(murmurhash3_32(3, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=True), 2471885347) def test_mmhash3_int_array(): rng = np.random.RandomState(42) keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32) keys = keys.reshape((3, 2, 1)) for seed in [0, 42]: expected = np.array([murmurhash3_32(int(k), seed) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed), expected) for seed in [0, 42]: expected = np.array([murmurhash3_32(k, seed, positive=True) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed, positive=True), expected) def test_mmhash3_bytes(): assert_equal(murmurhash3_32(b('foo'), 0), -156908512) assert_equal(murmurhash3_32(b('foo'), 42), -1322301282) assert_equal(murmurhash3_32(b('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(b('foo'), 42, positive=True), 2972666014) def test_mmhash3_unicode(): assert_equal(murmurhash3_32(u('foo'), 0), -156908512) assert_equal(murmurhash3_32(u('foo'), 42), -1322301282) assert_equal(murmurhash3_32(u('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(u('foo'), 42, positive=True), 2972666014) def test_no_collision_on_byte_range(): previous_hashes = set() for i in range(100): h = murmurhash3_32(' ' * i, 0) assert_true(h not in previous_hashes, "Found collision on growing empty string") def test_uniform_distribution(): n_bins, n_samples = 10, 100000 bins = np.zeros(n_bins, dtype=np.float) for i in range(n_samples): bins[murmurhash3_32(i, positive=True) % n_bins] += 1 means = bins / n_samples expected = np.ones(n_bins) / n_bins assert_array_almost_equal(means / expected, np.ones(n_bins), 2)
bsd-3-clause
PythonCharmers/bokeh
bokeh/models/sources.py
13
10604
from __future__ import absolute_import from ..plot_object import PlotObject from ..properties import HasProps from ..properties import Any, Int, String, Instance, List, Dict, Either, Bool, Enum from ..validation.errors import COLUMN_LENGTHS from .. import validation from ..util.serialization import transform_column_source_data from .actions import Callback class DataSource(PlotObject): """ A base class for data source types. ``DataSource`` is not generally useful to instantiate on its own. """ column_names = List(String, help=""" An list of names for all the columns in this DataSource. """) selected = Dict(String, Dict(String, Any), default={ '0d': {'flag': False, 'indices': []}, '1d': {'indices': []}, '2d': {'indices': []} }, help=""" A dict to indicate selected indices on different dimensions on this DataSource. Keys are: - 0d: indicates whether a Line or Patch glyphs have been hit. Value is a dict with the following keys: - flag (boolean): true if glyph was with false otherwise - indices (list): indices hit (if applicable) - 1d: indicates whether any of all other glyph (except [multi]line or patches) was hit: - indices (list): indices that were hit/selected - 2d: indicates whether a [multi]line or patches) were hit: - indices (list(list)): indices of the lines/patches that were hit/selected """) callback = Instance(Callback, help=""" A callback to run in the browser whenever the selection is changed. """) def columns(self, *columns): """ Returns a ColumnsRef object for a column or set of columns on this data source. Args: *columns Returns: ColumnsRef """ return ColumnsRef(source=self, columns=list(columns)) class ColumnsRef(HasProps): """ A utility object to allow referring to a collection of columns from a specified data source, all together. """ source = Instance(DataSource, help=""" A data source to reference. """) columns = List(String, help=""" A list of column names to reference from ``source``. """) class ColumnDataSource(DataSource): """ Maps names of columns to sequences or arrays. If the ColumnDataSource initializer is called with a single argument that is a dict, that argument is used as the value for the "data" attribute. For example:: ColumnDataSource(mydict) # same as ColumnDataSource(data=mydict) .. note:: There is an implicit assumption that all the columns in a a given ColumnDataSource have the same length. """ data = Dict(String, Any, help=""" Mapping of column names to sequences of data. The data can be, e.g, Python lists or tuples, NumPy arrays, etc. """) def __init__(self, *args, **kw): """ If called with a single argument that is a dict, treat that implicitly as the "data" attribute. """ if len(args) == 1 and "data" not in kw: kw["data"] = args[0] # TODO (bev) invalid to pass args and "data", check and raise exception raw_data = kw.pop("data", {}) if not isinstance(raw_data, dict): import pandas as pd if isinstance(raw_data, pd.DataFrame): raw_data = self.from_df(raw_data) else: raise ValueError("expected a dict or pandas.DataFrame, got %s" % raw_data) for name, data in raw_data.items(): self.add(data, name) super(ColumnDataSource, self).__init__(**kw) # TODO: (bev) why not just return a ColumnDataSource? @classmethod def from_df(cls, data): """ Create a ``dict`` of columns from a Pandas DataFrame, suitable for creating a ColumnDataSource. Args: data (DataFrame) : data to convert Returns: dict(str, list) """ index = data.index new_data = {} for colname in data: new_data[colname] = data[colname].tolist() if index.name: new_data[index.name] = index.tolist() elif index.names and not all([x is None for x in index.names]): new_data["_".join(index.names)] = index.tolist() else: new_data["index"] = index.tolist() return new_data def to_df(self): """ Convert this data source to pandas dataframe. If ``column_names`` is set, use those. Otherwise let Pandas infer the column names. The ``column_names`` property can be used both to order and filter the columns. Returns: DataFrame """ import pandas as pd if self.column_names: return pd.DataFrame(self.data, columns=self.column_names) else: return pd.DataFrame(self.data) def add(self, data, name=None): """ Appends a new column of data to the data source. Args: data (seq) : new data to add name (str, optional) : column name to use. If not supplied, generate a name go the form "Series ####" Returns: str: the column name used """ if name is None: n = len(self.data) while "Series %d"%n in self.data: n += 1 name = "Series %d"%n self.column_names.append(name) self.data[name] = data return name def vm_serialize(self, changed_only=True): attrs = super(ColumnDataSource, self).vm_serialize(changed_only=changed_only) if 'data' in attrs: attrs['data'] = transform_column_source_data(attrs['data']) return attrs def remove(self, name): """ Remove a column of data. Args: name (str) : name of the column to remove Returns: None .. note:: If the column name does not exist, a warning is issued. """ try: self.column_names.remove(name) del self.data[name] except (ValueError, KeyError): import warnings warnings.warn("Unable to find column '%s' in data source" % name) def push_notebook(self): """ Update date for a plot in the IPthon notebook in place. This function can be be used to update data in plot data sources in the IPython notebook, without having to use the Bokeh server. Returns: None .. warning:: The current implementation leaks memory in the IPython notebook, due to accumulating JS code. This function typically works well with light UI interactions, but should not be used for continuously updating data. See :bokeh-issue:`1732` for more details and to track progress on potential fixes. """ from IPython.core import display from bokeh.protocol import serialize_json id = self.ref['id'] model = self.ref['type'] json = serialize_json(self.vm_serialize()) js = """ var ds = Bokeh.Collections('{model}').get('{id}'); var data = {json}; ds.set(data); """.format(model=model, id=id, json=json) display.display_javascript(js, raw=True) @validation.error(COLUMN_LENGTHS) def _check_column_lengths(self): lengths = set(len(x) for x in self.data.values()) if len(lengths) > 1: return str(self) class RemoteSource(DataSource): data_url = String(help=""" The URL to the endpoint for the data. """) data = Dict(String, Any, help=""" Additional data to include directly in this data source object. The columns provided here are merged with those from the Bokeh server. """) polling_interval = Int(help=""" polling interval for updating data source in milliseconds """) class AjaxDataSource(RemoteSource): method = Enum('POST', 'GET', help="http method - GET or POST") mode = Enum("replace", "append", help=""" Whether to append new data to existing data (up to ``max_size``), or to replace existing data entirely. """) max_size = Int(help=""" Maximum size of the data array being kept after each pull requests. Larger than that size, the data will be right shifted. """) if_modified = Bool(False, help=""" Whether to include an ``If-Modified-Since`` header in AJAX requests to the server. If this header is supported by the server, then only new data since the last request will be returned. """) class BlazeDataSource(RemoteSource): #blaze parts expr = Dict(String, Any(), help=""" blaze expression graph in json form """) namespace = Dict(String, Any(), help=""" namespace in json form for evaluating blaze expression graph """) local = Bool(help=""" Whether this data source is hosted by the bokeh server or not. """) def from_blaze(self, remote_blaze_obj, local=True): from blaze.server import to_tree # only one Client object, can hold many datasets assert len(remote_blaze_obj._leaves()) == 1 leaf = remote_blaze_obj._leaves()[0] blaze_client = leaf.data json_expr = to_tree(remote_blaze_obj, {leaf : ':leaf'}) self.data_url = blaze_client.url + "/compute.json" self.local = local self.expr = json_expr def to_blaze(self): from blaze.server.client import Client from blaze.server import from_tree from blaze import Data # hacky - blaze urls have `compute.json` in it, but we need to strip it off # to feed it into the blaze client lib c = Client(self.data_url.rsplit('compute.json', 1)[0]) d = Data(c) return from_tree(self.expr, {':leaf' : d}) class ServerDataSource(BlazeDataSource): """ A data source that referes to data located on a Bokeh server. The data from the server is loaded on-demand by the client. """ # Paramters of data transformation operations # The 'Any' is used to pass primtives around. # TODO: (jc) Find/create a property type for 'any primitive/atomic value' transform = Dict(String,Either(Instance(PlotObject), Any), help=""" Paramters of the data transformation operations. The associated valuse is minimally a tag that says which downsample routine to use. For some downsamplers, parameters are passed this way too. """)
bsd-3-clause
derekjchow/models
research/learned_optimizer/problems/datasets.py
7
7404
# Copyright 2017 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to generate or load datasets for supervised learning.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import numpy as np from sklearn.datasets import make_classification MAX_SEED = 4294967295 class Dataset(namedtuple("Dataset", "data labels")): """Helper class for managing a supervised learning dataset. Args: data: an array of type float32 with N samples, each of which is the set of features for that sample. (Shape (N, D_i), where N is the number of samples and D_i is the number of features for that sample.) labels: an array of type int32 or int64 with N elements, indicating the class label for the corresponding set of features in data. """ # Since this is an immutable object, we don't need to reserve slots. __slots__ = () @property def size(self): """Dataset size (number of samples).""" return len(self.data) def batch_indices(self, num_batches, batch_size): """Creates indices of shuffled minibatches. Args: num_batches: the number of batches to generate batch_size: the size of each batch Returns: batch_indices: a list of minibatch indices, arranged so that the dataset is randomly shuffled. Raises: ValueError: if the data and labels have different lengths """ if len(self.data) != len(self.labels): raise ValueError("Labels and data must have the same number of samples.") batch_indices = [] # Follows logic in mnist.py to ensure we cover the entire dataset. index_in_epoch = 0 dataset_size = len(self.data) dataset_indices = np.arange(dataset_size) np.random.shuffle(dataset_indices) for _ in range(num_batches): start = index_in_epoch index_in_epoch += batch_size if index_in_epoch > dataset_size: # Finished epoch, reshuffle. np.random.shuffle(dataset_indices) # Start next epoch. start = 0 index_in_epoch = batch_size end = index_in_epoch batch_indices.append(dataset_indices[start:end].tolist()) return batch_indices def noisy_parity_class(n_samples, n_classes=2, n_context_ids=5, noise_prob=0.25, random_seed=None): """Returns a randomly generated sparse-to-sparse dataset. The label is a parity class of a set of context classes. Args: n_samples: number of samples (data points) n_classes: number of class labels (default: 2) n_context_ids: how many classes to take the parity of (default: 5). noise_prob: how often to corrupt the label (default: 0.25) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ np.random.seed(random_seed) x = np.random.randint(0, n_classes, [n_samples, n_context_ids]) noise = np.random.binomial(1, noise_prob, [n_samples]) y = (np.sum(x, 1) + noise) % n_classes return Dataset(x.astype("float32"), y.astype("int32")) def random(n_features, n_samples, n_classes=2, sep=1.0, random_seed=None): """Returns a randomly generated classification dataset. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) n_classes: number of class labels (default: 2) sep: separation of the two classes, a higher value corresponds to an easier classification problem (default: 1.0) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ # Generate the problem data. x, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=n_features, n_redundant=0, n_classes=n_classes, class_sep=sep, random_state=random_seed) return Dataset(x.astype("float32"), y.astype("int32")) def random_binary(n_features, n_samples, random_seed=None): """Returns a randomly generated dataset of binary values. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ random_seed = (np.random.randint(MAX_SEED) if random_seed is None else random_seed) np.random.seed(random_seed) x = np.random.randint(2, size=(n_samples, n_features)) y = np.zeros((n_samples, 1)) return Dataset(x.astype("float32"), y.astype("int32")) def random_symmetric(n_features, n_samples, random_seed=None): """Returns a randomly generated dataset of values and their negatives. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ random_seed = (np.random.randint(MAX_SEED) if random_seed is None else random_seed) np.random.seed(random_seed) x1 = np.random.normal(size=(int(n_samples/2), n_features)) x = np.concatenate((x1, -x1), axis=0) y = np.zeros((n_samples, 1)) return Dataset(x.astype("float32"), y.astype("int32")) def random_mlp(n_features, n_samples, random_seed=None, n_layers=6, width=20): """Returns a generated output of an MLP with random weights. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) random_seed: seed used for drawing the random data (default: None) n_layers: number of layers in random MLP width: width of the layers in random MLP Returns: dataset: A Dataset namedtuple containing the generated data and labels """ random_seed = (np.random.randint(MAX_SEED) if random_seed is None else random_seed) np.random.seed(random_seed) x = np.random.normal(size=(n_samples, n_features)) y = x n_in = n_features scale_factor = np.sqrt(2.) / np.sqrt(n_features) for _ in range(n_layers): weights = np.random.normal(size=(n_in, width)) * scale_factor y = np.dot(y, weights).clip(min=0) n_in = width y = y[:, 0] y[y > 0] = 1 return Dataset(x.astype("float32"), y.astype("int32")) EMPTY_DATASET = Dataset(np.array([], dtype="float32"), np.array([], dtype="int32"))
apache-2.0
elisamussumeci/InfoDenguePredict
infodenguepredict/models/VAR2.py
2
1286
""" Vector Autogregression using statsmodels http://statsmodels.sourceforge.net/devel/vector_ar.html """ import numpy as np import pandas as pd from statsmodels.tsa.api import * from statsmodels.tsa.vector_ar.var_model import VAR from datetime import datetime import matplotlib.pyplot as plt from infodenguepredict.data.infodengue import get_alerta_table, build_multicity_dataset def build_model(data): data.index = pd.DatetimeIndex(data.index) model = VAR(data) return model if __name__ == "__main__": prediction_window = 5 # weeks scenario = 'global' if scenario == 'local': data = get_alerta_table(3303500) # Nova Iguaçu: 3303500 data = data[['casos', 'nivel']] else: data = build_multicity_dataset('RJ') data = data[[col for col in data.columns if col.startswith('casos') and not col.startswith('casos_est')]][:5] print(data.info()) # data.casos_est.plot(title="Series") model = build_model(data) fit = model.fit(maxlags=11, ic='aic') # 4 lags print(fit.summary()) fit.plot() fit.plot_acorr() plt.figure() lag_order = fit.k_ar forecast = fit.forecast(data.values[-lag_order:], prediction_window) print(forecast) fit.plot_forecast(prediction_window) plt.show()
gpl-3.0
JT5D/scikit-learn
examples/plot_multilabel.py
9
4299
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] pl.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": # Convert list of tuples to a class indicator matrix first Y_indicator = LabelBinarizer().fit(Y).transform(Y) X = CCA(n_components=2).fit(X, Y_indicator).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) pl.subplot(2, 2, subplot) pl.title(title) zero_class = np.where([0 in y for y in Y]) one_class = np.where([1 in y for y in Y]) pl.scatter(X[:, 0], X[:, 1], s=40, c='gray') pl.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') pl.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') pl.xticks(()) pl.yticks(()) pl.xlim(min_x - .5 * max_x, max_x + .5 * max_x) pl.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: pl.xlabel('First principal component') pl.ylabel('Second principal component') pl.legend(loc="upper left") pl.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") pl.subplots_adjust(.04, .02, .97, .94, .09, .2) pl.show()
bsd-3-clause
elkingtonmcb/bcbio-nextgen
bcbio/variation/validateplot.py
1
15359
"""Plot validation results from variant calling comparisons. Handles data normalization and plotting, emphasizing comparisons on methodology differences. """ import collections import os import numpy as np import pandas as pd try: import matplotlib as mpl mpl.use('Agg', force=True) import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter except ImportError: mpl, plt = None, None try: import seaborn as sns except ImportError: sns = None from bcbio.log import logger from bcbio import utils from bcbio.variation import bamprep def classifyplot_from_plotfiles(plot_files, out_csv, outtype="png", title=None, size=None): """Create a plot from individual summary csv files with classification metrics. """ df = pd.concat([pd.read_csv(x) for x in plot_files]) df.to_csv(out_csv, index=False) return classifyplot_from_valfile(out_csv, outtype, title, size) def classifyplot_from_valfile(val_file, outtype="png", title=None, size=None): """Create a plot from a summarized validation file. Does new-style plotting of summarized metrics of false negative rate and false discovery rate. https://en.wikipedia.org/wiki/Sensitivity_and_specificity """ df = pd.read_csv(val_file) grouped = df.groupby(["sample", "caller", "vtype"]) df = grouped.apply(_calculate_fnr_fdr) df = df.reset_index() out_file = "%s.%s" % (os.path.splitext(val_file)[0], outtype) _do_classifyplot(df, out_file, title, size) return [out_file] def _calculate_fnr_fdr(group): """Calculate the false negative rate (1 - sensitivity) and false discovery rate (1 - precision). """ data = {k: d["value"] for k, d in group.set_index("metric").T.to_dict().items()} return pd.DataFrame([{"fnr": data["fn"] / float(data["tp"] + data["fn"]) * 100.0 if data["tp"] > 0 else 0.0, "fdr": data["fp"] / float(data["tp"] + data["fp"]) * 100.0 if data["tp"] > 0 else 0.0, "tpr": "TP: %s FN: %s" % (data["tp"], data["fn"]), "spc": "FP: %s" % (data["fp"])}]) def _do_classifyplot(df, out_file, title=None, size=None): """Plot using classification-based plot using seaborn. """ metric_labels = {"fdr": "False discovery rate", "fnr": "False negative rate"} metrics = [("fnr", "tpr"), ("fdr", "spc")] colors = ["light grey", "greyish"] data_dict = df.set_index(["sample", "caller", "vtype"]).T.to_dict() plt.ioff() sns.set(style='white') vtypes = sorted(df["vtype"].unique(), reverse=True) callers = sorted(df["caller"].unique()) samples = sorted(df["sample"].unique()) fig, axs = plt.subplots(len(vtypes) * len(callers), len(metrics)) fig.text(.5, .95, title if title else "", horizontalalignment='center', size=14) for vi, vtype in enumerate(vtypes): sns.set_palette(sns.xkcd_palette([colors[vi]])) for ci, caller in enumerate(callers): for j, (metric, label) in enumerate(metrics): cur_plot = axs[vi * len(vtypes) + ci][j] vals, labels = [], [] for sample in samples: cur_data = data_dict[(sample, caller, vtype)] vals.append(cur_data[metric]) labels.append(cur_data[label]) cur_plot.barh(np.arange(len(samples)), vals) all_vals = [] for k, d in data_dict.items(): if k[-1] == vtype: for m in metrics: all_vals.append(d[m[0]]) metric_max = max(all_vals) cur_plot.set_xlim(0, metric_max) pad = 0.1 * metric_max for ai, (val, label) in enumerate(zip(vals, labels)): cur_plot.annotate(label, (pad + (0 if max(vals) > metric_max / 2.0 else max(vals)), ai + 0.35), va='center', size=7) if j == 0: cur_plot.tick_params(axis='y', which='major', labelsize=8) cur_plot.locator_params(nbins=len(samples) + 2, axis="y", tight=True) cur_plot.set_yticklabels(samples, size=8, va="bottom") cur_plot.set_title("%s: %s" % (vtype, caller), fontsize=12, loc="left") else: cur_plot.get_yaxis().set_ticks([]) if ci == len(callers) - 1: cur_plot.tick_params(axis='x', which='major', labelsize=8) cur_plot.get_xaxis().set_major_formatter( FuncFormatter(lambda v, p: "%s%%" % (int(v) if round(v) == v else v))) if vi == len(vtypes) - 1: cur_plot.get_xaxis().set_label_text(metric_labels[metric], size=12) else: cur_plot.get_xaxis().set_ticks([]) cur_plot.spines['bottom'].set_visible(False) cur_plot.spines['left'].set_visible(False) cur_plot.spines['top'].set_visible(False) cur_plot.spines['right'].set_visible(False) x, y = (6, len(vtypes) * len(callers) + 1 * 0.5 * len(samples)) if size is None else size fig.set_size_inches(x, y) fig.tight_layout(rect=(0, 0, 1, 0.95)) plt.subplots_adjust(hspace=0.6) fig.savefig(out_file) def create_from_csv(in_csv, config=None, outtype="png", title=None, size=None): df = pd.read_csv(in_csv) create(df, None, 0, config or {}, os.path.splitext(in_csv)[0], outtype, title, size) def create(plot_data, header, ploti, sample_config, out_file_base, outtype="png", title=None, size=None): """Create plots of validation results for a sample, labeling prep strategies. """ if mpl is None or plt is None or sns is None: not_found = ", ".join([x for x in ['mpl', 'plt', 'sns'] if eval(x) is None]) logger.info("No validation plot. Missing imports: %s" % not_found) return None if header: df = pd.DataFrame(plot_data, columns=header) else: df = plot_data df["aligner"] = [get_aligner(x, sample_config) for x in df["sample"]] df["bamprep"] = [get_bamprep(x, sample_config) for x in df["sample"]] floors = get_group_floors(df, cat_labels) df["value.floor"] = [get_floor_value(x, cat, vartype, floors) for (x, cat, vartype) in zip(df["value"], df["category"], df["variant.type"])] out = [] for i, prep in enumerate(df["bamprep"].unique()): out.append(plot_prep_methods(df, prep, i + ploti, out_file_base, outtype, title, size)) return out cat_labels = {"concordant": "Concordant", "discordant-missing-total": "Discordant (missing)", "discordant-extra-total": "Discordant (extra)", "discordant-shared-total": "Discordant (shared)"} vtype_labels = {"snp": "SNPs", "indel": "Indels"} prep_labels = {} caller_labels = {"ensemble": "Ensemble", "freebayes": "FreeBayes", "gatk": "GATK Unified\nGenotyper", "gatk-haplotype": "GATK Haplotype\nCaller"} def plot_prep_methods(df, prep, prepi, out_file_base, outtype, title=None, size=None): """Plot comparison between BAM preparation methods. """ samples = df[(df["bamprep"] == prep)]["sample"].unique() assert len(samples) >= 1, samples out_file = "%s-%s.%s" % (out_file_base, samples[0], outtype) df = df[df["category"].isin(cat_labels)] _seaborn(df, prep, prepi, out_file, title, size) return out_file def _seaborn(df, prep, prepi, out_file, title=None, size=None): """Plot using seaborn wrapper around matplotlib. """ plt.ioff() sns.set(style='dark') vtypes = df["variant.type"].unique() callers = sorted(df["caller"].unique()) cats = _check_cats(["concordant", "discordant-missing-total", "discordant-extra-total", "discordant-shared-total"], vtypes, df, prep, callers) fig, axs = plt.subplots(len(vtypes), len(cats)) width = 0.8 for i, vtype in enumerate(vtypes): ax_row = axs[i] if len(vtypes) > 1 else axs for j, cat in enumerate(cats): vals, labels, maxval = _get_chart_info(df, vtype, cat, prep, callers) if len(cats) == 1: assert j == 0 ax = ax_row else: ax = ax_row[j] if i == 0: ax.set_title(cat_labels[cat], size=14) ax.get_yaxis().set_ticks([]) if j == 0: ax.set_ylabel(vtype_labels[vtype], size=14) ax.bar(np.arange(len(callers)), vals, width=width) ax.set_ylim(0, maxval) if i == len(vtypes) - 1: ax.set_xticks(np.arange(len(callers)) + width / 2.0) ax.set_xticklabels([caller_labels.get(x, x).replace("__", "\n") if x else "" for x in callers], size=8, rotation=45) else: ax.get_xaxis().set_ticks([]) _annotate(ax, labels, vals, np.arange(len(callers)), width) fig.text(.5, .95, prep_labels.get(prep, "") if title is None else title, horizontalalignment='center', size=16) fig.subplots_adjust(left=0.05, right=0.95, top=0.87, bottom=0.15, wspace=0.1, hspace=0.1) x, y = (10, 5) if size is None else size fig.set_size_inches(x, y) fig.savefig(out_file) def _check_cats(cats, vtypes, df, prep, callers): """Only include categories in the final output if they have values. """ out = [] for cat in cats: all_vals = [] for vtype in vtypes: vals, labels, maxval = _get_chart_info(df, vtype, cat, prep, callers) all_vals.extend(vals) if sum(all_vals) / float(len(all_vals)) > 2: out.append(cat) if len(out) == 0: return cats else: return out def _get_chart_info(df, vtype, cat, prep, callers): """Retrieve values for a specific variant type, category and prep method. """ maxval_raw = max(list(df["value.floor"])) curdf = df[(df["variant.type"] == vtype) & (df["category"] == cat) & (df["bamprep"] == prep)] vals = [] labels = [] for c in callers: row = curdf[df["caller"] == c] if len(row) > 0: vals.append(list(row["value.floor"])[0]) labels.append(list(row["value"])[0]) else: vals.append(1) labels.append("") return vals, labels, maxval_raw def _annotate(ax, annotate, height, left, width): """Annotate axis with labels. """ annotate_yrange_factor = 0.010 xticks = np.array(left) + width / 2.0 ymin, ymax = ax.get_ylim() yrange = ymax - ymin # Reset ymax and ymin so there's enough room to see the annotation of # the top-most if ymax > 0: ymax += yrange * 0.15 if ymin < 0: ymin -= yrange * 0.15 ax.set_ylim(ymin, ymax) yrange = ymax - ymin offset_ = yrange * annotate_yrange_factor if isinstance(annotate, collections.Iterable): annotations = map(str, annotate) else: annotations = ['%.3f' % h if type(h) is np.float_ else str(h) for h in height] for x, h, annotation in zip(xticks, height, annotations): # Adjust the offset to account for negative bars offset = offset_ if h >= 0 else -1 * offset_ verticalalignment = 'bottom' if h >= 0 else 'top' if len(str(annotation)) > 6: size = 7 elif len(str(annotation)) > 5: size = 8 else: size = 10 # Finally, add the text to the axes ax.annotate(annotation, (x, h + offset), verticalalignment=verticalalignment, horizontalalignment='center', size=size) def _ggplot(df, out_file): """Plot faceted items with ggplot wrapper on top of matplotlib. XXX Not yet functional """ import ggplot as gg df["variant.type"] = [vtype_labels[x] for x in df["variant.type"]] df["category"] = [cat_labels[x] for x in df["category"]] df["caller"] = [caller_labels.get(x, None) for x in df["caller"]] p = (gg.ggplot(df, gg.aes(x="caller", y="value.floor")) + gg.geom_bar() + gg.facet_wrap("variant.type", "category") + gg.theme_seaborn()) gg.ggsave(p, out_file) def get_floor_value(x, cat, vartype, floors): """Modify values so all have the same relative scale for differences. Using the chosen base heights, adjusts an individual sub-plot to be consistent relative to that height. """ all_base = floors[vartype] cur_max = floors[(cat, vartype)] if cur_max > all_base: diff = cur_max - all_base x = max(1, x - diff) return x def get_group_floors(df, cat_labels): """Retrieve the floor for a given row of comparisons, creating a normalized set of differences. We need to set non-zero floors so large numbers (like concordance) don't drown out small numbers (like discordance). This defines the height for a row of comparisons as either the minimum height of any sub-plot, or the maximum difference between higher and lower (plus 10%). """ group_maxes = collections.defaultdict(list) group_diffs = collections.defaultdict(list) diff_pad = 0.1 # 10% padding onto difference to avoid large numbers looking like zero for name, group in df.groupby(["category", "variant.type"]): label, stype = name if label in cat_labels: diff = max(group["value"]) - min(group["value"]) group_diffs[stype].append(diff + int(diff_pad * diff)) group_maxes[stype].append(max(group["value"])) group_maxes[name].append(max(group["value"])) out = {} for k, vs in group_maxes.iteritems(): if k in group_diffs: out[k] = max(max(group_diffs[stype]), min(vs)) else: out[k] = min(vs) return out def get_aligner(x, config): return utils.get_in(config, ("algorithm", "aligner"), "") def get_bamprep(x, config): params = bamprep._get_prep_params({"config": {"algorithm": config.get("algorithm", {})}}) if params["realign"] == "gatk" and params["recal"] == "gatk": return "gatk" elif not params["realign"] and not params["recal"]: return "none" elif not params.get("recal") or not params.get("realign"): return "mixed" else: return "" # ## Frequency plots def facet_freq_plot(freq_csv, caller): """Prepare a facet plot of frequencies stratified by variant type and status (TP, FP, FN). Makes a nice plot with the output from validate.freq_summary """ out_file = "%s.png" % os.path.splitext(freq_csv)[0] plt.ioff() sns.set(style='dark') df = pd.read_csv(freq_csv) g = sns.FacetGrid(df, row="vtype", col="valclass", margin_titles=True, col_order=["TP", "FN", "FP"], row_order=["snp", "indel"], sharey=False) g.map(plt.hist, "freq", bins=20, align="left") g.set(xlim=(0.0, 1.0)) g.fig.set_size_inches(8, 6) g.fig.text(.05, .97, caller, horizontalalignment='center', size=14) g.fig.savefig(out_file)
mit
srepho/BDA_py_demos
demos_ch10/demo10_1.py
19
4102
"""Bayesian data analysis Chapter 10, demo 1 Rejection sampling example """ from __future__ import division import numpy as np from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt # edit default plot settings (colours from colorbrewer2.org) plt.rc('font', size=14) plt.rc('lines', color='#377eb8', linewidth=2, markeredgewidth=0) plt.rc('axes', color_cycle=('#377eb8','#e41a1c','#4daf4a', '#984ea3','#ff7f00','#ffff33')) plt.rc('patch', facecolor='#bfe2ff') # fake interesting distribution x = np.linspace(-3, 3, 200) r = np.array([ 1.1 , 1.3 , -0.1 , -0.7 , 0.2 , -0.4 , 0.06, -1.7 , 1.7 , 0.3 , 0.7 , 1.6 , -2.06, -0.74, 0.2 , 0.5 ]) # Estimate the density (named q, to emphesize that it does not need to be # normalized). Parameter bw_method=0.48 is used to mimic the outcome of the # kernelp function in Matlab. q = stats.gaussian_kde(r, bw_method=0.48).evaluate(x) # rejection sampling example g_mean = 0 g_std = 1.1 g = stats.norm.pdf(x, loc=g_mean, scale=g_std) # M is computed by discrete approximation M = np.max(q/g) # prescale g *= M # plot the densities plt.figure() plt.plot(x, q) plt.plot(x, g, linestyle='--') plt.fill_between(x, q) plt.legend((r'$q(\theta|y)$', r'$Mg(\theta)$')) plt.yticks(()) plt.title('Rejection sampling') plt.ylim([0, 1.1*g.max()]) # illustrate one sample r1 = -0.8 zi = np.argmin(np.abs(x-r1)) # find the closest grid point plt.plot((x[zi], x[zi]), (0, q[zi]), color='gray') plt.plot((x[zi], x[zi]), (q[zi], g[zi]), color='gray', linestyle='--') r21 = 0.3 * g[zi] r22 = 0.8 * g[zi] plt.plot(r1, r21, marker='o', color='#4daf4a', markersize=12) plt.plot(r1, r22, marker='o', color='#e41a1c', markersize=12) # add annotations plt.text(x[zi], q[zi], r'$\leftarrow \, q(\theta=r|y)$', fontsize=18) plt.text(x[zi], g[zi], r'$\leftarrow \, g(\theta=r)$', fontsize=18) plt.text(r1-0.1, r21, 'accepted', horizontalalignment='right') plt.text(r1-0.1, r22, 'rejected', horizontalalignment='right') # get nsamp samples nsamp = 200 r1 = stats.norm.rvs(size=nsamp, loc=g_mean, scale=g_std) zi = np.argmin(np.abs(x[:,None] - r1), axis=0) r2 = np.random.rand(nsamp) * g[zi] acc = r2 < q[zi] # plot the densities againg plotgrid = mpl.gridspec.GridSpec(2, 1, height_ratios=[5,1]) fig = plt.figure() ax0 = plt.subplot(plotgrid[0]) plt.plot(x, q) plt.plot(x, g, linestyle='--') plt.fill_between(x, q) plt.xticks(()) plt.yticks(()) plt.title('Rejection sampling') plt.ylim([0, 1.1*g.max()]) plt.xlim((x[0],x[-1])) # the samples plt.scatter(r1[~acc], r2[~acc], 40, color='#ff999a') plt.scatter(r1[acc], r2[acc], 40, color='#4daf4a') plt.legend((r'$q(\theta|y)$', r'$Mg(\theta)$', 'rejected', 'accepted')) # only accepted samples ax1 = plt.subplot(plotgrid[1]) plt.scatter(r1[acc], np.ones(np.count_nonzero(acc)), 40, color='#4daf4a', alpha=0.3) plt.yticks(()) plt.xlim((x[0],x[-1])) # add inter-axis lines transf = fig.transFigure.inverted() for i in range(nsamp): if acc[i] and x[0] < r1[i] and r1[i] < x[-1]: coord1 = transf.transform(ax0.transData.transform([r1[i], r2[i]])) coord2 = transf.transform(ax1.transData.transform([r1[i], 1])) fig.lines.append(mpl.lines.Line2D( (coord1[0], coord2[0]), (coord1[1], coord2[1]), transform=fig.transFigure, alpha=0.2 )) # alternative proposal distribution g = np.empty(x.shape) g[x <= -1.5] = np.linspace(q[0], np.max(q[x<=-1.5]), len(x[x<=-1.5])) g[(x > -1.5) & (x <= 0.2)] = np.linspace( np.max(q[x<=-1.5]), np.max(q[(x>-1.5) & (x<=0.2)]), len(x[(x>-1.5) & (x<=0.2)]) ) g[(x > 0.2) & (x <= 2.3)] = np.linspace( np.max(q[(x>-1.5) & (x<=0.2)]), np.max(q[x>2.3]), len(x[(x>0.2) & (x<=2.3)]) ) g[x > 2.3] = np.linspace(np.max(q[x>2.3]), q[-1], len(x[x>2.3])) M = np.max(q/g) g *= M # plot plt.figure() plt.plot(x, q) plt.plot(x, g, linestyle='--') plt.fill_between(x, q) plt.legend((r'$q(\theta|y)$', r'$Mg(\theta)$')) plt.yticks(()) plt.title('Rejection sampling - alternative proposal distribution') plt.ylim([0, 1.1*g.max()]) plt.show()
gpl-3.0
robinbach/adv-loop-perf
04modelPython/Regression.py
1
4435
from sklearn import svm from sklearn import linear_model from sklearn.kernel_ridge import KernelRidge import numpy as np import sys import random import matplotlib.pyplot as plt numTrain = 11 def readFile(fPath): data = np.genfromtxt(fPath, delimiter=',') random.shuffle(data) performance = data.T[-2] distortion = data.T[-1] numX = len(data.T) - 2 A = data.T[0:numX] for i in range(len(A)): A[i] = A[i] / max(max(A[i]), 1.0) A = A.T ATrain = A[0:numTrain] ATest = A[numTrain + 1:] performanceTrain = performance[0:numTrain] performanceTest = performance[numTrain + 1:] distortionTrain = distortion[0:numTrain] distortionTest = distortion[numTrain + 1:] return ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest def linearRegression(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest): lr = linear_model.LinearRegression() lr.fit(ATrain, performanceTrain) performancePred = lr.predict(ATest) performanceErr = sum(abs(performancePred - performanceTest)) / len(performanceTest) print 'linear regression performance error: ', performanceErr lr.fit(ATrain, distortionTrain) distortionPred = lr.predict(ATest) distortionErr = sum(abs(distortionPred - distortionTest)) / len(distortionTest) print 'linear regression distortion error: ', distortionErr histoPlot(performancePred, performanceTest) histoPlot(distortionPred, distortionTest) def SVR(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest): clf = svm.SVR(C=100, epsilon=0.001) clf.fit(ATrain, performanceTrain) performancePred = clf.predict(ATest) performanceErr = sum(abs(performancePred - performanceTest)) / len(performanceTest) print 'SVR performance error: ', performanceErr clf.fit(ATrain, distortionTrain) distortionPred = clf.predict(ATest) distortionErr = sum(abs(distortionPred - distortionTest)) / len(distortionTest) print 'SVR distortion error: ', distortionErr histoPlot(performancePred, performanceTest) histoPlot(distortionPred, distortionTest) def ridgeRegression(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest): model = KernelRidge(alpha=0.01, kernel='sigmoid') model.fit(ATrain, performanceTrain) performancePred = model.predict(ATest) performanceErr = sum(abs(performancePred - performanceTest)) / len(performanceTest) print 'Kernel ridge performance error: ', performanceErr model.fit(ATrain, distortionTrain) distortionPred = model.predict(ATest) distortionErr = sum(abs(distortionPred - distortionTest)) / len(distortionTest) print 'Kernel ridge distortion error: ', distortionErr histoPlot(performancePred, performanceTest) histoPlot(distortionPred, distortionTest) def robustRegression(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest): model_ransac = linear_model.RANSACRegressor(linear_model.LinearRegression()) model_ransac.fit(ATrain, performanceTrain) model_ransac.predict(ATest) temp = model_ransac.predict(ATest) performancePred = [] for data in temp: performancePred.append(data[0]) model_ransac.fit(ATrain, distortionTrain) model_ransac.predict(ATest) temp = model_ransac.predict(ATest) distortionPred = [] for data in temp: distortionPred.append(data[0]) histoPlot(performancePred, performanceTest) histoPlot(distortionPred, distortionTest) def histoPlot(pred, actual): x = np.arange(len(actual)) plt.hold(True) rects1 = plt.bar(x, pred, 0.2, color='r') x = x + 0.2 rects2 = plt.bar(x, actual, 0.2) plt.legend((rects1[0], rects2[0]), ('Prediction', 'Actual'), fontsize=20) plt.xlabel('Data Point', fontsize=30) plt.ylabel('Value', fontsize=30) performanceErr = sum(abs(pred - actual)) / len(actual) print 'Error: ', performanceErr plt.title('Mean error: ' + ('%.3f' % performanceErr), fontsize=30) plt.hold(False) plt.show() def main(): dataPath = sys.argv[1] ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest = readFile(dataPath) linearRegression(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest) SVR(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest) ridgeRegression(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest) robustRegression(ATrain, performanceTrain, distortionTrain, ATest, performanceTest, distortionTest) if __name__ == '__main__': main()
mit
Batch21/pywr
docs/source/conf.py
2
9485
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Pywr documentation build configuration file, created by # sphinx-quickstart on Mon Jun 8 20:10:37 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex import alabaster # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'matplotlib.sphinxext.plot_directive', 'alabaster', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Pywr' copyright = '2015, Joshua Arnott' author = 'Joshua Arnott' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'github_user': 'pywr', 'github_repo': 'pywr', } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [alabaster.get_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': [ 'about.html', 'navigation.html', 'relations.html', 'searchbox.html', 'donate.html', ] } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'Pywrdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Pywr.tex', 'Pywr Documentation', 'Joshua Arnott', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pywr', 'Pywr Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Pywr', 'Pywr Documentation', author, 'Pywr', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
gpl-3.0
eyurtsev/FlowCytometryTools
FlowCytometryTools/core/docstring.py
1
2522
from __future__ import print_function import string from matplotlib import inspect class FormatDict(dict): """Adapted from http://stackoverflow.com/questions/11283961/partial-string-formatting""" def __missing__(self, key): return "{" + key + "}" class DocReplacer(object): """Decorator object for replacing patterns in docstrings using string.format.""" def __init__(self, auto_dedent=True, allow_partial_formatting=False, **doc_dict): ''' Parameters ------------- auto_indent : bool Flag for automatically indenting the replaced lines to the level of the docstring. allow_partial_formatting : bool Emnables partial formatting (i.e., not all keys are available in the dictionary) doc_dict : kwargs Pattern in docstring that a key in this dict will be replaced by the corresponding values. Example ------------- TODO: Update this documentation @DocReplacer({'p1': 'p1 : int\n\tFirst parameter'}) def foo(p1): """ Some functions. Params: {p1} """ will result in foo's docstring being: """ Some functions. Params: p1 : int First parameter """ ''' self.doc_dict = doc_dict self.auto_dedent = auto_dedent self.allow_partial_formatting = allow_partial_formatting def __call__(self, func): if func.__doc__: doc = func.__doc__ if self.auto_dedent: doc = inspect.cleandoc(doc) func.__doc__ = self._format(doc) return func def replace(self): """Reformat values inside the self.doc_dict using self.doc_dict TODO: Make support for partial_formatting """ doc_dict = self.doc_dict.copy() for k, v in doc_dict.items(): if '{' and '}' in v: self.doc_dict[k] = v.format(**doc_dict) def update(self, *args, **kwargs): "Assume self.params is a dict and update it with supplied args" self.doc_dict.update(*args, **kwargs) def _format(self, doc): """ Formats the docstring using self.doc_dict """ if self.allow_partial_formatting: mapping = FormatDict(self.doc_dict) else: mapping = self.doc_dict formatter = string.Formatter() return formatter.vformat(doc, (), mapping)
mit
imanolarrieta/RL
rlpy/Domains/HelicopterHover.py
4
16981
"""Helicopter hovering task.""" from .Domain import Domain import numpy as np import rlpy.Tools.transformations as trans from rlpy.Tools.GeneralTools import cartesian import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch, Circle, Ellipse from mpl_toolkits.mplot3d import proj3d __copyright__ = "Copyright 2013, RLPy http://acl.mit.edu/RLPy" __credits__ = ["Alborz Geramifard", "Robert H. Klein", "Christoph Dann", "William Dabney", "Jonathan P. How"] __license__ = "BSD 3-Clause" __author__ = "Christoph Dann <[email protected]>" class Arrow3D(FancyArrowPatch): """ Helper class for plotting arrows in 3d """ def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) FancyArrowPatch.draw(self, renderer) class HelicopterHoverExtended(Domain): """ Implementation of a simulator that models one of the Stanford autonomous helicopters (an XCell Tempest helicopter) in the flight regime close to hover. Adapted from the `RL-Community Java Implementation <http://library.rl-community.org/wiki/Helicopter_(Java)>`_ **STATE:** The state of the helicopter is described by a 20-dimensional vector with the following entries: * 0: xerr [helicopter x-coord position - desired x-coord position] -- helicopter's x-axis points forward * 1: yerr [helicopter y-coord position - desired y-coord position] -- helicopter's y-axis points to the right * 2: zerr [helicopter z-coord position - desired z-coord position] -- helicopter's z-axis points down * 3: u [forward velocity] * 4: v [sideways velocity (to the right)] * 5: w [downward velocity] * 6: p [angular rate around helicopter's x axis] * 7: q [angular rate around helicopter's y axis] * 8: r [angular rate around helicopter's z axis] * 9-12: orientation of heli in world as quaterion * 13-18: current noise due to gusts (usually not observable!) * 19: t number of timesteps in current episode **REFERENCE:** .. seealso:: Abbeel, P., Ganapathi, V. & Ng, A. Learning vehicular dynamics, with application to modeling helicopters. Advances in Neural Information Systems (2006). """ MAX_POS = 20. #: [m] maximum deviation in position in each dimension MAX_VEL = 10. #: [m/s] maximum velocity in each dimension MAX_ANG_RATE = 4 * np.pi # : maximum angular velocity MAX_ANG = 1. WIND_MAX = 5. # : maximum gust indensity MIN_QW_BEFORE_HITTING_TERMINAL_STATE = np.cos(30. / 2. * np.pi / 180.) wind = np.array([.0, .0, 0.]) #: wind in neutral orientation discount_factor = 0.95 #: discount factor gust_memory = 0.8 domain_fig = None episodeCap = 6000 # model specific parameters from the learned model noise_std = np.array([0.1941, 0.2975, 0.6058, 0.1508, 0.2492, 0.0734]) drag_vel_body = np.array([.18, .43, .49]) drag_ang_rate = np.array([12.78, 10.12, 8.16]) u_coeffs = np.array([33.04, -33.32, 70.54, -42.15]) tail_rotor_side_thrust = -0.54 dt = 0.01 #: length of one timestep continuous_dims = np.arange(20) statespace_limits_full = np.array([[-MAX_POS, MAX_POS]] * 3 + [[-MAX_VEL, MAX_VEL]] * 3 + [[-MAX_ANG_RATE, MAX_ANG_RATE]] * 3 + [[-MAX_ANG, MAX_ANG]] * 4 + [[-2., 2.]] * 6 + [[0, episodeCap]]) statespace_limits = statespace_limits_full # create all combinations of possible actions _action_bounds = np.array([[-2., 2.]] * 4) # maximum action: 2 _actions_dim = np.array( [[-.2, -0.05, 0.05, 0.2]] * 3 + [[0., 0.15, 0.3, 0.5]]) actions = cartesian(list(_actions_dim)) #: all possible actions actions_num = np.prod(actions.shape[0]) def __init__(self, noise_level=1., discount_factor=0.95): self.noise_level = noise_level self.discount_factor = discount_factor super(HelicopterHoverExtended, self).__init__() def s0(self): self.state = np.zeros((20)) self.state[9] = 1. return self.state.copy(), self.isTerminal(), self.possibleActions() def isTerminal(self): s = self.state if np.any(self.statespace_limits_full[:9, 0] > s[:9]) or np.any(self.statespace_limits_full[:9, 1] < s[:9]): return True if len(s) <= 12: w = np.sqrt(1. - np.sum(s[9:12] ** 2)) else: w = s[9] return np.abs(w) < self.MIN_QW_BEFORE_HITTING_TERMINAL_STATE def _get_reward(self): s = self.state if self.isTerminal(): r = -np.sum(self.statespace_limits[:9, 1] ** 2) #r -= np.sum(self.statespace_limits[10:12, 1] ** 2) r -= (1. - self.MIN_QW_BEFORE_HITTING_TERMINAL_STATE ** 2) return r * (self.episodeCap - s[-1]) else: return -np.sum(s[:9] ** 2) - np.sum(s[10:12] ** 2) def possibleActions(self, s=None): return np.arange(self.actions_num) def step(self, a): a = self.actions[a] # make sure the actions are not beyond their limits a = np.maximum(self._action_bounds[:, 0], np.minimum(a, self._action_bounds[:, 1])) pos, vel, ang_rate, ori_bases, q = self._state_in_world(self.state) t = self.state[-1] gust_noise = self.state[13:19] gust_noise = (self.gust_memory * gust_noise + (1. - self.gust_memory) * self.random_state.randn(6) * self.noise_level * self.noise_std) # update noise which simulates gusts for i in range(10): # Euler integration # position pos += self.dt * vel # compute acceleration on the helicopter vel_body = self._in_world_coord(vel, q) wind_body = self._in_world_coord(self.wind, q) wind_body[-1] = 0. # the java implementation # has it this way acc_body = -self.drag_vel_body * (vel_body + wind_body) acc_body[-1] += self.u_coeffs[-1] * a[-1] acc_body[1] += self.tail_rotor_side_thrust acc_body += gust_noise[:3] acc = self._in_body_coord(acc_body, q) acc[-1] += 9.81 # gravity # velocity vel += self.dt * acc # orientation tmp = self.dt * ang_rate qdt = trans.quaternion_about_axis(np.linalg.norm(tmp), tmp) q = trans.quaternion_multiply(q, qdt) #assert np.allclose(1., np.sum(q**2)) # angular accelerations ang_acc = -ang_rate * self.drag_ang_rate + \ self.u_coeffs[:3] * a[:3] ang_acc += gust_noise[3:] ang_rate += self.dt * ang_acc st = np.zeros_like(self.state) st[:3] = -self._in_body_coord(pos, q) st[3:6] = self._in_body_coord(vel, q) st[6:9] = ang_rate st[9:13] = q st[13:19] = gust_noise st[-1] = t + 1 self.state = st.copy() return ( self._get_reward(), st, self.isTerminal(), self.possibleActions() ) def _state_in_world(self, s): """ transforms state from body coordinates in world coordinates .. warning:: angular rate still in body frame! """ pos_body = s[:3] vel_body = s[3:6] ang_rate = s[6:9].copy() q = s[9:13].copy() pos = self._in_world_coord(-pos_body, q) vel = self._in_world_coord(vel_body, q) rot = trans.quaternion_matrix(trans.quaternion_conjugate(q))[:3, :3] return pos, vel, ang_rate, rot, q def _in_body_coord(self, p, q): """ q is the inverse quaternion of the rotation of the helicopter in world coordinates """ q_pos = np.zeros((4)) q_pos[1:] = p q_p = trans.quaternion_multiply(trans.quaternion_multiply(q, q_pos), trans.quaternion_conjugate(q)) return q_p[1:] def _in_world_coord(self, p, q): """ q is the inverse quaternion of the rotation of the helicopter in world coordinates """ return self._in_body_coord(p, trans.quaternion_conjugate(q)) def showDomain(self, a=None): s = self.state if a is not None: a = self.actions[a].copy() * 3 # amplify for visualization pos, vel, ang_rate, ori_bases, _ = self._state_in_world(s) coords = np.zeros((3, 3, 2)) + pos[None, :, None] coords[:, :, 1] += ori_bases * 4 u, v = np.mgrid[0:2 * np.pi:10j, 0:2:1.] # rotor coordinates coord = np.zeros([3] + list(u.shape)) coord[0] = .1 * np.sin(u) * v coord[1] = 0. coord[2] = .1 * np.cos(u) * v coord[0] -= 0.8 coord_side = np.einsum("ij,jkl->ikl", np.linalg.pinv(ori_bases), coord) coord_side += pos[:, None, None] coord = np.zeros([3] + list(u.shape)) coord[0] = .6 * np.cos(u) * v coord[1] = .6 * np.sin(u) * v coord[2] = -.4 coord_main = np.einsum("ij,jkl->ikl", np.linalg.pinv(ori_bases), coord) coord_main += pos[:, None, None] style = dict(fc="r", ec="r", lw=2., head_width=0.05, head_length=0.1) if self.domain_fig is None: self.domain_fig = plt.figure(figsize=(12, 8)) # action axes ax1 = plt.subplot2grid((1, 3), (0, 0), frameon=False) ax1.get_xaxis().set_visible(False) ax1.get_yaxis().set_visible(False) lim = 2 # self.MAX_POS ax1.set_xlim(-lim, lim) ax1.set_ylim(-lim, lim) if a is None: a = np.zeros((4)) # main rotor ax1.add_artist(Circle(np.zeros((2)), radius=0.6)) ax1.add_artist(Ellipse(np.array([0, 1.5]), height=0.3, width=0.02)) # TODO make sure the actions are plotted right # main rotor direction? arr1 = ax1.arrow(0, 0, a[0], 0, **style) arr2 = ax1.arrow(0, 0, 0, a[1], **style) # side rotor throttle? arr3 = ax1.arrow(0, 1.5, a[2], 0, **style) # main rotor throttle arr4 = ax1.arrow(1.5, 0, 0, a[3], **style) ax1.set_aspect("equal") self.action_arrows = (arr1, arr2, arr3, arr4) self.action_ax = ax1 #ax = self.domain_fig.gca(projection='3d') ax = plt.subplot2grid((1, 3), (0, 1), colspan=2, projection='3d') ax.view_init(elev=np.pi) # print origin x = Arrow3D([0, 2], [0, 0], [0, 0], mutation_scale=30, lw=1, arrowstyle="-|>", color="r") y = Arrow3D([0, 0], [0, 2], [0, 0], mutation_scale=30, lw=1, arrowstyle="-|>", color="b") z = Arrow3D([0, 0], [0, 0], [0, 2], mutation_scale=30, lw=1, arrowstyle="-|>", color="g") ax.add_artist(x) ax.add_artist(y) ax.add_artist(z) # print helicopter coordinate axes x = Arrow3D(*coords[0], mutation_scale=30, lw=2, arrowstyle="-|>", color="r") y = Arrow3D(*coords[1], mutation_scale=30, lw=2, arrowstyle="-|>", color="b") z = Arrow3D(*coords[2], mutation_scale=30, lw=2, arrowstyle="-|>", color="g") ax.add_artist(x) ax.add_artist(y) ax.add_artist(z) self.heli_arrows = (x, y, z) self._wframe_main = ax.plot_wireframe(coord_main[0], coord_main[1], coord_main[2], color="k") self._wframe_side = ax.plot_wireframe(coord_side[0], coord_side[1], coord_side[2], color="k") self._ax = ax ax.set_aspect("equal") lim = 5 # self.MAX_POS ax.set_xlim(-lim, lim) ax.set_ylim(-lim, lim) ax.set_zlim(-lim, lim) ax.view_init(elev=-135) plt.show() else: self.heli_arrows[0]._verts3d = tuple(coords[0]) self.heli_arrows[1]._verts3d = tuple(coords[1]) self.heli_arrows[2]._verts3d = tuple(coords[2]) ax = self._ax ax.collections.remove(self._wframe_main) ax.collections.remove(self._wframe_side) for arr in self.action_arrows: self.action_ax.artists.remove(arr) ax1 = self.action_ax # TODO make sure the actions are plotted right # main rotor direction? arr1 = ax1.arrow(0, 0, a[0], 0, **style) arr2 = ax1.arrow(0, 0, 0, a[1], **style) # side rotor throttle? arr3 = ax1.arrow(0, 1.5, a[2], 0, **style) # main rotor throttle arr4 = ax1.arrow(1.5, 0, 0, a[3], **style) self.action_arrows = (arr1, arr2, arr3, arr4) self._wframe_main = ax.plot_wireframe(coord_main[0], coord_main[1], coord_main[2], color="k") self._wframe_side = ax.plot_wireframe(coord_side[0], coord_side[1], coord_side[2], color="k") ax.set_aspect("equal") lim = 5 # self.MAX_POS ax.set_xlim(-lim, lim) ax.set_ylim(-lim, lim) ax.set_zlim(-lim, lim) ax.view_init(elev=-135) self.domain_fig.canvas.draw() class HelicopterHover(HelicopterHoverExtended): """ .. warning:: This domain has an internal hidden state, as it actually is a POMDP. Besides the 12-dimensional observable state, there is an internal state saved as ``self.hidden_state_`` (time and long-term noise which simulated gusts of wind). be aware of this state if you use this class to produce samples which are not in order Implementation of a simulator that models one of the Stanford autonomous helicopters (an XCell Tempest helicopter) in the flight regime close to hover. Adapted from the `RL-Community Java Implementation <http://library.rl-community.org/wiki/Helicopter_(Java)>`_ **STATE:** The state of the helicopter is described by a 12-dimensional vector with the following entries: * 0: xerr [helicopter x-coord position - desired x-coord position] -- helicopter's x-axis points forward * 1: yerr [helicopter y-coord position - desired y-coord position] -- helicopter's y-axis points to the right * 2: zerr [helicopter z-coord position - desired z-coord position] -- helicopter's z-axis points down * 3: u [forward velocity] * 4: v [sideways velocity (to the right)] * 5: w [downward velocity] * 6: p [angular rate around helicopter's x axis] * 7: q [angular rate around helicopter's y axis] * 8: r [angular rate around helicopter's z axis] * 9-11: orientation of the world in the heli system as quaterion **REFERENCE:** .. seealso:: Abbeel, P., Ganapathi, V. & Ng, A. Learning vehicular dynamics, with application to modeling helicopters. Advances in Neural Information Systems (2006). """ episodeCap = 6000 MAX_POS = 20. # m MAX_VEL = 10. # m/s MAX_ANG_RATE = 4 * np.pi MAX_ANG = 1. WIND_MAX = 5. continuous_dims = np.arange(12) statespace_limits = np.array([[-MAX_POS, MAX_POS]] * 3 + [[-MAX_VEL, MAX_VEL]] * 3 + [[-MAX_ANG_RATE, MAX_ANG_RATE]] * 3 + [[-MAX_ANG, MAX_ANG]] * 3) #full_state_ = np.zeros((20)) def s0(self): #self.hidden_state_ = np.zeros((8)) #self.hidden_state_[0] = 1. s_full, term, p_actions = super(HelicopterHover, self).s0() s, _ = self._split_state(s_full) return s, term, p_actions def _split_state(self, s): s_observable = np.zeros((12)) s_observable[:9] = s[:9] s_observable[9:12] = s[10:13] s_hidden = np.zeros((8)) s_hidden[0] = s[9] s_hidden[1:] = s[13:] return s_observable, s_hidden def step(self, a): #s_extended = self._augment_state(s) r, st, term, p_actions = super(HelicopterHover, self).step(a) st, _ = self._split_state(st) return (r, st, term, p_actions)
bsd-3-clause
kgullikson88/GSSP_Analyzer
gsspy/fitting.py
1
19991
from __future__ import print_function, division, absolute_import import numpy as np import matplotlib.pyplot as plt import os import sys import subprocess from astropy.io import fits from astropy import time import DataStructures from ._utils import combine_orders, read_grid_points, ensure_dir from .analyzer import GSSP_Analyzer import logging import glob home = os.environ['HOME'] GSSP_EXE = '{}/Applications/GSSP/GSSP_single/GSSP_single'.format(home) GSSP_ABUNDANCE_TABLES = '{}/Applications/GSSPAbundance_Tables/'.format(home) GSSP_MODELS = '/media/ExtraSpace/GSSP_Libraries/LLmodels/' class GSSP_Fitter(object): teff_minstep = 100 logg_minstep = 0.1 feh_minstep = 0.1 vsini_minstep = 10 vmicro_minstep = 0.1 def __init__(self, filename, gssp_exe=None, abund_tab=None, models_dir=None): """ A python wrapper to the GSSP code (must already be installed) Parameters: =========== filename: string The filename of the (flattened) fits spectrum to fit. gssp_exe: string (optional) The full path to the gssp executable file abund_tab: string (optional) The full path to the directory containing GSSP abundance tables. models_dir: string: The full path to the directory containing GSSP atmosphere models. Methods: ========== fit: Fit the parameters """ if gssp_exe is None: gssp_exe = GSSP_EXE if abund_tab is None: abund_tab = GSSP_ABUNDANCE_TABLES if models_dir is None: models_dir = GSSP_MODELS # Read in the file and combine the orders orders = self._read_fits_file(filename) combined = combine_orders(orders) #TODO: Cross-correlate the data to get it close. GSSP might have trouble with huge RVs... # Get the object name/date header = fits.getheader(filename) star = header['OBJECT'] date = header['DATE-OBS'] try: jd = time.Time(date, format='isot', scale='utc').jd except TypeError: jd = time.Time('{}T{}'.format(date, header['UT']), format='isot', scale='utc').jd # Save the data to an ascii file output_basename = '{}-{}'.format(star.replace(' ', ''), jd) np.savetxt('data_sets/{}.txt'.format(output_basename), np.transpose((combined.x, combined.y)), fmt='%.10f') # Save some instance variables self.data = combined self.jd = jd self.starname = star self.output_basename = output_basename self.gssp_exe = os.path.abspath(gssp_exe) self.abundance_table = abund_tab self.model_dir = models_dir self.gssp_gridpoints = read_grid_points(models_dir) def _run_gssp(self, teff_lims=(7000, 30000), teff_step=1000, logg_lims=(3.0, 4.5), logg_step=0.5, feh_lims=(-0.5, 0.5), feh_step=0.5, vsini_lims=(50, 350), vsini_step=50, vmicro_lims=(1, 5), vmicro_step=1, R=80000, ncores=1): """ Coarsely fit the parameters Teff, log(g), and [Fe/H]. """ # First, make sure the inputs are reasonable. teff_step = max(teff_step, self.teff_minstep) logg_step = max(logg_step, self.logg_minstep) feh_step = max(feh_step, self.feh_minstep) vsini_step = max(vsini_step, self.vsini_minstep) vmicro_step = max(vmicro_step, self.vmicro_minstep) teff_lims = (min(teff_lims), max(teff_lims)) logg_lims = (min(logg_lims), max(logg_lims)) feh_lims = (min(feh_lims), max(feh_lims)) vsini_lims = (min(vsini_lims), max(vsini_lims)) vmicro_lims = (min(vmicro_lims), max(vmicro_lims)) teff_lims, logg_lims, feh_lims = self._check_grid_limits(teff_lims, logg_lims, feh_lims) # Make the input file for GSSP inp_file=self._make_input_file(teff_lims=teff_lims, teff_step=teff_step, logg_lims=logg_lims, logg_step=logg_step, feh_lims=feh_lims, feh_step=feh_step, vsini_lims=vsini_lims, vsini_step=vsini_step, vmicro_lims=vmicro_lims, vmicro_step=vmicro_step, resolution=R) # Run GSSP subprocess.check_call(['mpirun', '-n', '{}'.format(ncores), '{}'.format(self.gssp_exe), '{}'.format(inp_file)]) # Move the output directory to a new name that won't be overridden output_dir = '{}_output'.format(self.output_basename) ensure_dir(output_dir) for f in glob.glob('output_files/*'): subprocess.check_call(['mv', f, '{}/'.format(output_dir)]) return def fit(self, teff_lims=(7000, 30000), teff_step=1000, logg_lims=(3.0, 4.5), logg_step=0.5, feh_lims=(-0.5, 0.5), feh_step=0.5, vsini_lims=(50, 350), vsini_step=50, vmicro_lims=(1, 5), vmicro_step=1, R=80000, ncores=1, refine=True): """ Fit the stellar parameters with GSSP Parameters: ============= par_lims: iterable with (at least) two objects The limits on the given parameter. 'par' can be one of: 1. teff: The effective temperature 2. logg: The surface gravity 3. feh: The metallicity [Fe/H] 4. vsini: The rotational velocity 5. vmicro: The microturbulent velocity The default values are a very large, very course grid. Consider refining based on spectral type first! par_step: float The initial step size to take in the given parameter. 'par' can be from the same list as above. R: float The spectrograph resolving power (lambda/delta-lambda) ncores: integer, default=1 The number of cores to use in the GSSP run. refine: boolean Should we run GSSP again with a smaller grid after the initial fit? If yes, the best answers will probably be better. Returns: ========= A pd.Series object with the best parameters """ # Run GSSP self._run_gssp(teff_lims=teff_lims, teff_step=teff_step, logg_lims=logg_lims, logg_step=logg_step, feh_lims=feh_lims, feh_step=feh_step, vsini_lims=vsini_lims, vsini_step=vsini_step, vmicro_lims=vmicro_lims, vmicro_step=vmicro_step, R=R, ncores=ncores) # Look at the output and save the figures output_dir = '{}_output'.format(self.output_basename) best_pars, figs = GSSP_Analyzer(output_dir).estimate_best_parameters() for par in figs.keys(): fig = figs[par] fig.savefig(os.path.join(output_dir, '{}_course.pdf'.format(par))) plt.close('all') if not refine: return best_pars # If we get here, we should restrict the grid near the # best solution and fit again teff_lims = self._get_refined_limits(lower=best_pars['1sig_CI_lower_Teff'], upper=best_pars['1sig_CI_upper_Teff'], values=self.gssp_gridpoints.teff) logg_lims = self._get_refined_limits(lower=best_pars['1sig_CI_lower_logg'], upper=best_pars['1sig_CI_upper_logg'], values=self.gssp_gridpoints.logg) feh_lims = self._get_refined_limits(lower=best_pars['1sig_CI_lower_feh'], upper=best_pars['1sig_CI_upper_feh'], values=self.gssp_gridpoints.feh) vsini_lower = best_pars.best_vsini*(1-1.5) + 1.5*best_pars['1sig_CI_lower_vsini'] vsini_upper = best_pars.best_vsini*(1-1.5) + 1.5*best_pars['1sig_CI_upper_vsini'] vsini_lims = (max(10, vsini_lower), min(400, vsini_upper)) vsini_step = max(self.vsini_minstep, (vsini_lims[1] - vsini_lims[0])/10) vmicro_lims = (best_pars.micro_turb, best_pars.micro_turb) # Rename the files in the output directory so they don't get overwritten file_list = ['CCF.dat', 'Chi2_table.dat', 'Observed_spectrum.dat', 'Synthetic_best_fit.rgs'] ensure_dir(os.path.join(output_dir, 'course_output', '')) for f in file_list: original_fname = os.path.join(output_dir, f) new_fname = os.path.join(output_dir, 'course_output', f) subprocess.check_call(['mv', original_fname, new_fname]) # Run GSSP on the refined grid self._run_gssp(teff_lims=teff_lims, teff_step=self.teff_minstep, logg_lims=logg_lims, logg_step=self.logg_minstep, feh_lims=feh_lims, feh_step=self.feh_minstep, vsini_lims=vsini_lims, vsini_step=round(vsini_step), vmicro_lims=vmicro_lims, vmicro_step=vmicro_step, R=R, ncores=ncores) best_pars, figs = GSSP_Analyzer(output_dir).estimate_best_parameters() for par in figs.keys(): fig = figs[par] fig.savefig(os.path.join(output_dir, '{}_fine.pdf'.format(par))) fig.close() return best_pars def _check_grid_limits_old(self, teff_lims, logg_lims, feh_lims): df = self.gssp_gridpoints[['teff', 'logg', 'feh']].drop_duplicates() # First, check if the limits are do-able lower = df.loc[(df.teff <= teff_lims[0]) & (df.logg <= logg_lims[0]) & (df.feh <= feh_lims[0])] upper = df.loc[(df.teff >= teff_lims[1]) & (df.logg >= logg_lims[1]) & (df.feh >= feh_lims[1])] if len(upper) >= 1 and len(lower) >= 1: return teff_lims, logg_lims, feh_lims # If we get here, there is a problem... # Check temperature first: if not (len(df.loc[df.teff <= teff_lims[0]]) >= 1 and len(df.loc[df.teff >= teff_lims[1]]) >= 1): # Temperature grid is no good. low_teff, high_teff = df.teff.min(), df.teff.max() print('The temperature grid is not available in the model library!') print('You wanted temperatures from {} - {}'.format(*teff_lims)) print('The model grid extends from {} - {}'.format(low_teff, high_teff)) new_teff_lims = (max(low_teff, teff_lims[0]), min(high_teff, teff_lims[1])) print('Resetting temperature limits to {} - {}'.format(*new_teff_lims)) return self._check_grid_limits(new_teff_lims, logg_lims, feh_lims) # Check log(g) next: teff_df = df.loc[(df.teff >= teff_lims[0]) & (df.teff <= teff_lims[1])] if not (len(teff_df.loc[df.logg <= logg_lims[0]]) >= 1 and len(teff_df.loc[df.logg >= logg_lims[1]]) >= 1): # Temperature grid is no good. low_logg, high_logg = df.logg.min(), df.logg.max() print('The log(g) grid is not available in the model library!') print('You wanted log(g) from {} - {}'.format(*logg_lims)) print('The model grid extends from {} - {}'.format(low_logg, high_logg)) new_logg_lims = (max(low_logg, logg_lims[0]), min(high_logg, logg_lims[1])) print('Resetting log(g) limits to {} - {}'.format(*new_logg_lims)) return self._check_grid_limits(teff_lims, new_logg_lims, feh_lims) # Finally, check [Fe/H]: subset_df = df.loc[(df.teff >= teff_lims[0]) & (df.teff <= teff_lims[1]) * (df.logg >= logg_lims[0]) & (df.logg <= logg_lims[1])] if not (len(subset_df.loc[df.feh <= feh_lims[0]]) >= 1 and len(subset_df.loc[df.feh >= feh_lims[1]]) >= 1): # Temperature grid is no good. low_feh, high_feh = df.feh.min(), df.feh.max() print('The [Fe/H] grid is not available in the model library!') print('You wanted [Fe/H] from {} - {}'.format(*feh_lims)) print('The model grid extends from {} - {}'.format(low_feh, high_feh)) new_feh_lims = (max(low_feh, feh_lims[0]), min(high_feh, feh_lims[1])) print('Resetting [Fe/H] limits to {} - {}'.format(*new_feh_lims)) return self._check_grid_limits(teff_lims, logg_lims, new_feh_lims) # We should never get here raise ValueError('Something weird happened while checking limits!') def _check_grid_limits(self, teff_lims, logg_lims, feh_lims): df = self.gssp_gridpoints[['teff', 'logg', 'feh']].drop_duplicates() # First, check if the limits are do-able as is lower = df.loc[(df.teff == teff_lims[0]) & (df.feh == feh_lims[0])] upper = df.loc[(df.teff == teff_lims[1]) & (df.feh == feh_lims[1])] if (lower.logg.min() <= logg_lims[0] and lower.logg.max() >= logg_lims[1] and upper.logg.min() <= logg_lims[0] and upper.logg.max() >= logg_lims[1]): return teff_lims, logg_lims, feh_lims # If we get here, there is a problem... # Check temperature first: low_teff, high_teff = df.teff.min(), df.teff.max() if low_teff > teff_lims[0] or high_teff < teff_lims[1]: print('The temperature grid is not available in the model library!') print('You wanted temperatures from {} - {}'.format(*teff_lims)) print('The model grid extends from {} - {}'.format(low_teff, high_teff)) new_teff_lims = (max(low_teff, teff_lims[0]), min(high_teff, teff_lims[1])) print('Resetting temperature limits to {} - {}'.format(*new_teff_lims)) return self._check_grid_limits(new_teff_lims, logg_lims, feh_lims) # Check [Fe/H] next subset_df = df.loc[(df.teff >= teff_lims[0]) & (df.teff <= teff_lims[1])] low_feh, high_feh = subset_df.feh.min(), subset_df.feh.max() if low_feh > feh_lims[0] or high_feh < feh_lims[1]: print('The [Fe/H] grid is not available in the model library!') print('You wanted [Fe/H] from {} - {}'.format(*feh_lims)) print('The model grid extends from {} - {}'.format(low_feh, high_feh)) new_feh_lims = (max(low_feh, feh_lims[0]), min(high_feh, feh_lims[1])) print('Resetting [Fe/H] limits to {} - {}'.format(*new_feh_lims)) return self._check_grid_limits(teff_lims, logg_lims, new_feh_lims) # Finally, check log(g) subset_df = subset_df.loc[(subset_df.feh >= feh_lims[0]) & (subset_df.feh <= feh_lims[1])] low_logg, high_logg = subset_df.logg.min(), subset_df.logg.max() if low_logg > logg_lims[0] or high_logg < logg_lims[1]: print('The log(g) grid is not available in the model library!') print('You wanted log(g) from {} - {}'.format(*logg_lims)) print('The model grid extends from {} - {}'.format(low_logg, high_logg)) new_logg_lims = (max(low_logg, logg_lims[0]), min(high_logg, logg_lims[1])) print('Resetting log(g) limits to {} - {}'.format(*new_logg_lims)) return self._check_grid_limits(teff_lims, new_logg_lims, feh_lims) # We should never get here raise ValueError('Something weird happened while checking limits!') def _get_refined_limits(self, lower, upper, values): """ Get the items in the 'values' array that are just less than lower and just more than upper. """ unique_values = sorted(np.unique(values)) l_idx = np.searchsorted(unique_values, lower, side='left') r_idx = np.searchsorted(unique_values, upper, side='right') if l_idx > 0: l_idx -= 1 if r_idx < len(unique_values) - 1: r_idx += 1 return unique_values[l_idx], unique_values[r_idx] def _read_fits_file(self, fname): orders = [] hdulist = fits.open(fname) for i, hdu in enumerate(hdulist[1:]): xypt = DataStructures.xypoint(x=hdu.data['wavelength'], y=hdu.data['flux'], cont=hdu.data['continuum'], err=hdu.data['error']) xypt.x *= 10 #Convert from nanometers to angstrom orders.append(xypt) return orders def _make_input_file(self, teff_lims, teff_step, logg_lims, logg_step, feh_lims, feh_step, vsini_lims, vsini_step, vmicro_lims, vmicro_step, resolution): """ Make the input file for the given star """ output_string = '{:.1f} {:.0f} {:.1f}\n'.format(teff_lims[0], teff_step, teff_lims[-1]) output_string += '{:.1f} {:.1f} {:.1f}\n'.format(logg_lims[0], logg_step, logg_lims[1]) output_string += '{:.1f} {:.1f} {:.1f}\n'.format(vmicro_lims[0], vmicro_step, vmicro_lims[1]) output_string += '{:.1f} {:.1f} {:.1f}\n'.format(vsini_lims[0], vsini_step, vsini_lims[1]) output_string += "skip 0.03 0.02 0.07 !dilution factor\n" output_string += 'skip {:.1f} {:.1f} {:.1f}\n'.format(feh_lims[0], feh_step, feh_lims[1]) output_string += 'He 0.04 0.005 0.06 ! Individual abundance\n' output_string += '0.0 {:.0f}\n'.format(resolution) output_string += '{}\n{}\n'.format(self.abundance_table, self.model_dir) output_string += '2 1 !atmosphere model vmicro and mass\n' output_string += 'ST ! model atmosphere chemical composition flag\n' dx = self.data.x[1] - self.data.x[0] output_string += '1 {:.5f} fit\n'.format(dx) output_string += 'data_sets/{}.txt\n'.format(self.output_basename) output_string += '0.5 0.99 0.0 adjust ! RV determination stuff\n' xmin, xmax = self.data.x[0]-1, self.data.x[-1]+1 output_string += '{:.1f} {:.1f}\n'.format(xmin, xmax) outfilename = '{}.inp'.format(self.output_basename) with open(outfilename, 'w') as outfile: outfile.write(output_string) return outfilename
mit
webmasterraj/GaSiProMo
flask/lib/python2.7/site-packages/pandas/computation/eval.py
14
8348
#!/usr/bin/env python """Top level ``eval`` module. """ import tokenize from pandas.core import common as com from pandas.computation.expr import Expr, _parsers, tokenize_string from pandas.computation.scope import _ensure_scope from pandas.compat import DeepChainMap, builtins from pandas.computation.engines import _engines from distutils.version import LooseVersion def _check_engine(engine): """Make sure a valid engine is passed. Parameters ---------- engine : str Raises ------ KeyError * If an invalid engine is passed ImportError * If numexpr was requested but doesn't exist """ if engine not in _engines: raise KeyError('Invalid engine {0!r} passed, valid engines are' ' {1}'.format(engine, list(_engines.keys()))) # TODO: validate this in a more general way (thinking of future engines # that won't necessarily be import-able) # Could potentially be done on engine instantiation if engine == 'numexpr': try: import numexpr except ImportError: raise ImportError("'numexpr' not found. Cannot use " "engine='numexpr' for query/eval " "if 'numexpr' is not installed") else: ne_version = numexpr.__version__ if ne_version < LooseVersion('2.1'): raise ImportError("'numexpr' version is %s, " "must be >= 2.1" % ne_version) def _check_parser(parser): """Make sure a valid parser is passed. Parameters ---------- parser : str Raises ------ KeyError * If an invalid parser is passed """ if parser not in _parsers: raise KeyError('Invalid parser {0!r} passed, valid parsers are' ' {1}'.format(parser, _parsers.keys())) def _check_resolvers(resolvers): if resolvers is not None: for resolver in resolvers: if not hasattr(resolver, '__getitem__'): name = type(resolver).__name__ raise TypeError('Resolver of type %r does not implement ' 'the __getitem__ method' % name) def _check_expression(expr): """Make sure an expression is not an empty string Parameters ---------- expr : object An object that can be converted to a string Raises ------ ValueError * If expr is an empty string """ if not expr: raise ValueError("expr cannot be an empty string") def _convert_expression(expr): """Convert an object to an expression. Thus function converts an object to an expression (a unicode string) and checks to make sure it isn't empty after conversion. This is used to convert operators to their string representation for recursive calls to :func:`~pandas.eval`. Parameters ---------- expr : object The object to be converted to a string. Returns ------- s : unicode The string representation of an object. Raises ------ ValueError * If the expression is empty. """ s = com.pprint_thing(expr) _check_expression(s) return s def _check_for_locals(expr, stack_level, parser): at_top_of_stack = stack_level == 0 not_pandas_parser = parser != 'pandas' if not_pandas_parser: msg = "The '@' prefix is only supported by the pandas parser" elif at_top_of_stack: msg = ("The '@' prefix is not allowed in " "top-level eval calls, \nplease refer to " "your variables by name without the '@' " "prefix") if at_top_of_stack or not_pandas_parser: for toknum, tokval in tokenize_string(expr): if toknum == tokenize.OP and tokval == '@': raise SyntaxError(msg) def eval(expr, parser='pandas', engine='numexpr', truediv=True, local_dict=None, global_dict=None, resolvers=(), level=0, target=None): """Evaluate a Python expression as a string using various backends. The following arithmetic operations are supported: ``+``, ``-``, ``*``, ``/``, ``**``, ``%``, ``//`` (python engine only) along with the following boolean operations: ``|`` (or), ``&`` (and), and ``~`` (not). Additionally, the ``'pandas'`` parser allows the use of :keyword:`and`, :keyword:`or`, and :keyword:`not` with the same semantics as the corresponding bitwise operators. :class:`~pandas.Series` and :class:`~pandas.DataFrame` objects are supported and behave as they would with plain ol' Python evaluation. Parameters ---------- expr : str or unicode The expression to evaluate. This string cannot contain any Python `statements <http://docs.python.org/2/reference/simple_stmts.html#simple-statements>`__, only Python `expressions <http://docs.python.org/2/reference/simple_stmts.html#expression-statements>`__. parser : string, default 'pandas', {'pandas', 'python'} The parser to use to construct the syntax tree from the expression. The default of ``'pandas'`` parses code slightly different than standard Python. Alternatively, you can parse an expression using the ``'python'`` parser to retain strict Python semantics. See the :ref:`enhancing performance <enhancingperf.eval>` documentation for more details. engine : string, default 'numexpr', {'python', 'numexpr'} The engine used to evaluate the expression. Supported engines are - ``'numexpr'``: This default engine evaluates pandas objects using numexpr for large speed ups in complex expressions with large frames. - ``'python'``: Performs operations as if you had ``eval``'d in top level python. This engine is generally not that useful. More backends may be available in the future. truediv : bool, optional Whether to use true division, like in Python >= 3 local_dict : dict or None, optional A dictionary of local variables, taken from locals() by default. global_dict : dict or None, optional A dictionary of global variables, taken from globals() by default. resolvers : list of dict-like or None, optional A list of objects implementing the ``__getitem__`` special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the :meth:`~pandas.DataFrame.query` method to inject the :attr:`~pandas.DataFrame.index` and :attr:`~pandas.DataFrame.columns` variables that refer to their respective :class:`~pandas.DataFrame` instance attributes. level : int, optional The number of prior stack frames to traverse and add to the current scope. Most users will **not** need to change this parameter. target : a target object for assignment, optional, default is None essentially this is a passed in resolver Returns ------- ndarray, numeric scalar, DataFrame, Series Notes ----- The ``dtype`` of any objects involved in an arithmetic ``%`` operation are recursively cast to ``float64``. See the :ref:`enhancing performance <enhancingperf.eval>` documentation for more details. See Also -------- pandas.DataFrame.query pandas.DataFrame.eval """ expr = _convert_expression(expr) _check_engine(engine) _check_parser(parser) _check_resolvers(resolvers) _check_for_locals(expr, level, parser) # get our (possibly passed-in) scope level += 1 env = _ensure_scope(level, global_dict=global_dict, local_dict=local_dict, resolvers=resolvers, target=target) parsed_expr = Expr(expr, engine=engine, parser=parser, env=env, truediv=truediv) # construct the engine and evaluate the parsed expression eng = _engines[engine] eng_inst = eng(parsed_expr) ret = eng_inst.evaluate() # assign if needed if env.target is not None and parsed_expr.assigner is not None: env.target[parsed_expr.assigner] = ret return None return ret
gpl-2.0
tomka/CATMAID
django/applications/catmaid/control/useranalytics.py
2
20452
# -*- coding: utf-8 -*- from datetime import timedelta, datetime from dateutil import parser as dateparser import io import logging import numpy as np import pytz from typing import Any, Dict, List, Tuple from django.db import connection from django.http import HttpRequest, HttpResponse from django.utils import timezone from django.shortcuts import get_object_or_404 from django.views.decorators.cache import never_cache from catmaid.control.common import get_request_bool from catmaid.control.authentication import requires_user_role from catmaid.models import Connector, Project, Treenode, Review, UserRole logger = logging.getLogger(__name__) try: import matplotlib # Use a noninteractive backend since most CATMAID instances are headless. matplotlib.use('svg') import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter, DayLocator from pylab import figure from matplotlib.backends.backend_svg import FigureCanvasSVG except ImportError: logger.warning("CATMAID was unable to load the matplotlib module. " "User analytics will not be available") class Bout(object): """ Represents one bout, based on a list of events. The first event ist the start date/time, the last event the end. """ def __init__(self, start, end=None): self.events = [start] if end: self.events.append(end) def addEvent(self, e): """ Increments the event counter. """ self.events.append(e) @property def nrEvents(self): return len(self.events) @property def start(self): return self.events[0] @property def end(self): return self.events[-1] def __str__(self): return "Bout with %s events [%s, %s]" % \ (self.nrEvents, self.start, self.end) @never_cache @requires_user_role(UserRole.Browse) def plot_useranalytics(request:HttpRequest, project_id) -> HttpResponse: """ Creates an SVG image containing different plots for analzing the performance of individual users over time. """ time_zone = pytz.utc userid = request.GET.get('userid', None) if not (userid and userid.strip()): raise ValueError("Need user ID") project = get_object_or_404(Project, pk=project_id) if project_id else None all_writes = get_request_bool(request.GET, 'all_writes', False) maxInactivity = int(request.GET.get('max_inactivity', 3)) # Get the start date for the query, defaulting to 7 days ago. start_date = request.GET.get('start', None) if start_date: start_date = dateparser.parse(start_date) start_date = time_zone.localize(start_date) else: with timezone.override(time_zone): start_date = timezone.now() - timedelta(7) # Get the end date for the query, defaulting to now. end_date = request.GET.get('end', None) if end_date: end_date = dateparser.parse(end_date) end_date = time_zone.localize(end_date) else: with timezone.override(time_zone): end_date = timezone.now() # The API is inclusive and should return stats for the end date as # well. The actual query is easier with an exclusive end and therefore # the end date is set to the beginning of the next day. end_date = end_date + timedelta(days=1) if request.user.is_superuser or \ project and request.user.has_perm('can_browse', project): f = generateReport( userid, project_id, maxInactivity, start_date, end_date, all_writes ) else: f = generateErrorImage('You lack permissions to view this report.') # Use raw text rather than SVG fonts or pathing. plt.rcParams['svg.fonttype'] = 'none' buf = io.BytesIO() plt.savefig(buf, format='svg') return HttpResponse(buf.getvalue(), content_type='image/svg+xml') def eventTimes(user_id, project_id, start_date, end_date, all_writes=True) -> Dict[str, Any]: """ Returns a tuple containing a list of tree node edition times, connector edition times and tree node review times within the date range specified where the editor/reviewer is the given user. """ dr = (start_date, end_date) tns = Treenode.objects.filter( editor_id=user_id, edition_time__range=dr) cns = Connector.objects.filter( editor_id=user_id, edition_time__range=dr) rns = Review.objects.filter( reviewer_id=user_id, review_time__range=dr) if project_id: tns = tns.filter(project_id=project_id) cns = cns.filter(project_id=project_id) rns = rns.filter(project_id=project_id) tns = tns.values_list('edition_time', flat=True) cns = cns.values_list('edition_time', flat=True) rns = rns.values_list('review_time', flat=True) events = { 'treenode_events': list(tns), 'connector_events': list(cns), 'review_events': list(rns) } if all_writes: if project_id: params:Tuple[str, ...] = (start_date, end_date, user_id, project_id) project_filter = "AND project_id = %s" else: params = (start_date, end_date, user_id) project_filter = "" # Query transaction log. This makes this feature only useful of history # tracking is available. cursor = connection.cursor() cursor.execute(f""" SELECT execution_time FROM catmaid_transaction_info WHERE execution_time >= %s AND execution_time <= %s AND user_id = %s {project_filter} """, params) events['write_events'] = [r[0] for r in cursor.fetchall()] return events def eventsPerInterval(times, start_date, end_date, interval='day') -> Tuple[np.ndarray, List]: """ Creates a histogram of how many events fall into all intervals between <start_data> and <end_date>. The interval type can be day, hour and halfhour. Returned is a tuple containing two elemens: the histogram and a time axis, labeling every bin. """ if interval=='day': intervalsPerDay = 1 secondsPerInterval = 86400 elif interval=='hour': intervalsPerDay = 24 secondsPerInterval = 3600 elif interval=='halfhour': intervalsPerDay = 48 secondsPerInterval = 1800 else: raise ValueError('Interval options are day, hour, or halfhour') # Generate axis daycount = (end_date - start_date).days dt = timedelta(0, secondsPerInterval) timeaxis = [start_date + n*dt for n in range(intervalsPerDay * daycount)] # Calculate bins timebins = np.zeros(intervalsPerDay * daycount) intervalsPerSecond = 1.0 / secondsPerInterval for t in times: i = int((t - start_date).total_seconds() * intervalsPerSecond) timebins[i] += 1 return timebins, timeaxis def activeTimes(alltimes, gapThresh): """ Goes through the sorted array of time differences between all events stored in <alltimes>. If two events are closer together than <gapThresh> minutes, they are counted as events within one bout. A tuple containing a list of bout start dates as well as a list with total numbers of events for each bout is returned. """ # Sort all events and create a list of (time) differences between them alltimes.sort() dts = np.diff(alltimes) # Threshold between to events to be counted as separate bouts (seconds) threshold = 60 * gapThresh # Indicates whether we are currently in a bout and since we haven't even # looked at the first event, we are initially not. bout = None # Go through all events for i, e in enumerate(alltimes): if i > 0 and dts[i-1].total_seconds() < threshold: # Increment current bout's event counter and continue with the # next element as long as the time difference to the next # element is below our threshold. bout.addEvent(e) # type: ignore # mypy cannot prove bout will not be None continue else: # Return current bout (not available in first iteration) and create # a new one. if bout: yield bout bout = Bout(e) # Return last bout, if it hasn't been returned, yet if bout: yield bout def activeTimesPerDay(active_bouts) -> Tuple[Any, List]: """ Creates a tuple containing the active time in hours for every day between the first event of the first bout and the last event of the last bout as well as a list with the date for every day. """ # Return right away if there are no bouts if not active_bouts: return [], [] # Find first event of first bout daystart = active_bouts[0].start.replace( hour=0, minute=0, second=0, microsecond=0) # Find last event of last bout dayend = active_bouts[-1].end # Get total number of between first event and last event numdays = (dayend - daystart).days + 1 # Create a list of dates for every day between first and last event timeaxis = [daystart.date() + timedelta(d) for d in range(numdays)] # Calculate the netto active time for each day net_active_time = np.array(np.zeros(numdays)) for bout in active_bouts: active_time = (bout.end - bout.start).total_seconds() net_active_time[(bout.start - daystart).days] += active_time # Return a tuple containing the active time for every # day in hours and the list of days. return np.divide(net_active_time, 3600), timeaxis def singleDayEvents(alltimes, start_hour, end_hour) -> Tuple[Any, List]: alltimes.sort() timeaxis = [n for n in np.add(start_hour,range(end_hour-start_hour+1))] activity = np.zeros(end_hour-start_hour+1) for a in alltimes: if a.hour >= start_hour: if a.hour < end_hour: activity[a.hour-start_hour] += 1 return np.true_divide(activity, (alltimes[-1] - alltimes[0]).days), timeaxis def singleDayActiveness(activebouts, increment, start_hour, end_hour) -> Tuple[Any, Any]: """ Returns a ... for all bouts between <start_hour> and <end_hour> of the day. """ # Return right away, when there are no bouts given if not activebouts: return [], [] # Make sure 60 can be cleanly devided by <incement> if np.mod(60, increment) > 0: raise ValueError('Increments must divide 60 evenly') # Some constants stepsPerHour = 60 / increment hoursConsidered = (end_hour - start_hour) + 1 daysConsidered = (activebouts[-1].end - activebouts[0].start).days + 1 # Get start of current day starttime = timezone.now().replace(hour=start_hour,minute=0,second=0,microsecond=0) # Create time axis list with entry for every <increment> minutes between # <start_hour> and <end_hour>. timeaxis = [starttime + timedelta(0, 0, 0, 0, n * increment) \ for n in range(stepsPerHour * hoursConsidered)] # Loop through all days considered to find number of weekend days weekendCorrection = 0 for d in range(daysConsidered): # TODO: Why is 0 and 6 used for comparison? saturday = (activebouts[0].start + timedelta(d)).isoweekday() == 0 sunday = (activebouts[0].start + timedelta(d)).isoweekday() == 6 if saturday or sunday: weekendCorrection += 1 # Initialize list for minutes per period with zeros durPerPeriod = np.zeros(stepsPerHour * hoursConsidered) for bout in activebouts: # Ignore bouts what start after requested <end_hour> or end before # requested <start_hour>. if bout.start.hour > end_hour: continue elif bout.end.hour < start_hour: continue # Crop start and end times of every valid bout to request period elif bout.start.hour < start_hour: bout.start = bout.start.replace(hour=start_hour,minute=0,second=0,microsecond=0) elif bout.end.hour > end_hour: bout.end = bout.end.replace(hour=end_hour,minute=0,second=0,microsecond=0) # Go through every sub bout, defined by periods if <increment> minutes, # and store the number of minutes for every time-fraction considered. for subbout in splitBout(bout,increment): subboutSeconds = (subbout.end - subbout.start).total_seconds() i = stepsPerHour * (subbout.start.hour - start_hour) + \ subbout.start.minute / increment durPerPeriod[i] += np.true_divide(subboutSeconds, 60) # Divide each period (in seconds) by ? n = increment * (daysConsidered - weekendCorrection) durations = np.true_divide(durPerPeriod, n) # Return a tuple containing a list durations and a list of timepoints return durations, timeaxis def splitBout(bout,increment) -> List[Bout]: """ Splits one bout in periods of <increment> minutes. """ if np.mod(60, increment) > 0: raise RuntimeError('Increments must divide 60 evenly') boutListOut = [] currtime = bout.start nexttime = bout.start while nexttime < bout.end: basemin = increment * ( currtime.minute / increment ) nexttime = currtime.replace(minute=0,second=0,microsecond=0) + timedelta(0,0,0,0,basemin+increment) if nexttime > bout.end: nexttime = bout.end boutListOut.append(Bout(currtime, nexttime)) currtime = nexttime return boutListOut def generateErrorImage(msg) -> "matplotlib.figure.Figure": """ Creates an empty image (based on image nr. 1) and adds a message to it. """ fig = plt.figure(1, figsize=(6,6)) fig.clf() fig.suptitle(msg) return fig def generateReport( user_id, project_id, activeTimeThresh, start_date, end_date, all_writes=True ) -> "matplotlib.figure.Figure": """ nts: node times cts: connector times rts: review times """ events = eventTimes(user_id, project_id, start_date, end_date, all_writes) nts = events['treenode_events'] cts = events['connector_events'] rts = events['review_events'] # If no nodes have been found, return an image with a descriptive text. if len(nts) == 0: return generateErrorImage("No tree nodes were edited during the " + "defined period if time.") annotationEvents, ae_timeaxis = eventsPerInterval( nts + cts, start_date, end_date ) reviewEvents, re_timeaxis = eventsPerInterval( rts, start_date, end_date ) if all_writes: write_events = events['write_events'] other_write_events = write_events writeEvents, we_timeaxis = eventsPerInterval(other_write_events, start_date, end_date) else: other_write_events = [] activeBouts = list(activeTimes( nts+cts+rts+other_write_events, activeTimeThresh )) netActiveTime, at_timeaxis = activeTimesPerDay( activeBouts ) dayformat = DateFormatter('%b %d') fig = plt.figure(figsize=(9.6, 8)) # Top left plot: created and edited nodes per day ax1 = plt.subplot2grid((2,2), (0,0)) # If other writes should be shown, draw accumulated write bar first. This # makes the regular bar draw over it, so that only the difference is # visible, which is exactly what we want. if all_writes: we = ax1.bar(we_timeaxis, writeEvents, color='#00AA00', align='edge') an = ax1.bar(ae_timeaxis, annotationEvents, color='#0000AA', align='edge') rv = ax1.bar(re_timeaxis, reviewEvents, bottom=annotationEvents, color='#AA0000', align='edge') ax1.set_xlim((start_date,end_date)) if all_writes: ax1.legend( (we, an, rv), ('Other changes','Annotated', 'Reviewed'), loc=2) ax1.set_ylabel('Nodes and changes') else: ax1.legend( (an, rv), ('Annotated', 'Reviewed'), loc=2 ) ax1.set_ylabel('Nodes') yl = ax1.get_yticklabels() plt.setp(yl, fontsize=10) ax1.xaxis.set_major_formatter(dayformat) xl = ax1.get_xticklabels() plt.setp(xl, rotation=30, fontsize=10) ax1.set_title('Edit events', fontsize=10) # Bottom left plot: net active time per day ax2 = plt.subplot2grid((2,2), (1,0)) ax2.bar(at_timeaxis, netActiveTime, color='k', align='edge') ax2.set_xlim((start_date,end_date)) ax2.set_ylabel('Hours') yl = ax2.get_yticklabels() plt.setp(yl, fontsize=10) ax2.xaxis.set_major_formatter(dayformat) xl = ax2.get_xticklabels() plt.setp(xl, rotation=30, fontsize=10) ax2.set_title('Net daily active time', fontsize=10) """ ax3 = fig.add_subplot(223) ax3 = eventsPerIntervalPerDayPlot(ax3, rts+nts+cts, start_date, end_date, 30 ) """ # Right column plot: bouts over days ax4 = plt.subplot2grid((2,2), (0,1), rowspan=2) ax4 = dailyActivePlotFigure(activeBouts, ax4, start_date, end_date) yl = ax4.get_yticklabels() plt.setp(yl, fontsize=10) ax4.xaxis.set_major_formatter(dayformat) xl = ax4.get_xticklabels() plt.setp(xl, rotation=30, fontsize=10) ax4.set_title('Active Bouts', fontsize=10) yl = ax4.get_yticklabels() plt.setp(yl, fontsize=10) ax4.set_ylabel('Time (24 hr)') fig.set_tight_layout(True) return fig def dailyActivePlotFigure(activebouts, ax:"matplotlib.axes.Axes", start_date, end_date) -> "matplotlib.axes.Axes": """ Draws a plot of all bouts during each day between <start_date> and <end_date> to the plot given by <ax>. """ # Y axis: Draw a line for each two hours in a day and set ticks accordingly for i in range(2, 24, 2): ax.axhline(i, color='#AAAAAA', linestyle = ':') ax.axhspan(8, 18, facecolor='#999999', alpha=0.25) ax.set_yticks(range(0, 25, 2)) # X axis: Ticks and labels for every day ax.xaxis.set_major_locator(DayLocator()) # Draw all bouts for bout in activebouts: # Ignore bouts that span accross midnight # TODO: Draw midnight spanning bouts, too. if bout.start.day == bout.end.day: isodate = bout.start.isocalendar() ax.bar( bout.start.replace(hour=0, minute=0, second=0, microsecond=0), np.true_divide((bout.end-bout.start).total_seconds(), 3600), bottom=bout.start.hour + bout.start.minute/60.0 + bout.start.second/3600.0, alpha=0.5, color='#0000AA', align='edge', edgecolor="k") # Set Axis limits ax.set_ylim((0, 24)) ax.invert_yaxis() ax.set_xlim((start_date, end_date)) return ax def eventsPerIntervalPerDayPlot(ax, times, start_date, end_date, interval=60) -> "matplotlib.axes.Axes": if np.mod(24 * 60, interval) > 0: raise ValueError('Interval in minutes must divide the day evenly') daycount = (end_date-start_date).days timebins = {} for i in range(daycount): timebins[i] = np.zeros(24 * 60 / interval) dayList = [] daylabels = [] for i in range(daycount): day = start_date + timedelta( i ) dayList.append( day ) daylabels.append( str(day.month) + '/' + str(day.day) ) timeaxis = [i for i in range(24 * 60 / interval )] timelabels = [] for i in range(int(24 * 60 / 30)): if np.mod(i,2)==0: timelabels.append( str(i/2) + ':00' ) else: timelabels.append( str( (i-1)/2 ) + ':30' ) for t in times: timebins[np.floor((t-start_date).days)][ np.floor(np.divide(t.hour*60+t.minute, interval)) ] += 1 meandat = np.zeros(len(timebins[0])) ignoredDays = 0 ind = 0 cm = plt.get_cmap('jet',len(timebins)) dats = [] for dat in timebins.values(): if np.sum(dat)==0: ignoredDays += 1 else: tmp, = ax.plot(timeaxis, dat, marker='s', linestyle='-.',alpha=0.5, color=cm(ind)) dats.append(tmp) meandat += dat ind += 1 meandat = np.divide(meandat, daycount-ignoredDays) tmp, = ax.plot( timeaxis, meandat, color='k', linewidth=4, linestyle='-') dats.append(tmp) daylabels.append('Mean') ax.set_xticks(timeaxis) ax.set_xticklabels(timelabels) xl = ax.get_xticklabels() plt.setp(xl, rotation=30, fontsize=10) yl = ax.get_yticklabels() plt.setp(yl, fontsize=10) ax.set_ylabel('Events',fontsize=10) ax.set_xlim(8 * 60 / interval, 19 * 60 / interval) ax.legend(dats,daylabels,loc=2,frameon=False) return ax
gpl-3.0
enriquecoronadozu/HMPy
src/borrar/modificar/hmpy.py
1
6228
#!/usr/bin/env python """@See preprocessed data """ from numpy import* import matplotlib.pyplot as plt from GestureModel import* from Creator import* from Classifier import* def plotResults(gr_points,gr_sig, b_points,b_sig,name_model): from scipy import linalg import matplotlib.pyplot as plt gr_points = gr_points.transpose() b_points = b_points.transpose() gr_sigma = [] b_sigma = [] n,m = gr_points.shape maximum = zeros((m)) minimum = zeros((m)) x = arange(0,m,1) for i in range(m): gr_sigma.append(gr_sig[i*3:i*3+3]) b_sigma.append(b_sig[i*3:i*3+3]) for i in range(m): sigma = 3.*linalg.sqrtm(gr_sigma[i]) maximum[i] = gr_points[0,i]+ sigma[0,0]; minimum[i] = gr_points[0,i]- sigma[0,0]; fig2 = plt.figure() import matplotlib.pyplot as plt plt.fill_between(x, maximum, minimum,lw=2, alpha=0.5 ) plt.plot(x, gr_points[0]) plt.savefig(name_model+ "_gravity_x_axis.png") for i in range(m): sigma = 3.*linalg.sqrtm(gr_sigma[i]) maximum[i] = gr_points[1,i]+ sigma[1,1]; minimum[i] = gr_points[1,i]- sigma[1,1]; fig3 = plt.figure() plt.fill_between(x, maximum, minimum,lw=2, alpha=0.5 ) plt.plot(x, gr_points[1]) plt.savefig(name_model+ "_gravity_y_axis.png") for i in range(m): sigma = 3.*linalg.sqrtm(gr_sigma[i]) maximum[i] = gr_points[2,i]+ sigma[2,2]; minimum[i] = gr_points[2,i]- sigma[2,2]; fig3 = plt.figure() import matplotlib.pyplot as plt plt.fill_between(x, maximum, minimum,lw=2, alpha=0.5 ) plt.plot(x, gr_points[2]) plt.savefig(name_model+ "_gravity_z_axis.png") for i in range(m): sigma = 3.*linalg.sqrtm(b_sigma[i]) maximum[i] = b_points[0,i]+ sigma[0,0]; minimum[i] = b_points[0,i]- sigma[0,0]; fig4 = plt.figure() import matplotlib.pyplot as plt plt.fill_between(x, maximum, minimum,lw=2, alpha=0.5 ) plt.plot(x, b_points[0]) plt.savefig(name_model+ "_body_x_axis.png") for i in range(m): sigma = 3.*linalg.sqrtm(b_sigma[i]) maximum[i] = b_points[1,i]+ sigma[1,1]; minimum[i] = b_points[1,i]- sigma[1,1]; fig5 = plt.figure() import matplotlib.pyplot as plt plt.fill_between(x, maximum, minimum,lw=2, alpha=0.5 ) plt.plot(x, b_points[1]) plt.savefig(name_model+ "_body_axis.png") for i in range(m): sigma = 3.*linalg.sqrtm(b_sigma[i]) maximum[i] = b_points[2,i]+ sigma[2,2]; minimum[i] = b_points[2,i]- sigma[2,2]; fig6 = plt.figure() import matplotlib.pyplot as plt plt.fill_between(x, maximum, minimum,lw=2, alpha=0.5 ) plt.plot(x, b_points[2]) plt.savefig(name_model+ "_body_z_axis.png") #NOTE: Add path def newModel(name,files): g = Creator() #Read the data g.ReadFiles(files,[]) g.CreateDatasets_Acc() g.ObtainNumberOfCluster() gravity = g.gravity K_gravity = g.K_gravity body = g.body K_body = g.K_body # 2) define the number of points to be used in GMR # (current settings allow for CONSTANT SPACING only) numPoints = amax(gravity[0,:]); scaling_factor = 10/10; numGMRPoints = math.ceil(numPoints*scaling_factor); # 3) perform Gaussian Mixture Modelling and Regression to retrieve the # expected curve and associated covariance matrices for each feature gr_points, gr_sigma = g.GetExpected(gravity,K_gravity,numGMRPoints) b_points, b_sigma = g.GetExpected(body,K_body,numGMRPoints) savetxt(name+"MuGravity.txt", gr_points,fmt='%.12f') savetxt(name+"SigmaGravity.txt", gr_sigma,fmt='%.12f') savetxt(name+"MuBody.txt", b_points,fmt='%.12f') savetxt(name+"SigmaBody.txt", b_sigma,fmt='%.12f') def loadModel(file_name, th=1, plot=True): #Load files gr_points = loadtxt(file_name+"MuGravity.txt") gr_sigma = loadtxt(file_name+"SigmaGravity.txt") b_points = loadtxt(file_name+"MuBody.txt") b_sigma = loadtxt(file_name+"SigmaBody.txt") #Add model gm = GestureModel() gm.addModel("gravity",gr_points, gr_sigma,th) gm.addModel("body",b_points, b_sigma,th) if plot == True: plotResults(gr_points,gr_sigma, b_points,b_sigma,file_name) return gm name_models = ['A','B','S1','S2'] num_samples = [10,14,9,10] th = [25,20,10,65] create_models = False list_files = [] #Create a list of the list of files for each model print "Defining files" i = 0 for name in name_models: files = [] for k in range(1,num_samples[i]+1): files.append('Models/' + name + '/data/mod('+ str(k) + ').txt') list_files.append(files) i = i + 1 #Create the models and save the list of files for calculate the weigths if(create_models == True): print "Creating models" i = 0 for model in name_models: print list_files[i] newModel(model,list_files[i]) i = i + 1 list_models = [] print "Loading models" #Load the models for j in range(len(name_models)): #For the moment don't put True is there are more that 2 models in Ubuntu gm = loadModel(name_models[j],th[j],False) list_models.append(gm) print "Calculating weigths" #Used to calculate the weights v0 = Classifier() for j in range(len(name_models)): print "\nFor model " + name_models[j] + ":" w_g, w_b = v0.calculateW(list_files[j],list_models[j]) list_models[j].addWeight("gravity",w_g) list_models[j].addWeight("body",w_b) print "\n Init classifers" l_class = [] for j in range(len(name_models)): l_class.append(Classifier()) print "Give the model to each classifier" for j in range(len(name_models)): l_class[j].classify(list_models[j]) print "Validation" sfile = "validation/mix3.txt" import matplotlib.pyplot as plt fig = plt.figure() for j in range(len(name_models)): poss = l_class[j].validate_from_file(sfile, ',') m,n = poss.shape x = arange(0,m,1) plt.plot(x, poss,'o',label= name_models[j]) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.savefig("result.png") print "Finish ..."
gpl-3.0
mkuai/underwater
src/flow-monitor/examples/wifi-olsr-flowmon.py
108
7439
# -*- Mode: Python; -*- # Copyright (c) 2009 INESC Porto # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation; # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Authors: Gustavo Carneiro <[email protected]> import sys import ns.applications import ns.core import ns.flow_monitor import ns.internet import ns.mobility import ns.network import ns.olsr import ns.wifi try: import ns.visualizer except ImportError: pass DISTANCE = 100 # (m) NUM_NODES_SIDE = 3 def main(argv): cmd = ns.core.CommandLine() cmd.NumNodesSide = None cmd.AddValue("NumNodesSide", "Grid side number of nodes (total number of nodes will be this number squared)") cmd.Results = None cmd.AddValue("Results", "Write XML results to file") cmd.Plot = None cmd.AddValue("Plot", "Plot the results using the matplotlib python module") cmd.Parse(argv) wifi = ns.wifi.WifiHelper.Default() wifiMac = ns.wifi.NqosWifiMacHelper.Default() wifiPhy = ns.wifi.YansWifiPhyHelper.Default() wifiChannel = ns.wifi.YansWifiChannelHelper.Default() wifiPhy.SetChannel(wifiChannel.Create()) ssid = ns.wifi.Ssid("wifi-default") wifi.SetRemoteStationManager("ns3::ArfWifiManager") wifiMac.SetType ("ns3::AdhocWifiMac", "Ssid", ns.wifi.SsidValue(ssid)) internet = ns.internet.InternetStackHelper() list_routing = ns.internet.Ipv4ListRoutingHelper() olsr_routing = ns.olsr.OlsrHelper() static_routing = ns.internet.Ipv4StaticRoutingHelper() list_routing.Add(static_routing, 0) list_routing.Add(olsr_routing, 100) internet.SetRoutingHelper(list_routing) ipv4Addresses = ns.internet.Ipv4AddressHelper() ipv4Addresses.SetBase(ns.network.Ipv4Address("10.0.0.0"), ns.network.Ipv4Mask("255.255.255.0")) port = 9 # Discard port(RFC 863) onOffHelper = ns.applications.OnOffHelper("ns3::UdpSocketFactory", ns.network.Address(ns.network.InetSocketAddress(ns.network.Ipv4Address("10.0.0.1"), port))) onOffHelper.SetAttribute("DataRate", ns.network.DataRateValue(ns.network.DataRate("100kbps"))) onOffHelper.SetAttribute("OnTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=1]")) onOffHelper.SetAttribute("OffTime", ns.core.StringValue ("ns3::ConstantRandomVariable[Constant=0]")) addresses = [] nodes = [] if cmd.NumNodesSide is None: num_nodes_side = NUM_NODES_SIDE else: num_nodes_side = int(cmd.NumNodesSide) for xi in range(num_nodes_side): for yi in range(num_nodes_side): node = ns.network.Node() nodes.append(node) internet.Install(ns.network.NodeContainer(node)) mobility = ns.mobility.ConstantPositionMobilityModel() mobility.SetPosition(ns.core.Vector(xi*DISTANCE, yi*DISTANCE, 0)) node.AggregateObject(mobility) devices = wifi.Install(wifiPhy, wifiMac, node) ipv4_interfaces = ipv4Addresses.Assign(devices) addresses.append(ipv4_interfaces.GetAddress(0)) for i, node in enumerate(nodes): destaddr = addresses[(len(addresses) - 1 - i) % len(addresses)] #print i, destaddr onOffHelper.SetAttribute("Remote", ns.network.AddressValue(ns.network.InetSocketAddress(destaddr, port))) app = onOffHelper.Install(ns.network.NodeContainer(node)) urv = ns.core.UniformRandomVariable() app.Start(ns.core.Seconds(urv.GetValue(20, 30))) #internet.EnablePcapAll("wifi-olsr") flowmon_helper = ns.flow_monitor.FlowMonitorHelper() #flowmon_helper.SetMonitorAttribute("StartTime", ns.core.TimeValue(ns.core.Seconds(31))) monitor = flowmon_helper.InstallAll() monitor = flowmon_helper.GetMonitor() monitor.SetAttribute("DelayBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("JitterBinWidth", ns.core.DoubleValue(0.001)) monitor.SetAttribute("PacketSizeBinWidth", ns.core.DoubleValue(20)) ns.core.Simulator.Stop(ns.core.Seconds(44.0)) ns.core.Simulator.Run() def print_stats(os, st): print >> os, " Tx Bytes: ", st.txBytes print >> os, " Rx Bytes: ", st.rxBytes print >> os, " Tx Packets: ", st.txPackets print >> os, " Rx Packets: ", st.rxPackets print >> os, " Lost Packets: ", st.lostPackets if st.rxPackets > 0: print >> os, " Mean{Delay}: ", (st.delaySum.GetSeconds() / st.rxPackets) print >> os, " Mean{Jitter}: ", (st.jitterSum.GetSeconds() / (st.rxPackets-1)) print >> os, " Mean{Hop Count}: ", float(st.timesForwarded) / st.rxPackets + 1 if 0: print >> os, "Delay Histogram" for i in range(st.delayHistogram.GetNBins () ): print >> os, " ",i,"(", st.delayHistogram.GetBinStart (i), "-", \ st.delayHistogram.GetBinEnd (i), "): ", st.delayHistogram.GetBinCount (i) print >> os, "Jitter Histogram" for i in range(st.jitterHistogram.GetNBins () ): print >> os, " ",i,"(", st.jitterHistogram.GetBinStart (i), "-", \ st.jitterHistogram.GetBinEnd (i), "): ", st.jitterHistogram.GetBinCount (i) print >> os, "PacketSize Histogram" for i in range(st.packetSizeHistogram.GetNBins () ): print >> os, " ",i,"(", st.packetSizeHistogram.GetBinStart (i), "-", \ st.packetSizeHistogram.GetBinEnd (i), "): ", st.packetSizeHistogram.GetBinCount (i) for reason, drops in enumerate(st.packetsDropped): print " Packets dropped by reason %i: %i" % (reason, drops) #for reason, drops in enumerate(st.bytesDropped): # print "Bytes dropped by reason %i: %i" % (reason, drops) monitor.CheckForLostPackets() classifier = flowmon_helper.GetClassifier() if cmd.Results is None: for flow_id, flow_stats in monitor.GetFlowStats(): t = classifier.FindFlow(flow_id) proto = {6: 'TCP', 17: 'UDP'} [t.protocol] print "FlowID: %i (%s %s/%s --> %s/%i)" % \ (flow_id, proto, t.sourceAddress, t.sourcePort, t.destinationAddress, t.destinationPort) print_stats(sys.stdout, flow_stats) else: print monitor.SerializeToXmlFile(cmd.Results, True, True) if cmd.Plot is not None: import pylab delays = [] for flow_id, flow_stats in monitor.GetFlowStats(): tupl = classifier.FindFlow(flow_id) if tupl.protocol == 17 and tupl.sourcePort == 698: continue delays.append(flow_stats.delaySum.GetSeconds() / flow_stats.rxPackets) pylab.hist(delays, 20) pylab.xlabel("Delay (s)") pylab.ylabel("Number of Flows") pylab.show() return 0 if __name__ == '__main__': sys.exit(main(sys.argv))
gpl-2.0
natefoo/tools-iuc
tools/spyboat/output_report.py
12
8730
""" Produces plots and a summary html 'headless' """ import logging import os import matplotlib import matplotlib.pyplot as ppl import spyboat.plotting as spyplot ppl.switch_backend('Agg') matplotlib.rcParams["text.usetex"] = False logger = logging.getLogger(__name__) # figure resolution DPI = 250 def produce_snapshots(input_movie, results, frame, Wkwargs, img_path="."): """ Takes the *input_movie* and the *results* dictionary from spyboat.processing.run_parallel and produces phase, period and amplitude snapshot png's. For the period snapshot also the period range is needed, hence the analysis dictionary 'Wkwargs' also gets passed. The output files name pattern is: [input, phase, period, amplitude]_frame{frame}.png and the storage location in *img_path*. These get picked up by 'create_html' """ spyplot.input_snapshot(input_movie[frame]) fig = ppl.gcf() out_path = os.path.join(img_path, f"input_frame{frame}.png") fig.savefig(out_path, dpi=DPI) ppl.close(fig) spyplot.phase_snapshot(results["phase"][frame]) fig = ppl.gcf() out_path = os.path.join(img_path, f"phase_frame{frame}.png") fig.savefig(out_path, dpi=DPI) ppl.close(fig) spyplot.period_snapshot( results["period"][frame], Wkwargs["Tmin"], Wkwargs["Tmax"], time_unit="a.u." ) fig = ppl.gcf() out_path = os.path.join(img_path, f"period_frame{frame}.png") fig.savefig(out_path, dpi=DPI) ppl.close(fig) spyplot.amplitude_snapshot(results["amplitude"][frame]) fig = ppl.gcf() out_path = os.path.join(img_path, f"amplitude_frame{frame}.png") fig.savefig(out_path, dpi=DPI) ppl.close(fig) logger.info(f"Produced 4 snapshots for frame {frame}..") def produce_distr_plots(results, Wkwargs, img_path="."): """ Output file names are: period_distr.png, power_distr.png and phase_distr.png """ spyplot.period_distr_dynamics(results["period"], Wkwargs) fig = ppl.gcf() out_path = os.path.join(img_path, "period_distr.png") fig.savefig(out_path, dpi=DPI) spyplot.power_distr_dynamics(results["power"], Wkwargs) fig = ppl.gcf() out_path = os.path.join(img_path, "power_distr.png") fig.savefig(out_path, dpi=DPI) spyplot.phase_coherence_dynamics(results["phase"], Wkwargs) fig = ppl.gcf() out_path = os.path.join(img_path, "phase_distr.png") fig.savefig(out_path, dpi=DPI) logger.info("Produced 3 distribution plots..") def create_html(frame_nums, par_str, html_fname="OutputReport.html"): """ The html generated assumes the respective png's have been created with 'produce_snapshots' and 'produce_distr_plots' and can be found at the cwd (that's how Galaxy works..) """ # -- create a gallery for every frame in frame_nums -- galleries = "" for frame_num in frame_nums: new_gal = f""" <div class="FrameSlides"> <h3 style="text-align:center; color=#363333"> Frame Nr. {frame_num} </h3> <div class="snapshot_gallery"> <figure class=”snapshot_gallery__item snapshot_gallery__item--1" style="margin: 0 0"> <img src="input_frame{frame_num}.png" alt="The Input" class="snapshot_gallery__img"> </figure> <figure class=”snapshot_gallery__item snapshot_gallery__item--2" style="margin: 0 0"> <img src="phase_frame{frame_num}.png" alt="Phase" class="snapshot_gallery__img"> </figure> <figure class=”snapshot_gallery__item snapshot_gallery__item--3" style="margin: 0 0"> <img src="period_frame{frame_num}.png" alt="Period" class="snapshot_gallery__img"> </figure> <figure class=”snapshot_gallery__item snapshot_gallery__item--4" style="margin: 0 0"> <img src="amplitude_frame{frame_num}.png" alt="Amplitude" class="snapshot_gallery__img"> </figure> </div> </div> """ galleries += new_gal parameter_cells = '' for line in par_str.split('\n'): # last str is empty.. if not line: break par_name, par_val = line.split('->') parameter_cells += f''' <tr> <td>{par_name}</td> <td>{par_val}</td> </tr>''' html_string = f""" <html> <!-- this file got automatically created by 'output_report.py' --> <title>SpyBOAT Output Report</title> <head> <!-- that doesn't work with galaxy.. --> <!--link rel="stylesheet" href="styles.css"--> <style type="text/css"> body{{ margin:10 100; background:whitesmoke; }} p{{ text-align: center; margin-top: 0.05cm; margin-bottom: .05cm; color:#2c2e2e; }} .center{{ text-align: center; display: block; margin-left: auto; margin-right: auto; width: 100%;}} /* matplotlib output at 1600x1200 */ .snapshot_gallery {{ margin: 0 0; text-align: center; display: grid; grid-template-columns: repeat(2,1fr); grid-template-rows: repeat(2,27vw); grid-gap: 5px; }} .snapshot_gallery__img {{ width: 100%; height: 100%; object-fit: contain; margin-top: 5px; margin-bottom: 15px; }} .subheader{{ text-align:center; font-size: 160%; color:#363333;}} .centerimg{{ text-align: center; width: 65%; max-width: 400px; display: block; padding: 10px; margin-left: auto; margin-right: auto; }} .div_distr{{ text-align: center; border-radius: 25px; margin-top: 1cm; margin: auto; margin-bottom: 0.5cm; background-color: #cce1e3; max-width: 550px; }} .partable{{ width: 70%; margin-left: auto; margin-right: auto; }} tr, td{{ color:#2c2e2e; font-size: 110%; }} </style> </head> <body> <h1 style="text-align:center; color:#363333">SpyBOAT Results Report</h1> <hr style="width:70%"> <h1 class="subheader"> Spatial Summary Statistics </h1> <div class="div_distr"> <img src="period_distr.png" alt="Period" class="centerimg"> <p> Median and quartiles of the estimated periods for each frame </p> </div> <div class="div_distr"> <img src="power_distr.png" alt="Period" class="centerimg"> <p> Median and quartiles of the ridge wavelet power for each frame </p> </div> <div class="div_distr"> <img src="phase_distr.png" alt="Period" class="centerimg"> <p> Kuramoto order parameter for the phases estimated for each frame </p> </div> <h1 class="subheader"> Output Movie Snapshots </h1> <!-- trigger the javascript at the end---> <div class="center"> <button class="w3-button" onclick="plusDivs(-1)">&#10094; Prev</button> <button class="w3-button" onclick="plusDivs(1)">Next &#10095;</button> </div> <!-- defines all elements of the "FrameSlides" class ---> {galleries} </div> <h1 class="subheader"> Parameters </h1> <div class="div_distr"> <table border = "1" class="partable"> <tr> <th>Name</th> <th>Value</th> </tr> {parameter_cells} </table> </div> <!-- javascript with escaped '{{'---> <script> var slideIndex = 1; showDivs(slideIndex); function plusDivs(n) {{ showDivs(slideIndex += n); }} function showDivs(n) {{ var i; var x = document.getElementsByClassName("FrameSlides"); if (n > x.length) {{slideIndex = 1}} if (n < 1) {{slideIndex = x.length}} ; for (i = 0; i < x.length; i++) {{ x[i].style.display = "none"; }} x[slideIndex-1].style.display = "block"; }} </script> </body> </html> """ with open(html_fname, "w") as OUT: OUT.write(html_string) logger.info("Created html report") return html_string # for local testing # create_html([0,20], 'par1 -> val1\n verylongpar2 -> val2')
mit
mlee92/Programming
Econ/supply_demand_elasticity/demand_elasticity.py
2
1413
# Elasticity of demand is a measure of how strongly consumers respond to a change in the price of a good # Formally, % change in demand / % change in price # Problem: Graph the histogram of average-elasticity for a linear-demand good with random coefficients (a, b) import random import matplotlib.pyplot as plt import numpy as np SIM = 1000; UNIT_RANGE = range(1, 50) AVGS = list() COEF = [0, 0] def generate_coefficients(): global COEF a = random.randint(1, 25) b = random.randint(a*50, 25*50) COEF = [a, b] def price(unit): return COEF[1] - COEF[0]*unit def graph_price(): x = np.linspace(1,50,50) y = price(x) plt.plot(x, y) plt.show() def elasticity(d1, d2): cPrice = price(d2) - price(d1) cDemand = d2 - d1 pPrice = cPrice / price(d1) pDemand = cDemand / d1 return abs(pDemand / pPrice) def simulate(): global AVGS, COEF, UNIT_RANGE generate_coefficients() elast_list = list() for i in UNIT_RANGE: for j in UNIT_RANGE: if(i != j): elast_list.append(elasticity(i, j)) mu = np.mean(elast_list) print(COEF, mu) AVGS.append(mu) def init(): for i in range(0, SIM): simulate() init() print(SIM) plt.hist(AVGS) plt.show()
gpl-2.0
JosmanPS/scikit-learn
sklearn/datasets/lfw.py
141
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <[email protected]> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
rothnic/bokeh
scripts/interactive_tester.py
43
9271
from __future__ import print_function import argparse import importlib import os from shutil import rmtree from six.moves import input import sys import textwrap import time import json # TODO: # catch and log exceptions in examples files that fail to open DIRECTORIES = { 'file' : '../../examples/plotting/file', 'notebook': '../../examples/plotting/notebook', 'server' : '../../examples/plotting/server', 'ggplot' : '../../examples/compat/ggplot', 'glyphs' : '../../examples/glyphs', 'mpl' : '../../examples/compat/mpl', 'pandas' : '../../examples/compat/pandas', 'seaborn' : '../../examples/compat/seaborn', 'charts' : '../../examples/charts', } DEFAULT_TEST_FILES = [ '../../examples/plotting/file/stocks.py', '../../examples/plotting/file/glucose.py', '../../examples/compat/ggplot/density.py', '../../examples/plotting/server/stocks.py', '../../examples/plotting/server/glucose.py', '../../examples/plotting/notebook/candlestick.ipynb', '../../examples/plotting/notebook/glucose.ipynb', '../../examples/compat/seaborn/violin.py', '../../examples/charts/boxplot.py', ] SESSION_FILE = os.path.abspath("INTERACTIVE_TESTER_SESSION.json") def get_parser(): """Create the parser that will be used to add arguments to the script. """ parser = argparse.ArgumentParser(description=textwrap.dedent(""" Tests a selection of .py or .ipynb bokeh example files. The --location option allows you to select a specific examples subdirectory to test all files in, ignoring __init__.py Location arguments can be any valid path to a folder with the examples, like: -l /path/to/my/examplesyou can choose: or any of the pre-built keywords that point to the related examples: - file - notebook - server - ggplot - glyphs - mpl - pandas - seaborn """), formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--no-log', action='store_true', dest='nolog', default=False, help="don't save a log of any errors discovered") parser.add_argument('-l', '--location', action='store', default=False, help="example directory in which you wish to test") parser.add_argument('--reuse-session', action='store_true', dest='reuseSession', default=False, help="do not clean last session log and start from where you left") parser.add_argument('--notebook-options', action='store', dest='notebookOptions', default="", help="options to be forwarded to ipython notebook to customize it's behaviour") return parser def depend_check(dependency): """ Make sure a given dependency is installed """ try: importlib.import_module(dependency) found = True except ImportError as e: print("%s\nPlease use conda or pip to install the necessary dependency." % (e)) found = False return found def save_session(session): """ Save the session object to the SESSION_FILE Args: session(dict): dict with all the example files and results of each run """ with open(SESSION_FILE, 'w') as res_file: json.dump(session, res_file) def get_session(): """ Return last stored session """ try: with open(SESSION_FILE, 'r') as res_file: return json.load(res_file) except IOError: return {} def clean_session(): """ Removes previous session file """ if os.path.exists(SESSION_FILE): os.remove(SESSION_FILE) def main(testing_ground=None, notebook_options=""): """ Collect and run .py or .ipynb examples from a set list or given examples directory, ignoring __init__.py User input is collected to determine a properly or improperly displayed page """ # Create a testing directory if one does not exist, then cd into it testing_directory = 'tmp_test' if not os.path.exists(testing_directory): os.mkdir(testing_directory) os.chdir(testing_directory) if testing_ground: log_name = results.location TestFiles = [ fileName for fileName in os.listdir('%s/.' % testing_ground) if fileName.endswith(('.py', '.ipynb')) and fileName != '__init__.py' ] else: log_name = "fast" TestFiles = DEFAULT_TEST_FILES Log = [] lastSession = get_session() for index, fileName in enumerate(TestFiles): if testing_ground: fileName = "%s/%s" % (testing_ground, fileName) try: if not fileName in lastSession: lastSession[fileName] = "TESTING..." save_session(lastSession) command = get_cmd(fileName, notebook_options) opener(fileName, command) if results.nolog: # Don't display 'next file' message after opening final file in a dir if index != len(TestFiles)-1: input("\nPress enter to open next file ") else: ErrorReport = test_status() if ErrorReport: Log.append("\n\n%s: \n %s" % (fileName, ErrorReport)) lastSession[fileName] = ErrorReport save_session(lastSession) else: prevRes = lastSession[fileName] if prevRes == "TESTING...": print("RESULT OF %s LAST RUN NOT REGISTERED!!" % fileName) ErrorReport = test_status() lastSession[fileName] = ErrorReport save_session(lastSession) else: print("%s detected in last session: SKIPPING" % fileName) except (KeyboardInterrupt, EOFError): break # exit the testing directory and delete it os.chdir('../') rmtree(testing_directory) if Log: logger(Log, log_name) def get_cmd(some_file, notebook_options=""): """Determines how to open a file depending on whether it is a .py or a .ipynb file """ if some_file.endswith('.py'): command = "python" elif some_file.endswith('.ipynb'): command = "ipython notebook %s" % notebook_options return command def opener(some_file, command): """Print to screen what file is being opened and then open the file using the command method provided. """ print("\nOpening %s\n" % some_file.strip('../')) os.system("%s %s" % (command, some_file)) def test_status(): """Collect user input to determine if a file displayed correctly or incorrectly. In the case of incorrectly displayed plots, an 'ErrorReport' string is returned. """ status = input("Did the plot(s) display correctly? (y/n) ") while not status.startswith(('y', 'n')): print("") status = input("Unexpected answer. Please type y or n. ") if status.startswith('n'): ErrorReport = input("Please describe the problem: ") return ErrorReport def logger(error_array, name): """ Log errors by appending to a .txt file. The name and directory the file is saved into is provided by the name and log_dir args. """ logfile = "%s_examples_testlog.txt" % name if os.path.exists(logfile): os.remove(logfile) with open(logfile, 'a') as f: print("") print("\nWriting error log to %s" % logfile) for error in error_array: f.write("%s\n" % error) if __name__ == '__main__': if not depend_check('bokeh'): sys.exit(1) parser = get_parser() results = parser.parse_args() if results.location: if results.location and results.location in DIRECTORIES: target = results.location if target in ['ggplot', 'pandas', 'seaborn', 'charts']: if not depend_check(target): sys.exit(1) test_dir = DIRECTORIES[target] elif os.path.exists(results.location): # in case target is not one of the recognized keys and is a # valid path we can run the examples in that folder test_dir = results.location print("Running examples in custom location:", test_dir) else: print("Test location '%s' not recognized.\nPlease type 'python interactive_tester.py -h' for a list of valid test directories." % results.location) sys.exit(1) else: test_dir = None if results.location == 'server' or test_dir is None: print("Server examples require bokeh-server. Make sure you've typed 'bokeh-server' in another terminal tab.") time.sleep(5) if not results.reuseSession: print("cleaning previous session file...",) clean_session() print("OK") main(test_dir, notebook_options=results.notebookOptions)
bsd-3-clause
mkocka/galaxytea
modeling/domcek/plots.py
1
4294
import matplotlib.pyplot as plt from numpy import * ###List of variables # r_in [10**10 cm] innder radius # r_out [10**10 cm] outer radius # step [10**10 cm] step of plot # alfa [] parameter of accretion # M_16 [10**16 g.s**(-1)] accretion flow # m_1 [solar mass] mass of compact object # R_hv [10**10 cm] radius of compact object # R_10 [10**10 cm] distance from compact object # f numerical factor ###List of computed parameters # Surface density [g.cm**(-2)] (sigma) # Height [cm] (H) # Density [g.cm**(-3)] (rho) # Central disc temeprature [K] (T_c) # Opacity [] (tau) # viscosity [cm**2.s**(-1)] (nu) # radial velocity towards center [cm.s**(-1)] (v_r) ###function solutions parameters # parameter 1 r_in # parameter 2 r_out # parameter 3 step # parameter 4 alfa # parameter 5 M_16 # parameter 6 m_1 # parameter 7 R_hv def solutions(r_in,r_out,step,alfa,M_16,m_1,R_hv): #defining lists list_function = arange(r_in,r_out,step) R_10_l,surface_density_l,height_l,density_l,Fx = ([] for i in range(5)) temperature_l,opacity_l,viscosity_l,radial_velocity_l = ([] for i in range(4)) #computation and appending to lists for R_10 in list_function: f=(1-((R_hv)/(R_10))**(1.0/2))**(1.0/4) surface_density = 5.2*alfa**(-4.0/5)*M_16**(7.0/10)*m_1**(1.0/4)*R_10**(-3.0/4)*f**(14.0/5) height = 1.7*10**8*alfa**(-1.0/10)*M_16**(3.0/20)*m_1**(-3.0/8)*R_10**(9.0/8)*f**(3.0/5) density = 3.1*10**(-8)*alfa**(-7.0/10)*M_16**(11.0/20)*m_1**(5.0/8)*R_10**(-15.0/8)*f**(11.0/5) temperature = 1.4*10**4*alfa**(-1.0/5)*M_16**(3.0/10)*m_1**(1.0/4)*R_10**(-3.0/4)*f**(6.0/5) opacity = 190*alfa**(-4.0/5)*M_16**(1.0/5)*f**(4.0/5) viscosity = 1.8*10**14*alfa**(4.0/5)*M_16**(3.0/10)*m_1**(-1.0/4)*R_10**(3.0/4)*f**(6.0/5) radial_velocity = 2.7*10**4*alfa**(4.0/5)*M_16**(3.0/10)*m_1**(-1.0/4)*R_10**(-1.0/4)*f**(-14.0/5) R_10_l.append(R_10) surface_density_l.append(surface_density) height_l.append(height) density_l.append(density) temperature_l.append(temperature) opacity_l.append(opacity) viscosity_l.append(viscosity) radial_velocity_l.append(radial_velocity) Fx.append(f) #transformation R_10 to kolimeters R_km = [ x / 10**(-4) for x in R_10_l] return R_km, surface_density_l, height_l, density_l,temperature_l,opacity_l,viscosity_l,radial_velocity_l,Fx #for definitions of parameters look up r_in =1.0001*10**(-4) r_out =10**(-2) step = 10**(-6) alfa = 0.5 M_16 = 63 m_1 = 1.5 R_hv = 1.0*10**(-4) lists=solutions(r_in,r_out,step,alfa,M_16,m_1,R_hv) print 30*"-" print "Used parameter values" print 30*"-" print "innder radius:", 10*".",r_in, 10*".", "[10$^{10}$ cm]" print "outer radius:", 10*".", r_out, 10*".", "[10$^{10}$ cm]" print "step of plot:", 10*".", step, 10*".", "[10$^{10}$ cm]" print "parameter of accretion alfa:", 10*".", alfa print "accretion flow:", 10*".", M_16, 10*".", "[10$^6$ g.s${-1)}$]" print "mass of compact object:", 10*".", m_1, 10*".", "[solar mass]" print "radius of compact object:", 10*".", R_hv, 10*".", "[10$^{10}$ cm]" plt.plot(lists[0], lists[1]) plt.title('surface density') plt.xlabel('radius [km]') plt.ylabel('surface density [g.cm$^{-2}$] ') plt.grid() plt.savefig("surface density") plt.gcf().clear() plt.plot(lists[0], lists[2]) plt.title('height') plt.xlabel('radius [km]') plt.ylabel('height [cm] ') plt.grid() plt.savefig("height") plt.gcf().clear() plt.plot(lists[0], lists[3]) plt.title('density') plt.xlabel('radius [km]') plt.ylabel('density [g.cm$^{-3}$] ') plt.grid() plt.savefig("density") plt.gcf().clear() plt.plot(lists[0], lists[4]) plt.title('temperature') plt.xlabel('radius [km]') plt.ylabel('temperature [K] ') plt.grid() plt.savefig("temperature") plt.gcf().clear() plt.plot(lists[0], lists[5]) plt.title('opacity') plt.xlabel('radius [km]') plt.ylabel('opacity ') plt.grid() plt.savefig("opacity") plt.gcf().clear() plt.plot(lists[0], lists[6]) plt.title('viscosity') plt.xlabel('radius [km]') plt.ylabel('viscosity [cm$^{2}$.s$^{-1}$] ') plt.grid() plt.savefig("viscosity") plt.gcf().clear() plt.plot(lists[0], lists[7]) plt.title('radial velocity') plt.xlabel('radius [km]') plt.ylabel('radial velocity [cm.s$^{-1}$] ') plt.grid() plt.savefig("radial velocity") plt.gcf().clear()
mit
kasperschmidt/TDOSE
tdose_extract_spectra.py
1
43824
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = import numpy as np import sys import astropy.io.fits as afits import collections import tdose_utilities as tu import tdose_extract_spectra as tes import tdose_build_mock_cube as tbmc import pdb import scipy.ndimage.filters as snf import matplotlib as mpl mpl.use('Agg') # prevent pyplot from opening window; enables closing ssh session with detached screen running TDOSE import matplotlib.pyplot as plt # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = def extract_spectra(model_cube_file,source_association_dictionary=None,nameext='tdose_spectrum',outputdir='./',clobber=False, variance_cube_file=None,variance_cube_ext='ERROR',source_model_cube_file=None,source_cube_ext='DATA', model_cube_ext='DATA',layer_scale_ext='WAVESCL',data_cube_file=None,verbose=True): """ Assemble the spectra determined by the wavelength layer scaling of the normalized models when generating the source model cube --- INPUT --- model_cube_file Model cube to base extraction on (using header info and layer scales) source_association_dictionary Source association dictionary defining what sources should be combined into objects (individual spectra). nameext The name extension to use for saved spectra outputdir Directory to save spectra to clobber Overwrite spectra if they already exists variance_cube_file File containing variance cube of data to be used to estimate nois on 1D spectrum variance_cube_ext Extension of variance cube to use source_model_cube_file The source model cube defining the individual sources source_cube_ext Extension of source model cube file that contins source models model_cube_ext Extension of model cube file that contains model layer_scale_ext Extension of model cube file that contains the layer scales data_cube_file File containing original data cube used for extraction of aperture spectra verbose --- EXAMPLE OF USE --- """ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Loading data needed for spectral assembly') model_cube = afits.open(model_cube_file)[model_cube_ext].data model_cube_hdr = afits.open(model_cube_file)[model_cube_ext].header layer_scale_arr = afits.open(model_cube_file)[layer_scale_ext].data if variance_cube_file is not None: stddev_cube = np.sqrt(afits.open(variance_cube_file)[variance_cube_ext].data) # turn varinace into standard deviation source_model_cube = afits.open(source_model_cube_file)[source_cube_ext].data else: stddev_cube = None source_model_cube = None Nsources = layer_scale_arr.shape[0] # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if data_cube_file is not None: if verbose: print(' - Loading data cube ') data_cube = afits.open(data_cube_file)[model_cube_ext].data else: data_cube = None # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if source_association_dictionary is None: if verbose: print(' - Building default source association dictionary ' \ '(determining what sources are combined into objects), i.e., one source per object ') sourcIDs_dic = collections.OrderedDict() for oo in np.arange(int(Nsources)): sourcIDs_dic[str(oo)] = [oo] else: sourcIDs_dic = source_association_dictionary Nobj = len(list(sourcIDs_dic.keys())) if verbose: print(' - Found '+str(Nobj)+' objects to generate spectra for in source_association_dictionary ') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Assembling wavelength vector for spectra ') wavelengths = np.arange(model_cube_hdr['NAXIS3'])*model_cube_hdr['CD3_3']+model_cube_hdr['CRVAL3'] # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - specfiles = [] for oo, key in enumerate(sourcIDs_dic.keys()): obj_cube_hdr = model_cube_hdr.copy() try: specid = str("%.10d" % int(key)) except: specid = str(key) specname = outputdir+nameext+'_'+specid+'.fits' specfiles.append(specname) sourceIDs = sourcIDs_dic[key] obj_cube_hdr.append(('OBJID ',specid ,'ID of object'),end=True) obj_cube_hdr.append(('SRCIDS ',str(sourceIDs) ,'IDs of sources combined in object'),end=True) if verbose: infostr = ' - Extracting spectrum '+str("%6.f" % (oo+1))+' / '+str("%6.f" % Nobj) sys.stdout.write("%s\r" % infostr) sys.stdout.flush() sourceoutput = tes.extract_spectrum(sourceIDs,layer_scale_arr,wavelengths,noise_cube=stddev_cube, source_model_cube=source_model_cube, data_cube=data_cube, specname=specname,obj_cube_hdr=obj_cube_hdr,clobber=clobber,verbose=True) if verbose: print('\n - Done extracting spectra. Returning list of fits files generated') return specfiles # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = def extract_spectrum(sourceIDs,layer_scale_arr,wavelengths,noise_cube=None,source_model_cube=None, specname='tdose_extract_spectra_extractedspec.fits',obj_cube_hdr=None,data_cube=None, clobber=False,verbose=True): """ Extracting a spectrum based on the layer scale image from the model cube provided a list of sources to combine. Noise is estimated from the noise cube (of the data) If all layer_scales are 1 a data_cube for the extractions is expected --- INPUT --- sourceIDs The source IDs to combine into spectrum layer_scale_arr Layer scale array (or image) produced when generating the model cube fractional flux belonging to the source in each pixel wavelengths Wavelength vector to use for extracted 1D spectrum. noise_cube Cube with uncertainties (sqrt(variance)) of data cube to be used for estimating 1D uncertainties To estimate S/N and 1D noise, providing a source model cube is required source_model_cube Source model cube containing the model cube for each individual source seperately Needed in order to estimate noise from noise-cube specname Name of file to save spectrum to obj_cube_hdr Provide a template header to save the object cube (from combining the individual source cube) as an extension to the extracted spectrum data_cube In case all layers scales are 1, it is assumed that the source_model_cube contains a mask for the spectral extraction, which will then be performed on this data_cube. clobber To overwrite existing files set clobber=True verbose Toggle verbosity --- EXAMPLE OF USE --- """ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Checking shape of wavelengths and layer_scale_arr') if wavelengths.shape[0] != layer_scale_arr.shape[1]: sys.exit(' ---> Shape of wavelength vector ('+str(wavelengths.shape)+ ') and wavelength dimension of layer scale array ('+ layer_scale_arr.shape[1].shape+') do not match.') else: if verbose: print(' dimensions match; proceeding...') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Checking all sources have spectra in layer_scale_arr') maxsource = np.max(sourceIDs) if maxsource >= layer_scale_arr.shape[0]: sys.exit(' ---> Sources in list '+str(str(sourceIDs))+ ' not available among '+str(layer_scale_arr.shape[0])+' sources in layer_scale_arr.') else: if verbose: print(' All sources exist in layer_scale_arr; proceeding...') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Assembling object spectrum from source scaling') source_ent = np.asarray(sourceIDs).astype(int) if (layer_scale_arr == 1).all(): if verbose: print(' - All layer scales are 1; assuming source model cube contain mask for spectral extraction') object_cube = np.sum(np.abs(source_model_cube[source_ent,:,:]),axis=0) if data_cube is None: sys.exit(' ---> Did not find a data cube to extrac spectra from as expected') object_mask = (object_cube == 0) # masking all zeros in object mask invalid_mask = np.ma.masked_invalid(data_cube).mask comb_mask = (invalid_mask | object_mask) spec_1D_masked = np.sum(np.sum( np.ma.array(data_cube,mask=comb_mask) ,axis=1),axis=1) spec_1D = spec_1D_masked.filled(fill_value=0.0) if noise_cube is not None: if verbose: print(' Calculating noise as d_spec_k = sqrt( SUMij d_pix_ij**2 ), i.e., as the sqrt of variances summed') invalid_mask_noise = np.ma.masked_invalid(noise_cube).mask comb_mask = (comb_mask | invalid_mask_noise) variance_1D_masked = np.ma.array(noise_cube,mask=comb_mask)**2 noise_1D_masked = np.sqrt( np.sum( np.sum( variance_1D_masked, axis=1), axis=1) ) noise_1D = noise_1D_masked.filled(fill_value=np.nan) if verbose: print(' Generating S/N vector') SN_1D = spec_1D / noise_1D else: if verbose: print(' - No "noise_cube" provided. Setting all errors and S/N values to NaN') SN_1D = np.zeros(spec_1D.shape)*np.NaN noise_1D = np.zeros(spec_1D.shape)*np.NaN else: if verbose: print(' - Some layer scales are different from 1; hence assembling spectra using layer scales') if len(source_ent) < 1: spec_1D = layer_scale_arr[source_ent,:] else: spec_1D = np.sum( layer_scale_arr[source_ent,:],axis=0) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if noise_cube is not None: if verbose: print(' - Estimate S/N at each wavelength for 1D spectrum (see Eq. 16 of Kamann+2013)') if verbose: print(' Estimating fraction of flux in each pixel wrt. total flux in each layer') object_cube = np.sum((source_model_cube[source_ent,:,:,:]),axis=0) # summing source models for all source IDs fluxfrac_cube_sents = np.zeros(source_model_cube.shape[1:]) for sent in source_ent: object_cube_sent = np.sum((source_model_cube[[sent],:,:,:]),axis=0) # getting source model for model 'sent' fluxscale1D_sent = layer_scale_arr[sent,:] fluxfrac_cube_sent = object_cube_sent / fluxscale1D_sent[:,None,None] fluxfrac_cube_sents = fluxfrac_cube_sents + fluxfrac_cube_sent fluxfrac_cube = fluxfrac_cube_sents / len(source_ent) # renormalizing flux-fraction cube if verbose: print(' Defining pixel mask (ignoring NaN pixels) ') #+\ # 'and pixels with <'+str(fluxfrac_min)+' of total pixel flux in model cube) ' # pix_mask = (fluxfrac_cube < fluxfrac_min) invalid_mask1 = np.ma.masked_invalid(fluxfrac_cube).mask invalid_mask2 = np.ma.masked_invalid(noise_cube).mask # combining mask making sure all individual mask pixels have True for it to be true in combined mask comb_mask = (invalid_mask1 | invalid_mask2) # | pix_mask if verbose: print(' Calculating noise propogated as d_spec_k = 1/sqrt( SUMij (fluxfrac_ij**2 / d_pix_ij**2) )') squared_ratio = np.ma.array(fluxfrac_cube,mask=comb_mask)**2 / np.ma.array(noise_cube,mask=comb_mask)**2 inv_noise_masked = np.sqrt( np.sum( np.sum( squared_ratio, axis=1), axis=1) ) noise_1D = (1.0/inv_noise_masked).filled(fill_value=0.0) if verbose: print(' Generating S/N vector') SN_1D = spec_1D / noise_1D else: if verbose: print(' - No "noise_cube" provided. Setting all errors and S/N values to NaN') SN_1D = np.zeros(spec_1D.shape)*np.NaN noise_1D = np.zeros(spec_1D.shape)*np.NaN # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Saving extracted 1D spectrum and source cube to \n '+specname) mainHDU = afits.PrimaryHDU() # primary HDU # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - c1 = afits.Column(name='wave', format='D', unit='ANGSTROMS', array=wavelengths) c2 = afits.Column(name='flux', format='D', unit='', array=spec_1D) c3 = afits.Column(name='fluxerror', format='D', unit='', array=noise_1D) c4 = afits.Column(name='s2n', format='D', unit='', array=SN_1D) coldefs = afits.ColDefs([c1,c2,c3,c4]) th = afits.BinTableHDU.from_columns(coldefs) # creating default header # writing hdrkeys:'---KEY--', '----------------MAX LENGTH COMMENT-------------' th.header.append(('EXTNAME ','SPEC1D' ,'cube containing source'),end=True) head = th.header tbHDU = afits.BinTableHDU.from_columns(coldefs, header=head) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if obj_cube_hdr is not None: objHDU = afits.ImageHDU(object_cube) for hdrkey in list(obj_cube_hdr.keys()): if not hdrkey in list(objHDU.header.keys()): objHDU.header.append((hdrkey,obj_cube_hdr[hdrkey],obj_cube_hdr.comments[hdrkey]),end=True) try: objHDU.header.append(('EXTNAMEC',objHDU.header['EXTNAME'] ,'EXTNAME of original source cube'),end=True) del objHDU.header['EXTNAME'] except: pass objHDU.header.append(('EXTNAME ','SOURCECUBE' ,'cube containing source'),end=True) hdulist = afits.HDUList([mainHDU,tbHDU,objHDU]) else: hdulist = afits.HDUList([mainHDU,tbHDU]) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - hdulist.writeto(specname, overwrite=clobber) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - return wavelengths, spec_1D, noise_1D, object_cube # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = def extract_spectra_viasourcemodelcube(datacube,sourcemodelcube,wavelengths,speclist,specids='None',outputdir='./', noisecube=False,sourcemodel_hdr='None',verbose=True): """ Wrapper for tes.extract_spectrum_viasourcemodelcube() to extract mutliple spectra --- INPUT ---- datacube Datacube to extract spectra from sourcemodelcube Cube containing the source models for each object used as "extraction cube" Dimensions should be [Nsources,datacube.shape] wavelengths Wavelength vector to use for extracted 1D spectrum. speclist List of spectra to extract. Indexes corresponding to the source models in the sourcemodlecube specids List of IDs to use in naming of output for source models referred to in "speclist" outputdir Directory to store spectra to noisecube Cube with uncertainties (sqrt(variance)) of data cube to be used in extraction souremodel_hdr If not 'None' provide a basic fits header for the source model cubes extracted and they will be appended to the individual output fits file containing the extracted spectra. verbose Toggle verbosity --- EXAMPLE OF USE --- """ if verbose: print(' - Check that source models indicated are present in source model cube ') specnames = [] Nmodels = sourcemodelcube.shape[0] maxobj = np.max(speclist) if maxobj >= Nmodels: sys.exit(' ---> Object model "'+str(maxobj)+'" is not included in source model cube (models start at 0)') else: if verbose: print(' All object models appear to be included in the '+str(Nmodels)+' source models found in cube') if datacube.shape != sourcemodelcube[0].shape: sys.exit(' ---> Shape of datacube ('+str(datacube.shape)+') and shape of source models ('+ sourcemodelcube[0].shape+') do not match.') sourcemodel_sum = np.sum(sourcemodelcube,axis=0) for ss, spec in enumerate(speclist): if specids == 'None': specid = spec else: specid = specids[ss] specname = outputdir+'tdose_spectrum_'+str("%.12d" % specid)+'.fits' specnames.append(specname) sourcemodel = sourcemodelcube[spec,:,:,:] sourceweights = sourcemodel/sourcemodel_sum # fractional flux of model for given source in each pixel sourcemodel_hdr.append(('OBJMODEL',spec ,'Source model number in parent source model cube'),end=True) sourcemodel_hdr.append(('OBJID ',specid ,'ID of source'),end=True) if verbose: infostr = ' - Extracting spectrum '+str("%6.f" % (spec+1))+' / '+str("%6.f" % len(speclist)) sys.stdout.write("%s\r" % infostr) sys.stdout.flush() sourceoutput = tes.extract_spectrum_viasourcemodelcube(datacube,sourceweights,wavelengths,specname=specname, noisecube=noisecube,spec1Dmethod='sum', sourcecube_hdr=sourcemodel_hdr,verbose=verbose) if verbose: print('\n - Done extracting spectra. Returning list of fits files containing spectra') return specnames # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = def extract_spectrum_viasourcemodelcube(datacube,sourceweights,wavelengths, specname='tdose_extract_spectra_extractedspec.fits', noisecube=None,spec1Dmethod='sum',sourcecube_hdr='None',verbose=True): """ Extracting a spectrum from a data cube given a source model (cube) to be used as 'extraction cube' --- INPUT --- datacube Datacube to extract spectra from sourceweights Weights from source model to use as "extraction cube". The weights should contain the fractional flux belonging to the source in each pixel wavelengths Wavelength vector to use for extracted 1D spectrum. specname Name of spectrum to generate noisecube Cube with uncertainties (sqrt(variance)) of data cube to be used in extraction spec1Dmethod Method used to extract 1D spectrum from source cube with sourcecube_hdr If not 'None' provide a fits header for the source cube and it ill be appended to the output fits file. verbose Toggle verbosity --- EXAMPLE OF USE --- """ if verbose: print(' - Checking shape of data and source model cubes') if datacube.shape != sourceweights.shape: sys.exit(' ---> Shape of datacube ('+str(datacube.shape)+') and source weights ('+ sourceweights.shape+') do not match.') else: if verbose: print(' dimensions match; proceeding with extraction ') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Applying weights to "datacube" to obtain source cube ') sourcecube = datacube*sourceweights if noisecube is not None: if verbose: print(' - Using "noisecube" for error propagation ') datanoise = noisecube else: if verbose: print(' - No "noisecube" provided. Setting all errors to 1') datanoise = np.ones(datacube.shape) if verbose: print(' - Assuming uncertainty on source weights equals the datanoise when propgating errors') sourceweights_err = datanoise sourcecube_err = sourcecube * np.sqrt( (datanoise/datacube)**2 + (sourceweights_err/sourceweights)**2 ) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Generating 1D spectrum from source cube via:') spec_wave = wavelengths maskinvalid = np.ma.masked_invalid(sourcecube * sourcecube_err).mask if spec1Dmethod == 'sum': if verbose: print(' Simple summation of fluxes in sourcecube.') spec_flux = np.sum(np.sum(np.ma.array(sourcecube,mask=maskinvalid),axis=1),axis=1).filled() if verbose: print(' Errors are propagated as sum of squares.') spec_err = np.sqrt( np.sum( np.sum(np.ma.array(sourcecube_err,mask=maskinvalid)**2,axis=1),axis=1) ).filled() elif spec1Dmethod == 'sum_SNweight': pdb.set_trace() else: sys.exit(' ---> The chosen spec1Dmethod ('+str(spec1Dmethod)+') is invalid') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if verbose: print(' - Saving extracted 1D spectrum and source cube to \n '+specname) mainHDU = afits.PrimaryHDU() # primary HDU # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - c1 = afits.Column(name='wave', format='D', unit='ANGSTROMS', array=spec_wave) c2 = afits.Column(name='flux', format='D', unit='', array=spec_flux) c3 = afits.Column(name='fluxerror', format='D', unit='', array=spec_err) coldefs = afits.ColDefs([c1,c2,c3]) th = afits.BinTableHDU.from_columns(coldefs) # creating default header # writing hdrkeys:'---KEY--', '----------------MAX LENGTH COMMENT-------------' th.header.append(('EXTNAME ','SPEC1D' ,'cube containing source'),end=True) th.header.append(('SPECMETH' , spec1Dmethod ,'Method used for spectral extraction'),end=True) head = th.header tbHDU = afits.BinTableHDU.from_columns(coldefs, header=head) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if sourcecube_hdr != 'None': sourceHDU = afits.ImageHDU(sourcecube) # default HDU with default minimal header for hdrkey in list(sourcecube_hdr.keys()): if not hdrkey in list(sourceHDU.header.keys()): sourceHDU.header.append((hdrkey,sourcecube_hdr[hdrkey],sourcecube_hdr.comments[hdrkey]),end=True) sourceHDU.header.append(('EXTNAME ','SOURCECUBE' ,'cube containing source'),end=True) hdulist = afits.HDUList([mainHDU,tbHDU,sourceHDU]) else: hdulist = afits.HDUList([mainHDU,tbHDU]) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - hdulist.writeto(specname, overwrite=True) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - return sourcecube, sourcecube_err, spec_wave, spec_flux, spec_err # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = def plot_1Dspecs(filelist,plotname='./tdose_1Dspectra.pdf',colors=None,labels=None,plotSNcurve=False, tdose_wavecol='wave',tdose_fluxcol='flux',tdose_errcol='fluxerror', simsources=None,simsourcefile='/Users/kschmidt/work/TDOSE/mock_cube_sourcecat161213_all.fits', sim_cube_dim=None,comparisonspecs=None,comp_colors=['blue'],comp_labels=None, comp_wavecol='WAVE_AIR',comp_fluxcol='FLUX',comp_errcol='FLUXERR', xrange=None,yrange=None,showspecs=False,shownoise=True, skyspecs=None,sky_colors=['red'],sky_labels=['sky'], sky_wavecol='lambda',sky_fluxcol='data',sky_errcol='stat', showlinelists=None,linelistcolors=['gray'],smooth=0,ylog=False, plotratio=False, verbose=True,pubversion=False): """ Plots of multiple 1D spectra --- INPUT --- filelist List of spectra filenames to plot plotname Name of plot to generate colors Colors of the spectra in filelist to use labels Labels of the spectra in filelist to use plotSNcurve Show signal-to-noise curve instead of flux spectra tdose_wavecol Wavelength column of the spectra in filelist tdose_fluxcol Flux column of the spectra in filelist tdose_errcol Flux error column of the spectra in filelist simsources To plot simulated sources provide ids here simsourcefile Source file with simulated sources to plot sim_cube_dim Dimensions of simulated cubes comparisonspecs To plot comparison spectra provide the filenames of those here comp_colors Colors of the spectra in comparisonspecs list to use comp_labels Labels of the spectra in comparisonspecs list to use comp_wavecol Wavelength column of the spectra in comparisonspecs list comp_fluxcol Flux column of the spectra in comparisonspecs list comp_errcol Flux error column of the spectra in comparisonspecs list xrange Xrange of plot yrange Yrange of plot showspecs To show plot instead of storing it to disk set showspecs=True shownoise To add noise envelope around spectrum set shownoise=True skyspecs To plot sky spectra provide the filenames of those here sky_colors Colors of the spectra in skyspecs list to use sky_labels Labels of the spectra in skyspecs list to use sky_wavecol Wavelength column of the spectra in skyspecs list sky_fluxcol Flux column of the spectra in skyspecs list sky_errcol Flux error column of the spectra in skyspecs list showlinelists To show line lists provide a list of arrays of dimension (Nlines,2) where each row in the arrays contains [waveobs, name], where 'waveobs' is the observed wavelengths and 'name' is a string with the name of each of the Nlines postions to mark on the spectrum. linelistcolors List of colors for line lists provided in showlinelists smooth To smooth the spectra, provide sigma of the 1D gaussian smoothing kernel to apply. For smooth = 0, no smoothing is performed. ylog To plot y-axis in log scale set to true plotratio To plot the ratio between the main spectrum and the comparison spectra instead of the actual spectra, set this keyword to true. verbose Toggle verbosity pubversion Generate more publication friendly version of figure """ if len(filelist) == 1: if verbose: print(' - Plotting data from '+filelist[0]) else: if verbose: print(' - Plotting data from filelist ') if pubversion: fig = plt.figure(figsize=(6, 3)) fig.subplots_adjust(wspace=0.1, hspace=0.1,left=0.15, right=0.95, bottom=0.18, top=0.83) Fsize = 12 else: fig = plt.figure(figsize=(10, 3)) fig.subplots_adjust(wspace=0.1, hspace=0.1,left=0.06, right=0.81, bottom=0.15, top=0.95) Fsize = 10 # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Looking for flux units in spectra bunit = 'BUNIT FLUX' # Default BUNIT for unitspec in filelist: if bunit == 'BUNIT FLUX': try: sourcecubehdr = afits.open(unitspec)['SOURCECUBE'].header bunit = sourcecubehdr['BUNIT'] except: try: # Backwards compatibility to TDOSE v2.0 extractions sourcecubehdr = afits.open(unitspec)[2].header bunit = sourcecubehdr['BUNIT'] except: pass if bunit == 'BUNIT FLUX': if verbose: print(' - Did not find BUNIT in SOURCECUBE header for any spectra in filelist - are they not from TDOSE?') if bunit == '10**(-20)*erg/s/cm**2/Angstrom': # Making bunit LaTeXy for MUSE-Wide BUNIT format bunit = '1e-20 erg/s/cm$^2$/\AA' else: bunit = '$'+bunit+'$' # minimizing pronlems with LaTeXing plot axes # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - lthick = 1 plt.rc('text', usetex=True) plt.rc('font', family='serif',size=Fsize) plt.rc('xtick', labelsize=Fsize) plt.rc('ytick', labelsize=Fsize) plt.clf() plt.ioff() #plt.title(plotname.split('TDOSE 1D spectra'),fontsize=Fsize) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for ff, specfile in enumerate(filelist): specdat = afits.open(specfile)[1].data if colors is None: spec_color = None else: spec_color = colors[ff] if labels is None: spec_label = specfile else: spec_label = labels[ff] if xrange is not None: goodent = np.where((specdat[tdose_wavecol] > xrange[0]) & (specdat[tdose_wavecol] < xrange[1]))[0] if goodent == []: if verbose: print(' - The chosen xrange is not covered by the input spectrum. Plotting full spectrum') goodent = np.arange(len(specdat[tdose_wavecol])) else: goodent = np.arange(len(specdat[tdose_wavecol])) if plotSNcurve: try: s2ndat = specdat['s2n'][goodent] except: s2ndat = specdat[tdose_fluxcol][goodent]/specdat[tdose_errcol][goodent] if smooth > 0: s2ndat = snf.gaussian_filter(s2ndat, smooth) if not plotratio: plt.plot(specdat[tdose_wavecol][goodent],s2ndat,color=spec_color,lw=lthick, label=spec_label) ylabel = 'S/N' else: plt.plot(specdat[tdose_wavecol][goodent],s2ndat/s2ndat,color=spec_color,lw=lthick, label=None) ylabel = 'S/N ratio' #plotname = plotname.replace('.pdf','_S2N.pdf') else: fillalpha = 0.30 fluxdat = specdat[tdose_fluxcol][goodent] errlow = specdat[tdose_fluxcol][goodent]-specdat[tdose_errcol][goodent] errhigh = specdat[tdose_fluxcol][goodent]+specdat[tdose_errcol][goodent] if smooth > 0: fluxdat = snf.gaussian_filter(fluxdat, smooth) errlow = snf.gaussian_filter(errlow, smooth) errhigh = snf.gaussian_filter(errhigh, smooth) if smooth > 0: fluxdat = snf.gaussian_filter(fluxdat, smooth) if not plotratio: if shownoise: plt.fill_between(specdat[tdose_wavecol][goodent],errlow,errhigh, alpha=fillalpha,color=spec_color) plt.plot(specdat[tdose_wavecol][goodent],fluxdat, color=spec_color,lw=lthick, label=spec_label) ylabel = tdose_fluxcol else: plt.plot(specdat[tdose_wavecol][goodent],fluxdat/fluxdat, color=spec_color,lw=lthick, label=None) ylabel = tdose_fluxcol+' ratio ' # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if simsources is not None: sim_total = np.zeros(len(specdat[tdose_wavecol])) for sourcenumber in simsources: sourcedat = afits.open(simsourcefile)[1].data xpos = sourcedat['xpos'][sourcenumber] ypos = sourcedat['ypos'][sourcenumber] fluxscale = sourcedat['fluxscale'][sourcenumber] sourcetype = sourcedat['sourcetype'][sourcenumber] spectype = sourcedat['spectype'][sourcenumber] sourcecube = tbmc.gen_source_cube([ypos,xpos],fluxscale,sourcetype,spectype,cube_dim=sim_cube_dim, verbose=verbose,showsourceimgs=False) simspec = np.sum( np.sum(sourcecube, axis=1), axis=1) sim_total = sim_total + simspec if smooth > 0: simspec = snf.gaussian_filter(simspec, smooth) plt.plot(specdat[tdose_wavecol],simspec,'--',color='black',lw=lthick) plt.plot(specdat[tdose_wavecol],sim_total,'--',color='black',lw=lthick, label='Sim. spectrum: \nsimsource='+str(simsources)) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if comparisonspecs is not None: for cc, comparisonspec in enumerate(comparisonspecs): compdat = afits.open(comparisonspec)[1].data if xrange is not None: goodent = np.where((compdat[comp_wavecol] > xrange[0]) & (compdat[comp_wavecol] < xrange[1]))[0] if goodent == []: if verbose: print(' - The chosen xrange is not covered by the comparison spectrum. Plotting full spectrum') goodent = np.arange(len(compdat[comp_wavecol])) else: goodent = np.arange(len(compdat[comp_wavecol])) if comp_colors is None: comp_color = None else: comp_color = comp_colors[cc] if comp_labels is None: comp_label = comparisonspec else: comp_label = comp_labels[cc] if plotSNcurve: s2ncompdat = compdat[comp_fluxcol][goodent]/compdat[comp_errcol][goodent] if smooth > 0: s2ncompdat = snf.gaussian_filter(s2ncompdat, smooth) if not plotratio: plt.plot(compdat[comp_wavecol][goodent],s2ncompdat, color=comp_color,lw=lthick, label=comp_label) else: plt.plot(compdat[comp_wavecol][goodent],s2ndat/s2ncompdat, color=comp_color,lw=lthick, label=comp_label) else: fillalpha = 0.30 fluxcompdat = compdat[comp_fluxcol][goodent] errlow = compdat[comp_fluxcol][goodent]-compdat[comp_errcol][goodent] errhigh = compdat[comp_fluxcol][goodent]+compdat[comp_errcol][goodent] if smooth > 0: fluxcompdat = snf.gaussian_filter(fluxcompdat, smooth) errlow = snf.gaussian_filter(errlow, smooth) errhigh = snf.gaussian_filter(errhigh, smooth) if not plotratio: if shownoise: plt.fill_between(compdat[comp_wavecol][goodent],errlow,errhigh, alpha=fillalpha,color=comp_color) plt.plot(compdat[comp_wavecol][goodent],fluxcompdat, color=comp_color,lw=lthick, label=comp_label) else: plt.plot(compdat[comp_wavecol][goodent],fluxdat/fluxcompdat, color=comp_color,lw=lthick, label=comp_label) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if skyspecs is not None: for ss, skyspec in enumerate(skyspecs): skydat = afits.open(skyspec)[1].data if xrange is not None: goodent = np.where((skydat[sky_wavecol] > xrange[0]) & (skydat[sky_wavecol] < xrange[1]))[0] if goodent == []: if verbose: print(' - The chosen xrange is not covered by the sky spectrum. Plotting full spectrum') goodent = np.arange(len(skydat[sky_wavecol])) else: goodent = np.arange(len(skydat[sky_wavecol])) if sky_colors is None: sky_color = None else: sky_color = sky_colors[ss] if sky_labels is None: sky_label = skyspec else: sky_label = sky_labels[ss] if plotSNcurve: s2nsky = skydat[sky_fluxcol][goodent]/skydat[sky_errcol][goodent] if smooth > 0: s2nsky = snf.gaussian_filter(s2nsky, smooth) plt.plot(skydat[sky_wavecol][goodent],s2nsky, color=sky_color,lw=lthick, label=sky_label) else: fillalpha = 0.30 fluxsky = skydat[sky_fluxcol][goodent] errlow = skydat[sky_fluxcol][goodent]-skydat[sky_errcol][goodent] errhigh = skydat[sky_fluxcol][goodent]+skydat[sky_errcol][goodent] if smooth > 0: fluxsky = snf.gaussian_filter(fluxsky, smooth) errlow = snf.gaussian_filter(errlow, smooth) errhigh = snf.gaussian_filter(errhigh, smooth) if shownoise: plt.fill_between(skydat[sky_wavecol][goodent],errlow,errhigh, alpha=fillalpha,color=sky_color) plt.plot(skydat[sky_wavecol][goodent],fluxsky, color=sky_color,lw=lthick, label=sky_label) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if xrange is None: xvals = [4800,9300] else: xvals = xrange plt.plot(xvals,[0,0],'--k',lw=lthick) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - plt.xlabel('Wavelength [\AA]', fontsize=Fsize) if pubversion: if plotSNcurve: ylabel = 'Signal-to-Noise' else: ylabel = 'Flux ['+str(bunit)+']' if plotratio: ylabel = ylabel+' ratio' plt.ylabel(ylabel, fontsize=Fsize) if ylog: plt.yscale('log') if yrange is not None: plt.ylim(yrange) if xrange is not None: plt.xlim(xrange) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if showlinelists is not None: for sl, showlinelist in enumerate(showlinelists): ymin, ymax = plt.ylim() xmin, xmax = plt.xlim() for ww, wave in enumerate(showlinelist[:,0]): wave = float(wave) if (wave < xmax) & (wave > xmin): plt.plot([wave,wave],[ymin,ymax],linestyle='--',color=linelistcolors[sl],lw=lthick) plt.text(wave,ymin+1.03*np.abs([ymax-ymin]),showlinelist[:,1][ww],color=linelistcolors[sl], fontsize=Fsize-2., ha='center') # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if pubversion: leg = plt.legend(fancybox=True, loc='upper center',prop={'size':Fsize-2},ncol=4,numpoints=1, bbox_to_anchor=(0.44, 1.27)) # add the legend else: leg = plt.legend(fancybox=True, loc='upper right',prop={'size':Fsize},ncol=1,numpoints=1, bbox_to_anchor=(1.25, 1.03)) # add the legend leg.get_frame().set_alpha(0.7) if showspecs: if verbose: print(' Showing plot (not saving to file)') plt.show() else: if verbose: print(' Saving plot to',plotname) plt.savefig(plotname) plt.clf() plt.close('all') # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = def plot_histograms(datavectors,plotname='./tdose_cubehist.pdf',colors=None,labels=None,bins=None, xrange=None,yrange=None,verbose=True,norm=True,ylog=True): """ Plot histograms of a set of data vectors. --- INPUT --- datavectors Set of data vectors to plot histograms of plotname Name of plot to generate colors Colors to use for histograms labels Labels for the data vectors bins Bins to use for histograms. Can be generated with np.arange(minval,maxval+binwidth,binwidth) xrange Xrange of plot yrange Yrange of plot verbose Toggle verbosity norm Noramlize the histograms ylog Use a logarithmic y-axes when plotting """ Ndat = len(datavectors) if verbose: print(' - Plotting histograms of N = '+str(Ndat)+' data vectors') if colors is None: colors = ['blue']*Ndat if labels is None: labels = ['data vector no. '+str(ii+1) for ii in np.arange(Ndat)] if bins is None: bins = np.arange(-100,102,2) fig = plt.figure(figsize=(10, 3)) fig.subplots_adjust(wspace=0.1, hspace=0.1,left=0.08, right=0.81, bottom=0.1, top=0.95) Fsize = 10 lthick = 1 plt.rc('text', usetex=True) plt.rc('font', family='serif',size=Fsize) plt.rc('xtick', labelsize=Fsize) plt.rc('ytick', labelsize=Fsize) plt.clf() plt.ioff() #plt.title(plotname.split('TDOSE 1D spectra'),fontsize=Fsize) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for dd, datavec in enumerate(datavectors): hist = plt.hist(datavec[~np.isnan(datavec)],color=colors[dd],bins=bins,histtype="step",lw=lthick, label=labels[dd],normed=norm) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - if yrange is None: yvals = [1e-5,1e8] else: yvals = yrange plt.plot([0,0],yvals,'--k',lw=lthick) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - plt.xlabel('', fontsize=Fsize) plt.ylabel('\#', fontsize=Fsize) if yrange is not None: plt.ylim(yrange) if xrange is not None: plt.xlim(xrange) if ylog: plt.yscale('log') leg = plt.legend(fancybox=True, loc='upper right',prop={'size':Fsize},ncol=1,numpoints=1, bbox_to_anchor=(1.25, 1.03)) # add the legend leg.get_frame().set_alpha(0.7) if verbose: print(' Saving plot to',plotname) plt.savefig(plotname) plt.clf() plt.close('all') # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
mit
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/core/panelnd.py
14
4605
""" Factory methods to create N-D panels """ import warnings from pandas.compat import zip import pandas.compat as compat def create_nd_panel_factory(klass_name, orders, slices, slicer, aliases=None, stat_axis=2, info_axis=0, ns=None): """ manufacture a n-d class: DEPRECATED. Panelnd is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray package <http://xarray.pydata.org/en/stable/>`__. Pandas provides a `.to_xarray()` method to automate this conversion. Parameters ---------- klass_name : the klass name orders : the names of the axes in order (highest to lowest) slices : a dictionary that defines how the axes map to the slice axis slicer : the class representing a slice of this panel aliases : a dictionary defining aliases for various axes default = { major : major_axis, minor : minor_axis } stat_axis : the default statistic axis default = 2 info_axis : the info axis Returns ------- a class object representing this panel """ # if slicer is a name, get the object if isinstance(slicer, compat.string_types): import pandas try: slicer = getattr(pandas, slicer) except: raise Exception("cannot create this slicer [%s]" % slicer) # build the klass ns = {} if not ns else ns klass = type(klass_name, (slicer, ), ns) # setup the axes klass._setup_axes(axes=orders, info_axis=info_axis, stat_axis=stat_axis, aliases=aliases, slicers=slices) klass._constructor_sliced = slicer # define the methods #### def __init__(self, *args, **kwargs): # deprecation GH13564 warnings.warn("\n{klass} is deprecated and will be removed in a " "future version.\nThe recommended way to represent " "these types of n-dimensional data are with the\n" "`xarray package " "<http://xarray.pydata.org/en/stable/>`__.\n" "Pandas provides a `.to_xarray()` method to help " "automate this conversion.\n".format( klass=self.__class__.__name__), FutureWarning, stacklevel=2) if not (kwargs.get('data') or len(args)): raise Exception("must supply at least a data argument to [%s]" % klass_name) if 'copy' not in kwargs: kwargs['copy'] = False if 'dtype' not in kwargs: kwargs['dtype'] = None self._init_data(*args, **kwargs) klass.__init__ = __init__ def _get_plane_axes_index(self, axis): """ return the sliced index for this object """ # TODO: axis_name is not used, remove? axis_name = self._get_axis_name(axis) # noqa index = self._AXIS_ORDERS.index(axis) planes = [] if index: planes.extend(self._AXIS_ORDERS[0:index]) if index != self._AXIS_LEN: planes.extend(self._AXIS_ORDERS[index + 1:]) return planes klass._get_plane_axes_index = _get_plane_axes_index def _combine(self, other, func, axis=0): if isinstance(other, klass): return self._combine_with_constructor(other, func) return super(klass, self)._combine(other, func, axis=axis) klass._combine = _combine def _combine_with_constructor(self, other, func): # combine labels to form new axes new_axes = [] for a in self._AXIS_ORDERS: new_axes.append(getattr(self, a).union(getattr(other, a))) # reindex: could check that everything's the same size, but forget it d = dict([(a, ax) for a, ax in zip(self._AXIS_ORDERS, new_axes)]) d['copy'] = False this = self.reindex(**d) other = other.reindex(**d) result_values = func(this.values, other.values) return self._constructor(result_values, **d) klass._combine_with_constructor = _combine_with_constructor # set as NonImplemented operations which we don't support for f in ['to_frame', 'to_excel', 'to_sparse', 'groupby', 'join', 'filter', 'dropna', 'shift']: def func(self, *args, **kwargs): raise NotImplementedError("this operation is not supported") setattr(klass, f, func) # add the aggregate operations klass._add_aggregate_operations() klass._add_numeric_operations() return klass
mit
abimannans/scikit-learn
examples/linear_model/plot_logistic_path.py
349
1195
#!/usr/bin/env python """ ================================= Path with L1- Logistic Regression ================================= Computes path on IRIS dataset. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets from sklearn.svm import l1_min_c iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X -= np.mean(X, 0) ############################################################################### # Demo path functions cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3) print("Computing regularization path ...") start = datetime.now() clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) print("This took ", datetime.now() - start) coefs_ = np.array(coefs_) plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title('Logistic Regression Path') plt.axis('tight') plt.show()
bsd-3-clause
alee156/clviz
prototype/connectivity.py
2
8155
#!/usr/bin/env python #-*- coding:utf-8 -*- import matplotlib from matplotlib import pyplot as plt import numpy as np from numpy import linalg as LA import cv2 import math import plotly from plotly.graph_objs import * from plotly.offline import download_plotlyjs, init_notebook_mode, iplot from plotly import tools import time import collections as col from collections import OrderedDict import ast from ndreg import * import ndio.remote.neurodata as neurodata import nibabel as nib import networkx as nx import re import pandas as pd import requests import json import seaborn as sns import csv, gc from sklearn.manifold import spectral_embedding as se import scipy.sparse as sp plotly.offline.init_notebook_mode() def spec_clust(graphx, num_components): """ Function for doing the spectral embedding. :param graphx: :param num_components: :return: """ adj_mat = nx.adjacency_matrix(graphx) # result = se(adj_mat, n_components=num_components, drop_first=True) result = se(adj_mat, n_components=num_components, drop_first=False) return result def add_to_dict(d, region, index): if region in d: d[region].append(index) else: d[region] = [index] return d def get_adj_mat(regions_path): points = np.genfromtxt(regions_path, delimiter=',') x_dim = np.max(points[:, 0]) y_dim = np.max(points[:, 1]) z_dim = np.max(points[:, 2]) am = SparseMatrix(x_dim, y_dim, z_dim) for point in points: am.add(tuple(point[0:3]), point[4]) return am def get_dict_real(g, se_result, regions_path): nodes = g.nodes() points = np.genfromtxt(regions_path, delimiter=',') orig_dict = OrderedDict() d = {} sparse_mat = get_adj_mat(regions_path) for index, node in enumerate(nodes): s = g.node[node]['attr'] point = ast.literal_eval(s) region = sparse_mat.get(tuple(point)) # if region == -1: # # error # print 'FUCK' add_to_dict(d, region, index) for point in points: region = point[4] # if region in orig_dict: # orig_dict[region] = np.vstack((orig_dict[region], point[0:3])) # else: # orig_dict[region] = np.array([point[0:3]]) add_to_dict(orig_dict, region, point[0:3]) se_regions_nodes = {} se_regions = {} for key, value in d.iteritems(): index_list = value nodes_arr = np.array(nodes) pt_names = nodes_arr[index_list] se_pts = se_result[index_list] nodes_to_se = dict(zip(pt_names, se_pts)) # maps from node names to embedded point coordinates se_regions_nodes[key] = nodes_to_se se_regions[key] = se_pts return se_regions, orig_dict, se_regions_nodes def create_connectivity_graph(orig_avg_dict, se_avg_dict, max_dist=0.02): g = nx.Graph() for key, avg in se_avg_dict.iteritems(): for key2, avg2 in se_avg_dict.iteritems(): avg_np = np.array(avg) avg2_np = np.array(avg2) diff = np.linalg.norm(avg_np - avg2_np) diff = max_dist if diff > max_dist else diff g.add_edge(key, key2, weight=diff) # Setting the coordinate attribute for each region node to the average of that region. for key, avg in orig_avg_dict.iteritems(): g.node[key]['attr'] = avg return g def get_connectivity_hard(eig_dict, orig_dict=None, max_dist=0.02): """ Uses create_connectivity_graph. :param eig_dict: :param orig_dict: :return: """ eigenvector_index = 1 # the second smallest eigenvector avg_dict = {} orig_avg_dict = OrderedDict() # dict that maps from region to most connected region con_dict = OrderedDict() orig_con_dict = OrderedDict() if orig_dict != None: # Getting the original averages. for key, region in orig_dict.iteritems(): tmp_x = [] tmp_y = [] y_vals = [] for j in range(len(region)): y_vals.append(region[j]) y_vals = np.array(y_vals) x_avg = np.mean(y_vals[:, 0]) y_avg = np.mean(y_vals[:, 1]) z_avg = np.mean(y_vals[:, 2]) orig_avg_dict[key] = [x_avg, y_avg, z_avg] # avg = np.mean(y_vals) # orig_avg_dict[key] = avg # print 'orignal averages' # print orig_avg_dict # Getting connectivity for original points. for key, avg in orig_avg_dict.iteritems(): min_key = '' min_diff = float('inf') for key2, avg2 in orig_avg_dict.iteritems(): if key2 == key: continue avg_np = np.array(avg) avg2_np = np.array(avg2) diff = np.linalg.norm(avg_np - avg2_np) if diff < min_diff: min_diff = diff min_key = key2 orig_con_dict[float(key)] = [float(min_key), min_diff] # Getting the average first 2 eigenvector components for each of the regions for key, region in eig_dict.iteritems(): # print(key) y_vals = [] for j in range(len(region)): y_vals.append(region[j]) y_vals = np.array(y_vals) x_avg = np.mean(y_vals[:, 0]) y_avg = np.mean(y_vals[:, 1]) z_avg = np.mean(y_vals[:, 2]) avg_dict[key] = [x_avg, y_avg, z_avg] # print('getcon avg_dict') # print(avg_dict) # Computing connectivity between regions using the distance between averages for key, avg in avg_dict.iteritems(): min_key = '' min_diff = float('inf') for key2, avg2 in avg_dict.iteritems(): if key2 == key: continue avg_np = np.array(avg) avg2_np = np.array(avg2) diff = np.linalg.norm(avg_np - avg2_np) if diff < min_diff: min_diff = diff min_key = key2 con_dict[float(key)] = [float(min_key), min_diff] con_dict = OrderedDict(sorted(con_dict.items())) orig_con_dict = OrderedDict(sorted(orig_con_dict.items())) g = create_connectivity_graph(orig_avg_dict, avg_dict, max_dist) if orig_dict == None: return con_dict else: return con_dict, orig_con_dict, g class SparseMatrix: def __init__(self, x, y, z): # self._max_index = 0 x_dim = x y_dim = y z_dim = z self._vector = {} def add(self, index, value): # vector starts at index one, because it reads from the file and the file # always has the index of the features start at 1 self._vector[index] = value # if index > self._max_index: # self._max_index = index def get(self, index): # if the index doesn't exist in the dict, return 0 because it's sparse anyways if index in self._vector: return self._vector[index] return -1 def get_sparse_matrix(self): return self._vector # return self._vector.keys() # def get_full_vector(self, size=None): # """ Returns a full vector of features as a numpy array. """ # size = (self._max_index + 1) if size == None else size # full_vector = np.zeros(size) # 0 indexed # for key, value in self._vector.iteritems(): # full_vector[key] = value # return full_vector def __str__(self): return str(self._vector) def plot_con_mat(con_adj_mat, output_path=None, show=False): title = 'Connectivity Heatmap' data = [ Heatmap( z = con_adj_mat, # x = con_graph.nodes(), # y = con_graph.nodes() ) ] layout = Layout( title = title, xaxis=dict(title='region'), yaxis=dict(title='region') ) fig = Figure(data=data, layout=layout) if show: iplot(fig) if output_path != None: plotly.offline.plot(fig, filename=output_path) return fig
apache-2.0
sanketloke/scikit-learn
sklearn/linear_model/tests/test_omp.py
272
7752
# Author: Vlad Niculae # Licence: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
eshasharma/mase
src/old/lib.py
13
4501
from __future__ import print_function, unicode_literals from __future__ import absolute_import, division """ # Lib: Standard Utilities Standard imports: used everywhere. ## Code Standards Narrow code (52 chars, max); use ``i'', not ``self'', set indent to two characters, In a repo (or course). Markdown comments (which means we can do tricks like auto-generating this documentation from comments in the file). Not Python3, but use Python3 headers. good reseraoiuces for advance people: Norving's infrenqencly asked questions David Isaacon's Pything tips, tricks, and Hacks.http://www.siafoo.net/article/52 Environemnt that supports matplotlib, scikitlearn. Easy to get there. Old school: install linux. New school: install virtualbox. Newer school: work online. To checn if you ahve a suseful envorunment, try the following (isntall pip, matpolotlib, scikitlearn) Learn Python. Learn tdd Attitude to coding. not code byt"set yourself up to et rapid feedback on some issue" """ import random, pprint, re, datetime, time,traceback from contextlib import contextmanager import pprint,sys """ Unit test engine, inspired by Kent Beck. """ def ok(*lst): for one in lst: unittest(one) return one class unittest: tries = fails = 0 # tracks the record so far @staticmethod def score(): t = unittest.tries f = unittest.fails return "# TRIES= %s FAIL= %s %%PASS = %s%%" % ( t,f,int(round(t*100/(t+f+0.001)))) def __init__(i,test): unittest.tries += 1 try: test() except Exception,e: unittest.fails += 1 i.report(e,test) def report(i,e,test): print(traceback.format_exc()) print(unittest.score(),':',test.__name__, e) """ Simple container class (offers simple initialization). """ class o: def __init__(i,**d) : i + d def __add__(i,d) : i.__dict__.update(d) def __setitem__(i,k,v) : i.__dict__[k] = v def __getitem__(i,k) : return i.__dict__[k] def __repr__(i) : return str(i.items()) def items(i,x=None) : x = x or i if isinstance(x,o): return [(k,i.items(v)) for k,v in x.__dict__.values() if not k[0] == "_" ] else: return x """ The settings system. """ the = o() def setting(f): name = f.__name__ def wrapper(**d): tmp = f() tmp + d the[name] = tmp return tmp wrapper() return wrapper @setting def LIB(): return o( seed = 1, has = o(decs = 3, skip="_", wicked=True), show = o(indent=2, width=80) ) #------------------------------------------------- r = random.random any = random.choice seed = random.seed isa = isinstance def lt(x,y): return x < y def gt(x,y): return x > y def first(lst): return lst[0] def last(lst): return lst[-1] def shuffle(lst): random.shuffle(lst) return lst def ntiles(lst, tiles=[0.1,0.3,0.5,0.7,0.9], norm=False, f=3): if norm: lo,hi = lst[0], lst[-1] lst= g([(x - lo)/(hi-lo+0.0001) for x in lst],f) at = lambda x: lst[ int(len(lst)*x) ] lst = [ at(tile) for tile in tiles ] return lst def say(*lst): sys.stdout.write(', '.join(map(str,lst))) sys.stdout.flush() def g(lst,f=3): return map(lambda x: round(x,f),lst) #------------------------------------------------- def show(x, indent=None, width=None): print(pprint.pformat(has(x), indent= indent or the.LIB.show.indent, width = width or the.LIB.show.width)) def cache(f): name = f.__name__ def wrapper(i): i._cache = i._cache or {} key = (name, i.id) if key in i._cache: x = i._cache[key] else: x = f(i) # sigh, gonna have to call it i._cache[key] = x # ensure ache holds 'c' return x return wrapper @contextmanager def duration(): t1 = time.time() yield t2 = time.time() print("\n" + "-" * 72) print("# Runtime: %.3f secs" % (t2-t1)) def use(x,**y): return (x,y) @contextmanager def settings(*usings): for (using, override) in usings: using(**override) yield for (using,_) in usings: using() @contextmanager def study(what,*usings): print("\n#" + "-" * 50, "\n#", what, "\n#", datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S")) for (using, override) in usings: using(**override) seed(the.LIB.seed) show(the) with duration(): yield for (using,_) in usings: using()
unlicense
khkaminska/scikit-learn
sklearn/linear_model/tests/test_logistic.py
59
35368
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse import scipy from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_grad_hess, _multinomial_grad_hess, _logistic_loss, ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification from sklearn.metrics import log_loss X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() sp_version = tuple([int(s) for s in scipy.__version__.split('.')]) def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" assert_raise_message(ValueError, msg, LogisticRegression(C=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LogisticRegression(C="test").fit, X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1) msg = "Maximum number of iteration must be positive" assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='sag', tol=1e-2, multi_class='ovr', random_state=42)]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_check_solver_option(): X, y = iris.data, iris.target for LR in [LogisticRegression, LogisticRegressionCV]: msg = ("Logistic Regression supports only liblinear, newton-cg, lbfgs" " and sag solvers, got wrong_name") lr = LR(solver="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) msg = "multi_class should be either multinomial or ovr, got wrong_name" lr = LR(solver='newton-cg', multi_class="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) # all solver except 'newton-cg' and 'lfbgs' for solver in ['liblinear', 'sag']: msg = ("Solver %s does not support a multinomial backend." % solver) lr = LR(solver=solver, multi_class='multinomial') assert_raise_message(ValueError, msg, lr.fit, X, y) # all solvers except 'liblinear' for solver in ['newton-cg', 'lbfgs', 'sag']: msg = ("Solver %s supports only l2 penalties, got l1 penalty." % solver) lr = LR(solver=solver, penalty='l1') assert_raise_message(ValueError, msg, lr.fit, X, y) msg = ("Solver %s supports only dual=False, got dual=True" % solver) lr = LR(solver=solver, dual=True) assert_raise_message(ValueError, msg, lr.fit, X, y) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'): coefs, Cs, _ = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-5, solver=solver, random_state=0) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-5, random_state=0) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4, err_msg="with solver = %s" % solver) # test for fit_intercept=True for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'): Cs = [1e3] coefs, Cs, _ = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-6, solver=solver, intercept_scaling=10000., random_state=0) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000., random_state=0) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4, err_msg="with solver = %s" % solver) def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" assert_raise_message(AssertionError, msg, assert_array_almost_equal, lr1.coef_, lr3.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_interp_2 = _logistic_loss(w, X, y, alpha=1.) grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha) loss_interp = _logistic_loss(w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) grad, hess = _logistic_grad_hess(w, X_, y, alpha) loss = _logistic_loss(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) ncg = LogisticRegression(solver='newton-cg', fit_intercept=False) lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) lib = LogisticRegression(fit_intercept=False) sag = LogisticRegression(solver='sag', fit_intercept=False, random_state=42) ncg.fit(X, y) lbf.fit(X, y) sag.fit(X, y) lib.fit(X, y) assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=3) assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=3) assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=3) assert_array_almost_equal(sag.coef_, lib.coef_, decimal=3) assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=3) assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) tol = 1e-6 ncg = LogisticRegression(solver='newton-cg', fit_intercept=False, tol=tol) lbf = LogisticRegression(solver='lbfgs', fit_intercept=False, tol=tol) lib = LogisticRegression(fit_intercept=False, tol=tol) sag = LogisticRegression(solver='sag', fit_intercept=False, tol=tol, max_iter=1000, random_state=42) ncg.fit(X, y) lbf.fit(X, y) sag.fit(X, y) lib.fit(X, y) assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=4) assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=4) assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=4) assert_array_almost_equal(sag.coef_, lib.coef_, decimal=4) assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=4) assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=balanced X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='balanced') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='balanced') clf_lib.fit(X, y) clf_sag = LogisticRegressionCV(solver='sag', fit_intercept=False, class_weight='balanced', max_iter=2000) clf_sag.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_sag.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_sag.coef_, decimal=4) def test_logistic_regression_sample_weights(): X, y = make_classification(n_samples=20, n_features=5, n_informative=3, n_classes=2, random_state=0) for LR in [LogisticRegression, LogisticRegressionCV]: # Test that liblinear fails when sample weights are provided clf_lib = LR(solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y, sample_weight=np.ones(y.shape[0])) # Test that passing sample_weight as ones is the same as # not passing them at all (default None) clf_sw_none = LR(solver='lbfgs', fit_intercept=False) clf_sw_none.fit(X, y) clf_sw_ones = LR(solver='lbfgs', fit_intercept=False) clf_sw_ones.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(clf_sw_none.coef_, clf_sw_ones.coef_, decimal=4) # Test that sample weights work the same with the lbfgs, # newton-cg, and 'sag' solvers clf_sw_lbfgs = LR(solver='lbfgs', fit_intercept=False) clf_sw_lbfgs.fit(X, y, sample_weight=y + 1) clf_sw_n = LR(solver='newton-cg', fit_intercept=False) clf_sw_n.fit(X, y, sample_weight=y + 1) clf_sw_sag = LR(solver='sag', fit_intercept=False, max_iter=2000, tol=1e-7) clf_sw_sag.fit(X, y, sample_weight=y + 1) assert_array_almost_equal(clf_sw_lbfgs.coef_, clf_sw_n.coef_, decimal=4) assert_array_almost_equal(clf_sw_lbfgs.coef_, clf_sw_sag.coef_, decimal=4) # Test that passing class_weight as [1,2] is the same as # passing class weight = [1,1] but adjusting sample weights # to be 2 for all instances of class 2 clf_cw_12 = LR(solver='lbfgs', fit_intercept=False, class_weight={0: 1, 1: 2}) clf_cw_12.fit(X, y) sample_weight = np.ones(y.shape[0]) sample_weight[y == 1] = 2 clf_sw_12 = LR(solver='lbfgs', fit_intercept=False) clf_sw_12.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(clf_cw_12.coef_, clf_sw_12.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[0] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.) def test_logreg_cv_penalty(): # Test that the correct penalty is passed to the final fit. X, y = make_classification(n_samples=50, n_features=20, random_state=0) lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear') lr_cv.fit(X, y) lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear') lr.fit(X, y) assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_)) def test_logreg_predict_proba_multinomial(): X, y = make_classification(n_samples=10, n_features=20, random_state=0, n_classes=3, n_informative=10) # Predicted probabilites using the true-entropy loss should give a # smaller loss than those using the ovr method. clf_multi = LogisticRegression(multi_class="multinomial", solver="lbfgs") clf_multi.fit(X, y) clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_ovr = LogisticRegression(multi_class="ovr", solver="lbfgs") clf_ovr.fit(X, y) clf_ovr_loss = log_loss(y, clf_ovr.predict_proba(X)) assert_greater(clf_ovr_loss, clf_multi_loss) # Predicted probabilites using the soft-max function should give a # smaller loss than those using the logistic function. clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_wrong_loss = log_loss(y, clf_multi._predict_proba_lr(X)) assert_greater(clf_wrong_loss, clf_multi_loss) @ignore_warnings def test_max_iter(): # Test that the maximum number of iteration is reached X, y_bin = iris.data, iris.target.copy() y_bin[y_bin == 2] = 0 solvers = ['newton-cg', 'liblinear', 'sag'] # old scipy doesn't have maxiter if sp_version >= (0, 12): solvers.append('lbfgs') for max_iter in range(1, 5): for solver in solvers: lr = LogisticRegression(max_iter=max_iter, tol=1e-15, random_state=0, solver=solver) lr.fit(X, y_bin) assert_equal(lr.n_iter_[0], max_iter) def test_n_iter(): # Test that self.n_iter_ has the correct format. X, y = iris.data, iris.target y_bin = y.copy() y_bin[y_bin == 2] = 0 n_Cs = 4 n_cv_fold = 2 for solver in ['newton-cg', 'liblinear', 'sag', 'lbfgs']: # OvR case n_classes = 1 if solver == 'liblinear' else np.unique(y).shape[0] clf = LogisticRegression(tol=1e-2, multi_class='ovr', solver=solver, C=1., random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes,)) n_classes = np.unique(y).shape[0] clf = LogisticRegressionCV(tol=1e-2, multi_class='ovr', solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs)) clf.fit(X, y_bin) assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs)) # multinomial case n_classes = 1 if solver in ('liblinear', 'sag'): break clf = LogisticRegression(tol=1e-2, multi_class='multinomial', solver=solver, C=1., random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes,)) clf = LogisticRegressionCV(tol=1e-2, multi_class='multinomial', solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs)) clf.fit(X, y_bin) assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs)) @ignore_warnings def test_warm_start(): # A 1-iteration second fit on same data should give almost same result # with warm starting, and quite different result without warm starting. # Warm starting does not work with liblinear solver. X, y = iris.data, iris.target solvers = ['newton-cg', 'sag'] # old scipy doesn't have maxiter if sp_version >= (0, 12): solvers.append('lbfgs') for warm_start in [True, False]: for fit_intercept in [True, False]: for solver in solvers: for multi_class in ['ovr', 'multinomial']: if solver == 'sag' and multi_class == 'multinomial': break clf = LogisticRegression(tol=1e-4, multi_class=multi_class, warm_start=warm_start, solver=solver, random_state=42, max_iter=100, fit_intercept=fit_intercept) clf.fit(X, y) coef_1 = clf.coef_ clf.max_iter = 1 with ignore_warnings(): clf.fit(X, y) cum_diff = np.sum(np.abs(coef_1 - clf.coef_)) msg = ("Warm starting issue with %s solver in %s mode " "with fit_intercept=%s and warm_start=%s" % (solver, multi_class, str(fit_intercept), str(warm_start))) if warm_start: assert_greater(2.0, cum_diff, msg) else: assert_greater(cum_diff, 2.0, msg)
bsd-3-clause
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/sklearn/metrics/tests/test_ranking.py
3
43099
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.exceptions import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`. Note that this implementation fails on some edge cases. For example, for constant predictions e.g. [0.5, 0.5, 0.5], y_true = [1, 0, 0] returns an average precision of 0.33... but y_true = [0, 0, 1] returns 1.0. """ pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def _average_precision_slow(y_true, y_score): """A second alternative implementation of average precision that closely follows the Wikipedia article's definition (see References). This should give identical results as `average_precision_score` for all inputs. References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ """ precision, recall, threshold = precision_recall_curve(y_true, y_score) precision = list(reversed(precision)) recall = list(reversed(recall)) average_precision = 0 for i in range(1, len(precision)): average_precision += precision[i] * (recall[i] - recall[i - 1]) return average_precision def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) expected_auc = _auc(y_true, probas_pred) for drop in [True, False]: fpr, tpr, thresholds = roc_curve(y_true, probas_pred, drop_intermediate=drop) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no positive sample in y_true tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] # assert UndefinedMetricWarning because of no negative sample in y_true tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_roc_curve_drop_intermediate(): # Test that drop_intermediate drops the correct thresholds y_true = [0, 0, 0, 0, 1, 1] y_score = [0., 0.2, 0.5, 0.6, 0.7, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1., 0.7, 0.]) # Test dropping thresholds with repeating scores y_true = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] y_score = [0., 0.1, 0.6, 0.6, 0.7, 0.8, 0.9, 0.6, 0.7, 0.8, 0.9, 0.9, 1.0] tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True) assert_array_almost_equal(thresholds, [1.0, 0.9, 0.7, 0.6, 0.]) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_binary_clf_curve(): rng = check_random_state(404) y_true = rng.randint(0, 3, size=10) y_pred = rng.rand(10) msg = "multiclass format is not supported" assert_raise_message(ValueError, msg, precision_recall_curve, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = _average_precision_slow(y_true, probas_pred) assert_array_almost_equal(precision_recall_auc, 0.859, 3) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, decimal=3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) # Here we are doing a terrible prediction: we are always getting # it wrong, hence the average_precision_score is the accuracy at # chance: 50% assert_almost_equal(auc_prc, 0.5) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .5) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .5) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.5) def test_average_precision_constant_values(): # Check the average_precision_score of a constant predictor is # the TPR # Generate a dataset with 25% of positives y_true = np.zeros(100, dtype=int) y_true[::4] = 1 # And a constant score y_score = np.ones(100) # The precision is then the fraction of positive whatever the recall # is, as there is only one threshold: assert_equal(average_precision_score(y_true, y_score), .25) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities # This test was expanded (added scaled_down) in response to github # issue #3864 (and others), where overly aggressive rounding was causing # problems for users with very small y_score values y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled_up = roc_auc_score(y_true, 100 * probas_pred) roc_auc_scaled_down = roc_auc_score(y_true, 1e-6 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled_up) assert_equal(roc_auc, roc_auc_scaled_down) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled_up = average_precision_score(y_true, 100 * probas_pred) pr_auc_scaled_down = average_precision_score(y_true, 1e-6 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled_up) assert_equal(pr_auc, pr_auc_scaled_down) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
mit
droundy/deft
papers/thesis-kirstie/figs/plot_LJ_Potential.py
1
1142
#!/usr/bin/python3 #RUN this program from the directory it is listed in #with command ./plot_LJ_Potential.py from scipy import special import numpy as np import matplotlib.pyplot as plt import math #Plot WCA Potential vs r #R=1/1.781797436 #for a sigma=1 DOESN'T WORK!! graph wrong shape! R=1/1.781797436 epsilon=1 sigma=1 #print sigma #r=np.linspace(.1, 2*R, 200) #r=np.linspace(.9, 4, 200) #SAVE!!! for plotting r r=np.linspace(.9, 2.5, 200) r_dless=sigma/r #plot dimensionless quantity! sigma_over_r_to_pow6=(r_dless)*(r_dless)*(r_dless)*(r_dless)*(r_dless)*(r_dless) #V=4*epsilon*(sigma_over_r_to_pow6*sigma_over_r_to_pow6 - sigma_over_r_to_pow6) + epsilon #WCA potential #V=4*epsilon*(sigma_over_r_to_pow6*sigma_over_r_to_pow6 - sigma_over_r_to_pow6) #LJ potential but looks like WCA V=4*epsilon*(sigma_over_r_to_pow6*sigma_over_r_to_pow6 - sigma_over_r_to_pow6) #LJ potential plt.plot(1/r_dless,V) plt.xlim(right=2.5) plt.ylim(top=V.max()) plt.xlabel('r/$\sigma$') #plt.xlabel('r') plt.ylabel('V(r)/$\epsilon$') plt.title('Leonard-Jones Potential') #plt.legend() plt.savefig("LJ_Potential.pdf") # plt.show()
gpl-2.0
FowlerLab/Enrich2
enrich2/seqlib.py
1
15885
from __future__ import print_function import logging import os.path import pandas as pd import numpy as np from collections import OrderedDict from matplotlib.backends.backend_pdf import PdfPages import sys from .plots import counts_plot from .storemanager import StoreManager, fix_filename, ELEMENT_LABELS class SeqLib(StoreManager): """ Abstract class for handling count data from a single sequencing library. """ # Note: the following block is referenced by line number above # When adding new messages, update the documentation line numbers also! filter_messages = OrderedDict( [ ("min quality", "single-base quality"), ("avg quality", "average quality"), ("max N", "excess N bases"), ("chastity", "not chaste"), ("remove unresolvable", "unresolvable mismatch"), ("merge failure", "unable to merge reads"), ("total", "total"), ] ) store_suffix = "lib" def __init__(self): StoreManager.__init__(self) self.logger = logging.getLogger("{}.{}".format(__name__, self.__class__)) self.timepoint = None self.counts_file = None self.report_filtered = None self._filters = dict() self.filter_stats = dict() self.default_filters = dict() self.default_filters.update({"min quality": 0}) self.default_filters.update({"max N": sys.maxsize}) self.default_filters.update({"avg quality": 0}) self.default_filters.update({"chastity": False}) @property def filters(self): return self._filters @filters.setter def filters(self, config_filters): """ Set up the filters dictionary using the options selected in *config_filters*, filling in missing entries with defaults. """ self._filters.clear() self._filters.update(self.default_filters) unused = list() for key in config_filters: if key in self._filters: if config_filters[key] is not None: self._filters[key] = config_filters[key] else: unused.append(key) if len(unused) > 0: self.logger.warning( "Unused filter parameters ({})" "".format(", ".join(unused)) ) self.filter_stats.clear() for key in self._filters: self.filter_stats[key] = 0 self.filter_stats["total"] = 0 def serialize_filters(self): """ Return a dictionary of filtering options that have non-default values. """ cfg = dict() for key in self.filters.keys(): if self.filters[key] != self.default_filters[key]: cfg[key] = self.filters[key] return cfg def _children(self): """ These objects have no children. Returns ``None``. """ return None def add_child(self, child): """ No children, raises an AttributeError. """ raise AttributeError("SeqLib objects do not support adding children") def remove_child_id(self, tree_id): """ No children, raises an AttributeError. """ raise AttributeError("SeqLib objects do not support removing children") def validate(self): """ Validates paramaters for a configured SeqLib. Currently does nothing. """ pass def has_wt_sequence(self): """ Returns whether or not the object has a wild type sequence. Returns ``False`` unless overloaded by a derived class (such as :py:class:`~seqlib.seqlib.VariantSeqLib`). """ return False def configure(self, cfg): """ Set up the object using the config object *cfg*, usually derived from a ``.json`` file. """ StoreManager.configure(self, cfg) self.logger = logging.getLogger( "{}.{} - {}".format(__name__, self.__class__.__name__, self.name) ) try: self.timepoint = int(cfg["timepoint"]) if "report filtered reads" in cfg: self.report_filtered = cfg["report filtered reads"] else: self.report_filtered = False if "counts file" in cfg: self.counts_file = cfg["counts file"] else: self.counts_file = None except KeyError as key: raise KeyError( "Missing required config value {key}" "".format(key=key), self.name ) except ValueError as value: raise ValueError( "Invalid parameter value {value}" "".format(value=value), self.name ) def serialize(self): """ Format this object (and its children) as a config object suitable for dumping to a config file. """ cfg = StoreManager.serialize(self) cfg["timepoint"] = self.timepoint cfg["report filtered reads"] = self.report_filtered if self.counts_file is not None: cfg["counts file"] = self.counts_file return cfg def calculate(self): """ Pure virtual method that defines how the data are counted. """ raise NotImplementedError("must be implemented by subclass") def report_filtered_read(self, fq, filter_flags): """ Write the :py:class:`~fqread.FQRead` object *fq* to the ``DEBUG`` log. The dictionary *filter_flags* contains ``True`` values for each filtering option that applies to *fq*. Keys in *filter_flags* are converted to messages using the ``SeqLib.filter_messages`` dictionary. """ self.logger.debug( "Filtered read ({messages})\n{read!s}".format( messages=", ".join( SeqLib.filter_messages[x] for x in filter_flags if filter_flags[x] ), name=self.name, read=fq, ) ) def save_counts(self, label, df_dict, raw): """ Convert the counts in the dictionary *df_dict* into a DataFrame object and save it to the data store. If *raw* is ``True``, the counts are stored under ``"/raw/label/counts"``; else ``"/main/label/counts"``. """ if len(df_dict.keys()) == 0: raise ValueError("Failed to count {} [{}]".format(label, self.name)) df = pd.DataFrame.from_dict(df_dict, orient="index", dtype=np.int32) df.columns = ["count"] df.sort_values("count", ascending=False, inplace=True) self.logger.info( "Counted {n} {label} ({u} unique)".format( n=df["count"].sum(), u=len(df.index), label=label ) ) if raw: key = "/raw/{}/counts".format(label) else: key = "/main/{}/counts".format(label) self.store.put(key, df, format="table", data_columns=df.columns) del df def save_filtered_counts(self, label, query): """ Filter the counts in ``"/raw/label/counts"`` using the *query* string and store the result in ``"/main/label/counts"`` For more information on building query strings, see http://pandas.pydata.org/pandas-docs/stable/io.html#querying-a-table """ self.logger.info("Converting raw {} counts to main counts".format(label)) raw_table = "/raw/{}/counts".format(label) main_table = "/main/{}/counts".format(label) self.map_table(source=raw_table, destination=main_table, source_query=query) self.logger.info( "Counted {n} {label} ({u} unique) after query".format( n=self.store[main_table]["count"].sum(), u=len(self.store[main_table].index), label=label, ) ) def report_filter_stats(self): """ Create report file for the number of filtered reads. The report file is located in the output directory, named ``SeqLibName.filter.txt``. It contains the number of reads filtered for each category, plus the total number filtered. .. note:: Reads are checked for all quality-based criteria before \ filtering. """ with open( os.path.join(self.output_dir, fix_filename(self.name) + ".filter.txt"), "w" ) as handle: for key in sorted( self.filter_stats, key=self.filter_stats.__getitem__, reverse=True ): if key != "total" and self.filter_stats[key] > 0: print( SeqLib.filter_messages[key], self.filter_stats[key], sep="\t", file=handle, ) print("total", self.filter_stats["total"], sep="\t", file=handle) self.logger.info("Wrote filtering statistics") def save_filter_stats(self): """ Save a DataFrame containing the number of filtered reads under ``'/raw/filter'``. This DataFrame contains the same information as ``report_filter_stats`` """ df = pd.DataFrame(index=SeqLib.filter_messages.values(), columns=["count"]) for key in self.filter_stats.keys(): if self.filter_stats[key] > 0 or key == "total": df.loc[SeqLib.filter_messages[key], "count"] = self.filter_stats[key] df.dropna(inplace=True) self.store.put( "/raw/filter", df.astype(int), format="table", data_columns=df.columns ) def read_quality_filter(self, fq): """ Check the quality of the FQRead object *fq*. Checks ``'chastity'``, ``'min quality'``, ``'avg quality'``, ``'max N'``, and ``'remove unresolvable'``. Counts failed reads for later output and reports the filtered read if desired. Returns ``True`` if the read passes all filters, else ``False``. """ filter_flags = dict() for key in self.filters: filter_flags[key] = False if self.filters["chastity"]: if not fq.is_chaste(): self.filter_stats["chastity"] += 1 filter_flags["chastity"] = True if self.filters["min quality"] > 0: if fq.min_quality() < self.filters["min quality"]: self.filter_stats["min quality"] += 1 filter_flags["min quality"] = True if self.filters["avg quality"] > 0: if fq.mean_quality() < self.filters["avg quality"]: self.filter_stats["avg quality"] += 1 filter_flags["avg quality"] = True if self.filters["max N"] >= 0: if fq.sequence.upper().count("N") > self.filters["max N"]: self.filter_stats["max N"] += 1 filter_flags["max N"] = True if "remove unresolvable" in self.filters: # OverlapSeqLib only if self.filters["remove unresolvable"]: if "X" in fq.sequence: self.filter_stats["remove unresolvable"] += 1 filter_flags["remove unresolvable"] = True # update total and report if failed if any(filter_flags.values()): self.filter_stats["total"] += 1 if self.report_filtered: self.report_filtered_read(fq, filter_flags) return False else: return True def make_plots(self): """ Make plots that are shared by all :py:class:`~seqlib.seqlib.SeqLib` objects. Creates counts histograms for all labels. """ if self.plots_requested: self.logger.info("Creating plots") pdf = PdfPages(os.path.join(self.plot_dir, "counts.pdf")) for label in self.labels: counts_plot(self, label, pdf, log=True) counts_plot(self, label, pdf, log=False) pdf.close() def write_tsv(self): """ Write each table from the store to its own tab-separated file. Files are written to a ``tsv`` directory in the default output location. File names are the HDF5 key with ``'_'`` substituted for ``'/'``. """ if self.tsv_requested: self.logger.info("Generating tab-separated output files") for k in self.store.keys(): self.write_table_tsv(k) def counts_from_file_h5(self, fname): """ If an HDF store containing raw counts has been specified, open the store, copy those counts into this store, and close the counts store. Copies all tables in the ``'/raw'`` group along with their metadata. """ store = pd.HDFStore(fname) self.logger.info( "Using existing HDF5 data store '{}' for raw data" "".format(fname) ) # this could probably be much more efficient, but the PyTables docs # don't explain copying subsets of files adequately raw_keys = [key for key in store.keys() if key.startswith("/raw/")] if len(raw_keys) == 0: raise ValueError( "No raw counts found in '{}' [{}]" "".format(fname, self.name) ) else: for k in raw_keys: # copy the data table raw = store[k] self.store.put(k, raw, format="table", data_columns=raw.columns) # copy the metadata self.set_metadata(k, self.get_metadata(k, store=store), update=False) self.logger.info("Copied raw data '{}'".format(k)) store.close() def counts_from_file_tsv(self, fname): """ If a counts file in tsv format has been specified, read the counts into a new dataframe and save as raw counts. """ df = pd.read_table(fname, sep="\t", header=0, index_col=0) if df.columns != ["count"]: raise ValueError( "Invalid column names for counts file [{}]" "".format(self.name) ) if len(df) == 0: raise ValueError("Empty counts file [{}]".format(self.name)) label = None for elem in ELEMENT_LABELS: if elem in self.labels: label = elem break if label is None: raise ValueError("No valid element labels [{}]".format(self.name)) key = "/raw/{}/counts".format(label) self.store.put(key, df, format="table", data_columns=df.columns, dtype=np.int32) def counts_from_file(self, fname): """Get raw counts from a counts file instead of FASTQ_ file. The ``'/raw/<element>/counts'`` table will be populated using the given input file. The input file should be a two-column file readable by ``pandas`` as a series or two-column dataframe or an Enrich2 HDF5 file. If the input file is a two-column file, the index will be checked using the SeqLib's ``validate_index()`` method. If the input file is an HDF5 file, the entire set of ``'/raw'`` tables will be copied over, with the metadata intact. """ if not os.path.exists(fname): raise IOError("Counts file '{}' not found [{}]" "".format(fname, self.name)) elif os.path.splitext(fname)[-1].lower() in (".h5"): self.counts_from_file_h5(self.counts_file) elif os.path.splitext(fname)[-1].lower() in (".txt", ".tsv", ".csv"): self.counts_from_file_tsv(self.counts_file) else: raise ValueError( "Unrecognized counts file extension for '{}' " "[{}]".format(fname, self.name) )
bsd-3-clause
q1ang/scikit-learn
examples/preprocessing/plot_function_transformer.py
161
1949
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.cross_validation import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() plt.scatter(X[:, 0], X[:, 1], c=y, s=50) plt.show() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, s=50, ) plt.show()
bsd-3-clause
khkaminska/scikit-learn
examples/ensemble/plot_forest_importances.py
241
1761
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(10): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(10), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(10), indices) plt.xlim([-1, 10]) plt.show()
bsd-3-clause
iismd17/scikit-learn
sklearn/metrics/setup.py
299
1024
import os import os.path import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("metrics", parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension("pairwise_fast", sources=["pairwise_fast.c"], include_dirs=[os.path.join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
apache/spark
python/pyspark/sql/tests/test_pandas_udf_window.py
18
12998
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from pyspark.sql.utils import AnalysisException from pyspark.sql.functions import array, explode, col, lit, mean, min, max, rank, \ udf, pandas_udf, PandasUDFType from pyspark.sql.window import Window from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest if have_pandas: from pandas.testing import assert_frame_equal @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] class WindowPandasUDFTests(ReusedSQLTestCase): @property def data(self): return self.spark.range(10).toDF('id') \ .withColumn("vs", array([lit(i * 1.0) + col('id') for i in range(20, 30)])) \ .withColumn("v", explode(col('vs'))) \ .drop('vs') \ .withColumn('w', lit(1.0)) @property def python_plus_one(self): @udf('double') def plus_one(v): assert isinstance(v, float) return v + 1 return plus_one @property def pandas_scalar_time_two(self): return pandas_udf(lambda v: v * 2, 'double') @property def pandas_agg_count_udf(self): @pandas_udf('long', PandasUDFType.GROUPED_AGG) def count(v): return len(v) return count @property def pandas_agg_mean_udf(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def avg(v): return v.mean() return avg @property def pandas_agg_max_udf(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def max(v): return v.max() return max @property def pandas_agg_min_udf(self): @pandas_udf('double', PandasUDFType.GROUPED_AGG) def min(v): return v.min() return min @property def unbounded_window(self): return Window.partitionBy('id') \ .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing).orderBy('v') @property def ordered_window(self): return Window.partitionBy('id').orderBy('v') @property def unpartitioned_window(self): return Window.partitionBy() @property def sliding_row_window(self): return Window.partitionBy('id').orderBy('v').rowsBetween(-2, 1) @property def sliding_range_window(self): return Window.partitionBy('id').orderBy('v').rangeBetween(-2, 4) @property def growing_row_window(self): return Window.partitionBy('id').orderBy('v').rowsBetween(Window.unboundedPreceding, 3) @property def growing_range_window(self): return Window.partitionBy('id').orderBy('v') \ .rangeBetween(Window.unboundedPreceding, 4) @property def shrinking_row_window(self): return Window.partitionBy('id').orderBy('v').rowsBetween(-2, Window.unboundedFollowing) @property def shrinking_range_window(self): return Window.partitionBy('id').orderBy('v') \ .rangeBetween(-3, Window.unboundedFollowing) def test_simple(self): df = self.data w = self.unbounded_window mean_udf = self.pandas_agg_mean_udf result1 = df.withColumn('mean_v', mean_udf(df['v']).over(w)) expected1 = df.withColumn('mean_v', mean(df['v']).over(w)) result2 = df.select(mean_udf(df['v']).over(w)) expected2 = df.select(mean(df['v']).over(w)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) def test_multiple_udfs(self): df = self.data w = self.unbounded_window result1 = df.withColumn('mean_v', self.pandas_agg_mean_udf(df['v']).over(w)) \ .withColumn('max_v', self.pandas_agg_max_udf(df['v']).over(w)) \ .withColumn('min_w', self.pandas_agg_min_udf(df['w']).over(w)) expected1 = df.withColumn('mean_v', mean(df['v']).over(w)) \ .withColumn('max_v', max(df['v']).over(w)) \ .withColumn('min_w', min(df['w']).over(w)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_replace_existing(self): df = self.data w = self.unbounded_window result1 = df.withColumn('v', self.pandas_agg_mean_udf(df['v']).over(w)) expected1 = df.withColumn('v', mean(df['v']).over(w)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_mixed_sql(self): df = self.data w = self.unbounded_window mean_udf = self.pandas_agg_mean_udf result1 = df.withColumn('v', mean_udf(df['v'] * 2).over(w) + 1) expected1 = df.withColumn('v', mean(df['v'] * 2).over(w) + 1) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_mixed_udf(self): df = self.data w = self.unbounded_window plus_one = self.python_plus_one time_two = self.pandas_scalar_time_two mean_udf = self.pandas_agg_mean_udf result1 = df.withColumn( 'v2', plus_one(mean_udf(plus_one(df['v'])).over(w))) expected1 = df.withColumn( 'v2', plus_one(mean(plus_one(df['v'])).over(w))) result2 = df.withColumn( 'v2', time_two(mean_udf(time_two(df['v'])).over(w))) expected2 = df.withColumn( 'v2', time_two(mean(time_two(df['v'])).over(w))) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) def test_without_partitionBy(self): df = self.data w = self.unpartitioned_window mean_udf = self.pandas_agg_mean_udf result1 = df.withColumn('v2', mean_udf(df['v']).over(w)) expected1 = df.withColumn('v2', mean(df['v']).over(w)) result2 = df.select(mean_udf(df['v']).over(w)) expected2 = df.select(mean(df['v']).over(w)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) def test_mixed_sql_and_udf(self): df = self.data w = self.unbounded_window ow = self.ordered_window max_udf = self.pandas_agg_max_udf min_udf = self.pandas_agg_min_udf result1 = df.withColumn('v_diff', max_udf(df['v']).over(w) - min_udf(df['v']).over(w)) expected1 = df.withColumn('v_diff', max(df['v']).over(w) - min(df['v']).over(w)) # Test mixing sql window function and window udf in the same expression result2 = df.withColumn('v_diff', max_udf(df['v']).over(w) - min(df['v']).over(w)) expected2 = expected1 # Test chaining sql aggregate function and udf result3 = df.withColumn('max_v', max_udf(df['v']).over(w)) \ .withColumn('min_v', min(df['v']).over(w)) \ .withColumn('v_diff', col('max_v') - col('min_v')) \ .drop('max_v', 'min_v') expected3 = expected1 # Test mixing sql window function and udf result4 = df.withColumn('max_v', max_udf(df['v']).over(w)) \ .withColumn('rank', rank().over(ow)) expected4 = df.withColumn('max_v', max(df['v']).over(w)) \ .withColumn('rank', rank().over(ow)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) assert_frame_equal(expected2.toPandas(), result2.toPandas()) assert_frame_equal(expected3.toPandas(), result3.toPandas()) assert_frame_equal(expected4.toPandas(), result4.toPandas()) def test_array_type(self): df = self.data w = self.unbounded_window array_udf = pandas_udf(lambda x: [1.0, 2.0], 'array<double>', PandasUDFType.GROUPED_AGG) result1 = df.withColumn('v2', array_udf(df['v']).over(w)) self.assertEqual(result1.first()['v2'], [1.0, 2.0]) def test_invalid_args(self): df = self.data w = self.unbounded_window with QuietTest(self.sc): with self.assertRaisesRegex( AnalysisException, '.*not supported within a window function'): foo_udf = pandas_udf(lambda x: x, 'v double', PandasUDFType.GROUPED_MAP) df.withColumn('v2', foo_udf(df['v']).over(w)) def test_bounded_simple(self): from pyspark.sql.functions import mean, max, min, count df = self.data w1 = self.sliding_row_window w2 = self.shrinking_range_window plus_one = self.python_plus_one count_udf = self.pandas_agg_count_udf mean_udf = self.pandas_agg_mean_udf max_udf = self.pandas_agg_max_udf min_udf = self.pandas_agg_min_udf result1 = df.withColumn('mean_v', mean_udf(plus_one(df['v'])).over(w1)) \ .withColumn('count_v', count_udf(df['v']).over(w2)) \ .withColumn('max_v', max_udf(df['v']).over(w2)) \ .withColumn('min_v', min_udf(df['v']).over(w1)) expected1 = df.withColumn('mean_v', mean(plus_one(df['v'])).over(w1)) \ .withColumn('count_v', count(df['v']).over(w2)) \ .withColumn('max_v', max(df['v']).over(w2)) \ .withColumn('min_v', min(df['v']).over(w1)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_growing_window(self): from pyspark.sql.functions import mean df = self.data w1 = self.growing_row_window w2 = self.growing_range_window mean_udf = self.pandas_agg_mean_udf result1 = df.withColumn('m1', mean_udf(df['v']).over(w1)) \ .withColumn('m2', mean_udf(df['v']).over(w2)) expected1 = df.withColumn('m1', mean(df['v']).over(w1)) \ .withColumn('m2', mean(df['v']).over(w2)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_sliding_window(self): from pyspark.sql.functions import mean df = self.data w1 = self.sliding_row_window w2 = self.sliding_range_window mean_udf = self.pandas_agg_mean_udf result1 = df.withColumn('m1', mean_udf(df['v']).over(w1)) \ .withColumn('m2', mean_udf(df['v']).over(w2)) expected1 = df.withColumn('m1', mean(df['v']).over(w1)) \ .withColumn('m2', mean(df['v']).over(w2)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_shrinking_window(self): from pyspark.sql.functions import mean df = self.data w1 = self.shrinking_row_window w2 = self.shrinking_range_window mean_udf = self.pandas_agg_mean_udf result1 = df.withColumn('m1', mean_udf(df['v']).over(w1)) \ .withColumn('m2', mean_udf(df['v']).over(w2)) expected1 = df.withColumn('m1', mean(df['v']).over(w1)) \ .withColumn('m2', mean(df['v']).over(w2)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) def test_bounded_mixed(self): from pyspark.sql.functions import mean, max df = self.data w1 = self.sliding_row_window w2 = self.unbounded_window mean_udf = self.pandas_agg_mean_udf max_udf = self.pandas_agg_max_udf result1 = df.withColumn('mean_v', mean_udf(df['v']).over(w1)) \ .withColumn('max_v', max_udf(df['v']).over(w2)) \ .withColumn('mean_unbounded_v', mean_udf(df['v']).over(w1)) expected1 = df.withColumn('mean_v', mean(df['v']).over(w1)) \ .withColumn('max_v', max(df['v']).over(w2)) \ .withColumn('mean_unbounded_v', mean(df['v']).over(w1)) assert_frame_equal(expected1.toPandas(), result1.toPandas()) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_udf_window import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
ndingwall/scikit-learn
sklearn/metrics/_plot/tests/test_plot_det_curve.py
11
2224
import pytest import numpy as np from numpy.testing import assert_allclose from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.metrics import det_curve from sklearn.metrics import plot_det_curve @pytest.fixture(scope="module") def data(): return load_iris(return_X_y=True) @pytest.fixture(scope="module") def data_binary(data): X, y = data return X[y < 2], y[y < 2] @pytest.mark.parametrize( "response_method", ["predict_proba", "decision_function"] ) @pytest.mark.parametrize("with_sample_weight", [True, False]) @pytest.mark.parametrize("with_strings", [True, False]) def test_plot_det_curve( pyplot, response_method, data_binary, with_sample_weight, with_strings ): X, y = data_binary pos_label = None if with_strings: y = np.array(["c", "b"])[y] pos_label = "c" if with_sample_weight: rng = np.random.RandomState(42) sample_weight = rng.randint(1, 4, size=(X.shape[0])) else: sample_weight = None lr = LogisticRegression() lr.fit(X, y) viz = plot_det_curve( lr, X, y, alpha=0.8, sample_weight=sample_weight, ) y_pred = getattr(lr, response_method)(X) if y_pred.ndim == 2: y_pred = y_pred[:, 1] fpr, fnr, _ = det_curve( y, y_pred, sample_weight=sample_weight, pos_label=pos_label, ) assert_allclose(viz.fpr, fpr) assert_allclose(viz.fnr, fnr) assert viz.estimator_name == "LogisticRegression" # cannot fail thanks to pyplot fixture import matplotlib as mpl # noqal assert isinstance(viz.line_, mpl.lines.Line2D) assert viz.line_.get_alpha() == 0.8 assert isinstance(viz.ax_, mpl.axes.Axes) assert isinstance(viz.figure_, mpl.figure.Figure) assert viz.line_.get_label() == "LogisticRegression" expected_pos_label = 1 if pos_label is None else pos_label expected_ylabel = ( f"False Negative Rate (Positive label: {expected_pos_label})" ) expected_xlabel = ( f"False Positive Rate (Positive label: {expected_pos_label})" ) assert viz.ax_.get_ylabel() == expected_ylabel assert viz.ax_.get_xlabel() == expected_xlabel
bsd-3-clause
mjudsp/Tsallis
sklearn/metrics/tests/test_score_objects.py
23
15933
import pickle import tempfile import shutil import os import numbers import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_not_equal from sklearn.base import BaseEstimator from sklearn.metrics import (f1_score, r2_score, roc_auc_score, fbeta_score, log_loss, precision_score, recall_score) from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.scorer import (check_scoring, _PredictScorer, _passthrough_scorer) from sklearn.metrics import make_scorer, get_scorer, SCORERS from sklearn.svm import LinearSVC from sklearn.pipeline import make_pipeline from sklearn.cluster import KMeans from sklearn.dummy import DummyRegressor from sklearn.linear_model import Ridge, LogisticRegression from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.datasets import make_blobs from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import load_diabetes from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.externals import joblib REGRESSION_SCORERS = ['r2', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error'] CLF_SCORERS = ['accuracy', 'f1', 'f1_weighted', 'f1_macro', 'f1_micro', 'roc_auc', 'average_precision', 'precision', 'precision_weighted', 'precision_macro', 'precision_micro', 'recall', 'recall_weighted', 'recall_macro', 'recall_micro', 'log_loss', 'adjusted_rand_score' # not really, but works ] MULTILABEL_ONLY_SCORERS = ['precision_samples', 'recall_samples', 'f1_samples'] def _make_estimators(X_train, y_train, y_ml_train): # Make estimators that make sense to test various scoring methods sensible_regr = DummyRegressor(strategy='median') sensible_regr.fit(X_train, y_train) sensible_clf = DecisionTreeClassifier(random_state=0) sensible_clf.fit(X_train, y_train) sensible_ml_clf = DecisionTreeClassifier(random_state=0) sensible_ml_clf.fit(X_train, y_ml_train) return dict( [(name, sensible_regr) for name in REGRESSION_SCORERS] + [(name, sensible_clf) for name in CLF_SCORERS] + [(name, sensible_ml_clf) for name in MULTILABEL_ONLY_SCORERS] ) X_mm, y_mm, y_ml_mm = None, None, None ESTIMATORS = None TEMP_FOLDER = None def setup_module(): # Create some memory mapped data global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS TEMP_FOLDER = tempfile.mkdtemp(prefix='sklearn_test_score_objects_') X, y = make_classification(n_samples=30, n_features=5, random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) filename = os.path.join(TEMP_FOLDER, 'test_data.pkl') joblib.dump((X, y, y_ml), filename) X_mm, y_mm, y_ml_mm = joblib.load(filename, mmap_mode='r') ESTIMATORS = _make_estimators(X_mm, y_mm, y_ml_mm) def teardown_module(): global X_mm, y_mm, y_ml_mm, TEMP_FOLDER, ESTIMATORS # GC closes the mmap file descriptors X_mm, y_mm, y_ml_mm, ESTIMATORS = None, None, None, None shutil.rmtree(TEMP_FOLDER) class EstimatorWithoutFit(object): """Dummy estimator to test check_scoring""" pass class EstimatorWithFit(BaseEstimator): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self class EstimatorWithFitAndScore(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): return self def score(self, X, y): return 1.0 class EstimatorWithFitAndPredict(object): """Dummy estimator to test check_scoring""" def fit(self, X, y): self.y = y return self def predict(self, X): return self.y class DummyScorer(object): """Dummy scorer that always returns 1.""" def __call__(self, est, X, y): return 1 def test_all_scorers_repr(): # Test that all scorers have a working repr for name, scorer in SCORERS.items(): repr(scorer) def test_check_scoring(): # Test all branches of check_scoring estimator = EstimatorWithoutFit() pattern = (r"estimator should be an estimator implementing 'fit' method," r" .* was passed") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) estimator = EstimatorWithFitAndScore() estimator.fit([[1]], [1]) scorer = check_scoring(estimator) assert_true(scorer is _passthrough_scorer) assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFitAndPredict() estimator.fit([[1]], [1]) pattern = (r"If no scoring is specified, the estimator passed should have" r" a 'score' method\. The estimator .* does not\.") assert_raises_regexp(TypeError, pattern, check_scoring, estimator) scorer = check_scoring(estimator, "accuracy") assert_almost_equal(scorer(estimator, [[1]], [1]), 1.0) estimator = EstimatorWithFit() scorer = check_scoring(estimator, "accuracy") assert_true(isinstance(scorer, _PredictScorer)) estimator = EstimatorWithFit() scorer = check_scoring(estimator, allow_none=True) assert_true(scorer is None) def test_check_scoring_gridsearchcv(): # test that check_scoring works on GridSearchCV and pipeline. # slightly redundant non-regression test. grid = GridSearchCV(LinearSVC(), param_grid={'C': [.1, 1]}) scorer = check_scoring(grid, "f1") assert_true(isinstance(scorer, _PredictScorer)) pipe = make_pipeline(LinearSVC()) scorer = check_scoring(pipe, "f1") assert_true(isinstance(scorer, _PredictScorer)) # check that cross_val_score definitely calls the scorer # and doesn't make any assumptions about the estimator apart from having a # fit. scores = cross_val_score(EstimatorWithFit(), [[1], [2], [3]], [1, 0, 1], scoring=DummyScorer()) assert_array_equal(scores, 1) def test_make_scorer(): # Sanity check on the make_scorer factory function. f = lambda *args: 0 assert_raises(ValueError, make_scorer, f, needs_threshold=True, needs_proba=True) def test_classification_scores(): # Test classification scorers. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LinearSVC(random_state=0) clf.fit(X_train, y_train) for prefix, metric in [('f1', f1_score), ('precision', precision_score), ('recall', recall_score)]: score1 = get_scorer('%s_weighted' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='weighted') assert_almost_equal(score1, score2) score1 = get_scorer('%s_macro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='macro') assert_almost_equal(score1, score2) score1 = get_scorer('%s_micro' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=None, average='micro') assert_almost_equal(score1, score2) score1 = get_scorer('%s' % prefix)(clf, X_test, y_test) score2 = metric(y_test, clf.predict(X_test), pos_label=1) assert_almost_equal(score1, score2) # test fbeta score that takes an argument scorer = make_scorer(fbeta_score, beta=2) score1 = scorer(clf, X_test, y_test) score2 = fbeta_score(y_test, clf.predict(X_test), beta=2) assert_almost_equal(score1, score2) # test that custom scorer can be pickled unpickled_scorer = pickle.loads(pickle.dumps(scorer)) score3 = unpickled_scorer(clf, X_test, y_test) assert_almost_equal(score1, score3) # smoke test the repr: repr(fbeta_score) def test_regression_scorers(): # Test regression scorers. diabetes = load_diabetes() X, y = diabetes.data, diabetes.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = Ridge() clf.fit(X_train, y_train) score1 = get_scorer('r2')(clf, X_test, y_test) score2 = r2_score(y_test, clf.predict(X_test)) assert_almost_equal(score1, score2) def test_thresholded_scorers(): # Test scorers that take thresholds. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = LogisticRegression(random_state=0) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) score3 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) assert_almost_equal(score1, score3) logscore = get_scorer('log_loss')(clf, X_test, y_test) logloss = log_loss(y_test, clf.predict_proba(X_test)) assert_almost_equal(-logscore, logloss) # same for an estimator without decision_function clf = DecisionTreeClassifier() clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1]) assert_almost_equal(score1, score2) # test with a regressor (no decision_function) reg = DecisionTreeRegressor() reg.fit(X_train, y_train) score1 = get_scorer('roc_auc')(reg, X_test, y_test) score2 = roc_auc_score(y_test, reg.predict(X_test)) assert_almost_equal(score1, score2) # Test that an exception is raised on more than two classes X, y = make_blobs(random_state=0, centers=3) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf.fit(X_train, y_train) assert_raises(ValueError, get_scorer('roc_auc'), clf, X_test, y_test) def test_thresholded_scorers_multilabel_indicator_data(): # Test that the scorer work with multilabel-indicator format # for multilabel and multi-output multi-class classifier X, y = make_multilabel_classification(allow_unlabeled=False, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) # Multi-output multi-class predict_proba clf = DecisionTreeClassifier() clf.fit(X_train, y_train) y_proba = clf.predict_proba(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p[:, -1] for p in y_proba).T) assert_almost_equal(score1, score2) # Multi-output multi-class decision_function # TODO Is there any yet? clf = DecisionTreeClassifier() clf.fit(X_train, y_train) clf._predict_proba = clf.predict_proba clf.predict_proba = None clf.decision_function = lambda X: [p[:, 1] for p in clf._predict_proba(X)] y_proba = clf.decision_function(X_test) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, np.vstack(p for p in y_proba).T) assert_almost_equal(score1, score2) # Multilabel predict_proba clf = OneVsRestClassifier(DecisionTreeClassifier()) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.predict_proba(X_test)) assert_almost_equal(score1, score2) # Multilabel decision function clf = OneVsRestClassifier(LinearSVC(random_state=0)) clf.fit(X_train, y_train) score1 = get_scorer('roc_auc')(clf, X_test, y_test) score2 = roc_auc_score(y_test, clf.decision_function(X_test)) assert_almost_equal(score1, score2) def test_unsupervised_scorers(): # Test clustering scorers against gold standard labeling. # We don't have any real unsupervised Scorers yet. X, y = make_blobs(random_state=0, centers=2) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) km = KMeans(n_clusters=3) km.fit(X_train) score1 = get_scorer('adjusted_rand_score')(km, X_test, y_test) score2 = adjusted_rand_score(y_test, km.predict(X_test)) assert_almost_equal(score1, score2) @ignore_warnings def test_raises_on_score_list(): # Test that when a list of scores is returned, we raise proper errors. X, y = make_blobs(random_state=0) f1_scorer_no_average = make_scorer(f1_score, average=None) clf = DecisionTreeClassifier() assert_raises(ValueError, cross_val_score, clf, X, y, scoring=f1_scorer_no_average) grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average, param_grid={'max_depth': [1, 2]}) assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_scorer_sample_weight(): # Test that scorers support sample_weight or raise sensible errors # Unlike the metrics invariance test, in the scorer case it's harder # to ensure that, on the classifier output, weighted and unweighted # scores really should be unequal. X, y = make_classification(random_state=0) _, y_ml = make_multilabel_classification(n_samples=X.shape[0], random_state=0) split = train_test_split(X, y, y_ml, random_state=0) X_train, X_test, y_train, y_test, y_ml_train, y_ml_test = split sample_weight = np.ones_like(y_test) sample_weight[:10] = 0 # get sensible estimators for each metric estimator = _make_estimators(X_train, y_train, y_ml_train) for name, scorer in SCORERS.items(): if name in MULTILABEL_ONLY_SCORERS: target = y_ml_test else: target = y_test try: weighted = scorer(estimator[name], X_test, target, sample_weight=sample_weight) ignored = scorer(estimator[name], X_test[10:], target[10:]) unweighted = scorer(estimator[name], X_test, target) assert_not_equal(weighted, unweighted, msg="scorer {0} behaves identically when " "called with sample weights: {1} vs " "{2}".format(name, weighted, unweighted)) assert_almost_equal(weighted, ignored, err_msg="scorer {0} behaves differently when " "ignoring samples and setting sample_weight to" " 0: {1} vs {2}".format(name, weighted, ignored)) except TypeError as e: assert_true("sample_weight" in str(e), "scorer {0} raises unhelpful exception when called " "with sample weights: {1}".format(name, str(e))) @ignore_warnings # UndefinedMetricWarning for P / R scores def check_scorer_memmap(scorer_name): scorer, estimator = SCORERS[scorer_name], ESTIMATORS[scorer_name] if scorer_name in MULTILABEL_ONLY_SCORERS: score = scorer(estimator, X_mm, y_ml_mm) else: score = scorer(estimator, X_mm, y_mm) assert isinstance(score, numbers.Number), scorer_name def test_scorer_memmap_input(): # Non-regression test for #6147: some score functions would # return singleton memmap when computed on memmap data instead of scalar # float values. for name in SCORERS.keys(): yield check_scorer_memmap, name
bsd-3-clause
bloyl/mne-python
tutorials/inverse/30_mne_dspm_loreta.py
3
5666
""" .. _tut-inverse-methods: Source localization with MNE/dSPM/sLORETA/eLORETA ================================================= The aim of this tutorial is to teach you how to compute and apply a linear minimum-norm inverse method on evoked/raw/epochs data. """ import os.path as op import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import sample from mne.minimum_norm import make_inverse_operator, apply_inverse ############################################################################### # Process MEG data data_path = sample.data_path() raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_filt-0-40_raw.fif') raw = mne.io.read_raw_fif(raw_fname) # already has an average reference events = mne.find_events(raw, stim_channel='STI 014') event_id = dict(aud_l=1) # event trigger and conditions tmin = -0.2 # start of each epoch (200ms before the trigger) tmax = 0.5 # end of each epoch (500ms after the trigger) raw.info['bads'] = ['MEG 2443', 'EEG 053'] baseline = (None, 0) # means from the first instant to t = 0 reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=('meg', 'eog'), baseline=baseline, reject=reject) ############################################################################### # Compute regularized noise covariance # ------------------------------------ # For more details see :ref:`tut-compute-covariance`. noise_cov = mne.compute_covariance( epochs, tmax=0., method=['shrunk', 'empirical'], rank=None, verbose=True) fig_cov, fig_spectra = mne.viz.plot_cov(noise_cov, raw.info) ############################################################################### # Compute the evoked response # --------------------------- # Let's just use the MEG channels for simplicity. evoked = epochs.average().pick('meg') evoked.plot(time_unit='s') evoked.plot_topomap(times=np.linspace(0.05, 0.15, 5), ch_type='mag', time_unit='s') ############################################################################### # It's also a good idea to look at whitened data: evoked.plot_white(noise_cov, time_unit='s') del epochs, raw # to save memory ############################################################################### # Inverse modeling: MNE/dSPM on evoked and raw data # ------------------------------------------------- # Here we first read the forward solution. You will likely need to compute # one for your own data -- see :ref:`tut-forward` for information on how # to do it. fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif' fwd = mne.read_forward_solution(fname_fwd) ############################################################################### # Next, we make an MEG inverse operator. inverse_operator = make_inverse_operator( evoked.info, fwd, noise_cov, loose=0.2, depth=0.8) del fwd # You can write it to disk with:: # # >>> from mne.minimum_norm import write_inverse_operator # >>> write_inverse_operator('sample_audvis-meg-oct-6-inv.fif', # inverse_operator) ############################################################################### # Compute inverse solution # ------------------------ # We can use this to compute the inverse solution and obtain source time # courses: method = "dSPM" snr = 3. lambda2 = 1. / snr ** 2 stc, residual = apply_inverse(evoked, inverse_operator, lambda2, method=method, pick_ori=None, return_residual=True, verbose=True) ############################################################################### # Visualization # ------------- # We can look at different dipole activations: fig, ax = plt.subplots() ax.plot(1e3 * stc.times, stc.data[::100, :].T) ax.set(xlabel='time (ms)', ylabel='%s value' % method) ############################################################################### # Examine the original data and the residual after fitting: fig, axes = plt.subplots(2, 1) evoked.plot(axes=axes) for ax in axes: ax.texts = [] for line in ax.lines: line.set_color('#98df81') residual.plot(axes=axes) ############################################################################### # Here we use peak getter to move visualization to the time point of the peak # and draw a marker at the maximum peak vertex. # sphinx_gallery_thumbnail_number = 9 vertno_max, time_max = stc.get_peak(hemi='rh') subjects_dir = data_path + '/subjects' surfer_kwargs = dict( hemi='rh', subjects_dir=subjects_dir, clim=dict(kind='value', lims=[8, 12, 15]), views='lateral', initial_time=time_max, time_unit='s', size=(800, 800), smoothing_steps=10) brain = stc.plot(**surfer_kwargs) brain.add_foci(vertno_max, coords_as_verts=True, hemi='rh', color='blue', scale_factor=0.6, alpha=0.5) brain.add_text(0.1, 0.9, 'dSPM (plus location of maximal activation)', 'title', font_size=14) # The documentation website's movie is generated with: # brain.save_movie(..., tmin=0.05, tmax=0.15, interpolation='linear', # time_dilation=20, framerate=10, time_viewer=True) ############################################################################### # There are many other ways to visualize and work with source data, see # for example: # # - :ref:`tut-viz-stcs` # - :ref:`ex-morph-surface` # - :ref:`ex-morph-volume` # - :ref:`ex-vector-mne-solution` # - :ref:`tut-dipole-orientations` # - :ref:`tut-mne-fixed-free` # - :ref:`examples using apply_inverse # <sphx_glr_backreferences_mne.minimum_norm.apply_inverse>`.
bsd-3-clause
bderembl/mitgcm_configs
eddy_airsea/analysis/ode_wave.py
1
1112
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate plt.ion() f0 = 1e-4 u0 = 1.0 R0 = 40e3 # radius vmax = -1.0 # m/s def v1(rr): v = -vmax*rr/R0*np.exp(-0.5*(rr/R0)**2) # v = -vmax*np.tanh(rr/R0)/(np.cosh(rr/R0))**2/(np.tanh(1.0)/(np.cosh(1.0))**2) return v def dv1(rr): v = -vmax/R0*np.exp(-0.5*(rr/R0)**2)*(1-(rr/R0)**2) # v = -vmax*2/R0*np.tanh(rr/R0)/((np.cosh(rr/R0))**2)*(1/(np.cosh(rr/R0))**2 - (np.tanh(rr/R0))**2)/(np.tanh(1.0)/(np.cosh(1.0))**2) return v def f(r, t): omega = np.sqrt((dv1(r)+v1(r)/r + f0)*(2*v1(r)/r + f0)) return u0*np.sin(omega*t) si_r = 30 si_t = 30000 r0 = np.linspace(1,5*R0,si_r) t = np.linspace(0, si_t/f0/1000, si_t) ra = np.zeros((si_t,si_r)) for ni in range(0,si_r): ra[:,ni] = integrate.odeint(f, r0[ni], t).squeeze() plt.figure() plt.plot(t*f0/(2*np.pi),ra/R0,'k',linewidth=1) plt.xlabel(r'$tf/2\pi$') plt.ylabel(r'$r_p/R_0$') plt.xlim([np.min(t*f0/(2*np.pi)), np.max(t*f0/(2*np.pi))]) plt.ylim([np.min(ra/R0), 1.05*np.max(ra/R0)]) plt.savefig("ode_k0.pdf",bbox_inches='tight')
mit
IssamLaradji/scikit-learn
benchmarks/bench_plot_ward.py
290
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
PatrickChrist/scikit-learn
sklearn/feature_extraction/text.py
110
50157
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ return ''.join([c for c in unicodedata.normalize('NFKD', s) if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") @property @deprecated("The `fixed_vocabulary` attribute is deprecated and will be " "removed in 0.18. Please use `fixed_vocabulary_` instead.") def fixed_vocabulary(self): return self.fixed_vocabulary_ class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary: boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype: type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. Only applies if ``analyzer == 'word'``. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df of min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): map_index[new_val] = old_val vocabulary[term] = new_val return X[:, map_index] def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = _make_int_array() indptr = _make_int_array() indptr.append(0) for doc in raw_documents: for feature in analyze(doc): try: j_indices.append(vocabulary[feature]) except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = frombuffer_empty(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = np.ones(len(j_indices)) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sum_duplicates() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The actual formula used for tf-idf is tf * (idf + 1) = tf + tf * idf, instead of tf * idf. The effect of this is that terms with zero idf, i.e. that occur in all documents of a training set, will not be entirely ignored. The formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR, as follows: Tf is "n" (natural) by default, "l" (logarithmic) when sublinear_tf=True. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when norm='l2', "n" (none) when norm=None. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
SMTorg/smt
smt/applications/mfk.py
1
27540
# -*- coding: utf-8 -*- """ Created on Fri May 04 10:26:49 2018 @author: Mostafa Meliani <[email protected]> Multi-Fidelity co-Kriging: recursive formulation with autoregressive model of order 1 (AR1) Adapted on January 2021 by Andres Lopez-Lopera to the new SMT version """ from copy import deepcopy import numpy as np from scipy.linalg import solve_triangular from scipy import linalg from scipy.spatial.distance import cdist from packaging import version from sklearn import __version__ as sklversion if version.parse(sklversion) < version.parse("0.22"): from sklearn.cross_decomposition.pls_ import PLSRegression as pls else: from sklearn.cross_decomposition import PLSRegression as pls from smt.surrogate_models.krg_based import KrgBased from smt.sampling_methods import LHS from smt.utils.kriging_utils import ( cross_distances, componentwise_distance, standardization, differences, ) class NestedLHS(object): def __init__(self, nlevel, xlimits, random_state=None): """ Constructor where values of options can be passed in. Parameters ---------- nlevel : integer. The number of design of experiments to be built xlimits : ndarray The interval of the domain in each dimension with shape (nx, 2) random_state : Numpy RandomState object or seed number which controls random draws """ self.nlevel = nlevel self.xlimits = xlimits self.random_state = random_state def __call__(self, nb_samples_hifi): """ Builds nlevel nested design of experiments of dimension dim and size n_samples. Each doe sis built with the optmized lhs procedure. Builds the highest level first; nested properties are ensured by deleting the nearest neighbours in lower levels of fidelity. Parameters ---------- nb_samples_hifi: The number of samples of the highest fidelity model. nb_samples_fi(n-1) = 2 * nb_samples_fi(n) Returns ------ list of length nlevel of design of experiemnts from low to high fidelity level. """ nt = [] for i in range(self.nlevel, 0, -1): nt.append(pow(2, i - 1) * nb_samples_hifi) if len(nt) != self.nlevel: raise ValueError("nt must be a list of nlevel elements") if np.allclose(np.sort(nt)[::-1], nt) == False: raise ValueError("nt must be a list of decreasing integers") doe = [] p0 = LHS(xlimits=self.xlimits, criterion="ese", random_state=self.random_state) doe.append(p0(nt[0])) for i in range(1, self.nlevel): p = LHS( xlimits=self.xlimits, criterion="ese", random_state=self.random_state ) doe.append(p(nt[i])) for i in range(1, self.nlevel)[::-1]: ind = [] d = cdist(doe[i], doe[i - 1], "euclidean") for j in range(doe[i].shape[0]): dj = np.sort(d[j, :]) k = dj[0] l = (np.where(d[j, :] == k))[0][0] m = 0 while l in ind: m = m + 1 k = dj[m] l = (np.where(d[j, :] == k))[0][0] ind.append(l) doe[i - 1] = np.delete(doe[i - 1], ind, axis=0) doe[i - 1] = np.vstack((doe[i - 1], doe[i])) return doe class MFK(KrgBased): def _initialize(self): super(MFK, self)._initialize() declare = self.options.declare declare( "rho_regr", "constant", values=("constant", "linear", "quadratic"), desc="Regression function type for rho", ) declare( "optim_var", False, types=bool, values=(True, False), desc="If True, the variance at HF samples is forced to zero", ) declare( "propagate_uncertainty", True, types=bool, values=(True, False), desc="If True, the variance cotribution of lower fidelity levels are considered", ) self.name = "MFK" def _differences(self, X, Y): """ Compute the distances """ return differences(X, Y) def _check_list_structure(self, X, y): """ checks if the data structure is compatible with MFK. sets class attributes such as (number of levels of Fidelity, training points in each level, ...) Arguments : X : list of arrays, each array corresponds to a fidelity level. starts from lowest to highest y : same as X """ if type(X) is not list: nlevel = 1 X = [X] else: nlevel = len(X) if type(y) is not list: y = [y] if len(X) != len(y): raise ValueError("X and y must have the same length.") n_samples = np.zeros(nlevel, dtype=int) n_features = np.zeros(nlevel, dtype=int) n_samples_y = np.zeros(nlevel, dtype=int) for i in range(nlevel): n_samples[i], n_features[i] = X[i].shape if i > 1 and n_features[i] != n_features[i - 1]: raise ValueError("All X must have the same number of columns.") y[i] = np.asarray(y[i]).ravel()[:, np.newaxis] n_samples_y[i] = y[i].shape[0] if n_samples[i] != n_samples_y[i]: raise ValueError("X and y must have the same number of rows.") self.nx = n_features[0] self.nt_all = n_samples self.nlvl = nlevel self.ny = y[0].shape[1] self.X = X[:] self.y = y[:] def _new_train(self): """ Overrides KrgBased implementation Trains the Multi-Fidelity model """ self._new_train_init() theta0 = self.options["theta0"].copy() noise0 = self.options["noise0"].copy() for lvl in range(self.nlvl): self._new_train_iteration(lvl) self.options["theta0"] = theta0 self.options["noise0"] = noise0 self._new_train_finalize(lvl) def _new_train_init(self): if self.name in ["MFKPLS", "MFKPLSK"]: _pls = pls(self.options["n_comp"]) # As of sklearn 0.24.1 PLS with zeroed outputs raises an exception while sklearn 0.23 returns zeroed x_rotations # For now the try/except below is a workaround to restore the 0.23 behaviour try: # PLS is done on the highest fidelity identified by the key None self.m_pls = _pls.fit( self.training_points[None][0][0].copy(), self.training_points[None][0][1].copy(), ) self.coeff_pls = self.m_pls.x_rotations_ except StopIteration: self.coeff_pls = np.zeros( self.training_points[None][0][0].shape[1], self.options["n_comp"] ) xt = [] yt = [] i = 0 while self.training_points.get(i, None) is not None: xt.append(self.training_points[i][0][0]) yt.append(self.training_points[i][0][1]) i = i + 1 xt.append(self.training_points[None][0][0]) yt.append(self.training_points[None][0][1]) self._check_list_structure(xt, yt) self._check_param() X = self.X y = self.y _, _, self.X_offset, self.y_mean, self.X_scale, self.y_std = standardization( np.concatenate(xt, axis=0), np.concatenate(yt, axis=0) ) nlevel = self.nlvl # initialize lists self.optimal_noise_all = nlevel * [0] self.D_all = nlevel * [0] self.F_all = nlevel * [0] self.p_all = nlevel * [0] self.q_all = nlevel * [0] self.optimal_rlf_value = nlevel * [0] self.optimal_par = nlevel * [{}] self.optimal_theta = nlevel * [0] self.X_norma_all = [(x - self.X_offset) / self.X_scale for x in X] self.y_norma_all = [(f - self.y_mean) / self.y_std for f in y] def _new_train_iteration(self, lvl): n_samples = self.nt_all self.options["noise0"] = np.array([self.options["noise0"][lvl]]).flatten() self.options["theta0"] = self.options["theta0"][lvl, :] self.X_norma = self.X_norma_all[lvl] self.y_norma = self.y_norma_all[lvl] if self.options["eval_noise"]: if self.options["use_het_noise"]: # hetGP works with unique design variables ( self.X_norma, self.index_unique, # do we need to store it? self.nt_reps, # do we need to store it? ) = np.unique( self.X_norma, return_inverse=True, return_counts=True, axis=0 ) self.nt_all[lvl] = self.X_norma.shape[0] # computing the mean of the output per unique design variable (see Binois et al., 2018) y_norma_unique = [] for i in range(self.nt_all[lvl]): y_norma_unique.append(np.mean(self.y_norma[self.index_unique == i])) y_norma_unique = np.array(y_norma_unique).reshape(-1, 1) # pointwise sensible estimates of the noise variances (see Ankenman et al., 2010) self.optimal_noise = self.options["noise0"] * np.ones(self.nt_all[lvl]) for i in range(self.nt_all[lvl]): diff = self.y_norma[self.index_unique == i] - y_norma_unique[i] if np.sum(diff ** 2) != 0.0: self.optimal_noise[i] = np.std(diff, ddof=1) ** 2 self.optimal_noise = self.optimal_noise / self.nt_reps self.optimal_noise_all[lvl] = self.optimal_noise self.y_norma = y_norma_unique self.X_norma_all[lvl] = self.X_norma self.y_norma_all[lvl] = self.y_norma else: self.optimal_noise = self.options["noise0"] / self.y_std ** 2 self.optimal_noise_all[lvl] = self.optimal_noise # Calculate matrix of distances D between samples self.D_all[lvl] = cross_distances(self.X_norma) # Regression matrix and parameters self.F_all[lvl] = self._regression_types[self.options["poly"]](self.X_norma) self.p_all[lvl] = self.F_all[lvl].shape[1] # Concatenate the autoregressive part for levels > 0 if lvl > 0: F_rho = self._regression_types[self.options["rho_regr"]](self.X_norma) self.q_all[lvl] = F_rho.shape[1] self.F_all[lvl] = np.hstack( ( F_rho * np.dot( self._predict_intermediate_values( self.X_norma, lvl, descale=False ), np.ones((1, self.q_all[lvl])), ), self.F_all[lvl], ) ) else: self.q_all[lvl] = 0 n_samples_F_i = self.F_all[lvl].shape[0] if n_samples_F_i != n_samples[lvl]: raise Exception( "Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model." ) if int(self.p_all[lvl] + self.q_all[lvl]) >= n_samples_F_i: raise Exception( ( "Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the regression" " model size p+q=%d." ) % (n_samples_F_i, self.p_all[lvl] + self.q_all[lvl]) ) # Determine Gaussian Process model parameters self.F = self.F_all[lvl] D, self.ij = self.D_all[lvl] self._lvl = lvl self.nt = self.nt_all[lvl] self.q = self.q_all[lvl] self.p = self.p_all[lvl] ( self.optimal_rlf_value[lvl], self.optimal_par[lvl], self.optimal_theta[lvl], ) = self._optimize_hyperparam(D) if self.options["eval_noise"] and not self.options["use_het_noise"]: tmp_list = self.optimal_theta[lvl] self.optimal_theta[lvl] = tmp_list[:-1] self.optimal_noise = tmp_list[-1] self.optimal_noise_all[lvl] = self.optimal_noise del self.y_norma, self.D, self.optimal_noise def _new_train_finalize(self, lvl): if self.options["eval_noise"] and self.options["optim_var"]: X = self.X for lvl in range(self.nlvl - 1): self.set_training_values( X[lvl], self._predict_intermediate_values(X[lvl], lvl + 1), name=lvl ) self.set_training_values( X[-1], self._predict_intermediate_values(X[-1], self.nlvl) ) self.options["eval_noise"] = False self._new_train() def _componentwise_distance(self, dx, opt=0): d = componentwise_distance(dx, self.options["corr"], self.nx) return d def _predict_intermediate_values(self, X, lvl, descale=True): """ Evaluates the model at a set of points. Used for training the model at level lvl. Allows to relax the order problem. Arguments --------- x : np.ndarray [n_evals, dim] Evaluation point input variable values lvl : level at which the prediction is made Returns ------- y : np.ndarray Evaluation point output variable values """ n_eval, _ = X.shape # if n_features_X != self.n_features: # raise ValueError("Design must be an array of n_features columns.") # Calculate kriging mean and variance at level 0 mu = np.zeros((n_eval, lvl)) if descale: X = (X - self.X_offset) / self.X_scale f = self._regression_types[self.options["poly"]](X) f0 = self._regression_types[self.options["poly"]](X) dx = self._differences(X, Y=self.X_norma_all[0]) d = self._componentwise_distance(dx) beta = self.optimal_par[0]["beta"] r_ = self._correlation_types[self.options["corr"]]( self.optimal_theta[0], d ).reshape(n_eval, self.nt_all[0]) gamma = self.optimal_par[0]["gamma"] # Scaled predictor mu[:, 0] = (np.dot(f, beta) + np.dot(r_, gamma)).ravel() # Calculate recursively kriging mean and variance at level i for i in range(1, lvl): g = self._regression_types[self.options["rho_regr"]](X) dx = self._differences(X, Y=self.X_norma_all[i]) d = self._componentwise_distance(dx) r_ = self._correlation_types[self.options["corr"]]( self.optimal_theta[i], d ).reshape(n_eval, self.nt_all[i]) f = np.vstack((g.T * mu[:, i - 1], f0.T)) beta = self.optimal_par[i]["beta"] gamma = self.optimal_par[i]["gamma"] # scaled predictor mu[:, i] = (np.dot(f.T, beta) + np.dot(r_, gamma)).ravel() # scaled predictor if descale: mu = mu * self.y_std + self.y_mean return mu[:, -1].reshape((n_eval, 1)) def _predict_values(self, X): """ Evaluates the model at a set of points. Arguments --------- x : np.ndarray [n_evals, dim] Evaluation point input variable values Returns ------- y : np.ndarray Evaluation point output variable values """ return self._predict_intermediate_values(X, self.nlvl) def _predict_variances(self, X): """ Evaluates the model at a set of points. Arguments --------- x : np.ndarray [n_evals, dim] Evaluation point input variable values Returns ------- y : np.ndarray Evaluation point output variable values """ return self.predict_variances_all_levels(X)[0][:, -1] def predict_variances_all_levels(self, X): """ Evaluates the model at a set of points. Arguments --------- x : np.ndarray [n_evals, dim] Evaluation point input variable values Returns ------- y : np.ndarray Evaluation point output variable values """ # Initialization X = atleast_2d(X) nlevel = self.nlvl sigma2_rhos = [] n_eval, n_features_X = X.shape # if n_features_X != self.n_features: # raise ValueError("Design must be an array of n_features columns.") X = (X - self.X_offset) / self.X_scale # Calculate kriging mean and variance at level 0 mu = np.zeros((n_eval, nlevel)) f = self._regression_types[self.options["poly"]](X) f0 = self._regression_types[self.options["poly"]](X) dx = self._differences(X, Y=self.X_norma_all[0]) d = self._componentwise_distance(dx) # Get regression function and correlation F = self.F_all[0] C = self.optimal_par[0]["C"] beta = self.optimal_par[0]["beta"] Ft = solve_triangular(C, F, lower=True) # yt = solve_triangular(C, self.y_norma_all[0], lower=True) r_ = self._correlation_types[self.options["corr"]]( self.optimal_theta[0], d ).reshape(n_eval, self.nt_all[0]) gamma = self.optimal_par[0]["gamma"] # Scaled predictor mu[:, 0] = (np.dot(f, beta) + np.dot(r_, gamma)).ravel() self.sigma2_rho = nlevel * [None] MSE = np.zeros((n_eval, nlevel)) r_t = solve_triangular(C, r_.T, lower=True) G = self.optimal_par[0]["G"] u_ = solve_triangular(G.T, f.T - np.dot(Ft.T, r_t), lower=True) sigma2 = self.optimal_par[0]["sigma2"] / self.y_std ** 2 MSE[:, 0] = sigma2 * ( # 1 + self.optimal_noise_all[0] - (r_t ** 2).sum(axis=0) + (u_ ** 2).sum(axis=0) 1 - (r_t ** 2).sum(axis=0) + (u_ ** 2).sum(axis=0) ) # Calculate recursively kriging variance at level i for i in range(1, nlevel): F = self.F_all[i] C = self.optimal_par[i]["C"] g = self._regression_types[self.options["rho_regr"]](X) dx = self._differences(X, Y=self.X_norma_all[i]) d = self._componentwise_distance(dx) r_ = self._correlation_types[self.options["corr"]]( self.optimal_theta[i], d ).reshape(n_eval, self.nt_all[i]) f = np.vstack((g.T * mu[:, i - 1], f0.T)) Ft = solve_triangular(C, F, lower=True) yt = solve_triangular(C, self.y_norma_all[i], lower=True) r_t = solve_triangular(C, r_.T, lower=True) G = self.optimal_par[i]["G"] beta = self.optimal_par[i]["beta"] # scaled predictor sigma2 = self.optimal_par[i]["sigma2"] / self.y_std ** 2 q = self.q_all[i] u_ = solve_triangular(G.T, f - np.dot(Ft.T, r_t), lower=True) sigma2_rho = np.dot( g, sigma2 * linalg.inv(np.dot(G.T, G))[:q, :q] + np.dot(beta[:q], beta[:q].T), ) sigma2_rho = (sigma2_rho * g).sum(axis=1) sigma2_rhos.append(sigma2_rho) if self.name in ["MFKPLS", "MFKPLSK"]: p = self.p_all[i] Q_ = (np.dot((yt - np.dot(Ft, beta)).T, yt - np.dot(Ft, beta)))[0, 0] MSE[:, i] = ( # sigma2_rho * MSE[:, i - 1] +Q_ / (2 * (self.nt_all[i] - p - q)) # * (1 + self.optimal_noise_all[i] - (r_t ** 2).sum(axis=0)) * (1 - (r_t ** 2).sum(axis=0)) + sigma2 * (u_ ** 2).sum(axis=0) ) else: MSE[:, i] = sigma2 * ( # 1 + self.optimal_noise_all[i] - (r_t ** 2).sum(axis=0) + (u_ ** 2).sum(axis=0) 1 - (r_t ** 2).sum(axis=0) + (u_ ** 2).sum(axis=0) ) # + sigma2_rho * MSE[:, i - 1] if self.options["propagate_uncertainty"]: MSE[:, i] = MSE[:, i] + sigma2_rho * MSE[:, i - 1] # scaled predictor MSE *= self.y_std ** 2 return MSE, sigma2_rhos def _predict_derivatives(self, x, kx): """ Evaluates the derivatives at a set of points. Arguments --------- x : np.ndarray [n_evals, dim] Evaluation point input variable values kx : int The 0-based index of the input variable with respect to which derivatives are desired. Returns ------- y : np.ndarray*self.y_std/self.X_scale[kx]) Derivative values. """ lvl = self.nlvl # Initialization n_eval, n_features_x = x.shape x = (x - self.X_offset) / self.X_scale dy_dx = np.zeros((n_eval, lvl)) if self.options["corr"] != "squar_exp": raise ValueError( "The derivative is only available for square exponential kernel" ) if self.options["poly"] == "constant": df = np.zeros([n_eval, 1]) elif self.options["poly"] == "linear": df = np.zeros((n_eval, self.nx + 1)) df[:, 1:] = 1 else: raise ValueError( "The derivative is only available for ordinary kriging or " + "universal kriging using a linear trend" ) df0 = deepcopy(df) if self.options["rho_regr"] != "constant": raise ValueError( "The derivative is only available for regression rho constant" ) # Get pairwise componentwise L1-distances to the input training set dx = self._differences(x, Y=self.X_norma_all[0]) d = self._componentwise_distance(dx) # Compute the correlation function r_ = self._correlation_types[self.options["corr"]]( self.optimal_theta[0], d ).reshape(n_eval, self.nt_all[0]) # Beta and gamma = R^-1(y-FBeta) beta = self.optimal_par[0]["beta"] gamma = self.optimal_par[0]["gamma"] df_dx = np.dot(df, beta) d_dx = x[:, kx].reshape((n_eval, 1)) - self.X_norma_all[0][:, kx].reshape( (1, self.nt_all[0]) ) theta = self._get_theta(0) dy_dx[:, 0] = np.ravel((df_dx - 2 * theta[kx] * np.dot(d_dx * r_, gamma))) # Calculate recursively derivative at level i for i in range(1, lvl): g = self._regression_types[self.options["rho_regr"]](x) dx = self._differences(x, Y=self.X_norma_all[i]) d = self._componentwise_distance(dx) r_ = self._correlation_types[self.options["corr"]]( self.optimal_theta[i], d ).reshape(n_eval, self.nt_all[i]) df = np.vstack((g.T * dy_dx[:, i - 1], df0.T)) beta = self.optimal_par[i]["beta"] gamma = self.optimal_par[i]["gamma"] df_dx = np.dot(df.T, beta) d_dx = x[:, kx].reshape((n_eval, 1)) - self.X_norma_all[i][:, kx].reshape( (1, self.nt_all[i]) ) theta = self._get_theta(i) # scaled predictor dy_dx[:, i] = np.ravel(df_dx - 2 * theta[kx] * np.dot(d_dx * r_, gamma)) return dy_dx[:, -1] * self.y_std / self.X_scale[kx] def _get_theta(self, i): return self.optimal_theta[i] def _check_param(self): """ Overrides KrgBased implementation This function checks some parameters of the model. """ if self.name in ["MFKPLS", "MFKPLSK"]: d = self.options["n_comp"] else: d = self.nx if self.options["corr"] == "act_exp": raise ValueError("act_exp correlation function must be used with MGP") if self.name in ["MFKPLS"]: if self.options["corr"] not in ["squar_exp", "abs_exp"]: raise ValueError( "MFKPLS only works with a squared exponential or an absolute exponential kernel" ) elif self.name in ["MFKPLSK"]: if self.options["corr"] not in ["squar_exp"]: raise ValueError( "MFKPLSK only works with a squared exponential kernel (until we prove the contrary)" ) if isinstance(self.options["theta0"], np.ndarray): if self.options["theta0"].shape != (self.nlvl, d): raise ValueError( "the dimensions of theta0 %s should coincide to the number of dim %s" % (self.options["theta0"].shape, (self.nlvl, d)) ) else: if len(self.options["theta0"]) != d: if len(self.options["theta0"]) == 1: self.options["theta0"] *= np.ones((self.nlvl, d)) elif len(self.options["theta0"]) == self.nlvl: self.options["theta0"] = np.array(self.options["theta0"]).reshape( -1, 1 ) self.options["theta0"] *= np.ones((1, d)) else: raise ValueError( "the length of theta0 (%s) should be equal to the number of dim (%s) or levels of fidelity (%s)." % (len(self.options["theta0"]), d, self.nlvl) ) else: self.options["theta0"] *= np.ones((self.nlvl, 1)) if len(self.options["noise0"]) != self.nlvl: if len(self.options["noise0"]) == 1: self.options["noise0"] = self.nlvl * [self.options["noise0"]] else: raise ValueError( "the length of noise0 (%s) should be equal to the number of levels of fidelity (%s)." % (len(self.options["noise0"]), self.nlvl) ) for i in range(self.nlvl): if self.options["use_het_noise"]: if len(self.X[i]) == len(np.unique(self.X[i])): if len(self.options["noise0"][i]) != self.nt_all[i]: if len(self.options["noise0"][i]) == 1: self.options["noise0"][i] *= np.ones(self.nt_all[i]) else: raise ValueError( "for the level of fidelity %s, the length of noise0 (%s) should be equal to the number of observations (%s)." % (i, len(self.options["noise0"][i]), self.nt_all[i]) ) else: if len(self.options["noise0"][i]) != 1: raise ValueError( "for the level of fidelity %s, the length of noise0 (%s) should be equal to one." % (i, len(self.options["noise0"][i])) )
bsd-3-clause
arjoly/scikit-learn
examples/gaussian_process/plot_gpc_iris.py
81
2231
""" ===================================================== Gaussian process classification (GPC) on iris dataset ===================================================== This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two feature dimensions. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. y = np.array(iris.target, dtype=int) h = .02 # step size in the mesh kernel = 1.0 * RBF([1.0]) gpc_rbf_isotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y) kernel = 1.0 * RBF([1.0, 1.0]) gpc_rbf_anisotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) titles = ["Isotropic RBF", "Anisotropic RBF"] plt.figure(figsize=(10, 5)) for i, clf in enumerate((gpc_rbf_isotropic, gpc_rbf_anisotropic)): # Plot the predicted probabilities. For that, we will assign a color to # each point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 2, i + 1) Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape((xx.shape[0], xx.shape[1], 3)) plt.imshow(Z, extent=(x_min, x_max, y_min, y_max), origin="lower") # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=np.array(["r", "g", "b"])[y]) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title("%s, LML: %.3f" % (titles[i], clf.log_marginal_likelihood(clf.kernel_.theta))) plt.tight_layout() plt.show()
bsd-3-clause
thientu/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
LinErinG/foxsi-smex
pyfoxsi/src/pyfoxsi/response/response.py
4
8272
""" Response is a module to handle the response of the FOXSI telescopes """ from __future__ import absolute_import import pandas as pd import numpy as np import warnings import os import matplotlib.pyplot as plt import astropy.units as u from scipy import interpolate import pyfoxsi import h5py __all__ = ['Response', 'Material'] class Response(object): """An object which provides the FOXSI telescope response Parameters ---------- shutter_state : int, default 0 A number representing the state of the shutter (0 - no shutter, 1 - thin shutter, 2 - thick shutter) configuration : int, default 1 Choose the optics configuration 1 : 15 meters 2 : 10 meters 3 modules 3 : 10 meters 2 modules Examples -------- >>> from pyfoxsi.response import Response >>> resp = Response() >>> resp1 = Response(shutter_state=1) """ def __init__(self, shutter_state=0, configuration=1): path = os.path.dirname(pyfoxsi.__file__) for i in np.arange(3): path = os.path.dirname(path) path = os.path.join(path, 'data/') filename = 'effective_area_per_module.csv' effarea_file = os.path.join(path, filename) optics_effective_area = pd.read_csv(effarea_file, index_col=0, skiprows=4) optics_effective_area = optics_effective_area[optics_effective_area.columns[configuration-1]] if configuration == 1: pyfoxsi.focal_length = 15 * u.m pyfoxsi.number_of_telescopes = 3 elif configuration == 2: pyfoxsi.focal_length = 10 * u.m pyfoxsi.number_of_telescopes = 3 elif configuration == 3: pyfoxsi.focal_length = 10 * u.m pyfoxsi.number_of_telescopes = 2 self.optics_effective_area = pd.DataFrame(dict(total=optics_effective_area.copy(), module=optics_effective_area.copy())) # find what shells are missing #shell_numbers = np.array(self._eff_area_per_shell.columns, np.uint) #missing_shells = np.setdiff1d(shell_numbers, pyfoxsi.shell_ids) # remove the missing shells self.__number_of_telescopes = 1 #for missing_shell in missing_shells: # self._eff_area_per_shell.drop(str(missing_shell), 1, inplace=True) # now add the effective area of all of the shells together #self.optics_effective_area = pd.DataFrame({'module': self._eff_area_per_shell.sum(axis=1), 'total': self._eff_area_per_shell.sum(axis=1)}) self.effective_area = pd.DataFrame(dict(total=self.optics_effective_area['total'].copy(), module=self.optics_effective_area['module'].copy())) self.number_of_telescopes = pyfoxsi.number_of_telescopes self._set_default_optical_path() if shutter_state > 0: self.__optical_path.append(Material('al', pyfoxsi.shutters_thickness[shutter_state])) self.__shutter_state = shutter_state self._add_optical_path_to_effective_area() def plot(self, axes=None): """Plot the effective area""" if axes is None: axes = plt.gca() a = self.effective_area.plot(axes=axes) axes.set_title(pyfoxsi.mission_title + ' ' + str(self.number_of_telescopes) + 'x ' + 'Shutter State ' + str(self.shutter_state)) axes.set_ylabel('Effective area [cm$^2$]') axes.set_xlabel('Energy [keV]') def _set_default_optical_path(self): self.__optical_path = [Material('mylar', pyfoxsi.blanket_thickness), Material(pyfoxsi.detector_material, pyfoxsi.detector_thickness)] @property def number_of_telescopes(self): """The total number of telescope modules""" return self.__number_of_telescopes @number_of_telescopes.setter def number_of_telescopes(self, x): self.optics_effective_area['total'] = self.optics_effective_area['total'] / self.__number_of_telescopes * x self.__number_of_telescopes = x @property def optical_path(self): """The materials in the optical path including the detector""" return self.__optical_path @optical_path.setter def optical_path(self, x): self.optical_path = x self._add_optical_path_to_effective_area() @property def shutter_state(self): """The shutter state, allowed values are 0, 1, 2""" return self.__shutter_state @shutter_state.setter def shutter_state(self, x): raise AttributeError('Cannot change shutter state. Create new object with desired shutter state') def _add_optical_path_to_effective_area(self): """Add the effect of the optical path to the effective area""" energies = np.array(self.optics_effective_area.index) # Remove 10% of flux due to spiders factor = np.ones_like(energies) * 0.9 # Apply all of the materials in the optical path to factor for material in self.optical_path: print(material.name) if material.name == pyfoxsi.detector_material: # if it is the detector than we want the absorption factor *= material.absorption(energies) else: factor *= material.transmission(energies) self.effective_area['factor'] = factor self.effective_area['total'] = factor * self.optics_effective_area['total'] self.effective_area['module'] = factor * self.optics_effective_area['module'] class Material(object): """An object which provides the optical properties of a material in x-rays Parameters ---------- material : str A string representing a material (e.g. cdte, be, mylar, si) thickness : `astropy.units.Quantity` The thickness of the material in the optical path. Examples -------- >>> from pyfoxsi.response import Material >>> import astropy.units as u >>> detector = Material('cdte', 500 * u.um) >>> thermal_blankets = Material('mylar', 0.5 * u.mm) """ def __init__(self, material, thickness): self.name = material self.thickness = thickness path = os.path.dirname(pyfoxsi.__file__) for i in np.arange(3): path = os.path.dirname(path) path = os.path.join(path, 'data/') filename = 'mass_attenuation_coefficient.hdf5' data_file = os.path.join(path, filename) h = h5py.File(data_file, 'r') data = h[self.name] self._source_data = data self.density = u.Quantity(self._source_data.attrs['density'], self._source_data.attrs['density unit']) data_energy_kev = np.log10(self._source_data[0,:] * 1000) data_attenuation_coeff = np.log10(self._source_data[1,:]) self._f = interpolate.interp1d(data_energy_kev, data_attenuation_coeff, bounds_error=False, fill_value=0.0) self._mass_attenuation_coefficient_func = lambda x: 10 ** self._f(np.log10(x)) def __repr__(self): """Returns a human-readable representation.""" return '<Material ' + str(self.name) + ' ' + str(self.thickness) + '>' def transmission(self, energy): """Provide the transmission fraction (0 to 1). Parameters ---------- energy : `astropy.units.Quantity` An array of energies in keV """ coefficients = self._mass_attenuation_coefficient_func(energy) * u.cm ** 2 / u.gram transmission = np.exp(- coefficients * self.density * self.thickness) return transmission def absorption(self, energy): """Provides the absorption fraction (0 to 1). Parameters ---------- energy : `astropy.units.Quantity` An array of energies in keV. """ return 1 - self.transmission(energy) def plot(self, axes=None): if axes is None: axes = plt.gca() energies = np.arange(1, 60) axes.plot(energies, self.transmission(energies), label='Transmission') axes.plot(energies, self.absorption(energies), label='Absorption') axes.set_ylim(0, 1.2) axes.legend() axes.set_title(self.name + ' ' + str(self.thickness)) axes.set_xlabel('Energy [keV]')
mit
IndyMPO/IndyGeoTools
ConvertGeography/GetAreaConversionMatrix.py
1
3774
#This script copyright 2017 Indianapolis Metropolitan Planning Organization from __future__ import division import arcpy import os import pandas as pd import numpy as np from subprocess import Popen import sys def clear_temp(): ''' Clears the temporary directory that is created when running this tool ''' temp_dir = r'C:\TEMP' for f in os.listdir(temp_dir): #Remove all files within the directory os.remove(os.path.join(temp_dir, f)) os.rmdir(temp_dir) #Remove the directory itself def main(*args): #Read in inputs from_shp_file = args[0] from_field = args[1] to_shp_file = args[2] to_field = args[3] outfile = args[4] show_matrix = args[5] remove_temp_if_successful = args[6] remove_temp_if_error = args[7] if from_field == to_field: to_field += '_1' #Check if the outfile is specified as a csv file. If it isn't, do so. if outfile[-4:] != '.csv': outfile += '.csv' #Create temporary directory temp_dir = r'C:\TEMP' os.mkdir(temp_dir) temp_shp = os.path.join(temp_dir, 'TEMP.shp') from_shp = os.path.join(temp_dir, 'FROM.shp') to_shp = os.path.join(temp_dir, 'TO.shp') #Copy input shapefiles into temporary directory arcpy.CopyFeatures_management(from_shp_file, from_shp) arcpy.CopyFeatures_management(to_shp_file, to_shp) #Process the data. If an error occurs, the temporary directory will be deleted, and then the exception will be raised try: #Intersect the two shapefiles and calculate the area of the intersected shapefile arcpy.Intersect_analysis([from_shp, to_shp], temp_shp) temp2_shp = temp_shp.replace('.shp', '2.shp') arcpy.CalculateAreas_stats(temp_shp, temp2_shp) #Create a list of all of the origin and destination polygons from_list = [] to_list = [] polygons = arcpy.da.SearchCursor(temp_shp, [from_field, to_field]) for polygon in polygons: from_list += [polygon[0]] to_list += [polygon[1]] del polygons from_codes = pd.Series(from_list).value_counts().index to_codes = pd.Series(to_list).value_counts().index #Create matrix with total area of each intersected polygon, arranged by the from polygon and to polygon areas = pd.DataFrame(np.zeros((len(to_codes), len(from_codes))), index = to_codes, columns = from_codes) polygons = arcpy.da.SearchCursor(temp2_shp, [from_field, to_field, 'F_AREA']) for polygon in polygons: areas.loc[polygon[1], polygon[0]] = polygon[2] del polygons #Divide each column of the matrix by its sum total = areas.sum(0) out_data = areas.copy() for row in out_data.index: out_data.loc[row] /= total #Write to csv, and delete the temporary directory out_data.to_csv(outfile) if remove_temp_if_successful: clear_temp() except Exception as e: if remove_temp_if_error: clear_temp() exc_type, exc_obj, exc_tb = sys.exc_info() print (exc_tb.tb_lineno) raise e #Open the file if instructed to do so if show_matrix: Popen(outfile, shell = True) if __name__ == '__main__': from_shp_file = arcpy.GetParameterAsText(0) from_field = arcpy.GetParameterAsText(1) to_shp_file = arcpy.GetParameterAsText(2) to_field = arcpy.GetParameterAsText(3) outfile = arcpy.GetParameter(4) show_matrix = arcpy.GetParameter(5) remove_temp_if_successful = arcpy.GetParameter(6) remove_temp_if_error = arcpy.GetParameter(7) main(from_shp_file, from_field, to_shp_file, to_field, outfile, show_matrix, remove_temp_if_successful, remove_temp_if_error)
apache-2.0
huobaowangxi/scikit-learn
sklearn/metrics/tests/test_ranking.py
75
40883
from __future__ import division, print_function import numpy as np from itertools import product import warnings from scipy.sparse import csr_matrix from sklearn import datasets from sklearn import svm from sklearn import ensemble from sklearn.datasets import make_multilabel_classification from sklearn.random_projection import sparse_random_matrix from sklearn.utils.validation import check_array, check_consistent_length from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.metrics import auc from sklearn.metrics import average_precision_score from sklearn.metrics import coverage_error from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import label_ranking_loss from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def _auc(y_true, y_score): """Alternative implementation to check for correctness of `roc_auc_score`.""" pos_label = np.unique(y_true)[1] # Count the number of times positive samples are correctly ranked above # negative samples. pos = y_score[y_true == pos_label] neg = y_score[y_true != pos_label] diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1) n_correct = np.sum(diff_matrix > 0) return n_correct / float(len(pos) * len(neg)) def _average_precision(y_true, y_score): """Alternative implementation to check for correctness of `average_precision_score`.""" pos_label = np.unique(y_true)[1] n_pos = np.sum(y_true == pos_label) order = np.argsort(y_score)[::-1] y_score = y_score[order] y_true = y_true[order] score = 0 for i in range(len(y_score)): if y_true[i] == pos_label: # Compute precision up to document i # i.e, percentage of relevant documents up to document i. prec = 0 for j in range(0, i + 1): if y_true[j] == pos_label: prec += 1.0 prec /= (i + 1.0) score += prec return score / n_pos def test_roc_curve(): # Test Area under Receiver Operating Characteristic (ROC) curve y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) roc_auc = auc(fpr, tpr) expected_auc = _auc(y_true, probas_pred) assert_array_almost_equal(roc_auc, expected_auc, decimal=2) assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred)) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_end_points(): # Make sure that roc_curve returns a curve start at 0 and ending and # 1 even in corner cases rng = np.random.RandomState(0) y_true = np.array([0] * 50 + [1] * 50) y_pred = rng.randint(3, size=100) fpr, tpr, thr = roc_curve(y_true, y_pred) assert_equal(fpr[0], 0) assert_equal(fpr[-1], 1) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thr.shape) def test_roc_returns_consistency(): # Test whether the returned threshold matches up with tpr # make small toy dataset y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred) # use the given thresholds to determine the tpr tpr_correct = [] for t in thresholds: tp = np.sum((probas_pred >= t) & y_true) p = np.sum(y_true) tpr_correct.append(1.0 * tp / p) # compare tpr and tpr_correct to see if the thresholds' order was correct assert_array_almost_equal(tpr, tpr_correct, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_nonrepeating_thresholds(): # Test to ensure that we don't return spurious repeating thresholds. # Duplicated thresholds can arise due to machine precision issues. dataset = datasets.load_digits() X = dataset['data'] y = dataset['target'] # This random forest classifier can only return probabilities # significant to two decimal places clf = ensemble.RandomForestClassifier(n_estimators=100, random_state=0) # How well can the classifier predict whether a digit is less than 5? # This task contributes floating point roundoff errors to the probabilities train, test = slice(None, None, 2), slice(1, None, 2) probas_pred = clf.fit(X[train], y[train]).predict_proba(X[test]) y_score = probas_pred[:, :5].sum(axis=1) # roundoff errors begin here y_true = [yy < 5 for yy in y[test]] # Check for repeating values in the thresholds fpr, tpr, thresholds = roc_curve(y_true, y_score) assert_equal(thresholds.size, np.unique(np.round(thresholds, 2)).size) def test_roc_curve_multi(): # roc_curve not applicable for multi-class problems y_true, _, probas_pred = make_prediction(binary=False) assert_raises(ValueError, roc_curve, y_true, probas_pred) def test_roc_curve_confidence(): # roc_curve for confidence scores y_true, _, probas_pred = make_prediction(binary=True) fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.90, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_hard(): # roc_curve for hard decisions y_true, pred, probas_pred = make_prediction(binary=True) # always predict one trivial_pred = np.ones(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # always predict zero trivial_pred = np.zeros(y_true.shape) fpr, tpr, thresholds = roc_curve(y_true, trivial_pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.50, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # hard decisions fpr, tpr, thresholds = roc_curve(y_true, pred) roc_auc = auc(fpr, tpr) assert_array_almost_equal(roc_auc, 0.78, decimal=2) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_one_label(): y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # assert there are warnings w = UndefinedMetricWarning fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred) # all true labels, all fpr should be nan assert_array_equal(fpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) # assert there are warnings fpr, tpr, thresholds = assert_warns(w, roc_curve, [1 - x for x in y_true], y_pred) # all negative labels, all tpr should be nan assert_array_equal(tpr, np.nan * np.ones(len(thresholds))) assert_equal(fpr.shape, tpr.shape) assert_equal(fpr.shape, thresholds.shape) def test_roc_curve_toydata(): # Binary classification y_true = [0, 1] y_score = [0, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [0, 1] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1, 1]) assert_array_almost_equal(fpr, [0, 0, 1]) assert_almost_equal(roc_auc, 0.) y_true = [1, 0] y_score = [1, 1] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, 0.5) y_true = [1, 0] y_score = [1, 0] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [1, 1]) assert_almost_equal(roc_auc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] tpr, fpr, _ = roc_curve(y_true, y_score) roc_auc = roc_auc_score(y_true, y_score) assert_array_almost_equal(tpr, [0, 1]) assert_array_almost_equal(fpr, [0, 1]) assert_almost_equal(roc_auc, .5) y_true = [0, 0] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [0., 0.5, 1.]) assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan]) y_true = [1, 1] y_score = [0.25, 0.75] tpr, fpr, _ = roc_curve(y_true, y_score) assert_raises(ValueError, roc_auc_score, y_true, y_score) assert_array_almost_equal(tpr, [np.nan, np.nan]) assert_array_almost_equal(fpr, [0.5, 1.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(ValueError, roc_auc_score, y_true, y_score, average="macro") assert_raises(ValueError, roc_auc_score, y_true, y_score, average="weighted") assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5) assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5) def test_auc(): # Test Area Under Curve (AUC) computation x = [0, 1] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0] y = [0, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [1, 0, 0] y = [0, 1, 1] assert_array_almost_equal(auc(x, y), 0.5) x = [0, 1] y = [1, 1] assert_array_almost_equal(auc(x, y), 1) x = [0, 0.5, 1] y = [0, 0.5, 1] assert_array_almost_equal(auc(x, y), 0.5) def test_auc_duplicate_values(): # Test Area Under Curve (AUC) computation with duplicate values # auc() was previously sorting the x and y arrays according to the indices # from numpy.argsort(x), which was reordering the tied 0's in this example # and resulting in an incorrect area computation. This test detects the # error. x = [-2.0, 0.0, 0.0, 0.0, 1.0] y1 = [2.0, 0.0, 0.5, 1.0, 1.0] y2 = [2.0, 1.0, 0.0, 0.5, 1.0] y3 = [2.0, 1.0, 0.5, 0.0, 1.0] for y in (y1, y2, y3): assert_array_almost_equal(auc(x, y, reorder=True), 3.0) def test_auc_errors(): # Incompatible shapes assert_raises(ValueError, auc, [0.0, 0.5, 1.0], [0.1, 0.2]) # Too few x values assert_raises(ValueError, auc, [0.0], [0.1]) # x is not in order assert_raises(ValueError, auc, [1.0, 0.0, 0.5], [0.0, 0.0, 0.0]) def test_auc_score_non_binary_class(): # Test that roc_auc_score function returns an error when trying # to compute AUC for non-binary class values. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) clean_warning_registry() with warnings.catch_warnings(record=True): rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains only one class value y_true = np.zeros(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) y_true = -np.ones(10, dtype="int") assert_raise_message(ValueError, "ROC AUC score is not defined", roc_auc_score, y_true, y_pred) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", roc_auc_score, y_true, y_pred) def test_precision_recall_curve(): y_true, _, probas_pred = make_prediction(binary=True) _test_precision_recall_curve(y_true, probas_pred) # Use {-1, 1} for labels; make sure original labels aren't modified y_true[np.where(y_true == 0)] = -1 y_true_copy = y_true.copy() _test_precision_recall_curve(y_true, probas_pred) assert_array_equal(y_true_copy, y_true) labels = [1, 0, 0, 1] predict_probas = [1, 2, 3, 4] p, r, t = precision_recall_curve(labels, predict_probas) assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.])) assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.])) assert_array_almost_equal(t, np.array([1, 2, 3, 4])) assert_equal(p.size, r.size) assert_equal(p.size, t.size + 1) def test_precision_recall_curve_pos_label(): y_true, _, probas_pred = make_prediction(binary=False) pos_label = 2 p, r, thresholds = precision_recall_curve(y_true, probas_pred[:, pos_label], pos_label=pos_label) p2, r2, thresholds2 = precision_recall_curve(y_true == pos_label, probas_pred[:, pos_label]) assert_array_almost_equal(p, p2) assert_array_almost_equal(r, r2) assert_array_almost_equal(thresholds, thresholds2) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def _test_precision_recall_curve(y_true, probas_pred): # Test Precision-Recall and aread under PR curve p, r, thresholds = precision_recall_curve(y_true, probas_pred) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.85, 2) assert_array_almost_equal(precision_recall_auc, average_precision_score(y_true, probas_pred)) assert_almost_equal(_average_precision(y_true, probas_pred), precision_recall_auc, 1) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) # Smoke test in the case of proba having only one value p, r, thresholds = precision_recall_curve(y_true, np.zeros_like(probas_pred)) precision_recall_auc = auc(r, p) assert_array_almost_equal(precision_recall_auc, 0.75, 3) assert_equal(p.size, r.size) assert_equal(p.size, thresholds.size + 1) def test_precision_recall_curve_errors(): # Contains non-binary labels assert_raises(ValueError, precision_recall_curve, [0, 1, 2], [[0.0], [1.0], [1.0]]) def test_precision_recall_curve_toydata(): with np.errstate(all="raise"): # Binary classification y_true = [0, 1] y_score = [0, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [0, 1] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 0., 1.]) assert_array_almost_equal(r, [1., 0., 0.]) assert_almost_equal(auc_prc, 0.25) y_true = [1, 0] y_score = [1, 1] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1., 0]) assert_almost_equal(auc_prc, .75) y_true = [1, 0] y_score = [1, 0] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [1, 1]) assert_array_almost_equal(r, [1, 0]) assert_almost_equal(auc_prc, 1.) y_true = [1, 0] y_score = [0.5, 0.5] p, r, _ = precision_recall_curve(y_true, y_score) auc_prc = average_precision_score(y_true, y_score) assert_array_almost_equal(p, [0.5, 1]) assert_array_almost_equal(r, [1, 0.]) assert_almost_equal(auc_prc, .75) y_true = [0, 0] y_score = [0.25, 0.75] assert_raises(Exception, precision_recall_curve, y_true, y_score) assert_raises(Exception, average_precision_score, y_true, y_score) y_true = [1, 1] y_score = [0.25, 0.75] p, r, _ = precision_recall_curve(y_true, y_score) assert_almost_equal(average_precision_score(y_true, y_score), 1.) assert_array_almost_equal(p, [1., 1., 1.]) assert_array_almost_equal(r, [1, 0.5, 0.]) # Multi-label classification task y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [0, 1]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 1.) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 1.) y_true = np.array([[0, 1], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_raises(Exception, average_precision_score, y_true, y_score, average="macro") assert_raises(Exception, average_precision_score, y_true, y_score, average="weighted") assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.625) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.625) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0, 1], [1, 0]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.25) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.25) y_true = np.array([[1, 0], [0, 1]]) y_score = np.array([[0.5, 0.5], [0.5, 0.5]]) assert_almost_equal(average_precision_score(y_true, y_score, average="macro"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="weighted"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="samples"), 0.75) assert_almost_equal(average_precision_score(y_true, y_score, average="micro"), 0.75) def test_score_scale_invariance(): # Test that average_precision_score and roc_auc_score are invariant by # the scaling or shifting of probabilities y_true, _, probas_pred = make_prediction(binary=True) roc_auc = roc_auc_score(y_true, probas_pred) roc_auc_scaled = roc_auc_score(y_true, 100 * probas_pred) roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10) assert_equal(roc_auc, roc_auc_scaled) assert_equal(roc_auc, roc_auc_shifted) pr_auc = average_precision_score(y_true, probas_pred) pr_auc_scaled = average_precision_score(y_true, 100 * probas_pred) pr_auc_shifted = average_precision_score(y_true, probas_pred - 10) assert_equal(pr_auc, pr_auc_scaled) assert_equal(pr_auc, pr_auc_shifted) def check_lrap_toy(lrap_score): # Check on several small example that it works assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 1) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]), (1 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]), (1 / 2 + 2 / 3) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1) # Tie handling assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5) assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3) assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]), (2 / 3 + 1 / 2) / 2) assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3) assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]), 3 / 4) def check_zero_or_all_relevant_labels(lrap_score): random_state = check_random_state(0) for n_labels in range(2, 5): y_score = random_state.uniform(size=(1, n_labels)) y_score_ties = np.zeros_like(y_score) # No relevant labels y_true = np.zeros((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Only relevant labels y_true = np.ones((1, n_labels)) assert_equal(lrap_score(y_true, y_score), 1.) assert_equal(lrap_score(y_true, y_score_ties), 1.) # Degenerate case: only one label assert_almost_equal(lrap_score([[1], [0], [1], [0]], [[0.5], [0.5], [0.5], [0.5]]), 1.) def check_lrap_error_raised(lrap_score): # Raise value error if not appropriate format assert_raises(ValueError, lrap_score, [0, 1, 0], [0.25, 0.3, 0.2]) assert_raises(ValueError, lrap_score, [0, 1, 2], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) assert_raises(ValueError, lrap_score, [(0), (1), (2)], [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]]) # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, lrap_score, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, lrap_score, [[0, 1], [0, 1]], [[0], [1]]) def check_lrap_only_ties(lrap_score): # Check tie handling in score # Basic check with only ties and increasing label space for n_labels in range(2, 10): y_score = np.ones((1, n_labels)) # Check for growing number of consecutive relevant for n_relevant in range(1, n_labels): # Check for a bunch of positions for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), n_relevant / n_labels) def check_lrap_without_tie_and_increasing_score(lrap_score): # Check that Label ranking average precision works for various # Basic check with increasing label space size and decreasing score for n_labels in range(2, 10): y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1) # First and last y_true = np.zeros((1, n_labels)) y_true[0, 0] = 1 y_true[0, -1] = 1 assert_almost_equal(lrap_score(y_true, y_score), (2 / n_labels + 1) / 2) # Check for growing number of consecutive relevant label for n_relevant in range(1, n_labels): # Check for a bunch of position for pos in range(n_labels - n_relevant): y_true = np.zeros((1, n_labels)) y_true[0, pos:pos + n_relevant] = 1 assert_almost_equal(lrap_score(y_true, y_score), sum((r + 1) / ((pos + r + 1) * n_relevant) for r in range(n_relevant))) def _my_lrap(y_true, y_score): """Simple implementation of label ranking average precision""" check_consistent_length(y_true, y_score) y_true = check_array(y_true) y_score = check_array(y_score) n_samples, n_labels = y_true.shape score = np.empty((n_samples, )) for i in range(n_samples): # The best rank correspond to 1. Rank higher than 1 are worse. # The best inverse ranking correspond to n_labels. unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True) n_ranks = unique_rank.size rank = n_ranks - inv_rank # Rank need to be corrected to take into account ties # ex: rank 1 ex aequo means that both label are rank 2. corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum() rank = corr_rank[rank] relevant = y_true[i].nonzero()[0] if relevant.size == 0 or relevant.size == n_labels: score[i] = 1 continue score[i] = 0. for label in relevant: # Let's count the number of relevant label with better rank # (smaller rank). n_ranked_above = sum(rank[r] <= rank[label] for r in relevant) # Weight by the rank of the actual label score[i] += n_ranked_above / rank[label] score[i] /= relevant.size return score.mean() def check_alternative_lrap_implementation(lrap_score, n_classes=5, n_samples=20, random_state=0): _, y_true = make_multilabel_classification(n_features=1, allow_unlabeled=False, return_indicator=True, random_state=random_state, n_classes=n_classes, n_samples=n_samples) # Score with ties y_score = sparse_random_matrix(n_components=y_true.shape[0], n_features=y_true.shape[1], random_state=random_state) if hasattr(y_score, "toarray"): y_score = y_score.toarray() score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) # Uniform score random_state = check_random_state(random_state) y_score = random_state.uniform(size=(n_samples, n_classes)) score_lrap = label_ranking_average_precision_score(y_true, y_score) score_my_lrap = _my_lrap(y_true, y_score) assert_almost_equal(score_lrap, score_my_lrap) def test_label_ranking_avp(): for fn in [label_ranking_average_precision_score, _my_lrap]: yield check_lrap_toy, fn yield check_lrap_without_tie_and_increasing_score, fn yield check_lrap_only_ties, fn yield check_zero_or_all_relevant_labels, fn yield check_lrap_error_raised, label_ranking_average_precision_score for n_samples, n_classes, random_state in product((1, 2, 8, 20), (2, 5, 10), range(1)): yield (check_alternative_lrap_implementation, label_ranking_average_precision_score, n_classes, n_samples, random_state) def test_coverage_error(): # Toy case assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3) # Non trival case assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (1 + 3) / 2.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (1 + 3 + 3) / 3.) def test_coverage_tie_handling(): assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2) assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3) assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3) def test_label_ranking_loss(): assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 1 / 2) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 2 / 2) # Undefined metrics - the ranking doesn't matter assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 0) assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0) # Non trival case assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]], [[0.1, 10., -3], [0, 1, 3]]), (0 + 2 / 2) / 2.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) assert_almost_equal(label_ranking_loss( [[0, 1, 0], [1, 1, 0], [0, 1, 1]], [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]), (0 + 2 / 2 + 1 / 2) / 3.) # Sparse csr matrices assert_almost_equal(label_ranking_loss( csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])), [[0.1, 10, -3], [3, 1, 3]]), (0 + 2 / 2) / 2.) def test_ranking_appropriate_input_shape(): # Check that that y_true.shape != y_score.shape raise the proper exception assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [0, 1]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0], [1]], [[0, 1], [0, 1]]) assert_raises(ValueError, label_ranking_loss, [[0, 1], [0, 1]], [[0], [1]]) def test_ranking_loss_ties_handling(): # Tie handling assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 1 / 2) assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0) assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1) assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)
bsd-3-clause
qtproject/pyside-pyside
doc/inheritance_diagram.py
10
12497
# -*- coding: utf-8 -*- r""" sphinx.ext.inheritance_diagram ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. :copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS. :copyright: Copyright 2010-2011 by the PySide team. :license: BSD, see LICENSE for details. """ import os import re import sys import inspect try: from hashlib import md5 except ImportError: from md5 import md5 from docutils import nodes from docutils.parsers.rst import directives from sphinx.ext.graphviz import render_dot_html, render_dot_latex from sphinx.util.compat import Directive class_sig_re = re.compile(r'''^([\w.]*\.)? # module names (\w+) \s* $ # class/final module name ''', re.VERBOSE) class InheritanceException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, currmodule, show_builtins=False, parts=0): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names classes = self._import_classes(class_names, currmodule) self.class_info = self._class_info(classes, show_builtins, parts) if not self.class_info: raise InheritanceException('No classes found for ' 'inheritance diagram') def _import_class_or_module(self, name, currmodule): """ Import a class using its fully-qualified *name*. """ try: path, base = class_sig_re.match(name).groups() except (AttributeError, ValueError): raise InheritanceException('Invalid class or module %r specified ' 'for inheritance diagram' % name) fullname = (path or '') + base path = (path and path.rstrip('.') or '') # two possibilities: either it is a module, then import it try: __import__(fullname) todoc = sys.modules[fullname] except ImportError: # else it is a class, then import the module if not path: if currmodule: # try the current module path = currmodule else: raise InheritanceException( 'Could not import class %r specified for ' 'inheritance diagram' % base) try: __import__(path) todoc = getattr(sys.modules[path], base) except (ImportError, AttributeError): raise InheritanceException( 'Could not import class or module %r specified for ' 'inheritance diagram' % (path + '.' + base)) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise InheritanceException('%r specified for inheritance diagram is ' 'not a class or module' % name) def _import_classes(self, class_names, currmodule): """Import a list of classes.""" classes = [] for name in class_names: classes.extend(self._import_class_or_module(name, currmodule)) return classes def _class_info(self, classes, show_builtins, parts): """Return name and bases for all classes that are ancestors of *classes*. *parts* gives the number of dotted name parts that is removed from the displayed node names. """ all_classes = {} builtins = __builtins__.values() def recurse(cls): if not show_builtins and cls in builtins: return nodename = self.class_name(cls, parts) fullname = self.class_name(cls, 0) baselist = [] all_classes[cls] = (nodename, fullname, baselist) for base in cls.__bases__: if not show_builtins and base in builtins: continue if base.__name__ == "Object" and base.__module__ == "Shiboken": continue baselist.append(self.class_name(base, parts)) if base not in all_classes: recurse(base) for cls in classes: recurse(cls) return all_classes.values() def class_name(self, cls, parts=0): """Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = '%s.%s' % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [fullname for (_, fullname, _) in self.class_info] # These are the default attrs for graphviz default_graph_attrs = { 'rankdir': 'LR', 'size': '"8.0, 12.0"', } default_node_attrs = { 'shape': 'box', 'fontsize': 10, 'height': 0.25, 'fontname': 'Vera Sans, DejaVu Sans, Liberation Sans, ' 'Arial, Helvetica, sans', 'style': '"setlinewidth(0.5)"', } default_edge_attrs = { 'arrowsize': 0.5, 'style': '"setlinewidth(0.5)"', } def _format_node_attrs(self, attrs): return ','.join(['%s=%s' % x for x in attrs.items()]) def _format_graph_attrs(self, attrs): return ''.join(['%s=%s;\n' % x for x in attrs.items()]) def generate_dot(self, name, urls={}, env=None, graph_attrs={}, node_attrs={}, edge_attrs={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *name* is the name of the graph. *urls* is a dictionary mapping class names to HTTP URLs. *graph_attrs*, *node_attrs*, *edge_attrs* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_attrs = self.default_graph_attrs.copy() n_attrs = self.default_node_attrs.copy() e_attrs = self.default_edge_attrs.copy() g_attrs.update(graph_attrs) n_attrs.update(node_attrs) e_attrs.update(edge_attrs) if env: g_attrs.update(env.config.inheritance_graph_attrs) n_attrs.update(env.config.inheritance_node_attrs) e_attrs.update(env.config.inheritance_edge_attrs) res = [] res.append('digraph %s {\n' % name) res.append(self._format_graph_attrs(g_attrs)) for name, fullname, bases in self.class_info: # Write the node this_node_attrs = n_attrs.copy() url = urls.get(fullname) if url is not None: this_node_attrs['URL'] = '"%s"' % url res.append(' "%s" [%s];\n' % (name, self._format_node_attrs(this_node_attrs))) # Write the edges for base_name in bases: res.append(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_attrs(e_attrs))) res.append('}\n') return ''.join(res) class inheritance_diagram(nodes.General, nodes.Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass class InheritanceDiagram(Directive): """ Run when the inheritance_diagram directive is first encountered. """ has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = { 'parts': directives.nonnegative_int, } def run(self): node = inheritance_diagram() node.document = self.state.document env = self.state.document.settings.env class_names = self.arguments[0].split() class_role = env.get_domain('py').role('class') # Store the original content for use as a hash node['parts'] = self.options.get('parts', 0) node['content'] = ', '.join(class_names) # Create a graph starting with the list of classes try: graph = InheritanceGraph( class_names, env.temp_data.get('py:module'), parts=node['parts']) except InheritanceException, err: return [node.document.reporter.warning(err.args[0], line=self.lineno)] # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = class_role( 'class', ':class:`%s`' % name, name, 0, self.state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_visit_inheritance_diagram(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] graph_hash = get_graph_hash(node) name = 'inheritance%s' % graph_hash # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') dotcode = graph.generate_dot(name, urls, env=self.builder.env) render_dot_html(self, node, dotcode, [], 'inheritance', 'inheritance', alt='Inheritance diagram of ' + node['content']) raise nodes.SkipNode def latex_visit_inheritance_diagram(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] graph_hash = get_graph_hash(node) name = 'inheritance%s' % graph_hash dotcode = graph.generate_dot(name, env=self.builder.env, graph_attrs={'size': '"6.0,6.0"'}) render_dot_latex(self, node, dotcode, [], 'inheritance') raise nodes.SkipNode def skip(self, node): raise nodes.SkipNode def setup(app): app.setup_extension('sphinx.ext.graphviz') app.add_node( inheritance_diagram, latex=(latex_visit_inheritance_diagram, None), html=(html_visit_inheritance_diagram, None), text=(skip, None), man=(skip, None)) app.add_directive('inheritance-diagram', InheritanceDiagram) app.add_config_value('inheritance_graph_attrs', {}, False), app.add_config_value('inheritance_node_attrs', {}, False), app.add_config_value('inheritance_edge_attrs', {}, False),
lgpl-2.1
sonnyhu/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
ChanderG/scipy
doc/source/conf.py
40
10928
# -*- coding: utf-8 -*- import sys, os, re # Check Sphinx version import sphinx if sphinx.__version__ < "1.1": raise RuntimeError("Sphinx 1.1 or newer required") needs_sphinx = '1.1' # ----------------------------------------------------------------------------- # General configuration # ----------------------------------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sys.path.insert(0, os.path.abspath('../sphinxext')) sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) extensions = ['sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'numpydoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.autosummary', 'scipyoptdoc'] # Determine if the matplotlib has a recent enough version of the # plot_directive. try: from matplotlib.sphinxext import plot_directive except ImportError: use_matplotlib_plot_directive = False else: try: use_matplotlib_plot_directive = (plot_directive.__version__ >= 2) except AttributeError: use_matplotlib_plot_directive = False if use_matplotlib_plot_directive: extensions.append('matplotlib.sphinxext.plot_directive') else: raise RuntimeError("You need a recent enough version of matplotlib") # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General substitutions. project = 'SciPy' copyright = '2008-2014, The Scipy community' # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. import scipy version = re.sub(r'\.dev-.*$', r'.dev', scipy.__version__) release = scipy.__version__ print "Scipy (VERSION %s)" % (version,) # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # The reST default role (used for this markup: `text`) to use for all documents. default_role = "autolink" # List of directories, relative to source directories, that shouldn't be searched # for source files. exclude_dirs = [] # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # ----------------------------------------------------------------------------- # HTML output # ----------------------------------------------------------------------------- themedir = os.path.join(os.pardir, 'scipy-sphinx-theme', '_theme') if os.path.isdir(themedir): html_theme = 'scipy' html_theme_path = [themedir] if 'scipyorg' in tags: # Build for the scipy.org website html_theme_options = { "edit_link": True, "sidebar": "right", "scipy_org_logo": True, "rootlinks": [("http://scipy.org/", "Scipy.org"), ("http://docs.scipy.org/", "Docs")] } else: # Default build html_theme_options = { "edit_link": False, "sidebar": "left", "scipy_org_logo": False, "rootlinks": [] } html_logo = '_static/scipyshiny_small.png' html_sidebars = {'index': 'indexsidebar.html'} else: # Build without scipy.org sphinx theme present if 'scipyorg' in tags: raise RuntimeError("Get the scipy-sphinx-theme first, " "via git submodule init & update") else: html_style = 'scipy_fallback.css' html_logo = '_static/scipyshiny_small.png' html_sidebars = {'index': 'indexsidebar.html'} html_title = "%s v%s Reference Guide" % (project, version) html_static_path = ['_static'] html_last_updated_fmt = '%b %d, %Y' html_additional_pages = {} html_use_modindex = True html_copy_source = False html_file_suffix = '.html' htmlhelp_basename = 'scipy' pngmath_use_preview = True pngmath_dvipng_args = ['-gamma', '1.5', '-D', '96', '-bg', 'Transparent'] # ----------------------------------------------------------------------------- # LaTeX output # ----------------------------------------------------------------------------- # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). _stdauthor = 'Written by the SciPy community' latex_documents = [ ('index', 'scipy-ref.tex', 'SciPy Reference Guide', _stdauthor, 'manual'), # ('user/index', 'scipy-user.tex', 'SciPy User Guide', # _stdauthor, 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r''' \usepackage{amsmath} \DeclareUnicodeCharacter{00A0}{\nobreakspace} % In the parameters etc. sections, align uniformly, and adjust label emphasis \usepackage{expdlist} \let\latexdescription=\description \let\endlatexdescription=\enddescription \renewenvironment{description}% {\begin{latexdescription}[\setleftmargin{60pt}\breaklabel\setlabelstyle{\bfseries\itshape}]}% {\end{latexdescription}} % Make Examples/etc section headers smaller and more compact \makeatletter \titleformat{\paragraph}{\normalsize\normalfont\bfseries\itshape}% {\py@NormalColor}{0em}{\py@NormalColor}{\py@NormalColor} \titlespacing*{\paragraph}{0pt}{1ex}{0pt} \makeatother % Save vertical space in parameter lists and elsewhere \makeatletter \renewenvironment{quote}% {\list{}{\topsep=0pt% \parsep \z@ \@plus\p@}% \item\relax}% {\endlist} \makeatother % Fix footer/header \renewcommand{\chaptermark}[1]{\markboth{\MakeUppercase{\thechapter.\ #1}}{}} \renewcommand{\sectionmark}[1]{\markright{\MakeUppercase{\thesection.\ #1}}} ''' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_use_modindex = False # ----------------------------------------------------------------------------- # Intersphinx configuration # ----------------------------------------------------------------------------- intersphinx_mapping = { 'http://docs.python.org/dev': None, 'http://docs.scipy.org/doc/numpy': None, } # ----------------------------------------------------------------------------- # Numpy extensions # ----------------------------------------------------------------------------- # If we want to do a phantom import from an XML file for all autodocs phantom_import_file = 'dump.xml' # Generate plots for example sections numpydoc_use_plots = True # ----------------------------------------------------------------------------- # Autosummary # ----------------------------------------------------------------------------- if sphinx.__version__ >= "0.7": import glob autosummary_generate = glob.glob("*.rst") # ----------------------------------------------------------------------------- # Coverage checker # ----------------------------------------------------------------------------- coverage_ignore_modules = r""" """.split() coverage_ignore_functions = r""" test($|_) (some|all)true bitwise_not cumproduct pkgload generic\. """.split() coverage_ignore_classes = r""" """.split() coverage_c_path = [] coverage_c_regexes = {} coverage_ignore_c_items = {} #------------------------------------------------------------------------------ # Plot #------------------------------------------------------------------------------ plot_pre_code = """ import numpy as np np.random.seed(123) """ plot_include_source = True plot_formats = [('png', 96), 'pdf'] plot_html_show_formats = False import math phi = (math.sqrt(5) + 1)/2 font_size = 13*72/96.0 # 13 px plot_rcparams = { 'font.size': font_size, 'axes.titlesize': font_size, 'axes.labelsize': font_size, 'xtick.labelsize': font_size, 'ytick.labelsize': font_size, 'legend.fontsize': font_size, 'figure.figsize': (3*phi, 3), 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, } if not use_matplotlib_plot_directive: import matplotlib matplotlib.rcParams.update(plot_rcparams) # ----------------------------------------------------------------------------- # Source code links # ----------------------------------------------------------------------------- import inspect from os.path import relpath, dirname for name in ['sphinx.ext.linkcode', 'linkcode', 'numpydoc.linkcode']: try: __import__(name) extensions.append(name) break except ImportError: pass else: print "NOTE: linkcode extension not found -- no links to source generated" def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except: return None try: fn = inspect.getsourcefile(obj) except: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except: fn = None if not fn: return None try: source, lineno = inspect.getsourcelines(obj) except: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" fn = relpath(fn, start=dirname(scipy.__file__)) if 'dev' in scipy.__version__: return "http://github.com/scipy/scipy/blob/master/scipy/%s%s" % ( fn, linespec) else: return "http://github.com/scipy/scipy/blob/v%s/scipy/%s%s" % ( scipy.__version__, fn, linespec)
bsd-3-clause
h2educ/scikit-learn
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
iamkingmaker/zipline
tests/risk/answer_key.py
39
11989
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import hashlib import os import numpy as np import pandas as pd import pytz import xlrd import requests from six.moves import map def col_letter_to_index(col_letter): # Only supports single letter, # but answer key doesn't need multi-letter, yet. index = 0 for i, char in enumerate(reversed(col_letter)): index += ((ord(char) - 65) + 1) * pow(26, i) return index DIR = os.path.dirname(os.path.realpath(__file__)) ANSWER_KEY_CHECKSUMS_PATH = os.path.join(DIR, 'risk-answer-key-checksums') ANSWER_KEY_CHECKSUMS = open(ANSWER_KEY_CHECKSUMS_PATH, 'r').read().splitlines() ANSWER_KEY_FILENAME = 'risk-answer-key.xlsx' ANSWER_KEY_PATH = os.path.join(DIR, ANSWER_KEY_FILENAME) ANSWER_KEY_BUCKET_NAME = 'zipline-test_data' ANSWER_KEY_DL_TEMPLATE = """ https://s3.amazonaws.com/zipline-test-data/risk/{md5}/risk-answer-key.xlsx """.strip() LATEST_ANSWER_KEY_URL = ANSWER_KEY_DL_TEMPLATE.format( md5=ANSWER_KEY_CHECKSUMS[-1]) def answer_key_signature(): with open(ANSWER_KEY_PATH, 'rb') as f: md5 = hashlib.md5() buf = f.read(1024) md5.update(buf) while buf != b"": buf = f.read(1024) md5.update(buf) return md5.hexdigest() def ensure_latest_answer_key(): """ Get the latest answer key from a publically available location. Logic for determining what and when to download is as such: - If there is no local spreadsheet file, then get the lastest answer key, as defined by the last row in the checksum file. - If there is a local spreadsheet file: -- If the spreadsheet's checksum is in the checksum file: --- If the spreadsheet's checksum does not match the latest, then grab the the latest checksum and replace the local checksum file. --- If the spreadsheet's checksum matches the latest, then skip download, and use the local spreadsheet as a cached copy. -- If the spreadsheet's checksum is not in the checksum file, then leave the local file alone, assuming that the local xls's md5 is not in the list due to local modifications during development. It is possible that md5's could collide, if that is ever case, we should then find an alternative naming scheme. The spreadsheet answer sheet is not kept in SCM, as every edit would increase the repo size by the file size, since it is treated as a binary. """ answer_key_dl_checksum = None local_answer_key_exists = os.path.exists(ANSWER_KEY_PATH) if local_answer_key_exists: local_hash = answer_key_signature() if local_hash in ANSWER_KEY_CHECKSUMS: # Assume previously downloaded version. # Check for latest. if local_hash != ANSWER_KEY_CHECKSUMS[-1]: # More recent checksum, download answer_key_dl_checksum = ANSWER_KEY_CHECKSUMS[-1] else: # Assume local copy that is being developed on answer_key_dl_checksum = None else: answer_key_dl_checksum = ANSWER_KEY_CHECKSUMS[-1] if answer_key_dl_checksum: res = requests.get( ANSWER_KEY_DL_TEMPLATE.format(md5=answer_key_dl_checksum)) with open(ANSWER_KEY_PATH, 'wb') as f: f.write(res.content) # Get latest answer key on load. ensure_latest_answer_key() class DataIndex(object): """ Coordinates for the spreadsheet, using the values as seen in the notebook. The python-excel libraries use 0 index, while the spreadsheet in a GUI uses a 1 index. """ def __init__(self, sheet_name, col, row_start, row_end, value_type='float'): self.sheet_name = sheet_name self.col = col self.row_start = row_start self.row_end = row_end self.value_type = value_type @property def col_index(self): return col_letter_to_index(self.col) - 1 @property def row_start_index(self): return self.row_start - 1 @property def row_end_index(self): return self.row_end - 1 def __str__(self): return "'{sheet_name}'!{col}{row_start}:{col}{row_end}".format( sheet_name=self.sheet_name, col=self.col, row_start=self.row_start, row_end=self.row_end ) class AnswerKey(object): INDEXES = { 'RETURNS': DataIndex('Sim Period', 'D', 4, 255), 'BENCHMARK': { 'Dates': DataIndex('s_p', 'A', 4, 254, value_type='date'), 'Returns': DataIndex('s_p', 'H', 4, 254) }, # Below matches the inconsistent capitalization in spreadsheet 'BENCHMARK_PERIOD_RETURNS': { 'Monthly': DataIndex('s_p', 'R', 8, 19), '3-Month': DataIndex('s_p', 'S', 10, 19), '6-month': DataIndex('s_p', 'T', 13, 19), 'year': DataIndex('s_p', 'U', 19, 19), }, 'BENCHMARK_PERIOD_VOLATILITY': { 'Monthly': DataIndex('s_p', 'V', 8, 19), '3-Month': DataIndex('s_p', 'W', 10, 19), '6-month': DataIndex('s_p', 'X', 13, 19), 'year': DataIndex('s_p', 'Y', 19, 19), }, 'ALGORITHM_PERIOD_RETURNS': { 'Monthly': DataIndex('Sim Period', 'Z', 23, 34), '3-Month': DataIndex('Sim Period', 'AA', 25, 34), '6-month': DataIndex('Sim Period', 'AB', 28, 34), 'year': DataIndex('Sim Period', 'AC', 34, 34), }, 'ALGORITHM_PERIOD_VOLATILITY': { 'Monthly': DataIndex('Sim Period', 'AH', 23, 34), '3-Month': DataIndex('Sim Period', 'AI', 25, 34), '6-month': DataIndex('Sim Period', 'AJ', 28, 34), 'year': DataIndex('Sim Period', 'AK', 34, 34), }, 'ALGORITHM_PERIOD_SHARPE': { 'Monthly': DataIndex('Sim Period', 'AL', 23, 34), '3-Month': DataIndex('Sim Period', 'AM', 25, 34), '6-month': DataIndex('Sim Period', 'AN', 28, 34), 'year': DataIndex('Sim Period', 'AO', 34, 34), }, 'ALGORITHM_PERIOD_BETA': { 'Monthly': DataIndex('Sim Period', 'AP', 23, 34), '3-Month': DataIndex('Sim Period', 'AQ', 25, 34), '6-month': DataIndex('Sim Period', 'AR', 28, 34), 'year': DataIndex('Sim Period', 'AS', 34, 34), }, 'ALGORITHM_PERIOD_ALPHA': { 'Monthly': DataIndex('Sim Period', 'AT', 23, 34), '3-Month': DataIndex('Sim Period', 'AU', 25, 34), '6-month': DataIndex('Sim Period', 'AV', 28, 34), 'year': DataIndex('Sim Period', 'AW', 34, 34), }, 'ALGORITHM_PERIOD_BENCHMARK_VARIANCE': { 'Monthly': DataIndex('Sim Period', 'BJ', 23, 34), '3-Month': DataIndex('Sim Period', 'BK', 25, 34), '6-month': DataIndex('Sim Period', 'BL', 28, 34), 'year': DataIndex('Sim Period', 'BM', 34, 34), }, 'ALGORITHM_PERIOD_COVARIANCE': { 'Monthly': DataIndex('Sim Period', 'BF', 23, 34), '3-Month': DataIndex('Sim Period', 'BG', 25, 34), '6-month': DataIndex('Sim Period', 'BH', 28, 34), 'year': DataIndex('Sim Period', 'BI', 34, 34), }, 'ALGORITHM_PERIOD_DOWNSIDE_RISK': { 'Monthly': DataIndex('Sim Period', 'BN', 23, 34), '3-Month': DataIndex('Sim Period', 'BO', 25, 34), '6-month': DataIndex('Sim Period', 'BP', 28, 34), 'year': DataIndex('Sim Period', 'BQ', 34, 34), }, 'ALGORITHM_PERIOD_SORTINO': { 'Monthly': DataIndex('Sim Period', 'BR', 23, 34), '3-Month': DataIndex('Sim Period', 'BS', 25, 34), '6-month': DataIndex('Sim Period', 'BT', 28, 34), 'year': DataIndex('Sim Period', 'BU', 34, 34), }, 'ALGORITHM_RETURN_VALUES': DataIndex( 'Sim Cumulative', 'D', 4, 254), 'ALGORITHM_CUMULATIVE_VOLATILITY': DataIndex( 'Sim Cumulative', 'P', 4, 254), 'ALGORITHM_CUMULATIVE_SHARPE': DataIndex( 'Sim Cumulative', 'R', 4, 254), 'CUMULATIVE_DOWNSIDE_RISK': DataIndex( 'Sim Cumulative', 'U', 4, 254), 'CUMULATIVE_SORTINO': DataIndex( 'Sim Cumulative', 'V', 4, 254), 'CUMULATIVE_INFORMATION': DataIndex( 'Sim Cumulative', 'AA', 4, 254), 'CUMULATIVE_BETA': DataIndex( 'Sim Cumulative', 'AD', 4, 254), 'CUMULATIVE_ALPHA': DataIndex( 'Sim Cumulative', 'AE', 4, 254), 'CUMULATIVE_MAX_DRAWDOWN': DataIndex( 'Sim Cumulative', 'AH', 4, 254), } def __init__(self): self.workbook = xlrd.open_workbook(ANSWER_KEY_PATH) self.sheets = {} self.sheets['Sim Period'] = self.workbook.sheet_by_name('Sim Period') self.sheets['Sim Cumulative'] = self.workbook.sheet_by_name( 'Sim Cumulative') self.sheets['s_p'] = self.workbook.sheet_by_name('s_p') for name, index in self.INDEXES.items(): if isinstance(index, dict): subvalues = {} for subkey, subindex in index.items(): subvalues[subkey] = self.get_values(subindex) setattr(self, name, subvalues) else: setattr(self, name, self.get_values(index)) def parse_date_value(self, value): return xlrd.xldate_as_tuple(value, 0) def parse_float_value(self, value): return value if value != '' else np.nan def get_raw_values(self, data_index): return self.sheets[data_index.sheet_name].col_values( data_index.col_index, data_index.row_start_index, data_index.row_end_index + 1) @property def value_type_to_value_func(self): return { 'float': self.parse_float_value, 'date': self.parse_date_value, } def get_values(self, data_index): value_parser = self.value_type_to_value_func[data_index.value_type] return [value for value in map(value_parser, self.get_raw_values(data_index))] ANSWER_KEY = AnswerKey() BENCHMARK_DATES = ANSWER_KEY.BENCHMARK['Dates'] BENCHMARK_RETURNS = ANSWER_KEY.BENCHMARK['Returns'] DATES = [datetime.datetime(*x, tzinfo=pytz.UTC) for x in BENCHMARK_DATES] BENCHMARK = pd.Series(dict(zip(DATES, BENCHMARK_RETURNS))) ALGORITHM_RETURNS = pd.Series( dict(zip(DATES, ANSWER_KEY.ALGORITHM_RETURN_VALUES))) RETURNS_DATA = pd.DataFrame({'Benchmark Returns': BENCHMARK, 'Algorithm Returns': ALGORITHM_RETURNS}) RISK_CUMULATIVE = pd.DataFrame({ 'volatility': pd.Series(dict(zip( DATES, ANSWER_KEY.ALGORITHM_CUMULATIVE_VOLATILITY))), 'sharpe': pd.Series(dict(zip( DATES, ANSWER_KEY.ALGORITHM_CUMULATIVE_SHARPE))), 'downside_risk': pd.Series(dict(zip( DATES, ANSWER_KEY.CUMULATIVE_DOWNSIDE_RISK))), 'sortino': pd.Series(dict(zip( DATES, ANSWER_KEY.CUMULATIVE_SORTINO))), 'information': pd.Series(dict(zip( DATES, ANSWER_KEY.CUMULATIVE_INFORMATION))), 'alpha': pd.Series(dict(zip( DATES, ANSWER_KEY.CUMULATIVE_ALPHA))), 'beta': pd.Series(dict(zip( DATES, ANSWER_KEY.CUMULATIVE_BETA))), 'max_drawdown': pd.Series(dict(zip( DATES, ANSWER_KEY.CUMULATIVE_MAX_DRAWDOWN))), })
apache-2.0
rob-nn/open_gait_analytics
api/oga_api/ml/basic_cmac.py
2
6480
import oga_api.ml.cmac as cmac import numpy as np import matplotlib.pyplot as plt import oga_api.physics.cinematic as c class BasicCMAC(cmac.CMAC): def __init__(self, trajectories, pos_angles, time_frame, markers, angles, activations, output, num_iterations): self._num_iterations = num_iterations confs = [] conf = None data_set = None for marker in markers: if 'xCheckedForInput' in marker and marker['xCheckedForInput'] and 'qx'in marker: data = c.get_vectorial_velocities(trajectories[marker['index'], 0, :], time_frame) conf = cmac.SignalConfiguration(data.min(), data.max(), marker['qx'], marker['description']) if conf != None: confs.append(conf) if data_set == None: data_set = np.reshape(data, (len(data), 1)) else: data_set = np.concatenate((data_set, np.reshape(data, (len(data), 1))), axis=1) if 'yCheckedForInput' in marker and marker['yCheckedForInput'] and 'qy'in marker: data = c.get_vectorial_velocities(trajectories[marker['index'], 1, :], time_frame) conf = cmac.SignalConfiguration(data.min(), data.max(), marker['qy'], marker['description']) if conf != None: confs.append(conf) if data_set == None: data_set = np.reshape(data, (len(data), 1)) else: data_set = np.concatenate((data_set, np.reshape(data, (len(data), 1))), axis=1) if 'zCheckedForInput' in marker and marker['zCheckedForInput'] and 'qz'in marker: data = c.get_vectorial_velocities(trajectories[marker['index'], 2, :], time_frame) conf = cmac.SignalConfiguration(data.min(), data.max(), marker['qz'], marker['description']) if conf != None: confs.append(conf) if data_set == None: data_set = np.reshape(data, (len(data), 1)) else: data_set = np.concatenate((data_set, np.reshape(data, (len(data), 1))), axis=1) super(BasicCMAC, self).__init__(confs, activations) if data_set == None: raise ParameterInvalid('No data do process') if len(confs) == 0: raise ParameterInvalid('No input valid input sginal') self._data_set = data_set self._get_output_data(output, trajectories, pos_angles, time_frame) self._generate_data_for_training_and_test() @property def data_in(self): return self._data_in @property def data_in_test(self): return self._data_in_test @property def data_set(self): return self._data_set @property def out_data(self): return self._out_data @property def data_out(self): return self._data_out @property def data_out_test(self): return self._data_out_test def _get_output_data(self, output, trajectories, pos_angles, time_frame): if output['type'] == 0: #Marker component = 0 if output['component'] =='x': component = 0 elif output['component'] == 'y': component = 1 else: component == 2 # component == z self._out_data = trajectories[output['_id'], component, :] else: #1 Angle #import pdb; pdb.set_trace() angle = pos_angles[int(output['_id'])] origin = trajectories[int(angle['origin']), 0:3, :] component_a = trajectories[int(angle['component_a']), 0:3, :] component_b = trajectories[int(angle['component_b']), 0:3, :] if output['component'] == 'a': # angle self._out_data = c.get_angles(origin.T, component_a.T, component_b.T) else: # v - angular velocities self._out_data = c.calc_angular_velocities(origin.T, component_a.T, component_b.T, time_frame) #import pdb; pdb.set_trace() def _generate_data_for_training_and_test(self): data_in = None data_in_test = None data_out = np.array([]) data_out_test = np.array([]) for i in np.arange(self._data_set.shape[0]): if i % 2 == 0: if data_in == None: data_in = np.reshape(self._data_set[i,:], (1, self._data_set.shape[1])) else: data_in = np.concatenate((data_in, np.reshape(self._data_set[i,:], (1, self._data_set.shape[1])))) data_out = np.append(data_out, np.array([self._out_data[i]])) else: if data_in_test == None: data_in_test = np.reshape(self._data_set[i,:], (1, self._data_set.shape[1])) else: data_in_test = np.concatenate((data_in_test, np.reshape(self._data_set[i,:], (1, self._data_set.shape[1])))) data_out_test = np.append(data_out_test, np.array([self._out_data[i]])) self._data_in = data_in self._data_in_test = data_in_test self._data_out = data_out self._data_out_test = data_out_test def train(self): if self._num_iterations < 1: raise ParameterInvalid('Number of iterations must be greater than 1') t = cmac.Train(self, self._data_in, self._data_out, 1, self._num_iterations) t.train() self.t = t def fire_all(self, inputs): result = [] for data in inputs: result.append(self.fire(data)) return np.array(result) def fire_test(self): return self.fire_all(self._data_in_test) """ def plot_aproximation(self, time = None): real = self._data_test aproximations = self.fire_test) if time == None: t = arange(0, real.shape[0]) * (1./315.) else: t = time plt.figure() plt.plot(self.t.E) plt.figure() plt.hold(True) p1 = plt.plot(t.tolist(), real, 'b', linewidth=4) p2 = plt.plot(t.tolist(), aproximation, 'r', linewidth=2) plt.xlabel('t (sec.)', fontsize=15) plt.ylabel('Angular Velocities (rads/sec.)', fontsize=15) plt.legend(['Human Knee', 'CMAC Prediction']) plt.show() """ class ParameterInvalid(BaseException): def __init__(self, description): self._description = description @property def description(self): return self._description
mit
Knewton/lentil
lentil/viztools.py
2
9752
""" Module for visualizing skill embeddings @author Siddharth Reddy <[email protected]> """ import logging import matplotlib from matplotlib import pyplot as plt import numpy as np from . import models _logger = logging.getLogger(__name__) def plot_embedding( model, timestep=-1, show_students=True, show_assessments=True, show_lessons=None, show_prereqs=None, show_concepts=None, show_student_ids=False, show_assessment_ids=False, show_lesson_ids=False, show_concept_ids=False, id_padding_x=0.01, id_padding_y=0.01, alpha=0.5, size=20, title='', show_legend=True, force_invariant_axis_limits=True, axis_limit_padding=0.1, show_pass_rates=False, x_axis_limits=None, y_axis_limits=None): """ Plot students, assessments, lessons, and prereqs in a two-dimensional skill embedding Students, assessments, prereqs = points Lessons = vectors See nb/toy_examples.ipynb for example invocations :param EmbeddingModel model: A skill embedding model :param int timestep: A timestep. By default, timestep=-1 => latest snapshot :param float id_padding_x: Padding between object and id along x-axis :param float id_padding_y: Padding between object and id along y-axis :param float alpha: Alpha level for scatterplot points' color :param int size: Size of scatterplot points :param str|None title: Title of plot :param bool show_legend: True => show legend in upper left corner False => do not show legend :param bool force_invariant_axis_limits: True => plot will have same axes limits regardless of timestep, False => plot may have different axes limits depending on timestep :param float axis_limit_padding: Padding for axis limits (to prevent points from being stuck at the edges of the plot) :param bool show_pass_rates: True => color assessments by pass rate, False => don't color assessments :param list[int,int]|None x_axis_limits: [x_min, x_max] :param list[int,int]|None y_axis_limits: [y_min, y_max] """ if model.embedding_dimension != 2: raise ValueError('Invalid embedding dimension!') if timestep<-1 or timestep>=model.history.duration(): raise ValueError('Invalid timestep!') if size<=0: raise ValueError('Invalid scatterplot point size!') if axis_limit_padding<0: raise ValueError('Invalid axis limit padding!') if show_lessons is None: show_lessons = model.using_lessons if show_prereqs is None: show_prereqs = model.using_prereqs if show_lessons and not model.using_lessons: raise ValueError( 'Cannot show lessons because model does not use lessons!') if show_prereqs and not model.using_prereqs: raise ValueError( 'Cannot show prereqs because model does not use prereqs!') if show_concepts and not model.using_graph_prior: raise ValueError( 'Cannot show concepts because model does not use a graph prior!') if show_student_ids and not show_students: raise ValueError('Cannot show student_ids without students!') if show_assessment_ids and not show_assessments: raise ValueError('Cannot show assessment_ids without assessments!') if show_lesson_ids and not show_lessons and not show_prereqs: raise ValueError('Cannot show lesson_ids without lessons and/or prereqs!') if show_pass_rates and not show_assessments: raise ValueError('Cannot show pass rates without assessments!') if show_concept_ids and not show_concepts: raise ValueError('Cannot show concept_ids without concepts!') if show_pass_rates and model.history.num_students() > 1: _logger.warning('Showing pass rates for more than one student!') _, ax = plt.subplots() if show_students: student_embeddings_x = model.student_embeddings[:, 0, timestep] student_embeddings_y = model.student_embeddings[:, 1, timestep] ax.scatter( student_embeddings_x, student_embeddings_y, alpha=alpha, marker='o', s=size, label='student') if show_student_ids: for student_id in model.history.iter_students(): student_idx = model.history.idx_of_student_id(student_id) student_x = student_embeddings_x[student_idx] student_y = student_embeddings_y[student_idx] student_id_x = student_x + id_padding_x student_id_y = student_y + id_padding_y ax.annotate(student_id, xy=( student_x, student_y), xytext=( student_id_x, student_id_y)) if show_assessments: assessment_embeddings_x = model.assessment_embeddings[:, 0] assessment_embeddings_y = model.assessment_embeddings[:, 1] if show_pass_rates: num_assessments = model.history.num_assessments() pass_rates = [model.history.assessment_pass_rate( model.history.id_of_assessment_idx( i), timestep if timestep!=-1 else None) for i in xrange( num_assessments)] ax.scatter( assessment_embeddings_x, assessment_embeddings_y, c=pass_rates, alpha=alpha, marker='s', s=size, label='assessment', cmap=matplotlib.cm.cool) else: ax.scatter( assessment_embeddings_x, assessment_embeddings_y, alpha=alpha, marker='s', s=size, label='assessment') if show_assessment_ids: for assessment_id in model.history.iter_assessments(): assessment_idx = model.history.idx_of_assessment_id(assessment_id) assessment_x = assessment_embeddings_x[assessment_idx] assessment_y = assessment_embeddings_y[assessment_idx] assessment_id_x = assessment_x + id_padding_x assessment_id_y = assessment_y + id_padding_y ax.annotate(assessment_id, xy=( assessment_x, assessment_y), xytext=( assessment_id_x, assessment_id_y)) if show_concepts: concept_embeddings_x = model.concept_embeddings[:, 0] concept_embeddings_y = model.concept_embeddings[:, 1] ax.scatter( concept_embeddings_x, concept_embeddings_y, alpha=alpha, marker='^', s=size, label='concept') if show_concept_ids: for concept_id, concept_idx in model.graph.idx_of_concept_id.iteritems(): concept_x = concept_embeddings_x[concept_idx] concept_y = concept_embeddings_y[concept_idx] concept_id_x = concept_x + id_padding_x concept_id_y = concept_y + id_padding_y ax.annotate(concept_id, xy=( concept_x, concept_y), xytext=( concept_id_x, concept_id_y)) if show_lessons: if model.using_prereqs and show_prereqs: prereq_embeddings_x = model.prereq_embeddings[:, 0] prereq_embeddings_y = model.prereq_embeddings[:, 1] else: prereq_embeddings_x = prereq_embeddings_y = [0] * ( model.history.num_lessons()) lesson_embeddings_x = model.lesson_embeddings[:, 0] lesson_embeddings_y = model.lesson_embeddings[:, 1] ax.quiver( prereq_embeddings_x, prereq_embeddings_y, lesson_embeddings_x, lesson_embeddings_y, pivot='tail') if show_lesson_ids: for lesson_id in model.history.iter_lessons(): lesson_idx = model.history.idx_of_lesson_id(lesson_id) lesson_x = prereq_embeddings_x[lesson_idx] if model.using_prereqs else 0 lesson_y = prereq_embeddings_y[lesson_idx] if model.using_prereqs else 0 lesson_id_x = lesson_x + id_padding_x lesson_id_y = lesson_y + id_padding_y ax.annotate(lesson_id, xy=( lesson_x, lesson_y), xytext=( lesson_id_x, lesson_id_y)) if show_legend: ax.legend(loc='upper left') if force_invariant_axis_limits: x = [] y = [] if show_students: x += np.unique(model.student_embeddings[:, 0, :]).tolist() y += np.unique(model.student_embeddings[:, 1, :]).tolist() if show_assessments: x += np.unique(model.assessment_embeddings[:, 0]).tolist() y += np.unique(model.assessment_embeddings[:, 1]).tolist() if show_lessons: x += np.unique(model.lesson_embeddings[:, 0] + ( model.prereq_embeddings[:, 0] if show_prereqs else 0)).tolist() y += np.unique(model.lesson_embeddings[:, 1] + ( model.prereq_embeddings[:, 1] if show_prereqs else 0)).tolist() if show_concepts: x += np.unique(model.concept_embeddings[:, 0]).tolist() y += np.unique(model.concept_embeddings[:, 1]).tolist() ax.set_xlim([min(x)-axis_limit_padding, max(x)+axis_limit_padding]) ax.set_ylim([min(y)-axis_limit_padding, max(y)+axis_limit_padding]) if x_axis_limits is not None: ax.set_xlim(x_axis_limits) if y_axis_limits is not None: ax.set_ylim(y_axis_limits) if title is None: title = 'Latent Skill Space' ax.set_title(title) ax.set_xlabel('Skill 1') ax.set_ylabel('Skill 2') plt.show()
apache-2.0
andaag/scikit-learn
sklearn/naive_bayes.py
128
28358
# -*- coding: utf-8 -*- """ The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These are supervised learning methods based on applying Bayes' theorem with strong (naive) feature independence assumptions. """ # Author: Vincent Michel <[email protected]> # Minor fixes by Fabian Pedregosa # Amit Aides <[email protected]> # Yehuda Finkelstein <[email protected]> # Lars Buitinck <[email protected]> # Jan Hendrik Metzen <[email protected]> # (parts based on earlier work by Mathieu Blondel) # # License: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from .base import BaseEstimator, ClassifierMixin from .preprocessing import binarize from .preprocessing import LabelBinarizer from .preprocessing import label_binarize from .utils import check_X_y, check_array from .utils.extmath import safe_sparse_dot, logsumexp from .utils.multiclass import _check_partial_fit_first_call from .utils.fixes import in1d from .utils.validation import check_is_fitted from .externals import six __all__ = ['BernoulliNB', 'GaussianNB', 'MultinomialNB'] class BaseNB(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Abstract base class for naive Bayes estimators""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of shape [n_classes, n_samples]. Input is passed to _joint_log_likelihood as-is by predict, predict_proba and predict_log_proba. """ def predict(self, X): """ Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Predicted target values for X """ jll = self._joint_log_likelihood(X) return self.classes_[np.argmax(jll, axis=1)] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the log-probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ jll = self._joint_log_likelihood(X) # normalize by P(x) = P(f_1, ..., f_n) log_prob_x = logsumexp(jll, axis=1) return jll - np.atleast_2d(log_prob_x).T def predict_proba(self, X): """ Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ return np.exp(self.predict_log_proba(X)) class GaussianNB(BaseNB): """ Gaussian Naive Bayes (GaussianNB) Can perform online updates to model parameters via `partial_fit` method. For details on algorithm used to update feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Read more in the :ref:`User Guide <gaussian_naive_bayes>`. Attributes ---------- class_prior_ : array, shape (n_classes,) probability of each class. class_count_ : array, shape (n_classes,) number of training samples observed in each class. theta_ : array, shape (n_classes, n_features) mean of each feature per class sigma_ : array, shape (n_classes, n_features) variance of each feature per class Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB() >>> print(clf.predict([[-0.8, -1]])) [1] >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y)) GaussianNB() >>> print(clf_pf.predict([[-0.8, -1]])) [1] """ def fit(self, X, y, sample_weight=None): """Fit Gaussian Naive Bayes according to X, y Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) return self._partial_fit(X, y, np.unique(y), _refit=True, sample_weight=sample_weight) @staticmethod def _update_mean_variance(n_past, mu, var, X, sample_weight=None): """Compute online update of Gaussian mean and variance. Given starting sample count, mean, and variance, a new set of points X, and optionally sample weights, return the updated mean and variance. (NB - each dimension (column) in X is treated as independent -- you get variance, not covariance). Can take scalar mean and variance, or vector mean and variance to simultaneously update a number of independent Gaussians. See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Parameters ---------- n_past : int Number of samples represented in old mean and variance. If sample weights were given, this should contain the sum of sample weights represented in old mean and variance. mu : array-like, shape (number of Gaussians,) Means for Gaussians in original set. var : array-like, shape (number of Gaussians,) Variances for Gaussians in original set. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- total_mu : array-like, shape (number of Gaussians,) Updated mean for each Gaussian over the combined set. total_var : array-like, shape (number of Gaussians,) Updated variance for each Gaussian over the combined set. """ if X.shape[0] == 0: return mu, var # Compute (potentially weighted) mean and variance of new datapoints if sample_weight is not None: n_new = float(sample_weight.sum()) new_mu = np.average(X, axis=0, weights=sample_weight / n_new) new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight / n_new) else: n_new = X.shape[0] new_var = np.var(X, axis=0) new_mu = np.mean(X, axis=0) if n_past == 0: return new_mu, new_var n_total = float(n_past + n_new) # Combine mean of old and new data, taking into consideration # (weighted) number of observations total_mu = (n_new * new_mu + n_past * mu) / n_total # Combine variance of old and new data, taking into consideration # (weighted) number of observations. This is achieved by combining # the sum-of-squared-differences (ssd) old_ssd = n_past * var new_ssd = n_new * new_var total_ssd = (old_ssd + new_ssd + (n_past / float(n_new * n_total)) * (n_new * mu - n_new * new_mu) ** 2) total_var = total_ssd / n_total return total_mu, total_var def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance and numerical stability overhead, hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ return self._partial_fit(X, y, classes, _refit=False, sample_weight=sample_weight) def _partial_fit(self, X, y, classes=None, _refit=False, sample_weight=None): """Actual implementation of Gaussian NB fitting. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. _refit: bool If true, act as though this were the first time we called _partial_fit (ie, throw away any past fitting and start over). sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) epsilon = 1e-9 if _refit: self.classes_ = None if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_features = X.shape[1] n_classes = len(self.classes_) self.theta_ = np.zeros((n_classes, n_features)) self.sigma_ = np.zeros((n_classes, n_features)) self.class_prior_ = np.zeros(n_classes) self.class_count_ = np.zeros(n_classes) else: if X.shape[1] != self.theta_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (X.shape[1], self.theta_.shape[1])) # Put epsilon back in each time self.sigma_[:, :] -= epsilon classes = self.classes_ unique_y = np.unique(y) unique_y_in_classes = in1d(unique_y, classes) if not np.all(unique_y_in_classes): raise ValueError("The target label(s) %s in y do not exist in the " "initial classes %s" % (y[~unique_y_in_classes], classes)) for y_i in unique_y: i = classes.searchsorted(y_i) X_i = X[y == y_i, :] if sample_weight is not None: sw_i = sample_weight[y == y_i] N_i = sw_i.sum() else: sw_i = None N_i = X_i.shape[0] new_theta, new_sigma = self._update_mean_variance( self.class_count_[i], self.theta_[i, :], self.sigma_[i, :], X_i, sw_i) self.theta_[i, :] = new_theta self.sigma_[i, :] = new_sigma self.class_count_[i] += N_i self.sigma_[:, :] += epsilon self.class_prior_[:] = self.class_count_ / np.sum(self.class_count_) return self def _joint_log_likelihood(self, X): check_is_fitted(self, "classes_") X = check_array(X) joint_log_likelihood = [] for i in range(np.size(self.classes_)): jointi = np.log(self.class_prior_[i]) n_ij = - 0.5 * np.sum(np.log(2. * np.pi * self.sigma_[i, :])) n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / (self.sigma_[i, :]), 1) joint_log_likelihood.append(jointi + n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T return joint_log_likelihood class BaseDiscreteNB(BaseNB): """Abstract base class for naive Bayes on discrete/categorical data Any estimator based on this class should provide: __init__ _joint_log_likelihood(X) as per BaseNB """ def _update_class_log_prior(self, class_prior=None): n_classes = len(self.classes_) if class_prior is not None: if len(class_prior) != n_classes: raise ValueError("Number of priors must match number of" " classes.") self.class_log_prior_ = np.log(class_prior) elif self.fit_prior: # empirical prior, with sample_weight taken into account self.class_log_prior_ = (np.log(self.class_count_) - np.log(self.class_count_.sum())) else: self.class_log_prior_ = np.zeros(n_classes) - np.log(n_classes) def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance overhead hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. classes : array-like, shape = [n_classes] List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) _, n_features = X.shape if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_effective_classes = len(classes) if len(classes) > 1 else 2 self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) elif n_features != self.coef_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (n_features, self.coef_.shape[-1])) Y = label_binarize(y, classes=self.classes_) if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) n_samples, n_classes = Y.shape if X.shape[0] != Y.shape[0]: msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible." raise ValueError(msg % (X.shape[0], y.shape[0])) # label_binarize() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently Y = Y.astype(np.float64) if sample_weight is not None: Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas self._count(X, Y) # XXX: OPTIM: we could introduce a public finalization method to # be called by the user explicitly just once after several consecutive # calls to partial_fit and prior any call to predict[_[log_]proba] # to avoid computing the smooth log probas at each call to partial fit self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self def fit(self, X, y, sample_weight=None): """Fit Naive Bayes classifier according to X, y Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y, 'csr') _, n_features = X.shape labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) # LabelBinarizer().fit_transform() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently; # this means we also don't have to cast X to floating point Y = Y.astype(np.float64) if sample_weight is not None: Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas n_effective_classes = Y.shape[1] self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) self._count(X, Y) self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self # XXX The following is a stopgap measure; we need to set the dimensions # of class_log_prior_ and feature_log_prob_ correctly. def _get_coef(self): return (self.feature_log_prob_[1:] if len(self.classes_) == 2 else self.feature_log_prob_) def _get_intercept(self): return (self.class_log_prior_[1:] if len(self.classes_) == 2 else self.class_log_prior_) coef_ = property(_get_coef) intercept_ = property(_get_intercept) class MultinomialNB(BaseDiscreteNB): """ Naive Bayes classifier for multinomial models The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. Read more in the :ref:`User Guide <multinomial_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size (n_classes,) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape (n_classes, ) Smoothed empirical log probability for each class. intercept_ : property Mirrors ``class_log_prior_`` for interpreting MultinomialNB as a linear model. feature_log_prob_ : array, shape (n_classes, n_features) Empirical log probability of features given a class, ``P(x_i|y)``. coef_ : property Mirrors ``feature_log_prob_`` for interpreting MultinomialNB as a linear model. class_count_ : array, shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3] Notes ----- For the rationale behind the names `coef_` and `intercept_`, i.e. naive Bayes as a linear classifier, see J. Rennie et al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML. References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html """ def __init__(self, alpha=1.0, fit_prior=True, class_prior=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if np.any((X.data if issparse(X) else X) < 0): raise ValueError("Input X must be non-negative") self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') return (safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_) class BernoulliNB(BaseDiscreteNB): """Naive Bayes classifier for multivariate Bernoulli models. Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean features. Read more in the :ref:`User Guide <bernoulli_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). binarize : float or None, optional Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors. fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size=[n_classes,] Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape = [n_classes] Log probability of each class (smoothed). feature_log_prob_ : array, shape = [n_classes, n_features] Empirical log probability of features given a class, P(x_i|y). class_count_ : array, shape = [n_classes] Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape = [n_classes, n_features] Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3] References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS). """ def __init__(self, alpha=1.0, binarize=.0, fit_prior=True, class_prior=None): self.alpha = alpha self.binarize = binarize self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if self.binarize is not None: X = binarize(X, threshold=self.binarize) self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = self.class_count_ + self.alpha * 2 self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') if self.binarize is not None: X = binarize(X, threshold=self.binarize) n_classes, n_features = self.feature_log_prob_.shape n_samples, n_features_X = X.shape if n_features_X != n_features: raise ValueError("Expected input with %d features, got %d instead" % (n_features, n_features_X)) neg_prob = np.log(1 - np.exp(self.feature_log_prob_)) # Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T) jll += self.class_log_prior_ + neg_prob.sum(axis=1) return jll
bsd-3-clause
jbloom/epitopefinder
scripts/epitopefinder_plotdistributioncomparison.py
1
3447
#!python """Script for plotting distributions of epitopes per site for two sets of sites. Uses matplotlib. Designed to analyze output of epitopefinder_getepitopes.py. Written by Jesse Bloom.""" import os import sys import random import epitopefinder.io import epitopefinder.plot def main(): """Main body of script.""" random.seed(1) # seed random number generator in case P values are being computed if not epitopefinder.plot.PylabAvailable(): raise ImportError("Cannot import matplotlib / pylab, which are required by this script.") # output is written to out, currently set to standard out out = sys.stdout out.write("Beginning execution of epitopefinder_plotdistributioncomparison.py\n") # read input file and parse arguments args = sys.argv[1 : ] if len(args) != 1: raise IOError("Script must be called with exactly one argument specifying the input file") infilename = sys.argv[1] if not os.path.isfile(infilename): raise IOError("Failed to find infile %s" % infilename) d = epitopefinder.io.ParseInfile(open(infilename)) out.write("\nRead input arguments from %s\n" % infilename) out.write('Read the following key / value pairs:\n') for (key, value) in d.iteritems(): out.write("%s %s\n" % (key, value)) plotfile = epitopefinder.io.ParseStringValue(d, 'plotfile').strip() epitopesbysite1_list = [] epitopesbysite2_list = [] for (xlist, xf) in [(epitopesbysite1_list, 'epitopesfile1'), (epitopesbysite2_list, 'epitopesfile2')]: epitopesfile = epitopefinder.io.ParseFileList(d, xf) if len(epitopesfile) != 1: raise ValueError("%s specifies more than one file" % xf) epitopesfile = epitopesfile[0] for line in open(epitopesfile).readlines()[1 : ]: if not (line.isspace() or line[0] == '#'): (site, n) = line.split(',') (site, n) = (int(site), int(n)) xlist.append(n) if not xlist: raise ValueError("%s failed to specify information for any sites" % xf) set1name = epitopefinder.io.ParseStringValue(d, 'set1name') set2name = epitopefinder.io.ParseStringValue(d, 'set2name') title = epitopefinder.io.ParseStringValue(d, 'title').strip() if title.upper() in ['NONE', 'FALSE']: title = None pvalue = epitopefinder.io.ParseStringValue(d, 'pvalue') if pvalue.upper() in ['NONE', 'FALSE']: pvalue = None pvaluewithreplacement = None else: pvalue = int(pvalue) pvaluewithreplacement = epitopefinder.io.ParseBoolValue(d, 'pvaluewithreplacement') if pvalue < 1: raise ValueError("pvalue must be >= 1") if len(epitopesbysite2_list) >= len(epitopesbysite1_list): raise ValueError("You cannot use pvalue since epitopesbysite2_list is not a subset of epitopesbysite1_list -- it does not contain fewer sites with specified epitope counts.") ymax = None if 'ymax' in d: ymax = epitopefinder.io.ParseFloatValue(d, 'ymax') out.write('\nNow creating the plot file %s\n' % plotfile) epitopefinder.plot.PlotDistributionComparison(epitopesbysite1_list, epitopesbysite2_list, set1name, set2name, plotfile, 'number of epitopes', 'fraction of sites', title, pvalue, pvaluewithreplacement, ymax=ymax) out.write("\nScript is complete.\n") if __name__ == '__main__': main() # run the script
gpl-3.0
balazssimon/ml-playground
udemy/lazyprogrammer/deep-reinforcement-learning-python/mountaincar/q_learning.py
1
6102
# This takes 4min 30s to run in Python 2.7 # But only 1min 30s to run in Python 3.5! # # Note: gym changed from version 0.7.3 to 0.8.0 # MountainCar episode length is capped at 200 in later versions. # This means your agent can't learn as much in the earlier episodes # since they are no longer as long. import gym import os import sys import numpy as np import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from gym import wrappers from datetime import datetime from sklearn.pipeline import FeatureUnion from sklearn.preprocessing import StandardScaler from sklearn.kernel_approximation import RBFSampler from sklearn.linear_model import SGDRegressor # SGDRegressor defaults: # loss='squared_loss', penalty='l2', alpha=0.0001, # l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, # verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', # eta0=0.01, power_t=0.25, warm_start=False, average=False # Inspired by https://github.com/dennybritz/reinforcement-learning class FeatureTransformer: def __init__(self, env, n_components=500): observation_examples = np.array([env.observation_space.sample() for x in range(10000)]) scaler = StandardScaler() scaler.fit(observation_examples) # Used to converte a state to a featurizes represenation. # We use RBF kernels with different variances to cover different parts of the space featurizer = FeatureUnion([ ("rbf1", RBFSampler(gamma=5.0, n_components=n_components)), ("rbf2", RBFSampler(gamma=2.0, n_components=n_components)), ("rbf3", RBFSampler(gamma=1.0, n_components=n_components)), ("rbf4", RBFSampler(gamma=0.5, n_components=n_components)) ]) example_features = featurizer.fit_transform(scaler.transform(observation_examples)) self.dimensions = example_features.shape[1] self.scaler = scaler self.featurizer = featurizer def transform(self, observations): # print "observations:", observations scaled = self.scaler.transform(observations) # assert(len(scaled.shape) == 2) return self.featurizer.transform(scaled) # Holds one SGDRegressor for each action class Model: def __init__(self, env, feature_transformer, learning_rate): self.env = env self.models = [] self.feature_transformer = feature_transformer for i in range(env.action_space.n): model = SGDRegressor(learning_rate=learning_rate) model.partial_fit(feature_transformer.transform( [env.reset()] ), [0]) self.models.append(model) def predict(self, s): X = self.feature_transformer.transform([s]) result = np.stack([m.predict(X) for m in self.models]).T assert(len(result.shape) == 2) return result def update(self, s, a, G): X = self.feature_transformer.transform([s]) assert(len(X.shape) == 2) self.models[a].partial_fit(X, [G]) def sample_action(self, s, eps): # eps = 0 # Technically, we don't need to do epsilon-greedy # because SGDRegressor predicts 0 for all states # until they are updated. This works as the # "Optimistic Initial Values" method, since all # the rewards for Mountain Car are -1. if np.random.random() < eps: return self.env.action_space.sample() else: return np.argmax(self.predict(s)) # returns a list of states_and_rewards, and the total reward def play_one(model, env, eps, gamma): observation = env.reset() done = False totalreward = 0 iters = 0 while not done and iters < 10000: action = model.sample_action(observation, eps) prev_observation = observation observation, reward, done, info = env.step(action) # update the model next = model.predict(observation) # assert(next.shape == (1, env.action_space.n)) G = reward + gamma*np.max(next[0]) model.update(prev_observation, action, G) totalreward += reward iters += 1 return totalreward def plot_cost_to_go(env, estimator, num_tiles=20): x = np.linspace(env.observation_space.low[0], env.observation_space.high[0], num=num_tiles) y = np.linspace(env.observation_space.low[1], env.observation_space.high[1], num=num_tiles) X, Y = np.meshgrid(x, y) # both X and Y will be of shape (num_tiles, num_tiles) Z = np.apply_along_axis(lambda _: -np.max(estimator.predict(_)), 2, np.dstack([X, Y])) # Z will also be of shape (num_tiles, num_tiles) fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111, projection='3d') surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0) ax.set_xlabel('Position') ax.set_ylabel('Velocity') ax.set_zlabel('Cost-To-Go == -V(s)') ax.set_title("Cost-To-Go Function") fig.colorbar(surf) plt.show() def plot_running_avg(totalrewards): N = len(totalrewards) running_avg = np.empty(N) for t in range(N): running_avg[t] = totalrewards[max(0, t-100):(t+1)].mean() plt.plot(running_avg) plt.title("Running Average") plt.show() def main(show_plots=True): env = gym.make('MountainCar-v0') ft = FeatureTransformer(env) model = Model(env, ft, "constant") gamma = 0.99 if 'monitor' in sys.argv: filename = os.path.basename(__file__).split('.')[0] monitor_dir = './' + filename + '_' + str(datetime.now()) env = wrappers.Monitor(env, monitor_dir) N = 300 totalrewards = np.empty(N) for n in range(N): # eps = 1.0/(0.1*n+1) eps = 0.1*(0.97**n) if n == 199: print("eps:", eps) # eps = 1.0/np.sqrt(n+1) totalreward = play_one(model, env, eps, gamma) totalrewards[n] = totalreward if (n + 1) % 100 == 0: print("episode:", n, "total reward:", totalreward) print("avg reward for last 100 episodes:", totalrewards[-100:].mean()) print("total steps:", -totalrewards.sum()) if show_plots: plt.plot(totalrewards) plt.title("Rewards") plt.show() plot_running_avg(totalrewards) # plot the optimal state-value function plot_cost_to_go(env, model) if __name__ == '__main__': # for i in range(10): # main(show_plots=False) main()
apache-2.0
clucas111/delineating-linear-elements
Code/clf_preprocessing.py
1
1569
# -*- coding: utf-8 -*- """ @author: Chris Lucas """ import numpy as np import pandas as pd def merge_dataframes(dfs, key_field_name): """ Merges dataframes containing data of one class into one dataframe with the class in a column. Parameters ---------- dfs : dict of DataFrames Dictionary with the class as key and the value as the dataframes to be merged. Returns ------- df : DataFrame The merged dataframe. """ df = pd.DataFrame() for k, v in dfs.iteritems(): v[key_field_name] = k df = df.append(v) return df def correlated_features(df, features, corr_th=0.98): """ Determines highly correlated features which can consequently be dropped. Parameters ---------- df : DataFrame The feature values. features : list of strings The names of the features (column names in the dataframe) to be checked. corr_th : float The correlation coefficient threshold to determine what is highly correlated. Returns ------- drops : list fo strings The names of the features which can be dropped. """ df_corr = df[features].astype(np.float64).corr(method='pearson') mask = np.ones(df_corr.columns.size) - np.eye(df_corr.columns.size) df_corr = mask * df_corr drops = [] for col in df_corr.columns.values: if not np.in1d([col], drops): corr = df_corr[abs(df_corr[col]) > corr_th].index drops = np.union1d(drops, corr) return drops
apache-2.0
tmhm/scikit-learn
sklearn/cluster/setup.py
263
1449
# Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.cpp'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical', sources=['_hierarchical.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension( '_k_means', libraries=cblas_libs, sources=['_k_means.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info ) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
jakobworldpeace/scikit-learn
sklearn/ensemble/forest.py
8
67993
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount, parallel_helper from ..utils.multiclass import check_classification_targets from ..utils.validation import check_is_fitted __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest .. versionadded:: 0.18 Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False, random_state=random_state) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ check_is_fitted(self, 'estimators_') all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('balanced', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight != 'balanced_subsample' or not self.bootstrap): if self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. Notes ----- The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. Notes ----- The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_split=1e-7, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ X = check_array(X, accept_sparse=['csc']) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
CINPLA/exana
exana/tracking/fields.py
1
32391
import numpy as np def spatial_rate_map(x, y, t, spike_train, binsize=0.01, box_xlen=1, box_ylen=1, mask_unvisited=True, convolve=True, return_bins=False, smoothing=0.02): """Divide a 2D space in bins of size binsize**2, count the number of spikes in each bin and divide by the time spent in respective bins. The map can then be convolved with a gaussian kernel of size csize determined by the smoothing factor, binsize and box_xlen. Parameters ---------- spike_train : neo.SpikeTrain x : float 1d vector of x positions y : float 1d vector of y positions t : float 1d vector of times at x, y positions binsize : float spatial binsize box_xlen : quantities scalar in m side length of quadratic box mask_unvisited: bool mask bins which has not been visited by nans convolve : bool convolve the rate map with a 2D Gaussian kernel Returns ------- out : rate map if return_bins = True out : rate map, xbins, ybins """ if not all([len(var) == len(var2) for var in [x,y,t] for var2 in [x,y,t]]): raise ValueError('x, y, t must have same number of elements') if box_xlen < x.max() or box_ylen < y.max(): raise ValueError('box length must be larger or equal to max path length') from decimal import Decimal as dec decimals = 1e10 remainderx = dec(float(box_xlen)*decimals) % dec(float(binsize)*decimals) remaindery = dec(float(box_ylen)*decimals) % dec(float(binsize)*decimals) if remainderx != 0 or remaindery != 0: raise ValueError('the remainder should be zero i.e. the ' + 'box length should be an exact multiple ' + 'of the binsize') # interpolate one extra timepoint t_ = np.append(t, t[-1] + np.median(np.diff(t))) spikes_in_bin, _ = np.histogram(spike_train, t_) time_in_bin = np.diff(t_) xbins = np.arange(0, box_xlen + binsize, binsize) ybins = np.arange(0, box_ylen + binsize, binsize) ix = np.digitize(x, xbins, right=True) iy = np.digitize(y, ybins, right=True) spike_pos = np.zeros((xbins.size, ybins.size)) time_pos = np.zeros((xbins.size, ybins.size)) for n in range(len(x)): spike_pos[ix[n], iy[n]] += spikes_in_bin[n] time_pos[ix[n], iy[n]] += time_in_bin[n] # correct for shifting of map spike_pos = spike_pos[1:, 1:] time_pos = time_pos[1:, 1:] with np.errstate(divide='ignore', invalid='ignore'): rate = np.divide(spike_pos, time_pos) if convolve: rate[np.isnan(rate)] = 0. # for convolution from astropy.convolution import Gaussian2DKernel, convolve_fft csize = (box_xlen / binsize) * smoothing kernel = Gaussian2DKernel(csize) rate = convolve_fft(rate, kernel) # TODO edge correction if mask_unvisited: was_in_bin = np.asarray(time_pos, dtype=bool) rate[np.invert(was_in_bin)] = np.nan if return_bins: return rate.T, xbins, ybins else: return rate.T def gridness(rate_map, box_xlen, box_ylen, return_acorr=False, step_size=0.1, method='iter', return_masked_acorr=False): '''Calculates gridness of a rate map. Calculates the normalized autocorrelation (A) of a rate map B where A is given as A = 1/n\Sum_{x,y}(B - \bar{B})^{2}/\sigma_{B}^{2}. Further, the Pearsson's product-moment correlation coefficients is calculated between A and A_{rot} rotated 30 and 60 degrees. Finally the gridness is calculated as the difference between the minimum of coefficients at 60 degrees and the maximum of coefficients at 30 degrees i.e. gridness = min(r60) - max(r30). If the method 'iter' is chosen: In order to focus the analysis on symmetry of A the the central and the outer part of the gridness is maximized by increasingly mask A at steps of ``step_size``. If the method 'puncture' is chosen: This is the standard way of calculating gridness, by masking the central autocorrelation bump, in addition to rounding the map. See examples. Parameters ---------- rate_map : numpy.ndarray box_xlen : float side length of quadratic box step_size : float step size in masking, only applies to the method "iter" return_acorr : bool return autocorrelation map or not return_masked_acorr : bool return masked autocorrelation map or not method : 'iter' or 'puncture' Returns ------- out : gridness, (autocorrelation map, masked autocorrelation map) Examples -------- >>> from exana.tracking.tools import make_test_grid_rate_map >>> import matplotlib.pyplot as plt >>> rate_map, pos = make_test_grid_rate_map() >>> iter_score = gridness(rate_map, box_xlen=1, box_ylen=1, method='iter') >>> print('%.2f' % iter_score) 1.39 >>> puncture_score = gridness(rate_map, box_xlen=1, box_ylen=1, method='puncture') >>> print('%.2f' % puncture_score) 0.96 .. plot:: import matplotlib.pyplot as plt import numpy as np from exana.tracking.tools import make_test_grid_rate_map from exana.tracking import gridness import matplotlib.pyplot as plt rate_map, _ = make_test_grid_rate_map() fig, axs = plt.subplots(2, 2) g1, acorr, m_acorr1 = gridness(rate_map, box_xlen=1, box_ylen=1, return_acorr=True, return_masked_acorr=True, method='iter') g2, m_acorr2 = gridness(rate_map, box_xlen=1, box_ylen=1, return_masked_acorr=True, method='puncture') mats = [rate_map, m_acorr1, acorr, m_acorr2] titles = ['Rate map', 'Masked acorr "iter", gridness = %.2f' % g1, 'Autocorrelation', 'Masked acorr "puncture", gridness = %.2f' % g2] for ax, mat, title in zip(axs.ravel(), mats, titles): ax.imshow(mat) ax.set_title(title) plt.tight_layout() plt.show() ''' import numpy.ma as ma from exana.misc.tools import fftcorrelate2d from exana.tracking.tools import gaussian2D from scipy.optimize import curve_fit tmp_map = rate_map.copy() tmp_map[~np.isfinite(tmp_map)] = 0 acorr = fftcorrelate2d(tmp_map, tmp_map, mode='full', normalize=True) rows, cols = acorr.shape b_x = np.linspace(- box_xlen / 2., box_xlen / 2., rows) b_y = np.linspace(- box_ylen / 2., box_ylen / 2., cols) B_x, B_y = np.meshgrid(b_x, b_y) if method == 'iter': if return_masked_acorr: m_acorrs = [] gridscores = [] for outer in np.arange(box_xlen / 4, box_xlen / 2, step_size): m_acorr = ma.masked_array( acorr, mask=np.sqrt(B_x**2 + B_y**2) > outer) for inner in np.arange(0, box_xlen / 4, step_size): m_acorr = ma.masked_array( m_acorr, mask=np.sqrt(B_x**2 + B_y**2) < inner) r30, r60 = rotate_corr(m_acorr) gridscores.append(np.min(r60) - np.max(r30)) if return_masked_acorr: m_acorrs.append(m_acorr) gridscore = max(gridscores) if return_masked_acorr: m_acorr = m_acorrs[gridscores.index(gridscore)] elif method == 'puncture': # round picture edges _gaussian = lambda pos, a, s: gaussian2D(a, pos[0], pos[1], 0, 0, s).ravel() p0 = (max(acorr.ravel()), min(box_xlen, box_ylen) / 100) popt, pcov = curve_fit(_gaussian, (B_x, B_y), acorr.ravel(), p0=p0) m_acorr = ma.masked_array( acorr, mask=np.sqrt(B_x**2 + B_y**2) > min(box_xlen, box_ylen) / 2) m_acorr = ma.masked_array( m_acorr, mask=np.sqrt(B_x**2 + B_y**2) < popt[1]) r30, r60 = rotate_corr(m_acorr) gridscore = float(np.min(r60) - np.max(r30)) if return_acorr and return_masked_acorr: return gridscore, acorr, m_acorr if return_masked_acorr: return gridscore, m_acorr if return_acorr: return gridscore, acorr # acorrs[grids.index(max(grids))] else: return gridscore def rotate_corr(acorr): from exana.misc.tools import masked_corrcoef2d from scipy.ndimage.interpolation import rotate angles = range(30, 180+30, 30) corr = [] # Rotate and compute correlation coefficient for angle in angles: rot_acorr = rotate(acorr, angle, reshape=False) corr.append(masked_corrcoef2d(rot_acorr, acorr)[0, 1]) r60 = corr[1::2] r30 = corr[::2] return r30, r60 def occupancy_map(x, y, t, binsize=0.01, box_xlen=1, box_ylen=1, mask_unvisited=True, convolve=True, return_bins=False, smoothing=0.02): '''Divide a 2D space in bins of size binsize**2, count the time spent in each bin. The map can be convolved with a gaussian kernel of size csize determined by the smoothing factor, binsize and box_xlen. Parameters ---------- x : array 1d vector of x positions y : array 1d vector of y positions t : array 1d vector of times at x, y positions binsize : float spatial binsize box_xlen : float side length of quadratic box mask_unvisited: bool mask bins which has not been visited by nans convolve : bool convolve the rate map with a 2D Gaussian kernel Returns ------- occupancy_map : numpy.ndarray if return_bins = True out : occupancy_map, xbins, ybins ''' if not all([len(var) == len(var2) for var in [ x, y, t] for var2 in [x, y, t]]): raise ValueError('x, y, t must have same number of elements') if box_xlen < x.max() or box_ylen < y.max(): raise ValueError( 'box length must be larger or equal to max path length') from decimal import Decimal as dec decimals = 1e10 remainderx = dec(float(box_xlen)*decimals) % dec(float(binsize)*decimals) remaindery = dec(float(box_ylen)*decimals) % dec(float(binsize)*decimals) if remainderx != 0 or remaindery != 0: raise ValueError('the remainder should be zero i.e. the ' + 'box length should be an exact multiple ' + 'of the binsize') # interpolate one extra timepoint t_ = np.array(t.tolist() + [t.max() + np.median(np.diff(t))]) time_in_bin = np.diff(t_) xbins = np.arange(0, box_xlen + binsize, binsize) ybins = np.arange(0, box_ylen + binsize, binsize) ix = np.digitize(x, xbins, right=True) iy = np.digitize(y, ybins, right=True) time_pos = np.zeros((xbins.size, ybins.size)) for n in range(len(x) - 1): time_pos[ix[n], iy[n]] += time_in_bin[n] # correct for shifting of map since digitize returns values at right edges time_pos = time_pos[1:, 1:] if convolve: rate[np.isnan(rate)] = 0. # for convolution from astropy.convolution import Gaussian2DKernel, convolve_fft csize = (box_xlen / binsize) * smoothing kernel = Gaussian2DKernel(csize) rate = convolve_fft(rate, kernel) # TODO edge correction if mask_unvisited: was_in_bin = np.asarray(time_pos, dtype=bool) rate[np.invert(was_in_bin)] = np.nan if return_bins: return rate.T, xbins, ybins else: return rate.T def nvisits_map(x, y, t, binsize=0.01, box_xlen=1, box_ylen=1, return_bins=False): '''Divide a 2D space in bins of size binsize**2, count the number of visits in each bin. The map can be convolved with a gaussian kernel of size determined by the smoothing factor, binsize and box_xlen. Parameters ---------- x : array 1d vector of x positions y : array 1d vector of y positions t : array 1d vector of times at x, y positions binsize : float spatial binsize box_xlen : float side length of quadratic box Returns ------- nvisits_map : numpy.ndarray if return_bins = True out : nvisits_map, xbins, ybins ''' if not all([len(var) == len(var2) for var in [ x, y, t] for var2 in [x, y, t]]): raise ValueError('x, y, t must have same number of elements') if box_xlen < x.max() or box_ylen < y.max(): raise ValueError( 'box length must be larger or equal to max path length') from decimal import Decimal as dec decimals = 1e10 remainderx = dec(float(box_xlen)*decimals) % dec(float(binsize)*decimals) remaindery = dec(float(box_ylen)*decimals) % dec(float(binsize)*decimals) if remainderx != 0 or remaindery != 0: raise ValueError('the remainder should be zero i.e. the ' + 'box length should be an exact multiple ' + 'of the binsize') xbins = np.arange(0, box_xlen + binsize, binsize) ybins = np.arange(0, box_ylen + binsize, binsize) ix = np.digitize(x, xbins, right=True) iy = np.digitize(y, ybins, right=True) nvisits_map = np.zeros((xbins.size, ybins.size)) for n in range(len(x)): if n == 0: nvisits_map[ix[n], iy[n]] = 1 else: if ix[n-1] != ix[n] or iy[n-1] != iy[n]: nvisits_map[ix[n], iy[n]] += 1 # correct for shifting of map since digitize returns values at right edges nvisits_map = nvisits_map[1:, 1:] if return_bins: return nvisits_map.T, xbins, ybins else: return nvisits_map.T def spatial_rate_map_1d(x, t, spike_train, binsize=0.01, track_len=1, mask_unvisited=True, convolve=True, return_bins=False, smoothing=0.02): """Take x coordinates of linear track data, divide in bins of binsize, count the number of spikes in each bin and divide by the time spent in respective bins. The map can then be convolved with a gaussian kernel of size csize determined by the smoothing factor, binsize and box_xlen. Parameters ---------- spike_train : array x : array 1d vector of x positions t : array 1d vector of times at x, y positions binsize : float spatial binsize box_xlen : float side length of quadratic box mask_unvisited: bool mask bins which has not been visited by nans convolve : bool convolve the rate map with a 2D Gaussian kernel Returns ------- out : rate map if return_bins = True out : rate map, xbins """ if not all([len(var) == len(var2) for var in [x, t] for var2 in [x, t]]): raise ValueError('x, t must have same number of elements') if track_len < x.max(): raise ValueError('track length must be\ larger or equal to max path length') from decimal import Decimal as dec decimals = 1e10 remainderx = dec(float(track_len)*decimals) % dec(float(binsize)*decimals) if remainderx != 0: raise ValueError('the remainder should be zero i.e. the ' + 'box length should be an exact multiple ' + 'of the binsize') # interpolate one extra timepoint t_ = np.array(t.tolist() + [t.max() + np.median(np.diff(t))]) spikes_in_bin, _ = np.histogram(spike_train, t_) time_in_bin = np.diff(t_) xbins = np.arange(0, track_len + binsize, binsize) ix = np.digitize(x, xbins, right=True) spike_pos = np.zeros(xbins.size) time_pos = np.zeros(xbins.size) for n in range(len(x)): spike_pos[ix[n]] += spikes_in_bin[n] time_pos[ix[n]] += time_in_bin[n] # correct for shifting of map since digitize returns values at right edges spike_pos = spike_pos[1:] time_pos = time_pos[1:] with np.errstate(divide='ignore', invalid='ignore'): rate = np.divide(spike_pos, time_pos) if convolve: rate[np.isnan(rate)] = 0. # for convolution from astropy.convolution import Gaussian2DKernel, convolve_fft csize = (track_len / binsize) * smoothing kernel = Gaussian2DKernel(csize) rate = convolve_fft(rate, kernel) # TODO edge correction if mask_unvisited: was_in_bin = np.asarray(time_pos, dtype=bool) rate[np.invert(was_in_bin)] = np.nan if return_bins: return rate.T, xbins else: return rate.T def separate_fields(rate_map, laplace_thrsh=0, center_method='maxima', cutoff_method='none', box_xlen=1, box_ylen=1, index=False): """Separates fields using the laplacian to identify fields separated by a negative second derivative. Parameters ---------- rate_map : np 2d array firing rate in each bin laplace_thrsh : float value of laplacian to separate fields by relative to the minima. Should be on the interval 0 to 1, where 0 cuts off at 0 and 1 cuts off at min(laplace(rate_map)). Default 0. center_method : string method to find field centers. Valid options = ['center_of_mass', 'maxima','gaussian_fit'] cutoff_method (optional) : string or function function to exclude small fields. If local field value of function is lower than global function value, the field is excluded. Valid string_options = ['median', 'mean','none']. index : bool, default False return bump center values as index or xy-pos Returns ------- fields : numpy array, shape like rate_map. contains areas all filled with same value, corresponding to fields in rate_map. The values are in range(1,nFields + 1), sorted by size of the field (sum of all field values). 0 elsewhere. n_field : int field count bump_centers : (n_field x 2) np ndarray Coordinates of field centers """ cutoff_functions = {'mean':np.mean, 'median':np.median, 'none':None} if not callable(cutoff_method): try: cutoff_func = cutoff_functions[cutoff_method] except KeyError: msg = "invalid cutoff_method flag '%s'" % cutoff_method raise ValueError(msg) else: cutoff_func = cutoff_method from scipy import ndimage l = ndimage.laplace(rate_map) l[l>laplace_thrsh*np.min(l)] = 0 # Labels areas of the laplacian not connected by values > 0. fields, n_fields = ndimage.label(l) # index 0 is the background indx = np.arange(1,n_fields+1) # Use cutoff method to remove unwanted fields if cutoff_method != 'none': try: total_value = cutoff_func(fields) except: print('Unexpected error, cutoff_func doesnt like the input:') raise field_values = ndimage.labeled_comprehension(rate_map, fields, indx, cutoff_func, float, 0) try: is_field = field_values >= total_value except: print('cutoff_func return_values doesnt want to compare:') raise if np.sum(is_field) == 0: return np.zeros(rate_map.shape), 0, np.array([[],[]]) for i in indx: if not is_field[i-1]: fields[fields == i] = 0 n_fields = ndimage.label(fields, output=fields) indx = np.arange(1,n_fields + 1) # Sort by largest mean sizes = ndimage.labeled_comprehension(rate_map, fields, indx, np.mean, float, 0) size_sort = np.argsort(sizes)[::-1] new = np.zeros_like(fields) for i in np.arange(n_fields): new[fields == size_sort[i]+1] = i+1 fields = new bc = get_bump_centers(rate_map,labels=fields,ret_index=index,indices=indx,method=center_method, units=box_xlen.units) # TODO exclude fields where maxima is on the edge of the field? return fields, n_fields, bc def get_bump_centers(rate_map, labels, ret_index=False, indices=None, method='maxima', units=1): """Finds center of fields at labels.""" from scipy import ndimage if method not in ['maxima','center_of_mass','gaussian_fit']: msg = "invalid center_method flag '%s'" % method raise ValueError(msg) if indices is None: indices = np.arange(1,np.max(labels)+1) if method == 'maxima': bc = ndimage.maximum_position(rate_map, labels=labels, index=indices) elif method == 'center_of_mass': bc = ndimage.center_of_mass(rate_map, labels=labels, index=indices) elif method == 'gaussian_fit': from exana.tracking.tools import fit_gauss_asym bc = np.zeros((len(indices),2)) import matplotlib.pyplot as plt for i in indices: r = rate_map.copy() r[labels != i] = 0 popt = fit_gauss_asym(r, return_data=False) # TODO Find out which axis is x and which is y bc[i-1] = (popt[2],popt[1]) if ret_index: msg = 'ret_index not implemented for gaussian fit' raise NotImplementedError(msg) if not ret_index and not method=='gaussian_fit': bc = (bc + np.array((0.5,0.5)))/rate_map.shape return np.array(bc)*units def find_avg_dist(rate_map, thrsh = 0, plot=False): """Uses autocorrelation and separate_fields to find average distance between bumps. Is dependent on high gridness to get separate bumps in the autocorrelation Parameters ---------- rate_map : np 2d array firing rate in each bin thrsh (optional) : float, default 0 cutoff value for the laplacian of the autocorrelation function. Should be a negative number. Gives better separation if bumps are connected by "bridges" or saddles where the laplacian is negative. plot (optional) : bool, default False plot acorr and the separated acorr, with bump centers Returns ------- avg_dist : float relative units from 0 to 1 of the box size """ from scipy.ndimage import maximum_position from exana.misc.tools import fftcorrelate2d # autocorrelate. Returns array (2x - 1) the size of rate_map acorr = fftcorrelate2d(rate_map,rate_map, mode = 'full', normalize = True) #acorr[acorr<0] = 0 # TODO Fix this f, nf, bump_centers = separate_fields(acorr,laplace_thrsh=thrsh, center_method='maxima',cutoff_method='median') # TODO Find a way to find valid value for # thrsh, or remove. bump_centers = np.array(bump_centers) # find dists from center in (autocorrelation)relative units (from 0 to 1) distances = np.linalg.norm(bump_centers - (0.5,0.5), axis = 1) dist_sort = np.argsort(distances) distances = distances[dist_sort] # use maximum 6 closest values except center value avg_dist = np.median(distances[1:7]) # correct for difference in shapes avg_dist *= acorr.shape[0]/rate_map.shape[0] # = 1.98 # TODO : raise warning if too big difference between points if plot: import matplotlib.pyplot as plt fig,[ax1,ax2] = plt.subplots(1,2) ax1.imshow(acorr,extent = (0,1,0,1),origin='lower') ax1.scatter(*(bump_centers[:,::-1].T)) ax2.imshow(f,extent = (0,1,0,1),origin='lower') ax2.scatter(*(bump_centers[:,::-1].T)) return avg_dist def fit_hex(bump_centers, avg_dist=None, plot_bumps = False, method='best'): """Fits a hex grid to a given set of bumps. Uses the three bumps most Parameters ---------- bump_centers : Nx2 np.array x,y positions of bump centers, x,y /in (0,1) avg_dist (optional): float average spacing between bumps plot_bumps (optional): bool if True, plots at the three bumps most likely to be in correct hex-position to the current matplotlib axes. method (optional): string, valid options: ['closest', 'best'] method to find angle from neighboring bumps. 'closest' uses six bumps nearest to center bump 'best' uses the two bumps nearest to avg_dist Returns ------- displacement : float distance of bump closest to the center in meters orientation : float orientation of hexagon (in degrees) """ valid_methods = ['closest', 'best'] if method not in valid_methods: msg = "invalid method flag '%s'" % method raise ValueError(msg) bump_centers = np.array(bump_centers) # sort by distance to center d = np.linalg.norm(bump_centers - (0.5,0.5), axis=1) d_sort = np.argsort(d) dist_sorted = bump_centers[d_sort] center_bump = dist_sorted[0]; others = dist_sorted[1:] displacement = d[d_sort][0] # others distances to center bumps relpos = others - center_bump reldist = np.linalg.norm(relpos, axis=1) if method == 'closest': # get 6 closest bumps rel_sort = np.argsort(reldist) closest = others[rel_sort][:6] relpos = relpos[rel_sort][:6] elif method == 'best': # get 2 bumps such that /sum_{i\neqj}(\abs{r_i-r_j}-avg_ist)^2 is minimized squares = 1e32*np.ones((others.shape[0], others.shape[0])) for i in range(len(relpos)): for j in range(i,len(relpos)): rel1 = (reldist[i] - avg_dist)**2 rel2 = (reldist[j] - avg_dist)**2 rel3 = (np.linalg.norm(relpos[i]-relpos[j]) - avg_dist)**2 squares[i,j] = rel1 + rel2 + rel3 rel_slice = np.unravel_index(np.argmin(squares), squares.shape) rel_slice = np.array(rel_slice) #rel_sort = np.argsort(np.abs(reldist-avg_dist)) closest = others[rel_slice] relpos = relpos[rel_slice] # sort by angle a = np.arctan2(relpos[:,1], relpos[:,0])%(2*np.pi) a_sort = np.argsort(a) # extract lowest angle and convert to degrees orientation = a[a_sort][0] *180/np.pi # hex grid is symmetric under rotations of 60deg orientation %= 60 if plot_bumps: import matplotlib.pyplot as plt ax=plt.gca() i = 1 xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() dx = xmax-xmin; dy = ymax - ymin closest = closest[a_sort] edges = [center_bump] if method == 'best' else [] edges += [c for c in closest] edges = np.array(edges)*(dx,dy) + (xmin, ymin) poly = plt.Polygon(edges, alpha=0.5,color='r') ax.add_artist(poly) return displacement, orientation def calculate_grid_geometry(rate_map, plot_fields=False, **kwargs): """Calculates quantitative information about grid field. Find bump centers, bump spacing, center diplacement and hexagon orientation Parameters ---------- rate_map : np 2d array firing rate in each bin plot_fields : if True, plots the field labels with field centers to the current matplotlib ax. Default False thrsh : float, default 0 see find_avg_dist() center_method : string, valid options: ['maxima', 'center_of_mass'] default: 'center_of_mass' see separate_fields() method : string, valid options: ['closest', 'best'] see fit_hex() Returns ------- bump_centers : 2d np.array x,y positions of bump centers avg_dist : float average spacing between bumps, \in [0,1] displacement : float distance of bump closest to the center orientation : float orientation of hexagon (in degrees) Examples -------- >>> import numpy as np >>> rate_map = np.zeros((5,5)) >>> pos = np.array([ [0,2], ... [1,0],[1,4], ... [2,2], ... [3,0],[3,4], ... [4,2]]) >>> for(i,j) in pos: ... rate_map[i,j] = 1 ... >>> result = calculate_grid_geometry(rate_map) """ # TODO add back the following when it is correct # (array([[0.5, 0.9], # [0.9, 0.7], # [0.1, 0.7], # [0.5, 0.5], # [0.9, 0.3], # [0.1, 0.3], # [0.5, 0.1]]) * m, 0.4472135954999579, 0.0, 26.565051177077983) from scipy.ndimage import mean, center_of_mass # TODO: smooth data? # smooth_rate_map = lambda x:x # rate_map = smooth_rate_map(rate_map) center_method = kwargs.pop('center_method',None) if center_method: fields, nfields, bump_centers = separate_fields(rate_map, center_method=center_method) else: fields, nfields, bump_centers = separate_fields(rate_map) if bump_centers.size == 0: import warnings msg = 'couldnt find bump centers, returning None' warnings.warn(msg, RuntimeWarning, stacklevel=2) return None,None,None,None, sh = np.array(rate_map.shape) if plot_fields: print(fields) import matplotlib.pyplot as plt x=np.linspace(0,1,sh[0]+1) y=np.linspace(0,1,sh[1]+1) x,y = np.meshgrid(x,y) ax = plt.gca() print('nfields: ',nfields) plt.pcolormesh(x,y, fields) # switch from row-column to x-y bump_centers = bump_centers[:,::-1] thrsh = kwargs.pop('thrsh', None) if thrsh: avg_dist = find_avg_dist(rate_map, thrsh) else: avg_dist = find_avg_dist(rate_map) displacement, orientation = fit_hex(bump_centers, avg_dist, plot_bumps=plot_fields, **kwargs) return bump_centers, avg_dist, displacement, orientation class RandomDisplacementBounds(object): """random displacement with bounds""" def __init__(self, xmin, xmax, stepsize=0.5): self.xmin = np.array(xmin) self.xmax = np.array(xmax) self.stepsize = stepsize def __call__(self, x): """take a random step but ensure the new position is within the bounds""" while True: # this could be done in a much more clever way, but it will work for example purposes xnew = x + (self.xmax-self.xmin)*np.random.uniform(-self.stepsize, self.stepsize, np.shape(x)) if np.all(xnew < self.xmax) and np.all(xnew > self.xmin): break return xnew def optimize_sep_fields(rate_map,step = 0.04, niter=40, T = 1.0, method = 'SLSQP', glob=True, x0 = [0.065,0.1],callback=None): """Optimizes the separation of the fields by minimizing an error function Parameters ---------- rate_map : method : valid methods=['L-BFGS-B', 'TNC', 'SLSQP'] x0 : list initial values for smoothing smoothing and laplace_thrsh Returns -------- res : Result of the optimization. Contains smoothing and laplace_thrsh in attribute res.x""" from scipy import optimize from exana.tracking.tools import separation_error_func as err_func valid_methods = ['L-BFGS-B', 'TNC', 'SLSQP'] if method not in valid_methods: raise ValueError('invalid method flag %s' %method) rate_map[np.isnan(rate_map)] = 0. method = 'SLSQP' xmin = [0.025, 0] xmax = [0.2, 1] bounds = [(low,high) for low,high in zip(xmin,xmax)] obj_func = lambda args: err_func(args[0], args[1], rate_map) if glob: take_step = RandomDisplacementBounds(xmin, xmax,stepsize=step) minimizer_kwargs = dict(method=method, bounds=bounds) res = optimize.basinhopping(obj_func, x0, niter=niter, T = T, minimizer_kwargs=minimizer_kwargs, take_step=take_step,callback=callback) else: res = optimize.minimize(obj_func, x0, method=method, bounds = bounds, options={'disp': True}) return res if __name__ == "__main__": import doctest doctest.testmod()
gpl-3.0
tawsifkhan/scikit-learn
sklearn/pipeline.py
162
21103
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .utils.metaestimators import if_delegate_has_method from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Read more in the :ref:`User Guide <pipeline>`. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Attributes ---------- named_steps : dict Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... >>> # getting the selected features chosen by anova_filter >>> anova_svm.named_steps['anova'].get_support() ... # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, False, False, True, False, True, True, True, False, False, True, False, True, False, False, False, False, True], dtype=bool) """ # BaseEstimator interface def __init__(self, steps): names, estimators = zip(*steps) if len(dict(steps)) != len(steps): raise ValueError("Provided step names are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(steps) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps of the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) @property def _estimator_type(self): return self.steps[-1][1]._estimator_type def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(Pipeline, self).get_params(deep=False)) return out @property def named_steps(self): return dict(self.steps) @property def _final_estimator(self): return self.steps[-1][1] # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) @if_delegate_has_method(delegate='_final_estimator') def fit_predict(self, X, y=None, **fit_params): """Applies fit_predict of last step in pipeline after transforms. Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in the pipeline. Valid only if the final estimator implements fit_predict. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) return self.steps[-1][-1].fit_predict(Xt, y, **fit_params) @if_delegate_has_method(delegate='_final_estimator') def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict_log_proba(self, X): """Applies transforms to the data, and the predict_log_proba method of the final estimator. Valid only if the final estimator implements predict_log_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def inverse_transform(self, X): """Applies inverse transform to the data. Starts with the last step of the pipeline and applies ``inverse_transform`` in inverse order of the pipeline steps. Valid only if all steps of the pipeline implement inverse_transform. Parameters ---------- X : iterable Data to inverse transform. Must fulfill output requirements of the last step of the pipeline. """ if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score. Parameters ---------- X : iterable Data to score. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Targets used for scoring. Must fulfill label requirements for all steps of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def classes_(self): return self.steps[-1][-1].classes_ @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Read more in the :ref:`User Guide <feature_union>`. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(FeatureUnion, self).get_params(deep=False)) return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
lrp/tftools
tftools.py
2
9758
# tftools.py: Utilities for optimizing transfer function excitation signals # Copyright (C) 2013 Larry Price # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import division import numpy as np import scipy.signal as sig from matplotlib.mlab import csd, psd import sys def tukeywin(m, a=0.5): ''' Produces a tukey window a = overlap parameter between 0 returns a square window and 1 returns a Hann(ing) window m = number of points in the window see, e.g., https://en.wikipedia.org/wiki/Window_function#Tukey_window ''' if a <= 0: return np.ones(m) elif a >= 1: return np.hanning(m) x = np.linspace(0, 1, m) w = np.ones_like(x) w[x < a/2] = (1 + np.cos(2*np.pi/a * (x[x < a/2] - a/2) )) / 2 w[x >= (1 - a/2)] = (1 + np.cos(2*np.pi/a * (x[x >= (1 - a/2)] - 1 + a/2))) / 2 return w def getTF(exc,resp,tmeas,Fs,Nfft,padto=None): """ compute transfer function along with coherence and SNR. uses PSD/CSD method with 50% overlapping windows returns f, TF, Coherence, SNR exc = excitation signal resp = system response tmeas = duration of mesurement in seconds Fs = sample rate (Hz) Nfft = number of data points to be used in each block for fft padto = pad to this many points """ N = 1.89 * tmeas / (Nfft / Fs) Sx, f = psd(exc,NFFT=Nfft,Fs=Fs,noverlap=int(Nfft/2),pad_to=padto) Sy = psd(resp,NFFT=Nfft,Fs=Fs,noverlap=int(Nfft/2),pad_to=padto)[0] Sxy = csd(exc,resp,NFFT=Nfft,Fs=Fs,noverlap=int(Nfft/2),pad_to=padto)[0] Cxy = (Sxy * np.conj(Sxy)) / (Sx * Sy) snr = np.sqrt(Cxy * 2 * N / (1 - Cxy) ) return f, Sxy / Sx, Cxy, snr def fishersfzpk(ltisys,w,Sn): """ create the single-frequency fisher matrix for a transfer function in zpk form, i.e. __ ||_i (w - z_i) H(w) = k -------------------- __ ||_i (w - p_i) *** the excitation signal is assumed to be a sum of sines *** *** the denominator must be monic *** arguments: ltisys = a scipy.signal.lti instance of the transfer function w = (angular) frequencies of interest (in rad/s) Sn = PSD of the noise as an array (same length as w) returns: an NxN numpy array with each value being an array of len(w) (the collection of all single frequency Fisher matrices at frequencies w) """ ###FIXME: add some basic error handling #tf is in terms of iw, not w s = 1j*w #create the transfer function #use the lower case w because scipy puts the i in the transfer function for us tf = ltisys.freqresp(w)[1] #do the magnitude squared here once and for all tfmagsq = tf * np.conj(tf) #get the number of parameters if ltisys.gain == 1: N = len(ltisys.zeros) + len(ltisys.poles) else: N = len(ltisys.zeros) + len(ltisys.poles) + 1 #take all the derivatives Dz = np.zeros([len(ltisys.zeros),len(s)],dtype=np.complex128) Dp = np.zeros([len(ltisys.poles),len(s)],dtype=np.complex128) for i,z in enumerate(ltisys.zeros): Dz[i] = -1 / (s - z) for i,p in enumerate(ltisys.poles): Dp[i] = 1 / (s - p) #check for unity gain and the absence of zeros if ltisys.gain == 1 and ltisys.zeros.size: deez = np.vstack((Dz,Dp)) elif ltisys.gain == 1 and not ltisys.zeros.size: deez = Dp elif ltisys.gain != 1 and ltisys.zeros.size: deez = np.vstack((np.vstack((Dz,Dp)), 1/ltisys.gain[0] * np.ones(len(s)))) else: deez = np.vstack((Dp,1/ltisys.gain[0] * np.ones(len(s)))) #put it together to make the fisher matrix fisher = np.zeros([N,N,len(w)],dtype=np.float64) for i in range(N): for j in range(N): fisher[i][j] = 0.5 * tfmagsq * np.real(np.conj(deez[i])*deez[j]) / Sn #all done return fisher def fishersfab(ltisys,w,Sn): """ create the single-frequency fisher matrix for a transfer function as a rational function, i.e. Sum_0^N b_i s^i H(w) = -------------------- 1 + Sum_1^M a_i s^i *** the excitation signal is assumed to be a sum of sines *** *** the denominator must be monic (it's enforced, so no worries)*** arguments: ltisys = instance of scipy.signal.lti w = frequencies of interest Sn = PSD of the noise as an array (same length as w) returns: an NxN numpy array with each value being an array of len(w) (the collection of all single frequency Fisher matrices at frequencies w) NB: you have to take the transpose of the result if you want to, say compute the determinant via numpy.linalg.det """ ###FIXME: add some basic error handling #tf is in terms of iw, not w s = 1j*w #get the tf in the right form a,b = lti2ab(ltisys) #create the numerator and denominator of the tf if b.size: numer = np.sum(np.array([ b[i] * s**i for i in range(len(b))]),axis=0) else: #i don't think this is even possible unless the tf is just a pass-through numer = np.ones(len(s)) denom = np.sum(np.array([ a[i] * s**(i+1) for i in range(len(a))]),axis=0) + np.ones(len(s)) #number of parameters N = len(a) + len(b) #take all the derivatives deez = np.zeros([N,len(w)],dtype=np.complex128) for i in range(N): #derivative wrt denominator #funky numbering because denom is monic (demonic?) if i < len(a): deez[i] = - s**(i+1) * numer / denom**2 #derivative wrt numerator else: deez[i] = s**(i-len(a)) / denom #put it together to make the fisher matrix fisher = np.zeros([N,N,len(w)],dtype=np.float64) for i in range(N): for j in range(N): fisher[i][j] = 0.5 * np.real(np.conj(deez[i])*deez[j]) / Sn #all done return fisher def fishersf(ltisys,w,Sn,usezpk=False): """ convenience function to select between zpk (default) and ab form for computing the fisher matrix """ if usezpk is True: return fishersfzpk(ltisys,w,Sn) else: return fishersfab(ltisys,w,Sn) def fisherdesign(fmsf,Sx): """ compute the fisher matrix associated with the design Sx uses the Sx and the single frequency fisher matrix """ return np.sum(fmsf*Sx,axis=2) def dispersion(fmdesign,fmsf): """ compute the dispersion from the single frequency and design fisher matrices """ return np.trace(np.dot(np.linalg.inv(fmdesign),fmsf)) def lti2ab(ltisys): """ convenience function to convert scipy.signal.lti instance to a,b suitable for fisher matrix calculation ltisys is an instance of scipy.signal.lti returns a,b """ b = ltisys.num a = ltisys.den #fancy array slicing to reverse the order (::-1) and remove the first element of a (1:) return a[::-1][1:] / a[-1], b[::-1] / a[-1] def findfreqs(ltisys,Sn,w,nfreqs=None,usezpk=False): """ find best frequencies for optimal design (brute force method) arguments: ltisys = instance of scipy.signal.lti w = (angular) frequencies of interest nfreqs = # of frequencies to return. default is 3 x #parameters usezpk = boolean for indicating form of the transfer function returns: wopt = array of optimal frequencies to use fisherf = single-frequency fisher matrix evaluated at wopt (basically input for design optimization) """ #get the number of parameters and put the transfer function in the right form if usezpk is True: #number of parameters for zpk representation if ltisys.gain == 1: nparm = len(ltisys.zeros) + len(ltisys.poles) else: nparm = len(ltisys.zeros) + len(ltisys.poles) + 1 else: #using ab form a,b = lti2ab(ltisys) #number of parameters nparm = len(a) + len(b) #set the number of frequencies if nfreqs is None: nfreqs = 3 * nparm if nfreqs < 2 * nparm: raise ValueError('Must specify an nfreqs at least twice as large as the number of parameters!') sys.exit(0) fmsf = fishersf(ltisys,w,Sn,usezpk=usezpk) thesefreqs = np.sort(np.argsort(np.linalg.det(fmsf.T))[-nfreqs:]) return w[thesefreqs], fmsf.T[thesefreqs].T def optdesign(ltisys,w,usezpk=False,fmsf=None,Sn=None,tol=None,maxit=10000): """ compute the optimal design, Sx arguments: ltisys = instance of scipy.signal.lti w = the frequencies to optimize over tol = if max(dispersion - nparam) < tol, then iteration ceases. if tol isn't specified then iteration continues until maxit maxit = maximum number of iterations to perform returns a tuple containing: Sx = optimal design as a numpy array max(dispersion - nparam) """ #FIXME: add some error handling if fmsf is None and Sn is None: raise ValueError('Must specify Sn to compute Fisher!') sys.exit(1) #get the number of parameters and put the transfer function in the right form if usezpk is True: #number of parameters for zpk representation if ltisys.gain == 1: nparm = len(ltisys.zeros) + len(ltisys.poles) else: nparm = len(ltisys.zeros) + len(ltisys.poles) + 1 else: #using ab form a,b = lti2ab(ltisys) #number of parameters nparm = len(a) + len(b) #compute the single frequency fisher matrix if fmsf is None: fmsf = fishersf(ltisys,w,Sn,usezpk=usezpk) #initial design #normalized to one with all the power evenly distributed #don't worry about phases for now...FIXME: optimize phases Sx = np.ones(len(w)) / len (w) #compute the dispersion disp = dispersion(fisherdesign(fmsf,Sx),fmsf) for i in range(maxit): if tol is not None: if np.max(disp - nparm) < tol: break else: Sx *= (disp / nparm) disp = dispersion(fisherdesign(fmsf,Sx),fmsf) return Sx, np.max(disp - nparm)
gpl-3.0
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/doc/mpl_examples/api/histogram_path_demo.py
6
1464
""" This example shows how to use a path patch to draw a bunch of rectangles. The technique of using lots of Rectangle instances, or the faster method of using PolyCollections, were implemented before we had proper paths with moveto/lineto, closepoly etc in mpl. Now that we have them, we can draw collections of regularly shaped objects with homogeous properties more efficiently with a PathCollection. This example makes a histogram -- its more work to set up the vertex arrays at the outset, but it should be much faster for large numbers of objects """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path fig = plt.figure() ax = fig.add_subplot(111) # histogram our data with numpy data = np.random.randn(1000) n, bins = np.histogram(data, 50) # get the corners of the rectangles for the histogram left = np.array(bins[:-1]) right = np.array(bins[1:]) bottom = np.zeros(len(left)) top = bottom + n # we need a (numrects x numsides x 2) numpy array for the path helper # function to build a compound path XY = np.array([[left,left,right,right], [bottom,top,top,bottom]]).T # get the Path object barpath = path.Path.make_compound_path_from_polys(XY) # make a patch out of it patch = patches.PathPatch(barpath, facecolor='blue', edgecolor='gray', alpha=0.8) ax.add_patch(patch) # update the view limits ax.set_xlim(left[0], right[-1]) ax.set_ylim(bottom.min(), top.max()) plt.show()
mit
mfitzp/padua
setup.py
1
1035
from setuptools import setup, find_packages version = '0.1.16' setup( name='padua', version=version, url='http://github.com/mfitzp/padua', author='Martin Fitzpatrick', author_email='[email protected]', description='A Python interface for Proteomic Data Analysis, working with MaxQuant & Perseus outputs', license='MIT', packages=find_packages(), include_package_data=True, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Topic :: Desktop Environment', 'Topic :: Software Development :: Build Tools', 'Topic :: Software Development :: Widget Sets', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4' ], install_requires=[ 'numpy', 'scipy', 'matplotlib', 'pandas', 'statsmodels', 'matplotlib-venn', 'scikit-learn', 'requests', 'requests_toolbelt', 'adjustText' ] )
bsd-2-clause
ilo10/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
hobson/pug-invest
pug/invest/bin/fit-test.py
1
4498
from statsmodels.tsa import arima_model import numpy as np from pug.invest import util y = util.simulate(poly=100, sinusoids=(10, 100, -20)).values hr = np.arange(365*96)*.25 t = hr * 3600 sinusoids = [ np.random.normal(0.0, 0.1, 365*96)+10 + 3*np.sin(hr*2*np.pi/96/.25), np.random.normal(0.0, 0.1, 365*96)+15 + 3*np.sin(hr*2*np.pi/96/.25) + 3*np.cos(t*2*np.pi/96./.25/365.), np.random.normal(0.0, 1.0, 365*96)+15 + 3*np.sin(hr*2*np.pi/96/.25) + 3*np.cos(t*2*np.pi/96./.25/365.)+np.random.normal(0.0,1e-5,365*96).cumsum()] arma20 = arima_model.ARMA(y, (2,0)).fit() y2 = arma.predict(start=10*96, end=12*96) y1 = y[10*96-1:12*96] plt.plot(t[10*96-1:12*96],zip(*[y1,y2])) plt.show() y2 = arma30.predict(start=10*96, end=12*96) plt.plot(t[10*96-1:12*96],zip(*[y1,y2])) plt.show() arma30.resid.plot() plt.plot(arma30.resid) plt.show() plt.plot(arma30.resid/y2) plt.plot(arma30.resid/y) plt.show() plt.plot(arma30.resid/y) plt.show() arma30 = arima_model.ARMA(y[:-96*30], (2,0)).fit() y1 = y[-32*96:] y2 = arma30.predict(start=N-32*96, end=N-28*96) N=len(y) y2 = arma30.predict(start=N-32*96, end=N-28*96) plt.plot(t[-32*96-1:-28*96],zip(*[y1,y2])) plt.show() plt.plot(t[-32*96-1:-28*96],zip(*[y1,y2])) plt.show() N arma30 = arima_model.ARMA(y[:-96*30], (3,0)).fit() N_predict=len(y[:-96*30]) y_predict=y[:-96*30] y2 = arma30.predict(start=N_predict,end=N_predict+96) y1 = y[N_predict:N_predict+96] y1-y2 y2 = arma30.predict(start=N_predict,end=N_predict+95) plt.plot(zip(*[y1,y2])) plt.plot(zip(*[y1,y2])) plt.show() arma41 = arima_model.ARMA(y_train, (4,1)).fit() y_train=y[:-96*30] arma41 = arima_model.ARMA(y_train, (4,1)).fit() arma296 = arima_model.ARMA(y_train, (2,96)).fit() arma296 = arima_model.ARMA(y_train.diff(), (2,96)).fit() arma296 = arima_model.ARMA(pd.Series(y_train).diff(), (2,96)).fit() import pandas as pd y_diff = pd.Series(y).diff().values() y_diff = pd.Series(y).diff().values y_train=y_diff[:-96*30] arma296 = arima_model.ARMA(y_train, (2,96)).fit() arma296 = arima_model.ARMA(y_train, (2,0)).fit() arma296 = arima_model.ARMA(y_train[1:], (2,0)).fit() arma296 = arima_model.ARMA(y_train[-96*14:], (2,96)).fit() arma296 = arima_model.ARMA(y_train[-96*7:], (2,96)).fit() arma296 = arima_model.ARMA(y_train[-96*2:], (2,96)).fit() arma296 = arima_model.ARMA(y_train[-96*3:], (2,96)).fit() arma296 = arima_model.ARMA(y_train[-96*4:], (2,96)).fit() arma296 = arima_model.ARMA(y_train[-96*14:], (2,48)).fit() arma296 = arima_model.ARMA(y_train[-96*14:], (2,24)).fit() arma296 = arima_model.ARMA(y_train[-96*14:], (0,96)).fit() arma296 = arima_model.ARMA(y_train[-96*14:], (1,96)).fit() arma296 = arima_model.ARMA(y_train[-96*14:], (1,96)).fit(meth='mle') arma296 = arima_model.ARMA(y_train[-96*14:], (1,96)).fit(meth='css') arma296 = arima_model.ARMA(np.diff(y_train[-96*14:]).dropna(), (1,96)).fit(meth='css') arma296 = arima_model.ARMA(np.diff(y_train[-96*14:])[1:], (2,96)).fit(meth='css') arma296 = arima_model.ARMA(np.diff(y_train[-96*14:])[1:], (2,96)).fit(meth='mle') arma296 = arima_model.ARMA(np.diff(y_train[-96*14:])[1:], (2,96)) arma296.fit(trend='c',solver='bfgs') arma296.fit(trend='c',solver='bfgs',transparams=True) arma296.fit(trend='c',solver='bfgs',transparams=False) arma296._fit_start_params arma296._fit_start_params() arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=False) arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=True) q = np.zeros(96) q[0] = 1 q[-1]=1 q[-1]=.5 q[0] = .1 q[-1]=.9 p=[10, 1.2, -.2] arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=True,startparams=[p,q]) arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=True,start_params=[p,q]) np.log arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=False,start_params=[p,q]) p=np.array([10, 1.2, -.2]) arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=False,start_params=[p,q]) arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=False,start_params=np.array([p,q])) arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=False,start_params=q) q.shape q = np.zeros(93) q[-1]=.9 q[0]=.1 arma296.fit(meth='css-mle',trend='c',solver='bfgs',transparams=False,start_params=q) arma296.fit(trend='c',solver='bfgs',transparams=False,start_params=q) arma296.fit(trend='c',transparams=False,start_params=q) arma296.fit(transparams=False,start_params=q) len(q) p=np.array([10, 1.2, -.2]) q = np.zeros(99) q[0]=.1 q[0]=10 q[1]=1 q[2]=-.2 q[-1]=.95 arma296.fit(transparams=False,start_params=q)
mit
ldirer/scikit-learn
examples/classification/plot_lda_qda.py
32
5381
""" ==================================================================== Linear and Quadratic Discriminant Analysis with covariance ellipsoid ==================================================================== This example plots the covariance ellipsoids of each class and decision boundary learned by LDA and QDA. The ellipsoids display the double standard deviation for each class. With LDA, the standard deviation is the same for all the classes, while each class has its own standard deviation with QDA. """ print(__doc__) from scipy import linalg import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis ############################################################################### # colormap cmap = colors.LinearSegmentedColormap( 'red_blue_classes', {'red': [(0, 1, 1), (1, 0.7, 0.7)], 'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue': [(0, 0.7, 0.7), (1, 1, 1)]}) plt.cm.register_cmap(cmap=cmap) ############################################################################### # generate datasets def dataset_fixed_cov(): '''Generate 2 Gaussians samples with the same covariance matrix''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -0.23], [0.83, .23]]) X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y def dataset_cov(): '''Generate 2 Gaussians samples with different covariance matrices''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -1.], [2.5, .7]]) * 2. X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y ############################################################################### # plot functions def plot_data(lda, X, y, y_pred, fig_index): splot = plt.subplot(2, 2, fig_index) if fig_index == 1: plt.title('Linear Discriminant Analysis') plt.ylabel('Data with fixed covariance') elif fig_index == 2: plt.title('Quadratic Discriminant Analysis') elif fig_index == 3: plt.ylabel('Data with varying covariances') tp = (y == y_pred) # True Positive tp0, tp1 = tp[y == 0], tp[y == 1] X0, X1 = X[y == 0], X[y == 1] X0_tp, X0_fp = X0[tp0], X0[~tp0] X1_tp, X1_fp = X1[tp1], X1[~tp1] alpha = 0.5 # class 0: dots plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', alpha=alpha, color='red') plt.plot(X0_fp[:, 0], X0_fp[:, 1], '*', alpha=alpha, color='#990000') # dark red # class 1: dots plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', alpha=alpha, color='blue') plt.plot(X1_fp[:, 0], X1_fp[:, 1], '*', alpha=alpha, color='#000099') # dark blue # class 0 and 1 : areas nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny)) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes', norm=colors.Normalize(0., 1.)) plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k') # means plt.plot(lda.means_[0][0], lda.means_[0][1], 'o', color='black', markersize=10) plt.plot(lda.means_[1][0], lda.means_[1][1], 'o', color='black', markersize=10) return splot def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees # filled Gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, facecolor=color, edgecolor='yellow', linewidth=2, zorder=2) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) splot.set_xticks(()) splot.set_yticks(()) def plot_lda_cov(lda, splot): plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue') def plot_qda_cov(qda, splot): plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue') ############################################################################### for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # Linear Discriminant Analysis lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) y_pred = lda.fit(X, y).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) plt.axis('tight') # Quadratic Discriminant Analysis qda = QuadraticDiscriminantAnalysis(store_covariances=True) y_pred = qda.fit(X, y).predict(X) splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2) plot_qda_cov(qda, splot) plt.axis('tight') plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant Analysis') plt.show()
bsd-3-clause
trmznt/genaf
genaf/views/utils/plot.py
1
3274
# general plot / graphics utility using matplotlib from genaf.views.tools import * from matplotlib import pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import pandas import io, base64 @roles( PUBLIC ) def index(request): # check if not request.GET.get('_method', None) in [ '_exec', '_dfexec' ]: pform, jscode = create_form( request ) return render_to_response('genaf:templates/utils/index.mako', { 'title': 'Plotting Utility', 'html': pform, 'code': jscode, }, request = request ) if request.GET.get('method') == '_dfexec': df = parse_df(request.GET.get('dfdata')) else: df = parse_textdata(request.GET.get('textdata')) plot_type = request.GET.get('plot_type') if plot_type == 'B': html, jscode = column_chart(df) elif plot_type == 'S': return error_page(request, 'Scatter plot not implemented yet') elif plot_type == 'P': html, jscode = pie_chart(df) return render_to_response('genaf:templates/utils/index.mako', { 'title': 'Plot', 'html': html, 'code': jscode, }, request = request ) def create_form(request): """ return html, jscode """ pform = form(name='plotform', action='#') pform.add( fieldset(name='data')[ input_textarea('textdata', label='Data'), ], fieldset(name='options')[ input_select(name='plot_type', label='Plot type', value='B', options = [ ('B', 'Bar (vertical) / column chart'), ('S', 'Scatter x,y plot'), ('P', 'Pie chart'), ] ), ], fieldset()[ submit_bar('Create plot', '_exec')] ) return (pform, '') def parse_textdata(textdata): """ parse data, with the first line as header, and consecutive lines as data """ header, content = textdata.split('\n', 1) columns = [ x.strip() for x in header.split('|') ] buff = io.StringIO(content) dataframe = pandas.read_table(buff, header=None, names = columns) return dataframe def save_figure(canvas): figfile = io.BytesIO() canvas.print_figure(figfile) figfile.seek(0) figdata_png = figfile.getvalue() figdata_png = base64.b64encode(figdata_png).decode('ASCII') fig_html = literal('<img src="data:image/png;base64,%s" >' % figdata_png) return fig_html,'' def column_chart(df): """ creates column (vertical bar) chart """ fig = Figure() canvas = FigureCanvas(fig) ax = fig.add_subplot(111) ax.bar(df.index, df.iloc[:,1], align='center') ax.set_xlabel(df.columns[0]) ax.set_xticks(df.index) ax.set_xticklabels(df.iloc[:,0], rotation='vertical') ax.set_ylabel(df.columns[1]) fig.tight_layout() return save_figure(canvas) def pie_chart(df): fig = Figure() canvas = FigureCanvas(fig) ax = fig.add_subplot(111, aspect=1) ax.pie( df.iloc[:,1], labels = df.iloc[:,0], counterclock=False, startangle=90 ) ax.set_xlabel(df.columns[0]) fig.tight_layout() return save_figure(canvas)
lgpl-3.0
badlogicmanpreet/nupic
examples/opf/clients/hotgym/anomaly/one_gym/nupic_anomaly_output.py
49
9450
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Provides two classes with the same signature for writing data out of NuPIC models. (This is a component of the One Hot Gym Anomaly Tutorial.) """ import csv from collections import deque from abc import ABCMeta, abstractmethod from nupic.algorithms import anomaly_likelihood # Try to import matplotlib, but we don't have to. try: import matplotlib matplotlib.use('TKAgg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.dates import date2num, DateFormatter except ImportError: pass WINDOW = 300 HIGHLIGHT_ALPHA = 0.3 ANOMALY_HIGHLIGHT_COLOR = 'red' WEEKEND_HIGHLIGHT_COLOR = 'yellow' ANOMALY_THRESHOLD = 0.9 class NuPICOutput(object): __metaclass__ = ABCMeta def __init__(self, name): self.name = name self.anomalyLikelihoodHelper = anomaly_likelihood.AnomalyLikelihood() @abstractmethod def write(self, timestamp, value, predicted, anomalyScore): pass @abstractmethod def close(self): pass class NuPICFileOutput(NuPICOutput): def __init__(self, *args, **kwargs): super(NuPICFileOutput, self).__init__(*args, **kwargs) self.outputFiles = [] self.outputWriters = [] self.lineCount = 0 headerRow = [ 'timestamp', 'kw_energy_consumption', 'prediction', 'anomaly_score', 'anomaly_likelihood' ] outputFileName = "%s_out.csv" % self.name print "Preparing to output %s data to %s" % (self.name, outputFileName) self.outputFile = open(outputFileName, "w") self.outputWriter = csv.writer(self.outputFile) self.outputWriter.writerow(headerRow) def write(self, timestamp, value, predicted, anomalyScore): if timestamp is not None: anomalyLikelihood = self.anomalyLikelihoodHelper.anomalyProbability( value, anomalyScore, timestamp ) outputRow = [timestamp, value, predicted, anomalyScore, anomalyLikelihood] self.outputWriter.writerow(outputRow) self.lineCount += 1 def close(self): self.outputFile.close() print "Done. Wrote %i data lines to %s." % (self.lineCount, self.name) def extractWeekendHighlights(dates): weekendsOut = [] weekendSearch = [5, 6] weekendStart = None for i, date in enumerate(dates): if date.weekday() in weekendSearch: if weekendStart is None: # Mark start of weekend weekendStart = i else: if weekendStart is not None: # Mark end of weekend weekendsOut.append(( weekendStart, i, WEEKEND_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA )) weekendStart = None # Cap it off if we're still in the middle of a weekend if weekendStart is not None: weekendsOut.append(( weekendStart, len(dates)-1, WEEKEND_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA )) return weekendsOut def extractAnomalyIndices(anomalyLikelihood): anomaliesOut = [] anomalyStart = None for i, likelihood in enumerate(anomalyLikelihood): if likelihood >= ANOMALY_THRESHOLD: if anomalyStart is None: # Mark start of anomaly anomalyStart = i else: if anomalyStart is not None: # Mark end of anomaly anomaliesOut.append(( anomalyStart, i, ANOMALY_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA )) anomalyStart = None # Cap it off if we're still in the middle of an anomaly if anomalyStart is not None: anomaliesOut.append(( anomalyStart, len(anomalyLikelihood)-1, ANOMALY_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA )) return anomaliesOut class NuPICPlotOutput(NuPICOutput): def __init__(self, *args, **kwargs): super(NuPICPlotOutput, self).__init__(*args, **kwargs) # Turn matplotlib interactive mode on. plt.ion() self.dates = [] self.convertedDates = [] self.value = [] self.allValues = [] self.predicted = [] self.anomalyScore = [] self.anomalyLikelihood = [] self.actualLine = None self.predictedLine = None self.anomalyScoreLine = None self.anomalyLikelihoodLine = None self.linesInitialized = False self._chartHighlights = [] fig = plt.figure(figsize=(16, 10)) gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) self._mainGraph = fig.add_subplot(gs[0, 0]) plt.title(self.name) plt.ylabel('KW Energy Consumption') plt.xlabel('Date') self._anomalyGraph = fig.add_subplot(gs[1]) plt.ylabel('Percentage') plt.xlabel('Date') # Maximizes window mng = plt.get_current_fig_manager() mng.resize(*mng.window.maxsize()) plt.tight_layout() def initializeLines(self, timestamp): print "initializing %s" % self.name anomalyRange = (0.0, 1.0) self.dates = deque([timestamp] * WINDOW, maxlen=WINDOW) self.convertedDates = deque( [date2num(date) for date in self.dates], maxlen=WINDOW ) self.value = deque([0.0] * WINDOW, maxlen=WINDOW) self.predicted = deque([0.0] * WINDOW, maxlen=WINDOW) self.anomalyScore = deque([0.0] * WINDOW, maxlen=WINDOW) self.anomalyLikelihood = deque([0.0] * WINDOW, maxlen=WINDOW) actualPlot, = self._mainGraph.plot(self.dates, self.value) self.actualLine = actualPlot predictedPlot, = self._mainGraph.plot(self.dates, self.predicted) self.predictedLine = predictedPlot self._mainGraph.legend(tuple(['actual', 'predicted']), loc=3) anomalyScorePlot, = self._anomalyGraph.plot( self.dates, self.anomalyScore, 'm' ) anomalyScorePlot.axes.set_ylim(anomalyRange) self.anomalyScoreLine = anomalyScorePlot anomalyLikelihoodPlot, = self._anomalyGraph.plot( self.dates, self.anomalyScore, 'r' ) anomalyLikelihoodPlot.axes.set_ylim(anomalyRange) self.anomalyLikelihoodLine = anomalyLikelihoodPlot self._anomalyGraph.legend( tuple(['anomaly score', 'anomaly likelihood']), loc=3 ) dateFormatter = DateFormatter('%m/%d %H:%M') self._mainGraph.xaxis.set_major_formatter(dateFormatter) self._anomalyGraph.xaxis.set_major_formatter(dateFormatter) self._mainGraph.relim() self._mainGraph.autoscale_view(True, True, True) self.linesInitialized = True def highlightChart(self, highlights, chart): for highlight in highlights: # Each highlight contains [start-index, stop-index, color, alpha] self._chartHighlights.append(chart.axvspan( self.convertedDates[highlight[0]], self.convertedDates[highlight[1]], color=highlight[2], alpha=highlight[3] )) def write(self, timestamp, value, predicted, anomalyScore): # We need the first timestamp to initialize the lines at the right X value, # so do that check first. if not self.linesInitialized: self.initializeLines(timestamp) anomalyLikelihood = self.anomalyLikelihoodHelper.anomalyProbability( value, anomalyScore, timestamp ) self.dates.append(timestamp) self.convertedDates.append(date2num(timestamp)) self.value.append(value) self.allValues.append(value) self.predicted.append(predicted) self.anomalyScore.append(anomalyScore) self.anomalyLikelihood.append(anomalyLikelihood) # Update main chart data self.actualLine.set_xdata(self.convertedDates) self.actualLine.set_ydata(self.value) self.predictedLine.set_xdata(self.convertedDates) self.predictedLine.set_ydata(self.predicted) # Update anomaly chart data self.anomalyScoreLine.set_xdata(self.convertedDates) self.anomalyScoreLine.set_ydata(self.anomalyScore) self.anomalyLikelihoodLine.set_xdata(self.convertedDates) self.anomalyLikelihoodLine.set_ydata(self.anomalyLikelihood) # Remove previous highlighted regions for poly in self._chartHighlights: poly.remove() self._chartHighlights = [] weekends = extractWeekendHighlights(self.dates) anomalies = extractAnomalyIndices(self.anomalyLikelihood) # Highlight weekends in main chart self.highlightChart(weekends, self._mainGraph) # Highlight anomalies in anomaly chart self.highlightChart(anomalies, self._anomalyGraph) maxValue = max(self.allValues) self._mainGraph.relim() self._mainGraph.axes.set_ylim(0, maxValue + (maxValue * 0.02)) self._mainGraph.relim() self._mainGraph.autoscale_view(True, scaley=False) self._anomalyGraph.relim() self._anomalyGraph.autoscale_view(True, True, True) plt.draw() def close(self): plt.ioff() plt.show() NuPICOutput.register(NuPICFileOutput) NuPICOutput.register(NuPICPlotOutput)
agpl-3.0
untom/scikit-learn
sklearn/kernel_approximation.py
258
17973
""" The :mod:`sklearn.kernel_approximation` module implements several approximate kernel feature maps base on Fourier transforms. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause import warnings import numpy as np import scipy.sparse as sp from scipy.linalg import svd from .base import BaseEstimator from .base import TransformerMixin from .utils import check_array, check_random_state, as_float_array from .utils.extmath import safe_sparse_dot from .utils.validation import check_is_fitted from .metrics.pairwise import pairwise_kernels class RBFSampler(BaseEstimator, TransformerMixin): """Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform. It implements a variant of Random Kitchen Sinks.[1] Read more in the :ref:`User Guide <rbf_kernel_approx>`. Parameters ---------- gamma : float Parameter of RBF kernel: exp(-gamma * x^2) n_components : int Number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Notes ----- See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and Benjamin Recht. [1] "Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning" by A. Rahimi and Benjamin Recht. (http://www.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf) """ def __init__(self, gamma=1., n_components=100, random_state=None): self.gamma = gamma self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X, accept_sparse='csr') random_state = check_random_state(self.random_state) n_features = X.shape[1] self.random_weights_ = (np.sqrt(2 * self.gamma) * random_state.normal( size=(n_features, self.n_components))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = check_array(X, accept_sparse='csr') projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class SkewedChi2Sampler(BaseEstimator, TransformerMixin): """Approximates feature map of the "skewed chi-squared" kernel by Monte Carlo approximation of its Fourier transform. Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`. Parameters ---------- skewedness : float "skewedness" parameter of the kernel. Needs to be cross-validated. n_components : int number of Monte Carlo samples per original feature. Equals the dimensionality of the computed feature space. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. References ---------- See "Random Fourier Approximations for Skewed Multiplicative Histogram Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. See also -------- AdditiveChi2Sampler : A different approach for approximating an additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. """ def __init__(self, skewedness=1., n_components=100, random_state=None): self.skewedness = skewedness self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the transformer. """ X = check_array(X) random_state = check_random_state(self.random_state) n_features = X.shape[1] uniform = random_state.uniform(size=(n_features, self.n_components)) # transform by inverse CDF of sech self.random_weights_ = (1. / np.pi * np.log(np.tan(np.pi / 2. * uniform))) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) return self def transform(self, X, y=None): """Apply the approximate feature map to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) """ check_is_fitted(self, 'random_weights_') X = as_float_array(X, copy=True) X = check_array(X, copy=False) if (X < 0).any(): raise ValueError("X may not contain entries smaller than zero.") X += self.skewedness np.log(X, X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.) / np.sqrt(self.n_components) return projection class AdditiveChi2Sampler(BaseEstimator, TransformerMixin): """Approximate feature map for additive chi2 kernel. Uses sampling the fourier transform of the kernel characteristic at regular intervals. Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3. Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable. Read more in the :ref:`User Guide <additive_chi_kernel_approx>`. Parameters ---------- sample_steps : int, optional Gives the number of (complex) sampling points. sample_interval : float, optional Sampling interval. Must be specified when sample_steps not in {1,2,3}. Notes ----- This estimator approximates a slightly different version of the additive chi squared kernel then ``metric.additive_chi2`` computes. See also -------- SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of the chi squared kernel. sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel. sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi squared kernel. References ---------- See `"Efficient additive kernels via explicit feature maps" <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_ A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, 2011 """ def __init__(self, sample_steps=2, sample_interval=None): self.sample_steps = sample_steps self.sample_interval = sample_interval def fit(self, X, y=None): """Set parameters.""" X = check_array(X, accept_sparse='csr') if self.sample_interval is None: # See reference, figure 2 c) if self.sample_steps == 1: self.sample_interval_ = 0.8 elif self.sample_steps == 2: self.sample_interval_ = 0.5 elif self.sample_steps == 3: self.sample_interval_ = 0.4 else: raise ValueError("If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval") else: self.sample_interval_ = self.sample_interval return self def transform(self, X, y=None): """Apply approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape = (n_samples, n_features) Returns ------- X_new : {array, sparse matrix}, \ shape = (n_samples, n_features * (2*sample_steps + 1)) Whether the return value is an array of sparse matrix depends on the type of the input X. """ msg = ("%(name)s is not fitted. Call fit to set the parameters before" " calling transform") check_is_fitted(self, "sample_interval_", msg=msg) X = check_array(X, accept_sparse='csr') sparse = sp.issparse(X) # check if X has negative values. Doesn't play well with np.log. if ((X.data if sparse else X) < 0).any(): raise ValueError("Entries of X must be non-negative.") # zeroth component # 1/cosh = sech # cosh(0) = 1.0 transf = self._transform_sparse if sparse else self._transform_dense return transf(X) def _transform_dense(self, X): non_zero = (X != 0.0) X_nz = X[non_zero] X_step = np.zeros_like(X) X_step[non_zero] = np.sqrt(X_nz * self.sample_interval_) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X_nz) step_nz = 2 * X_nz * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.cos(j * log_step_nz) X_new.append(X_step) X_step = np.zeros_like(X) X_step[non_zero] = factor_nz * np.sin(j * log_step_nz) X_new.append(X_step) return np.hstack(X_new) def _transform_sparse(self, X): indices = X.indices.copy() indptr = X.indptr.copy() data_step = np.sqrt(X.data * self.sample_interval_) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new = [X_step] log_step_nz = self.sample_interval_ * np.log(X.data) step_nz = 2 * X.data * self.sample_interval_ for j in range(1, self.sample_steps): factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * self.sample_interval_)) data_step = factor_nz * np.cos(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) data_step = factor_nz * np.sin(j * log_step_nz) X_step = sp.csr_matrix((data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False) X_new.append(X_step) return sp.hstack(X_new) class Nystroem(BaseEstimator, TransformerMixin): """Approximate a kernel map using a subset of the training data. Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis. Read more in the :ref:`User Guide <nystroem_kernel_approx>`. Parameters ---------- kernel : string or callable, default="rbf" Kernel map to be approximated. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. n_components : int Number of features to construct. How many data points will be used to construct the mapping. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. random_state : {int, RandomState}, optional If int, random_state is the seed used by the random number generator; if RandomState instance, random_state is the random number generator. Attributes ---------- components_ : array, shape (n_components, n_features) Subset of training points used to construct the feature map. component_indices_ : array, shape (n_components) Indices of ``components_`` in the training set. normalization_ : array, shape (n_components, n_components) Normalization matrix needed for embedding. Square root of the kernel matrix on ``components_``. References ---------- * Williams, C.K.I. and Seeger, M. "Using the Nystroem method to speed up kernel machines", Advances in neural information processing systems 2001 * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical Comparison", Advances in Neural Information Processing Systems 2012 See also -------- RBFSampler : An approximation to the RBF kernel using random Fourier features. sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels. """ def __init__(self, kernel="rbf", gamma=None, coef0=1, degree=3, kernel_params=None, n_components=100, random_state=None): self.kernel = kernel self.gamma = gamma self.coef0 = coef0 self.degree = degree self.kernel_params = kernel_params self.n_components = n_components self.random_state = random_state def fit(self, X, y=None): """Fit estimator to data. Samples a subset of training points, computes kernel on these and computes normalization matrix. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Training data. """ X = check_array(X, accept_sparse='csr') rnd = check_random_state(self.random_state) n_samples = X.shape[0] # get basis vectors if self.n_components > n_samples: # XXX should we just bail? n_components = n_samples warnings.warn("n_components > n_samples. This is not possible.\n" "n_components was set to n_samples, which results" " in inefficient evaluation of the full kernel.") else: n_components = self.n_components n_components = min(n_samples, n_components) inds = rnd.permutation(n_samples) basis_inds = inds[:n_components] basis = X[basis_inds] basis_kernel = pairwise_kernels(basis, metric=self.kernel, filter_params=True, **self._get_kernel_params()) # sqrt of kernel matrix on basis vectors U, S, V = svd(basis_kernel) S = np.maximum(S, 1e-12) self.normalization_ = np.dot(U * 1. / np.sqrt(S), V) self.components_ = basis self.component_indices_ = inds return self def transform(self, X): """Apply feature map to X. Computes an approximate feature map using the kernel between some training points and X. Parameters ---------- X : array-like, shape=(n_samples, n_features) Data to transform. Returns ------- X_transformed : array, shape=(n_samples, n_components) Transformed data. """ check_is_fitted(self, 'components_') X = check_array(X, accept_sparse='csr') kernel_params = self._get_kernel_params() embedded = pairwise_kernels(X, self.components_, metric=self.kernel, filter_params=True, **kernel_params) return np.dot(embedded, self.normalization_.T) def _get_kernel_params(self): params = self.kernel_params if params is None: params = {} if not callable(self.kernel): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 return params
bsd-3-clause
ContinuumIO/dask
dask/dataframe/accessor.py
2
5362
import numpy as np import pandas as pd from functools import partial from ..utils import derived_from def maybe_wrap_pandas(obj, x): if isinstance(x, np.ndarray): if isinstance(obj, pd.Series): return pd.Series(x, index=obj.index, dtype=x.dtype) return pd.Index(x) return x class Accessor(object): """ Base class for pandas Accessor objects cat, dt, and str. Notes ----- Subclasses should define ``_accessor_name`` """ _not_implemented = set() def __init__(self, series): from .core import Series if not isinstance(series, Series): raise ValueError("Accessor cannot be initialized") series_meta = series._meta if hasattr(series_meta, "to_series"): # is index-like series_meta = series_meta.to_series() meta = getattr(series_meta, self._accessor_name) self._meta = meta self._series = series @staticmethod def _delegate_property(obj, accessor, attr): out = getattr(getattr(obj, accessor, obj), attr) return maybe_wrap_pandas(obj, out) @staticmethod def _delegate_method(obj, accessor, attr, args, kwargs): out = getattr(getattr(obj, accessor, obj), attr)(*args, **kwargs) return maybe_wrap_pandas(obj, out) def _property_map(self, attr): meta = self._delegate_property(self._series._meta, self._accessor_name, attr) token = "%s-%s" % (self._accessor_name, attr) return self._series.map_partitions( self._delegate_property, self._accessor_name, attr, token=token, meta=meta ) def _function_map(self, attr, *args, **kwargs): if "meta" in kwargs: meta = kwargs.pop("meta") else: meta = self._delegate_method( self._series._meta_nonempty, self._accessor_name, attr, args, kwargs ) token = "%s-%s" % (self._accessor_name, attr) return self._series.map_partitions( self._delegate_method, self._accessor_name, attr, args, kwargs, meta=meta, token=token, ) @property def _delegates(self): return set(dir(self._meta)).difference(self._not_implemented) def __dir__(self): o = self._delegates o.update(self.__dict__) o.update(dir(type(self))) return list(o) def __getattr__(self, key): if key in self._delegates: if callable(getattr(self._meta, key)): return partial(self._function_map, key) else: return self._property_map(key) else: raise AttributeError(key) class DatetimeAccessor(Accessor): """ Accessor object for datetimelike properties of the Series values. Examples -------- >>> s.dt.microsecond # doctest: +SKIP """ _accessor_name = "dt" class StringAccessor(Accessor): """ Accessor object for string properties of the Series values. Examples -------- >>> s.str.lower() # doctest: +SKIP """ _accessor_name = "str" _not_implemented = {"get_dummies"} @derived_from(pd.core.strings.StringMethods) def split(self, pat=None, n=-1, expand=False): if expand: if n == -1: raise NotImplementedError( "To use the expand parameter you must specify the number of " "expected splits with the n= parameter. Usually n splits result in n+1 output columns." ) else: delimiter = " " if pat is None else pat meta = type(self._series._meta)([delimiter.join(["a"] * (n + 1))]) meta = meta.str.split(n=n, expand=expand, pat=pat) else: meta = (self._series.name, object) return self._function_map("split", pat=pat, n=n, expand=expand, meta=meta) @derived_from(pd.core.strings.StringMethods) def cat(self, others=None, sep=None, na_rep=None): from .core import Series, Index if others is None: raise NotImplementedError("x.str.cat() with `others == None`") valid_types = (Series, Index, pd.Series, pd.Index) if isinstance(others, valid_types): others = [others] elif not all(isinstance(a, valid_types) for a in others): raise TypeError("others must be Series/Index") return self._series.map_partitions( str_cat, *others, sep=sep, na_rep=na_rep, meta=self._series._meta ) @derived_from(pd.core.strings.StringMethods) def extractall(self, pat, flags=0): # TODO: metadata inference here won't be necessary for pandas >= 0.23.0 meta = self._series._meta.str.extractall(pat, flags=flags) return self._series.map_partitions( str_extractall, pat, flags, meta=meta, token="str-extractall" ) def __getitem__(self, index): return self._series.map_partitions(str_get, index, meta=self._series._meta) def str_extractall(series, pat, flags): return series.str.extractall(pat, flags=flags) def str_get(series, index): """ Implements series.str[index] """ return series.str[index] def str_cat(self, *others, **kwargs): return self.str.cat(others=others, **kwargs)
bsd-3-clause
Gillu13/scipy
scipy/optimize/_lsq/least_squares.py
3
36471
"""Generic interface for least-square minimization.""" from warnings import warn import numpy as np from numpy.linalg import norm from scipy.sparse import issparse, csr_matrix from scipy.sparse.linalg import LinearOperator from scipy.optimize import _minpack, OptimizeResult from scipy.optimize._numdiff import approx_derivative, group_columns from scipy._lib.six import string_types from .trf import trf from .dogbox import dogbox from .common import EPS, in_bounds, make_strictly_feasible TERMINATION_MESSAGES = { -1: "Improper input parameters status returned from `leastsq`", 0: "The maximum number of function evaluations is exceeded.", 1: "`gtol` termination condition is satisfied.", 2: "`ftol` termination condition is satisfied.", 3: "`xtol` termination condition is satisfied.", 4: "Both `ftol` and `xtol` termination conditions are satisfied." } FROM_MINPACK_TO_COMMON = { 0: -1, # Improper input parameters from MINPACK. 1: 2, 2: 3, 3: 4, 4: 1, 5: 0 # There are 6, 7, 8 for too small tolerance parameters, # but we guard against it by checking ftol, xtol, gtol beforehand. } def call_minpack(fun, x0, jac, ftol, xtol, gtol, max_nfev, x_scale, diff_step): n = x0.size if diff_step is None: epsfcn = EPS else: epsfcn = diff_step**2 # Compute MINPACK's `diag`, which is inverse of our `x_scale` and # ``x_scale='jac'`` corresponds to ``diag=None``. if isinstance(x_scale, string_types) and x_scale == 'jac': diag = None else: diag = 1 / x_scale full_output = True col_deriv = False factor = 100.0 if jac is None: if max_nfev is None: # n squared to account for Jacobian evaluations. max_nfev = 100 * n * (n + 1) x, info, status = _minpack._lmdif( fun, x0, (), full_output, ftol, xtol, gtol, max_nfev, epsfcn, factor, diag) else: if max_nfev is None: max_nfev = 100 * n x, info, status = _minpack._lmder( fun, jac, x0, (), full_output, col_deriv, ftol, xtol, gtol, max_nfev, factor, diag) f = info['fvec'] if callable(jac): J = jac(x) else: J = np.atleast_2d(approx_derivative(fun, x)) cost = 0.5 * np.dot(f, f) g = J.T.dot(f) g_norm = norm(g, ord=np.inf) nfev = info['nfev'] njev = info.get('njev', None) status = FROM_MINPACK_TO_COMMON[status] active_mask = np.zeros_like(x0, dtype=int) return OptimizeResult( x=x, cost=cost, fun=f, jac=J, grad=g, optimality=g_norm, active_mask=active_mask, nfev=nfev, njev=njev, status=status) def prepare_bounds(bounds, n): lb, ub = [np.asarray(b, dtype=float) for b in bounds] if lb.ndim == 0: lb = np.resize(lb, n) if ub.ndim == 0: ub = np.resize(ub, n) return lb, ub def check_tolerance(ftol, xtol, gtol): message = "{} is too low, setting to machine epsilon {}." if ftol < EPS: warn(message.format("`ftol`", EPS)) ftol = EPS if xtol < EPS: warn(message.format("`xtol`", EPS)) xtol = EPS if gtol < EPS: warn(message.format("`gtol`", EPS)) gtol = EPS return ftol, xtol, gtol def check_x_scale(x_scale, x0): if isinstance(x_scale, string_types) and x_scale == 'jac': return x_scale try: x_scale = np.asarray(x_scale, dtype=float) valid = np.all(np.isfinite(x_scale)) and np.all(x_scale > 0) except (ValueError, TypeError): valid = False if not valid: raise ValueError("`x_scale` must be 'jac' or array_like with " "positive numbers.") if x_scale.ndim == 0: x_scale = np.resize(x_scale, x0.shape) if x_scale.shape != x0.shape: raise ValueError("Inconsistent shapes between `x_scale` and `x0`.") return x_scale def check_jac_sparsity(jac_sparsity, m, n): if jac_sparsity is None: return None if not issparse(jac_sparsity): jac_sparsity = np.atleast_2d(jac_sparsity) if jac_sparsity.shape != (m, n): raise ValueError("`jac_sparsity` has wrong shape.") return jac_sparsity, group_columns(jac_sparsity) # Loss functions. def huber(z, rho, cost_only): mask = z <= 1 rho[0, mask] = z[mask] rho[0, ~mask] = 2 * z[~mask]**0.5 - 1 if cost_only: return rho[1, mask] = 1 rho[1, ~mask] = z[~mask]**-0.5 rho[2, mask] = 0 rho[2, ~mask] = -0.5 * z[~mask]**-1.5 def soft_l1(z, rho, cost_only): t = 1 + z rho[0] = 2 * (t**0.5 - 1) if cost_only: return rho[1] = t**-0.5 rho[2] = -0.5 * t**-1.5 def cauchy(z, rho, cost_only): rho[0] = np.log1p(z) if cost_only: return t = 1 + z rho[1] = 1 / t rho[2] = -1 / t**2 def arctan(z, rho, cost_only): rho[0] = np.arctan(z) if cost_only: return t = 1 + z**2 rho[1] = 1 / t rho[2] = -2 * z / t**2 IMPLEMENTED_LOSSES = dict(linear=None, huber=huber, soft_l1=soft_l1, cauchy=cauchy, arctan=arctan) def construct_loss_function(m, loss, f_scale): if loss == 'linear': return None if not callable(loss): loss = IMPLEMENTED_LOSSES[loss] rho = np.empty((3, m)) def loss_function(f, cost_only=False): z = (f / f_scale) ** 2 loss(z, rho, cost_only=cost_only) if cost_only: return 0.5 * f_scale ** 2 * np.sum(rho[0]) rho[0] *= f_scale ** 2 rho[2] /= f_scale ** 2 return rho else: def loss_function(f, cost_only=False): z = (f / f_scale) ** 2 rho = loss(z) if cost_only: return 0.5 * f_scale ** 2 * np.sum(rho[0]) rho[0] *= f_scale ** 2 rho[2] /= f_scale ** 2 return rho return loss_function def least_squares( fun, x0, jac='2-point', bounds=(-np.inf, np.inf), method='trf', ftol=1e-8, xtol=1e-8, gtol=1e-8, x_scale=1.0, loss='linear', f_scale=1.0, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=None, verbose=0, args=(), kwargs={}): """Solve a nonlinear least-squares problem with bounds on the variables. Given the residuals f(x) (an m-dimensional function of n variables) and the loss function rho(s) (a scalar function), `least_squares` finds a local minimum of the cost function F(x):: minimize F(x) = 0.5 * sum(rho(f_i(x)**2), i = 0, ..., m - 1) subject to lb <= x <= ub The purpose of the loss function rho(s) is to reduce the influence of outliers on the solution. Parameters ---------- fun : callable Function which computes the vector of residuals, with the signature ``fun(x, *args, **kwargs)``, i.e., the minimization proceeds with respect to its first argument. The argument ``x`` passed to this function is an ndarray of shape (n,) (never a scalar, even for n=1). It must return a 1-d array_like of shape (m,) or a scalar. x0 : array_like with shape (n,) or float Initial guess on independent variables. If float, it will be treated as a 1-d array with one element. jac : {'2-point', '3-point', 'cs', callable}, optional Method of computing the Jacobian matrix (an m-by-n matrix, where element (i, j) is the partial derivative of f[i] with respect to x[j]). The keywords select a finite difference scheme for numerical estimation. The scheme '3-point' is more accurate, but requires twice as much operations compared to '2-point' (default). The scheme 'cs' uses complex steps, and while potentially the most accurate, it is applicable only when `fun` correctly handles complex inputs and can be analytically continued to the complex plane. Method 'lm' always uses the '2-point' scheme. If callable, it is used as ``jac(x, *args, **kwargs)`` and should return a good approximation (or the exact value) for the Jacobian as an array_like (np.atleast_2d is applied), a sparse matrix or a `scipy.sparse.linalg.LinearOperator`. bounds : 2-tuple of array_like, optional Lower and upper bounds on independent variables. Defaults to no bounds. Each array must match the size of `x0` or be a scalar, in the latter case a bound will be the same for all variables. Use ``np.inf`` with an appropriate sign to disable bounds on all or some variables. method : {'trf', 'dogbox', 'lm'}, optional Algorithm to perform minimization. * 'trf' : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method. * 'dogbox' : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian. * 'lm' : Levenberg-Marquardt algorithm as implemented in MINPACK. Doesn't handle bounds and sparse Jacobians. Usually the most efficient method for small unconstrained problems. Default is 'trf'. See Notes for more information. ftol : float, optional Tolerance for termination by the change of the cost function. Default is 1e-8. The optimization process is stopped when ``dF < ftol * F``, and there was an adequate agreement between a local quadratic model and the true model in the last step. xtol : float, optional Tolerance for termination by the change of the independent variables. Default is 1e-8. The exact condition depends on the `method` used: * For 'trf' and 'dogbox' : ``norm(dx) < xtol * (xtol + norm(x))`` * For 'lm' : ``Delta < xtol * norm(xs)``, where ``Delta`` is a trust-region radius and ``xs`` is the value of ``x`` scaled according to `x_scale` parameter (see below). gtol : float, optional Tolerance for termination by the norm of the gradient. Default is 1e-8. The exact condition depends on a `method` used: * For 'trf' : ``norm(g_scaled, ord=np.inf) < gtol``, where ``g_scaled`` is the value of the gradient scaled to account for the presence of the bounds [STIR]_. * For 'dogbox' : ``norm(g_free, ord=np.inf) < gtol``, where ``g_free`` is the gradient with respect to the variables which are not in the optimal state on the boundary. * For 'lm' : the maximum absolute value of the cosine of angles between columns of the Jacobian and the residual vector is less than `gtol`, or the residual vector is zero. x_scale : array_like or 'jac', optional Characteristic scale of each variable. Setting `x_scale` is equivalent to reformulating the problem in scaled variables ``xs = x / x_scale``. An alternative view is that the size of a trust region along j-th dimension is proportional to ``x_scale[j]``. Improved convergence may be achieved by setting `x_scale` such that a step of a given size along any of the scaled variables has a similar effect on the cost function. If set to 'jac', the scale is iteratively updated using the inverse norms of the columns of the Jacobian matrix (as described in [JJMore]_). loss : str or callable, optional Determines the loss function. The following keyword values are allowed: * 'linear' (default) : ``rho(z) = z``. Gives a standard least-squares problem. * 'soft_l1' : ``rho(z) = 2 * ((1 + z)**0.5 - 1)``. The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares. * 'huber' : ``rho(z) = z if z <= 1 else 2*z**0.5 - 1``. Works similarly to 'soft_l1'. * 'cauchy' : ``rho(z) = ln(1 + z)``. Severely weakens outliers influence, but may cause difficulties in optimization process. * 'arctan' : ``rho(z) = arctan(z)``. Limits a maximum loss on a single residual, has properties similar to 'cauchy'. If callable, it must take a 1-d ndarray ``z=f**2`` and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Method 'lm' supports only 'linear' loss. f_scale : float, optional Value of soft margin between inlier and outlier residuals, default is 1.0. The loss function is evaluated as follows ``rho_(f**2) = C**2 * rho(f**2 / C**2)``, where ``C`` is `f_scale`, and ``rho`` is determined by `loss` parameter. This parameter has no effect with ``loss='linear'``, but for other `loss` values it is of crucial importance. max_nfev : None or int, optional Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: * For 'trf' and 'dogbox' : 100 * n. * For 'lm' : 100 * n if `jac` is callable and 100 * n * (n + 1) otherwise (because 'lm' counts function calls in Jacobian estimation). diff_step : None or array_like, optional Determines the relative step size for the finite difference approximation of the Jacobian. The actual step is computed as ``x * diff_step``. If None (default), then `diff_step` is taken to be a conventional "optimal" power of machine epsilon for the finite difference scheme used [NR]_. tr_solver : {None, 'exact', 'lsmr'}, optional Method for solving trust-region subproblems, relevant only for 'trf' and 'dogbox' methods. * 'exact' is suitable for not very large problems with dense Jacobian matrices. The computational complexity per iteration is comparable to a singular value decomposition of the Jacobian matrix. * 'lsmr' is suitable for problems with sparse and large Jacobian matrices. It uses the iterative procedure `scipy.sparse.linalg.lsmr` for finding a solution of a linear least-squares problem and only requires matrix-vector product evaluations. If None (default) the solver is chosen based on the type of Jacobian returned on the first iteration. tr_options : dict, optional Keyword options passed to trust-region solver. * ``tr_solver='exact'``: `tr_options` are ignored. * ``tr_solver='lsmr'``: options for `scipy.sparse.linalg.lsmr`. Additionally ``method='trf'`` supports 'regularize' option (bool, default is True) which adds a regularization term to the normal equation, which improves convergence if the Jacobian is rank-deficient [Byrd]_ (eq. 3.4). jac_sparsity : {None, array_like, sparse matrix}, optional Defines the sparsity structure of the Jacobian matrix for finite difference estimation, its shape must be (m, n). If the Jacobian has only few non-zero elements in *each* row, providing the sparsity structure will greatly speed up the computations [Curtis]_. A zero entry means that a corresponding element in the Jacobian is identically zero. If provided, forces the use of 'lsmr' trust-region solver. If None (default) then dense differencing will be used. Has no effect for 'lm' method. verbose : {0, 1, 2}, optional Level of algorithm's verbosity: * 0 (default) : work silently. * 1 : display a termination report. * 2 : display progress during iterations (not supported by 'lm' method). args, kwargs : tuple and dict, optional Additional arguments passed to `fun` and `jac`. Both empty by default. The calling signature is ``fun(x, *args, **kwargs)`` and the same for `jac`. Returns ------- `OptimizeResult` with the following fields defined: x : ndarray, shape (n,) Solution found. cost : float Value of the cost function at the solution. fun : ndarray, shape (m,) Vector of residuals at the solution. jac : ndarray, sparse matrix or LinearOperator, shape (m, n) Modified Jacobian matrix at the solution, in the sense that J^T J is a Gauss-Newton approximation of the Hessian of the cost function. The type is the same as the one used by the algorithm. grad : ndarray, shape (m,) Gradient of the cost function at the solution. optimality : float First-order optimality measure. In unconstrained problems, it is always the uniform norm of the gradient. In constrained problems, it is the quantity which was compared with `gtol` during iterations. active_mask : ndarray of int, shape (n,) Each component shows whether a corresponding constraint is active (that is, whether a variable is at the bound): * 0 : a constraint is not active. * -1 : a lower bound is active. * 1 : an upper bound is active. Might be somewhat arbitrary for 'trf' method as it generates a sequence of strictly feasible iterates and `active_mask` is determined within a tolerance threshold. nfev : int Number of function evaluations done. Methods 'trf' and 'dogbox' do not count function calls for numerical Jacobian approximation, as opposed to 'lm' method. njev : int or None Number of Jacobian evaluations done. If numerical Jacobian approximation is used in 'lm' method, it is set to None. status : int The reason for algorithm termination: * -1 : improper input parameters status returned from MINPACK. * 0 : the maximum number of function evaluations is exceeded. * 1 : `gtol` termination condition is satisfied. * 2 : `ftol` termination condition is satisfied. * 3 : `xtol` termination condition is satisfied. * 4 : Both `ftol` and `xtol` termination conditions are satisfied. message : str Verbal description of the termination reason. success : bool True if one of the convergence criteria is satisfied (`status` > 0). See Also -------- leastsq : A legacy wrapper for the MINPACK implementation of the Levenberg-Marquadt algorithm. curve_fit : Least-squares minimization applied to a curve fitting problem. Notes ----- Method 'lm' (Levenberg-Marquardt) calls a wrapper over least-squares algorithms implemented in MINPACK (lmder, lmdif). It runs the Levenberg-Marquardt algorithm formulated as a trust-region type algorithm. The implementation is based on paper [JJMore]_, it is very robust and efficient with a lot of smart tricks. It should be your first choice for unconstrained problems. Note that it doesn't support bounds. Also it doesn't work when m < n. Method 'trf' (Trust Region Reflective) is motivated by the process of solving a system of equations, which constitute the first-order optimality condition for a bound-constrained minimization problem as formulated in [STIR]_. The algorithm iteratively solves trust-region subproblems augmented by a special diagonal quadratic term and with trust-region shape determined by the distance from the bounds and the direction of the gradient. This enhancements help to avoid making steps directly into bounds and efficiently explore the whole space of variables. To further improve convergence, the algorithm considers search directions reflected from the bounds. To obey theoretical requirements, the algorithm keeps iterates strictly feasible. With dense Jacobians trust-region subproblems are solved by an exact method very similar to the one described in [JJMore]_ (and implemented in MINPACK). The difference from the MINPACK implementation is that a singular value decomposition of a Jacobian matrix is done once per iteration, instead of a QR decomposition and series of Givens rotation eliminations. For large sparse Jacobians a 2-d subspace approach of solving trust-region subproblems is used [STIR]_, [Byrd]_. The subspace is spanned by a scaled gradient and an approximate Gauss-Newton solution delivered by `scipy.sparse.linalg.lsmr`. When no constraints are imposed the algorithm is very similar to MINPACK and has generally comparable performance. The algorithm works quite robust in unbounded and bounded problems, thus it is chosen as a default algorithm. Method 'dogbox' operates in a trust-region framework, but considers rectangular trust regions as opposed to conventional ellipsoids [Voglis]_. The intersection of a current trust region and initial bounds is again rectangular, so on each iteration a quadratic minimization problem subject to bound constraints is solved approximately by Powell's dogleg method [NumOpt]_. The required Gauss-Newton step can be computed exactly for dense Jacobians or approximately by `scipy.sparse.linalg.lsmr` for large sparse Jacobians. The algorithm is likely to exhibit slow convergence when the rank of Jacobian is less than the number of variables. The algorithm often outperforms 'trf' in bounded problems with a small number of variables. Robust loss functions are implemented as described in [BA]_. The idea is to modify a residual vector and a Jacobian matrix on each iteration such that computed gradient and Gauss-Newton Hessian approximation match the true gradient and Hessian approximation of the cost function. Then the algorithm proceeds in a normal way, i.e. robust loss functions are implemented as a simple wrapper over standard least-squares algorithms. .. versionadded:: 0.17.0 References ---------- .. [STIR] M. A. Branch, T. F. Coleman, and Y. Li, "A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems," SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1-23, 1999. .. [NR] William H. Press et. al., "Numerical Recipes. The Art of Scientific Computing. 3rd edition", Sec. 5.7. .. [Byrd] R. H. Byrd, R. B. Schnabel and G. A. Shultz, "Approximate solution of the trust region problem by minimization over two-dimensional subspaces", Math. Programming, 40, pp. 247-263, 1988. .. [Curtis] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of sparse Jacobian matrices", Journal of the Institute of Mathematics and its Applications, 13, pp. 117-120, 1974. .. [JJMore] J. J. More, "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977. .. [Voglis] C. Voglis and I. E. Lagaris, "A Rectangular Trust Region Dogleg Approach for Unconstrained and Bound Constrained Nonlinear Optimization", WSEAS International Conference on Applied Mathematics, Corfu, Greece, 2004. .. [NumOpt] J. Nocedal and S. J. Wright, "Numerical optimization, 2nd edition", Chapter 4. .. [BA] B. Triggs et. al., "Bundle Adjustment - A Modern Synthesis", Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, pp. 298-372, 1999. Examples -------- In this example we find a minimum of the Rosenbrock function without bounds on independed variables. >>> def fun_rosenbrock(x): ... return np.array([10 * (x[1] - x[0]**2), (1 - x[0])]) Notice that we only provide the vector of the residuals. The algorithm constructs the cost function as a sum of squares of the residuals, which gives the Rosenbrock function. The exact minimum is at ``x = [1.0, 1.0]``. >>> from scipy.optimize import least_squares >>> x0_rosenbrock = np.array([2, 2]) >>> res_1 = least_squares(fun_rosenbrock, x0_rosenbrock) >>> res_1.x array([ 1., 1.]) >>> res_1.cost 9.8669242910846867e-30 >>> res_1.optimality 8.8928864934219529e-14 We now constrain the variables, in such a way that the previous solution becomes infeasible. Specifically, we require that ``x[1] >= 1.5``, and ``x[0]`` left unconstrained. To this end, we specify the `bounds` parameter to `least_squares` in the form ``bounds=([-np.inf, 1.5], np.inf)``. We also provide the analytic Jacobian: >>> def jac_rosenbrock(x): ... return np.array([ ... [-20 * x[0], 10], ... [-1, 0]]) Putting this all together, we see that the new solution lies on the bound: >>> res_2 = least_squares(fun_rosenbrock, x0_rosenbrock, jac_rosenbrock, ... bounds=([-np.inf, 1.5], np.inf)) >>> res_2.x array([ 1.22437075, 1.5 ]) >>> res_2.cost 0.025213093946805685 >>> res_2.optimality 1.5885401433157753e-07 Now we solve a system of equations (i.e., the cost function should be zero at a minimum) for a Broyden tridiagonal vector-valued function of 100000 variables: >>> def fun_broyden(x): ... f = (3 - x) * x + 1 ... f[1:] -= x[:-1] ... f[:-1] -= 2 * x[1:] ... return f The corresponding Jacobian matrix is sparse. We tell the algorithm to estimate it by finite differences and provide the sparsity structure of Jacobian to significantly speed up this process. >>> from scipy.sparse import lil_matrix >>> def sparsity_broyden(n): ... sparsity = lil_matrix((n, n), dtype=int) ... i = np.arange(n) ... sparsity[i, i] = 1 ... i = np.arange(1, n) ... sparsity[i, i - 1] = 1 ... i = np.arange(n - 1) ... sparsity[i, i + 1] = 1 ... return sparsity ... >>> n = 100000 >>> x0_broyden = -np.ones(n) ... >>> res_3 = least_squares(fun_broyden, x0_broyden, ... jac_sparsity=sparsity_broyden(n)) >>> res_3.cost 4.5687069299604613e-23 >>> res_3.optimality 1.1650454296851518e-11 Let's also solve a curve fitting problem using robust loss function to take care of outliers in the data. Define the model function as ``y = a + b * exp(c * t)``, where t is a predictor variable, y is an observation and a, b, c are parameters to estimate. First, define the function which generates the data with noise and outliers, define the model parameters, and generate data: >>> def gen_data(t, a, b, c, noise=0, n_outliers=0, random_state=0): ... y = a + b * np.exp(t * c) ... ... rnd = np.random.RandomState(random_state) ... error = noise * rnd.randn(t.size) ... outliers = rnd.randint(0, t.size, n_outliers) ... error[outliers] *= 10 ... ... return y + error ... >>> a = 0.5 >>> b = 2.0 >>> c = -1 >>> t_min = 0 >>> t_max = 10 >>> n_points = 15 ... >>> t_train = np.linspace(t_min, t_max, n_points) >>> y_train = gen_data(t_train, a, b, c, noise=0.1, n_outliers=3) Define function for computing residuals and initial estimate of parameters. >>> def fun(x, t, y): ... return x[0] + x[1] * np.exp(x[2] * t) - y ... >>> x0 = np.array([1.0, 1.0, 0.0]) Compute a standard least-squares solution: >>> res_lsq = least_squares(fun, x0, args=(t_train, y_train)) Now compute two solutions with two different robust loss functions. The parameter `f_scale` is set to 0.1, meaning that inlier residuals should not significantly exceed 0.1 (the noise level used). >>> res_soft_l1 = least_squares(fun, x0, loss='soft_l1', f_scale=0.1, ... args=(t_train, y_train)) >>> res_log = least_squares(fun, x0, loss='cauchy', f_scale=0.1, ... args=(t_train, y_train)) And finally plot all the curves. We see that by selecting an appropriate `loss` we can get estimates close to optimal even in the presence of strong outliers. But keep in mind that generally it is recommended to try 'soft_l1' or 'huber' losses first (if at all necessary) as the other two options may cause difficulties in optimization process. >>> t_test = np.linspace(t_min, t_max, n_points * 10) >>> y_true = gen_data(t_test, a, b, c) >>> y_lsq = gen_data(t_test, *res_lsq.x) >>> y_soft_l1 = gen_data(t_test, *res_soft_l1.x) >>> y_log = gen_data(t_test, *res_log.x) ... >>> import matplotlib.pyplot as plt >>> plt.plot(t_train, y_train, 'o') >>> plt.plot(t_test, y_true, 'k', linewidth=2, label='true') >>> plt.plot(t_test, y_lsq, label='linear loss') >>> plt.plot(t_test, y_soft_l1, label='soft_l1 loss') >>> plt.plot(t_test, y_log, label='cauchy loss') >>> plt.xlabel("t") >>> plt.ylabel("y") >>> plt.legend() >>> plt.show() """ if method not in ['trf', 'dogbox', 'lm']: raise ValueError("`method` must be 'trf', 'dogbox' or 'lm'.") if jac not in ['2-point', '3-point', 'cs'] and not callable(jac): raise ValueError("`jac` must be '2-point', '3-point', 'cs' or " "callable.") if tr_solver not in [None, 'exact', 'lsmr']: raise ValueError("`tr_solver` must be None, 'exact' or 'lsmr'.") if loss not in IMPLEMENTED_LOSSES and not callable(loss): raise ValueError("`loss` must be one of {0} or a callable." .format(IMPLEMENTED_LOSSES.keys())) if method == 'lm' and loss != 'linear': raise ValueError("method='lm' supports only 'linear' loss function.") if verbose not in [0, 1, 2]: raise ValueError("`verbose` must be in [0, 1, 2].") if len(bounds) != 2: raise ValueError("`bounds` must contain 2 elements.") if max_nfev is not None and max_nfev <= 0: raise ValueError("`max_nfev` must be None or positive integer.") x0 = np.atleast_1d(x0).astype(float) if x0.ndim > 1: raise ValueError("`x0` must have at most 1 dimension.") lb, ub = prepare_bounds(bounds, x0.shape[0]) if method == 'lm' and not np.all((lb == -np.inf) & (ub == np.inf)): raise ValueError("Method 'lm' doesn't support bounds.") if lb.shape != x0.shape or ub.shape != x0.shape: raise ValueError("Inconsistent shapes between bounds and `x0`.") if np.any(lb >= ub): raise ValueError("Each lower bound must be strictly less than each " "upper bound.") if not in_bounds(x0, lb, ub): raise ValueError("`x0` is infeasible.") x_scale = check_x_scale(x_scale, x0) ftol, xtol, gtol = check_tolerance(ftol, xtol, gtol) def fun_wrapped(x): return np.atleast_1d(fun(x, *args, **kwargs)) if method == 'trf': x0 = make_strictly_feasible(x0, lb, ub) f0 = fun_wrapped(x0) if f0.ndim != 1: raise ValueError("`fun` must return at most 1-d array_like.") if not np.all(np.isfinite(f0)): raise ValueError("Residuals are not finite in the initial point.") n = x0.size m = f0.size if method == 'lm' and m < n: raise ValueError("Method 'lm' doesn't work when the number of " "residuals is less than the number of variables.") loss_function = construct_loss_function(m, loss, f_scale) if callable(loss): rho = loss_function(f0) if rho.shape != (3, m): raise ValueError("The return value of `loss` callable has wrong " "shape.") initial_cost = 0.5 * np.sum(rho[0]) elif loss_function is not None: initial_cost = loss_function(f0, cost_only=True) else: initial_cost = 0.5 * np.dot(f0, f0) if callable(jac): J0 = jac(x0, *args, **kwargs) if issparse(J0): J0 = csr_matrix(J0) def jac_wrapped(x, _=None): return csr_matrix(jac(x, *args, **kwargs)) elif isinstance(J0, LinearOperator): def jac_wrapped(x, _=None): return jac(x, *args, **kwargs) else: J0 = np.atleast_2d(J0) def jac_wrapped(x, _=None): return np.atleast_2d(jac(x, *args, **kwargs)) else: # Estimate Jacobian by finite differences. if method == 'lm': if jac_sparsity is not None: raise ValueError("method='lm' does not support " "`jac_sparsity`.") if jac != '2-point': warn("jac='{0}' works equivalently to '2-point' " "for method='lm'.".format(jac)) J0 = jac_wrapped = None else: if jac_sparsity is not None and tr_solver == 'exact': raise ValueError("tr_solver='exact' is incompatible " "with `jac_sparsity`.") jac_sparsity = check_jac_sparsity(jac_sparsity, m, n) def jac_wrapped(x, f): J = approx_derivative(fun, x, rel_step=diff_step, method=jac, f0=f, bounds=bounds, args=args, kwargs=kwargs, sparsity=jac_sparsity) if J.ndim != 2: # J is guaranteed not sparse. J = np.atleast_2d(J) return J J0 = jac_wrapped(x0, f0) if J0 is not None: if J0.shape != (m, n): raise ValueError( "The return value of `jac` has wrong shape: expected {0}, " "actual {1}.".format((m, n), J0.shape)) if not isinstance(J0, np.ndarray): if method == 'lm': raise ValueError("method='lm' works only with dense " "Jacobian matrices.") if tr_solver == 'exact': raise ValueError( "tr_solver='exact' works only with dense " "Jacobian matrices.") jac_scale = isinstance(x_scale, string_types) and x_scale == 'jac' if isinstance(J0, LinearOperator) and jac_scale: raise ValueError("x_scale='jac' can't be used when `jac` " "returns LinearOperator.") if tr_solver is None: if isinstance(J0, np.ndarray): tr_solver = 'exact' else: tr_solver = 'lsmr' if method == 'lm': result = call_minpack(fun_wrapped, x0, jac_wrapped, ftol, xtol, gtol, max_nfev, x_scale, diff_step) elif method == 'trf': result = trf(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, loss_function, tr_solver, tr_options.copy(), verbose) elif method == 'dogbox': if tr_solver == 'lsmr' and 'regularize' in tr_options: warn("The keyword 'regularize' in `tr_options` is not relevant " "for 'dogbox' method.") tr_options = tr_options.copy() del tr_options['regularize'] result = dogbox(fun_wrapped, jac_wrapped, x0, f0, J0, lb, ub, ftol, xtol, gtol, max_nfev, x_scale, loss_function, tr_solver, tr_options, verbose) result.message = TERMINATION_MESSAGES[result.status] result.success = result.status > 0 if verbose >= 1: print(result.message) print("Function evaluations {0}, initial cost {1:.4e}, final cost " "{2:.4e}, first-order optimality {3:.2e}." .format(result.nfev, initial_cost, result.cost, result.optimality)) return result
bsd-3-clause
mengxn/tensorflow
tensorflow/examples/tutorials/word2vec/word2vec_basic.py
28
9485
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Basic word2vec example.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math import os import random import zipfile import numpy as np from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # Step 1: Download the data. url = 'http://mattmahoney.net/dc/' def maybe_download(filename, expected_bytes): """Download a file if not present, and make sure it's the right size.""" if not os.path.exists(filename): filename, _ = urllib.request.urlretrieve(url + filename, filename) statinfo = os.stat(filename) if statinfo.st_size == expected_bytes: print('Found and verified', filename) else: print(statinfo.st_size) raise Exception( 'Failed to verify ' + filename + '. Can you get to it with a browser?') return filename filename = maybe_download('text8.zip', 31344016) # Read the data into a list of strings. def read_data(filename): """Extract the first file enclosed in a zip file as a list of words.""" with zipfile.ZipFile(filename) as f: data = tf.compat.as_str(f.read(f.namelist()[0])).split() return data vocabulary = read_data(filename) print('Data size', len(vocabulary)) # Step 2: Build the dictionary and replace rare words with UNK token. vocabulary_size = 50000 def build_dataset(words, n_words): """Process raw inputs into a dataset.""" count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(n_words - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count += 1 data.append(index) count[0][1] = unk_count reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reversed_dictionary data, count, dictionary, reverse_dictionary = build_dataset(vocabulary, vocabulary_size) del vocabulary # Hint to reduce memory. print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]]) data_index = 0 # Step 3: Function to generate a training batch for the skip-gram model. def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) # Backtrack a little bit to avoid skipping words in the end of a batch data_index = (data_index + len(data) - span) % len(data) return batch, labels batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1) for i in range(8): print(batch[i], reverse_dictionary[batch[i]], '->', labels[i, 0], reverse_dictionary[labels[i, 0]]) # Step 4: Build and train a skip-gram model. batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. # We pick a random validation set to sample nearest neighbors. Here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.random.choice(valid_window, valid_size, replace=False) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(): # Input data. train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Ops and variables pinned to the CPU because of missing GPU implementation with tf.device('/cpu:0'): # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # Construct the SGD optimizer using a learning rate of 1.0. optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # Compute the cosine similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul( valid_embeddings, normalized_embeddings, transpose_b=True) # Add variable initializer. init = tf.global_variables_initializer() # Step 5: Begin training. num_steps = 100001 with tf.Session(graph=graph) as session: # We must initialize all variables before we use them. init.run() print('Initialized') average_loss = 0 for step in xrange(num_steps): batch_inputs, batch_labels = generate_batch( batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} # We perform one update step by evaluating the optimizer op (including it # in the list of returned values for session.run() _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += loss_val if step % 2000 == 0: if step > 0: average_loss /= 2000 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step ', step, ': ', average_loss) average_loss = 0 # Note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log_str = 'Nearest to %s:' % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = '%s %s,' % (log_str, close_word) print(log_str) final_embeddings = normalized_embeddings.eval() # Step 6: Visualize the embeddings. def plot_with_labels(low_dim_embs, labels, filename='tsne.png'): assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(18, 18)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] plt.scatter(x, y) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.savefig(filename) try: # pylint: disable=g-import-not-at-top from sklearn.manifold import TSNE import matplotlib.pyplot as plt tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = 500 low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :]) labels = [reverse_dictionary[i] for i in xrange(plot_only)] plot_with_labels(low_dim_embs, labels) except ImportError: print('Please install sklearn, matplotlib, and scipy to show embeddings.')
apache-2.0
LohithBlaze/scikit-learn
sklearn/tests/test_metaestimators.py
226
4954
"""Common tests for metaestimators""" import functools import numpy as np from sklearn.base import BaseEstimator from sklearn.externals.six import iterkeys from sklearn.datasets import make_classification from sklearn.utils.testing import assert_true, assert_false, assert_raises from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.feature_selection import RFE, RFECV from sklearn.ensemble import BaggingClassifier class DelegatorData(object): def __init__(self, name, construct, skip_methods=(), fit_args=make_classification()): self.name = name self.construct = construct self.fit_args = fit_args self.skip_methods = skip_methods DELEGATING_METAESTIMATORS = [ DelegatorData('Pipeline', lambda est: Pipeline([('est', est)])), DelegatorData('GridSearchCV', lambda est: GridSearchCV( est, param_grid={'param': [5]}, cv=2), skip_methods=['score']), DelegatorData('RandomizedSearchCV', lambda est: RandomizedSearchCV( est, param_distributions={'param': [5]}, cv=2, n_iter=1), skip_methods=['score']), DelegatorData('RFE', RFE, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('RFECV', RFECV, skip_methods=['transform', 'inverse_transform', 'score']), DelegatorData('BaggingClassifier', BaggingClassifier, skip_methods=['transform', 'inverse_transform', 'score', 'predict_proba', 'predict_log_proba', 'predict']) ] def test_metaestimator_delegation(): # Ensures specified metaestimators have methods iff subestimator does def hides(method): @property def wrapper(obj): if obj.hidden_method == method.__name__: raise AttributeError('%r is hidden' % obj.hidden_method) return functools.partial(method, obj) return wrapper class SubEstimator(BaseEstimator): def __init__(self, param=1, hidden_method=None): self.param = param self.hidden_method = hidden_method def fit(self, X, y=None, *args, **kwargs): self.coef_ = np.arange(X.shape[1]) return True def _check_fit(self): if not hasattr(self, 'coef_'): raise RuntimeError('Estimator is not fit') @hides def inverse_transform(self, X, *args, **kwargs): self._check_fit() return X @hides def transform(self, X, *args, **kwargs): self._check_fit() return X @hides def predict(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def predict_log_proba(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def decision_function(self, X, *args, **kwargs): self._check_fit() return np.ones(X.shape[0]) @hides def score(self, X, *args, **kwargs): self._check_fit() return 1.0 methods = [k for k in iterkeys(SubEstimator.__dict__) if not k.startswith('_') and not k.startswith('fit')] methods.sort() for delegator_data in DELEGATING_METAESTIMATORS: delegate = SubEstimator() delegator = delegator_data.construct(delegate) for method in methods: if method in delegator_data.skip_methods: continue assert_true(hasattr(delegate, method)) assert_true(hasattr(delegator, method), msg="%s does not have method %r when its delegate does" % (delegator_data.name, method)) # delegation before fit raises an exception assert_raises(Exception, getattr(delegator, method), delegator_data.fit_args[0]) delegator.fit(*delegator_data.fit_args) for method in methods: if method in delegator_data.skip_methods: continue # smoke test delegation getattr(delegator, method)(delegator_data.fit_args[0]) for method in methods: if method in delegator_data.skip_methods: continue delegate = SubEstimator(hidden_method=method) delegator = delegator_data.construct(delegate) assert_false(hasattr(delegate, method)) assert_false(hasattr(delegator, method), msg="%s has method %r when its delegate does not" % (delegator_data.name, method))
bsd-3-clause
IndraVikas/scikit-learn
examples/hetero_feature_union.py
288
6236
""" ============================================= Feature Union with Heterogeneous Data Sources ============================================= Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions) 2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines. This example demonstrates how to use :class:`sklearn.feature_extraction.FeatureUnion` on a dataset containing different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights) using a FeatureUnion and finally train a classifier on the combined set of features. The choice of features is not particularly helpful, but serves to illustrate the technique. """ # Author: Matt Terry <[email protected]> # # License: BSD 3 clause from __future__ import print_function import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import fetch_20newsgroups from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.svm import SVC class ItemSelector(BaseEstimator, TransformerMixin): """For data grouped by feature, select subset of data at a provided key. The data is expected to be stored in a 2D data structure, where the first index is over features and the second is over samples. i.e. >> len(data[key]) == n_samples Please note that this is the opposite convention to sklearn feature matrixes (where the first index corresponds to sample). ItemSelector only requires that the collection implement getitem (data[key]). Examples include: a dict of lists, 2D numpy array, Pandas DataFrame, numpy record array, etc. >> data = {'a': [1, 5, 2, 5, 2, 8], 'b': [9, 4, 1, 4, 1, 3]} >> ds = ItemSelector(key='a') >> data['a'] == ds.transform(data) ItemSelector is not designed to handle data grouped by sample. (e.g. a list of dicts). If your data is structured this way, consider a transformer along the lines of `sklearn.feature_extraction.DictVectorizer`. Parameters ---------- key : hashable, required The key corresponding to the desired value in a mappable. """ def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key] class TextStats(BaseEstimator, TransformerMixin): """Extract features from each document for DictVectorizer""" def fit(self, x, y=None): return self def transform(self, posts): return [{'length': len(text), 'num_sentences': text.count('.')} for text in posts] class SubjectBodyExtractor(BaseEstimator, TransformerMixin): """Extract the subject & body from a usenet post in a single pass. Takes a sequence of strings and produces a dict of sequences. Keys are `subject` and `body`. """ def fit(self, x, y=None): return self def transform(self, posts): features = np.recarray(shape=(len(posts),), dtype=[('subject', object), ('body', object)]) for i, text in enumerate(posts): headers, _, bod = text.partition('\n\n') bod = strip_newsgroup_footer(bod) bod = strip_newsgroup_quoting(bod) features['body'][i] = bod prefix = 'Subject:' sub = '' for line in headers.split('\n'): if line.startswith(prefix): sub = line[len(prefix):] break features['subject'][i] = sub return features pipeline = Pipeline([ # Extract the subject & body ('subjectbody', SubjectBodyExtractor()), # Use FeatureUnion to combine the features from subject and body ('union', FeatureUnion( transformer_list=[ # Pipeline for pulling features from the post's subject line ('subject', Pipeline([ ('selector', ItemSelector(key='subject')), ('tfidf', TfidfVectorizer(min_df=50)), ])), # Pipeline for standard bag-of-words model for body ('body_bow', Pipeline([ ('selector', ItemSelector(key='body')), ('tfidf', TfidfVectorizer()), ('best', TruncatedSVD(n_components=50)), ])), # Pipeline for pulling ad hoc features from post's body ('body_stats', Pipeline([ ('selector', ItemSelector(key='body')), ('stats', TextStats()), # returns a list of dicts ('vect', DictVectorizer()), # list of dicts -> feature matrix ])), ], # weight components in FeatureUnion transformer_weights={ 'subject': 0.8, 'body_bow': 0.5, 'body_stats': 1.0, }, )), # Use a SVC classifier on the combined features ('svc', SVC(kernel='linear')), ]) # limit the list of categories to make running this exmaple faster. categories = ['alt.atheism', 'talk.religion.misc'] train = fetch_20newsgroups(random_state=1, subset='train', categories=categories, ) test = fetch_20newsgroups(random_state=1, subset='test', categories=categories, ) pipeline.fit(train.data, train.target) y = pipeline.predict(test.data) print(classification_report(y, test.target))
bsd-3-clause
markmuetz/stormtracks
stormtracks/results.py
1
3180
import os from glob import glob import pandas as pd from load_settings import settings from utils.utils import compress_file, decompress_file RESULTS_TPL = '{0}.hdf' class ResultNotFound(Exception): '''Simple exception thrown if result cannot be found in results manager or on disk''' pass class StormtracksResultsManager(object): '''Manager class that is responsible for loading and saving all python results Simple key/value store. Load/saves to settings.OUTPUT_DIR. ''' def __init__(self, name, output_dir=None): self.name = name if output_dir: self.output_dir = output_dir else: self.output_dir = settings.OUTPUT_DIR def save_result(self, year, result_key, result): '''Saves a given result based on year, user chosen result_key''' dirname = os.path.join(self.output_dir, self.name) if not os.path.exists(dirname): os.makedirs(dirname) filename = RESULTS_TPL.format(year) print('saving {0}'.format(filename)) path = os.path.join(dirname, filename) result.to_hdf(path, result_key) def get_result(self, year, result_key): '''Returns a result from an HDF file.''' dirname = os.path.join(self.output_dir, self.name) filename = RESULTS_TPL.format(year) path = os.path.join(dirname, filename) try: result = pd.read_hdf(path, result_key) except Exception, e: raise ResultNotFound return result def delete(self, year, result_key): '''Deletes a specific result from disk''' raise NotImplementedError('Not sure how to delete one result') def compress_year(self, year, delete=False): '''Compresses a given year's dir and then optionally deletes that year''' year_filename = os.path.join(self.output_dir, self.name, RESULTS_TPL.format(year)) compressed_filename = compress_file(year_filename) if delete: self.delete_year(year) return compressed_filename def delete_year(self, year): '''Deletes a year (use with caution!)''' year_filename = os.path.join(self.output_dir, self.name, RESULTS_TPL.format(year)) os.remove(year_filename) def decompress_year(self, year): '''Decompresses a given year's tarball''' filename = os.path.join(self.output_dir, self.name, '{0}.bz2'.format(RESULTS_TPL.format(year))) decompress_file(filename) def list_years(self): '''List all saved years''' years = [] dirname = os.path.join(self.output_dir, self.name) for year_dirname in glob(os.path.join(dirname, '*')): try: year = int(os.path.splitext(os.path.basename(year_dirname))[0]) years.append(year) except: pass return sorted(years) def list_results(self, year): '''List all results saved for a particular year''' dirname = os.path.join(self.output_dir, self.name) print(os.path.join(dirname, RESULTS_TPL.format(year))) store = pd.HDFStore(os.path.join(dirname, RESULTS_TPL.format(year))) results = [field[0][1:] for field in store.items()] store.close() return sorted(results)
mit
mlperf/inference_results_v0.7
closed/DellEMC/code/dlrm/tensorrt/accuracy-dlrm.py
18
3009
#! /usr/bin/env python3 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os, sys sys.path.insert(0, os.getcwd()) import argparse import json import numpy as np from sklearn.metrics import roc_auc_score import datetime def evaluate(log_path, ground_truth_file, sample_partition_file): print("Loading ground truths...") ground_truths = np.load(ground_truth_file) print("Done loading ground truths.") print("Loading sample partition...") sample_partition = np.load(sample_partition_file) print("Parsing LoadGen accuracy log...") expected = [] predicted = [] with open(log_path) as f: predictions = json.load(f) for counter, prediction in enumerate(predictions): if counter % 1000 == 0: print("[{:}] {:} / {:}".format(datetime.datetime.now(), counter, len(predictions))) qsl_idx = prediction["qsl_idx"] assert qsl_idx < len(sample_partition), "qsl_idx exceeds total number of samples in validation dataset" data = np.frombuffer(bytes.fromhex(prediction["data"]), np.float32) start_idx = sample_partition[qsl_idx] end_idx = sample_partition[qsl_idx+1] assert len(data) == end_idx - start_idx, "Length of predictions does not match number of pairs in sample" for i in data: predicted.append(np.nan_to_num(i)) for i in range(start_idx, end_idx): expected.append(ground_truths[i]) print("Done parsing LoadGen accuracy log.") print("Evaluating results...") score = roc_auc_score(expected, predicted) print("Done evaluating results.") print("auc={:.3f}%".format(score * 100)) def main(): parser = argparse.ArgumentParser("Accuracy checker for BERT benchmark from LoadGen logs") parser.add_argument("--mlperf-accuracy-file", help="Path to LoadGen log produced in AccuracyOnly mode") parser.add_argument("--ground-truth-file", help="Path to ground_truth.npy file", default="build/preprocessed_data/criteo/full_recalib/ground_truth.npy") parser.add_argument("--sample-partition-file", help="Path to sample partition file", default=os.path.join(os.environ.get("PREPROCESSED_DATA_DIR", "build/preprocessed_data"), "criteo", "full_recalib", "sample_partition.npy")) args = parser.parse_args() evaluate(args.mlperf_accuracy_file, args.ground_truth_file, args.sample_partition_file) if __name__ == "__main__": main()
apache-2.0
einarhuseby/arctic
arctic/_util.py
3
1846
from pandas import DataFrame from pandas.util.testing import assert_frame_equal from pymongo.errors import OperationFailure import string import logging logger = logging.getLogger(__name__) def indent(s, num_spaces): s = string.split(s, '\n') s = [(num_spaces * ' ') + line for line in s] s = string.join(s, '\n') return s def are_equals(o1, o2, **kwargs): try: if isinstance(o1, DataFrame): assert_frame_equal(o1, o2, kwargs) return True return o1 == o2 except Exception: return False def enable_sharding(arctic, library_name, hashed=False): c = arctic._conn lib = arctic[library_name]._arctic_lib dbname = lib._db.name library_name = lib.get_top_level_collection().name try: c.admin.command('enablesharding', dbname) except OperationFailure, e: if not 'failed: already enabled' in str(e): raise if not hashed: logger.info("Range sharding 'symbol' on: " + dbname + '.' + library_name) c.admin.command('shardCollection', dbname + '.' + library_name, key={'symbol': 1}) else: logger.info("Hash sharding 'symbol' on: " + dbname + '.' + library_name) c.admin.command('shardCollection', dbname + '.' + library_name, key={'symbol': 'hashed'}) def enable_powerof2sizes(arctic, library_name): lib = arctic[library_name]._arctic_lib collection = lib.get_top_level_collection() lib._db.command({"collMod": collection.name, 'usePowerOf2Sizes': "true"}) logger.info("usePowerOf2Sizes enabled for %s", collection.name) for coll in collection.database.collection_names(): if coll.startswith("%s." % collection.name): lib._db.command({"collMod": coll, 'usePowerOf2Sizes': "true"}) logger.info("usePowerOf2Sizes enabled for %s", coll)
lgpl-2.1
abhishekkrthakur/scikit-learn
sklearn/metrics/cluster/supervised.py
21
26876
"""Utilities to evaluate the clustering performance of models Functions named as *_score return a scalar value to maximize: the higher the better. """ # Authors: Olivier Grisel <[email protected]> # Wei LI <[email protected]> # Diego Molla <[email protected]> # License: BSD 3 clause from math import log from scipy.misc import comb from scipy.sparse import coo_matrix import numpy as np from .expected_mutual_info_fast import expected_mutual_information from ...utils.fixes import bincount def comb2(n): # the exact version is faster for k == 2: use it by default globally in # this module instead of the float approximate variant return comb(n, 2, exact=1) def check_clusterings(labels_true, labels_pred): """Check that the two clusterings matching 1D integer arrays""" labels_true = np.asarray(labels_true) labels_pred = np.asarray(labels_pred) # input checks if labels_true.ndim != 1: raise ValueError( "labels_true must be 1D: shape is %r" % (labels_true.shape,)) if labels_pred.ndim != 1: raise ValueError( "labels_pred must be 1D: shape is %r" % (labels_pred.shape,)) if labels_true.shape != labels_pred.shape: raise ValueError( "labels_true and labels_pred must have same size, got %d and %d" % (labels_true.shape[0], labels_pred.shape[0])) return labels_true, labels_pred def contingency_matrix(labels_true, labels_pred, eps=None): """Build a contengency matrix describing the relationship between labels. Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate eps: None or float If a float, that value is added to all values in the contingency matrix. This helps to stop NaN propagation. If ``None``, nothing is adjusted. Returns ------- contingency: array, shape=[n_classes_true, n_classes_pred] Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in true class :math:`i` and in predicted class :math:`j`. If ``eps is None``, the dtype of this array will be integer. If ``eps`` is given, the dtype will be float. """ classes, class_idx = np.unique(labels_true, return_inverse=True) clusters, cluster_idx = np.unique(labels_pred, return_inverse=True) n_classes = classes.shape[0] n_clusters = clusters.shape[0] # Using coo_matrix to accelerate simple histogram calculation, # i.e. bins are consecutive integers # Currently, coo_matrix is faster than histogram2d for simple cases contingency = coo_matrix((np.ones(class_idx.shape[0]), (class_idx, cluster_idx)), shape=(n_classes, n_clusters), dtype=np.int).toarray() if eps is not None: # don't use += as contingency is integer contingency = contingency + eps return contingency # clustering measures def adjusted_rand_score(labels_true, labels_pred): """Rand index adjusted for chance The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_score(a, b) == adjusted_rand_score(b, a) Parameters ---------- labels_true : int array, shape = [n_samples] Ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] Cluster labels to evaluate Returns ------- ari: float Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0. 1.0 stands for perfect match. Examples -------- Perfectly maching labelings have a score of 1 even >>> from sklearn.metrics.cluster import adjusted_rand_score >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:: >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1]) # doctest: +ELLIPSIS 0.57... ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnecessary splits are penalized:: >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2]) # doctest: +ELLIPSIS 0.57... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the ARI is very low:: >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [Hubert1985] `L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985` http://www.springerlink.com/content/x64124718341j1j0/ .. [wk] http://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index See also -------- adjusted_mutual_info_score: Adjusted Mutual Information """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split; # or trivial clustering where each document is assigned a unique cluster. # These are perfect matches hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0 or classes.shape[0] == clusters.shape[0] == len(labels_true)): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) # Compute the ARI using the contingency data sum_comb_c = sum(comb2(n_c) for n_c in contingency.sum(axis=1)) sum_comb_k = sum(comb2(n_k) for n_k in contingency.sum(axis=0)) sum_comb = sum(comb2(n_ij) for n_ij in contingency.flatten()) prod_comb = (sum_comb_c * sum_comb_k) / float(comb(n_samples, 2)) mean_comb = (sum_comb_k + sum_comb_c) / 2. return ((sum_comb - prod_comb) / (mean_comb - prod_comb)) def homogeneity_completeness_v_measure(labels_true, labels_pred): """Compute the homogeneity and completeness and V-Measure scores at once Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given the knowledge of a Ground Truth class labels of the same samples. A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. Both scores have positive values between 0.0 and 1.0, larger values being desirable. Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score values in any way. V-Measure is furthermore symmetric: swapping ``labels_true`` and ``label_pred`` will give the same score. This does not hold for homogeneity and completeness. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling v_measure: float harmonic mean of the first two See also -------- homogeneity_score completeness_score v_measure_score """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) if len(labels_true) == 0: return 1.0, 1.0, 1.0 entropy_C = entropy(labels_true) entropy_K = entropy(labels_pred) MI = mutual_info_score(labels_true, labels_pred) homogeneity = MI / (entropy_C) if entropy_C else 1.0 completeness = MI / (entropy_K) if entropy_K else 1.0 if homogeneity + completeness == 0.0: v_measure_score = 0.0 else: v_measure_score = (2.0 * homogeneity * completeness / (homogeneity + completeness)) return homogeneity, completeness, v_measure_score def homogeneity_score(labels_true, labels_pred): """Homogeneity metric of a cluster labeling given a ground truth A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`completeness_score` which will be different in general. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- homogeneity: float score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- completeness_score v_measure_score Examples -------- Perfect labelings are homogeneous:: >>> from sklearn.metrics.cluster import homogeneity_score >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 1.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 1.0... Clusters that include samples from different classes do not make for an homogeneous labeling:: >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1])) ... # doctest: +ELLIPSIS 0.0... >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[0] def completeness_score(labels_true, labels_pred): """Completeness metric of a cluster labeling given a ground truth A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is not symmetric: switching ``label_true`` with ``label_pred`` will return the :func:`homogeneity_score` which will be different in general. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- completeness: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score v_measure_score Examples -------- Perfect labelings are complete:: >>> from sklearn.metrics.cluster import completeness_score >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Non-perfect labelings that assign all classes members to the same clusters are still complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0])) 1.0 >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1])) 1.0 If classes members are split across different clusters, the assignment cannot be complete:: >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1])) 0.0 >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3])) 0.0 """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[1] def v_measure_score(labels_true, labels_pred): """V-measure cluster labeling given a ground truth. This score is identical to :func:`normalized_mutual_info_score`. The V-measure is the harmonic mean between homogeneity and completeness:: v = 2 * (homogeneity * completeness) / (homogeneity + completeness) This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Parameters ---------- labels_true : int array, shape = [n_samples] ground truth class labels to be used as a reference labels_pred : array, shape = [n_samples] cluster labels to evaluate Returns ------- v_measure: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling References ---------- .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster evaluation measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_ See also -------- homogeneity_score completeness_score Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import v_measure_score >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penalized:: >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1])) ... # doctest: +ELLIPSIS 0.66... Labelings that have pure clusters with members coming from the same classes are homogeneous but un-necessary splits harms completeness and thus penalize V-measure as well:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2])) ... # doctest: +ELLIPSIS 0.8... >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.66... If classes members are completely split across different clusters, the assignment is totally incomplete, hence the V-Measure is null:: >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3])) ... # doctest: +ELLIPSIS 0.0... Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling, hence:: >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0])) ... # doctest: +ELLIPSIS 0.0... """ return homogeneity_completeness_v_measure(labels_true, labels_pred)[2] def mutual_info_score(labels_true, labels_pred, contingency=None): """Mutual Information between two clusterings The Mutual Information is a measure of the similarity between two labels of the same data. Where :math:`P(i)` is the probability of a random sample occurring in cluster :math:`U_i` and :math:`P'(j)` is the probability of a random sample occurring in cluster :math:`V_j`, the Mutual Information between clusterings :math:`U` and :math:`V` is given as: .. math:: MI(U,V)=\sum_{i=1}^R \sum_{j=1}^C P(i,j)\log\\frac{P(i,j)}{P(i)P'(j)} This is equal to the Kullback-Leibler divergence of the joint distribution with the product distribution of the marginals. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. contingency: None or array, shape = [n_classes_true, n_classes_pred] A contingency matrix given by the :func:`contingency_matrix` function. If value is ``None``, it will be computed, otherwise the given value is used, with ``labels_true`` and ``labels_pred`` ignored. Returns ------- mi: float Mutual information, a non-negative value See also -------- adjusted_mutual_info_score: Adjusted against chance Mutual Information normalized_mutual_info_score: Normalized Mutual Information """ if contingency is None: labels_true, labels_pred = check_clusterings(labels_true, labels_pred) contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') contingency_sum = np.sum(contingency) pi = np.sum(contingency, axis=1) pj = np.sum(contingency, axis=0) outer = np.outer(pi, pj) nnz = contingency != 0.0 # normalized contingency contingency_nm = contingency[nnz] log_contingency_nm = np.log(contingency_nm) contingency_nm /= contingency_sum # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision log_outer = -np.log(outer[nnz]) + log(pi.sum()) + log(pj.sum()) mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) + contingency_nm * log_outer) return mi.sum() def adjusted_mutual_info_score(labels_true, labels_pred): """Adjusted Mutual Information between two clusterings Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- ami: float(upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are identical (ie perfectly matched). Random partitions (independent labellings) have an expected AMI around 0 on average hence can be negative. See also -------- adjusted_rand_score: Adjusted Rand Index mutual_information_score: Mutual Information (not adjusted for chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import adjusted_mutual_info_score >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the AMI is null:: >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 References ---------- .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance, JMLR <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_ .. [2] `Wikipedia entry for the Adjusted Mutual Information <http://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_ """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) n_samples = labels_true.shape[0] classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information emi = expected_mutual_information(contingency, n_samples) # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) ami = (mi - emi) / (max(h_true, h_pred) - emi) return ami def normalized_mutual_info_score(labels_true, labels_pred): """Normalized Mutual Information between two clusterings Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` This measure is not adjusted for chance. Therefore :func:`adjusted_mustual_info_score` might be preferred. This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Parameters ---------- labels_true : int array, shape = [n_samples] A clustering of the data into disjoint subsets. labels_pred : array, shape = [n_samples] A clustering of the data into disjoint subsets. Returns ------- nmi: float score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling See also -------- adjusted_rand_score: Adjusted Rand Index adjusted_mutual_info_score: Adjusted Mutual Information (adjusted against chance) Examples -------- Perfect labelings are both homogeneous and complete, hence have score 1.0:: >>> from sklearn.metrics.cluster import normalized_mutual_info_score >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1]) 1.0 >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0]) 1.0 If classes members are completely split across different clusters, the assignment is totally in-complete, hence the NMI is null:: >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3]) 0.0 """ labels_true, labels_pred = check_clusterings(labels_true, labels_pred) classes = np.unique(labels_true) clusters = np.unique(labels_pred) # Special limit cases: no clustering since the data is not split. # This is a perfect match hence return 1.0. if (classes.shape[0] == clusters.shape[0] == 1 or classes.shape[0] == clusters.shape[0] == 0): return 1.0 contingency = contingency_matrix(labels_true, labels_pred) contingency = np.array(contingency, dtype='float') # Calculate the MI for the two clusterings mi = mutual_info_score(labels_true, labels_pred, contingency=contingency) # Calculate the expected value for the mutual information # Calculate entropy for each labeling h_true, h_pred = entropy(labels_true), entropy(labels_pred) nmi = mi / max(np.sqrt(h_true * h_pred), 1e-10) return nmi def entropy(labels): """Calculates the entropy for a labeling.""" if len(labels) == 0: return 1.0 label_idx = np.unique(labels, return_inverse=True)[1] pi = bincount(label_idx).astype(np.float) pi = pi[pi > 0] pi_sum = np.sum(pi) # log(a / b) should be calculated as log(a) - log(b) for # possible loss of precision return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))
bsd-3-clause
fossdevil/Assignments
Machine Learning/Assignment3Final/ML4.py
1
3746
import numpy as np import scipy import matplotlib.pyplot as plt import random # N points in d dimensions def generatePoints(n,d): points = [] for i in range(0,n): point = np.random.normal(0,1,d); p = point**2; den = np.sqrt(sum(p)); point = list(point/den); points.append(point); return points; def interPointDistance(points,n,d): distMat = [] distance = 0; for i in range(0,n): disti = [] for j in range(0,n): distance = np.linalg.norm(list(np.asarray(points[i])-np.asarray(points[j]))); disti.append(distance); distMat.append(disti); return distMat; def projection(points,subspace,n): projPoint = [] subspacet = np.asmatrix(subspace); subspace = subspacet.T; for i in range(0,n): inv = np.linalg.inv(np.dot(subspacet,subspace)); proj = np.dot(np.dot(np.dot(subspace,inv),subspacet),points[i]); projPoint.append(proj); return projPoint; def subspaceGen(n,d): subspace = []; subv = np.zeros(d); r = np.arange(0,d); k = list(random.sample(r,n)); j = 0; for i in range(0,n): subv = np.zeros(d); subv[k[j]] = 1; j = j+1; subspace.append(subv); return subspace; n = 50; d = 200; points50 = generatePoints(n,d); distMat = interPointDistance(points50,n,d); print("Please open file \"Solution4.txt\":"); filename = "Solution4.txt" target = open(filename,'w'); target.write("The interpoint distance Matrix is as follows:\n"); for i in range(0,n): target.write(str(distMat[i])); target.write("\n"); target.write("\n"); target.write("\n"); target.write("\n"); subspaces1 = np.asmatrix(subspaceGen(1,d)); subspaces2 = np.asmatrix(subspaceGen(2,d)); subspaces3 = np.asmatrix(subspaceGen(3,d)); subspaces10 = np.asmatrix(subspaceGen(10,d)); subspaces50 = np.asmatrix(subspaceGen(50,d)); projPoint1 = projection(points50,subspaces1,n); projPoint2 = projection(points50,subspaces2,n); projPoint3 = projection(points50,subspaces3,n); projPoint10 = projection(points50,subspaces10,n); projPoint50 = projection(points50,subspaces50,n); distMat1 = interPointDistance(projPoint1,n,d); distMat2 = interPointDistance(projPoint2,n,d); distMat3 = interPointDistance(projPoint3,n,d); distMat10 = interPointDistance(projPoint10,n,d); distMat50 = interPointDistance(projPoint50,n,d); num = np.sqrt(1.0/200); diff1 = list((num*np.asmatrix(distMat))-np.asmatrix(distMat1)); num = np.sqrt(2.0/200); diff2 = list((num*np.asmatrix(distMat))-np.asmatrix(distMat2)); num = np.sqrt(3.0/200); diff3 = list((num*np.asmatrix(distMat))-np.asmatrix(distMat3)); num = np.sqrt(10.0/200); diff10 = list((num*np.asmatrix(distMat))-np.asmatrix(distMat10)); num = np.sqrt(50.0/200); diff50 = list((num*np.asmatrix(distMat))-np.asmatrix(distMat50)); target.write("Difference matrix is as follows:\n"); target.write("For k = 1"); target.write("\n"); for i in range(0,n): target.write(str(diff1[i])); target.write("\n"); target.write("\n"); target.write("\n"); target.write("\n"); target.write("For k = 2"); target.write("\n"); for i in range(0,n): target.write(str(diff2[i])); target.write("\n"); target.write("\n"); target.write("\n"); target.write("\n"); target.write("For k = 3"); target.write("\n"); for i in range(0,n): target.write(str(diff3[i])); target.write("\n"); target.write("\n"); target.write("\n"); target.write("\n"); target.write("For k = 10"); target.write("\n"); for i in range(0,n): target.write(str(diff10[i])); target.write("\n"); target.write("\n"); target.write("\n"); target.write("\n"); target.write("For k = 50"); target.write("\n"); for i in range(0,n): target.write(str(diff50[i])); target.write("\n"); target.close();
mit
thorwhalen/ut
ml/skwrap/feature_extraction/dict_vectorizer.py
1
7588
__author__ = 'thor' from sklearn.feature_extraction import DictVectorizer from sklearn.externals import six import numpy as np from pandas import DataFrame from collections import Counter class IterDictVectorizer(DictVectorizer): """Transforms lists of feature-value mappings or rows of a dataframe to vectors. It is like DictVectorizer (whose description was copied below), but: (1) works with pandas DataFrame X input (rows become feature-value mappings dict) (2) a minimum number of feature=value counts can be specified (by min_count) (3) The fit is faster than with DictVectorizer (at least with DataFrame input) This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator: string, optional Separator string used when constructing new features for one-hot coding. sparse: boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort: boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. min_count: positive float or int: If min_count >= 1, min_count is the minimum number of feature=value count. If min_count < 1, min_count represent the minimum proportion of the data that should have feature=value Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) >>> from ut.ml.skwrap.feature_extraction import IterDictVectorizer >>> from pandas import DataFrame >>> v = IterDictVectorizer(sparse=False) >>> D = DataFrame([{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]) >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True, min_count=0): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort self.min_count = min_count def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} feature_template = "{}" + self.separator + "{}" if isinstance(X, DataFrame): counts_of = dict() for col, val in X.items(): counts_of[col] = Counter(val.dropna()) self.feature_counts_ = {} _min_count = self.min_count if self.min_count < 1: _min_count *= len(X) else: _min_count = self.min_count self.df_columns_ = set() for k, v in counts_of.items(): for kk, vv in v.items(): if vv >= _min_count: self.feature_counts_[feature_template.format(k, kk)] = vv self.df_columns_.add(k) feature_names = list(self.feature_counts_.keys()) else: for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = feature_template.format(f, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def transform(self, X, y=None): if isinstance(X, DataFrame): X = map(lambda x: x[1].dropna().to_dict(), X.iterrows()) return super(IterDictVectorizer, self).transform(X) def fit_transform(self, X, y=None): self.fit(X) return self.transform(X) class IterDictVectorizerWithText(object): def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True, min_count=0, text_vectorizers={}): self.dict_vectorizer = IterDictVectorizer( dtype=dtype, separator=separator, sparse=sparse, sort=sort, min_count=min_count ) self.text_vectorizers = text_vectorizers def fit(self, X, y=None): # input validation assert isinstance(X, DataFrame), "X must be a pandas DataFrame" if not set(self.text_vectorizers.keys()).issubset(X.columns): RuntimeError("The following columns were specified in text_vectorizers, but were not in X:\n" + " {}".format(set(self.text_vectorizers.keys()).difference(X.columns))) # carry out the normal IterDictVectorizer.fit() for columns not in text_vectorizers self.dict_vectorizer_cols_ = set(X.columns).difference(list(self.text_vectorizers.keys())) self.dict_vectorizer.fit(X[self.dict_vectorizer_cols_]) self.vocabulary_ = self.dict_vectorizer.vocabulary_ # use the CounterVectorizers of text_vectorizers to fit the specified string columns for col in set(X.columns).intersection(list(self.text_vectorizers.keys())): self.text_vectorizers[col].fit(X[col]) offset = len(self.vocabulary_) self.vocabulary_ = dict(self.vocabulary_, **{k : v + offset for k, v in self.text_vectorizers[col].items()}) self.feature_names_ = list(self.vocabulary_.keys()) def transform(self, X, y=None): X1 = self.dict_vectorizer.transform(X[self.dict_vectorizer_cols_]) X2 = np.hstack((map(lambda col: self.text_vectorizers[col].transform(X[col]), list(self.text_vectorizers.keys())))) return np.hstack((X1, X2))
mit
kazemakase/scikit-learn
sklearn/cluster/tests/test_k_means.py
132
25860
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_not_mac_os from sklearn.utils.validation import DataConversionWarning from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(DataConversionWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): # Check that dense and sparse minibatch update give the same results rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) def _has_blas_lib(libname): from numpy.distutils.system_info import get_info return libname in get_info('blas_opt').get('libraries', []) @if_not_mac_os() def test_k_means_plus_plus_init_2_jobs(): if _has_blas_lib('openblas'): raise SkipTest('Multi-process bug with OpenBLAS (see issue #636)') km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_k_means_n_init(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) # two regression tests on bad n_init argument # previous bug: n_init <= 0 threw non-informative TypeError (#3858) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=0).fit, X) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=-1).fit, X) def test_k_means_fortran_aligned_data(): # Check the KMeans will work well, even if X is a fortran-aligned data. X = np.asfortranarray([[0, 0], [0, 1], [0, 1]]) centers = np.array([[0, 0], [0, 1]]) labels = np.array([0, 1, 1]) km = KMeans(n_init=1, init=centers, precompute_distances=False, random_state=42) km.fit(X) assert_array_equal(km.cluster_centers_, centers) assert_array_equal(km.labels_, labels) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): # Check if copy_x=False returns nearly equal X after de-centering. my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): # Check k_means with a bad initialization does not yield a singleton # Starting with bad centers that are quickly ignored should not # result in a repositioning of the centers to the center of mass that # would lead to collapsed centers which in turns make the clustering # dependent of the numerical unstabilities. my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): # Check that increasing the number of init increases the quality n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
bsd-3-clause
t00mas/datascience-python
classification/knearest.py
1
1554
import matplotlib import matplotlib.pyplot as pyplot import numpy from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets def get_iris_dataset(): iris = datasets.load_iris() return iris.data[:, :2], iris.target def get_knn_classifier(X, y, n_neighbors=None): if not n_neighbors: n_neighbors = 6 classifier = neighbors.KNeighborsClassifier(n_neighbors, weights='distance') classifier.fit(X, y) return classifier, n_neighbors def get_meshgrid(X, y, h=None): if not h: h = .02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 return numpy.meshgrid( numpy.arange(x_min, x_max, h), numpy.arange(y_min, y_max, h)) def predict(classifier, mesh_xx, mesh_yy): Z = classifier.predict(numpy.c_[mesh_xx.ravel(), mesh_yy.ravel()]) return Z.reshape(mesh_xx.shape) def plot_classified_regions(X, y, classifier, n_neighbors): xx, yy = get_meshgrid(X, y) Z = predict(classifier, xx, yy) pyplot.figure() pyplot.pcolormesh(xx, yy, Z) # Plot also the training points cmap = ListedColormap(['#FFAAAA', '#AAFFAA','#00AAFF']) pyplot.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap, alpha=0.8) pyplot.xlim(xx.min(), xx.max()) pyplot.ylim(yy.min(), yy.max()) pyplot.title("3-Class classification (k = %i)" % (n_neighbors)) pyplot.savefig('knearest.png') X, y = get_iris_dataset() knn, n_neighbors = get_knn_classifier(X, y) plot_classified_regions(X, y, knn, n_neighbors)
mit
cython-testbed/pandas
pandas/tests/io/parser/test_textreader.py
4
11387
# -*- coding: utf-8 -*- """ Tests the TextReader class in parsers.pyx, which is integral to the C engine in parsers.py """ import pytest from pandas.compat import StringIO, BytesIO, map from pandas import compat import os import sys from numpy import nan import numpy as np from pandas import DataFrame from pandas.io.parsers import (read_csv, TextFileReader) from pandas.util.testing import assert_frame_equal import pandas.util.testing as tm from pandas._libs.parsers import TextReader import pandas._libs.parsers as parser class TestTextReader(object): @pytest.fixture(autouse=True) def setup_method(self, datapath): self.dirpath = datapath('io', 'parser', 'data') self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def test_file_handle(self): with open(self.csv1, 'rb') as f: reader = TextReader(f) reader.read() def test_string_filename(self): reader = TextReader(self.csv1, header=None) reader.read() def test_file_handle_mmap(self): with open(self.csv1, 'rb') as f: reader = TextReader(f, memory_map=True, header=None) reader.read() def test_StringIO(self): with open(self.csv1, 'rb') as f: text = f.read() src = BytesIO(text) reader = TextReader(src, header=None) reader.read() def test_string_factorize(self): # should this be optional? data = 'a\nb\na\nb\na' reader = TextReader(StringIO(data), header=None) result = reader.read() assert len(set(map(id, result[0]))) == 2 def test_skipinitialspace(self): data = ('a, b\n' 'a, b\n' 'a, b\n' 'a, b') reader = TextReader(StringIO(data), skipinitialspace=True, header=None) result = reader.read() tm.assert_numpy_array_equal(result[0], np.array(['a', 'a', 'a', 'a'], dtype=np.object_)) tm.assert_numpy_array_equal(result[1], np.array(['b', 'b', 'b', 'b'], dtype=np.object_)) def test_parse_booleans(self): data = 'True\nFalse\nTrue\nTrue' reader = TextReader(StringIO(data), header=None) result = reader.read() assert result[0].dtype == np.bool_ def test_delimit_whitespace(self): data = 'a b\na\t\t "b"\n"a"\t \t b' reader = TextReader(StringIO(data), delim_whitespace=True, header=None) result = reader.read() tm.assert_numpy_array_equal(result[0], np.array(['a', 'a', 'a'], dtype=np.object_)) tm.assert_numpy_array_equal(result[1], np.array(['b', 'b', 'b'], dtype=np.object_)) def test_embedded_newline(self): data = 'a\n"hello\nthere"\nthis' reader = TextReader(StringIO(data), header=None) result = reader.read() expected = np.array(['a', 'hello\nthere', 'this'], dtype=np.object_) tm.assert_numpy_array_equal(result[0], expected) def test_euro_decimal(self): data = '12345,67\n345,678' reader = TextReader(StringIO(data), delimiter=':', decimal=',', header=None) result = reader.read() expected = np.array([12345.67, 345.678]) tm.assert_almost_equal(result[0], expected) def test_integer_thousands(self): data = '123,456\n12,500' reader = TextReader(StringIO(data), delimiter=':', thousands=',', header=None) result = reader.read() expected = np.array([123456, 12500], dtype=np.int64) tm.assert_almost_equal(result[0], expected) def test_integer_thousands_alt(self): data = '123.456\n12.500' reader = TextFileReader(StringIO(data), delimiter=':', thousands='.', header=None) result = reader.read() expected = DataFrame([123456, 12500]) tm.assert_frame_equal(result, expected) @tm.capture_stderr def test_skip_bad_lines(self): # too many lines, see #2430 for why data = ('a:b:c\n' 'd:e:f\n' 'g:h:i\n' 'j:k:l:m\n' 'l:m:n\n' 'o:p:q:r') reader = TextReader(StringIO(data), delimiter=':', header=None) pytest.raises(parser.ParserError, reader.read) reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=False) result = reader.read() expected = {0: np.array(['a', 'd', 'g', 'l'], dtype=object), 1: np.array(['b', 'e', 'h', 'm'], dtype=object), 2: np.array(['c', 'f', 'i', 'n'], dtype=object)} assert_array_dicts_equal(result, expected) reader = TextReader(StringIO(data), delimiter=':', header=None, error_bad_lines=False, warn_bad_lines=True) reader.read() val = sys.stderr.getvalue() assert 'Skipping line 4' in val assert 'Skipping line 6' in val def test_header_not_enough_lines(self): data = ('skip this\n' 'skip this\n' 'a,b,c\n' '1,2,3\n' '4,5,6') reader = TextReader(StringIO(data), delimiter=',', header=2) header = reader.header expected = [['a', 'b', 'c']] assert header == expected recs = reader.read() expected = {0: np.array([1, 4], dtype=np.int64), 1: np.array([2, 5], dtype=np.int64), 2: np.array([3, 6], dtype=np.int64)} assert_array_dicts_equal(recs, expected) def test_escapechar(self): data = ('\\"hello world\"\n' '\\"hello world\"\n' '\\"hello world\"') reader = TextReader(StringIO(data), delimiter=',', header=None, escapechar='\\') result = reader.read() expected = {0: np.array(['"hello world"'] * 3, dtype=object)} assert_array_dicts_equal(result, expected) def test_eof_has_eol(self): # handling of new line at EOF pass def test_na_substitution(self): pass def test_numpy_string_dtype(self): data = """\ a,1 aa,2 aaa,3 aaaa,4 aaaaa,5""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', header=None, **kwds) reader = _make_reader(dtype='S5,i4') result = reader.read() assert result[0].dtype == 'S5' ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaaa'], dtype='S5') assert (result[0] == ex_values).all() assert result[1].dtype == 'i4' reader = _make_reader(dtype='S4') result = reader.read() assert result[0].dtype == 'S4' ex_values = np.array(['a', 'aa', 'aaa', 'aaaa', 'aaaa'], dtype='S4') assert (result[0] == ex_values).all() assert result[1].dtype == 'S4' def test_pass_dtype(self): data = """\ one,two 1,a 2,b 3,c 4,d""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(dtype={'one': 'u1', 1: 'S1'}) result = reader.read() assert result[0].dtype == 'u1' assert result[1].dtype == 'S1' reader = _make_reader(dtype={'one': np.uint8, 1: object}) result = reader.read() assert result[0].dtype == 'u1' assert result[1].dtype == 'O' reader = _make_reader(dtype={'one': np.dtype('u1'), 1: np.dtype('O')}) result = reader.read() assert result[0].dtype == 'u1' assert result[1].dtype == 'O' def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" def _make_reader(**kwds): return TextReader(StringIO(data), delimiter=',', **kwds) reader = _make_reader(usecols=(1, 2)) result = reader.read() exp = _make_reader().read() assert len(result) == 2 assert (result[1] == exp[1]).all() assert (result[2] == exp[2]).all() def test_cr_delimited(self): def _test(text, **kwargs): nice_text = text.replace('\r', '\r\n') result = TextReader(StringIO(text), **kwargs).read() expected = TextReader(StringIO(nice_text), **kwargs).read() assert_array_dicts_equal(result, expected) data = 'a,b,c\r1,2,3\r4,5,6\r7,8,9\r10,11,12' _test(data, delimiter=',') data = 'a b c\r1 2 3\r4 5 6\r7 8 9\r10 11 12' _test(data, delim_whitespace=True) data = 'a,b,c\r1,2,3\r4,5,6\r,88,9\r10,11,12' _test(data, delimiter=',') sample = ('A,B,C,D,E,F,G,H,I,J,K,L,M,N,O\r' 'AAAAA,BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0\r' ',BBBBB,0,0,0,0,0,0,0,0,0,0,0,0,0') _test(sample, delimiter=',') data = 'A B C\r 2 3\r4 5 6' _test(data, delim_whitespace=True) data = 'A B C\r2 3\r4 5 6' _test(data, delim_whitespace=True) def test_empty_field_eof(self): data = 'a,b,c\n1,2,3\n4,,' result = TextReader(StringIO(data), delimiter=',').read() expected = {0: np.array([1, 4], dtype=np.int64), 1: np.array(['2', ''], dtype=object), 2: np.array(['3', ''], dtype=object)} assert_array_dicts_equal(result, expected) # GH5664 a = DataFrame([['b'], [nan]], columns=['a'], index=['a', 'c']) b = DataFrame([[1, 1, 1, 0], [1, 1, 1, 0]], columns=list('abcd'), index=[1, 1]) c = DataFrame([[1, 2, 3, 4], [6, nan, nan, nan], [8, 9, 10, 11], [13, 14, nan, nan]], columns=list('abcd'), index=[0, 5, 7, 12]) for _ in range(100): df = read_csv(StringIO('a,b\nc\n'), skiprows=0, names=['a'], engine='c') assert_frame_equal(df, a) df = read_csv(StringIO('1,1,1,1,0\n' * 2 + '\n' * 2), names=list("abcd"), engine='c') assert_frame_equal(df, b) df = read_csv(StringIO('0,1,2,3,4\n5,6\n7,8,9,10,11\n12,13,14'), names=list('abcd'), engine='c') assert_frame_equal(df, c) def test_empty_csv_input(self): # GH14867 df = read_csv(StringIO(), chunksize=20, header=None, names=['a', 'b', 'c']) assert isinstance(df, TextFileReader) def assert_array_dicts_equal(left, right): for k, v in compat.iteritems(left): assert tm.assert_numpy_array_equal(np.asarray(v), np.asarray(right[k]))
bsd-3-clause